Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica
2016-03-01
Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.
A mesoscopic model for binary fluids
Echeverria, C; Alvarez-Llamoza, O; Orozco-Guillén, E E; Morales, M; Cosenza, M G
2016-01-01
We propose a model to study symmetric binary fluids, based in the mesoscopic molecular simulation technique known as multiparticle collision, where space and state variables are continuous while time is discrete. We include a repulsion rule to simulate segregation processes that does not require the calculation of the interaction forces between particles, thus allowing the description of binary fluids at a mesoscopic scale. The model is conceptually simple, computationally efficient, maintains Galilean invariance, and conserves the mass and the energy in the system at micro and macro scales; while momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as density profile, width of the interface, phase separation and phase growth. We also apply the model to study binary fluids in crowded environments with consistent results.
Copula-based bivariate binary response models
Winkelmann, Rainer
2009-01-01
The bivariate probit model is frequently used for estimating the effect of an endogenous binary regressor on a binary outcome variable. This paper discusses simple modifications that maintain the probit assumption for the marginal distributions while introducing non-normal dependence among the two variables using copulas. Simulation results and evidence from two applications, one on the effect of insurance status on ambulatory expenditure and one on the effect of completing high school on sub...
Binary Particle Model of Weak Interactions
Ndili, F N
2011-01-01
We introduce the new concept of binary particle as the basic matter unit that participates in weak interactions and not any one fermion singly. We state the quantum numbers of this binary particle, and show the concept leads us to a natural explanation of the standard model puzzle of the origin of flavor mixing and the CKM matrix. Certain other puzzles of the standard model such as the absence of flavor changing neutral currents (FCNC), are also explained naturally by the binary particle model. These puzzles are currently thought to be esoteric properties of electro weak interactions that have origins in physics beyond the standard model at some ultra high energy scales. We show that this is not necessarily the case.
A Model for Contact Binary Systems
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understanding that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point. c) The effects of spin, orbital rotation and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered. d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M⊙ and one 5M⊙ star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.
Binary hidden Markov models and varieties
Critch, Andrew J
2012-01-01
The technological applications of hidden Markov models have been extremely diverse and successful, including natural language processing, gesture recognition, gene sequencing, and Kalman filtering of physical measurements. HMMs are highly non-linear statistical models, and just as linear models are amenable to linear algebraic techniques, non-linear models are amenable to commutative algebra and algebraic geometry. This paper examines closely those HMMs in which all the random variables, called nodes, are binary. Its main contributions are (1) minimal defining equations for the 4-node model, comprising 21 quadrics and 29 cubics, which were computed using Gr\\"obner bases in the cumulant coordinates of Sturmfels and Zwiernik, and (2) a birational parametrization for every binary HMM, with an explicit inverse for recovering the hidden parameters in terms of observables. The new model parameters in (2) are hence rationally identifiable in the sense of Sullivant, Garcia-Puente, and Spielvogel, and each model's Zar...
Eclipsing binary stars modeling and analysis
Kallrath, Josef
1999-01-01
This book focuses on the formulation of mathematical models for the light curves of eclipsing binary stars, and on the algorithms for generating such models Since information gained from binary systems provides much of what we know of the masses, luminosities, and radii of stars, such models are acquiring increasing importance in studies of stellar structure and evolution As in other areas of science, the computer revolution has given many astronomers tools that previously only specialists could use; anyone with access to a set of data can now expect to be able to model it This book will provide astronomers, both amateur and professional, with a guide for - specifying an astrophysical model for a set of observations - selecting an algorithm to determine the parameters of the model - estimating the errors of the parameters It is written for readers with knowledge of basic calculus and linear algebra; appendices cover mathematical details on such matters as optimization, coordinate systems, and specific models ...
Modeling Flows Around Merging Black Hole Binaries
van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T
2009-01-01
Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...
Experimental approaches to nuclear reactions involved in explosive stellar binaries
Energy Technology Data Exchange (ETDEWEB)
Blackmon, J.C. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States)]. E-mail: blackmon@ornl.gov; Angulo, C. [Centre de Recherches du Cyclotron, Universite catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Shotter, A.C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)
2006-10-17
Explosive stellar environments such as novae and X-ray bursts are currently among the most exciting topics in nuclear astrophysics. Reactions on unstable nuclei play a crucial role in energy generation and nucleosynthesis due to the high temperatures and short reaction time scales in these events, but substantial uncertainties exist in nuclear reaction rates on unstable nuclei resulting from limited experimental data. In recent years some remarkable developments in radioactive ion beam production and experimental techniques have allowed many key reaction rates to be experimentally determined with reasonable accuracy for the first time. In this paper we review experimental methods that have recently been exploited to study reactions important in explosive binaries, highlight some key examples of recent results, and outline remaining experimental challenges.
Modeling selective intergranular oxidation of binary alloys
Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.
2015-01-01
Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 μm ahead of grain boundary crack tips was documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (˜100 s of nm). We present a mathematical kinetics model that adapts Wagner's model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.
Modeling Flows Around Merging Black Hole Binaries
van Meter, James R.; Wise, John H.; Miller, M. Coleman; Reynolds, Christopher S.; Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.
2009-01-01
Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the stron...
Model-independent inference on compact-binary observations
Mandel, Ilya; Colonna, Andrea; Stevenson, Simon; Tiňo, Peter; Veitch, John
2016-01-01
The recent advanced LIGO detections of gravitational waves from merging binary black holes enhance the prospect of exploring binary evolution via gravitational-wave observations of a population of compact-object binaries. In the face of uncertainty about binary formation models, model-independent inference provides an appealing alternative to comparisons between observed and modelled populations. We describe a procedure for clustering in the multi-dimensional parameter space of observations that are subject to significant measurement errors. We apply this procedure to a mock data set of population-synthesis predictions for the masses of merging compact binaries convolved with realistic measurement uncertainties, and demonstrate that we can accurately distinguish subpopulations of binary neutron stars, binary black holes, and mixed black hole -- neutron star binaries.
Binary progenitor models of type IIb supernovae
Claeys, J S W; Pols, O R; Eldridge, J J; Baes, M
2011-01-01
Massive stars that lose their hydrogen-rich envelope down to a few tenths of a solar mass explode as extended type IIb supernovae, an intriguing subtype that links the hydrogen-rich type II supernovae with the hydrogen-poor type Ib and Ic. The progenitors may be very massive single stars that lose their envelope due to their stellar wind, but mass stripping due to interaction with a companion star in a binary system is currently considered to be the dominant formation channel. We computed an extensive grid of binary models with the Eggleton binary evolution code. The predicted rate from our standard models, which assume conservative mass transfer, is about 6 times smaller than the current rate indicated by observations. It is larger but still comparable to the rate expected from single stars. To recover the observed rate we must generously allow for uncertainties and low accretion efficiencies in combination with limited angular momentum loss from the system. Motivated by the claims of detection and non-detec...
ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL
Directory of Open Access Journals (Sweden)
Kok Hwa Yu
2011-10-01
Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.
Sensitivity modeling of binary optical receivers.
Giggenbach, Dirk; Mata-Calvo, Ramon
2015-10-01
The sensitivity characteristics of optical receiver frontends for high-speed data communications depend on modulation format, detector type, and specific operational constraints. A general mathematical model of the receiver sensitivity that fits to analytical as well as measured data is required to compare different receiver implementations and assess the reliability of data links under varying received power as common in free-space optical communication links. In this paper, a new approach based on Q-factor modeling is presented, compared with analytical receiver models, and applied to a multitude of exemplary receiver implementations. A methodology is introduced to generally apply the model to ideal or practical binary optical receiver frontends. PMID:26479592
Dynamic thermodiffusion model for binary liquid mixtures.
Eslamian, Morteza; Saghir, M Ziad
2009-07-01
Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring's reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models. PMID:19658691
Dynamic thermodiffusion model for binary liquid mixtures
Eslamian, Morteza; Saghir, M. Ziad
2009-07-01
Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring’s reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models.
Modeling and analysis of advanced binary cycles
Energy Technology Data Exchange (ETDEWEB)
Gawlik, K.
1997-12-31
A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.
Equivalence of different binary choice models
Ostasiewicz, Katarzyna; Radosz, Andrzej; Tyc, Michał H.; Magnuszewski, Piotr; Goliczewski, Piotr
2007-12-01
There are various classes of models, in which individuals are assumed to make their binary choices dependent upon gains and losses, including social ones, which they evaluate for themselves. At each discrete time step t every individual has to make a binary decision: σit = +1 or σit = -1: σit+1 = f(σit,{σjt}). In different approaches, deterministic part is distinguished from a random (non-rational) part. Within impact function approach [1], the decision σit+1 at time t+1 is either σit or -σit, with probabilities F(-2Ii(σit,{σjt})) and 1-F(-2Ii(σit,{σjt})), repectively. Here Ii-impact function, F-some cumulative probability distribution function. Without randomness, the above process reduces to purely deterministic one: σit+1 = -sgn[σitIi(σit,{σjt})]. Within utility function approach [2], σit+1 = argmax{-1,+1}Uidet(σit+1,σit,{σjt})+ɛi(σit+1, where Uidet-deterministic part of utility function, ɛi-random term. In threshold model [3] (mean-field approach): P(σit+1 = +1) = P(mithchoice at time t. Detailed analysis [4] reveals particular relations between the above approaches. First, impact function and utility function models are equivalent at the level of their deterministic parts: Uidet(σit+1,σit,{σjt})≡-σit+1σitIi(σit,{σjt}), Ii(σit,{σjt})≡-σi[Uidet(+1,σit,{σjt})-Uidet(-1,σit,{σjt})]. There is also an equivalence in the probabilistic parts of the decision making process. As F(-2Ii(σit,{σjt})) = F(Uidet(σit,σit{σjt})-Uidet(-σit,σit,{σjt})), we can write σit+1 =argmax{-1,+1}Uidet(σit+1,σit,{σjt})+ɛi(σit+1, with P(ɛi(-1)-ɛi(+1)0). Therefore, three binary choice models: impact function, utility function and threshold models turn out to be equivalent.
Spectral modelling of massive binary systems
Palate, Matthieu; Koenigsberger, Gloria; Moreno, Edmundo
2013-01-01
Aims: We simulate the spectra of massive binaries at different phases of the orbital cycle, accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We used the Roche potential modified to account for radiation pressure to compute the stellar surface of close circular systems and we used the TIDES code for surface computation of eccentric systems. In both cases, we accounted for gravity darkening and mutual heating generated by irradiation to compute the surface temperature. We then interpolated NLTE plane-parallel atmosphere model spectra in a grid to obtain the local spectrum at each surface point. We finally summed all contributions, accounting for the Doppler shift, limb-darkening, and visibility to obtain the total synthetic spectrum. We computed different orbital phases and sets of physical and orbital parameters. Results: Our models predict line strength variations through the orbital cycle, but fail to completely reproduce t...
Nonlinear Dynamics, Lorenz Model and Formation of Binary Stars
Chang, Yi-Fang
2008-01-01
Based on the Lorenz model derived from the equations of hydrodynamics of nebula, we discuss the formation of binary stars by the qualitative analysis theory of nonlinear equation. Here the two wings in the Lorenz model form just the binary stars, whose Roche surface is result of evolution under certain condition. The nonlinear interaction plays a crucial role, and is necessary condition of the formation of binary stars and of multiple stars. While the linear equations form only a single star....
Accretion Disks Around Binary Black Holes: A Quasistationary Model
Liu, Yuk Tung
2010-01-01
Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...
A supremum-type RESET test for binary choice models
Esmeralda Ramalho; Joaquim Ramalho; Jose M.R. Murteira
2012-01-01
This note introduces a supremum-type RESET statistic for testing the specification of binary choice regression models. A Monte Carlo simulation study reveals very promising results for the proposed statistic.
Spectral modelling of the Alpha Virginis (Spica) binary system
Palate, M; Rauw, G; Harrington, D; Moreno, E
2013-01-01
Context: The technique of matching synthetic spectra computed with theoretical stellar atmosphere models to the observations is widely used in deriving fundamental parameters of massive stars. When applied to binaries, however, these models generally neglect the interaction effects present in these systems Aims: The aim of this paper is to explore the uncertainties in binary stellar parameters that are derived from single-star models Methods: Synthetic spectra that include the tidal perturbations and irradiation effects are computed for the binary system alpha Virginis (Spica) using our recently-developed CoMBiSpeC model. The synthetic spectra are compared to S/N~2000 observations and optimum values of Teff and log(g) are derived. Results: The binary interactions have only a small effect on the strength of the photospheric absorption lines in Spica (<2% for the primary and <4% for the secondary). These differences are comparable to the uncertainties inherent to the process of matching synthetic spectra ...
Physics Of Eclipsing Binaries. II. The Increased Model Precision
Prsa, Andrej; Horvat, Martin; Pablo, Herbert; Kochoska, Angela; Bloemen, Steven; Nemravova, Jana; Giammarco, Joseph; Hambleton, Kelly M; Degroote, Pieter
2016-01-01
The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. ...
Effective-one-body modeling of precessing black hole binaries
Taracchini, Andrea; Babak, Stanislav; Buonanno, Alessandra
2016-03-01
Merging black hole binaries with generic spins that undergo precessional motion emit complicated gravitational-wave signals. We discuss how such waveforms can be accurately modeled within an effective-one-body approach by (i) exploiting the simplicity of the signals in a frame that corotates with the orbital plane of the binary and (ii) relying on an accurate model of nonprecessing black hole binaries. The model is validated by extensive comparisons to 70 numerical relativity simulations of precessing black hole binaries and can generate inspiral-merger-ringdown waveforms for mass ratios up to 100 and any spin configuration. This work is an essential tool for studying and characterizing candidate gravitational-wave events in science runs of advanced LIGO.
International Nuclear Information System (INIS)
The development of extensive experimental nuclear data base over the past three decades has been accompanied by parallel advancement of nuclear theory and models used to describe and interpret the measurements. This theoretical capability is important because of many nuclear data requirements that are still difficult, impractical, or even impossible to meet with present experimental techniques. Examples of such data needs are neutron cross sections for unstable fission products, which are required for neutron absorption corrections in reactor calculations; cross sections for transactinide nuclei that control production of long-lived nuclear wastes; and the extensive dosimetry, activation, and neutronic data requirements to 40 MeV that must accompany development of the Fusion Materials Irradation Test (FMIT) facility. In recent years systematic improvements have been made in the nuclear models and codes used in data evaluation and, most importantly, in the methods used to derive physically based parameters for model calculations. The newly issued ENDF/B-V evaluated data library relies in many cases on nuclear reaction theory based on compound-nucleus Hauser-Feshbach, preequilibrium and direct reaction mechanisms as well as spherical and deformed optical-model theories. The development and applications of nuclear models for data evaluation are discussed with emphasis on the 1 to 40 MeV neutron energy range
Binary outcome variables and logistic regression models
Institute of Scientific and Technical Information of China (English)
Xinhua LIU
2011-01-01
Biomedical researchers often study binary variables that indicate whether or not a specific event,such as remission of depression symptoms,occurs during the study period.The indicator variable Y takes two values,usually coded as one if the event (remission) is present and zero if the event is not present(non-remission).Let p be the probability that the event occurs ( Y =1),then 1-p will be the probability that the event does not occur ( Y =0).
Mayer, Lucio; Escala, Andres
2008-01-01
(Abridged) We review the results of the first multi-scale, hydrodynamical simulations of mergers between galaxies with central supermassive black holes (SMBHs) to investigate the formation of SMBH binaries in galactic nuclei. We demonstrate that strong gas inflows produce nuclear disks at the centers of merger remnants whose properties depend sensitively on the details of gas thermodynamics. In numerical simulations with parsec-scale spatial resolution in the gas component and an effective equation of state appropriate for a starburst galaxy, we show that a SMBH binary forms very rapidly, less than a million years after the merger of the two galaxies. Binary formation is significantly suppressed in the presence of a strong heating source such as radiative feedback by the accreting SMBHs. We also present preliminary results of numerical simulations with ultra-high spatial resolution of 0.1 pc in the gas component. These simulations resolve the internal structure of the resulting nuclear disk down to parsec sca...
Binary fish passage models for uniform and nonuniform flows
Energy Technology Data Exchange (ETDEWEB)
Neary, Vincent S [ORNL
2011-01-01
Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow
Modeling AGN outbursts from supermassive black hole binaries
Directory of Open Access Journals (Sweden)
Tanaka T.
2012-12-01
Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.
Model for magnetic-nonmagnetic binary alloys
Energy Technology Data Exchange (ETDEWEB)
Razafimandimby, H. [Departement de Physique, Universite de Toliara, 601 Toliara (Madagascar); Randrianasoloharisoa, D. [LPMR, Universite d' Antananarivo (Madagascar); Rakotomahevitra, A. [Departement des Sciences Exactes, Universite de Mahajanga, BP 155 (Madagascar); Parlebas, J.C. [IPCMS, UMR 7504 CNRS-Universite Louis Pasteur, 23 rue du Loess, BP 43, 67034 Strasbourg (France)
2007-10-15
An extension of a mean-field approximation (MFA) developed within standard basis operators (SBO) is used to study magnetism in magnetic-nonmagnetic binary alloys. The Curie temperature is calculated from the free energy within the framework of the present approach. The calculated results are in fair agreement with the theoretical results of other research groups for the same problem but utilizing other methods. Finally, the case of NiPt alloys is briefly examined as an example test for the comparison with experiment. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Redd, Jeremy; Panin, Alexander
2012-10-01
As a result of the Nuclear Test Ban Treaty, no nuclear explosion tests have been performed by the US since 1992. This appreciably limits valuable experimental data needed for improvement of existing weapons and development of new ones, as well as for use of nuclear devices in non-military applications (such as making underground oil reservoirs or compressed air energy storages). This in turn increases the value of numerical modeling of nuclear explosions and of their effects on the environment. We develop numerical codes simulating fission chain reactions in a supercritical U and Pu core and the dynamics of the subsequent expansion of generated hot plasma in order to better understand the impact of such explosions on their surroundings. The results of our simulations (of both above ground and underground explosions) of various energy yields are presented.
Currency Arbitrage Detection Using a Binary Integer Programming Model
Soon, Wanmei; Ye, Heng-Qing
2011-01-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this…
A complete waveform model for compact binaries on eccentric orbits
Huerta, Eliu; Agarwal, Bhanu; George, Daniel; Kumar, Prayush
2016-03-01
The detection of compact binaries with significant eccentricity in the sensitivity band of gravitational wave detectors will provide critical insights on the dynamics and formation channels of these events. In order to search for these systems and place constraints on their rates, we present an inspiral-merger-ringdown time domain waveform model that describes the GW emission from compact binaries on orbits with low to moderate values of eccentricity. We use this model to explore the detectability of these events in the context of advanced LIGO.
Accuracy of Binary Black Hole Waveform Models for Advanced LIGO
Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team
2016-03-01
Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.
Modelling the nuclear parton distributions
Kulagin, S A
2016-01-01
We review a semi-microscopic model of nuclear parton distributions, which takes into account a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents and off-shell corrections to bound nucleon distributions as well as nuclear shadowing effect. We also discuss applications of the model to the lepton-nuclear deep-inelastic scattering, Drell-Yan process and neutrino total cross sections.
Phemenological Modeling of Eclipsing Binary Stars
Andronov, Ivan L; Chinarova, Lidia L
2016-01-01
We review the method NAV (New Algol Variable) first introduced in 2012Ap.....55..536A, which uses the locally-dependent shapes of eclipses in an addition to the trigonometric polynomial of the second order (which typically describes the "out-of-eclipse" part of the light curve with effects of reflection, ellipticity and O'Connell). Eclipsing binary stars are believed to show distinct eclipses only if belonging to the EA type. With a decreasing eclipse width, the statistically optimal value of the trigonometric polynomial s (2003ASPC..292..391A) drastically increases from ~2 for elliptic (EL) variables without eclipses, ~6-8 for EW and up to ~30-50 for some EA with narrow eclipses. In this case of large number of parameters, the smoothing curve becomes very noisy and apparent waves (the Gibbs phenomenon) may be seen. The NAV set of the parameters may be used for classification in the GCVS, VSX and similar catalogs. The maximal number of parameters is m=12, which corresponds to s=5, if correcting both the perio...
Guidance on the Choice of Threshold for Binary Forecast Modeling
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
This paper proposes useful guidance on the choice of threshold for binary forecasts. In weather forecast systems, the probabilistic forecast cannot be used directly when estimated too smoothly. In this case, the binary forecast, whether a meteorological event will occur or not, is preferable to the probabilistic forecast.A threshold is needed to generate a binary forecast, and the guidance in this paper encompasses the use of skill scores for the choice of threshold according to the forecast pattern. The forecast pattern consists of distribution modes of estimated probabilities, occurrence rates of observations, and variation modes.This study is performed via Monte-Carlo simulation, with 48 forecast patterns considered. Estimated probabilities are generated by random variate sampling from five distributions separately. Varying the threshold from 0 to 1, binary forecasts are generated by threshold. For the assessment of binary forecast models, a 2×2 contingency table is used and four skill scores (Heidke skill score, hit rate, true skill statistic,and threat score) are compared for each forecast pattern. As a result, guidance on the choice of skill score to find the optimal threshold is proposed.
Three-dimensional modeling of radiative disks in binaries
Picogna, Giovanni
2013-01-01
Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation. The energy equation includes a flux--limited radiative transfer algorithm and the disk cooling is obtained via "boundary particles". We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. The numerical simulations performed for different values of binary separation and disk density show that the dis...
Local Dependence Diagnostics in IRT Modeling of Binary Data
Liu, Yang; Maydeu-Olivares, Alberto
2013-01-01
Local dependence (LD) for binary IRT models can be diagnosed using Chen and Thissen's bivariate X[superscript 2] statistic and the score test statistics proposed by Glas and Suarez-Falcon, and Liu and Thissen. Alternatively, LD can be assessed using general purpose statistics such as bivariate residuals or Maydeu-Olivares and Joe's M[subscript r]…
Latent Classification Models for Binary Data
DEFF Research Database (Denmark)
Langseth, Helge; Nielsen, Thomas Dyhre
2009-01-01
between the attributes. In addition to providing good classification accuracy, the LCM model has several appealing properties, including a relatively small parameter space making it less susceptible to over-fitting. In this paper we take a first-step towards generalizing LCMs to hybrid domains...... the class of that instance. To relax this independence assumption, we have in previous work proposed a family of models, called latent classification models (LCMs). LCMs are defined for continuous domains and generalize the naive Bayes model by using latent variables to model class-conditional dependencies...
Confounding of three binary-variables counterfactual model
Liu, Jingwei; Hu, Shuang
2011-01-01
Confounding of three binary-variables counterfactual model is discussed in this paper. According to the effect between the control variable and the covariate variable, we investigate three counterfactual models: the control variable is independent of the covariate variable, the control variable has the effect on the covariate variable and the covariate variable affects the control variable. Using the ancillary information based on conditional independence hypotheses, the sufficient conditions...
A Lattice Boltzmann model for diffusion of binary gas mixtures
Bennett, Sam
2010-01-01
This thesis describes the development of a Lattice Boltzmann (LB) model for a binary gas mixture. Specifically, channel flow driven by a density gradient with diffusion slip occurring at the wall is studied in depth. The first part of this thesis sets the foundation for the multi-component model used in the subsequent chapters. Commonly used single component LB methods use a non-physical equation of state, in which the relationship between pressure and density varies according to the sca...
Inference in Semiparametric Binary Response Models with Interval Data
Yuanyuan Wan; Haiqing Xu
2013-01-01
This paper studies the semiparametric binary response model with interval data investigated by Manski and Tamer (2002, MT). In this partially identified model, we propose a new estimator based on MT's modified maximum score (MMS) method by introducing density weights to the objective function, which allows us to develop asymptotic properties of the proposed set estimator for inference. We show that the density-weighted MMS estimator converges to the identified set at a nearly cube-root-n rate...
A Semiparametric Bayesian Model for Repeatedly Repeated Binary Outcomes
Quintana, Fernando A.; Müller, Peter; Rosner, Gary L.; Mary V Relling
2008-01-01
We discuss the analysis of data from single nucleotide polymorphism (SNP) arrays comparing tumor and normal tissues. The data consist of sequences of indicators for loss of heterozygosity (LOH) and involve three nested levels of repetition: chromosomes for a given patient, regions within chromosomes, and SNPs nested within regions. We propose to analyze these data using a semiparametric model for multi-level repeated binary data. At the top level of the hierarchy we assume a sampling model fo...
Thermodynamic modelling of the C-U and B-U binary systems
International Nuclear Information System (INIS)
The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B2O3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory
Binary model for the coma cluster of galaxies
International Nuclear Information System (INIS)
We study the dynamics of galaxies in the Coma cluster and find that the cluster is probably dominated by a central binary of galaxies NGC 4874--NGC4889. We estimate their total mass to be about 3 x 1014 M/sub sun/ by two independent methods (assuming in Hubble constant of 100 km s-1 Mpc-1). This binary is efficient in dynamically ejecting smaller galaxies, some of of which are seen in projection against the inner 30 radius of the cluster and which, if erroneously considered as bound members, cause a serious overestimate of the mass of the entire cluster. Taking account of the ejected galaxies, we estimate the total cluster mass to be 4--9 x 1014 M/sub sun/, with a corresponding mass-to-light ratio for a typical galaxy in the range of 20--120 solar units. The origin of the secondary maximum observed in the radial surface density profile is studied. We consider it to be a remnant of a shell of galaxies which formed around the central binary. This shell expanded, then collapsed into the binary, and is now reexpanding. This is supported by the coincidence of the minimum in the cluster eccentricity and radical velocity dispersion at the same radial distance as the secondary maximum. Numerical simulations of a cluster model with a massive central binary and a spherical shell of test particles are performed, and they reproduce the observed shape, galaxy density, and radial velocity distributions in the Coma cluster fairly well. Consequences of extending the model to other clusters are discussed
A complete waveform model for compact binaries on eccentric orbits
Huerta, E A; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P; Chu, Tony; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela
2016-01-01
We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to non-linear memory. This framework reduces to the post-Newtonian approximant $\\texttt{TaylorT4}$ at third post-Newtonian order in the zero eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasi-circular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a c...
Kinetic models with randomly perturbed binary collisions
Bassetti, Federico; Toscani, Giuseppe
2010-01-01
We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases.
Asymptotic-preserving Boltzmann model equations for binary gas mixture
Liu, Sha; Liang, Yihua
2016-02-01
An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations.
Marginal and Random Intercepts Models for Longitudinal Binary Data with Examples from Criminology
Long, Jeffrey D.; Loeber, Rolf; Farrington, David P.
2009-01-01
Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides…
Modeling binary correlated responses using SAS, SPSS and R
Wilson, Jeffrey R
2015-01-01
Statistical tools to analyze correlated binary data are spread out in the existing literature. This book makes these tools accessible to practitioners in a single volume. Chapters cover recently developed statistical tools and statistical packages that are tailored to analyzing correlated binary data. The authors showcase both traditional and new methods for application to health-related research. Data and computer programs will be publicly available in order for readers to replicate model development, but learning a new statistical language is not necessary with this book. The inclusion of code for R, SAS, and SPSS allows for easy implementation by readers. For readers interested in learning more about the languages, though, there are short tutorials in the appendix. Accompanying data sets are available for download through the book s website. Data analysis presented in each chapter will provide step-by-step instructions so these new methods can be readily applied to projects. Researchers and graduate stu...
Lach, Theodore
2016-03-01
The NCB Model 1 , 2 , 3 suggests that the nucleus is a relativistic 2D structure. In 1996 at Argonne National Lab the Checker Board Model was first presented. In that poster presentation it was explained that the relativistic constituent quarks orbit inside the proton at about 85% c and about 99% c inside the neutron. As a way to test the model it was found that the de Broglie wavelength of the up quark matched the calculated circumference of the proton (radius = 0.5194 fm) analogous to the Bohr model of the electron in the H atom. 20 years later it is now accepted that the quarks are moving at relativistic speeds and the orbital motion of the quarks contribute the major part of the spin of the proton. If one considers the motion of the relativistic quarks inside the nucleus (take for example Ca 40) about its center of mass, one realizes that these relativistic quarks are confined to shells inside the nucleus (the He shell {the inner 4 nucleons}, the Oxygen shell ...). So the CBM eliminates the need for an illusionary strong nuclear force in favor of a force based upon an E/M force in perfect spin synchronization in a 2D plane. So the CBM is not at odds with the shell model but instead explains why the nucleus has a shell structure and correctly predicts the shell closures.
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
Binary and Multivariate Stochastic Models of Consensus Formation
Miguel, M S; Toral, R; Klemm, K; Miguel, Maxi San; Toral, Ra\\'ul; Klemm, Konstantin
2005-01-01
A current paradigm in computer simulation studies of social sciences problems by physicists is the emergence of consensus. The question is to establish when the dynamics of a set of interacting agents that can choose among several options (political vote, opinion, cultural features, etc.) leads to a consensus in one of these options, or when a state with several coexisting social options prevail. We consider here stochastic dynamic models naturally studied by computer simulations. We will first review some basic results for the voter model. This is a binary option stochastic model, and probably the simplest model of collective behavior. Next we consider a model proposed by Axelrod for the dissemination of culture. This model can be considered as a multivariable elaboration of the voter model dynamics.
Modelling Circumbinary Gas Flows in Close T Tauri Binaries
de Val-Borro, M; Stempels, H C; Pepliński, A
2011-01-01
Young close binaries open central gaps in the surrounding circumbinary accretion disc, but the stellar components may still gain mass from gas crossing through the gap. It is not well understood how this process operates and how the stellar components are affected by such inflows. Our main goal is to investigate how gas accretion takes place and evolves in close T Tauri binary systems. In particular, we model the accretion flows around two close T Tauri binaries, V4046 Sgr and DQ Tau, both showing periodic changes in emission lines, although their orbital characteristics are very different. In order to derive the density and velocity maps of the circumbinary material, we employ two-dimensional hydrodynamic simulations with a locally isothermal equation of state. The flow patterns become quasi-stable after a few orbits in the frame co-rotating with the system. Gas flows across the circumbinary gap through the co-rotating Lagrangian points, and local circumstellar discs develop around both components. Spiral de...
A model of the subdwarf binary system LB 3459
International Nuclear Information System (INIS)
A model is presented for a short period eclipsing binary LB 3459 (=CPD-60deg389=HDE 269696). The primary of 0,36 Msub(sun) and effective temperature of 64000 K burns hydrogen in a shell source surrounding a degenerate helium core. The secondary of 0,054 Msub(sun) is nearly degenerate, and probably hydrogen rich star. The hemisphere facing the primary is heated to 20000 K. The system had the initial orbital period of about 3 months, and evolved through a common envelope phase. When the orbital period was reduced to the present value of 6 hours the common envelope was lost some 5.105 years ago. At that time the system might look like UU Sge, an eclipsing binary nucleus of a planetary nebula. In another 5.105 years the primary will become a hot degenerate dwarf and the system will look like an eclipsing binary PG 1413+01. In about 5.1010 years the orbital period will decrease to 38 minutes as a result of gravitational radiation. At that time the degenerate, hydrogen rich secondary will overflow its Roche lobe and LB 3459 will become a cataclysmic variable. (author)
Binary Neutron Star Mergers: Dependence on the Nuclear Equation of State
Hotokezaka, Kenta; Okawa, Hirotada; Shibata, Masaru; Kiuchi, Kenta
2011-01-01
We perform a numerical-relativity simulation for the merger of binary neutron stars with 6 nuclear-theory-based equations of state (EOSs) described by piecewise polytropes. Our purpose is to explore the dependence of the dynamical behavior of the binary neutron star merger and resulting gravitational waveforms on the EOS of the supernuclear-density matter. The numerical results show that the merger process and the first outcome are classified into three types; (i) a black hole is promptly formed, (ii) a short-lived hypermassive neutron star (HMNS) is formed, (iii) a long-lived HMNS is formed. The type of the merger depends strongly on the EOS and on the total mass of the binaries. For the EOS with which the maximum mass is larger than 2Msun, the lifetime of the HMNS is longer than 10 ms for a total mass m_0=2.7Msun. A recent radio observation suggests that the maximum mass of spherical neutron stars is M_max \\geq 1.97\\pm 0.04Msun in one \\sigma level. This fact and our results support the possible existence of...
Optimum Binary Search Trees on the Hierarchical Memory Model
Thite, Shripad
2008-01-01
The Hierarchical Memory Model (HMM) of computation is similar to the standard Random Access Machine (RAM) model except that the HMM has a non-uniform memory organized in a hierarchy of levels numbered 1 through h. The cost of accessing a memory location increases with the level number, and accesses to memory locations belonging to the same level cost the same. Formally, the cost of a single access to the memory location at address a is given by m(a), where m: N -> N is the memory cost function, and the h distinct values of m model the different levels of the memory hierarchy. We study the problem of constructing and storing a binary search tree (BST) of minimum cost, over a set of keys, with probabilities for successful and unsuccessful searches, on the HMM with an arbitrary number of memory levels, and for the special case h=2. While the problem of constructing optimum binary search trees has been well studied for the standard RAM model, the additional parameter m for the HMM increases the combinatorial comp...
Structure and selection in an autocatalytic binary polymer model
DEFF Research Database (Denmark)
Tanaka, Shinpei; Fellermann, Harold; Rasmussen, Steen
2014-01-01
An autocatalytic binary polymer system is studied as an abstract model for a chemical reaction network capable to evolve. Due to autocatalysis, long polymers appear spontaneously and their concentration is shown to be maintained at the same level as that of monomers. When the reaction starts from....... Stability, fluctuations, and dynamic selection mechanisms are investigated for the involved self-organizing processes. Copyright (C) EPLA, 2014...... a pool of monomers, highly ordered populations with particular sequence patterns are dynamically selected out of a vast number of possible states. The interplay between the selected microscopic sequence patterns and the macroscopic cooperative structures is examined both analytically and in simulation...
A Radiative Model of Quark Masses with Binary Tetrahedral Symmetry
Natale, Alexander
2016-01-01
A radiative model of quark and lepton masses utilizing the binary tetrahedral ($T^{\\prime}$) flavor symmetry, or horizontal symmetry, is proposed which produces the first two generation of quark masses through their interactions with vector-like quarks that carry charges under an additional $U(1)$. By softly-breaking the $T^{\\prime}$ to a residual $Z_4$ through the vector-like quark masses, a CKM mixing angle close to the Cabibbo angle is produced. In order to generate the cobimaximal neutrino oscillation pattern ($\\theta_{13}\
Structural classification and a binary structure model for superconductors
Institute of Scientific and Technical Information of China (English)
Dong Cheng
2006-01-01
Based on structural and bonding features, a new classification scheme of superconductors is proposed to classify conductors can be partitioned into two parts, a superconducting active component and a supplementary component.Partially metallic covalent bonding is found to be a common feature in all superconducting active components, and the electron states of the atoms in the active components usually make a dominant contribution to the energy band near the Fermi surface. Possible directions to explore new superconductors are discussed based on the structural classification and the binary structure model.
Nuclear Data for Astrophysical Modeling
Pritychenko, Boris
2016-01-01
Nuclear physics has been playing an important role in modern astrophysics and cosmology. Since the early 1950's it has been successfully applied for the interpretation and prediction of astrophysical phenomena. Nuclear physics models helped to explain the observed elemental and isotopic abundances and star evolution and provided valuable insights on the Big Bang theory. Today, the variety of elements observed in stellar surfaces, solar system and cosmic rays, and isotope abundances are calculated and compared with the observed values. Consequently, the overall success of the modeling critically depends on the quality of underlying nuclear data that helps to bring physics of macro and micro scales together. To broaden the scope of traditional nuclear astrophysics activities and produce additional complementary information, I will investigate applicability of the U.S. Nuclear Data Program (USNDP) databases for astrophysical applications. EXFOR (Experimental Nuclear Reaction Data) and ENDF (Evaluated Nuclear Dat...
Modeling nuclear processes by Simulink
Rashid, Nahrul Khair Alang Md
2015-04-01
Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.
Modeling nuclear processes by Simulink
Energy Technology Data Exchange (ETDEWEB)
Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)
2015-04-29
Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.
Modified binary encounter Bethe model for electron-impact ionization
Guerra, M; Indelicato, P; Santos, J P
2013-01-01
Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed. The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells. The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.
Global nuclear material control model
International Nuclear Information System (INIS)
The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material
Microscopic study and modeling of thermodiffusion in binary associating mixtures.
Eslamian, Morteza; Saghir, M Ziad
2009-12-01
Thermodiffusion in associating mixtures is a complex phenomenon, owing to the strong dependence of the molecular structure of such mixtures on concentration. In this paper, we attempt to elucidate this phenomenon and propose a qualitative mechanism for the separation of species in binary associating mixtures. A correlation between the sign change in the thermal diffusion factor and a change in the molecular structure, mixture viscosity, and the excess entropy of mixing in such mixtures is established. To quantify this correlation, we modify our recently developed dynamic model based on the Drickamer nonequilibrium thermodynamic approach [M. Eslamian and M. Z. Saghir, Phys. Rev. E 80, 011201 (2009)] and propose expressions for the estimation of thermal diffusion factor in binary associating mixtures. The prediction power of the proposed expressions, as well as other widely used models, are examined against the experimental data. The proposed theoretical expressions are self-contained and only rely on the viscosity data as input and predict a sign change in the thermal diffusion factor in associating mixtures. PMID:20365155
A family of models for Schelling binary choices
Cavalli, Fausto; Naimzada, Ahmad; Pireddu, Marina
2016-02-01
We introduce and study a family of discrete-time dynamical systems to model binary choices based on the framework proposed by Schelling in 1973. The model we propose uses a gradient-like adjustment mechanism by means of a family of smooth maps and allows understanding and analytically studying the phenomena qualitatively described by Schelling. In particular, we investigate existence of steady states and their relation to the equilibria of the static model studied by Schelling, and we analyze local stability, linking several examples and considerations provided by Schelling with bifurcation theory. We provide examples to confirm the theoretical results and to numerically investigate the possible destabilizations, as well as the emergence of coexisting attractors. We show the existence of chaos for a particular example.
Modeling adsorption of binary and ternary mixtures on microporous media
DEFF Research Database (Denmark)
Monsalvo, Matias Alfonso; Shapiro, Alexander
2007-01-01
The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes...... it possible using the same equation of state to describe the thermodynamic properties of the segregated and the bulk phases. For comparison, we also used the ideal adsorbed solution theory (IAST) to describe adsorption equilibria. The main advantage of these two models is their capabilities to predict...... multicomponent adsorption equilibria on the basis of single-component adsorption data. We compare the MPTA and IAST models to a large set of experimental data, obtaining reasonable good agreement with experimental data and high degree of predictability. Some limitations of both models are also discussed....
Modeling gravitational radiation from coalescing binary black holes
Baker, J; Loustó, C O; Takahashi, R
2002-01-01
With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary black hole systems. We build our model using the "Lazarus approach", a technique that bridges far and close limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the system's total energy and 12% of its total angular momentum in just a few cycles. Supporting this result we first establish the reliability of the late-time part of our model, including the numerical relativity and close-limit components, with a thorough study of waveforms from a sequence of black hole configurations varying from previously treated head-on collisions to rep...
Uncertainties in Nuclear Proliferation Modeling
Energy Technology Data Exchange (ETDEWEB)
Kim, Chul Min; Yim, Man-Sung; Park, Hyeon Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2015-05-15
There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. Such systematic approaches have shown the possibility to provide warning for the international community to prevent nuclear proliferation activities. However, there are still large debates for the robustness of the actual effect of determinants and projection results. Some studies have shown that several factors can cause uncertainties in previous quantitative nuclear proliferation modeling works. This paper analyzes the uncertainties in the past approaches and suggests future works in the view of proliferation history, analysis methods, and variable selection. The research community still lacks the knowledge for the source of uncertainty in current models. Fundamental problems in modeling will remain even other advanced modeling method is developed. Before starting to develop fancy model based on the time dependent proliferation determinants' hypothesis, using graph theory, etc., it is important to analyze the uncertainty of current model to solve the fundamental problems of nuclear proliferation modeling. The uncertainty from different proliferation history coding is small. Serious problems are from limited analysis methods and correlation among the variables. Problems in regression analysis and survival analysis cause huge uncertainties when using the same dataset, which decreases the robustness of the result. Inaccurate variables for nuclear proliferation also increase the uncertainty. To overcome these problems, further quantitative research should focus on analyzing the knowledge suggested on the qualitative nuclear proliferation studies.
Post-Newtonian Models of Binary Neutron Stars
Lombardi, J C; Shapiro, S L; Lombardi, James C.; Rasio, Frederic A.; Shapiro, Stuart L.
1997-01-01
Using an energy variational method, we calculate quasi-equilibrium configurations of binary neutron stars modeled as compressible triaxial ellipsoids obeying a polytropic equation of state. Our energy functional includes terms both for the internal hydrodynamics of the stars and for the external orbital motion. We add the leading post-Newtonian (PN) corrections to the internal and gravitational energies of the stars, and adopt hybrid orbital terms which are fully relativistic in the test-mass limit and always accurate to PN order. The total energy functional is varied to find quasi-equilibrium sequences for both corotating and irrotational binaries in circular orbits. We examine how the orbital frequency at the innermost stable circular orbit depends on the polytropic index n and the compactness parameter GM/Rc^2. We find that, for a given GM/Rc^2, the innermost stable circular orbit along an irrotational sequence is about 17% larger than the innermost secularly stable circular orbit along the corotating sequ...
Modeling the Asymmetric Wind of Massive LBV Binary MWC 314
Lobel, A; Dozinel, K Torres; Gorlova, N; Martayan, C; Raskin, G; Van Winckel, H; Prins, S; Pessemier, W; Waelkens, C; Frémat, Y; Hensberge, H; Dummortier, L; Jorissen, A; Van Eck, S; Lehmann, H
2011-01-01
Spectroscopic monitoring with Mercator-HERMES over the past two years reveals that MWC 314 is a massive binary system composed of an early B-type primary LBV star and a less-luminous supergiant companion. We determine an orbital period Porb of 60.85 d from optical S II and Ne I absorption lines observed in this single-lined spectroscopic binary. We find an orbital eccentricity of e=0.26, and a large amplitude of the radial velocity curve of 80.6 km/s. The ASAS V light-curve during our spectroscopic monitoring reveals two brightness minima (\\Delta V~0.1 mag.) over the orbital period due to partial eclipses at an orbital inclination angle of ~70 degrees. We find a clear correlation between the orbital phases and the detailed shapes of optical and near-IR P Cygni-type line profiles of He I, Si II, and double- or triple-peaked stationary cores of prominent Fe II emission lines. A preliminary 3-D radiative transfer model computed with Wind3D shows that the periodic P Cygni line profile variability results from an ...
International Nuclear Information System (INIS)
The identification of possible transients in a nuclear power plant is a highly relevant problem. This is mainly due to the fact that the operation of a nuclear power plant involves a large number of state variables whose behaviors are extremely dynamic. In risk situations, besides the huge cognitive overload that operators are submitted to, there is also the problem related with the considerable decrease in the effective time for correct decision making. To minimize these problems and help operators to make the corrective actions in due time, this paper presents a new contribution in this area and introduces an experimental transient identification system based exclusively on the abilities of the Discrete Binary Artificial Bee Colony (DBABC) algorithm to find the best centroid positions that correctly identifies a transient in a nuclear power plant. The DBABC is a reworking of the Artificial Bee Colony (ABC) algorithm which presents the advantage of operating in both continuous and discrete search spaces. Through the analysis of experimental results, the effective performance of the proposed DBABC algorithm is shown against some well known best performing algorithms from the literature. (author)
Testing nuclear physics from space with quiescent low-mass X-ray binaries
Guillot, Sebastien
2016-07-01
X-ray observations of quiescent low-mass X-ray binaries (qLMXBs) provide one of the methods to understand the internal structure of neutron stars and therefore place constraints on the nuclear physics of dense matter. The hot thermal emission from the surface of neutron stars in qLMXBs allows us to measure the neutron star radius. In the past few years, promising results were obtained from statistical analyses that combined the X-ray spectra of qLMXBs. In this talk, I will summarize the constraints on the internal structure of neutron star obtained from currently available observations of qLMXBs, as well as the most recent results. In an effort to be as conservative as possible with the observational constraints, I will present the current limitations of this method, and how these limitations can be overcome with more observations of qLXMBs with current and future instrumentation.
De Soto, F; Carbonell, J; Leroy, J P; Pène, O; Roiesnel, C; Boucaud, Ph.
2007-01-01
We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.
Thermodynamic modeling of the Ba - Mg binary system
Energy Technology Data Exchange (ETDEWEB)
Ren, Xin; Li, Changrong; Du, Zhenmin; Guo, Cuiping; Chen, Sicheng [Univ. of Science and Technology, Beijing (China). School of Materials Science and Engineering
2013-04-15
On the basis of the thermochemical and phase equilibrium experimental data, the phase diagram of the Ba - Mg binary system has been assessed by means of the calculation of phase diagrams technique. The liquid phase is of unlimited solubility and modeled as a solution phase using the Redlich-Kister equation. The intermetallic compounds, Mg{sub 17}Ba{sub 2}, Mg{sub 23}Ba{sub 6} and Mg{sub 2}Ba, with no solubility ranges are treated as strict stoichiometric compounds with the formula Mg{sub m} Ba{sub n}. Two terminal phases, BccBa and HcpMg, are kept as solution phases, since the solubilities of the two phases are of considerable importance. After optimization, a set of self-consistent thermodynamic parameters has been obtained. The calculated values agree well with the available experimental data.
Model-free linkage analysis of a binary trait.
Xu, Wei; Bull, Shelley B; Mirea, Lucia; Greenwood, Celia M T
2012-01-01
Genetic linkage analysis aims to detect chromosomal regions containing genes that influence risk of specific inherited diseases. The presence of linkage is indicated when a disease or trait cosegregates through the families with genetic markers at a particular region of the genome. Two main types of genetic linkage analysis are in common use, namely model-based linkage analysis and model-free linkage analysis. In this chapter, we focus solely on the latter type and specifically on binary traits or phenotypes, such as the presence or absence of a specific disease. Model-free linkage analysis is based on allele-sharing, where patterns of genetic similarity among affected relatives are compared to chance expectations. Because the model-free methods do not require the specification of the inheritance parameters of a genetic model, they are preferred by many researchers at early stages in the study of a complex disease. We introduce the history of model-free linkage analysis in Subheading 1. Table 1 describes a standard model-free linkage analysis workflow. We describe three popular model-free linkage analysis methods, the nonparametric linkage (NPL) statistic, the affected sib-pair (ASP) likelihood ratio test, and a likelihood approach for pedigrees. The theory behind each linkage test is described in this section, together with a simple example of the relevant calculations. Table 4 provides a summary of popular genetic analysis software packages that implement model-free linkage models. In Subheading 2, we work through the methods on a rich example providing sample software code and output. Subheading 3 contains notes with additional details on various topics that may need further consideration during analysis.
Progenitor models of Wolf-Rayet+O binary systems
Petrovic, J.; Langer, N.
2007-01-01
Since close WR+O binaries are the result of a strong interaction of both stars in massive close binary systems, they can be used to constrain the highly uncertain mass and angular momentum budget during the major mass- transfer phase. We explore the progenitor evolution of the three best suited WR+O
Nuclear Data and Nuclear Model Methods
Institute of Scientific and Technical Information of China (English)
2001-01-01
Developing nuclear data needs towards to sustainable development on fission reactor design and many nuclear applications out the field of fission reactor technology that are growing economicsignificance and that have substantial data requirements are introduced. International standard codes used in nuclear data evaluations and calculations are introduced and compared each other. Generally
THERMOCHEMICAL MODELING OF NUCLEAR WASTE GLASS
The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na{sub 2}O-SiO{sub 2}, Na{sub 2}O-Al{sub 2}O{sub ...
An extended topological model for binary phosphate glasses
International Nuclear Information System (INIS)
We present a topological model for binary phosphate glasses that builds on the previously introduced concepts of the modifying ion sub-network and the strength of modifier constraints. The validity of the model is confirmed by the correct prediction of Tg(x) for covalent polyphosphoric acids where the model reduces to classical constraint counting. The constraints on the modifying cations are linear constraints to first neighbor non-bridging oxygens, and all angular constraints are broken as expected for ionic bonding. For small modifying cations, such as Li+, the linear constraints are almost fully intact, but for larger ions, a significant fraction is broken. By accounting for the fraction of intact modifying ion related constraints, qγ, the Tg(x) of alkali phosphate glasses is predicted. By examining alkali, alkaline earth, and rare earth metaphosphate glasses, we find that the effective number of intact constraints per modifying cation is linearly related to the charge-to-distance ratio of the modifying cation to oxygen
Generalized Fiducial Inference for Binary Logistic Item Response Models.
Liu, Yang; Hannig, Jan
2016-06-01
Generalized fiducial inference (GFI) has been proposed as an alternative to likelihood-based and Bayesian inference in mainstream statistics. Confidence intervals (CIs) can be constructed from a fiducial distribution on the parameter space in a fashion similar to those used with a Bayesian posterior distribution. However, no prior distribution needs to be specified, which renders GFI more suitable when no a priori information about model parameters is available. In the current paper, we apply GFI to a family of binary logistic item response theory models, which includes the two-parameter logistic (2PL), bifactor and exploratory item factor models as special cases. Asymptotic properties of the resulting fiducial distribution are discussed. Random draws from the fiducial distribution can be obtained by the proposed Markov chain Monte Carlo sampling algorithm. We investigate the finite-sample performance of our fiducial percentile CI and two commonly used Wald-type CIs associated with maximum likelihood (ML) estimation via Monte Carlo simulation. The use of GFI in high-dimensional exploratory item factor analysis was illustrated by the analysis of a set of the Eysenck Personality Questionnaire data. PMID:26769340
Energy Technology Data Exchange (ETDEWEB)
Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)
2014-12-15
This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.
Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars
Baiotti, Luca; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano
2010-01-01
To detect the gravitational-wave signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We have performed the longest (to date) general-relativistic simulations of binary neutron stars with different compactnesses and used them to constrain a tidal extension of the effective-one-body model so that it reproduces the numerical waveforms accurately and essentially up to the merger. The typical errors in the phase over the $\\simeq 22$ gravitational-wave cycles are $\\Delta \\phi\\simeq \\pm 0.24$ rad, thus with relative phase errors $\\Delta \\phi/\\phi \\simeq 0.2%$. We also show that with a single choice of parameters, the effective-one-body approach is able to reproduce all of the numerically-computed phase evolutions, in contrast with what found when adopting a tidally corrected post-Newtonian Taylor-T4 expansion.
A synthetic model of the gravitational wave background from evolving binary compact objects
Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph
2016-01-01
Modeling the stochastic gravitational wave background from various astrophysical sources is a key objective in view of upcoming observations with ground- and space-based gravitational wave observatories such as Advanced LIGO, VIRGO, eLISA and PTA. We develop a synthetic model framework that follows the evolution of single and binary compact objects in an astrophysical context. We describe the formation and merger rates of binaries, the evolution of their orbital parameters with time and the spectrum of emitted gravitational waves at different stages of binary evolution. Our approach is modular and allows us to test and constrain different ingredients of the model, including stellar evolution, black hole formation scenarios and the properties of binary systems. We use this framework in the context of a particularly well-motivated astrophysical setup to calculate the gravitational wave background from several types of sources, including inspiraling stellar-mass binary black holes that have not merged during a H...
Prostate segmentation with local binary patterns guided active appearance models
Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Vilanova, Joan C.; Meriaudeau, Fabrice
2011-03-01
Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient segmentation of the prostate in TRUS images could be challenging in the presence of heterogeneous intensity distribution inside the prostate gland, and other imaging artifacts like speckle noise, shadow regions and low Signal to Noise Ratio (SNR). In this work, we propose to enhance the texture features of the prostate region using Local Binary Patterns (LBP) for the propagation of a shape and appearance based statistical model to segment the prostate in a multi-resolution framework. A parametric model of the propagating contour is derived from Principal Component Analysis (PCA) of the prior shape and texture information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve an optimal segmentation. The proposed method achieves a mean Dice Similarity Coefficient (DSC) value of 0.94+/-0.01 and a mean segmentation time of 0.68+/-0.02 seconds when validated with 70 TRUS images of 7 datasets in a leave-one-patient-out validation framework. Our method performs computationally efficient and accurate prostate segmentation in the presence of intensity heterogeneities and imaging artifacts.
Dependence of X-Ray Burst Models on Nuclear Reaction Rates
Cyburt, R. H.; Amthor, A. M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K
2016-01-01
X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,$\\gamma$), ($\\alpha$,$\\gamma$), and ($\\alpha$,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophy...
Modeling Mergers of Known Galactic Systems of Binary Neutron Stars
Feo, Alessandra; Maione, Francesco; Löffler, Frank
2016-01-01
We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between $0.75$ and $0.99$. Specifically, these systems are J1756-2251, J0737-3039A, J1906+0746, B1534+12, J0453+1559 and B1913+16. We follow the dynamics of the merger from the late stage of the inspiral process up to $\\sim$ 20 ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems ($q=0.75$, J0453+1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein Toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and fr...
Phemenological Modelling of a Group of Eclipsing Binary Stars
Andronov, Ivan L; Chinarova, Lidia L
2015-01-01
Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the...
An Accretion Disc Model For Eclipsing Binary System: AV Del
Ghoreyshi, Sayyed Mohammad Reza; Salehi, Fatemeh
2008-01-01
We investigate the light and radial-velocity curves of the eclipsing binary AV Del. Using the most new version of Wilson & Van Hamme (2003) code, the absolute elements, fundamental orbital and physical parameters of the system are determined. Then, using the new SHELLSPEC code, we study and present an accretion disc model for the system. We found AV Del is a semi-detached system which has an accretion disc around the primary star. By combining the radial-velocity and light curve analysis, we derive accurate absolute masses for the components of M1=1.449 Msun and M2 =0.687 Msun and radii of R1=2.61 Rsun and R2=4.21 Rsun as well as effective temperatures of T1=6000 K and T2= 4281 K for the primary and the secondary, respectively. Also, we derived a temperature of T=5700 K for the disc. Finally, our results are compared with those of previous authors.
Energy Technology Data Exchange (ETDEWEB)
Bock, D.; Kahlau, R.; Pötzschner, B.; Körber, T.; Wagner, E.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)
2014-03-07
Various {sup 2}H and {sup 31}P nuclear magnetic resonance (NMR) spectroscopy techniques are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene-d{sub 3} (PS) over the full concentration range. The results are quantitatively compared to those of a dielectric spectroscopy (DS) study on the same system previously published [R. Kahlau, D. Bock, B. Schmidtke, and E. A. Rössler, J. Chem. Phys. 140, 044509 (2014)]. While the PS dynamics does not significantly change in the mixtures compared to that of neat PS, two fractions of TPP molecules are identified, one joining the glass transition of PS in the mixture (α{sub 1}-process), the second reorienting isotropically (α{sub 2}-process) even in the rigid matrix of PS, although at low concentration resembling a secondary process regarding its manifestation in the DS spectra. Pronounced dynamical heterogeneities are found for the TPP α{sub 2}-process, showing up in extremely stretched, quasi-logarithmic stimulated echo decays. While the time window of NMR is insufficient for recording the full correlation functions, DS results, covering a larger dynamical range, provide a satisfactory interpolation of the NMR data. Two-dimensional {sup 31}P NMR spectra prove exchange within the broadly distributed α{sub 2}-process. As demonstrated by {sup 2}H NMR, the PS matrix reflects the faster α{sub 2}-process of TPP by performing a spatially highly hindered motion on the same timescale.
Massive Black Hole Binary Evolution
Directory of Open Access Journals (Sweden)
Merritt David
2005-11-01
Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.
Hybrid approach for the assessment of PSA models by means of binary decision diagrams
Energy Technology Data Exchange (ETDEWEB)
Ibanez-Llano, Cristina, E-mail: cristina.ibanez@iit.upcomillas.e [Instituto de Investigacion Tecnologica (IIT), Escuela Tecnica Superior de Ingenieria ICAI, Universidad Pontificia Comillas, C/Santa Cruz de Marcenado 26, 28015 Madrid (Spain); Rauzy, Antoine, E-mail: Antoine.RAUZY@3ds.co [Dassault Systemes, 10 rue Marcel Dassault CS 40501, 78946 Velizy Villacoublay Cedex (France); Melendez, Enrique, E-mail: ema@csn.e [Consejo de Seguridad Nuclear (CSN), C/Justo Dorado 11, 28040 Madrid (Spain); Nieto, Francisco, E-mail: nieto@iit.upcomillas.e [Instituto de Investigacion Tecnologica (IIT), Escuela Tecnica Superior de Ingenieria ICAI, Universidad Pontificia Comillas, C/Santa Cruz de Marcenado 26, 28015 Madrid (Spain)
2010-10-15
Binary decision diagrams are a well-known alternative to the minimal cutsets approach to assess the reliability Boolean models. They have been applied successfully to improve the fault trees models assessment. However, its application to solve large models, and in particular the event trees coming from the PSA studies of the nuclear industry, remains to date out of reach of an exact evaluation. For many real PSA models it may be not possible to compute the BDD within reasonable amount of time and memory without considering the truncation or simplification of the model. This paper presents a new approach to estimate the exact probabilistic quantification results (probability/frequency) based on combining the calculation of the MCS and the truncation limits, with the BDD approach, in order to have a better control on the reduction of the model and to properly account for the success branches. The added value of this methodology is that it is possible to ensure a real confidence interval of the exact value and therefore an explicit knowledge of the error bound. Moreover, it can be used to measure the acceptability of the results obtained with traditional techniques. The new method was applied to a real life PSA study and the results obtained confirm the applicability of the methodology and open a new viewpoint for further developments.
Institute of Scientific and Technical Information of China (English)
GuoqingWang; YingkeTan
1996-01-01
A combined physical model of bubbel growth is propsed along with a corresponding bubble growth model for binary mixtures on smooth tubes.Using the general model of Wang et al.[1].and the bubble growth model for binary mixtures,an analytical model for nucleate pool boiling heat transfer of binary mixtures on smooth tubes is developed.In addition,nucleate pool boiling heat transfer of pure liquids and binary mixtrues on a horizontal smooth tube was studied experimentally.The pure liquids and binary mixtures included water methanol,ehanol,and their binary mixtures.The analytical models for both pure liquids and binary mixtures are in good agreement with the experimental data.
Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter
Manjavacas, E; Alcalá, J M; Zapatero-Osorio, M R; Béjar, V J S; Homeier, D; Bonnefoy, M; Smart, R L; Henning, T; Allard, F
2015-01-01
The determination of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Unresolved brown dwarf binaries may be revealed through their peculiar spectra or the discrepancy between optical and near-infrared spectral type classification. We obtained medium-resolution spectra of 22 brown dwarfs with these characteristics using the X-Shooter spectrograph at the VLT. We aimed to identify brown dwarf binary candidates, and to test if the BT-Settl 2014 atmospheric models reproduce their observed spectra. To find binaries spanning the L-T boundary, we used spectral indices and compared the spectra of the selected candidates to single spectra and synthetic binary spectra. We used synthetic binary spectra with components of same spectral type to determine as well the sensitivity of the method to this class of binaries. We identified three candidates to be combination of L plus T brown dwarfs. We are not able to identify binaries with components of similar spectral ...
Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai
2016-01-01
Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.
Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai
2016-01-01
Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032
Spent nuclear fuel reprocessing modeling
International Nuclear Information System (INIS)
The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)
Energy Technology Data Exchange (ETDEWEB)
Kahlau, R.; Bock, D.; Schmidtke, B.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)
2014-01-28
Dielectric spectroscopy as well as {sup 2}H and {sup 31}P nuclear magnetic resonance spectroscopy (NMR) are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene (PS/PS-d{sub 3}) in the full concentration (c{sub TPP}) range. In addition, depolarized light scattering and differential scanning calorimetry experiments are performed. Two glass transition temperatures are found: T{sub g1}(c{sub TPP}) reflects PS dynamics and shows a monotonic plasticizer effect, while the lower T{sub g2}(c{sub TPP}) exhibits a maximum and is attributed to (faster) TPP dynamics, occurring in a slowly moving or immobilized PS matrix. Dielectric spectroscopy probing solely TPP identifies two different time scales, which are attributed to two sub-ensembles. One of them, again, shows fast TPP dynamics (α{sub 2}-process), the other (α{sub 1}-process) displays time constants identical with those of the slow PS matrix. Upon heating the α{sub 1}-fraction of TPP decreases until above some temperature T{sub c} only a single α{sub 2}-population exists. Inversely, below T{sub c} a fraction of the TPP molecules is trapped by the PS matrix. At low c{sub TPP} the α{sub 2}-relaxation does not follow frequency-temperature superposition (FTS), instead it is governed by a temperature independent distribution of activation energies leading to correlation times which follow Arrhenius laws, i.e., the α{sub 2}-relaxation resembles a secondary process. Yet, {sup 31}P NMR demonstrates that it involves isotropic reorientations of TPP molecules within a slowly moving or rigid matrix of PS. At high c{sub TPP} the super-Arrhenius temperature dependence of τ{sub 2}(T), as well as FTS are recovered, known as typical of the glass transition in neat systems.
Babak, S.; Balasubramanian, R.; Churches, D.; Cokelaer, T.; Sathyaprakash, B. S.
2006-09-01
Gravitational waves from coalescing compact binaries are searched for using the matched filtering technique. As the model waveform depends on a number of parameters, it is necessary to filter the data through a template bank covering the astrophysically interesting region of the parameter space. The choice of templates is defined by the maximum allowed drop in signal-to-noise ratio due to the discreteness of the template bank. In this paper we describe the template-bank algorithm that was used in the analysis of data from the Laser Interferometer Gravitational Wave Observatory (LIGO) and GEO 600 detectors to search for signals from binaries consisting of non-spinning compact objects. Using Monte Carlo simulations, we study the efficiency of the bank and show that its performance is satisfactory for the design sensitivity curves of ground-based interferometric gravitational wave detectors GEO 600, initial LIGO, advanced LIGO and Virgo. The bank is efficient in searching for various compact binaries such as binary primordial black holes, binary neutron stars, binary black holes, as well as a mixed binary consisting of a non-spinning black hole and a neutron star.
The s Process: Nuclear Physics, Stellar Models, Observations
Kaeppeler, Franz; Bisterzo, Sara; Aoki, Wako
2010-01-01
Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear...
Modeling Multi-Wavelength Stellar Astrometry. I. SIM Lite Observations of Interacting Binaries
Coughlin, Jeffrey L; Harrison, Thomas E; Hoard, D W; Ciardi, David R; Benedict, G Fritz; Howell, Steve B; McArthur, Barbara E; Wachter, Stefanie
2010-01-01
Interacting binaries consist of a secondary star which fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code (Orosz & Hauschildt 2000) to allow us to model the flux-weighted reflex motions of interacting binaries, in a code we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of interacting binary. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright interacting binaries where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the op...
Modelling the Delay Distribution of Binary Spray and Wait Routing Protocol
Diana, Rémi
2011-01-01
This article proposes a stochastic model to obtain the end-to-end delay law between two nodes of a Delay Tolerant Network (DTN). We focus on the commonly used Binary Spray and Wait (BSW) routing protocol and propose a model that can be applied to homogeneous or heterogeneous networks (i.e. when the inter-contact law parameter takes one or several values). To the best of our knowledge, this is the first model allowing to estimate the delay distribution of Binary Spray and Wait DTN protocol in heterogeneous networks. We first detail the model and propose a set of simulations to validate the theoretical results.
Maxted, P F L
2016-01-01
Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaughlin effect). The main features of the model have tested by comparison to observed data and other light curve models. The model is found to be accurate enough t...
International Nuclear Information System (INIS)
This study is concerned with the quantification of Probabilistic Risk Assessment (PRA) using linked Fault Tree (FT) models. Probabilistic Risk assessment (PRA) of Nuclear Power Plants (NPPs) complements traditional deterministic analysis; it is widely recognized as a comprehensive and structured approach to identify accident scenarios and to derive numerical estimates of the associated risk levels. PRA models as found in the nuclear industry have evolved rapidly. Increasingly, they have been broadly applied to support numerous applications on various operational and regulatory matters. Regulatory bodies in many countries require that a PRA be performed for licensing purposes. PRA has reached the point where it can considerably influence the design and operation of nuclear power plants. However, most of the tools available for quantifying large PRA models are unable to produce analytically correct results. The algorithms of such quantifiers are designed to neglect sequences when their likelihood decreases below a predefined cutoff limit. In addition, the rare event approximation (e.g. Moivre's equation) is typically implemented for the first order, ignoring the success paths and the possibility that two or more events can occur simultaneously. This is only justified in assessments where the probabilities of the basic events are low. When the events in question are failures, the first order rare event approximation is always conservative, resulting in wrong interpretation of risk importance measures. Advanced NPP PRA models typically include human errors, common cause failure groups, seismic and phenomenological basic events, where the failure probabilities may approach unity, leading to questionable results. It is accepted that current quantification tools have reached their limits, and that new quantification techniques should be investigated. A novel approach using the mathematical concept of Binary Decision Diagram (BDD) is proposed to overcome these deficiencies
PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL
Institute of Scientific and Technical Information of China (English)
H.W.Yang; D.P.Tao; Z.H.Zhou
2008-01-01
The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.
Modeling Japan's efforts to ensure nuclear nonproliferation
International Nuclear Information System (INIS)
As a result of policy study on Modeling Japan's efforts to ensure nuclear nonproliferation, Japan's efforts have been categorized into two parts; voluntary and proactive efforts and passive efforts in line with international discussions. Japan, a sole non-nuclear weapon state promoting nuclear fuel cycle, will be required more proactively in the fields that Japan has not made a proactive effort than ever before in order to continue to acquire international confidence. Nuclear nonproliferation efforts in peaceful nuclear energy have been generalized on the basis of Japan's case because it is essential to develop the vital infrastructure to ensure nuclear nonproliferation in the states planning to introduce nuclear energy. (author)
Coexisting Pulses in a Model for Binary-Mixture Convection
Riecke, H; Riecke, Hermann; Rappel, Wouter-Jan
1995-01-01
We address the striking coexistence of localized waves (`pulses') of different lengths which was observed in recent experiments and full numerical simulations of binary-mixture convection. Using a set of extended Ginzburg-Landau equations, we show that this multiplicity finds a natural explanation in terms of the competition of two distinct, physical localization mechanisms; one arises from dispersion and the other from a concentration mode. This competition is absent in the standard Ginzburg-Landau equation. It may also be relevant in other waves coupled to a large-scale field.
A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources
International Nuclear Information System (INIS)
An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)
Microscopically constrained mean-field models from chiral nuclear thermodynamics
Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.
2016-06-01
We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.
Maxted, P. F. L.
2016-06-01
Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111
Babak, S; Churches, D; Cokelaer, T; Sathyaprakash, B S
2006-01-01
Gravitational waves from coalescing compact binaries are searched using the matched filtering technique. As the model waveform depends on a number of parameters, it is necessary to filter the data through a template bank covering the astrophysically interesting region of the parameter space. The choice of templates is defined by the maximum allowed drop in signal-to-noise ratio due to the discreteness of the template bank. In this paper we propose an algorithm to place templates in the two-dimensional parameter space of waveforms from binaries consisting of non-spinning compact objects. By performing Monte-Carlo simulation, we study the efficiency of the proposed bank and show that its performance is satisfactory for the design sensitivity curves of ground-based interferometric gravitational wave detectors GEO 600, initial LIGO, advanced LIGO and Virgo. The bank is efficient to search for various compact binaries such as binaries of massive compact halo objects, binary neutron stars, binary black holes, as we...
Light curve modeling of eclipsing binaries towards the constellation of Carina
Dey, Aniruddha; Kumar, Subhash; Bhardwaj, Hrishabh; Bhattacharya, Barnmoy; Richa,; Sharma, Angad; Chauhan, Akshyata; Tiwari, Neha; Kaur, Sharanjit; Kumar, Suman; Abhishek,
2015-01-01
We present a detailed V-band photometric light curve modeling of 30 eclipsing binaries using the data from Pietrukowicz et al. (2009) collected with the European Southern Observatory Very Large Telescope (ESO VLT) of diameter 8-m. The light curve of these 30 eclipsing binaries were selected out of 148 of them available in the database on the basis of complete phase coverage, regular and smooth phased light curve shapes. Eclipsing binaries play pivotal role in the direct measurement of astronomical distances more accurately simply from their geometry of light curves. The accurate value of Hubble constant (H0) which measures the rate of expansion of the Universe heavily relies on extragalactic distance scale measurements. Classification of the selected binary stars in the sample were done, preliminarily on the basis of Fourier parameters in the a2-a4 plane and final classification was obtained from the Roche lobe geometry. Out of these 30 eclipsing binaries, only one was found to be detached binary system while...
Studies on Binary Time Series Models with Applications to Empirical Macroeconomics and Finance
Nyberg, Henri
2010-01-01
This thesis studies binary time series models and their applications in empirical macroeconomics and finance. In addition to previously suggested models, new dynamic extensions are proposed to the static probit model commonly used in the previous literature. In particular, we are interested in probit models with an autoregressive model structure. In Chapter 2, the main objective is to compare the predictive performance of the static and dynamic probit models in forecasting the U.S. and G...
X-ray-binary spectra in the lamp post model
Vincent, F H; Zdziarski, A A; Madej, J
2016-01-01
[Abridged] Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole axis, emitting X-rays. The observed spectrum is made of 3 components: the direct spectrum; the thermal bump; and the reflected spectrum made of the Compton hump and the iron-line complex. Aims. We aim at computing accurately the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. Methods. We compute in full GR the illumination of a thin disk by a lamp along the rotation axis. We use the ATM21 radiative transfer code to compute the spectrum emitted along the disk. We ray trace this local spectrum to determine the reprocessed spectrum as observed at infinity. We discuss the dependence of the local and ray-traced spectra on the emission angle and spin. Results. We show the importa...
Chen, Han; Wang, Chaolong; Conomos, Matthew P.; Stilp, Adrienne M.; Li, Zilin; Sofer, Tamar; Szpiro, Adam A.; Chen, Wei; Brehm, John M.; Celedón, Juan C.; Redline, Susan; Papanicolaou, George J.; Thornton, Timothy A.; Laurie, Cathy C.; Rice, Kenneth; Lin, Xihong
2016-01-01
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. PMID:27018471
B. Li (Bayoue); B. Roozenbeek (Bob); E.W. Steyerberg (Ewout); E.M.E.H. Lesaffre (Emmanuel)
2011-01-01
textabstractBackground: Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these models. Methods. We used individual patient data from 8509 p
Institute of Scientific and Technical Information of China (English)
ZHOU Xiaopeng; SU Xueli; SUN Yan
2007-01-01
A study of nonlinear competitive adsorption equilibria of proteins is of fundamental importance in understanding the behavior of preparative chromatographic separation.This work describes the nonlinear binary protein adsorption equilibria on ion exchangers by the statistical thermodynamic (ST) model.The single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin(BSA)on SP Sepharose FF were determined by batch adsorption experiments in 0.05 mol/L sodium acetate buffer at three pH values(4.5,5.0 and 5.5)and three NaCl concentrations(0.05,0.10 and 0.15 mol/L)at pH 5.0.The ST model was found to depict the effects of pH and ionic strength on the single-component equilibria well,with model parameters depending on the pH and ionic strength.Moreover,the ST model gave acceptable fitting to the binary adsorption data with the fltted singlecomponent model parameters,leading to the estimation of the binary ST model parameter.The effects of pH and ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories.Results demonstrate the availability of the ST model for describing nonlinear competitive protein adsorption equilibria in the presence of two proteins.
Almog, Assaf
2014-01-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of time series of activity of their fundamental elements (such as stocks or neurons respectively). While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relationships between binary and non-binary properties of financial time series. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to replicate the observed binary/non-binary relations very well, and to mathematically...
Logic functions and equations binary models for computer science
Posthoff, Christian
2004-01-01
Logic functions and equations are (some of) the most important concepts of Computer Science with many applications such as Binary Arithmetics, Coding, Complexity, Logic Design, Programming, Computer Architecture and Artificial Intelligence. They are very often studied in a minimum way prior to or together with their respective applications. Based on our long-time teaching experience, a comprehensive presentation of these concepts is given, especially emphasising a thorough understanding as well as numerical and computer-based solution methods. Any applications and examples from all the respective areas are given that can be dealt with in a unified way. They offer a broad understanding of the recent developments in Computer Science and are directly applicable in professional life. Logic Functions and Equations is highly recommended for a one- or two-semester course in many Computer Science or computer Science-oriented programmes. It allows students an easy high-level access to these methods and enables sophist...
Black hole mass and binary model for BL Lac object OJ 287
Liu, F. K.; Wu, Xue-Bing
2002-01-01
Recent intensive observations of the BL Lac object OJ 287 raise a lot of questions on the models of binary black holes, processing jets, rotating helical jets and thermal instability of slim accretion disks. After carefully analyzing their radio flux and polarization data, Valtaoja et al. (\\cite{valtaoja00}) propose a new binary model. Based on the black hole mass of $4 \\times 10^8 {\\rm M_\\odot}$ estimated with the tight correlations of the black hole masses and the bulge luminosity or centra...
Institute of Scientific and Technical Information of China (English)
ZHANG Lin; ZHANG Cai-bei
2006-01-01
Two-dimensional cellular automaton(CA) simulations of phase transformations of binary alloys during solidification were reported. The modelling incorporates local concentration and heat changes into a nucleation or growth function, which is utilized by the automaton in a probabilistic fashion. These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification. The simulated results show that the final morphology during solidification is related with the cooling conditions. The established model can be used to evaluate the phase transformation of binary alloys during solidification.
Hannam, Mark
2013-01-01
The inspiral and merger of two orbiting black holes is among the most promising sources for the first (hopefully imminent) direct detection of gravitational waves (GWs), and measurements of these signals could provide a wealth of information about astrophysics, fundamental physics and cosmology. Detection and measurement require a theoretical description of the GW signals from all possible black-hole-binary configurations, which can include complicated precession effects due to the black-hole spins. Modelling the GW signal from generic precessing binaries is therefore one of the most urgent theoretical challenges facing GW astronomy. This article briefly reviews the phenomenology of generic-binary dynamics and waveforms, and recent advances in modelling them.
Wilderjans, T F; Ceulemans, E; Kuppens, P
2012-06-01
In many areas of the behavioral sciences, different groups of objects are measured on the same set of binary variables, resulting in coupled binary object × variable data blocks. Take, as an example, success/failure scores for different samples of testees, with each sample belonging to a different country, regarding a set of test items. When dealing with such data, a key challenge consists of uncovering the differences and similarities between the structural mechanisms that underlie the different blocks. To tackle this challenge for the case of a single data block, one may rely on HICLAS, in which the variables are reduced to a limited set of binary bundles that represent the underlying structural mechanisms, and the objects are given scores for these bundles. In the case of multiple binary data blocks, one may perform HICLAS on each data block separately. However, such an analysis strategy obscures the similarities and, in the case of many data blocks, also the differences between the blocks. To resolve this problem, we proposed the new Clusterwise HICLAS generic modeling strategy. In this strategy, the different data blocks are assumed to form a set of mutually exclusive clusters. For each cluster, different bundles are derived. As such, blocks belonging to the same cluster have the same bundles, whereas blocks of different clusters are modeled with different bundles. Furthermore, we evaluated the performance of Clusterwise HICLAS by means of an extensive simulation study and by applying the strategy to coupled binary data regarding emotion differentiation and regulation.
Preobrazhenskii, M. P.; Rudakov, O. B.
2016-01-01
A regression model for calculating the boiling point isobars of tetrachloromethane-organic solvent binary homogeneous systems is proposed. The parameters of the model proposed were calculated for a series of solutions. The correlation between the nonadditivity parameter of the regression model and the hydrophobicity criterion of the organic solvent is established. The parameter value of the proposed model is shown to allow prediction of the potential formation of azeotropic mixtures of solvents with tetrachloromethane.
Removing Specification Errors from the Usual Formulation of Binary Choice Models
Directory of Open Access Journals (Sweden)
P.A.V.B. Swamy
2016-06-01
Full Text Available We develop a procedure for removing four major specification errors from the usual formulation of binary choice models. The model that results from this procedure is different from the conventional probit and logit models. This difference arises as a direct consequence of our relaxation of the usual assumption that omitted regressors constituting the error term of a latent linear regression model do not introduce omitted regressor biases into the coefficients of the included regressors.
Numerical modelling of the binary alloys solidification with solutal undercooling
Directory of Open Access Journals (Sweden)
T. Skrzypczak
2008-03-01
Full Text Available In thc papcr descrip~ion of mathcmn~icaI and numerical modcl of binay alloy sot idification is prcscntcd. Mctal alloy consisting of maincomponent and solulc is introduced. Moving, sharp solidification rmnt is assumcd. Conaitulional undcrcooling phcnomcnon is tnkcn intoconsidcralion. As a solidifica~ionf ront advances, solutc is rcdistributcd at thc intcrfacc. Commonly, solutc is rejccted into Itlc liquid. whcrcit accumuIatcs into solittc boundary laycr. Depending on thc tcmpcrature gradient, such tiquid may be undcrcoolcd hclow its mclting point,cvcn though it is hot~crth an liquid at thc Front. This phcnomcnon is orten callcd constitutional or soIr~talu ndcrcool ing, to cmphasizc that itariscs from variations in solutal distribution or I iquid. An important conscqucncc of this accurnulntion of saIutc is that it can cause thc frontto brcak down into cclls or dendri~csT. his occurs bccausc thcrc is a liquid ahcad of thc front with lowcr solutc contcnt, and hcncc a highcrme1 ting tcmpcraturcs than liquid at thc front. In rhc papcr locarion and shapc of wndcrcoolcd rcgion dcpcnding on solidification pararnctcrsis discussed. Nurncrical mcthod basing on Fini tc Elelncnt Mctbod (FEM allowi~lgp rcdiction of breakdown of inoving planar front duringsolidification or binary alloy is proposed.
Photometric Modelling of Close Binary Star CN And
Indian Academy of Sciences (India)
D. M. Z. Jassur; A. Khodadadi
2006-03-01
The results of two color photometry of active close binary CN And are presented and analyzed. The light curves of the system are obviously asymmetric, with the primary maximum brighter than the secondary maximum, which is known as the O’Conell effect. The most plausible explanation of the asymmetry is expected to be due to spot activity of the primary component. For the determination of physical and geometrical parameters, the most new version of W–D code was used, but the presence of asymmetry prevented the convergence of the method when the whole light curves were used. The solutions were obtained by applying mode 3 of W–D code to the first half of the light curves, assuming synchronous rotation and zero eccentricity. Absolute parameters of the system were obtained from combining the photometric solution with spectroscopic data obtained from radial velocity curve analysis. The results indicate the poor thermal contact of the components and transit primary minimum. Finally the O–C diagram was analyzed. It was found that the orbital period of the system is changing with a rate of / = -2.2(6) × 10-10 which corresponds to mass transfer from more massive component to less massive with the rate of / ∼ 4.82 × 10-88sun/year.
Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures
DEFF Research Database (Denmark)
von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.;
2007-01-01
Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, even...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....
Asymptotic Stability Analysis of Binary Heterogeneous Traffic Based on Car-Following Model
Directory of Open Access Journals (Sweden)
Hao Wang
2016-01-01
Full Text Available We study the asymptotic stability of Chandler Model for a heterogeneous traffic by using numerical simulations. A simple binary platoon is considered which consists of two types of vehicles. Platoon stabilities under various kinds of combinations of parameters are investigated. It is found that the stability of the binary platoon cannot be determined by the mean values of individual vehicle’s parameters. Some combinations of parameters that benefit to the platoon stability are found. Several interesting properties of binary platoon’s stability are summarized. The analytic stability criterion of heterogeneous traffic reported in the historical literature is studied. The result indicates the analytic criterion is not rigorous, which is apt to overestimate the stability of heterogeneous platoon.
Characterizing Optimal Sampling of Binary Contingency Tables via the Configuration Model
Blanchet, Jose; Stauffer, Alexandre
2010-01-01
A binary contingency table is an m x n array of binary entries with prescribed row sums r=(r_1,...,r_m) and column sums c=(c_1,...,c_n). The configuration model for uniformly sampling binary contingency tables proceeds as follows. First, label N=\\sum_{i=1}^{m} r_i tokens of type 1, arrange them in m cells, and let the i-th cell contain r_i tokens. Next, label another set of tokens of type 2 containing N=\\sum_{j=1}^{n}c_j elements arranged in n cells, and let the j-th cell contain c_j tokens. ...
Critical assessment of nuclear mass models
International Nuclear Information System (INIS)
Some of the physical assumptions underlying various nuclear mass models are discussed. The ability of different mass models to predict new masses that were not taken into account when the models were formulated and their parameters determined is analyzed. The models are also compared with respect to their ability to describe nuclear-structure properties in general. The analysis suggests future directions for mass-model development
A dynamic analysis of Schelling’s binary corruption model : A competitive equilibrium approach
Caulkins, J.P.; Feichtinger, G.; Grass, D.; Hartl, R.F.; Kort, P.M.; Novak, A.J.; Seidl, A.; Wirl, F.
2014-01-01
Schelling (in Micromotives and Macrobehavior, Norton, New York, 1978) suggested a simple binary choice model to explain the variation of corruption levels across societies. His basic idea was that the expected profitability of engaging in corruption depends on its prevalence. The key result of the s
Blackman, Jonathan; Galley, Chad R; Szilagyi, Bela; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-01-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. In this paper, we construct an accurate and fast-to-evaluate surrogate model for numerical relativity (NR) waveforms from non-spinning binary black hole coalescences with mass ratios from $1$ to $10$ and durations corresponding to about $15$ orbits before merger. Our surrogate, which is built using reduced order modeling techniques, is distinct from traditional modeling efforts. We find that the full multi-mode surrogate model agrees with waveforms generated by NR to within the numerical error of the NR code. In particular, we show that our modeling strategy produces surrogates which can correctly predict NR waveforms that were {\\em not} used for the surrogate's training. For all practical purposes, then, the surrogate waveform model is equivalent to the high-accuracy, large-scale simulation waveform but can be evaluated in a millisecond to a second dependin...
X-ray-binary spectra in the lamp post model
Vincent, F. H.; Różańska, A.; Zdziarski, A. A.; Madej, J.
2016-05-01
Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole rotation axis and emitting X-rays. The observed spectrum is made of three major components: the direct spectrum traveling from the lamp directly to the observer; the thermal bump at the equilibrium temperature of the accretion disk heated by the lamp; and the reflected spectrum essentially made of the Compton hump and the iron-line complex. Aims: We aim to accurately compute the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. We are particularly interested in investigating the possibility to use the iron-line complex as a probe to constrain the black hole spin. Methods: We computed in full general relativity the illumination of a thin accretion disk by a fixed X-ray lamp along the rotation axis. We used the ATM21 radiative transfer code to compute the local, energy-dependent spectrum emitted along the disk as a function of radius, emission angle and black hole spin. We then ray traced this local spectrum to determine the final reprocessed spectrum as received by a distant observer. We consider two extreme values of the black hole spin (a = 0 and a = 0.98) and discuss the dependence of the local and ray-traced spectra on the emission angle and black hole spin. Results: We show the importance of the angle dependence of the total disk specific intensity spectrum emitted by the illuminated atmosphere when the thermal disk emission is fully taken into account. The disk flux, together with the X-ray flux from the lamp, determines the temperature and ionization structure of the atmosphere. High black hole spin implies high temperature in the inner disk regions, therefore, the emitted thermal disk spectrum fully covers the iron-line complex. As a
Thiele, Uwe; Madruga Sánchez, Santiago; Frastia, Lubor
2007-01-01
A dynamical model is proposed to describe the coupled decomposition and profile evolution of a free surface film of a binary mixture. An example is a thin film of a polymer blend on a solid substrate undergoing simultaneous phase separation and dewetting. The model is based on model-H describing the coupled transport of the mass of one component (convective Cahn-Hilliard equation) and momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate boundary conditions at the solid subs...
Understanding discs in binary YSOs - detailed modelling of VV CrA
Scicluna, P.; Wolf, S.; Ratzka, T.; Costigan, G.; Launhardt, R.; Leinert, C.; Ober, F.; Manara, C. F.; Testi, L.
2016-05-01
Given that a majority of stars form in multiple systems, in order to fully understand the star- and planet-formation processes we must seek to understand them in multiple stellar systems. With this in mind, we present an analysis of the enigmatic binary T-Tauri system VV Corona Australis, in which both components host discs, but only one is visible at optical wavelengths. We seek to understand the peculiarities of this system by searching for a model for the binary which explains all the available continuum observations of the system. We present new mid-infrared interferometry and near-infrared (NIR) spectroscopy along with archival millimetre-wave observations, which resolve the binary at 1.3 mm for the first time. We compute a grid of pre-main-sequence radiative transfer models and calculate their posterior probabilities given the observed spectral energy distributions and mid-infrared interferometric visibilities of the binary components, beginning with the assumption that the only differences between the two components are their inclination and position angles. Our best-fitting solution corresponds to a relatively low-luminosity T-tauri binary, with each component's disc having a large scaleheight and viewed at moderate inclination (˜50°), with the infrared companion inclined by ˜5° more than the primary. Comparing the results of our model to evolutionary models suggests stellar masses ˜1.7 M⊙ and an age for the system of 3.5 Myr, towards the upper end of previous estimates. Combining these results with accretion indicators from NIR spectroscopy, we determine an accretion rate of 4.0 × 10-8 M⊙ yr-1 for the primary. We suggest that future observations of VV Corona Australis and similar systems should prioritize high angular resolution sub-mm and NIR imaging of the discs and high-resolution optical/NIR spectroscopy of the central stars.
Nuclear maintenance work volume model
International Nuclear Information System (INIS)
This presentation will cover a work volume model, detailing what contributes to a maintenance backlog and demonstrate the impact of these contributing factors on it's reduction. In our quest to achieve sustainable nuclear excellence, we have engaged in many debates over our degree of success in reducing the maintenance backlog at Ontario Power Generation plants. The backlog is a volume of work and a simplified analogy would be to consider it as the water level in a tank. The inflow would be the new work requests/minor work orders not completed by the Fix It Now Team, and the outflow would be the completed work orders. The equilibrium in the tank would be the result of the incoming rate of new work versus the rate of outgoing completed work. We can accommodate increasing levels for short durations, but our success depends on our ability to manage the process and achieving timely long term reduction in backlog. Although everyone seemed to have an understanding for the type of change required, it was difficult to quantify the optimum combination. Increasing the work force always seems to be an obvious choice, along with productivity improvements but there must be careful consideration given to the preventative maintenance program and resource allocation such as Support Staff, Fix It Now Team, Outages, Projects, etc. Various other factors impacting on our work rates would include training loads, sick leave and overtime. A need was identified for some analytical tool that would illustrate if our goals were attainable with our present course of action, and demonstrate what changes needed to be implemented in order to be successful. We developed a model consisting of an Excel spreadsheet that trends the backlog for each maintenance workgroup. The user populates the model with specific historical data for plant resource profiles and work execution. The program generates two sets of charts for each maintenance groups, one for actual data and another for target data. The
Modeling the binary system Mn(NO3)2-H2O with the extended universal quasichemical (UNIQUAC) model
DEFF Research Database (Denmark)
Arrad, Mouad; Kaddami, Mohammed; Maous, Jaafar;
2015-01-01
in aqueous solutions.Thermodynamic modeling for the binary system of Mn(NO3)2-H2O is also presented based on this new experimental solubility data and some modification on the available data bank.Model parameters for this system were determined and revisited; these parameters are generally valid...
Understanding discs in binary YSOs: detailed modelling of VV CrA
Scicluna, P; Ratzka, T; Costigan, G; Launhardt, R; Leinert, C; Ober, F; Manara, C F; Testi, L
2016-01-01
Given that a majority of stars form in multiple systems, in order to fully understand the star- and planet-formation processes we must seek to understand them in multiple stellar systems. With this in mind, we present an analysis of the enigmatic binary T-Tauri system VV Corona Australis, in which both components host discs, but only one is visible at optical wavelengths. We seek to understand the peculiarities of this system by searching for a model for the binary which explains all the available continuum observations of the system. We present new mid-infrared interferometry and near-infrared spectroscopy along with archival millimetre-wave observations, which resolve the binary at 1.3mm for the first time. We compute a grid of pre-main-sequence radiative transfer models and calculate their posterior probabilities given the observed spectral energy distributions and mid-infrared interferometric visibilities of the binary components, beginning with the assumption that the only differences between the two com...
A Clustering-Based Model-Building EA for Optimization Problems with Binary and Real-Valued Variables
Sadowski, Krzysztof L.; Bosman, Peter A. N.; Thierens, Dirk
2015-01-01
We propose a novel clustering-based model-building evolutionary algorithm to tackle optimization problems that have both binary and real-valued variables. The search space is clustered every generation using a distance metric that considers binary and real-valued variables jointly in order to captur
Non-linear mixed models in the analysis of mediated longitudinal data with binary outcomes
Blood Emily A; Cheng Debbie M
2012-01-01
Abstract Background Structural equation models (SEMs) provide a general framework for analyzing mediated longitudinal data. However when interest is in the total effect (i.e. direct plus indirect) of a predictor on the binary outcome, alternative statistical techniques such as non-linear mixed models (NLMM) may be preferable, particularly if specific causal pathways are not hypothesized or specialized SEM software is not readily available. The purpose of this paper is to evaluate the performa...
Karandashev, Yakov M
2016-01-01
In this paper we propose and realize (the code is publicly available at https://github.com/Thrawn1985/2D-Partition-Function) an algorithm for exact calculation of partition function for planar graph models with binary spins. The complexity of the algorithm is O(N^2). Test experiments shows good agreement with Onsager's analytical solution for two-dimensional Ising model of infinite size.
Binary choices in small and large groups: A unified model
Bischi, Gian-Italo; Merlone, Ugo
2010-02-01
Two different ways to model the diffusion of alternative choices within a population of individuals in the presence of social externalities are known in the literature. While Galam’s model of rumors spreading considers a majority rule for interactions in several groups, Schelling considers individuals interacting in one large group, with payoff functions that describe how collective choices influence individual preferences. We incorporate these two approaches into a unified general discrete-time dynamic model for studying individual interactions in variously sized groups. We first illustrate how the two original models can be obtained as particular cases of the more general model we propose, then we show how several other situations can be analyzed. The model we propose goes beyond a theoretical exercise as it allows modeling situations which are relevant in economic and social systems. We consider also other aspects such as the propensity to switch choices and the behavioral momentum, and show how they may affect the dynamics of the whole population.
Verification of a binary fluid solidification model in the finite-volume flow solver
Waclawczyk, Tomasz
2015-01-01
The aim of this paper is to verify the new numerical implementation of a binary fluid, heat conduction dominated solidification model. First, we extend a semi-analytical solution to the heat diffusion equation, next, the range of its applicability is investigated. It was found that the linearization introduced to the heat diffusion equation negatively affects the ability to predict solidus and liquidus lines positions whenever the magnitude of latent heat of fusion exceeds a certain value. Next, a binary fluid solidification model is coupled with a flow solver, and is used in a numerical study of Al-4.1%Cu alloy solidification in a two-dimensional rectangular cavity. An accurate coupling between the solidification model and the flow solver is crucial for the correct forecast of solidification front positions and macrosegregation patterns.
Functionally unidimensional item response models for multivariate binary data
DEFF Research Database (Denmark)
Ip, Edward; Molenberghs, Geert; Chen, Shyh-Huei;
2013-01-01
The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model to such multidimensio......The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model to such...... 2 issues: (a) can a proposed nonlinear projection track the functional dimension well, and (b) what are the biases in the ability estimate and the associated standard error when estimating the functional dimension? To investigate the second issue, the nonlinear projection is used as an evaluative...
A Binary Model for the UV-upturn of Elliptical Galaxies
Han, Z; Lynas-Gray, A E; Schawinski, K; Podsiadlowski, Ph.
2007-01-01
The discovery of an excess of light in the far-ultraviolet (UV) in 1969 in elliptical galaxies was a major surprise. While it is now clear that this UV excess (UV-upturn) is probably caused by an old population of helium-burning stars. Han et al (2002, 2003) proposed a binary model for the formation of hot subdwarfs (helium burning stars) and the model can reproduce the observations in our Galaxy. By applying the binary model to the study of evolutionary population synthesis, we have obtained an {\\it a priori} model for the UV-upturn of elliptical galaxies. The model shows that the UV-upturn is most likely resulted from binary interactions and it is universal (not very much metallicity-dependant) in ellipticals. This has major implications for understanding the evolution of the UV-upturn and elliptical galaxies in general; contrary to previous postulates, it implies that the UV-upturn is not a sign of age, but could be a potentially powerful indicator for a recent minor burst of star-forming activity.
Radar Shape Modeling of Binary Near-Earth Asteroid 2000 CO101
Jimenez, Nicholas; Howell, E. S.; Nolan, M. C.; Taylor, P. A.; Benner, L. A. M.; Brozovic, M.; Giorgini, J. D.; Vervack, R. J.; Fernandez, Y. R.; Mueller, M.; Margot, J.; Shepard, M. K.
2010-10-01
We observed the near-Earth binary system 2000 CO101 in 2009 September using the Goldstone and Arecibo radar systems and inverted these images to create shape models of the primary. Asteroid 2000 CO101 was discovered to be a binary system from Arecibo images taken on 2009 September 26 (Taylor et al. 2009). Analyzing the images, we were able to determine approximate values for the radius of the primary (310 m) and the radius of the secondary (22 m). The maximum observed range separation was approximately 610 m. The images show it to appear spherical. Shape modeling of the primary of this system will constrain the asteroid's size, spin rate, and pole orientation. Because other NEA binary systems have exhibited shapes similar to that of 1999 KW4 (Ostro et al. 2006, Scheeres et al. 2006), we initially adopted this shape for 2000 CO101 and have allowed only the linear scales along the three principal axes to adjust to the radar data. This enables us to constrain the volume. With some constraints on the orbit of the satellite we will place limits on the density of the primary. The near-infrared spectrum of 2000 CO101 was measured on 2009 September 21 and 2010 March 13. The 0.8-2.5 micron spectrum was measured on both dates, and shows a featureless, red-sloped spectrum. On September 21 we also measured the thermal emission between 2-4 microns to determine the albedo and thermal properties. Both standard thermal models and thermophysical models have been applied to these data. The albedo we derive from the thermal modeling must also be consistent with the radar size. Characterization of this unusual NEA binary system will be presented.
A simple model of the reflection effect for the interacting binaries and extrasolar planets
Budaj, Jan
2010-01-01
Extrasolar planets are a natural extension of the interacting binaries towards the companions with very small masses and similar tools might be used to study them. Unfortunately, the generally accepted treatment of the reflection effect in interacting binaries cannot be applied to very cold objects irradiated by hot objects or to extrasolar planets. The aim of this paper is to develop a simple model of the reflection effect which could be easily incorporated into the present codes for modeling interacting binaries so that they can be used to study above mentioned objects. Our simple model of the reflection effect takes into account the reflection (scattering), heating and heat redistribution over the surface of the irradiated object. The shape of the objects is described by the Roche potential and limb and gravity darkening can be taken into account. The orbital revolution and rotation of the planet with proper Doppler shifts for the scattered and thermal radiation are also accounted for. The new model was in...
STELLAR LOCI II. A MODEL-FREE ESTIMATE OF THE BINARY FRACTION FOR FIELD FGK STARS
Energy Technology Data Exchange (ETDEWEB)
Yuan, Haibo; Liu, Xiaowei [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Xiang, Maosheng; Huang, Yang; Chen, Bingqiu [Department of Astronomy, Peking University, Beijing 100871 (China); Wu, Yue [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Hou, Yonghui; Zhang, Yong, E-mail: yuanhb4861@pku.edu.cn, E-mail: x.liu@pku.edu.cn [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)
2015-02-01
We propose a stellar locus outlier (SLOT) method to determine the binary fraction of main-sequence stars statistically. The method is sensitive to neither the period nor mass ratio distributions of binaries and is able to provide model-free estimates of binary fraction for large numbers of stars of different populations in large survey volumes. We have applied the SLOT method to two samples of stars from the Sloan Digital Sky Survey (SDSS) Stripe 82, constructed by combining the recalibrated SDSS photometric data with the spectroscopic information from the SDSS and LAMOST surveys. For the SDSS spectroscopic sample, we find an average binary fraction for field FGK stars of 41% ± 2%. The fractions decrease toward late spectral types and are 44% ± 5%, 43% ± 3%, 35% ± 5%, and 28% ± 6% for stars with g – i colors in the range 0.3-0.6 mag, 0.6-0.9 mag, 0.9-1.2 mag, and 1.2-1.6 mag, respectively. A modest metallicity dependence is also found. The fraction decreases with increasing metallicity. For stars with [Fe/H] between –0.5 and 0.0 dex, –1.0 and –0.5 dex, –1.5 and –1.0 dex, and –2.0 and –1.5 dex, the inferred binary fractions are 37% ± 3%, 39% ± 3%, 50% ± 9%, and 53% ± 20%, respectively. We have further divided the sample into stars from the thin disk, the thick disk, the transition zone between them, and the halo. The results suggest that the Galactic thin and thick disks have comparable binary fractions, whereas the Galactic halo contains a significantly larger fraction of binaries. Applying the method to the LAMOST spectroscopic sample yields consistent results. Finally, other potential applications and future work with the method are discussed.
:,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Boyle, M; Brügmann, B; Buchman, L T; Campanelli, M; Chu, T; Etienne, Z B; Hannam, M; Healy, J; Hinder, I; Kidder, L E; Laguna, P; Liu, Y T; London, L; Lousto, C O; Lovelace, G; MacDonald, I; Marronetti, P; Mösta, P; Müller, D; Mundim, B C; Nakano, H; Paschalidis, V; Pekowsky, L; Pollney, D; Pfeiffer, H P; Ponce, M; Pürrer, M; Reifenberger, G; Reisswig, C; Santamaría, L; Scheel, M A; Shapiro, S L; Shoemaker, D; Sopuerta, C F; Sperhake, U; Szilágyi, B; Taylor, N W; Tichy, W; Tsatsin, P; Zlochower, Y
2014-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...
Safety Cultural Competency Modeling in Nuclear Organizations
Energy Technology Data Exchange (ETDEWEB)
Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.
Empirical comparison study of approximate methods for structure selection in binary graphical models
Viallon, Vivian; Banerjee, Onureena; Jougla, Eric; Rey, Grégoire; Coste, Joël
2014-01-01
Looking for associations among multiple variables is a topical issue in statistics due to the increasing amount of data encountered in biology, medicine, and many other domains involving statistical applications. Graphical models have recently gained popularity for this purpose in the statistical literature. In the binary case, however, exact inference is generally very slow or even intractable because of the form of the so-called log-partition function. In this paper, we review various appro...
Modeling Nuclear Properties with Support Vector Machines
Li, H; Mavrommatis, E; Athanassopoulos, S; Gernoth, K A; Li, Haochen
2005-01-01
We have made initial studies of the potential of support vector machines (SVM) for providing statistical models of nuclear systematics with demonstrable predictive power. Using SVM regression and classification procedures, we have created global models of atomic masses, beta-decay halflives, and ground-state spins and parities. These models exhibit performance in both data-fitting and prediction that is comparable to that of the best global models from nuclear phenomenology and microscopic theory, as well as the best statistical models based on multilayer feedforward neural networks.
Modeling news dissemination on nuclear issues
Energy Technology Data Exchange (ETDEWEB)
Reis Junior, Jose S.B.; Barroso, Antonio C.O.; Menezes, Mario O., E-mail: jsbrj@ime.usp.b, E-mail: barroso@ipen.b, E-mail: mario@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of large scale disasters was studied. A modified compartmented model was developed in a previous paper presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear, non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of the world were selected. A more robust news repository was used, and improved search techniques were developed to ensure that the scripts would not count false positive news. The same model was used but with improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our model. Individual parameters and some specific combination of them allow some interesting perceptions on how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and policy makers are also much more sensitive to some issues than to others. The model, through its epidemiological parameters, shows in quantitative manner how 'nervous' the media content generators are with respect to nuclear installations and how resilient this negative feelings about nuclear is. (author)
Modeling news dissemination on nuclear issues
International Nuclear Information System (INIS)
Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of large scale disasters was studied. A modified compartmented model was developed in a previous paper presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear, non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of the world were selected. A more robust news repository was used, and improved search techniques were developed to ensure that the scripts would not count false positive news. The same model was used but with improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our model. Individual parameters and some specific combination of them allow some interesting perceptions on how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and policy makers are also much more sensitive to some issues than to others. The model, through its epidemiological parameters, shows in quantitative manner how 'nervous' the media content generators are with respect to nuclear installations and how resilient this negative feelings about nuclear is. (author)
Effective-one-body waveforms for binary neutron stars using surrogate models
Lackey, Benjamin D; Galley, Chad R; Meidam, Jeroen; Broeck, Chris Van Den
2016-01-01
Gravitational-wave observations of binary neutron star systems can provide information about the masses, spins, and structure of neutron stars. However, this requires accurate and computationally efficient waveform models that take <1s to evaluate for use in Bayesian parameter estimation codes that perform 10^7 - 10^8 waveform evaluations. We present a surrogate model of a nonspinning effective-one-body waveform model with l = 2, 3, and 4 tidal multipole moments that reproduces waveforms of binary neutron star numerical simulations up to merger. The surrogate is built from compact sets of effective-one-body waveform amplitude and phase data that each form a reduced basis. We find that 12 amplitude and 7 phase basis elements are sufficient to reconstruct any binary neutron star waveform with a starting frequency of 10Hz. The surrogate has maximum errors of 3.8% in amplitude (0.04% excluding the last 100M before merger) and 0.043 radians in phase. The version implemented in the LIGO Algorithm Library takes ~...
A 3D dynamical model of the colliding winds in binary systems
Parkin, E R
2008-01-01
We present a 3D dynamical model of the orbital induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high resolution images of the so-called ``pinwheel nebulae''. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and Gamma-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar m...
World Integrated Nuclear Evaluation System: Model documentation
International Nuclear Information System (INIS)
The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World
Modelling of binary alloy solidification in the MEPHISTO experiment
Leonardi, Eddie; de Vahl Davis, Graham; Timchenko, Victoria; Chen, Peter; Abbaschian, Reza
2004-05-01
A modified enthalpy method was used to numerically model experiments on solidification of a bismuth-tin alloy which were performed during the 1997 flight of the MEPHISTO-4 experiment on the US Space Shuttle Columbia. This modified enthalpy method was incorporated into an in-house code SOLCON and a commercial CFD code CFX; Soret effect was taken into account by including an additional thermo-diffusion term into the solute transport equation and the effects of thermal and solutal convection in the microgravity environment and of concentration-dependent melting temperature on the phase change processes were also included. In this paper an overview of the results obtained as part of MEPHISTO project is presented. The numerical solutions are compared with actual microprobe results obtained from the MEPHISTO experiment. To cite this article: E. Leonardi et al., C. R. Mecanique 332 (2004).
Structural models for amorphous transition metal binary alloys
International Nuclear Information System (INIS)
A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe0.75P0.25, Ni0.75P0.25, Co0.75P0.25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys
Global nuclear material flow/control model
International Nuclear Information System (INIS)
This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies
International Nuclear Model. Volume 3. Program description
International Nuclear Information System (INIS)
This is Volume 3 of three volumes of documentation of the International Nuclear Model (INM). This volume presents the Program Description of the International Nuclear Model, which was developed for the Nuclear and Alternate Fuels Division (NAFD), Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The International Nuclear Model (INM) is a comprehensive model of the commercial nuclear power industry. It simulates economic decisions for reactor deployment and fuel management decision based on an input set of technical economic and scenario parameters. The technical parameters include reactor operating characteristics, fuel cycle timing and mass loss factors, and enrichment tails assays. Economic parameters include fuel cycle costs, financial data, and tax alternatives. INM has a broad range of scenario options covering, for example, process constraints, interregional activities, reprocessing, and fuel management selection. INM reports reactor deployment schedules, electricity generation, and fuel cycle requirements and costs. It also has specialized reports for extended burnup and permanent disposal. Companion volumes to Volume 3 are: Volume 1 - Model Overview, and Volume 2 - Data Base Relationships
Palate, Matthieu
2011-01-01
Context: Some secondary effects are known to introduce variations in spectra of massive binaries. These phenomena (such as the Struve--Sahade effect, difficulties to determine properly the spectral type,...) have been reported and documented in the literature. Aims: We simulate the spectra of circular massive binaries at different phases of the orbital cycle and accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We use the Roche potential to compute the stellar surface, von Zeipel theorem and reflection effects to compute the surface temperature. We then interpolate in a grid of NLTE plan-parallel atmosphere model spectra to obtain the local spectrum at each surface point. We finally sum all the contributions (accounting for the Doppler shift, limb-darkening, ...) to obtain the total spectrum. The computation is done for different orbital phases and for different sets of physical and orbital parameters. Results: Our first mode...
Phenomenological Modeling of the Light Curves of Algol-Type Eclipsing Binary Stars
Andronov, Ivan L
2012-01-01
We introduce a special class of functions for mathematical modeling of periodic signals of special shape with irregularly spaced arguments. This method was developed for determination of phenomenological characteristics of the light curves, which are necessary for registration in the "General Catalogue of Variable Stars" and other databases. For eclipsing binary stars with smooth light curves - of types EB and EW - it is recommended a trigonometric polynomial of optimal degree in a complete or symmetric form. For eclipsing binary systems with relatively narrow minima (EA-type), statistically optimal is an approximation of the light curves in a class of non-polynomial spline functions. It is used a combination of the second-order trigonometric polynomial (TP2, what describes effects of "reflection", "ellipsoidality" and "spotness") and localized contibutions of minima (parametrized in depth and profile separately for primary and secondary minima). Effectivity of the proposed method increases with decreasing ec...
Black hole mass and binary model for BL Lac object OJ 287
Liu, F K; Wu, Xue-Bing
2002-01-01
Recent intensive observations of the BL Lac object OJ 287 raise a lot of questions on the models of binary black holes, processing jets, rotating helical jets and thermal instability of slim accretion disks. After carefully analyzing their radio flux and polarization data, Valtaoja et al. (\\cite{valtaoja00}) propose a new binary model. Based on the black hole mass of $4 \\times 10^8 {\\rm M_\\odot}$ estimated with the tight correlations of the black hole masses and the bulge luminosity or central velocity dispersion of host galaxies, we computed the physical parameters of the new binary scenario. The impact of the secondary on the accretion disk around the primary black hole causes strong shocks propagating inwards and outwards, whose arrival at the jet roots is identified with the rapid increase of optical polarization and the large change of polarization angle at about 0.30 yr after the first main optical flare. An increase of optical polarization, a large rotation of positional angle and a small synchrotron f...
Statistical models for nuclear decay. From evaporation to vaporization
International Nuclear Information System (INIS)
The purpose of this book is to present and discuss statistical models which are used to describe the decay of excited atomic nuclei. The subject dates from about 1937 when, building on the Bohr concept of the compound nucleus as a system in temporal equilibrium, Weisskopf first proposed a quantitatively successful statistical model to describe the 'evaporation' of neutrons from excited compound nuclei. The book is intended for use by senior undergraduates and post graduates as well as confirmed experimentalists seeking global perspective concerning the history and current status of this research domain. The book is divided into eight chapters. The first two chapters are concerned with introductions to the statistical mechanics and nuclear physics which are necessary for understanding the development of statistical models of nuclear decay. The second part of the book (chapters 3 and 4) describes the statistical models which were created to describe decay processes at low excitation energy. In chapter 3, the topics include Weisskopf theory for evaporation of neutrons, the Hauser-Feshbach evaporation theory, fusion, the Griffin, Blann-Cline and Harp-Miller-Berne approaches to pre-equilibrium particle emission, and finally, early statistical theories of low energy fission. Chapter 4, which begins with an introduction to Monte Carlo simulations, is mainly concerned with applications of the Hauser-Feshbach theory to single and multistep evaporation. The third part of the text is devoted to the description of decay processes which are 'modern' insofar as the experimental work has been mainly carried out over the last 20 years. These applications include the so-called sequential binary decay mechanism (chapter 5). Multifragmentation is discussed in chapters 6 and 7. Finally, in chapter 8 an attempt was made to draw the threads together in order to build a coherent picture of applications of statistical mechanics to nuclear decay. A few new areas of research are indicated
Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.
Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao
2016-01-15
When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach and has several attractive features compared with the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, because the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration.
Ramirez-Ruiz, Enrico; Roberts, Luke F; Lee, William H; Saladino-Rosas, Martha I
2014-01-01
Investigations of element abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-material in CEMP stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP stars.
Directory of Open Access Journals (Sweden)
Hiekata Takashi
2006-01-01
Full Text Available A new two-stage blind source separation (BSS method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO-model-based independent component analysis (ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is illustrated.
Non-linear mixed models in the analysis of mediated longitudinal data with binary outcomes
Directory of Open Access Journals (Sweden)
Blood Emily A
2012-01-01
Full Text Available Abstract Background Structural equation models (SEMs provide a general framework for analyzing mediated longitudinal data. However when interest is in the total effect (i.e. direct plus indirect of a predictor on the binary outcome, alternative statistical techniques such as non-linear mixed models (NLMM may be preferable, particularly if specific causal pathways are not hypothesized or specialized SEM software is not readily available. The purpose of this paper is to evaluate the performance of the NLMM in a setting where the SEM is presumed optimal. Methods We performed a simulation study to assess the performance of NLMMs relative to SEMs with respect to bias, coverage probability, and power in the analysis of mediated binary longitudinal outcomes. Both logistic and probit models were evaluated. Models were also applied to data from a longitudinal study assessing the impact of alcohol consumption on HIV disease progression. Results For the logistic model, the NLMM adequately estimated the total effect of a repeated predictor on the repeated binary outcome and were similar to the SEM across a variety of scenarios evaluating sample size, effect size, and distributions of direct vs. indirect effects. For the probit model, the NLMM adequately estimated the total effect of the repeated predictor, however, the probit SEM overestimated effects. Conclusions Both logistic and probit NLMMs performed well relative to corresponding SEMs with respect to bias, coverage probability and power. In addition, in the probit setting, the NLMM may produce better estimates of the total effect than the probit SEM, which appeared to overestimate effects.
Modeling diffusion coefficients in binary mixtures of polar and non-polar compounds
DEFF Research Database (Denmark)
Medvedev, Oleg; Shapiro, Alexander
2005-01-01
The theory of transport coefficients in liquids, developed previously, is tested on a description of the diffusion coefficients in binary polar/non-polar mixtures, by applying advanced thermodynamic models. Comparison to a large set of experimental data shows good performance of the model. Only...... four temperature-independent parameters are required in order to describe the behavior of diffusion coefficients at different temperatures. The physical meaning of the parameters is analyzed. This makes it possible to reduce further their number to just two parameters for described mixtures with polar...
Molecular dynamics and binary collision modeling of the primary damage state of collision cascades
DEFF Research Database (Denmark)
Heinisch, H.L.; Singh, B.N.
1992-01-01
Quantitative information on defect production in cascades in copper obtained from recent molecular dynamics simulations is compared to defect production information determined earlier with a model based on the binary collision approximation (BCA). The total numbers of residual defects......, the fractions of them that are mobile, and the sizes of immobile clusters compare favorably, especially when the termination conditions of the two simulations are taken into account. A strategy is laid out for integrating the details of the cascade quenching phase determined by MD into a BCA-based model...
Abate, C; Stancliffe, R J; Izzard, R G; Karakas, A I; Beers, T C; Lee, Y S
2015-01-01
The stellar population in the Galactic halo is characterised by a large fraction of CEMP stars. Most CEMP stars are enriched in $s$-elements (CEMP-$s$ stars), and some of these are also enriched in $r$-elements (CEMP-$s/r$ stars). One formation scenario proposed for CEMP stars invokes wind mass transfer in the past from a TP-AGB primary star to a less massive companion star which is presently observed. We generate low-metallicity populations of binary stars to reproduce the observed CEMP-star fraction. In addition, we aim to constrain our wind mass-transfer model and investigate under which conditions our synthetic populations reproduce observed abundance distributions. We compare the CEMP fractions and the abundance distributions determined from our synthetic populations with observations. Several physical parameters of the binary stellar population of the halo are uncertain, e.g. the initial mass function, the mass-ratio and orbital-period distributions, and the binary fraction. We vary the assumptions in o...
Period studies and photometric models for two EB-type binaries EU Hya and AW Vul
Yang, Yuan-Gui; Li, Qun; Li, Hua-Li; Dai, Hai-Feng
2016-02-01
New photometry for two Algol-type binaries, EU Hya (P = 0.7782 d) and AW Vul (P = 0.8065 d), was carried out using the 60-cm telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. With the updated Wilson-Devinney code, photometric elements were derived from the multi-color light curves. The modeled results indicate that the two systems are near-contact binaries, whose secondary components fill their Roche lobes. The fill-out factors of the primaries are fp = 81.2 (±0.2)% for EU Hya and fp = 82.4 (±0.3)% for AW Vul. Period analysis implies that there exists a downward parabola with a light-time orbit from the (O - C) curve. This kind of periodic oscillation may be attributed to the light-time orbit effect of a third companion. The long-term period decrease may be caused by mass and angular momentum loss. When the orbital period decreases, the fill-out factor of fp will increase. Our results indicate that the primaries will also eventually fill their Roche lobes. EU Hya and AW Vul may possibly evolve from semi-detached binaries into contact ones.
Unifying binary fluid diffuse-interface models in the sharp-interface limit
Sibley, David; Nold, Andreas; Kalliadasis, Serafim
2013-11-01
Flows involving free boundaries occur widely in both nature and technological applications, existing at liquid-gas interfaces (e.g. between liquid water and water vapour) or between different immiscible fluids (e.g. oil and water, and termed a binary fluid). To understand the asymptotic behaviour near a contact line, a liquid-gas diffuse-interface model has been investigated recently. In contrast, here we investigate the behaviour between two ostensibly immiscible fluids, a binary fluid, using related models where the interface has a thin but finite thickness. Quantities such as the mass fraction of the two fluid components are modelled as varying smoothly but rapidly in the interfacial region. There has been a wide variety of models used for this situation, based on Cahn-Hilliard or Allen-Cahn theories coupled to hydrodynamic equations, and we consider the effect of these differences using matched asymptotic methods in the important sharp-interface limit, where the interface thickness goes to zero. Our aim is to understand which models represent better the classical hydrodynamic model and associated free-surface boundary conditions.
Reconstruction of binary geological images using analytical edge and object models
Abdollahifard, Mohammad J.; Ahmadi, Sadegh
2016-04-01
Reconstruction of fields using partial measurements is of vital importance in different applications in geosciences. Solving such an ill-posed problem requires a well-chosen model. In recent years, training images (TI) are widely employed as strong prior models for solving these problems. However, in the absence of enough evidence it is difficult to find an adequate TI which is capable of describing the field behavior properly. In this paper a very simple and general model is introduced which is applicable to a fairly wide range of binary images without any modifications. The model is motivated by the fact that nearly all binary images are composed of simple linear edges in micro-scale. The analytic essence of this model allows us to formulate the template matching problem as a convex optimization problem having efficient and fast solutions. The model has the potential to incorporate the qualitative and quantitative information provided by geologists. The image reconstruction problem is also formulated as an optimization problem and solved using an iterative greedy approach. The proposed method is capable of recovering the image unknown values with accuracies about 90% given samples representing as few as 2% of the original image.
Dependence of X-Ray Burst Models on Nuclear Reaction Rates
Cyburt, R. H.; Amthor, A. M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K.
2016-10-01
X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ), (α, γ), and (α, p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.
Energy Technology Data Exchange (ETDEWEB)
Nusbaumer, O. P. M
2007-07-01
This study is concerned with the quantification of Probabilistic Risk Assessment (PRA) using linked Fault Tree (FT) models. Probabilistic Risk assessment (PRA) of Nuclear Power Plants (NPPs) complements traditional deterministic analysis; it is widely recognized as a comprehensive and structured approach to identify accident scenarios and to derive numerical estimates of the associated risk levels. PRA models as found in the nuclear industry have evolved rapidly. Increasingly, they have been broadly applied to support numerous applications on various operational and regulatory matters. Regulatory bodies in many countries require that a PRA be performed for licensing purposes. PRA has reached the point where it can considerably influence the design and operation of nuclear power plants. However, most of the tools available for quantifying large PRA models are unable to produce analytically correct results. The algorithms of such quantifiers are designed to neglect sequences when their likelihood decreases below a predefined cutoff limit. In addition, the rare event approximation (e.g. Moivre's equation) is typically implemented for the first order, ignoring the success paths and the possibility that two or more events can occur simultaneously. This is only justified in assessments where the probabilities of the basic events are low. When the events in question are failures, the first order rare event approximation is always conservative, resulting in wrong interpretation of risk importance measures. Advanced NPP PRA models typically include human errors, common cause failure groups, seismic and phenomenological basic events, where the failure probabilities may approach unity, leading to questionable results. It is accepted that current quantification tools have reached their limits, and that new quantification techniques should be investigated. A novel approach using the mathematical concept of Binary Decision Diagram (BDD) is proposed to overcome these
Modelling spatiotemporal olfactory data in two steps: from binary to Hodgkin-Huxley neurones.
Quenet, Brigitte; Dubois, Rémi; Sirapian, Sevan; Dreyfus, Gérard; Horn, David
2002-01-01
Network models of synchronously updated McCulloch-Pitts neurones exhibit complex spatiotemporal patterns that are similar to activities of biological neurones in phase with a periodic local field potential, such as those observed experimentally by Wehr and Laurent (1996, Nature 384, 162-166) in the locust olfactory pathway. Modelling biological neural nets with networks of simple formal units makes the dynamics of the model analytically tractable. It is thus possible to determine the constraints that must be satisfied by its connection matrix in order to make its neurones exhibit a given sequence of activity (see, for instance, Quenet et al., 2001, Neurocomputing 38-40, 831-836). In the present paper, we address the following question: how can one construct a formal network of Hodgkin-Huxley (HH) type neurones that reproduces experimentally observed neuronal codes? A two-step strategy is suggested in the present paper: first, a simple network of binary units is designed, whose activity reproduces the binary experimental codes; second, this model is used as a guide to design a network of more realistic formal HH neurones. We show that such a strategy is indeed fruitful: it allowed us to design a model that reproduces the Wehr-Laurent olfactory codes, and to investigate the robustness of these codes to synaptic noise.
Modelling of binary alloy (Al–Mg) anode evaporation in arc welding
International Nuclear Information System (INIS)
A simple analytical model of binary alloy anode evaporation in gas–tungsten arc and gas–metal arc welding is proposed. The model comprises the model of evaporation in convective and diffusive regimes, model of anode processes and allows one to calculate basic physical properties of multicomponent arc plasma near the anode surface as functions of the anode surface temperature, anode chemical composition, electron temperature and electric current density at the anode surface. Evaporation of binary Al–Mg alloys with different magnesium mass fraction into argon plasma is considered on the basis of the proposed model. The dependences of the alloy boiling temperature on the magnesium mass fraction and electron temperature are presented. Several physical parameters, which are important from the technological point of view (magnesium mass flux, heat loss due to evaporation, anode potential drop, anode heat flux), are calculated for a wide range of anode surface temperature and different values of the magnesium mass fraction. In addition, the influence of heat loss due to evaporation on the total heat flux coming to the anode surface is demonstrated. (paper)
Modeling X-ray binary evolution in normal galaxies: Insights from SINGS
Tzanavaris, P; Tremmel, M; Jenkins, L; Zezas, A; Lehmer, B D; Hornschemeier, A; Kalogera, V; Ptak, A; Basu-Zych, A R
2013-01-01
We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey (SINGS). For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or XRB modeling requires calibration on larger observational samples. Given these limitations, we find that best models are consistent with a product of common envelope ejection...
Calculation of the viscosity of binary liquids at various temperatures using Jouyban-Acree model.
Jouyban, Abolghasem; Khoubnasabjafari, Maryam; Vaez-Gharamaleki, Zahra; Fekari, Zohreh; Acree, William Eugene
2005-05-01
Applicability of the Jouyban-Acree model for calculating absolute viscosity of binary liquid mixtures with respect to temperature and mixture composition is proposed. The correlation ability of the model is evaluated by employing viscosity data of 143 various aqueous and non-aqueous liquid mixtures at various temperatures collected from the literature. The results show that the model is able to correlate the data with an overall percentage deviation (PD) of 1.9+/-2.5%. In order to test the prediction capability of the model, three experimental viscosities from the highest and lowest temperatures along with the viscosities of neat liquids at all temperatures have been employed to train the model, then the viscosity values at other mixture compositions and temperatures were predicted and the overall PD obtained is 2.6+/-4.0%. PMID:15863923
Modeling the dynamics of tidally-interacting binary neutron stars up to merger
Bernuzzi, Sebastiano; Dietrich, Tim; Damour, Thibault
2014-01-01
We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model dynamics (described by the gauge invariant relation between binding energy and orbital angular momentum), and the gravitational wave phasing, with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement essentially within the uncertainty of the numerical data for all the configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate a...
Energy Technology Data Exchange (ETDEWEB)
Huber, H.D.; Walter, R.A.; Bloomster, C.H.
1976-03-01
A computer model called GEOCOST has been developed to simulate the production of electricity from geothermal resources and calculate the potential costs of geothermal power. GEOCOST combines resource characteristics, power recovery technology, tax rates, and financial factors into one systematic model and provides the flexibility to individually or collectively evaluate their impacts on the cost of geothermal power. Both the geothermal reservoir and power plant are simulated to model the complete energy production system. In the version of GEOCOST in this report, geothermal fluid is supplied from wells distributed throughout a hydrothermal reservoir through insulated pipelines to a binary power plant. The power plant is simulated using a binary fluid cycle in which the geothermal fluid is passed through a series of heat exchangers. The thermodynamic state points in basic subcritical and supercritical Rankine cycles are calculated for a variety of working fluids. Working fluids which are now in the model include isobutane, n-butane, R-11, R-12, R-22, R-113, R-114, and ammonia. Thermodynamic properties of the working fluids at the state points are calculated using empirical equations of state. The Starling equation of state is used for hydrocarbons and the Martin-Hou equation of state is used for fluorocarbons and ammonia. Physical properties of working fluids at the state points are calculated.
The role of metallicity in high mass X-ray binaries in galaxy formation models
Artale, M C; Tissera, P B
2014-01-01
Context: Recent theoretical works claim that high-mass X-ray binaries (HMXBs) could have been important sources of energy feedback into the interstellar and intergalactic media, playing a major role in the reionization epoch. A metallicity dependence of the production rate or luminosity of the sources is a key ingredient generally assumed but not yet probed. Aims: Our goal is to explore the relation between the X-ray luminosity (Lx) and star formation rate of galaxies as a possible tracer of a metallicity dependence of the production rates and/or X-ray luminosities of HMXBs. Methods: We developed a model to estimate the Lx of star forming galaxies based on stellar evolution models which include metallicity dependences. We applied our X-ray binary models to galaxies selected from hydrodynamical cosmological simulations which include chemical evolution of the stellar populations in a self-consistent way. Results: Our models successfully reproduce the dispersion in the observed relations as an outcome of the com...
Dynamical model of binary asteroid systems through patched three-body problems
Ferrari, Fabio; Lavagna, Michèle; Howell, Kathleen C.
2016-08-01
The paper presents a strategy for trajectory design in the proximity of a binary asteroid pair. A novel patched approach has been used to design trajectories in the binary system, which is modeled by means of two different three-body systems. The model introduces some degrees of freedom with respect to a classical two-body approach and it is intended to model to higher accuracy the peculiar dynamical properties of such irregular and low gravity field bodies, while keeping the advantages of having a full analytical formulation and low computational cost required. The neighborhood of the asteroid couple is split into two regions of influence where two different three-body problems describe the dynamics of the spacecraft. These regions have been identified by introducing the concept of surface of equivalence (SOE), a three-dimensional surface that serves as boundary between the regions of influence of each dynamical model. A case of study is presented, in terms of potential scenario that may benefit of such an approach in solving its mission analysis. Cost-effective solutions to land a vehicle on the surface of a low gravity body are selected by generating Poincaré maps on the SOE, seeking intersections between stable and unstable manifolds of the two patched three-body systems.
Symmetrization of excess Gibbs free energy: A simple model for binary liquid mixtures
Energy Technology Data Exchange (ETDEWEB)
Castellanos-Suarez, Aly J., E-mail: acastell@ivic.gob.v [Centro de Estudios Interdisciplinarios de la Fisica (CEIF), Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 21827, Caracas 1020A (Venezuela, Bolivarian Republic of); Garcia-Sucre, Maximo, E-mail: mgs@ivic.gob.v [Centro de Estudios Interdisciplinarios de la Fisica (CEIF), Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 21827, Caracas 1020A (Venezuela, Bolivarian Republic of)
2011-03-15
A symmetric expression for the excess Gibbs free energy of liquid binary mixtures is obtained using an appropriate definition for the effective contact fraction. We have identified a mechanism of local segregation as the main cause of the contact fraction variation with the concentration. Starting from this mechanism we develop a simple model for describing binary liquid mixtures. In this model two parameters appear: one adjustable, and the other parameter depending on the first one. Following this procedure we reproduce the experimental data of (liquid + vapor) equilibrium with a degree of accuracy comparable to well-known more elaborated models. The way in which we take into account the effective contacts between molecules allows identifying the compound which may be considered to induce one of the following processes: segregation, anti-segregation and dispersion of the components in the liquid mixture. Finally, the simplicity of the model allows one to obtain only one resulting interaction energy parameter, which makes easier the physical interpretation of the results.
The potential energy landscape in the Lennard-Jones binary mixture model
International Nuclear Information System (INIS)
The potential energy landscape in the Kob-Andersen Lennard-Jones binary mixture model has been studied carefully from the liquid down to the supercooled regime, from T = 2 down to 0.46. One thousand independent configurations along the time evolution locus have been examined at each temperature investigated. From the starting configuration, we searched for the nearest saddle (or quasi-saddle) and minimum of the potential energy. The vibrational densities of states for the starting and the two derived configurations have been evaluated. Besides the number of negative eigenvalues of the saddles other quantities show some signature of the approach of the dynamical arrest temperature
Goal-oriented error estimation for Cahn-Hilliard models of binary phase transition
van der Zee, Kristoffer G.
2010-10-27
A posteriori estimates of errors in quantities of interest are developed for the nonlinear system of evolution equations embodied in the Cahn-Hilliard model of binary phase transition. These involve the analysis of wellposedness of dual backward-in-time problems and the calculation of residuals. Mixed finite element approximations are developed and used to deliver numerical solutions of representative problems in one- and two-dimensional domains. Estimated errors are shown to be quite accurate in these numerical examples. © 2010 Wiley Periodicals, Inc.
Testing Lorentz violation with binary pulsars: constraints on standard model extension
Institute of Scientific and Technical Information of China (English)
Yi Xie
2013-01-01
Under the standard model extension (SME) framework,Lorentz invariance is tested in five binary pulsars:PSR J0737-3039,PSR B 1534+ 12,PSR J 1756-2251,PSR B1913+16 and PSR B2127+11C.By analyzing the advance of periastron,we obtain the constraints on a dimensionless combination of SME parameters that is sensitive to timing observations.The results imply no evidence for the break of Lorentz invariance at the 10-10 level,one order of magnitude larger than the previous estimation.
Institute of Scientific and Technical Information of China (English)
Sun Qiang; Zhang Yutuo; Cui Haixia; Wang Chengzhi
2008-01-01
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in Ai-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.
Connexions for the nuclear geometrical collective model
Rosensteel, G.; Sparks, N.
2015-11-01
The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.
Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation
Ren, Feng; Song, Baowei; Sukop, Michael C.; Hu, Haibao
2016-08-01
The primary and key task of binary fluid flow modeling is to track the interface with good accuracy, which is usually challenging due to the sharp-interface limit and numerical dispersion. This article concentrates on further development of the conservative Allen-Cahn equation (ACE) [Geier et al., Phys. Rev. E 91, 063309 (2015), 10.1103/PhysRevE.91.063309] under the framework of the lattice Boltzmann method (LBM), with incorporation of the incompressible hydrodynamic equations [Liang et al., Phys. Rev. E 89, 053320 (2014), 10.1103/PhysRevE.89.053320]. Utilizing a modified equilibrium distribution function and an additional source term, this model is capable of correctly recovering the conservative ACE through the Chapman-Enskog analysis. We also simulate four phase-tracking benchmark cases, including one three-dimensional case; all show good accuracy as well as low numerical dispersion. By coupling the incompressible hydrodynamic equations, we also simulate layered Poiseuille flow and the Rayleigh-Taylor instability, illustrating satisfying performance in dealing with complex flow problems, e.g., high viscosity ratio, high density ratio, and high Reynolds number situations. The present work provides a reliable and efficient solution for binary flow modeling.
Clerc, J. P.; Giraud, G.; Laugier, J. M.; Luck, J. M.
1990-05-01
We review theoretical and experimental studies of the AC dielectric response of inhomogeneous materials, modelled as bond percolation networks, with a binary (conductor-dielectric) distribution of bond conductances. We first summarize the key results of percolation theory, concerning mostly geometrical and static (DC) transport properties, with emphasis on the scaling properties of the critical region around the percolation threshold. The frequency-dependent (AC) response of a general binary model is then studied by means of various approaches, including the effective-medium approximation, a scaling theory of the critical region, numerical computations using the transfer-matrix algorithm, and several exactly solvable deterministic fractal models. Transient regimes, related to singularities in the complex-frequency plane, are also investigated. Theoretical predictions are made more explicit in two specific cases, namely R-C and RL-C networks, and compared with a broad variety of experimental results, concerning, for example, granular composites, thin films, powders, microemulsions, cermets, porous ceramics and the viscoelastic properties of gels.
Directory of Open Access Journals (Sweden)
Kupek Emil
2006-03-01
Full Text Available Abstract Background Structural equation modelling (SEM has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. Methods A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR into Q-metric by (OR-1/(OR+1 to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100 random sample of the data generated and on a real data set. Results SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. Conclusion The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.
3D Modeling of Forbidden Line Emission in the Binary Wind Interaction Region of Eta Carinae
Madura, Thomas; Gull, T. R.; Owocki, S.; Okazaki, A. T.; Russell, C. M. P.
2010-01-01
We present recent work using three-dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations to model the high ([Fe III], [Ar III], [Ne III] and [S III]) and low ([Fe II], [Ni II]) ionization forbidden emission lines observed in Eta Carinae using the HST/STIS. These structures are interpreted as the time-averaged, outer extensions of the primary wind and the wind-wind interaction region directly excited by the FUV of the hot companion star of this massive binary system. We discuss how analyzing the results of the 3D SPH simulations and synthetic slit spectra and comparing them to the spectra obtained with the HST/STIS helps us determine the absolute orientation of the binary orbit and helps remove the degeneracy inherent to models based solely on the observed RXTE X-ray light curve. A key point of this work is that spatially resolved observations like those with HST/STIS and comparison to 3D models are necessary to determine the alignment or misalignment of the orbital angular momentum axis with the Homunculus, or correspondingly, the alignment of the orbital plane with the Homunculus skirt.
Thiele, Uwe; Frastia, Lubor
2007-01-01
A dynamical model is proposed to describe the coupled decomposition and profile evolution of a free surface film of a binary mixture. An example is a thin film of a polymer blend on a solid substrate undergoing simultaneous phase separation and dewetting. The model is based on model-H describing the coupled transport of the mass of one component (convective Cahn-Hilliard equation) and momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate boundary conditions at the solid substrate and the free surface. General transport equations are derived using phenomenological non-equilibrium thermodynamics for a general non-isothermal setting taking into account Soret and Dufour effects and interfacial viscosity for the internal diffuse interface between the two components. Focusing on an isothermal setting the resulting model is compared to literature results and its base states corresponding to homogeneous or vertically stratified flat layers are analysed.
A magnetic model for low/hard state of black hole binaries
Ye, Yong-Chun; Huang, Chang-Yin; Cao, Xiao-Feng
2015-01-01
A magnetic model for low/hard state (LHS) of black hole X-ray binaries (BHXBs),H1743-322 and GX 339-4, is proposed based on the transportation of magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with quasi-steady jet is modelled based on transportation of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.
Phase-field simulation of dendritic growth for binary alloys with complicate solution models
Institute of Scientific and Technical Information of China (English)
LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi
2005-01-01
A phase-field method for simulation of dendritic growth in binary alloys with complicate solution models was studied. The free energy densities of solid and liquid used to construct the free energy of a solidification system in the phase-field model were derived from the Calphad thermodynamic modeling of phase diagram. The dendritic growth of Ti-Al alloy with a quasi-sub regular solution model was simulated in both an isothermal and a nonisothermal regime. In the isothermal one, different initial solute compositions and melt temperatures were chosen.And in the non-isothermal one, release of latent heat during solidification was considered. Realistic growth patterns of dendrite are derived. Both the initial compositions and melt temperatures affect isothermal dendritic morphology and solute distributions much, especially the latter. Release of latent heat will cause a less developed structure of dendrite and a lower interfacial composition.
FOUNDATION OF NUCLEAR ALGEBRAIC MODELS
Institute of Scientific and Technical Information of China (English)
周孝谦
1990-01-01
Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.
International Nuclear Information System (INIS)
1 - Description of program or function: TALYS is software for the simulation of nuclear reactions. Many state-of-the-art nuclear models are included to cover all main reaction mechanisms encountered in light particle-induced nuclear reactions. TALYS provides a complete Description of all reaction channels and observables. It is a versatile tool to analyse basic microscopic experiments and to generate nuclear data for applications. Specific features of the TALYS package : - an exact implementation of many of the latest nuclear models for direct, compound, pre-equilibrium and fission reactions. - a continuous, smooth Description of reaction mechanisms over a wide energy range (0.001- 200 MeV) and mass number range (12 < A < 339). - completely integrated optical model and coupled-channels calculations by the ECIS-06 code - incorporation of recent optical model parameterizations for many nuclei, both phenomenological (optionally including dispersion relations) and microscopical. - total and partial cross sections, energy spectra, angular distributions, double-differential spectra and recoils. - discrete and continuum photon production cross sections. - excitation functions for residual nuclide production, including isomeric cross sections. - exact modeling of exclusive channel cross sections, e.g. (n; 2np), spectra, and recoils. - automatic reference to nuclear structure parameters as masses, discrete levels, resonances, level density parameters, deformation parameters, fission barrier and gamma-ray parameters, generally from the IAEA Reference Input Parameter Library - various width fluctuation models for binary compound reactions and, at higher energies, multiple Hauser-Feshbach emission until all reaction channels are closed. - various phenomenological and microscopic level density models. - various fission models to predict cross sections and fission fragment and product yields. - models for pre-equilibrium reactions, and multiple pre-equilibrium reactions up to
Organizational model of the nuclear sector
Energy Technology Data Exchange (ETDEWEB)
Metri, Paulo, E-mail: pmetri@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN/CGRC), Rio de Janeiro, RJ (Brazil)
2015-07-01
The Brazilian Constitution prohibits private investment in many activities of the Nuclear Industry. Right now, it is in progress a constitutional amendment that allows private companies to build and operate nuclear power plants of its own. This work rescues the historical reasons that led the Congress of 1988 to choose the State owned model for this sector. In addition, the arguments that are used to propose the present changes are repeated here. As indicated in INAC 2015 website, 'sustainable development is supported by three pillars: social, economic and environmental'. Thus, the organizational model to be adopted for the Nuclear Sector must meet these requirements. The official objectives of the energy sector, as set out in the law 9,478, are remembered. New objectives, better established, and also adapted to the electrical subsector, are shown. Besides the use of these objectives to choose the sources and related technologies for the electric generation, they also can be used as evaluation criteria to help in the decision process of the organizational model for the Nuclear Sector. Acting in this way, it is ensured that social, economic and environmental requirements are being attended. Finally, if the developed evaluation criteria are applied, the impacts of each organizational model can be analyzed and preliminary conclusion and recommendation can be made. (author)
Experimental test of nuclear magnetization distribution and nuclear structure models
Energy Technology Data Exchange (ETDEWEB)
Beirsdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lopez-Urrutia, J Crespo R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Utter, S. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
1999-02-26
Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron' s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to
Experimental test of nuclear magnetization distribution and nuclear structure models
International Nuclear Information System (INIS)
Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place
Model Action Plan for Nuclear Forensics and Nuclear Attribution
Energy Technology Data Exchange (ETDEWEB)
Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J
2004-03-01
Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.
A binary model for the UV-upturn of elliptical galaxies (MNRAS version)
Han, Z; Lynas-Gray, A E
2007-01-01
The discovery of a flux excess in the far-ultraviolet (UV) spectrum of elliptical galaxies was a major surprise in 1969. While it is now clear that this UV excess is caused by an old population of hot helium-burning stars without large hydrogen-rich envelopes, rather than young stars, their origin has remained a mystery. Here we show that these stars most likely lost their envelopes because of binary interactions, similar to the hot subdwarf population in our own Galaxy. We have developed an evolutionary population synthesis model for the far-UV excess of elliptical galaxies based on the binary model developed by Han et al. (2002, 2003) for the formation of hot subdwarfs in our Galaxy. Despite its simplicity, it successfully reproduces most of the properties of elliptical galaxies with a UV excess, e.g. the range of observed UV excesses, both in $(1550-V)$ and $(2000-V)$, and their evolution with redshift. We also present colour-colour diagrams for use as diagnostic tools in the study of elliptical galaxies. ...
Directory of Open Access Journals (Sweden)
Kovalenko A. V.
2015-06-01
Full Text Available In the article we have derived mathematical models of non-stationary transport binary electrolyte in EMS (electromembrane systems: electrodialysis apparatus, electromembrane cell, etc. for the galvanostatic mode. To be specific, as EMS viewed channel of desalting of EDA (electrodialysis apparatus and EMS with RMD (rotating membrane disk. We present a formula expressing the intensity of the electric field through the current density and concentration. Also, we have received the differential equation for the current density. The fundamental point here is derived new equation for the unknown vector function of current density of the initial system of equations of Nernst-Planck. In addition, the article shows the output equation for the current density in three dimensions; we have proposed various methods for solving the equation of the current density and the boundary conditions for the current density. The proposed mathematical models of transport binary electrolyte are easy to be generalized to an arbitrary electrolyte. However, the corresponding equations are cumbersome. It should be also noted that the boundary conditions can be varied and depend on the purpose of a particular study in this regard, in this work are just the equation having the general form
Gamma-ray binaries beyond one-zone models: an application to LS 5039
del Palacio, Santiago; Romero, Gustavo E
2014-01-01
Context. Several binary systems hosting massive stars present gamma-ray emission. In most of these systems, despite detailed observational information is available, the nature and the structure of the emitter are still poorly known. Aims. We investigate the validity of the so-called one-zone approximation for the high-energy emitter in binary systems hosting a massive star. In particular, the case of LS 5039 is considered. Methods. Assuming a point-like emitter at rest, the presence of a nearby massive star, and taking as a reference the observed MeV and GeV fluxes, a non-thermal leptonic model is systematically applied for di?erent locations, magnetic fields, and non-radiative losses. This allows the identification of both the emitter configurations most compatible with observations and inconsistencies between model predictions and the available data. Results. In the case of LS 5039, the best parameter combination is fast non-radiative cooling and a low magnetic field. However, discrepancies appear when comp...
A binary logistic regression model for discriminating real protein-protein interface
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The selection and study of descriptive variables of protein-protein complex interface is a major question that many biologists come across when the research of protein-protein recognition is concerned. Several variables have been proposed to understand the structural or energetic features of complex interfaces. Here a systematic study of some of these "traditional" variables, as well as a few new ones, is introduced. With the values of these variables extracted from 42 PDB samples with real or false complex interfaces, a binary logistic regression analysis is performed, which results in an effective empirical model for the evaluation of binding probabilities of protein-protein interfaces. The model is validated with 12 samples, and satisfactory results are obtained for both the training and validation sets. Meanwhile, three potential dimeric interfaces of staphylokinase have been investigated and one with the best suitability to our model is proposed.
Illumination in symbiotic binary stars Non-LTE photoionization models; 2, Wind case
Proga, D; Raymond, J C; Proga, Daniel; Kenyon, Scott J.; Raymond, John C.
1997-01-01
We describe a non-LTE photoionization code to calculate the wind structure and emergent spectrum of a red giant wind illuminated by the hot component of a symbiotic binary system. We consider spherically symmetric winds with several different velocity and temperature laws and derive predicted line fluxes as a function of the red giant mass loss rate, \\mdot. Our models generally match observations of the symbiotic stars EG And and AG Peg for \\mdot about 10^{-8} wind as viewed from the hot component is a crucial parameter in these models. Winds with cross-sections of 2--3 red giant radii reproduce the observed fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models favor winds with acceleration regions that either lie far from the red giant photosphere or extend for 2--3 red giant radii.
A model for 3:2 HFQPO pairs in black hole binaries based on cosmic battery
Huang, Chang-Yin; Wang, Ding-Xiong; Li, Yang
2016-01-01
A model for 3:2 high-frequency quasi-periodic oscillations (HFQPOs) with 3:2 pairs observed in four black hole X-ray binaries (BHXBs) is proposed by invoking the epicyclic resonances with the magnetic connection (MC) between a spinning black hole (BH) with a relativistic accretion disc. It turns out that the MC can be worked out due to Poynting-Robertson cosmic battery (PRCB), and the 3:2 HFQPO pairs associated with the steep power-law states can be fitted in this model. Furthermore, the severe damping problem in the epicyclic resonance model can be overcome by transferring energy from the BH to the inner disc via the MC process for emitting X-rays with sufficient amplitude and coherence to produce the HFQPOs. In addition, we discuss the important role of the magnetic field in state transition of BHXBs.
Combinatorial nuclear level-density model
Energy Technology Data Exchange (ETDEWEB)
Moller, Peter [Los Alamos National Laboratory; Aberg, Sven [LUND SWEDEN; Uhrenhoit, Henrik [LUND SWEDEN; Ickhikawa, Takatoshi [RIKEN
2008-01-01
A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: neutron separation energy level spacings, data on total level-density functions from the Oslo method and data on parity ratios.
Taani, Ali
2016-07-01
The kick velocity which arises during the binary interaction plays an important role in disruption or surviving the binary systems. This paper attempts to draw an evolutionary connection of the long-period (Porb ≥ 2 d) millisecond pulsars (MSPs) with orbits of low eccentricity (e ≤ 0.2). We propose that a kick velocity caused by dynamical effects of asymmetric collapse imparted to the companion star through an accretion induced collapse (AIC) of white dwarfs-that become unstable once they approach the Chandrasekhar limit-can account for the differences in their orbital period distributions. Furthermore, in some cases, an appropriate kick can disrupt the binary system and result in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric binary MSP is formed. In this case only the binding energy equivalent (0.2M⊙) of mass is lost and the system remains intact in a symmetric collapse. Consequently, the AIC decreases the mass of the neutron star and increases the orbital period leading to orbit circularization. We present the results of our model and discuss the possible implications for the binary MSPs in galactic disk and globular clusters.
The origin and fate of short-period low-mass black-hole binaries
Yungelson, L.R.; Lasota, J.P.; Nelemans, G.; Dubus, G.; Heuvel, E.P.J. van den; Dewi, J.; Portegies Zwart, S.
2006-01-01
We present results of a population synthesis study for semidetached short orbital period binaries which contain low-mass (1.5 M_{o}) donors and massive ( 4 M_{o}) compact accretors, which in our model represent black holes. Evolution of these binaries is determined by nuclear evolu
Models of neutron star atmospheres enriched with nuclear burning ashes
Nättilä, Joonas; Kajava, Jari J E; Poutanen, Juri
2015-01-01
Low-mass X-ray binaries hosting neutron stars (NS) exhibit thermonuclear (type-I) X-ray bursts, which are powered by unstable nuclear burning of helium and/or hydrogen into heavier elements deep in the NS "ocean". In some cases the burning ashes may rise from the burning depths up to the NS photosphere by convection, leading to the appearance of the metal absorption edges in the spectra, which then force the emergent X-ray burst spectra to shift toward lower energies. These effects may have a substantial impact on the color correction factor $f_c$ and the dilution factor $w$, the parameters of the diluted blackbody model $F_E \\approx w B_E(f_c T_{eff})$ that is commonly used to describe the emergent spectra from NSs. The aim of this paper is to quantify how much the metal enrichment can change these factors. We have developed a new NS atmosphere modeling code, which has a few important improvements compared to our previous code required by inclusion of the metals. The opacities and the internal partition func...
Bayesian binary regression model: an application to in-hospital death after AMI prediction
Directory of Open Access Journals (Sweden)
Aparecida D. P. Souza
2004-08-01
Full Text Available A Bayesian binary regression model is developed to predict death of patients after acute myocardial infarction (AMI. Markov Chain Monte Carlo (MCMC methods are used to make inference and to evaluate Bayesian binary regression models. A model building strategy based on Bayes factor is proposed and aspects of model validation are extensively discussed in the paper, including the posterior distribution for the c-index and the analysis of residuals. Risk assessment, based on variables easily available within minutes of the patients' arrival at the hospital, is very important to decide the course of the treatment. The identified model reveals itself strongly reliable and accurate, with a rate of correct classification of 88% and a concordance index of 83%.Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.
Hwang, Beom Seuk; Pennell, Michael L
2014-03-30
Many dose-response studies collect data on correlated outcomes. For example, in developmental toxicity studies, uterine weight and presence of malformed pups are measured on the same dam. Joint modeling can result in more efficient inferences than independent models for each outcome. Most methods for joint modeling assume standard parametric response distributions. However, in toxicity studies, it is possible that response distributions vary in location and shape with dose, which may not be easily captured by standard models. To address this issue, we propose a semiparametric Bayesian joint model for a binary and continuous response. In our model, a kernel stick-breaking process prior is assigned to the distribution of a random effect shared across outcomes, which allows flexible changes in distribution shape with dose shared across outcomes. The model also includes outcome-specific fixed effects to allow different location effects. In simulation studies, we found that the proposed model provides accurate estimates of toxicological risk when the data do not satisfy assumptions of standard parametric models. We apply our method to data from a developmental toxicity study of ethylene glycol diethyl ether.
Modelling of Sigma Scorpii, a high-mass binary with a Beta Cep variable primary component
Tkachenko, A; Pavlovski, K; Degroote, P; Papics, P I; Moravveji, E; Lehmann, H; Kolbas, V; Clemer, K
2014-01-01
High-mass binary stars are known to show an unexplained discrepancy between the dynamical masses of the individual components and those predicted by models. In this work, we study Sigma Scorpii, a double-lined spectroscopic binary system consisting of two B-type stars residing in an eccentric orbit. The more massive primary component is a Beta Cep-type pulsating variable star. Our analysis is based on a time-series of some 1000 high-resolution spectra collected with the CORALIE spectrograph in 2006, 2007, and 2008. We use two different approaches to determine the orbital parameters of the star; the spectral disentangling technique is used to separate the spectral contributions of the individual components in the composite spectra. The non-LTE based spectrum analysis of the disentangled spectra reveals two stars of similar spectral type and atmospheric chemical composition. Combined with the orbital inclination angle estimate found in the literature, our orbital elements allow a mass estimate of 14.7 +/- 4.5 a...
Comparisons of eccentric binary black hole simulations with post-Newtonian models
Hinder, Ian; Laguna, Pablo; Shoemaker, Deirdre
2008-01-01
We present the first comparison between numerical relativity (NR) simulations of an eccentric binary black hole system with corresponding post-Newtonian (PN) results. We evolve an equal-mass, non-spinning configuration with an initial eccentricity e = 0.1 for 21 gravitational wave cycles before merger, and find agreement in the gravitational wave phase with an adiabatic eccentric PN model with 2 PN radiation reaction within 0.1 radians for 8 cycles. The NR and PN phase difference grows to 0.8 radians by 5 cycles before merger. We find that these results can be obtained by expanding the eccentric PN expressions in terms of the frequency-related variable x = (omega M)^{2/3} with M the total mass of the binary. When using instead the mean motion n = 2 pi/P, where P is the orbital period, the comparison leads to significant disagreements with NR. We also introduce a new method for matching NR and PN waveforms, based on extrapolating parameters determined from least squares fitting as t -> -infinity.
Multi-fluid modeling of density segregation in a dense binary fluidized bed
Institute of Scientific and Technical Information of China (English)
Zhongxi Chao; Yuefa Wang; Jana P.Jakobsen; Maria Fernandino; Hugo A.Jakobsen
2012-01-01
This paper presents simulation results of the density segregation in a dense binary gas fluidized bed using a multi-fluid model from Chao et al.(2011).The segregation behavior of two types of particles with approximately same particle diameters and different particle densities was studied and validated using the experimental data from Formisani et al.(2008),Some detailed information regarding the gas,particle velocity profiles,the distributions of the particle volume fractions and the flotsam-to-total particle volume fraction ratios is presented.The simulation results show that the simulated axial average flotsam-to-total particle volume fraction ratio distribution agrees reasonably with the experimental data of Formisani et al.(2008).The binary particle velocities are closely coupled though the segregation exists.The segregation behavior and the particle velocity profiles are superficial gas velocity dependent.The number and distribution of particle velocity vortices change dramatically with superficial gas velocity:at a comparatively low superficial gas velocity,the particles mainly segregate axially,and at a comparatively high superficial gas velocity,the particles segregate both axially and radially.
Modelling the asymmetric wind of the luminous blue variable binary MWC 314
Lobel, A; Martayan, C; Frémat, Y; Dozinel, K Torres; Raskin, G; Van Winckel, H; Prins, S; Pessemier, W; Waelkens, C; Hensberge, H; Dummortier, L; Jorissen, A; Van Eck, S; Lehmann, H
2013-01-01
We present a spectroscopic analysis of MWC 314, a luminous blue variable (LBV) candidate with an extended bipolar nebula. The detailed spectroscopic variability is investigated to determine if MWC 314 is a massive binary system with a supersonically accelerating wind or a low-mass B[e] star. We compare the spectrum and spectral energy distribution to other LBVs (such as P Cyg) and find very similar physical wind properties, indicating strong kinship. We combined long-term high-resolution optical spectroscopic monitoring and V-band photometric observations to determine the orbital elements and stellar parameters and to investigate the spectral variability with the orbital phases. We developed an advanced model of the large-scale wind-velocity and wind-density structure with 3-D radiative transfer calculations that fit the orbitally modulated P Cyg profile of He I lam5876, showing outflow velocities above 1000 km/s. We find that MWC 314 is a massive semi-detached binary system of ~1.22 AU, observed at an inclin...
High-energy particle transport in 3D hydrodynamic models of colliding-wind binaries
Reitberger, K; Reimer, A; Dubus, G; Reimer, O
2014-01-01
Massive stars in binary systems (as WR140, WR147 or $\\eta$ Carinae) have long been regarded as potential sources of high-energy $\\gamma$-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles which subsequently might be able to emit $\\gamma$-rays. Detailed numerical hydrodynamic simulations have already offered insight in the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a 3D-hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion and the radiative cooling of the shocked plasma. In our treatment of charged particle...
Directory of Open Access Journals (Sweden)
Nacer Tabib
2016-01-01
Full Text Available This paper proposes a new framework based on Binary Decision Diagrams (BDD for the graph distribution problem in the context of explicit model checking. The BDD are yet used to represent the state space for a symbolic verification model checking. Thus, we took advantage of high compression ratio of BDD to encode not only the state space, but also the place where each state will be put. So, a fitness function that allows a good balance load of states over the nodes of an homogeneous network is used. Furthermore, a detailed explanation of how to calculate the inter-site edges between different nodes based on the adapted data structure is presented.
Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra
Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.
2004-01-01
We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...
Model of a nuclear power station
International Nuclear Information System (INIS)
A model reduced in scale compared to the original of a nuclear powerstation including its buildings, including the reactor building and turbine hall, the plant, components, machines and pipework as components to be cut out with appropriate sticky edges for the individual model components to be glued on sheets, particularly of strong paper or cardboard, is shown. By folding and/or bending the cutout components and glueing the sticky edges, the model parts with edged or curved surfaces can be produced. (orig./HP)
Pötzschner, B.; Mohamed, F.; Lichtinger, A.; Bock, D.; Rössler, E. A.
2015-10-01
We study a dynamically asymmetric binary glass former with the low-Tg component m-tri-cresyl phosphate (m-TCP: Tg = 206 K) and a spirobichroman derivative as a non-polymeric high-Tg component (Tg = 382 K) by means of 1H nuclear magnetic resonance (NMR), 31P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two Tg are identified, Tg1 and Tg2. The slower one is attributed to the high-Tg component (α1-process), and the faster one is related to the m-TCP molecules (α2-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α1-process. While the α1-relaxation only weakly broadens upon adding m-TCP, the α2-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by 31P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α2-process and it reflects an isotropic, liquid-like motion which is observed even below Tg1, i.e., in the matrix of the arrested high-Tg molecules. As proven by 2D 31P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτα2). At Tg1 a crossover is found for the temperature dependence of (mean) τα2(T) from non-Arrhenius above to Arrhenius below Tg1 which is attributed to intrinsic confinement effects. This "fragile-to-strong" transition also leads to a re-decrease of Tg2(cm-TCP) at low concentration cm-TCP, i.e., a maximum is observed in Tg2(cm-TCP) while Tg1(cm-TCP) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously reported for polymer-plasticizer systems.
Energy Technology Data Exchange (ETDEWEB)
Pötzschner, B.; Mohamed, F.; Lichtinger, A.; Bock, D.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)
2015-10-21
We study a dynamically asymmetric binary glass former with the low-T{sub g} component m-tri-cresyl phosphate (m-TCP: T{sub g} = 206 K) and a spirobichroman derivative as a non-polymeric high-T{sub g} component (T{sub g} = 382 K) by means of {sup 1}H nuclear magnetic resonance (NMR), {sup 31}P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two T{sub g} are identified, T{sub g1} and T{sub g2}. The slower one is attributed to the high-T{sub g} component (α{sub 1}-process), and the faster one is related to the m-TCP molecules (α{sub 2}-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α{sub 1}-process. While the α{sub 1}-relaxation only weakly broadens upon adding m-TCP, the α{sub 2}-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by {sup 31}P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α{sub 2}-process and it reflects an isotropic, liquid-like motion which is observed even below T{sub g1}, i.e., in the matrix of the arrested high-T{sub g} molecules. As proven by 2D {sup 31}P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτ{sub α2}). At T{sub g1} a crossover is found for the temperature dependence of (mean) τ{sub α2}(T) from non-Arrhenius above to Arrhenius below T{sub g1} which is attributed to intrinsic confinement effects. This “fragile-to-strong” transition also leads to a re-decrease of T{sub g2}(c{sub m−TCP}) at low concentration c{sub m−TCP}, i.e., a maximum is observed in T{sub g2}(c{sub m−TCP}) while T{sub g1}(c{sub m−TCP}) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously
International Nuclear Information System (INIS)
We study a dynamically asymmetric binary glass former with the low-Tg component m-tri-cresyl phosphate (m-TCP: Tg = 206 K) and a spirobichroman derivative as a non-polymeric high-Tg component (Tg = 382 K) by means of 1H nuclear magnetic resonance (NMR), 31P NMR, and dielectric spectroscopy which allow component-selectively probing the dynamics. The entire concentration range is covered, and two main relaxation processes with two Tg are identified, Tg1 and Tg2. The slower one is attributed to the high-Tg component (α1-process), and the faster one is related to the m-TCP molecules (α2-process). Yet, there are indications that a small fraction of m-TCP is associated also with the α1-process. While the α1-relaxation only weakly broadens upon adding m-TCP, the α2-relaxation becomes extremely stretched leading to quasi-logarithmic correlation functions at low m-TCP concentrations—as probed by 31P NMR stimulated echo experiments. Frequency-temperature superposition does not apply for the α2-process and it reflects an isotropic, liquid-like motion which is observed even below Tg1, i.e., in the matrix of the arrested high-Tg molecules. As proven by 2D 31P NMR, the corresponding dynamic heterogeneities are of transient nature, i.e., exchange occurs within the distribution G(lnτα2). At Tg1 a crossover is found for the temperature dependence of (mean) τα2(T) from non-Arrhenius above to Arrhenius below Tg1 which is attributed to intrinsic confinement effects. This “fragile-to-strong” transition also leads to a re-decrease of Tg2(cm−TCP) at low concentration cm−TCP, i.e., a maximum is observed in Tg2(cm−TCP) while Tg1(cm−TCP) displays the well-known plasticizer effect. Although only non-polymeric components are involved, we re-discover essentially all features previously reported for polymer-plasticizer systems
A new non-convex model of the binary asteroid 90 Antiope obtained with the SAGE modelling technique
Bartczak, P; Santana-Ros, T; Dudziński, G
2014-01-01
We present a new non-convex model of the 90 Antiope binary asteroid, derived with a modified version of the SAGE (Shaping Asteroids with Genetic Evolution) method using disk-integrated photometry only. A new variant of the SAGE algorithm capable of deriving models of binary systems is described. The model of 90 Antiope confirms the system's pole solution ($\\lambda=199^{\\circ}$, $\\beta=38^{\\circ}$, $\\sigma=\\pm5^{\\circ}$) and the orbital period ($16.505046 \\pm 0.000005$ h). A comparison between the stellar occultation chords obtained during the 2011 occultation and the projected shape solution has been used to scale the model. The resulting scaled model allowed us to obtain the equivalent radii ($R_{1}=40.4\\pm0.9$ km and $R_{2}=40.2\\pm0.9$ km) and the distance between the two system components ($176\\pm4$ km), leading to a total system mass of ($9.14\\pm0.62$)$\\cdot10^{17}$ kg. The non-convex shape description of the components permitted a refined calculation of the components' volumes, leading to a density estim...
Nuclear level density: Shell-model approach
Sen'kov, Roman; Zelevinsky, Vladimir
2016-06-01
Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally used parameters are also compared with standard phenomenological approaches.
A nuclear fragmentation energy deposition model
Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)
1991-01-01
A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.
Directory of Open Access Journals (Sweden)
Liran Carmel
2010-01-01
Full Text Available Evolutionary binary characters are features of species or genes, indicating the absence (value zero or presence (value one of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus, gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes and events (gain and loss events along branches.
Energy Technology Data Exchange (ETDEWEB)
Nusbaumer, O. P. M
2007-07-01
This study is concerned with the quantification of Probabilistic Risk Assessment (PRA) using linked Fault Tree (FT) models. Probabilistic Risk assessment (PRA) of Nuclear Power Plants (NPPs) complements traditional deterministic analysis; it is widely recognized as a comprehensive and structured approach to identify accident scenarios and to derive numerical estimates of the associated risk levels. PRA models as found in the nuclear industry have evolved rapidly. Increasingly, they have been broadly applied to support numerous applications on various operational and regulatory matters. Regulatory bodies in many countries require that a PRA be performed for licensing purposes. PRA has reached the point where it can considerably influence the design and operation of nuclear power plants. However, most of the tools available for quantifying large PRA models are unable to produce analytically correct results. The algorithms of such quantifiers are designed to neglect sequences when their likelihood decreases below a predefined cutoff limit. In addition, the rare event approximation (e.g. Moivre's equation) is typically implemented for the first order, ignoring the success paths and the possibility that two or more events can occur simultaneously. This is only justified in assessments where the probabilities of the basic events are low. When the events in question are failures, the first order rare event approximation is always conservative, resulting in wrong interpretation of risk importance measures. Advanced NPP PRA models typically include human errors, common cause failure groups, seismic and phenomenological basic events, where the failure probabilities may approach unity, leading to questionable results. It is accepted that current quantification tools have reached their limits, and that new quantification techniques should be investigated. A novel approach using the mathematical concept of Binary Decision Diagram (BDD) is proposed to overcome these
Directory of Open Access Journals (Sweden)
BOJAN D. DJORDJEVIC
2007-12-01
Full Text Available Although many cubic equations of state coupled with van der Waals-one fluid mixing rules including temperature dependent interaction parameters are sufficient for representing phase equilibria and excess properties (excess molar enthalpy HE, excess molar volume VE, etc., difficulties appear in the correlation and prediction of thermodynamic properties of complex mixtures at various temperature and pressure ranges. Great progress has been made by a new approach based on CEOS/GE models. This paper reviews the last six-year of progress achieved in modelling of the volumetric properties for complex binary and ternary systems of non-electrolytes by the CEOS and CEOS/GE approaches. In addition, the vdW1 and TCBT models were used to estimate the excess molar volume VE of ternary systems methanol + chloroform + benzene and 1-propanol + chloroform + benzene, as well as the corresponding binaries methanol + chloroform, chloroform + benzene, 1-propanol + chloroform and 1-propanol + benzene at 288.15–313.15 K and atmospheric pressure. Also, prediction of VE for both ternaries by empirical models (Radojković, Kohler, Jackob–Fitzner, Colinet, Tsao–Smith, Toop, Scatchard, Rastogi was performed.
Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.
2014-07-01
Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.
Reduced order model for binary neutron star waveforms with tidal interactions
Lackey, Benjamin; Bernuzzi, Sebastiano; Galley, Chad
2016-03-01
Observations of inspiralling binary neutron star (BNS) systems with Advanced LIGO can be used to determine the unknown neutron-star equation of state by measuring the phase shift in the gravitational waveform due to tidal interactions. Unfortunately, this requires computationally efficient waveform models for use in parameter estimation codes that typically require 106-107 sequential waveform evaluations, as well as accurate waveform models with phase errors less than 1 radian over the entire inspiral to avoid systematic errors in the measured tidal deformability. The effective one body waveform model with l = 2 , 3, and 4 tidal multipole moments is currently the most accurate model for BNS systems, but takes several minutes to evaluate. We develop a reduced order model of this waveform by constructing separate orthonormal bases for the amplitude and phase evolution. We find that only 10-20 bases are needed to reconstruct any BNS waveform with a starting frequency of 10 Hz. The coefficients of these bases are found with Chebyshev interpolation over the waveform parameter space. This reduced order model has maximum errors of 0.2 radians, and results in a speedup factor of more than 103, allowing parameter estimation codes to run in days to weeks rather than decades.
FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion
Stevens, Alyx Catherine; Sahai, Raghvendra
2012-01-01
It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.
Binary logistic regression modelling: Measuring the probability of relapse cases among drug addict
Ismail, Mohd Tahir; Alias, Siti Nor Shadila
2014-07-01
For many years Malaysia faced the drug addiction issues. The most serious case is relapse phenomenon among treated drug addict (drug addict who have under gone the rehabilitation programme at Narcotic Addiction Rehabilitation Centre, PUSPEN). Thus, the main objective of this study is to find the most significant factor that contributes to relapse to happen. The binary logistic regression analysis was employed to model the relationship between independent variables (predictors) and dependent variable. The dependent variable is the status of the drug addict either relapse, (Yes coded as 1) or not, (No coded as 0). Meanwhile the predictors involved are age, age at first taking drug, family history, education level, family crisis, community support and self motivation. The total of the sample is 200 which the data are provided by AADK (National Antidrug Agency). The finding of the study revealed that age and self motivation are statistically significant towards the relapse cases..
A phenomenological model for nuclear multifragmentation
International Nuclear Information System (INIS)
A phenomenological model for nuclear multifragmentation is presented. It is made up of two complementary parts: molecular dynamics and restructured aggregation. It is applied to study the multifragmentation of 16O+80Br system at several bombarding energies. The results turn out to be in good agreement with available emulsion data. The production of charged particles and IMF as a function of the bombarding energy is also studied. The results seem to agree quite well with experimental observations and with previous results of other model calculations. (author) 19 refs.; 5 figs.; 1 tab
Few-body models for nuclear astrophysics
Energy Technology Data Exchange (ETDEWEB)
Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)
2014-04-15
We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.
Few-body models for nuclear astrophysics
Directory of Open Access Journals (Sweden)
P. Descouvemont
2014-02-01
Full Text Available We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the 2H(d, γ4He, 2H(d, p3H and 2H(d, n3He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.
Olekhno, N. A.; Beltukov, Y. M.; Parshin, D. A.
2016-05-01
One of the methods for the description of plasmon resonances in disordered metal-dielectric nanocomposites represents an initial composite as an electric network in the form of a lattice whose bonds are randomly arranged complex impedances. In this work, a general method is used to describe resonances in binary networks consisting of two types of impedances, which are arbitrary functions of the frequency [Th. Jonckheere and J.M. Luck, J. Phys. A 31, 3687 (1998)]. The generalization of the low-frequency L- C model where metal and dielectric regions in the lattice are replaced by inductive bonds L and capacitive bonds C d, respectively, has been considered. To analyze the spectrum of resonances in the entire optical region, a more accurate model involves the replacement of the metal regions by bonds in the form of parallel LC circuits with the resonant frequency equal to the plasma frequency of the metal ωp. The spectral properties of this model, as well as the model of a nanocomposite consisting of two metals with different plasma frequencies, have been considered. Analytical relations between the spectra of all such systems and the spectra of the initial L- C model have been established in the matrix representation. General expressions describing the dependence of the resonance spectrum of composites with arbitrary geometry on the permittivity of the matrix have been obtained.
3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries
Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu
2014-01-01
Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...
Razavi, Rohallah; Rahmatinejad, Azam; Kakavand, Tayeb; Taheri, Fariba; Aghajani, Maghsood; Khooy, Asghar
2016-02-01
In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.
A model for emission from jets in X-ray binaries: consequences of a single acceleration episode
A. Pe'er; P. Casella
2009-01-01
There is strong evidence for powerful jets in the low/hard state of black hole X-ray binaries (BHXRBs). Here, we present a model in which electrons are accelerated once at the base of the jet, and are cooled by synchrotron emission and possible adiabatic energy losses. The accelerated electrons assu
Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy
Bohlen, TT; Quesada, J M; Bohlen, T T; Cerutti, F; Gudowska, I; Ferrari, A; Mairani, A
2010-01-01
As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction a...
Quark-Novae in Low-Mass X-ray Binaries as a model for G87-7 and for GRB 110328A
Ouyed, Rachid; Jaikumar, Prashanth
2011-01-01
We propose a simple model explaining two outstanding astrophysical problems related to compact objects: (1) that of stars such as G87-7 (alias EG 50) that constitute a class of relatively low-mass white dwarfs which nevertheless fall away from the C/O composition and (2) that of GRB 110328A/Swift J164449.3+57345 which showed spectacularly long-lived strong X-ray flaring, posing a challenge to standard GRB models. We argue that both these observations may have an explanation within the unified framework of a Quark-Nova occurring in a low-mass X-ray binary (neutron star-white dwarf). For LMXBs where the binary separation is sufficiently tight, ejecta from the Neutron Star triggers nuclear burning in the white dwarf on impact, leading to alpha-rich and Fe-rich composition compact white dwarfs reminiscent of G87-7. Under slightly different conditions, the white dwarf is ablated and its ashes raining down on the Quark star leads to accretion-driven X-ray luminosity with energetics and duration reminiscent of GRB 1...
A new binary model for university examination timetabling: a case study
Komijan, Alireza Rashidi; Koupaei, Mehrdad Nouri
2012-12-01
Examination timetabling problem (ETP) is one of the most important issues in universities. An improper timetable may result in students' dissatisfaction as it may not let them study enough between two sequential exams. In addition, the many exams to be scheduled, the large number of students who have taken different courses, the limited number of rooms, and some constraints such as no conflict in a single student's exams make it very difficult to schedule experimentally. A mathematical programming model is required to formulate such a sophisticated problem. In this paper, a new binary model is developed for ETP. The novelty of the paper can be discussed in two directions. The first one is that a course can be offered more than once in a semester. If a course is requested by a few students, then it is enough to be offered once. If the number of students requesting a course is more than the maximum number of students who are allowed to attend a single class, then the course is multi-offered. The second novelty is that sharing a room for two simultaneous exams is allowed. Also, the model considers some hard and soft constraints, and the objective function is set in such a way that soft constraints are satisfied as much as possible. Finally, the model is applied in a sample department and is solved by GAMS.
A magnetic model for low/hard state of black hole binaries
Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng
2016-03-01
A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.
Berry, Joel; Elder, Ken; Provatas, Nikolas
2004-03-01
A continuum phase field model, adapted from the Phase Field Crystals (PFC) model [1], is applied to the study of strained binary heteroepitaxial systems, with emphasis given to the investigation of 2-D species segregation during liquid phase film growth. In addition to (1) phase segregation, it is shown that this model is capable of incorporating (2) surface morphological evolution and (3) defect nucleation and propagation, as well as the interactions of these three phenomena, over all primary epitaxial growth regimes. Additional highlights of the model include consideration of composition-dependent elastic moduli, differing species mobilities, and mass transport within the bulk film. The spatial nature of the phase segregation and its interaction with film surface morphology and defect nucleation are investigated as functions of various material and process parameters. In particular, the interaction between film surface morphology and compositional segregation is investigated, with attention given to its influence on the asymmetry observed in critical thickness between compressive and tensile strains. [1] K.R. Elder, M. Katakowski, M. Haataja, and M. Grant, Physical Review Letters 88, 245701 (2002).
Numerical modeling of two-phase binary fluid mixing using mixed finite elements
Sun, Shuyu
2012-07-27
Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.
The Binary Fission Model for the Formation of the Pluto system
Prentice, Andrew
2016-10-01
The ratio F of the mass of Pluto (P) to Charon (C), viz. F ≈ 8:1, is the largest ratio of any planet-satellite pair in the solar system. Another measure of the PC binary is its normalized angular momentum density J (see McKinnon 1989). Analysis of astrometric data (Brozovic et al 2015) acquired before the New Horizons (NH) arrival at Pluto and new measurements made by NH (Stern et al 2015) show that J = 0.39. Yet these F & J values are ones expected if the PC binary had formed by the rotational fission of a single liquid mass (Darwin 1902; Lyttleton 1953). At first glance, therefore, the fission model seems to be a viable model for the formation of the Pluto system. In fact, Prentice (1993 Aust J Astron 5 111) had used this model to successfully predict the existence of several moons orbiting beyond Charon, before their discovery in 2005-2012. The main problem with the fission model is that the observed mean density of Charon, namely 1.70 g/cm3, greatly exceeds that of water ice. Charon thus could not have once been a globe of pure water. Here I review the fission model within the framework of the modern Laplacian theory of solar system origin (Prentice 1978 Moon Planets 19 341; 2006 PASA 23 1) and the NH results. I assume that Pluto and Charon were initially a single object (proto-Pluto [p-P]) which had condensed within the same gas ring shed by the proto-solar cloud at orbital distance ~43 AU, where the Kuiper belt was born. The temperature of this gas ring is 26 K and the mean orbit pressure is 1.3 × 10-9 bar. After the gas ring is shed, chemical condensation takes place. The bulk chemical composition of the condensate is anhydrous rock (mass fraction 0.5255), graphite (0.0163), water ice (0.1858), CO2 ice (0.2211) and methane ice (0.0513). Next I assume that melting of the ices in p-P takes place through the decay of short-lived radioactive nuclides, thus causing internal segregation of the rock & graphite. Settling of heavy grains to the centre lowers the
Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS
Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A; Basu-Zych, A.
2013-01-01
We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey (SINGS). For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or XRB modeling requires calibration on larger observational samples. Given these limitations, we find that best models are consistent with a product of common envelope ejection efficiency and central donor concentration approx.. = 0.1, and a 50% uniform - 50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the L(sub X) - star formation rate and L(sub X) - stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution both of XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.
System model development for nuclear thermal propulsion
International Nuclear Information System (INIS)
A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented
Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels
Wang, Yu
2015-03-01
A soot model was developed based on the recently proposed PAH growth mechanism for C1-C4 gaseous fuels (KAUST PAH Mechanism 2, KM2) that included molecular growth up to coronene (A7) to simulate soot formation in counterflow diffusion flames of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified hydrogen-abstraction-acetylene-addition (HACA) mechanism in which CH3, C3H3 and C2H radicals were included in the hydrogen abstraction reactions in addition to H atoms. PAH condensation on soot particles was also considered. The experimentally measured profiles of soot volume fraction, number density, and particle size were well captured by the model for the baseline case of ethylene along with the cases involving mixtures of fuels. The simulation results, which were in qualitative agreement with the experimental data in the effects of binary fuel mixing on the sooting structures of the measured flames, showed in particular that 5% addition of propane (ethane) led to an increase in the soot volume fraction of the ethylene flame by 32% (6%), despite the fact that propane and ethane are less sooting fuels than is ethylene, which is in reasonable agreement with experiments of 37% (14%). The model revealed that with 5% addition of methane, there was an increase of 6% in the soot volume fraction. The average soot particle sizes were only minimally influenced while the soot number densities were increased by the fuel mixing. Further analysis of the numerical data indicated that the chemical cross-linking effect between ethylene and the dopant fuels resulted in an increase in PAH formation, which led to higher soot nucleation rates and therefore higher soot number densities. On the other hand, the rates of soot surface growth per unit surface area through the HACA mechanism were
Calculating the Probability of Returning a Loan with Binary Probability Models
Directory of Open Access Journals (Sweden)
Julian Vasilev
2014-12-01
Full Text Available The purpose of this article is to give a new approach in calculating the probability of returning a loan. A lot of factors affect the value of the probability. In this article by using statistical and econometric models some influencing factors are proved. The main approach is concerned with applying probit and logit models in loan management institutions. A new aspect of the credit risk analysis is given. Calculating the probability of returning a loan is a difficult task. We assume that specific data fields concerning the contract (month of signing, year of signing, given sum and data fields concerning the borrower of the loan (month of birth, year of birth (age, gender, region, where he/she lives may be independent variables in a binary logistics model with a dependent variable “the probability of returning a loan”. It is proved that the month of signing a contract, the year of signing a contract, the gender and the age of the loan owner do not affect the probability of returning a loan. It is proved that the probability of returning a loan depends on the sum of contract, the remoteness of the loan owner and the month of birth. The probability of returning a loan increases with the increase of the given sum, decreases with the proximity of the customer, increases for people born in the beginning of the year and decreases for people born at the end of the year.
Dubus, Guillaume; Fromang, Sébastien
2015-01-01
Detailed modeling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. We developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and VHE lightcurves, constraining the system inclination to $i\\approx 35^{\\rm o}$. There is a tension between th...
Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture
Stroev, N E
2016-01-01
Non-congruent gas-liquid phase transition (NCPT) have been studied in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a \\textit{uniformly compressible} ideal electronic background /BIM($\\sim$)/. The features of NCPT in improved version of the BIM($\\sim$) model for the same mixture on background of \\textit{non-ideal} electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to EoS of electronic and ionic subsystems were used in present calculations within the Gibbs--Guggenheim conditions of non-congruent phase equilibrium.Parameters of critical point-line (CPL) were calculated on the entire range of proportions of mixed ions $0
Notes on the Statistical Power of the Binary State Speciation and Extinction (BiSSE) Model.
Gamisch, Alexander
2016-01-01
The Binary State Speciation and Extinction (BiSSE) method is one of the most popular tools for investigating the rates of diversification and character evolution. Yet, based on previous simulation studies, it is commonly held that the BiSSE method requires phylogenetic trees of fairly large sample sizes (>300 taxa) in order to distinguish between the different models of speciation, extinction, or transition rate asymmetry. Here, the power of the BiSSE method is reevaluated by simulating trees of both small and large sample sizes (30, 60, 90, and 300 taxa) under various asymmetry models and root state assumptions. Results show that the power of the BiSSE method can be much higher, also in trees of small sample size, for detecting differences in speciation rate asymmetry than anticipated earlier. This, however, is not a consequence of any conceptual or mathematical flaw in the method per se but rather of assumptions about the character state at the root of the simulated trees and thus the underlying macroevolutionary model, which led to biased results and conclusions in earlier power assessments. As such, these earlier simulation studies used to determine the power of BiSSE were not incorrect but biased, leading to an overestimation of type-II statistical error for detecting differences in speciation rate but not for extinction and transition rates. PMID:27486297
Radiative-transfer models for supernovae IIb/Ib/Ic from binary-star progenitors
Dessart, Luc; Woosley, Stan; Livne, Eli; Waldman, Roni; Yoon, Sung-Chul; Langer, Norbert
2015-01-01
We present 1-D non-Local-Thermodynamic-Equilibrium time-dependent radiative-transfer simulations for supernovae (SNe) of type IIb, Ib, and Ic that result from the terminal explosion of the mass donor in a close-binary system. Here, we select three ejecta with a total kinetic energy of ~1.2e51erg, but characterised by different ejecta masses (2-5Msun), composition, and chemical mixing. The type IIb/Ib models correspond to the progenitors that have retained their He-rich shell at the time of explosion. The type Ic model arises from a progenitor that has lost its helium shell, but retains 0.32Msun of helium in a CO-rich core of 5.11Msun. We discuss their photometric and spectroscopic properties during the first 2-3 months after explosion, and connect these to their progenitor and ejecta properties including chemical stratification. For these three models, Arnett's rule overestimates the 56Ni mass by ~50% while the procedure of Katz et al., based on an energy argument, yields a more reliable estimate. The presenc...
Nuclear reactor core modelling in multifunctional simulators
Energy Technology Data Exchange (ETDEWEB)
Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)
1999-06-01
The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been
Theoretical foundations of the nuclear shell model
International Nuclear Information System (INIS)
In this paper microscopic derivations of the empirical shell-model effective interactions are reviewed. First the authors discuss a time-dependent formalism of the folded-diagram theory. Starting from a realistic nuclear Hamiltonian H = T + VNN, this theory enables the authors to obtain formally a reduced model-space effective Hamiltonian Heff = H0 + Veff. Heff reproduces some, but not all, eigenvalues of H. Veff can be written as a folder diagram series and can be calculated in terms of G-matrices and the irreducible diagrams of the vertex function. A method for accurately treating the Pauli exclusion operator for the G-matrix is described. The s-d shell matrix elements of Veff calculated with the Bonn and the Paris VNN are compared with the Kuo-Brown matrix elements and the empirical matrix elements of Wildenthal
High-energy Particle Transport in Three-dimensional Hydrodynamic Models of Colliding-wind Binaries
Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.; Dubus, G.
2014-02-01
Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.
Babak, Stanislav; Buonanno, Alessandra
2016-01-01
In Ref. [1], the properties of the first gravitational wave detected by LIGO, GW150914, were measured by employing an effective-one-body (EOB) model of precessing binary black holes whose underlying dynamics and waveforms were calibrated to numerical-relativity (NR) simulations. Here, we perform the first extensive comparison of such EOBNR model to 70 precessing NR waveforms that span mass ratios from 1 to 5, dimensionless spin magnitudes up to 0.5, generic spin orientations, and length of about 20 orbits. We work in the observer's inertial frame and include all $\\ell=2$ modes in the gravitational-wave polarizations. We introduce new prescriptions for the EOB ringdown signal concerning its spectrum and time of onset. For total masses between 10Msun and 200Msun, we find that precessing EOBNR waveforms have unfaithfulness within about 3% to NR waveforms when considering the Advanced-LIGO design noise curve. This result is obtained without recalibration of the inspiral-plunge of the underlying nonprecessing EOBN...
The imagine of establishing China nuclear insurance model
International Nuclear Information System (INIS)
Nuclear power Insurance is one important technique for risk managements of Nuclear power Enterprises. At present, nuclear risk of Nuclear power plants in China has been mainly supported by China Nuclear Insurance pool (hereinafter called CNP) to get coverage from International Nuclear Insurance pool (hereinafter called NIP). CNIP has several advantages to confirm low-cost. Operation, such as large underwriting capacity, international approval and cession, direct writing without agents. However, there are both deficiencies, first, can not get rid of dependence on International markets ; second, in the absence of competition in Self- insurance organizations , tough and opaque premium offer greatly restricted the enthusiasm for Nuclear power plants insuring .But the next ten year is a golden decade for China Nuclear industry development; Nuclear power market is demonstrating tremendous growth potential. With new units put into operation, all kinds of nuclear insurance demand will release when subject-matter insured substantially increase. So, breaking the current bottleneck of China Nuclear Insurance and establishing China Nuclear Insurance (hereinafter called: Nuclear insurance) model adapting to China national conditions will play an important role in Nuclear power development. I made the advice that both domestic nuclear enterprises and general insurance companies initiate a 'Nuclear insurance company'. (authors)
Dependence of X-Ray Burst Models on Nuclear Reaction Rates
Cyburt, R H; Heger, A; Johnson, E; Keek, L; Meisel, Z; Schatz, H; Smith, K
2016-01-01
X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,$\\gamma$), ($\\alpha$,$\\gamma$), and ($\\alpha$,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reac...
Directory of Open Access Journals (Sweden)
Steyerberg Ewout W
2011-05-01
Full Text Available Abstract Background Logistic random effects models are a popular tool to analyze multilevel also called hierarchical data with a binary or ordinal outcome. Here, we aim to compare different statistical software implementations of these models. Methods We used individual patient data from 8509 patients in 231 centers with moderate and severe Traumatic Brain Injury (TBI enrolled in eight Randomized Controlled Trials (RCTs and three observational studies. We fitted logistic random effects regression models with the 5-point Glasgow Outcome Scale (GOS as outcome, both dichotomized as well as ordinal, with center and/or trial as random effects, and as covariates age, motor score, pupil reactivity or trial. We then compared the implementations of frequentist and Bayesian methods to estimate the fixed and random effects. Frequentist approaches included R (lme4, Stata (GLLAMM, SAS (GLIMMIX and NLMIXED, MLwiN ([R]IGLS and MIXOR, Bayesian approaches included WinBUGS, MLwiN (MCMC, R package MCMCglmm and SAS experimental procedure MCMC. Three data sets (the full data set and two sub-datasets were analysed using basically two logistic random effects models with either one random effect for the center or two random effects for center and trial. For the ordinal outcome in the full data set also a proportional odds model with a random center effect was fitted. Results The packages gave similar parameter estimates for both the fixed and random effects and for the binary (and ordinal models for the main study and when based on a relatively large number of level-1 (patient level data compared to the number of level-2 (hospital level data. However, when based on relatively sparse data set, i.e. when the numbers of level-1 and level-2 data units were about the same, the frequentist and Bayesian approaches showed somewhat different results. The software implementations differ considerably in flexibility, computation time, and usability. There are also differences in
Ingram, Adam
2015-01-01
Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.
Ingram, A. R.
2016-05-01
Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.
Binary solution model for computation of equilibrium compositions. [Modification of NASA CEC code
Energy Technology Data Exchange (ETDEWEB)
Hsu, C. C.; Land, R. H.; Blander, M.
1978-06-01
A NASA computer program (CEC) for calculation of complex equilibrium compositions has been modified to take into account the formation of an ideal binary solution from pure condensed species. The thermodynamics of the modification are discussed. Applications are presented.
PHOEBE: PHysics Of Eclipsing BinariEs
Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick
2011-06-01
PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.
Canary, Jana D; Blizzard, Leigh; Barry, Ronald P; Hosmer, David W; Quinn, Stephen J
2016-05-01
Generalized linear models (GLM) with a canonical logit link function are the primary modeling technique used to relate a binary outcome to predictor variables. However, noncanonical links can offer more flexibility, producing convenient analytical quantities (e.g., probit GLMs in toxicology) and desired measures of effect (e.g., relative risk from log GLMs). Many summary goodness-of-fit (GOF) statistics exist for logistic GLM. Their properties make the development of GOF statistics relatively straightforward, but it can be more difficult under noncanonical links. Although GOF tests for logistic GLM with continuous covariates (GLMCC) have been applied to GLMCCs with log links, we know of no GOF tests in the literature specifically developed for GLMCCs that can be applied regardless of link function chosen. We generalize the Tsiatis GOF statistic originally developed for logistic GLMCCs, (TG), so that it can be applied under any link function. Further, we show that the algebraically related Hosmer-Lemeshow (HL) and Pigeon-Heyse (J(2) ) statistics can be applied directly. In a simulation study, TG, HL, and J(2) were used to evaluate the fit of probit, log-log, complementary log-log, and log models, all calculated with a common grouping method. The TG statistic consistently maintained Type I error rates, while those of HL and J(2) were often lower than expected if terms with little influence were included. Generally, the statistics had similar power to detect an incorrect model. An exception occurred when a log GLMCC was incorrectly fit to data generated from a logistic GLMCC. In this case, TG had more power than HL or J(2) .
Radiative-transfer models for supernovae IIb/Ib/Ic from binary-star progenitors
Dessart, Luc; Hillier, D. John; Woosley, Stan; Livne, Eli; Waldman, Roni; Yoon, Sung-Chul; Langer, Norbert
2015-10-01
We present 1D non-local thermodynamic equilibrium time-dependent radiative-transfer simulations for supernovae (SNe) of Type IIb, Ib, and Ic that result from the terminal explosion of the mass donor in a close-binary system. Here, we select three ejecta with a total kinetic energy of ≈1.2 × 1051 erg, but characterized by different ejecta masses (2-5 M⊙), composition, and chemical mixing. The Type IIb/Ib models correspond to the progenitors that have retained their He-rich shell at the time of explosion. The Type Ic model arises from a progenitor that has lost its helium shell, but retains 0.32 M⊙ of helium in a CO-rich core of 5.11 M⊙. We discuss their photometric and spectroscopic properties during the first 2-3 months after explosion, and connect these to their progenitor and ejecta properties including chemical stratification. For these three models, Arnett's rule overestimates the 56Ni mass by ≈ 50 per cent while the procedure of Katz et al., based on an energy argument, yields a more reliable estimate. The presence of strong C I lines around 9000Å prior to maximum is an indicator that the pre-SN star was underabundant in helium. As noted by others, the 1.08μm feature is a complex blend of C I, Mg II, and He I lines, which makes the identification of He uncertain in SNe Ibc unless other He I lines can be identified. Our models show little scatter in (V - R) colour 10 d after R-band maximum. We also address a number of radiative transfer properties of SNe Ibc, including the notion of a photosphere, the inference of a representative ejecta expansion rate, spectrum formation, blackbody fits and `correction factors'.
Energy Technology Data Exchange (ETDEWEB)
Almasi, Mohammad, E-mail: m.almasi@khouzestan.srbiau.ac.ir [Department of Chemistry, Science and Research Branch, Islamic Azad University, Khouzestan (Iran, Islamic Republic of)
2013-03-01
Densities and viscosities for binary mixtures of dimethyl carbonate with 2-propanol up to 2-heptanol were measured at various temperatures and ambient pressure. From experimental data, excess molar volumes, V{sub m}{sup E}. were calculated and correlated by the Redlich–Kister equation to obtain the binary coefficients and the standard deviations. Excess molar volumes, V{sub m}{sup E}, are positive for all studied mixtures over the entire range of the mole fraction. The ERAS-model has been applied for describing the binary excess molar volumes and also Peng–Robinson–Stryjek–Vera (PRSV) equation of state (EOS) has been used to predict the binary excess molar volumes and viscosities. Also several semi-empirical models were used to correlate the viscosity of binary mixtures.
Almasi, Mohammad
2013-03-01
Densities and viscosities for binary mixtures of dimethyl carbonate with 2-propanol up to 2-heptanol were measured at various temperatures and ambient pressure. From experimental data, excess molar volumes, VmE. were calculated and correlated by the Redlich-Kister equation to obtain the binary coefficients and the standard deviations. Excess molar volumes, VmE, are positive for all studied mixtures over the entire range of the mole fraction. The ERAS-model has been applied for describing the binary excess molar volumes and also Peng-Robinson-Stryjek-Vera (PRSV) equation of state (EOS) has been used to predict the binary excess molar volumes and viscosities. Also several semi-empirical models were used to correlate the viscosity of binary mixtures.
Computer Generated Cardiac Model For Nuclear Medicine
Hills, John F.; Miller, Tom R.
1981-07-01
A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.
A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102
Gu, Wei-Min; Liu, Tong; Ma, Renyi; Wang, Junfeng
2016-01-01
We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche lobe overflow mechanism can be responsible for the observed repeating b...
A Neutron Star–White Dwarf Binary Model for Repeating Fast Radio Burst 121102
Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng
2016-06-01
We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.
The Binary Black Hole Model for Mrk 231 Cannot Explain the Observed Emission Lines
Leighly, Karen M; Gallagher, Sarah C; Lucy, Adrian B
2016-01-01
Mrk 231 is a nearby quasar with an unusually red continuum, generally explained as heavy reddening by dust (e.g., Leighly et al. 2014). Yan et al. 2015 proposed that Mrk 231 is a milli-parsec black-hole binary with little intrinsic reddening. The large-mass black hole experiences advection-dominated accretion, emitting little continuum, while the accretion disk of the small-mass black hole emits as an ordinary quasar, dominating the observed weak UV continuum and contributing all of the photoionizing flux. We demonstrate that this model is untenable for four reasons. (1) To produce the observed near-infrared emission lines, the equivalent widths would have to be ~100 times larger than typical values with respect to the photoionizing continuum, a situation that seems energetically unlikely. (2) We use the photoionization code Cloudy to demonstrate it is not possible to produce the HeI* emission line intensity for the observed HeI*/Pbeta flux ratios, even if the line-emitting gas intersects all of the photoioni...
Dubus, G.; Lamberts, A.; Fromang, S.
2015-09-01
Context. Detailed modelling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Aims: Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. Methods: We have developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. Results: The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and very high energy (VHE) lightcurves, constraining the system inclination to i ≈ 35°. There is tension between the hard VHE spectrum and the level of X-ray to MeV emission, which requires differing magnetic field intensities that are hard to achieve with constant magnetisation σ and Lorentz factor Γp of the pulsar wind. Our best compromise implies σ ≈ 1 and Γp ≈ 5 × 103, so respectively higher and lower than the typical values in pulsar wind nebulae. Conclusions: The high value of σ derived here, where the wind is confined close to the pulsar, supports the classical picture that has pulsar winds highly magnetised at launch. However, such magnetisations will require that further investigations are based on relativistic MHD simulations. Movies associated to Figs. A.1-A.4 are available in electronic form at http://www.aanda.org
Gharami, Prabir; Rahaman, Farook
2014-01-01
Mass transfer in close binaries is often non-conservative and the modeling of this kind of mass transfer is mathematically challenging as in this case due to the loss of mass as well as angular momentum the governing system gets complicated and uncertain. In the present work a new mathematical model has been prescribed for the non-conservative mass transfer in a close binary system taking in to account the gradually decreasing profile of the mass accretion rate by the accreting star with respect to time as well as with respect to the increase in mass of the accreting star. The process of mass transfer is understood to occur up to a critical mass limit of the accreting star beyond which this process may cease to work.
Modelling of nuclear power plant decommissioning financing.
Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J
2015-06-01
Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. PMID:25979740
An improved nuclear mass model: FRDM (2012)
Moller, Peter
2011-10-01
We have developed an improved nuclear mass model which we plan to finalize in 2012, so we designate it FRDM(2012). Relative to our previous mass table in 1995 we do a full four-dimensional variation of the shape coordinates EPS2, EPS3, EPS4, and EPS6, we consider axial asymmetric shape degrees of freedom and we vary the density symmetry parameter L. Other additional features are also implemented. With respect to the Audi 2003 data base we now have an accuracy of 0.57 MeV. We have carefully tested the extrapolation properties of the new mass table by adjusting model parameters to limited data sets and testing on extended data sets and find it is highly reliable in new regions of nuclei. We discuss what the remaining differences between model calculations and experiment tell us about the limitations of the currently used effective single-particle potential and possible extensions. DOE No. DE-AC52-06NA25396.
Non-thermal radio emission from colliding-wind binaries: modelling Cyg OB2 No. 8A and No. 9
Volpi, Delia; Blomme, Ronny; De Becker, Michael; Rauw, Gregor
2010-01-01
Some OB stars show variable non-thermal radio emission. The non-thermal emission is due to synchrotron radiation that is emitted by electrons accelerated to high energies. The electron acceleration occurs at strong shocks created by the collision of radiatively-driven stellar winds in binary systems. Here we present results of our modelling of two colliding wind systems: Cyg OB2 No. 8A and Cyg OB2 No. 9.
Derishev, E
2016-01-01
We analyze the model of gamma-ray binaries, consisting of a massive star and a pulsar with ultrarelativistic wind. We consider radiation from energetic particles, accelerated at the pulsar wind termination shock, and feedback of this radiation on the wind through production of secondary electron-positron pairs. We show that the pair feedback limits the Lorentz factor of the pulsar wind and creates a population of very energetic pairs, whose radiation may be responsible for the observed gamma-ray signal.
Hickey, Graeme L; Blackstone, Eugene H
2016-08-01
Clinical risk-prediction models serve an important role in healthcare. They are used for clinical decision-making and measuring the performance of healthcare providers. To establish confidence in a model, external model validation is imperative. When designing such an external model validation study, thought must be given to patient selection, risk factor and outcome definitions, missing data, and the transparent reporting of the analysis. In addition, there are a number of statistical methods available for external model validation. Execution of a rigorous external validation study rests in proper study design, application of suitable statistical methods, and transparent reporting.
Sierpowska-Bartosik, Agnieszka
2008-01-01
Several gamma-ray binaries have been recently detected by the High-Energy Stereoscopy Array (H.E.S.S.) and the Major Atmospheric Imaging Cerenkov (MAGIC) telescope. In at least two cases, their nature is unknown, since a distinctive, final observational feature for a black hole or a pulsar compact object companion is still missing. In this paper we aim to provide the details of a theoretical model of close gamma-ray binaries containing a young energetic pulsar as compact object. This model includes a detailed account of the system geometry, the angular dependence of processes such as Klein-Nishina inverse Compton and gamma-gamma absorption, and a Monte Carlo simulation of cascading. We present and derive the used formulae and give all details about their numerical implementation, particularly, on the computation of cascades. In this model, emphasis is put in the processes occurring in the pulsar wind zone of the binary, i.e., the region between the pulsar and the shock in between of the two stars, since as we...
The transition model test for serial dependence in mixed-effects models for binary data
DEFF Research Database (Denmark)
Breinegaard, Nina; Rabe-Hesketh, Sophia; Skrondal, Anders
2016-01-01
Generalized linear mixed models for longitudinal data assume that responses at different occasions are conditionally independent, given the random effects and covariates. Although this assumption is pivotal for consistent estimation, violation due to serial dependence is hard to assess by model...... the targeted root mean squared error of approximation (TRSMEA) as a measure of the population misfit due to serial dependence....
THE PERIOD VARIATION OF AND A SPOT MODEL FOR THE ECLIPSING BINARY AR BOOTIS
International Nuclear Information System (INIS)
New CCD photometric observations of the eclipsing system AR Boo were obtained from 2006 February to 2008 April. The star's photometric properties are derived from detailed studies of the period variability and of all available light curves. We find that over about 56 yr the orbital period of the system has varied due to a combination of an upward parabola and a sinusoid rather than in a monotonic fashion. Mass transfer from the less massive primary to the more massive secondary component is likely responsible for at least a significant part of the secular period change. The cyclical variation with a period of 7.57 yr and a semi-amplitude of 0.0015 d can be produced either by a light-travel-time effect due to an unseen companion with a scaled mass of M 3sin i 3 = 0.081 M sun or by a magnetic period modulation in the secondary star. Historical light curves of AR Boo, as well as our own, display season-to-season light variability, which are best modeled by including both a cool spot and a hot one on the secondary star. We think that the spots express magnetic dynamo-related activity and offer limited support for preferring the magnetic interpretation of the 7.57 yr cycle over the third-body interpretation. Our solutions confirm that AR Boo belongs to the W-subtype contact binary class, consisting of a hotter, less massive primary star with a spectral type of G9 and a companion of spectral type K1.
Tkachenko, A; Aerts, C; Pavlovski, K; Papics, P I; Zwintz, K; Cameron, C; Walker, G A H; Kuschnig, R; Degroote, P; Debosscher, J; Moravveji, E; Kolbas, V; Guenther, D B; Moffat, A F J; Rowe, J F; Rucinski, S M; Sasselov, D; Weiss, W W
2016-01-01
Binary stars provide a valuable test of stellar structure and evolution, because the masses of the individual stellar components can be derived with high accuracy and in a model-independent way. In this work, we study Spica, an eccentric double-lined spectroscopic binary system with a beta Cep type variable primary component. We use state-of-the-art modelling tools to determine accurate orbital elements of the binary system and atmospheric parameters of both stellar components. We interpret the short-period variability intrinsic to the primary component, detected on top of the orbital motion both in the photometric and spectroscopic data. The non-LTE based spectrum analysis reveals two stars of similar atmospheric chemical composition consistent with the present day cosmic abundance standard defined by Nieva&Przybilla (2012). The masses and radii of the stars are found to be 11.43+/-1.15 M_sun and 7.21+/-0.75 M_sun, and 7.47+/-0.54 R_sun and 3.74+/-0.53 R_sun for the primary and secondary, respectively. W...
A model for the non-thermal emission of the very massive colliding-wind binary HD 93129A
del Palacio, Santiago; Romero, Gustavo E; Benaglia, Paula
2016-01-01
The binary stellar system HD 93129A is one of the most massive known binaries in our Galaxy. This system presents non-thermal emission in the radio band, which can be used to infer its physical conditions and predict its emission in the high-energy band. We intend to constrain some of the unknown parameters of HD 93129A through modelling the non-thermal emitter, and also to analyse the detectability of this source in hard X-rays and $\\gamma$-rays. We develop a broadband radiative model for the wind-collision region taking into account the evolution of the accelerated particles streaming along the shocked region, the emission by different radiative processes, and the attenuation of the emission propagating through the local matter and radiation fields. From the analysis of the radio emission, we find that the binary HD~93129A is more likely to have a low inclination and a high eccentricity. The minimum energy of the non-thermal electrons seems to be between $\\sim 20 - 100$MeV, depending on the intensity of the...
Madura, Thomas I; Owocki, Stanley P; Groh, Jose H; Okazaki, Atsuo T; Russell, Christopher M P
2011-01-01
We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA {\\theta} that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38 degrees, and the temporal variations in emission seen at negative slit PAs, the binary ...
The effective action approach applied to nuclear chiral sigma model
International Nuclear Information System (INIS)
The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs
On progress of nuclear activation model calculations
International Nuclear Information System (INIS)
Progress of work on improved methods of nuclear model calculations for nuclear activation data carried out at IFIN-HH in 2003-2004 is reported. In order to provide accurate predictions of further interest for the European Activation File (EAF-2005), no use of normalization or free parameters are involved. Model calculations carried out by using the computer codes EMPIRE-II and STAPRE-H have been validated by analysis of activation cross sections of all W and Ta stable isotopes and compared with the corresponding predictions obtained with the code TALYS. The accurate description of these reaction cross sections is obtained by using a consistent local parameter set, being fully due to the start of proton pre-equilibrium contribution due to the partial wave l = 7ℎ at incident energies of ∼ 14 MeV. This feature makes possible a faster increase of the STAPRE-H results for the (n,p) reaction cross sections just around this energy, while at 20 MeV they are in between the EMPIRE-II and TALYS predictions. It is thus pointed out the need for additional experimental data in the energy range above 15 MeV, similar to previous measurements at, e.g., JRC/IRMM. It is also shown that enlargement actions already in due course may have lower effectiveness concerning the preservation and development of knowledge and capabilities at Romanian R and D institutes as well as their integration into existing EC/JRC programmes and EU networks. While from the beginning EC asked CEEC to improve their R and D infrastructure to better benefit from the enlargement process, no real step forward has been done in this respect in Romania. The present conditions at IFIN-HH well below the limits making possible a real work have made thus not possible a further co-operation with JRC/IRMM, where we found previously the best opportunities for a sound common work, simply because no study completion may be done now in Bucharest. (author)
Development of nuclear theory model for measuring and evaluating basic nuclear data
International Nuclear Information System (INIS)
For the purpose of developing an advanced reactor and nuclear fuel and managing the radwastes, the generation of nuclide and basic nuclear data in the area of energy is required. Since the accuracy of calculation is influenced by these basic elements, a lot of researches for the nuclear data evaluation will be continuously performed. The purposes of this project are: 1st, collection and maintenance of measured data 2nd, establishment of the processing system for collected nuclear data 3rd, introduction and installation of the model calculation code of nuclear data evaluation 4th, production of the evaluated nuclear data by using new measured data and processing system. By accomplishing this project, safety and performance in the design of reactor and shielding components can be improved. Newly developed nuclear data shall be essential for developing the advanced reactor and the fast breeded reactor, while evaluated nuclear data from foreign countries have been used for nuclear data evaluation up to the present. As the result of carrying out this project, KAERI will retain an ability to evaluate nuclear data by his own efforts and this will satisfy the domestic request. Since a lot of qualified manpower are required for nuclear data evaluation, the collaboration with advanced foreign countries shall be accomplished. (Author)
Shore, S N; van den Heuvel, EPJ
1994-01-01
This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.
Nuclear reaction modeling, verification experiments, and applications
Energy Technology Data Exchange (ETDEWEB)
Dietrich, F.S.
1995-10-01
This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.
Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results
Samaras, N; 10.1613/jair.1776
2011-01-01
A non-binary Constraint Satisfaction Problem (CSP) can be solved directly using extended versions of binary techniques. Alternatively, the non-binary problem can be translated into an equivalent binary one. In this case, it is generally accepted that the translated problem can be solved by applying well-established techniques for binary CSPs. In this paper we evaluate the applicability of the latter approach. We demonstrate that the use of standard techniques for binary CSPs in the encodings of non-binary problems is problematic and results in models that are very rarely competitive with the non-binary representation. To overcome this, we propose specialized arc consistency and search algorithms for binary encodings, and we evaluate them theoretically and empirically. We consider three binary representations; the hidden variable encoding, the dual encoding, and the double encoding. Theoretical and empirical results show that, for certain classes of non-binary constraints, binary encodings are a competitive op...
Analytical model of strange star in the low-mass X-ray binary 4U 1820-30
Kalam, Mehedi; Rahaman, Farook; Molla, Sajahan; Jafry, Md. Abdul Kayum(Department of Physics, Shibpur Dinobundhoo Institution (College), 711102, Howrah , West Bengal, India); Hossein, Sk. Monowar
2014-01-01
In this article, we propose a model for a realistic strange star under Tolman VII metric (Tolman, Phys Rev 55:364, 1939 ). Here the field equations are reduced to a system of three algebraic equations for anisotropic pressure. Mass, central density and surface density of strange star in the low-mass X-ray binary 4U 1820-30 are matched with the observational data according to our model. Strange materials clearly satisfy the stability condition (i.e. sound velocities < 1) and TOV equation. H...
Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.
2007-07-01
Twenty years ago, the results of climate model simulations of the response to smoke and dust from a massive nuclear exchange between the superpowers could be summarized as "nuclear winter," with rapid temperature, precipitation, and insolation drops at the surface that would threaten global agriculture for at least a year. The global nuclear arsenal has fallen by a factor of three since then, but there has been an expansion of the number of nuclear weapons states, with additional states trying to develop nuclear arsenals. We use a modern climate model to reexamine the climate response to a range of nuclear wars, producing 50 and 150 Tg of smoke, using moderate and large portions of the current global arsenal, and find that there would be significant climatic responses to all the scenarios. This is the first time that an atmosphere-ocean general circulation model has been used for such a simulation and the first time that 10-year simulations have been conducted. The response to the 150 Tg scenario can still be characterized as "nuclear winter," but both produce global catastrophic consequences. The changes are more long-lasting than previously thought, however, because the new model, National Aeronautics and Space Administration Goddard Institute for Space Studies ModelE, is able to represent the atmosphere up to 80 km, and simulates plume rise to the middle and upper stratosphere, producing a long aerosol lifetime. The indirect effects of nuclear weapons would have devastating consequences for the planet, and continued nuclear arsenal reductions will be needed before the threat of nuclear winter is removed from the Earth.
Modeling fabrication of nuclear components: An integrative approach
Energy Technology Data Exchange (ETDEWEB)
Hench, K.W.
1996-08-01
Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.
Zu, Y. Q.; He, S.
2013-04-01
A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.
Benchmarking GEANT4 nuclear models for carbon-therapy at 95 MeV/A
Dudouet, J; Durand, D; Labalme, M
2013-01-01
In carbon-therapy, the interaction of the incoming beam with human tissues may lead to the production of a large amount of nuclear fragments and secondary light particles. An accurate estimation of the biological dose deposited into the tumor and the surrounding healthy tissues thus requires sophisticated simulation tools based on nuclear reaction models. The validity of such models requires intensive comparisons with as many sets of experimental data as possible. Up to now, a rather limited set of double di erential carbon fragmentation cross sections have been measured in the energy range used in hadrontherapy (up to 400 MeV/A). However, new data have been recently obtained at intermediate energy (95 MeV/A). The aim of this work is to compare the reaction models embedded in the GEANT4 Monte Carlo toolkit with these new data. The strengths and weaknesses of each tested model, i.e. G4BinaryLightIonReaction, G4QMDReaction and INCL++, coupled to two di fferent de-excitation models, i.e. the generalized evaporat...
Directory of Open Access Journals (Sweden)
Joshua A. Faber
2012-07-01
Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.
International Nuclear Model. Volume 2. Data base relationships
International Nuclear Information System (INIS)
This volume presents Data Base Relationships of the International Nuclear Model (INM), which was developed for the Nuclear and Alternate Fuels Division (NAFD), Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The International Nuclear Model (INM) is a comprehensive model of the commercial nuclear power industry. It simulates economic decision for reactor deployment and fuel management decisions based on an input set of technical, economic and scenario parameters. The technical parameters include reactor operating characteristics, fuel cycle timing and mass loss factors, and enrichment tails assays. Economic parameters include fuel cycle costs, financial data, and tax alternatives. INM has a broad range of scenario options covering, for example, process constraints, interregional activities, reprocessing, and fuel management selection. INM reports reactor deployment schedules, electricity generation, and fuel cycle requirements and costs. It also has specialized reports for extended burnup and permanent disposal. 8 refs., 22 figs
Infrared face recognition based on binary particle swarm optimization and SVM-wrapper model
Xie, Zhihua; Liu, Guodong
2015-10-01
Infrared facial imaging, being light- independent, and not vulnerable to facial skin, expressions and posture, can avoid or limit the drawbacks of face recognition in visible light. Robust feature selection and representation is a key issue for infrared face recognition research. This paper proposes a novel infrared face recognition method based on local binary pattern (LBP). LBP can improve the robust of infrared face recognition under different environment situations. How to make full use of the discriminant ability in LBP patterns is an important problem. A search algorithm combination binary particle swarm with SVM is used to find out the best discriminative subset in LBP features. Experimental results show that the proposed method outperforms traditional LBP based infrared face recognition methods. It can significantly improve the recognition performance of infrared face recognition.
Un-modeled search for black hole binary systems in the NINJA project
Cadonati, Laura; Fischetti, Sebastian; Guidi, Gianluca; Mohapatra, Satyanarayan R P; Sturani, Riccardo; Viceré, Andrea
2009-01-01
The gravitational wave signature from binary black hole coalescences is an important target for LIGO and VIRGO. The Numerical INJection Analysis (NINJA) project brought together the numerical relativity and gravitational wave data analysis communities, with the goal to optimize the detectability of these events. In its first instantiation, the NINJA project produced a simulated data set with numerical waveforms from binary black hole coalescences of various morphologies (spin, mass ratio, initial conditions), superimposed to Gaussian colored noise at the design sensitivity for initial LIGO and VIRGO. We analyzed this simulated data set with the Q-pipeline burst algorithm. This code, designed for the all-sky detection of gravitational wave bursts with minimal assumptions on the shape of the waveform, filters the data with a bank of sine-Gaussians, or sinusoids with Gaussian envelope. The algorithm's performance was compared to matched filtering with ring-down templates. The results are qualitatively consistent...
Attractive Interaction Between Pulses in a Model for Binary-Mixture Convection
Riecke, H
1995-01-01
Recent experiments on convection in binary mixtures have shown that the interaction between localized waves (pulses) can be repulsive as well as {\\it attractive} and depends strongly on the relative {\\it orientation} of the pulses. It is demonstrated that the concentration mode, which is characteristic of the extended Ginzburg-Landau equations introduced recently, allows a natural understanding of that result. Within the standard complex Ginzburg-Landau equation this would not be possible.
Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Lewis, J.; Barone, F; Li, T. G. F.; Libbrecht, K.
2014-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion mo...
Edwards, J B; Guilandoust, M
1980-01-01
Partial differential equations and boundary conditions are derived for the large-and-small-signal behaviour of compositions in an ideal, symmetrical spatially-continuous (packed) distillation column separating a binary mixture. A precise paramemtric transfer-function matrix (T.F.M.) for the system is derived completely analytically so allowing the calculation of parameters of the T.F.M. directly from those of the plant. It is shown that the correct choice of input and output vectors yields a ...
Pion Effect of Nuclear Matter in a Chiral Sigma Model
Institute of Scientific and Technical Information of China (English)
HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong
2009-01-01
We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.
Modeling of Nuclear Electric Propulsion System for Naval Application
Energy Technology Data Exchange (ETDEWEB)
Halimi, B.; Suh, K. Y. [Seoul National University, Seoul (Korea, Republic of)
2009-10-15
In a number of applications it is required to work for a long periods of time on the ocean, where supply of fuel is complicated and sometimes impossible. Moreover, high efficiency and compactness are the other important requirements in naval application. Therefore, an integrated nuclear electric propulsion system is the best choice to meet all of these requirements. In this paper, a modeling of nuclear electric propulsion for naval application is presented. The model adopted a long-term power system dynamics model to represent the dynamics of nuclear power part.
Radiation effects in a model ceramic for nuclear waste disposal
Devanathan, Ram; Weber, William J.
2007-04-01
The safe immobilization of nuclear waste in geological repositories is one of the major scientific challenges facing humanity today. Crystalline ceramics hold the promise of locking up actinides from nuclear fuel and excess weapons plutonium in their structure thereby isolating them from the environment. This paper presents the atomistic details of radiation damage in a model ceramic, zircon.
Radiation Effects in a Model Ceramic for Nuclear Waste Disposal
Energy Technology Data Exchange (ETDEWEB)
Devanathan, Ram; Weber, William J.
2007-04-02
The safe immobilization of nuclear waste in geological repositories is one of the major scientific challenges facing humanity today. Crystalline ceramics hold the promise of locking up actinides from nuclear fuel and excess weapons plutonium in their structure thereby isolating them from the environment. In this paper, we discuss the atomistic details of radiation damage in a model ceramic, zircon.
Probability of induced nuclear fission in diffusion model
International Nuclear Information System (INIS)
The apparatus of the fission diffusion model taking into account nonequilibrium stage of the process as applied to the description of the probability of induced nuclear fission is described. The results of calculation of the energy dependence of 212Po nuclear fissility according to the new approach are presented
Cokelaer, Thomas
2007-01-01
Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from ground-based interferometers. One of the key aspects of the detection process is the deployment of a set of templates, also called a template bank, to cover the astrophysically interesting region of the parameter space. In a companion paper, we described the template-bank algorithm used in the analysis of LIGO data to search for signals from non-spinning binaries made of neutron star and/or stellar-mass black holes; this template bank is based upon physical template families. In this paper, we describe the phenomenological template bank that was used to search for gravitational waves from non-spinning black hole binaries (from stellar mass formation) in the second, third and fourth LIGO science runs. We briefly explain the design of the bank, whose templates are based on a phenomenological detection template family. We show that this template bank gives matches greater than 95% with the physical t...
Coevolution of Binaries and Gaseous Discs
Fleming, David P
2016-01-01
The recent discoveries of circumbinary planets by $\\it Kepler$ raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc, and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc that drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for $10^4$ binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentri...
Modeling of Pu(IV) extraction and HNO3 speciation in nuclear fuel reprocessing
International Nuclear Information System (INIS)
The PUREX process is a solvent extraction method dedicated to the reprocessing of irradiated nuclear fuel in order to recover pure uranium and plutonium from aqueous solutions of concentrated nitric acid. The tri-n-butylphosphate (TBP) is used as the extractant in the organic phase. The aim of this thesis work was to improve the modeling of liquid-liquid extraction media in nuclear fuel reprocessing. First, Raman and 14N NMR measurements, coupled with theoretical calculations based on simple solutions theory and BIMSA modeling, were performed in order to get a better understanding of nitric acid dissociation in binary and ternary solutions. Then, Pu(IV) speciation in TBP after extraction from low nitric acid concentrations was investigated by EXAFS and vis-NIR spectroscopies. We were able to show evidence of the extraction of Pu(IV) hydrolyzed species into the organic phase. A new structural study was conducted on An(VI)/TBP and An(IV)/TBP complexes by coupling EXAFS measurements with DFT calculations. Finally, extraction isotherms modeling was performed on the Pu(IV)/HNO3/H2O/TBP 30%/dodecane system (with Pu at tracer scale) by taking into account deviation from ideal behaviour in both organic and aqueous phases. The best modeling was obtained when considering three plutonium (IV) complexes in the organic phase: Pu(OH)2(NO3)2(TBP)2, Pu(NO3)4(TBP)2 and Pu(NO3)4(TBP)3. (author)
Khan, Sebastian; Husa, Sascha; Hannam, Mark; Ohme, Frank; Pürrer, Michael; Forteza, Xisco Jiménez; Bohé, Alejandro
2016-02-01
We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of nonprecessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body-numerical-relativity waveforms up to mass ratios of 1 ∶18 and black-hole spins of |a /m |˜0.85 (0.98 for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1% against all 19 calibration hybrids and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produces physically reasonable results, although we recommend caution in assuming that any merger-ringdown waveform model is accurate outside its calibration region. As an example, we note that an alternative nonprecessing model, SEOBNRv2 (calibrated up to spins of only 0.5 for unequal-mass systems), exhibits mismatch errors of up to 10% for high spins outside its calibration region. We conclude that waveform models would benefit most from a larger number of numerical-relativity simulations of high-aligned-spin unequal-mass binaries.
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht;
2011-01-01
In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid......, alcohols and glycols) are considered, the importance of cross-association is investigated. The cross-association is accounted for either via combining rules or using a cross-solvation energy obtained from experimental spectroscopic or calorimetric data or from ab initio calculations. In both cases two...
Power systems with nuclear-electric generators - Modelling methods
International Nuclear Information System (INIS)
This is a vast analysis on the issue of sustainable nuclear power development with direct conclusions regarding the Nuclear Programme of Romania. The work is targeting specialists and decision making boards. Specific to the nuclear power development is its public implication, the public being most often misinformed by non-professional media. The following problems are debated thoroughly: - safety, nuclear risk, respectively, is treated in chapter 1 and 7 aiming at highlighting the quality of nuclear power and consequently paving the way to public acceptance; - the environment considered both as resource of raw materials and medium essential for life continuation, which should be appropriately protected to ensure healthy and sustainable development of human society; its analysis is also presented in chapter 1 and 7, where the problem of safe management of radioactive waste is addressed too; - investigation methods based on information science of nuclear systems, applied in carrying out the nuclear strategy and planning are widely analyzed in the chapter 2, 3 and 6; - optimizing the processes by following up the structure of investment and operation costs, and, generally, the management of nuclear units is treated in the chapter 5 and 7; - nuclear weapon proliferation as a possible consequence of nuclear power generation is treated as a legal issue. The development of Romanian NPP at Cernavoda, practically, the core of the National Nuclear Programme, is described in chapter 8. Actually, the originality of the present work consists in the selection and adaptation from a multitude of mathematical models applicable to the local and specific conditions of nuclear power plant at Cernavoda. The Romanian economy development and power development oriented towards reduction of fossil fuel consumption and protection of environment, most reliably ensured by the nuclear power, is discussed in the frame of the world trends of the energy production. Various scenarios are
Malzac, Julien
2016-07-01
Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.
Hillen, M; Van Winckel, H; Min, M; Gielen, C; Wevers, T; Mulders, G D; Regibo, S; Verhoelst, T
2014-01-01
The presence of disks and outflows is widespread among post-AGB binaries. In the first paper of this series, a surprisingly large fraction of optical light was found to be resolved in the 89 Her post-AGB system. The data showed this flux to arise from close to the central binary. Scattering off the inner rim of the circumbinary disk, or in a dusty outflow were suggested as two possible origins. With detailed dust radiative transfer models of the disk we aim to discriminate between these two configurations. By including Herschel/SPIRE photometry, we extend the SED such that it now fully covers UV to sub-mm wavelengths. The MCMax radiative transfer code is used to create a large grid of disk models. Our models include a self-consistent treatment of dust settling as well as of scattering. A Si-rich composition with two additional opacity sources, metallic Fe or amorphous C, are tested. The SED is fit together with mid-IR (MIDI) visibilities as well as the optical and near-IR visibilities of Paper I, to constrain...
A model for the expanding C 3 envelope of the Wolf-Rayet spectroscopic binary HD 152270
International Nuclear Information System (INIS)
A model is presented to explain the behaviour of the broad depression feature on top of the C 3 lambda 5696 emission line of the Wolf-Rayet (WR) spectroscopic binary HD 152270. The centre of the feature varies with the period of the orbital motion around the systemic velocity, but its width, measured through the distance of bordering emission peaks on the top of the line, varies with half the orbital period. In our model the expanding C 3 envelope of the WR star is perturbed in the section adjacent to the hot 0-type companion, causing an emission-free region and in turn the depression on the line top. The motion of the envelope is calculated with the help of the Monte Carlo method, taking into account radiation pressure and gravity but neglecting gas pressure and viscous forces. Then, for various phases, the carbon line profiles - as seen from the observer - are calculated by integration (cf. Neutsch 1979). The model is able not only to explain the variability of the depression feature - including line profile calculations - but in addition gives the basic physical parameters of the binary components. (author)
Seismic model of the nuclear boiler SPX2
International Nuclear Information System (INIS)
A model of the nuclear boiler SPX2 is proposed in this paper enabling to carry out comparative calculations on the response to seismic effects. The calculations are made in CISE and SEPTEN departments of Electricite de France
Applying Functional Modeling for Accident Management of Nuclear Power Plant
DEFF Research Database (Denmark)
Lind, Morten; Zhang, Xinxin
2014-01-01
The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...
Extraction of Nuclear Matter Properties from Nuclear Masses by a Model of Equation of State
Institute of Scientific and Technical Information of China (English)
K.C.Chung; C.S.Wang; A.J.Santiago
2001-01-01
The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei.It is shown that the volume energy a1 and the nuclear incompressibility Ko depend essentially on μnN -+- pZ - 2EN,whereas the symmetry energy J and the density symmetry coefficient L as well as symmetry incompressibility Ks depend essentially on μn - μp,where μp ＝μp - Ec/ Z,μn and μp are the neutron and proton chemical potentials respectively,EN the nuclear energy,and Ec the Coulomb energy.The obtained symmetry energy is J ＝ 28.5 MeV,while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.``
International Nuclear Information System (INIS)
This paper introduces a new method to illuminate the nuclear accident by Multilevel Flow Model, and based on the method, a web-based nuclear accident illumination system is proposed to represent the current nuclear accident in nuclear power plant of Japan in an understandable way. The MFM is a means-end and part-whole modeling method to describe the structure and the intention of a plant process. The relationship between the MFM functions enables accident prediction for a plant process. Thus, a web-based accident illumination system based by MFM can describe the nuclear accident in the nuclear power plant clearly and be accessed by public to make the public get to know and understand the nuclear power and nuclear risk. The public can build their own confidence of the nuclear power by their understanding of the nuclear accident with this system and this is helpful to build a harmonious development environment for nuclear power. (author)
Nuclear binding energies from a BPS Skyrme model
Adam, C.; Naya, C.; Sanchez-Guillen, J.(Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782, Spain); Wereszczynski, A.
2013-01-01
Recently, within the space of generalized Skyrme models, a BPS submodel was identified which reproduces some bulk properties of nuclear matter already on a classical level and, as such, constitutes a promising field theory candidate for the detailed and reliable description of nuclei and hadrons. Here we extend and further develop these investigations by applying the model to the calculation of nuclear binding energies. Concretely, we calculate these binding energies by including the classica...
First Gogny-Hartree-Fock-Bogoliubov nuclear mass model.
Goriely, S; Hilaire, S; Girod, M; Péru, S
2009-06-19
We present the first Gogny-Hartree-Fock-Bogoliubov (HFB) model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast with the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies are included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2149 measured masses is 798 keV. In addition, the new Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. PMID:19659002
Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy
International Nuclear Information System (INIS)
As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction and G4QMD are benchmarked together with some recently enhanced de-excitation models. For non-differential quantities, discrepancies of some tens of percent are found for both codes. For differential quantities, even larger deviations are found. Implications of these findings for the therapeutic use of carbon ions are discussed.
The Algol-Type Eclipsing Binary X Tri: BVRI modeling and O-C Diagram Analysis
Liakos, A.; Zasche, P.; Niarchos, P.
2010-12-01
CCD photometric observations of the Algol-type eclipsing binary X Tri have been obtained. The light curves are analyzed with the Wilson-Devinney (WD) code and new geometric and photometric elements are derived. A new O-C analysis of the system, based on the most reliable timings of minima found in the literature, is presented and apparent period changes are discussed with respect to possible and multiple Light-Time Effect (LITE) in the system. Moreover, the results for the existence of additional bodies around the eclipsing pair, derived from the period study, are compared with those for extra luminosity, derived from the light curve analysis.
The Algol type eclipsing binary X Tri: BVRI modelling and O-C diagram analysis
Liakos, A; Niarchos, P
2009-01-01
CCD photometric observations of the Algol-type eclipsing binary X Tri have been obtained. The light curves are analyzed with the Wilson-Devinney (WD) code and new geometric and photometric elements are derived. A new O-C analysis of the system, based on the most reliable timings of minima found in the literature, is presented and apparent period changes are discussed with respect to possible and multiple Light-Time Effect (LITE) in the system. Moreover, the results for the existence of additional bodies around the eclipsing pair, derived from the period study, are compared with those for extra luminosity, derived from the light curve analysis.
Accretion Disks Around Binary Black Holes: A Simple GR-Hybrid Evolution Model
Shapiro, Stuart L.
2013-01-01
We consider a geometrically thin, Keplerian disk in the orbital plane of a binary black hole (BHBH) consisting of a spinning primary and low-mass secondary (mass ratio q < 1). To account for the principle effects of general relativity (GR), we propose a modification of the standard Newtonian evolution equation for the (orbit-averaged) time-varying disk surface density. In our modified equation the viscous torque in the disk is treated in full GR, while the tidal torque is handled in the Newto...
Binary Popldation Synthcsis Study
Institute of Scientific and Technical Information of China (English)
HAN Zhanwen
2011-01-01
Binary population synthesis （BPS）, an approach to evolving millions of stars （including binaries） simultaneously, plays a crucial role in our understanding of stellar physics, the structure and evolution of galaxies, and cosmology. We proposed and developed a BPS approach, and used it to investigate the formation of many peculiar stars such as hot subdwarf stars, progenitors of type la supernovae, barium stars, CH stars, planetary nebulae, double white dwarfs, blue stragglers, contact binaries, etc. We also established an evolution population synthesis （EPS） model, the Yunnan Model, which takes into account binary interactions for the first time. We applied our model for the origin of hot subdwarf stars in the study of elliptical galaxies and explained their far-UV radiation.
Strassmeier, K. G.; Hall, D. S.; Henry, G. W.
1994-01-01
We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.
Yu, Yang; Schwartz, Stephen R; Naidu, Shantanu P; Benner, Lance A M
2016-01-01
An understanding of the post-impact dynamics of ejecta clouds are crucial to the planning of a kinetic impact mission to an asteroid, and also has great implications for the history of planetary formation. The purpose of this article to track the evolution of ejecta produced by AIDA mission, which targets for kinetic impact the secondary of near-Earth binary asteroid 65803 Didymos on 2022, and to feedback essential informations to AIDA's ongoing phase-A study. We present a detailed dynamic model for the simulation of an ejecta cloud from a binary asteroid that synthesizes all relevant forces based on a previous analysis of the mechanical environment. We apply our method to gain insight into the expected response of Didymos to the AIDA impact, including the subsequent evolution of debris and dust. The crater scaling relations from laboratory experiments are employed to approximate the distributions of ejecta mass and launching speed. The size composition of fragments is modeled with a power law fitted from obs...
Monte Carlo Numerical Models for Nuclear Logging Applications
Directory of Open Access Journals (Sweden)
Fusheng Li
2012-06-01
Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models
Relativistic Mean-Field Hadronic Models under Nuclear Matter Constraints
Dutra, M; Avancini, S S; Carlson, B V; Delfino, A; Menezes, D P; Providência, C; Typel, S; Stone, J R
2014-01-01
Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality and, therefore, no problems related to superluminal speed of sound. With the aim of identifying the models which best satisfy well known properties of nuclear matter, we have analyzed 263 parameterizations of seven different types of RMF models under three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives. One of these (SET1) is formed of the same constraints used in a recent work in which we analyzed 240 Skyrme parameterizations. The results pointed to 2 models consistent with all constraints. Using another set of constraints, namely, SET2a, formed by the updated versions of the previous one, we found 4 models approved simultan...
Nuclear Mass Dependence of Chaotic Dynamics in Ginocchio Model
Yoshinaga, Naotaka; Yoshida, Nobuaki; Shigehara, Takaomi; Cheon, Taksu
1995-01-01
The chaotic dynamics in nuclear collective motion is studied in the framework of a schematic shell model which has only monopole and quadrupole degrees of freedom. The model is shown to reproduce the experimentally observed global trend toward less chaotic motion in heavier nuclei. The relation between current approach and the earlier studies with bosonic models is discussed.
A simple polymeric model describes cell nuclear mechanical response
Banigan, Edward; Stephens, Andrew; Marko, John
The cell nucleus must continually resist inter- and intracellular mechanical forces, and proper mechanical response is essential to basic cell biological functions as diverse as migration, differentiation, and gene regulation. Experiments probing nuclear mechanics reveal that the nucleus stiffens under strain, leading to two characteristic regimes of force response. This behavior depends sensitively on the intermediate filament protein lamin A, which comprises the outer layer of the nucleus, and the properties of the chromatin interior. To understand these mechanics, we study a simulation model of a polymeric shell encapsulating a semiflexible polymer. This minimalistic model qualitatively captures the typical experimental nuclear force-extension relation and observed nuclear morphologies. Using a Flory-like theory, we explain the simulation results and mathematically estimate the force-extension relation. The model and experiments suggest that chromatin organization is a dominant contributor to nuclear mechanics, while the lamina protects cell nuclei from large deformations.
Infrastructure development assistance modeling for nuclear power plant
International Nuclear Information System (INIS)
The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to
Noll, K S; Chiang, E I; Margot, J L; Kern, S D; Noll, Keith S.; Grundy, William M.; Chiang, Eugene I.; Margot, Jean-Luc; Kern, Susan D.
2007-01-01
Binaries have played a crucial role many times in the history of modern astronomy and are doing so again in the rapidly evolving exploration of the Kuiper Belt. The large fraction of transneptunian objects that are binary or multiple, 48 such systems are now known, has been an unanticipated windfall. Separations and relative magnitudes measured in discovery images give important information on the statistical properties of the binary population that can be related to competing models of binary formation. Orbits, derived for 13 systems, provide a determination of the system mass. Masses can be used to derive densities and albedos when an independent size measurement is available. Angular momenta and relative sizes of the majority of binaries are consistent with formation by dynamical capture. The small satellites of the largest transneptunian objects, in contrast, are more likely formed from collisions. Correlations of the fraction of binaries with different dynamical populations or with other physical variabl...
Institute of Scientific and Technical Information of China (English)
GuoqingWang; YingkeTan; 等
1996-01-01
A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtrues.A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes.Using the general model and the bubble growth model for pure liquids,an analyticasl model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.
Relativistic Mean-Field Models and Nuclear Matter Constraints
Dutra, M; Carlson, B V; Delfino, A; Menezes, D P; Avancini, S S; Stone, J R; Providência, C; Typel, S
2013-01-01
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear \\sigma^3+\\sigma^4 models, (iii) \\sigma^3+\\sigma^4+\\omega^4 models, (iv) models containing mixing terms in the fields \\sigma and \\omega, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the \\sigma (\\omega) field. The isospin dependence of the interaction is modeled by the \\rho meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Relativistic mean-field models and nuclear matter constraints
Dutra, M.; Lourenço, O.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Avancini, S. S.; Stone, J. R.; Providência, C.; Typel, S.
2013-05-01
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear σ3 + σ4 models, (iii) σ3 + σ4 + ω4 models, (iv) models containing mixing terms in the fields σ and ω, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the σ (ω) field. The isospin dependence of the interaction is modeled by the ρ meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Quantum cluster equilibrium model of N-methylformamide–water binary mixtures
Energy Technology Data Exchange (ETDEWEB)
Domaros, Michael von; Kirchner, Barbara, E-mail: kirchner@thch.uni-bonn.de [Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn (Germany); Jähnigen, Sascha [Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Germany); Friedrich, Joachim [Technische Universität Chemnitz, Straße der Nationen 62, D-09111 Chemnitz (Germany)
2016-02-14
The established quantum cluster equilibrium (QCE) approach is refined and applied to N-methylformamide (NMF) and its aqueous solution. The QCE method is split into two iterative cycles: one which converges to the liquid phase solution of the QCE equations and another which yields the gas phase. By comparing Gibbs energies, the thermodynamically stable phase at a given temperature and pressure is then chosen. The new methodology avoids metastable solutions and allows a different treatment of the mean-field interactions within the gas and liquid phases. These changes are of crucial importance for the treatment of binary mixtures. For the first time in a QCE study, the cis-trans-isomerism of a species (NMF) is explicitly considered. Cluster geometries and frequencies are calculated using density functional theory (DFT) and complementary coupled cluster single point energies are used to benchmark the DFT results. Independent of the selected quantum-chemical method, a large set of clusters is required for an accurate thermodynamic description of the binary mixture. The liquid phase of neat NMF is found to be dominated by the cyclic trans-NMF pentamer, which can be interpreted as a linear trimer that is stabilized by explicit solvation of two further NMF molecules. This cluster reflects the known hydrogen bond network preferences of neat NMF.
International Nuclear Information System (INIS)
Research highlights: → (Vapor + liquid) equilibria of three (CO2 + C5 alcohol) binary systems were measured. → Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. → No liquid immiscibility was observed at the temperatures and pressures studied. → Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. → Correlation results showed relative deviations ≤8 % (liquid) and ≤2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO2 + 3-methyl-2-butanol), (CO2 + 2-pentanol), and (CO2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.
Rotational mixing in close binaries
de Mink, S E; Langer, N; Yoon, S -Ch; Brott, I; Glebbeek, E; Verkoulen, M; Pols, O R
2008-01-01
Rotational mixing is a very important but uncertain process in the evolution of massive stars. We propose to use close binaries to test its efficiency. Based on rotating single stellar models we predict nitrogen surface enhancements for tidally locked binaries. Furthermore we demonstrate the possibility of a new evolutionary scenario for very massive (M > 40 solar mass) close (P < 3 days) binaries: Case M, in which mixing is so efficient that the stars evolve quasi-chemically homogeneously, stay compact and avoid any Roche-lobe overflow, leading to very close (double) WR binaries.
Development of real options model for nuclear power plants
International Nuclear Information System (INIS)
As the Japanese electricity market is deregulated, it becomes more important for electric utilities to recognize their financial risks and to adopt strategic and scientific decision making methodology. We have developed two models for valuation of Japanese nuclear power plants to support utilities' decision making. One is a net present value (NPV) model using discounted cash flow analysis method. Another is a real options model. This model is based on strict financial technology theory and can calculate value of early retirement, life extension and new unit addition options of nuclear units under electricity price uncertainty. This can also derive an optimal period for retirement, life extension and new unit addition. (author)
Sturmfels, Bernd
2011-01-01
Algebraic statistics for binary random variables is concerned with highly structured algebraic varieties in the space of 2x2x...x2-tensors. We demonstrate the advantages of representing such varieties in the coordinate system of binary cumulants. Our primary focus lies on hidden subset models. Parametrizations and implicit equations in cumulants are derived for hyperdeterminants, for secant and tangential varieties of Segre varieties, and for certain context-specific independence models. Extending work of Rota and collaborators, we explore the polynomial inequalities satisfied by cumulants.
Neunteufel, P; Langer, N
2016-01-01
Type Ia supernovae (SNe Ia) have been an important tool for astronomy for quite some time; however, the nature of their progenitors remains somewhat mysterious. Recent theoretical studies indicated the possibility of producing thermonuclear detonations of carbon-oxygen white dwarfs (CO WDs) at masses less than the Chandrasekhar mass through accretion of helium-rich matter, which would, depending on mass accretion rate, mass, and initial temperature of the WD, spectrally resemble either a normal SN Ia or a peculiar one. This study aims to further resolve the state of binary systems comprised of a sub-Chandrasekhar-mass CO WD and a helium star at the point where an accretion-induced detonation occurs and constrains the part of the initial parameter space where this kind of phenomenon is possible. Preexisting data obtained through simulations of single, constantly accreting CO WDs is used as an indicator for the behavior of new binary models in which the WD is treated as a point mass and which include the non-de...
Hutmacher, Matthew M
2016-06-01
Longitudinal models of binary or ordered categorical data are often evaluated for adequacy by the ability of these to characterize the transition frequency and type between response states. Drug development decisions are often concerned with accurate prediction and inference of the probability of response by time and dose. A question arises on whether the transition probabilities need to be characterized adequately to ensure accurate response prediction probabilities unconditional on the previous response state. To address this, a simulation study was conducted to assess bias in estimation, prediction and inferences of autocorrelated latent variable models (ALVMs) when the transition probabilities are misspecified due to ill-posed random effects structures, inadequate likelihood approximation or omission of the autocorrelation component. The results may be surprising in that these suggest that characterizing autocorrelation in ALVMs is not as important as specifying a suitably rich random effects structure. PMID:27007275
DEFF Research Database (Denmark)
Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.
1991-01-01
A two-dimensional Monte Carlo simulation method based on the NpT ensemble and the Voronoi tesselation, which was previously developed for single-species hard-disk systems, is extended, along with a version of scaled-particle theory, to many-component mixtures. These systems are unusual in the sense...... that their composition is not fixed, but rather determined by a set of internal degeneracies assigned to the differently sized hard disks, where the larger disks have the higher degeneracies. Such systems are models of monolayers of molecules with internal degrees of freedom. The combined set of translational...... by the method in the case of a binary mixture, and results are presented for varying disk-size ratios and degeneracies. The results are also compared with the predictions of the extended scaled-particle theory. Applications of the model are discussed in relation to lipid monolayers spread on air-water...
Modeling of the core of Atucha II nuclear power plant
International Nuclear Information System (INIS)
This work is part of a Nuclear Engineer degree thesis of the Instituto Balseiro and it is carried out under the development of an Argentinean Nuclear Power Plant Simulator. To obtain the best representation of the reactor physical behavior using the state of the art tools this Simulator should couple a 3D neutronics core calculation code with a thermal-hydraulics system code. Focused in the neutronic nature of this job, using PARCS, we modeled and performed calculations of the nuclear power plant Atucha 2 core. Whenever it is possible, we compare our results against results obtained with PUMA (the official core code for Atucha 2). (author)
Methodology and preliminary models for analyzing nuclear-safeguards decisions
International Nuclear Information System (INIS)
This report describes a general analytical tool designed with Lawrence Livermore Laboratory to assist the Nuclear Regulatory Commission in making nuclear safeguards decisions. The approach is based on decision analysis - a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material; demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria); and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant
Directory of Open Access Journals (Sweden)
Albaiti Albaiti
2016-04-01
Full Text Available N-hexane and methanol systen is one example of a binary system that shows the solubility properties of reciprocity. This study aimed to assess the mental model of a n-hexane-methanolbinary system. Interaction at the submicroscopic level between n-hexane and methanol molecules is described in the form of mental model. Penelitian ini menggunakan cloud point method untuk memperoleh data kesetimbangan cair-cair sistem n-heksana-metanol. This study used a cloud point method to obtain data on liquid-liquid equilibrium on the system of n-hexane-methanol. Research data showed the maximum critical temperature (above the consolute temperature of this system was at 42.95 °C with Xmethanol = 0.475 (P= 715 mmHg. Data from the laboratory observations was representedas a symbolic level in the form of the curve of correlation between mole fraction of methanol with temperature in a phase diagram system of n-hexane-methanol. The curve that was formed was asymmetric. It indicated that the solubility of n-hexane in methanol was relatively small compared to the solubility of methanol in n-hexane. Mental model of the binary system of n-hexane-methanol in four curve areasin the form of visualization of the interaction between n-hexane and methanol molecules through London force. In thermodynamics, each component had the same chemical potential inboth phases at equilibrium state. This study results could have a contribution to form a mental model on the student as the prospective chemistry subject teachers.
Investigations of instabilities in nuclear matter in stochastic relativistic models
Energy Technology Data Exchange (ETDEWEB)
Ayik, S., E-mail: ayik@tntech.edu [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Yilmaz, O.; Acar, F.; Danisman, B. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey); Er, N. [Physics Department, Abant Izzet Baysal University, Bolu (Turkey); Gokalp, A. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey)
2011-06-01
The spinodal instabilities for symmetric nuclear matter at finite temperature are studied within different relativistic mean-field models in the semi-classical approximation and the relativistic results are compared with Skyrme type non-relativistic calculations. Qualitatively similar results appear in the unstable response of the system in both non-relativistic and relativistic descriptions. Furthermore, the early growth of baryon, scalar and current density correlation functions are calculated for hot symmetric nuclear matter.
Intermediate-mass-ratio black hole binaries II: Modeling Trajectories and Gravitational Waveforms
Nakano, Hiroyuki; Lousto, Carlos O; Campanelli, Manuela
2011-01-01
We revisit the scenario of small-mass-ratio (q) black-hole binaries; performing new, more accurate, simulations of mass ratios 10:1 and 100:1 for initially nonspinning black holes. We propose fitting functions for the trajectories of the two black holes as a function of time and mass ratio (in the range 1/100 < q < 1/10$) that combine aspects of post-Newtonian trajectories at smaller orbital frequencies and plunging geodesics at larger frequencies. We then use these trajectories to compute waveforms via black hole perturbation theory. Using the advanced LIGO noise curve, we see a match of ~99.5% for the leading (l,m)=(2,2) mode between the numerical relativity and perturbative waveforms. Nonleading modes have similarly high matches. We thus prove the feasibility of efficiently generating a bank of gravitational waveforms in the intermediate-mass-ratio regime using only a sparse set of full numerical simulations.
Intermediate-mass-ratio black hole binaries. II. Modeling trajectories and gravitational waveforms
Nakano, Hiroyuki; Zlochower, Yosef; Lousto, Carlos O.; Campanelli, Manuela
2011-12-01
We revisit the scenario of small-mass-ratio (q) black hole binaries; performing new, more accurate, simulations of mass ratios 10:1 and 100:1 for initially nonspinning black holes. We propose fitting functions for the trajectories of the two black holes as a function of time and mass ratio (in the range 1/100≤q≤1/10) that combine aspects of post-Newtonian trajectories at smaller orbital frequencies and plunging geodesics at larger frequencies. We then use these trajectories to compute waveforms via black hole perturbation theory. Using the advanced LIGO noise curve, we see a match of ˜99.5% for the leading (ℓ,m)=(2,2) mode between the numerical relativity and perturbative waveforms. Nonleading modes have similarly high matches. We thus prove the feasibility of efficiently generating a bank of gravitational waveforms in the intermediate-mass-ratio regime using only a sparse set of full numerical simulations.
International Nuclear Information System (INIS)
An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at 2 + 1-propanol), (CO2 + 2-methyl-1-propanol), (CO2 + 3-methyl-1-butanol), and (CO2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.
EMG Diagnosis via AR Modeling and Binary Support Vector Machine Classification
Directory of Open Access Journals (Sweden)
GURMANIK KAUR,
2010-06-01
Full Text Available There are more than 100 neuromuscular disorders that affect the brain, spinal cord, nerves and muscles. Many of these diseases are hereditary and life expectancy of many sufferers is considerably reduced. Early detection and diagnosis of these diseases by clinical examination and laboratory tests is essential for their management as well as their prevention through prenatal diagnosis and genetic counselling. Such information is also useful in research which may lead to the understanding of the nature and eventual treatment of these diseases. Laboratory investigations include neurophysiological tests, nerve and muscle biopsies, biochemical analysis and more recently DNA analysis for the localization and identification of genes. Electromyographic examination studies the electrical activity of the muscle and forms a valuable neurophysiological test for the assessment of neuromuscular disorders. The shapes and firing rates of the motor unit action potentials (MUAPs in an EMG signal provide an important source of information for the diagnosis of neuromuscular disorders. In order to extract this information from the EMG signals recorded at low to moderate force levels, it is required to identify and classify the MUAPs composing the EMG signal. The identification of possible MUAPs is done by segmentation of EMG signal using hreshold technique. The identified MUAPs are clustered using a statistical pattern recognition technique. After extraction of autoregressive (AR features, MUAPs are classified using binary support vector machine (SVM classifier. A total of 12 EMG signals obtained from 3 normal (NOR, 5 myopathic (MYO and 4 motor neuron diseased (MND subjects were analyzed. The classification accuracy of binary SVM with AR features is 100%. In conclusion, the methodology described in this work make possible the development of a fully automatic electromyogram (EMG signal analysis which is accurate, simple, fast and reliable enough to be used in routine
Modelling and modal properties of nuclear fuel assembly
Directory of Open Access Journals (Sweden)
Zeman V.
2011-12-01
Full Text Available The paper deals with the modelling and modal analysis of the hexagonal type nuclear fuel assembly. This very complicated mechanical system is created from the many beam type components shaped into spacer grids. The cyclic and central symmetry of the fuel rod package and load-bearing skeleton is advantageous for the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and skeleton linked by several spacer grids in horizontal planes. The derived mathematical model is used for the modal analysis of the Russian TVSA-T fuel assembly and validated in terms of experimentally determined natural frequencies, modes and static deformations caused by lateral force and torsional couple of forces. The presented model is the first necessary step for modelling of the nuclear fuel assembly vibration caused by different sources of excitation during the nuclear reactor VVER type operation.
Reexamination of the variable moment of inertia nuclear softness model
International Nuclear Information System (INIS)
The three parameter variable moment of inertia (VMI) nuclear softness model named VMINS3 is shown to be adequate in reproducing the main features of the VMI model. Its failure for deformed nuclei reported by earlier workers is shown to be the result of a wrong approach in the calculation. The variation of the softness parameter σ and of the stretching parameter K=((1)/(2))Cθ02 with increasing deformation of the nuclear core is now consistent with results of the variable moment of inertia model. copyright 1997 The American Physical Society
Dependence of X-ray Burst Models on Nuclear Masses
Schatz, H
2016-01-01
X-ray burst model predictions of light curves and final composition of the nuclear ashes are affected by uncertain nuclear physics. Nuclear masses play an important role. Significant progress has been made in measuring the masses of very neutron deficient rare isotopes along the path of the rapid proton capture process (rp-process) in X-ray bursts. This paper identifies the remaining nuclear mass uncertainties in X-ray burst models using a one zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated - a typical mixed H/He burst with a limited rp-process and an extreme mixed H/He burst with an extended rp-process. Only three remaining nuclear mass uncertainties affect the light curve predictions of a typical H/He burst, and only three additional masses affect the composition strongly. A larger number of mass uncertainties remains to be addressed for the extreme H/He burst. Mass uncertainties of better than...
Joint modeling of cell and nuclear shape variation.
Johnson, Gregory R; Buck, Taraz E; Sullivan, Devin P; Rohde, Gustavo K; Murphy, Robert F
2015-11-01
Modeling cell shape variation is critical to our understanding of cell biology. Previous work has demonstrated the utility of nonrigid image registration methods for the construction of nonparametric nuclear shape models in which pairwise deformation distances are measured between all shapes and are embedded into a low-dimensional shape space. Using these methods, we explore the relationship between cell shape and nuclear shape. We find that these are frequently dependent on each other and use this as the motivation for the development of combined cell and nuclear shape space models, extending nonparametric cell representations to multiple-component three-dimensional cellular shapes and identifying modes of joint shape variation. We learn a first-order dynamics model to predict cell and nuclear shapes, given shapes at a previous time point. We use this to determine the effects of endogenous protein tags or drugs on the shape dynamics of cell lines and show that tagged C1QBP reduces the correlation between cell and nuclear shape. To reduce the computational cost of learning these models, we demonstrate the ability to reconstruct shape spaces using a fraction of computed pairwise distances. The open-source tools provide a powerful basis for future studies of the molecular basis of cell organization. PMID:26354424
Interacting boson models of nuclear and nucleon structure
Bijker, R
1998-01-01
Interacting boson models provide an elegant and powerful method to describe collective excitations of complex systems by introducing a set of effective degrees of freedom. We review the interacting boson model of nuclear structure and discuss a recent extension to the nucleon and its excited states.
Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems
Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel
2007-01-01
Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.
Ryan, Keegan; Nakajima, Miki; Stevenson, David J.
2014-11-01
Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.
DEFF Research Database (Denmark)
Keiding, Hans; Peleg, Bezalel
2006-01-01
is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...
Health effects models for nuclear power plant accident consequence analysis
International Nuclear Information System (INIS)
The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model
Cho, Hee-Suk
2015-01-01
The phenomenological gravitational waveform models, i.e. the PhenomA, the PhenomB and the PhenomC, generate full inspiral-merger-ringdown waveforms of coalescing binary back holes (BBHs). These models are defined in the Fourier domain and thus can be used for fast matched filtering in the gravitational wave search. The PhenomA has been developed for nonspinning BBH waveforms, while the PhenomB and the PhenomC can model the nonprecessing BBH waveforms. In this work, we study the validity of the phenomenological models for nonspinning BBH searches at low masses, $m_{1,2}\\geq 4 M_{sun}$ and $m_1+m_2\\equiv M \\leq 30 M_{sun}$, with Advanced LIGO sensitivity. As our complete signal waveform model, we adopt the EOBNRv2 that is a time domain inspiral-merger-ringdown waveform model. To investigate the search efficiency of the phenomenological templates, we calculate fitting factors by exploring overlap surfaces. We find that only the PhenomC is valid to obtain the fitting factors better than 0.97 in the mass range of ...
Neunteufel, P.; Yoon, S.-C.; Langer, N.
2016-05-01
Context. Type Ia supernovae (SNe Ia) have been an important tool for astronomy for quite some time; however, the nature of their progenitors remains somewhat mysterious. Recent theoretical studies indicated the possibility of producing thermonuclear detonations of carbon-oxygen white dwarfs (CO WDs) at masses less than the Chandrasekhar mass through accretion of helium-rich matter, which would, depending on mass accretion rate, mass, and initial temperature of the WD, spectrally resemble either a normal SN Ia or a peculiar one. Aims: This study aims to further resolve the state of binary systems comprised of a sub-Chandrasekhar-mass CO WD and a helium star at the point where an accretion-induced detonation occurs and constrains the part of the initial parameter space where this kind of phenomenon is possible. Methods: Preexisting data obtained through simulations of single, constantly accreting CO WDs is used as an indicator for the behavior of new binary models in which the WD is treated as a point mass and which include the non-degenerate partner as a fully resolved stellar model. We parameterize the ignition of the accumulated helium layer, changes in the WD temperature, and changes in the CO core mass depending on the mass transfer rate. Results: The initial conditions allowing for detonation do not form a single contiguous area in the parameter space, whose shape is profoundly influenced by the behavior of the donor star. Mass loss due to Nova outbursts acts in favor of detonation. According to our criteria, about 10% of the detonations in this study can be expected to show spectra consistent with ordinary SNe Ia; the rest exhibit peculiar features.
Multifragmentation-evaporation model for intermediate energy nuclear collisions
International Nuclear Information System (INIS)
The processes of production of nuclear fragments are discussed in the framework of a two stage - two regime model. In the first stage a piece of excited nuclear matter is created. Its excitation energy depends on the number of target- projectile nucleon-nucleon collisions. In a second stage it decays following two possible mechanisms, depending on the initial excitation energy. The number of fragments produced is correlated with the number of primary nucleon-nucleon collisions. The observed dependence of the mass yield distributions on the target, projectile and bombarding energy are well accounted by the model. (orig.)
HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model
Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous
1993-01-01
Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.
On modelling nuclear reactions in meteorites
Ustinova, G. K.; Lavrukhina, A. K.
1993-01-01
An original method of experimental modeling depth distribution of radionuclides in sphere thick targets irradiated by protons in 4(pi)-geometry on JINR (Dubna) synchrocyclotron is described. Some results are presented.
Modelling Nuclear Effects in Neutrino Scattering
Leitner, T; Mosel, U
2006-01-01
We have developed a model to describe the interactions of neutrinos with nucleons and nuclei via charged and neutral currents, focusing on the region of the quasielastic and Delta(1232) peaks. For neutrino nucleon collisions a fully relativistic formalism is used. The extension to finite nuclei has been done in the framework of a coupled-channel BUU transport model where we have studied exclusive channels taking into account in-medium effects and final state interactions.
New VI photometry of the sdOB binary AA Dor and an improved photometric model
Hilditch, R W; Lynas-Gray, A E; Hill, G
2003-01-01
New VI CCD photometry, obtained with integration times of 20s, of the sdOB+degenerate-dwarf eclipsing binary system AA Dor has provided new complete light curves with an rms scatter about a mean curve of +/-0.004 mag. These data are analysed with an improved Light2 light curve synthesis code to yield more accurate determinations of the radii of both stars, the orbital inclination, and the flux ratio between the two components. These radii are only a little different from the values derived 25 years ago from less complete data, but the uncertainties on these values are improved by a factor of two. The apparent discrepancy remains between the surface gravity of the sdOB primary star obtained from the light-curve solution with the published spectroscopic orbit and that obtained from NLTE analysis of high-resolution spectra of the sdOB star. The substantial reflection effect in the system is adequately represented by the Light2 code with a bolometric albedo of unity in light curves extending from 0.35 microns to ...
Discovery and modelling of disc precession in the M31 X-ray binary Bo 158?
Barnard, R; Haswell, C A; Kolb, U; Murray, J R
2005-01-01
The low mass X-ray binary (LMXB) associated with the M31 globular cluster Bo 158 is known to exhibit intensity dips on a ~2.78 hr period. This is due to obscuration of the X-ray source on the orbital period by material on the outer edge of the accretion disc. However, the depth of dipping varied from <10% to \\~83% in three archival XMM-Newton observations of Bo 158. Previous work suggested that the dip depth was anticorrelated with the X-ray luminosity. However, we present results from three new XMM-Newton observations that suggest that the evolution of dipping is instead due to precession of the accretion disc. Such precession is expected in neutron star LMXBs with mass ratios <0.3 (i.e. with orbital periods <4 hr), such as the Galactic dipping LMXB 4U 1916-053. We simulated the accretion disc of Bo 158 using cutting-edge 3D smoothed particle hydrodynamics (SPH), and using the observed parameters. Our results show disc variability on two time-scales. The disc precesses in a prograde direction on a p...
Energy Technology Data Exchange (ETDEWEB)
Roux, P
2005-12-15
This work deals with the modelling of dendritic solidification in binary mixtures. Large scale phenomena are represented by volume averaging of the local conservation equations. This method allows to rigorously derive the partial differential equations of averaged fields and the closure problems associated to the deviations. Such problems can be resolved numerically on periodic cells, representative of dendritic structures, in order to give a precise evaluation of macroscopic transfer coefficients (Drag coefficients, exchange coefficients, diffusion-dispersion tensors...). The method had already been applied for a model of columnar dendritic mushy zone and it is extended to the case of equiaxed dendritic solidification, where solid grains can move. The two-phase flow is modelled with an Eulerian-Eulerian approach and the novelty is to account for the dispersion of solid velocity through the kinetic agitation of the particles. A coupling of the two models is proposed thanks to an original adaptation of the columnar model, allowing for undercooling calculation: a solid-liquid interfacial area density is introduced and calculated. At last, direct numerical simulations of crystal growth are proposed with a diffuse interface method for a representation of local phenomena. (author)
Roxin, Alex; Hakim, Vincent; Brunel, Nicolas
2008-10-15
Calcium imaging of the spontaneous activity in cortical slices has revealed repeating spatiotemporal patterns of transitions between so-called down states and up states (Ikegaya et al., 2004). Here we fit a model network of stochastic binary neurons to data from these experiments, and in doing so reproduce the distributions of such patterns. We use two versions of this model: (1) an unconnected network in which neurons are activated as independent Poisson processes; and (2) a network with an interaction matrix, estimated from the data, representing effective interactions between the neurons. The unconnected model (model 1) is sufficient to account for the statistics of repeating patterns in 11 of the 15 datasets studied. Model 2, with interactions between neurons, is required to account for pattern statistics of the remaining four. Three of these four datasets are the ones that contain the largest number of transitions, suggesting that long datasets are in general necessary to render interactions statistically visible. We then study the topology of the matrix of interactions estimated for these four datasets. For three of the four datasets, we find sparse matrices with long-tailed degree distributions and an overrepresentation of certain network motifs. The remaining dataset exhibits a strongly interconnected, spatially localized subgroup of neurons. In all cases, we find that interactions between neurons facilitate the generation of long patterns that do not repeat exactly.
Accretion vs colliding wind models for the gamma-ray binary LS I +61 303: an assessment
Romero, G E; Orellana, M; Owocki, S P
2007-01-01
LS I +61 303 is a puzzling Be/X-ray binary with variable gamma-ray emission at up TeV energies. The nature of the compact object and the origin of the high-energy emission are unclear. One family of models invokes particle acceleration in shocks from the collision between the B-star wind and a relativistic pulsar wind, while another centers on a relativistic jet powered by accretion. Recent high-resolution radio observations showing a putative "cometary tail" pointing away from the Be star near periastron have been cited as support for the pulsar-wind model. We wish here to carry out a quantitative assessment of these competing models for this extraordinary source. We apply a 3D SPH code for dynamical simulations of both the pulsar-wind-interaction and accretion-jet models. The former yields a description of the shape of the wind-wind interaction surface. The latter provides an estimation of the accretion rate. The results allow critical evaluation of how the two distinct models confront the data in various w...
Stochastic modeling of deterioration in nuclear power plant components
Yuan, Xianxun
2007-12-01
The risk-based life-cycle management of engineering systems in a nuclear power plant is intended to ensure safe and economically efficient operation of energy generation infrastructure over its entire service life. An important element of life-cycle management is to understand, model and forecast the effect of various degradation mechanisms affecting the performance of engineering systems, structures and components. The modeling of degradation in nuclear plant components is confounded by large sampling and temporal uncertainties. The reason is that nuclear systems are not readily accessible for inspections due to high level of radiation and large costs associated with remote data collection methods. The models of degradation used by industry are largely derived from ordinary linear regression methods. The main objective of this thesis is to develop more advanced techniques based on stochastic process theory to model deterioration in engineering components with the purpose of providing more scientific basis to life-cycle management of aging nuclear power plants. This thesis proposes a stochastic gamma process (GP) model for deterioration and develops a suite of statistical techniques for calibrating the model parameters. The gamma process is a versatile and mathematically tractable stochastic model for a wide variety of degradation phenomena, and another desirable property is its nonnegative, monotonically increasing sample paths. In the thesis, the GP model is extended by including additional covariates and also modeling for random effects. The optimization of age-based replacement and condition-based maintenance strategies is also presented. The thesis also investigates improved regression techniques for modeling deterioration. A linear mixed-effects (LME) regression model is presented to resolve an inconsistency of the traditional regression models. The proposed LME model assumes that the randomness in deterioration is decomposed into two parts: the unobserved
Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond
Arnould, M.; Goriely, S.
2006-10-01
Astrophysics is in need of a broad variety of nuclear data. This concerns static ground state properties, characteristics of excited nuclei, spontaneous decay properties, or interactions of nuclei with (mainly) nucleons, α-particles or photons. A strong theoretical activity complementing laboratory efforts is also mandatory. A large variety of highly ‘exotic’ laboratory-unreachable nuclei are indeed involved in the astrophysics modelling. Even when laboratory-studied nuclei are considered, theory has very often to be called for. Mastering the huge volume of nuclear information and making it available in an accurate and usable form for incorporation into astrophysics models is clearly of pivotal importance. The recognition of this necessity has been the driving motivation for the construction of the Brussels library (BRUSLIB) of computed data of astrophysics relevance. It provides an extended information in tabular form on masses, nuclear level densities and partition functions, fission barriers, and thermonuclear reaction rates. In addition of the unprecedented broadness of its scope, BRUSLIB has the unique and most important feature of relying to the largest possible extent on global and coherent microscopic nuclear models. The models of this sort that we have developed to predict the basic properties of the nuclei and of their interactions are briefly reviewed. The content of the BRUSLIB library that relies on these models is described, as well as a user-friendly nuclear network generator (NETGEN) complementing BRUSLIB. Finally, an application of BRUSLIB and NETGEN to the p-process nucleosynthesis during He detonation in sub-Chandrasekhar CO white dwarfs is proposed.
Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond
Energy Technology Data Exchange (ETDEWEB)
Arnould, M. [Institut d Astronomie et d Astrophysique, CP 226, Universite Libre de Bruxelles, 1050 Brussels (Belgium)]. E-mail: marnould@astro.ulb.ac.be; Goriely, S. [Institut d Astronomie et d Astrophysique, CP 226, Universite Libre de Bruxelles, 1050 Brussels (Belgium)
2006-10-17
Astrophysics is in need of a broad variety of nuclear data. This concerns static ground state properties, characteristics of excited nuclei, spontaneous decay properties, or interactions of nuclei with (mainly) nucleons, {alpha}-particles or photons. A strong theoretical activity complementing laboratory efforts is also mandatory. A large variety of highly 'exotic' laboratory-unreachable nuclei are indeed involved in the astrophysics modelling. Even when laboratory-studied nuclei are considered, theory has very often to be called for. Mastering the huge volume of nuclear information and making it available in an accurate and usable form for incorporation into astrophysics models is clearly of pivotal importance. The recognition of this necessity has been the driving motivation for the construction of the Brussels library (BRUSLIB) of computed data of astrophysics relevance. It provides an extended information in tabular form on masses, nuclear level densities and partition functions, fission barriers, and thermonuclear reaction rates. In addition of the unprecedented broadness of its scope, BRUSLIB has the unique and most important feature of relying to the largest possible extent on global and coherent microscopic nuclear models. The models of this sort that we have developed to predict the basic properties of the nuclei and of their interactions are briefly reviewed. The content of the BRUSLIB library that relies on these models is described, as well as a user-friendly nuclear network generator (NETGEN) complementing BRUSLIB. Finally, an application of BRUSLIB and NETGEN to the p-process nucleosynthesis during He detonation in sub-Chandrasekhar CO white dwarfs is proposed.
DEFF Research Database (Denmark)
Bjørner, Martin Gamel; Kontogeorgis, Georgios
2016-01-01
vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) of mixtures containing CO2 and hydrocarbons, water, alcohols, or selected quadrupolar compounds.The results indicate that most pure compound property predictions are satisfactory but similar to other CPA approaches. When binary mixtures...... (qCPA) can be used without introducing any additional pure compound parameters. Alternatively a single additional adjustable parameter can be employed.To evaluate qCPA several pure compound properties are predicted. The model is furthermore evaluated for its ability to predict and correlate binary...
Glavatskiy, K.S.; Bedeaux, D.
2009-01-01
In this paper we apply the general analysis described in our first paper to a binary mixture of cyclohexane and n-hexane. We use the square gradient model for the continuous description of a nonequilibrium surface and obtain numerical profiles of various thermodynamic quantities in various stationar
Institute of Scientific and Technical Information of China (English)
H.M. Ding; L.L. Chen; R.X. Liu
2004-01-01
A new phase field method for two-dimensional simulations of binary alloy solidification was studied. A model basing on solute conservative in every unit was developed for solving the solute diffusion equation during solidification. Two-dimensional computations were performed for ideal solutions and Ni-Cu dendritic growth into an isothermal and highly supersaturated liquid phase.
Common modelling approaches for training simulators for nuclear power plants
International Nuclear Information System (INIS)
Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs
Energy Technology Data Exchange (ETDEWEB)
Razavi, Rohallah; Aghajani, Maghsood; Khooy, Asghar [Imam Hossein Comprehensive Univ., Tehran (Iran, Islamic Republic of). Dept. of Physics; Rahmatinejad, Azam; Taheri, Fariba [Univ. of Zanjan (Iran, Islamic Republic of). Dept. of Physics; Kakavand, Tayeb [Imam Khomeini International Univ., Qazvin (Iran, Islamic Republic of). Dept. of Physics
2016-05-01
In this work the nuclear level density parameters of {sup 238}U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for {sup 238}U(p,2nα){sup 233}Pa, and {sup 238}U(p,4n){sup 235}Np reactions and the fragment yields for the fragments of the {sup 238}U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of {sup 238}U show a constant temperature behaviour.
Dependence of Two-proton Radioactivity on Nuclear Pairing Models
Oishi, Tomohiro; Pastore, Alessandro
2016-01-01
The sensitivity of two-proton emitting decays to the nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the $^6$Be nucleus assuming $\\alpha + p + p$ configuration, and its decay process is described as a time-evolution of the three-body resonance state. A noticeable model-dependence of two-proton decay width is found by utilizing schematic density-dependent contact (SDDC) and the finite-range Minnesota pairing models. The model-dependence with the SDDC pairing interaction can be understood from the density distribution of the resonance state, which reflects a synergy of participating interactions. Our result suggests that two-proton decay width may be a suitable reference quantity to sophisticate the nuclear pairing model beyond the nucleon driplines.
Application of density dependent parametrization models to asymmetric nuclear matter
International Nuclear Information System (INIS)
Density dependent parametrization models of the nucleon-meson effective couplings, including the isovector scalar δ-field, are applied to asymmetric nuclear matter. The nuclear equation of state and the neutron star properties are studied in an effective Lagrangian density approach, using the relativistic mean field hadron theory. It is known that the introduction of a δ-meson in the constant coupling scheme leads to an increase of the symmetry energy at high density and so to larger neutron star masses, in a pure nucleon-lepton scheme. We use here a more microscopic density dependent model of the nucleon-meson couplings to study the properties of neutron star matter and to reexamine the δ-field effects in asymmetric nuclear matter. Our calculations show that, due to the increase of the effective δ coupling at high density, with density dependent couplings the neutron star masses in fact can be even reduced
Messina, Paula V; Besada-Porto, Jose Miguel; González-Díaz, Humberto; Ruso, Juan M
2015-11-10
Studies of the self-aggregation of binary systems are of both theoretical and practical importance. They provide an opportunity to investigate the influence of the molecular structure of the hydrophobe on the nonideality of mixing. On the other hand, linear free energy relationship (LFER) models, such as Hansch's equations, may be used to predict the properties of chemical compounds such as drugs or surfactants. However, the task becomes more difficult once we want to predict simultaneaously the effect over multiple output properties of binary systems of perturbations under multiple input experimental boundary conditions (b(j)). As a consequence, we need computational chemistry or chemoinformatics models that may help us to predict different properties of the autoaggregation process of mixed surfactants under multiple conditions. In this work, we have developed the first model that combines perturbation theory (PT) and LFER ideas. The model uses as input covariance PT operators (CPTOs). CPTOs are calculated as the difference between covariance ΔCov((i)μ(k)) functions before and after multiple perturbations in the binary system. In turn, covariances calculated as the product of two Box-Jenkins operators (BJO) operators. BJOs are used to measure the deviation of the structure of different chemical compounds from a set of molecules measured under a given subset of experimental conditions. The best CPT-LFER model found predicted the effects of 25,000 perturbations over 9 different properties of binary systems. We also reported experimental studies of different experimental properties of the binary system formed by sodium glycodeoxycholate and didodecyldimethylammonium bromide (NaGDC-DDAB). Last, we used our CPT-LFER model to carry out a 1000 data point simulation of the properties of the NaGDC-DDAB system under different conditions not studied experimentally.
Quark models of multiproduction off nuclear targets
International Nuclear Information System (INIS)
A subject of this talk is a review of principal predictions of the quark model, with particular emphasis on the intranuclear interactions and the nucleus responce. Some novel applications of the model to the deep inelastic leptoproduction of nuclei, the process best tailored to test the formation length concept, are reported. Numerical calculations are based on the Monte Carlo code which produces exclusive final states, which can be subjected to precisely the same cuts as applied experimentally. An important ingredient is the multi-nucleon short-range correlation mechanism of the cumulative proton production, which contributes significantly in the forward hemisphere too. The constituent quark model supplemented by the formation length formalism, does remarkable well in the hadron-nucleus and lepton-nucleus collisions. The fragmentation of nucleus can only be understood as a quantitative level at an expense of significant cascading, which accounts for 30-40% of the suplus multiplicity. That is particularly evident in the lepton-nucleus interactions. None of the numerous models where this cascading is ignored can be regarded as credible
Identification of a nuclear plant dynamics via ARMAX model
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Shigeki; Otsuji, Tomoo [Kobe Univ. of Mercantile Marine (Japan); Muramatsu, Eiichi [Osaka Prefecture Univ., Sakai (Japan)
2000-03-01
Dynamics of the reactor of nuclear ship 'Mutsu' is described by a linear time-invariant discrete-time model which is referred to as ARMAX (Auto-Regressive Moving Average eXogenious inputs) model. Applying system identification methods, parameters of the ARMAX model are determined from input-output data of the reactor. Accuracy of the model is examined in time and frequency domain. We show that the model can be a good approximation of the plant dynamics. (author)
Modeling Deep Burn TRISO particle nuclear fuel
Besmann, T. M.; Stoller, R. E.; Samolyuk, G.; Schuck, P. C.; Golubov, S. I.; Rudin, S. P.; Wills, J. M.; Coe, J. D.; Wirth, B. D.; Kim, S.; Morgan, D. D.; Szlufarska, I.
2012-11-01
Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.
Tito Aronica, Giuseppe; Neal, Jeff; Candela, Angela; Bates, Paul D.
2013-04-01
Floods are considered the most frequent natural disaster world-wide and may have serious socio economic impacts in a community. In order to accomplish flood risk mitigation, flood risk analysis and assessment are required to provide information on current or future flood hazard and risks. Hazard and risk maps involve different data, expertise and effort, depending also on the end-users. More or less advanced deterministic approaches can be used, but intuitively probabilistic approaches seem to be more correct and suited for modelling flood inundation given typical uncertainties. Two very important matters remain open for research: the calibration of hydraulic models (oriented towards the estimation of effective roughness parameters) and the uncertainties (e.g. related to data, model structure and parameterisation) affecting flood hazard mapping results. Both matters are strictly connected and the performance measures represent the "metric" of this connection. Here, we test the ability of different performance measures based on binary and distributed information to calibrate and evaluate model predictions in a credible and consistent way and to reduce the uncertainty in probabilistic flood inundation maps for two hydraulic models: a two-dimensional inertial finite element model and a recently developed version of the LISFLOOD-FP model which solves a reduced form of the full shallow water equations in a highly efficient manner. These models are applied to the Imera river basin in Sicily probabilistic flood inundation maps constructed for each performance measure calibration. Through a comparison of the resulting hazard maps, the influence these measure data on calibration and derivation of probabilistic flood mapping will be shown.
Relativistic Binaries in Globular Clusters
Directory of Open Access Journals (Sweden)
Benacquista Matthew J.
2006-02-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Binaries in Globular Clusters
Directory of Open Access Journals (Sweden)
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Tetrahedral percolation model and energy spectra of nuclear fragmentation
International Nuclear Information System (INIS)
A Monte Carlo simulation based on the so-called tetrahedral percolation model is shown to reproduce very satisfactorily the experimental data from high-energy proton-induced reactions. This suggests that the main features of nuclear fragmentation may be understood by geometric and probabilistic considerations only. (author)
The proton-neutron symplectic model of nuclear collective motions
Ganev, H. G.
2016-06-01
The proton-neutron symplectic model of nuclear collective motion is presented. It is shown that it appears as a natural multi-major-shell extension of the generalized proton- neutron SU(3) scheme which includes rotations with intrinsic vortex as well as monopole, quadrupole and dipole giant resonance vibrational degrees of freedom.
Binary nucleation beyond capillarity approximation
Kalikmanov, V.I.
2010-01-01
Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption
Rajagopalan, Venkat Narayan
phase morphologies can be obtained by simply changing the solvent/solvents in the dilute solutions. Evaporation and drying of a binary droplet containing a solute and a solvent is a complicated phenomenon. Most of the present models do not consider convection in the droplet phase. In this dissertation work, a model is developed that incorporates convection inside the droplet. The results obtained are compared to the size obtained from experimental results. The same model when used with an aqueous solution droplet predicted concentration profiles that are comparable to results obtained when convection was not taken into account. These results have significance for more rigorous modeling of binary and multicomponent droplet drying.
Summary of Numerical Modeling for Underground Nuclear Test Monitoring Symposium
International Nuclear Information System (INIS)
This document contains the Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium held in Durango, Colorado on March 23-25, 1993. The symposium was sponsored by the Office of Arms Control and Nonproliferation of the United States Department of Energy and hosted by the Source Region Program of Los Alamos National Laboratory. The purpose of the meeting was to discuss state-of-the-art advances in numerical simulations of nuclear explosion phenomenology for the purpose of test ban monitoring. Another goal of the symposium was to promote discussion between seismologists and explosion source-code calculators. Presentation topics include the following: numerical model fits to data, measurement and characterization of material response models, applications of modeling to monitoring problems, explosion source phenomenology, numerical simulations and seismic sources
Müller, Dirk K; Pampel, André; Möller, Harald E
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data.
Shi, Chang-Sheng; Li, Xiang-Dong
2014-01-01
We study the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low mass X-ray binaries (LMXBs) with a new magnetohydrodynamics (MHD) model, in which the compressed magnetosphere is considered. The previous MHD model (Shi \\& Li 2009) is re-examined and the relation between the frequencies of the kHz QPOs and the accretion rate in LMXBs is obtained. Our result agrees with the observations of six sources (4U 0614+09, 4U 1636--53, 4U 1608--52, 4U 1915--15, 4U 1728--34, XTE 1807--294) with measured spins. In this model the kHz QPOs originate from the MHD waves in the compressed magnetosphere. The single kHz QPOs and twin kHz QPOs are produced in two different parts of the accretion disk and the boundary is close to the corotation radius. The lower QPO frequency in a frequency-accretion rate diagram is cut off at low accretion rate and the twin kHz QPOs encounter a top ceiling at high accretion rate due to the restriction of innermost stable circular orbit.
Garcia, E V; Pavlovski, K; Hensberge, H; Chew, Y Gómez Maqueo; Claret, A \\
2014-01-01
We determine the absolute dimensions of the eclipsing binary V578 Mon, a detached system of two early B-type stars (B0V + B1V, P$=$2.40848 d) in the star-forming region NGC 2244 of the Rosette Nebula. From the light curve analysis of 40 yr of photometry and the analysis of HERMES spectra, we find radii of $5.41\\pm0.04$ Rsun and $4.29\\pm 0.05$ Rsun, and temperatures of $ 30000\\pm 500$~K and $ 25750\\pm 435$ K respectively. We find that our disentangled component spectra for V578 Mon agree well previous spectral disentangling from the literature. We also reconfirm the previous spectroscopic orbit of V578 Mon finding that masses of $ 14.54\\pm 0.08$ Msun and $ 10.29\\pm 0.06$ Msun are fully compatible with the new analysis. We compare the absolute dimensions to the rotating models of the Geneva and Utrecht groups and the models of Granada group. We find all three sets of models marginally reproduce the absolute dimensions of both stars with a common age within uncertainty for gravity-effective temperature isochrone...
Extremality of Translation-Invariant Phases for a Three-State SOS-Model on the Binary Tree
Kuelske, C.; Rozikov, U. A.
2015-08-01
We consider the solid-on-solid model, with spin values , on the Cayley tree of order two (binary tree). We treat both ferromagnetic and antiferromagnetic coupling, with interactions which are proportional to the absolute value of the spin differences. We present a classification of all translation-invariant phases (splitting Gibbs measures) of the model. These measures are labeled by solutions to a nonlinear vector-valued functional equation. We show uniqueness in the case of antiferromagnetic interactions, and existence of up to seven phases in the case of ferromagnetic interactions, where the number of phases depends on the interaction strength. Next we investigate whether these states are extremal or non-extremal in the set of all Gibbs measures, when the coupling strength is varied, whenever they exist. We show that two states are always extremal, two states are always non-extremal, while three of the seven states make transitions between extremality and non-extremality. We provide explicit bounds on those transition values, making use of algebraic properties of the models, and an adaptation of the method of Martinelli, Sinclair, Weitz.
International Nuclear Information System (INIS)
Highlights: • Polarization of the real mixture is less than that of the ideal mixture. • Molar excess volume does not exert the dominant effect on the polarization of the mixture. • Similar influence of molecular interactions on the behaviour of excess permittivity. • Excess molar volume is more influenced by the interactions than excess permittivity. - Abstract: Excess molar volumes and excess permittivity of binary mixtures involving monoglyme and alkanes, such as n-hexane, cyclohexane, n-octane and n-dodecane, were calculated from density and relative permittivity measurements for the entire composition range at several temperatures (288.15, 298.15 and 308.15) K and atmospheric pressure. The excess permittivity was calculated on the basis of a recent definition considering the ideal volume fraction. Empirical equations for describing the experimental data in terms of temperature and concentration are given. The experimental values of permittivity have been compared with those estimated by well-known models from literature. The results have indicated that better predictions are obtained when the volume change on mixing is incorporated in these calculations. The contribution of interactions to the excess permittivity was analysed by means of the ECM-average model. The Prigogine–Flory–Patterson (PFP) theory of the thermodynamics of solutions was used to shed light on the contribution of interactions to the excess molar volume. The work concludes with an interpretation of the information given by the theoretical models and the behaviour of both excess magnitudes
Inverse Compton Scattering Model for X-ray Emission of the Gamma-ray Binary LS 5039
Yamaguchi, Masaki S
2012-01-01
We propose a model for the gamma-ray binary LS 5039 in which the X-ray emission is due to the inverse Compton (IC) process instead of the synchrotron radiation. Although the synchrotron model has been discussed in previous studies, it requires a strong magnetic field which leads to a severe suppression of the TeV gamma-ray flux in conflict with H.E.S.S. observations. In this paper, we calculate the IC emission by low energy electrons (\\gamma_e \\lesssim 10^3) in the Thomson regime. We find that IC emission of the low energy electrons can explain the X-ray flux and spectrum observed with Suzaku if the minimum Lorentz factor of injected electrons \\gamma_min is around 10^3. In addition, we show that the Suzaku light curve is well reproduced if \\gamma_min varies in proportion to the Fermi flux when the distribution function of injected electrons at higher energies is fixed. We conclude that the emission from LS 5039 is well explained by the model with the IC emission from electrons whose injection properties are d...
A compact pulsar wind nebula model of the gamma-ray loud binary LS I +61 303
Zdziarski, A A; Chernyakova, M
2008-01-01
We study a model of of the binary system LS I +61 303 in which its radio to TeV emission is due to interaction of a relativistic wind from a pulsar with the wind from a Be star. The fast polar wind is clumpy, which causes the two winds to mix. The relativistic electrons from the pulsar wind are retained in the clumps by magnetic field inhomogeneities, which explains the X-ray variability on time scales much shorter than the orbital period. The second stellar-wind component is a dense equatorial disc around the Be star. The energy losses of the radio and X-ray emitting relativistic electrons are dominated by Coulomb interactions within the disc, causing radio and X-ray orbital modulations. A likely mechanism of the TeV orbital modulation is an emission anisotropy, with preferred directions along the surface of equal ram pressures of the two winds. We consider two models for the observed superorbital variability of the radio emission from the system, with the period of 4-5 years. One model involves precession o...
MMSNF 2005. Materials models and simulations for nuclear fuels
Energy Technology Data Exchange (ETDEWEB)
Freyss, M.; Durinck, J.; Carlot, G.; Sabathier, C.; Martin, P.; Garcia, P.; Ripert, M.; Blanpain, P.; Lippens, M.; Schut, H.; Federov, A.V.; Bakker, K.; Osaka, M.; Miwa, S.; Sato, I.; Tanaka, K.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Govers, K.; Verwerft, M.; Hou, M.; Lemehov, S.E.; Terentyev, D.; Govers, K.; Kotomin, E.A.; Ashley, N.J.; Grimes, R.W.; Van Uffelen, P.; Mastrikov, Y.; Zhukovskii, Y.; Rondinella, V.V.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Minato, K.; Phillpot, S.; Watanabe, T.; Shukla, P.; Sinnott, S.; Nino, J.; Grimes, R.; Staicu, D.; Hiernaut, J.P.; Wiss, T.; Rondinella, V.V.; Ronchi, C.; Yakub, E.; Kaye, M.H.; Morrison, C.; Higgs, J.D.; Akbari, F.; Lewis, B.J.; Thompson, W.T.; Gueneau, C.; Gosse, S.; Chatain, S.; Dumas, J.C.; Sundman, B.; Dupin, N.; Konings, R.; Noel, H.; Veshchunov, M.; Dubourg, R.; Ozrin, C.V.; Veshchunov, M.S.; Welland, M.T.; Blanc, V.; Michel, B.; Ricaud, J.M.; Calabrese, R.; Vettraino, F.; Tverberg, T.; Kissane, M.; Tulenko, J.; Stan, M.; Ramirez, J.C.; Cristea, P.; Rachid, J.; Kotomin, E.; Ciriello, A.; Rondinella, V.V.; Staicu, D.; Wiss, T.; Konings, R.; Somers, J.; Killeen, J
2006-07-01
The MMSNF Workshop series aims at stimulating research and discussions on models and simulations of nuclear fuels and coupling the results into fuel performance codes.This edition was focused on materials science and engineering for fuel performance codes. The presentations were grouped in three technical sessions: fundamental modelling of fuel properties; integral fuel performance codes and their validation; collaborations and integration of activities. (A.L.B.)
Phase field modeling of microstructure evolution in nuclear materials
International Nuclear Information System (INIS)
The paper presents two examples of phase field modeling of microstructure evolution of materials used in nuclear power industry. In the first example, an elasto-plastic phase field model was developed to predict hydrogen diffusion, hydride precipitation and fracture in zirconium at crack and notch tips. In the second example, some preliminary results of our current research on void lattice formation in irradiated materials will be given
Monte Carlo methods and applications for the nuclear shell model
Dean, D. J.; White, J A
1998-01-01
The shell-model Monte Carlo (SMMC) technique transforms the traditional nuclear shell-model problem into a path-integral over auxiliary fields. We describe below the method and its applications to four physics issues: calculations of sdpf- shell nuclei, a discussion of electron-capture rates in pf-shell nuclei, exploration of pairing correlations in unstable nuclei, and level densities in rare earth systems.
MMSNF 2005. Materials models and simulations for nuclear fuels
International Nuclear Information System (INIS)
The MMSNF Workshop series aims at stimulating research and discussions on models and simulations of nuclear fuels and coupling the results into fuel performance codes.This edition was focused on materials science and engineering for fuel performance codes. The presentations were grouped in three technical sessions: fundamental modelling of fuel properties; integral fuel performance codes and their validation; collaborations and integration of activities. (A.L.B.)
Nuclear security culture: a generic model for universal application
International Nuclear Information System (INIS)
Full text: Nuclear security culture found its way into professional parlance several years ago, but still lacks an agreed-upon definition and description. The February 2005 U.S.-Russian Joint Statement, issued at the presidential summit meeting in Bratislava, referred specifically to security culture, focusing renewed attention on the concept. Numerous speakers at the March 2005 International Atomic Energy Agency's (IAEA) international conference on nuclear security referred to security culture, but their visions and interpretations were often at odds with one another. Clearly, there is a need for a generic model of nuclear security culture with universal applicability. Internationally acceptable standards in this area would be invaluable for evaluation, comparison, cooperation, and assistance. They would also help international bodies better manage their relations with the nuclear sectors in various countries. This paper will develop such a model. It will use the IAEA definition of nuclear security, and then apply Edgar Schein's model of organizational culture to security culture at a generic nuclear facility. A cultural approach to physical protection involves determining what attitudes and beliefs need to be established in an organization, how these attitudes and beliefs manifest themselves in the behavior of assigned personnel, and how desirable attitudes and beliefs can be transcribed into formal working methods to produce good outcomes, i.e., effective protection. The security-culture mechanism I will propose is broken into four major units: facility leadership, proactive policies and procedures, personnel performance, and learning and professional improvement. The paper will amplify on the specific traits characteristic of each of these units. Security culture is not a panacea. In a time of mounting terrorist threats, it should nonetheless be looked upon as a necessary organizational tool that enhances the skills of nuclear personnel and ensures that
Engine System Model Development for Nuclear Thermal Propulsion
Nelson, Karl W.; Simpson, Steven P.
2006-01-01
In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.
INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS
Energy Technology Data Exchange (ETDEWEB)
Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.
2011-07-18
Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.
Cash flow forecasting model for nuclear power projects
International Nuclear Information System (INIS)
Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective
Importance of ORELA for Developing Nuclear Reaction Models
Energy Technology Data Exchange (ETDEWEB)
Dietrich, F S
2005-12-08
Because of its excellent energy resolution, ORELA is particularly well suited for measurements in the resolved resonance region that impact nuclear reaction model calculations. These measurements allow the determination of average level widths, level densities, and cross sections for potential scattering and radiative capture. These quantities can be used to determine parameters in reaction models (such as the optical model and Hauser-Feshbach calculations) and to understand the limitations imposed on these models. Particular attention is given to the importance of improved experimental data to characterize intermediate structure (or doorway states).
A dynamical systems model for nuclear power plant risk
Hess, Stephen Michael
The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of
Institute of Scientific and Technical Information of China (English)
Rachid Ouyed; Jan Staff
2013-01-01
We show that,by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD),a Type Ia explosion could occur.The QN ejecta collides with the WD,driving a shock that triggers carbon burning under degenerate conditions (the QN-Ia).The conditions in the compressed low-mass WD (MWD ＜ 0.9 M☉) in our model mimic those of a Chandrasekhar mass WD.The spin-down luminosity from the QN compact remnant (the quark star) provides additional power that makes the QN-Ia light-curve brighter and broader than a standard SN-Ia with similar 56Ni yield.In QNe-Ia,photometry and spectroscopy are not necessarily linked since the kinetic energy of the ejecta has a contribution from spin-down power and nuclear decay.Although QNe-Ia may not obey the Phillips relationship,their brightness and their relatively "normal looking" light-curves mean they could be included in the cosmological sample.Light-curve fitters would be confused by the discrepancy between spectroscopy at peak and photometry and would correct for it by effectively brightening or dimming the QNe-Ia apparent magnitudes,thus over-or under-estimating the true magnitude of these spin-down powered SNe-Ia.Contamination of QNe-Ia in samples of SNe-Ia used for cosmological analyses could systematically bias measurements of cosmological parameters if QNe-Ia are numerous enough at high-redshift.The strong mixing induced by spin-down wind combined with the low 56Ni yields in QNe-Ia means that these would lack a secondary maximum in the i-band despite their luminous nature.We discuss possible QNe-Ia progenitors.
Multiplicity spectra and nuclear models of gamma emission
International Nuclear Information System (INIS)
The possibility of study process of nuclear gamma-rays emission from excited states by means of gamma-rays multiplicity spectra A(ν) was investigated in present work. This question are considered on example of the multiplicity spectra calculation from decay of the 4+ state of nuclear 87Sr formed in slow neutrons capture. The calculations was performed for single particle and collective (giant photonuclear resonance) approaches to describe of the emission process. The comparison A(ν) obtained with using of single-particle (S) and collective (G) models point out of the possibility of using the method of multiplicity spectrometry for choice of the proper approach to describe of the compound nuclear gamma-emission. 23 refs.; 6 figs.; 10 tabs
Nuclear symmetry energy in a modified quark meson coupling model
Mishra, R N; Panda, P K; Barik, N; Frederico, T
2015-01-01
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.
Penetration Testing Model for Web sites Hosted in Nuclear Malaysia
International Nuclear Information System (INIS)
Nuclear Malaysia web sites has been very crucial in providing important and useful information and services to the clients as well as the users worldwide. Furthermore, a web site is important as it reflects the organisation image. To ensure the integrity of the content of web site, a study has been made and a penetration testing model has been implemented to test the security of several web sites hosted at Nuclear Malaysia for malicious attempts. This study will explain how the security was tested in the detailed condition and measured. The result determined the security level and the vulnerability of several web sites. This result is important for improving and hardening the security of web sites in Nuclear Malaysia. (author)
Relativistic mean-field models and nuclear matter constraints
Energy Technology Data Exchange (ETDEWEB)
Dutra, M.; Lourenco, O.; Carlson, B. V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900, Sao Jose dos Campos, SP (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, 24210-150, Boa Viagem, Niteroi, RJ (Brazil); Menezes, D. P.; Avancini, S. S. [Departamento de Fisica, CFM, Universidade Federal de Santa Catarina, CP. 476, CEP 88.040-900, Florianopolis, SC (Brazil); Stone, J. R. [Oxford Physics, University of Oxford, OX1 3PU Oxford (United Kingdom) and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Providencia, C. [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal); Typel, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Theorie, Planckstrasse 1,D-64291 Darmstadt (Germany)
2013-05-06
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
The appliance of graphics modeling in nuclear plant information system
International Nuclear Information System (INIS)
The nuclear plants contain a lot of sub-system, such as operation management, manufacture system, inventory system, human resource system and so forth. The standardized data graphics modeling technology can ensure the data interaction, compress the design cycle, avoid the replicated design, ensure the data integrity and consistent. The standardized data format which is on the basis of STEP standard and complied with XML is competent tool in different sub-system of nuclear plants. In order to meet this demand, a data graphics modeling standard is proposed. It is shown the relationship between systems, in system, between data by the standard. The graphic modeling effectively improves the performance between systems, designers, engineers, operations, supports department. It also provides the reliable and available data source for data mining and business intelligence. (authors)
Human Factors Engineering Review Model for advanced nuclear power reactors
Energy Technology Data Exchange (ETDEWEB)
O`Hara, J.; Higgins, J. [Brookhaven National Lab., Upton, NY (United States); Goodman, C.; Galletti, G.: Eckenrode, R. [Nuclear Regulatory Commission, Rockville, MD (United States)
1993-05-01
One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model`s rationale, scope, objectives, development, general characteristics. and application.
Analytical model of strange star in low-mass X-ray binary KS 1731-260
Hossein, Sk. Monowar; Farhad, Nur; Molla, Sajahan; Kalam, Mehedi
2016-10-01
In this article using Mehra (Aust. Math. Soc. 6:153, 1966) metric, we propose a model for the strange star in low-mass X-ray binary (LMXB) KS 1731-260 (Özel et al., Astrophys. J. 748:5, 2012) which describes interior space-time of the star. We study the strange star's interior and exterior physical properties. We calculate central density (ρ0), surface density (ρb), central pressure (p 0), surface redshift (Z s) and probable radius of the above mentioned strange star, which is very much consistent with the reported data. The special feature of this article is that the radius of the star is 12.31 km where pressure becomes zero and mass comes out as 2.09521 M_{⊙}, whereas maximum mass comes out as 2.09996 M _{⊙} with radius 12.53 km. Therefore, our model suggests that there may be a gaseous atmosphere over a range of 0.22 km outside of the stellar structure which justify the claim of Ho and Heinke (Nature 462:71, 2009).
Koseoglu, Dogan; Bakış, Hicran
2016-07-01
High-resolution spectra (R=48000) of the southern close binary system, HH Car, has been analyzed with modern analysis techniques. Precise absolute parameters were derived from the simultaneous solution of the radial velocity, produced in this study and the light curves, published. According to the results of these analyses, the primary component is an O9 type main sequence star while the secondary component is a giant/subgiant star with a spectral type of B0. Hα emissions can be seen explicitly in the spectra of HH Car. These features were modelled using the absolute parameters of the components. Since components of HH Car are massive early-type stars, mass loss through stellar winds can be expected. This study revealed that the components of HH Car have stellar winds and the secondary component loses mass to the primary. Stellar winds and the gas stream between the components were modelled as a hot shell around the system. It is determined that the interaction between the winds and the gas stream leads to formation of a high temperature impact region.
Reiners, A; Reiners, Ansgar; Mohanty, Gibor Basri & Subhanjoy
2005-01-01
We report the discovery of a new low-mass spectroscopic (SB2) stellar binary system in the star-forming region of Upper Scorpius. This object, UScoCTIO5, was discovered by Ardila (2000), who assigned it a spectral class of M4. A KeckI HIRES spectrum revealed it to be double-lined, and we then carried out a program at several observatories to determine its orbit. The orbital period is 34 days, and the eccentricity is nearly 0.3. The importance of such a discovery is that it can be used to help calibrate evolutionary models at low masses and young ages. This is one of the outstanding problems in the study of formation mechanisms and initial mass functions at low masses. The orbit allows us to place a lower limit of 0.64 +- 0.02 M_sol on the total system mass. The components appear to be of almost equal mass. We are able to show that this mass is significantly higher than predicted by evolutionary models for an object of this luminosity and age, in agreement with other recent results. More precise determination ...
Bansel, Gurvinder Singh
2011-01-01
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. We present extensive testing in order to find the optimum balance among errors associated with time integration, spatial discretization, and splitting for a fully spectral semi implicit scheme of the phase field crystal model. The scheme solves numerically the equations of dissipative dynamics of the binary phase field crystal model proposed by Elder et al. [Elder et al, 2007]. The fully spec...
Dexter, Jason; Blaes, Omer
2013-01-01
We propose a new model of the steep power law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to i) become effectively optically thin and ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energy. These spectra sum together to form a steep power law tail to the...
A Full-Chain Network Model with Sliplinks and Binary Constraint Release
DEFF Research Database (Denmark)
Neergaard, Jesper; Schieber, Jay D.
2000-01-01
A full-chain, mean-field, temporary network model is proposed. The model is inspired by the success of a recent reptation model, but contains no tubes. Instead, each chain uses a different (and smaller) set of dynamic variables: the position and age of each entanglement, and the number of Kuhn...... steps in chain strands between entanglements. The entanglements are assumed to move affinely, whereas the number of Kuhn steps varies stochastically from tension imbalances and Brownian forces. In the language of reptation, the model exhibits chain-length fluctuations, constraint release, chain...
Towards an efficient multiphysics model for nuclear reactor dynamics
Directory of Open Access Journals (Sweden)
Obaidurrahman K.
2015-01-01
Full Text Available Availability of fast computer resources nowadays has facilitated more in-depth modeling of complex engineering systems which involve strong multiphysics interactions. This multiphysics modeling is an important necessity in nuclear reactor safety studies where efforts are being made worldwide to combine the knowledge from all associated disciplines at one place to accomplish the most realistic simulation of involved phenomenon. On these lines coupled modeling of nuclear reactor neutron kinetics, fuel heat transfer and coolant transport is a regular practice nowadays for transient analysis of reactor core. However optimization between modeling accuracy and computational economy has always been a challenging task to ensure the adequate degree of reliability in such extensive numerical exercises. Complex reactor core modeling involves estimation of evolving 3-D core thermal state, which in turn demands an expensive multichannel based detailed core thermal hydraulics model. A novel approach of power weighted coupling between core neutronics and thermal hydraulics presented in this work aims to reduce the bulk of core thermal calculations in core dynamics modeling to a significant extent without compromising accuracy of computation. Coupled core model has been validated against a series of international benchmarks. Accuracy and computational efficiency of the proposed multiphysics model has been demonstrated by analyzing a reactivity initiated transient.
Tanaka, Takamitsu
2011-12-01
Supermassive black holes permeate the observable Universe, residing in the nuclei of all or nearly all nearby massive galaxies and powering luminous quasars as far as ten billion light years away. These monstrous objects must grow through a combination of gas accretion and mergers of less massive black holes. The direct detection of the mergers by future gravitational-wave detectors will be a momentous scientific achievement, providing tests of general relativity and revealing the cosmic evolution of supermassive black holes. An additional --- and arguably equally rewarding --- challenge is the concomitant observation of merging supermassive black holes with both gravitational and electromagneticwaves. Such synergistic, "multi-messenger" studies can probe the expansion history of the Universe and shed light on the details of accretion astrophysics. This thesis examines the mergers of supermassive black hole binaries and the observable signatures of these events. First, we consider the formation scenarios for the earliest supermassive black holes. This investigation is motivated by the Sloan Digital Sky Survey observation of a quasar that appears to be powered by a supermassive black hole with a mass of billions of solar masses, already in place one billion years after the Big Bang. Second, we develop semianalytic, time-dependent-models for the thermal emission from circumbinary gas disks around merging black holes. Our calculations corroborate the qualitative conclusion of a previous study that for black hole mergers detectable by a space-based gravitational-wave observatory, a gas disk near the merger remnant may exhibit a dramatic brightening of soft X-rays on timescales of several years. Our results suggest that this "afterglow" may become detectable more quickly after the merger than previously estimated. Third, we investigate whether these afterglow episodes could be observed serendipitously by forthcoming wide-field, high-cadence electromagnetic surveys
A Mixed Model Approach to Meta-Analysis of Diagnostic Studies with Binary Test Outcome
Doebler, Philipp; Holling, Heinz; Bohning, Dankmar
2012-01-01
We propose 2 related models for the meta-analysis of diagnostic tests. Both models are based on the bivariate normal distribution for transformed sensitivities and false-positive rates. Instead of using the logit as a transformation for these proportions, we employ the "t"[subscript alpha] family of transformations that contains the log, logit,…
A Binary Programming Approach to Automated Test Assembly for Cognitive Diagnosis Models
Finkelman, Matthew D.; Kim, Wonsuk; Roussos, Louis; Verschoor, Angela
2010-01-01
Automated test assembly (ATA) has been an area of prolific psychometric research. Although ATA methodology is well developed for unidimensional models, its application alongside cognitive diagnosis models (CDMs) is a burgeoning topic. Two suggested procedures for combining ATA and CDMs are to maximize the cognitive diagnostic index and to use a…
Neelon, Brian; Anthopolos, Rebecca; Miranda, Marie Lynn
2014-04-01
Motivated by a study examining geographic variation in birth outcomes, we develop a spatial bivariate probit model for the joint analysis of preterm birth and low birth weight. The model uses a hierarchical structure to incorporate individual and areal-level information, as well as spatially dependent random effects for each spatial unit. Because rates of preterm birth and low birth weight are likely to be correlated within geographic regions, we model the spatial random effects via a bivariate conditionally autoregressive prior, which induces regional dependence between the outcomes and provides spatial smoothing and sharing of information across neighboring areas. Under this general framework, one can obtain region-specific joint, conditional, and marginal inferences of interest. We adopt a Bayesian modeling approach and develop a practical Markov chain Monte Carlo computational algorithm that relies primarily on easily sampled Gibbs steps. We illustrate the model using data from the 2007-2008 North Carolina Detailed Birth Record. PMID:22599322
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository. PMID:19376651
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
Roy, Vivekananda; Evangelou, Evangelos; Zhu, Zhengyuan
2016-03-01
Spatial generalized linear mixed models (SGLMMs) are popular models for spatial data with a non-Gaussian response. Binomial SGLMMs with logit or probit link functions are often used to model spatially dependent binomial random variables. It is known that for independent binomial data, the robit regression model provides a more robust (against extreme observations) alternative to the more popular logistic and probit models. In this article, we introduce a Bayesian spatial robit model for spatially dependent binomial data. Since constructing a meaningful prior on the link function parameter as well as the spatial correlation parameters in SGLMMs is difficult, we propose an empirical Bayes (EB) approach for the estimation of these parameters as well as for the prediction of the random effects. The EB methodology is implemented by efficient importance sampling methods based on Markov chain Monte Carlo (MCMC) algorithms. Our simulation study shows that the robit model is robust against model misspecification, and our EB method results in estimates with less bias than full Bayesian (FB) analysis. The methodology is applied to a Celastrus Orbiculatus data, and a Rhizoctonia root data. For the former, which is known to contain outlying observations, the robit model is shown to do better for predicting the spatial distribution of an invasive species. For the latter, our approach is doing as well as the classical models for predicting the disease severity for a root disease, as the probit link is shown to be appropriate. Though this article is written for Binomial SGLMMs for brevity, the EB methodology is more general and can be applied to other types of SGLMMs. In the accompanying R package geoBayes, implementations for other SGLMMs such as Poisson and Gamma SGLMMs are provided.
Applying Functional Modeling for Accident Management of Nuclear Power Plant
Energy Technology Data Exchange (ETDEWEB)
Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)
2014-08-15
The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.
Nuclear forensics: a comprehensive model action plan for Nuclear Forensics Laboratory in India
International Nuclear Information System (INIS)
Nuclear forensic is an emerging and highly specialized discipline which deals with nuclear investigation and analysis of nuclear or radiological/radioactive materials. Nuclear Forensic analysis includes various methodology and analytical methods along with morphology, physical, chemical, elemental and isotopic analysis to characterize and develop nuclear database for the identification of unknown nuclear or radiological/radioactive material. The origin, source history, pathway and attribution of unknown radioactive/nuclear material is possible with certainty through Nuclear Forensics. Establishment of Nuclear Forensic Laboratory and development of expertise for nuclear investigation under one roof by developing the nuclear data base and laboratory network is need of the hour to ably address the problems of all the law enforcement and nuclear agencies. The present study provides insight in Nuclear Forensics and focuses on an urgent need for a comprehensive plan to set up Nuclear Forensic Laboratory across India. (author)
Modeling of radiation effects on nuclear waste package materials
International Nuclear Information System (INIS)
A methodology is developed for the assessment of radiation effects on nuclear waste package materials. An assessment of the current status of understanding with regard to waste package materials and their behavior in radiation environments is presented. The methodology is used to make prediction as to the chemically induced changes in the groundwater surrounding nuclear waste packages in a repository in tuff. The predictions indicate that mechanisms not currently being pursued by the Department of Energy may be a factor in the long-term performance of nuclear waste packages. The methodology embodies a physical model of the effects of radiation on aqueous solutions. Coupled to the physical model is a method for analyzing the complex nature of the physical model using adjoint sensitivity analysis. The sensitivity aid in both the physical understanding of the processes involved as well as aiding in eliminating portions of the model that have no bearing on the desired results. A computer implementation of the methodology is provided. 128 refs
Relativistic mean-field hadronic models under nuclear matter constraints
Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.
2014-11-01
Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The
Panov, G. A.; Zakharov, M. A.
2015-11-01
The present work is devoted to the phase diagrams calculation of AIIIBV systems within the framework of the generalized lattice model taking account of volume effects. The theoretically calculated phase diagram is compared with the corresponding experimental diagrams.
A binary gas transport model Improves the prediction of mass transfer in freeze drying
Trelea, Ioan-Cristian; Fonseca, Fernanda; Passot, Stéphanie; Flick, Denis
2015-01-01
Monitoring partial vapor pressure in the freeze-drying chamber is a cheap, global, and non-intrusive way to assess the end of the primary drying stage. Most existing dynamic freeze-drying models which predict this partial pressure describe mass transfer between the product and the condenser via a mass transfer resistance or a mass transfer coefficient. Experimental evidence suggests that such models can be significantly in error for some values of the sublimation flux, leading to physically i...
A shared response model for clustered binary data in developmental toxicity studies.
Pang, Zhen; Kuk, Anthony Y C
2005-12-01
Existing distributions for modeling fetal response data in developmental toxicology such as the beta-binomial distribution have a tendency of inflating the probability of no malformed fetuses, and hence understating the risk of having at least one malformed fetus within a litter. As opposed to a shared probability extra-binomial model, we advocate a shared response model that allows a random number of fetuses within the same litter to share a common response. An explicit formula is given for the probability function and graphical plots suggest that it does not suffer from the problem of assigning too much probability to the event of no malformed fetuses. The EM algorithm can be used to estimate the model parameters. Results of a simulation study show that the EM estimates are nearly unbiased and the associated confidence intervals based on the usual standard error estimates have coverage close to the nominal level. Simulation results also suggest that the shared response model estimates of the marginal malformation probabilities are robust to misspecification of the distributional form, but not so for the estimates of intralitter correlation and the litter-level probability of having at least one malformed fetus. The proposed model is fitted to a set of data from the U.S. National Toxicology Program. For the same dose-response relationship, the fit based on the shared response distribution is superior to that based on the beta-binomial, and comparable to that based on the recently proposed q-power distribution (Kuk, 2004, Applied Statistics53, 369-386). An advantage of the shared response model over the q-power distribution is that it is more interpretable and can be extended more easily to the multivariate case. To illustrate this, a bivariate shared response model is fitted to fetal response data involving visceral and skeletal malformation. PMID:16401281
Kupek Emil
2006-01-01
Abstract Background Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. Methods A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (O...
Empirical Tests of Pre-Main-Sequence Stellar Evolution Models with Eclipsing Binaries
Stassun, Keivan G; Torres, Guillermo
2014-01-01
We examine the performance of standard PMS stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 EB systems. We provide a definitive compilation of all fundamental properties for the EBs. We also provide a definitive compilation of the various PMS model sets. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% above 1 Msun, but below 1 Msun they are discrepant by 50-100%. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ~10% in the H-R diagram, down to 0.5 Msun, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies...
Azimuthal Anisotropies as Stringent Test for Nuclear Transport Models
Crochet, Philippe; Donà, R
1997-01-01
Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600AMeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar center-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.
Limits of thermodynamic models for nuclear level densities
International Nuclear Information System (INIS)
The current status of thermodynamic models as applied to nuclear level densities is reviewed. Considerable refinement has taken place during the last fifteen years, with the result that some of the undesirable assumptions originally required by the model are no longer necessary. Some problems remain, however, particularly in calculating level densities for deformed nuclei. Furthermore, some related parameters, such as the positive-parity negative-parity ratio for levels and the spin cutoff parameter are more sensitive to the presence of two-body interactions than the total level density. Improvement in characterization of nuclear level densities will require use of techniques which can incorporate the effects of two-body interactions in the level density calculation. 25 references
Nuclear Level Density: Shell Model vs Mean Field
Sen'kov, Roman
2015-01-01
The knowledge of the nuclear level density is necessary for understanding various reactions including those in the stellar environment. Usually the combinatorics of Fermi-gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from the conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally...
Sloppy nuclear energy density functionals: effective model reduction
Niksic, Tamara
2016-01-01
Concepts from information geometry are used to analyse parameter sensitivity for a nuclear energy density functional, representative of a class of semi-empirical functionals that start from a microscopically motivated ansatz for the density dependence of the energy of a system of protons and neutrons. It is shown that such functionals are sloppy, characterized by an exponential range of sensitivity to parameter variations. Responsive to only a few stiff parameter combinations, they exhibit an exponential decrease of sensitivity to variations of the remaining soft parameters. By interpreting the space of model predictions as a manifold embedded in the data space, with the parameters of the functional as coordinates on the manifold, it is also shown that the exponential distribution of model manifold widths corresponds to the distribution of parameter sensitivity. Using the Manifold Boundary Approximation Method, we illustrate how to systematically construct effective nuclear density functionals of successively...
Benchmarking nuclear models for Gamow–Teller response
Energy Technology Data Exchange (ETDEWEB)
Litvinova, E., E-mail: elena.litvinova@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Brown, B.A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Fang, D.-L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States); Marketin, T. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Zegers, R.G.T. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States)
2014-03-07
A comparative study of the nuclear Gamow–Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended “jj77” model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow–Teller response functions are calculated for {sup 208}Pb, {sup 132}Sn and {sup 78}Ni within both RTBA and QRPA. The strengths obtained for {sup 208}Pb are compared to data that enable a firm model benchmarking. For the nucleus {sup 132}Sn, also SM calculations are performed within the model space truncated at the level of a particle–hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph⊗phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.
Torres, G; Latham, D W; Pan, M; Stefanik, R P; Torres, Guillermo; Boden, Andrew F.; Latham, David W.; Pan, Margaret; Stefanik, Robert P.
2002-01-01
We report spectroscopic and interferometric observations of the moderately metal-poor double-lined binary system HD 195987, with an orbital period of 57.3 days. By combining our radial-velocity and visibility measurements we determine the orbital elements and derive absolute masses for the components of M(A) = 0.844 +/- 0.018 Msun and M(B) = 0.6650 +/- 0.0079 Msun, with relative errors of 2% and 1%, respectively. We also determine the orbital parallax, pi(orb) = 46.08 +/- 0.27 mas, corresponding to a distance of 21.70 +/- 0.13 pc. The parallax and the measured brightness difference between the stars in V, H, and K yield the component absolute magnitudes in those bands. We also estimate the effective temperatures of the stars as Teff(A) = 5200 +/- 100 K and Teff(B) = 4200 +/- 200 K. Together with detailed chemical abundance analyses from the literature giving [Fe/H] approximately -0.5 (corrected for binarity) and [alpha/Fe] = +0.36, we use these physical properties to test current models of stellar evolution f...
Generation of core model data for Nuclear Power Plant simulator
Energy Technology Data Exchange (ETDEWEB)
Park, Yong Soo; Jung, Yil Sup; Kim, Yong Rae; Do, Man Seok; Chung, Jong Sung; Kim, Jae Sik; Kim, Yeong Baek [Korea Nuclear Fuel Co., Ltd., Daejeon (Korea, Republic of)
2006-02-15
Nuclear power plant simulators currently operated in Korea have their own core models which are not updated with new one of current core cycle. This is because proper input constants for the core model cannot be provided in timely manner. The best workaround for this is the development of a new separate core analysis device with the real time calculation power and the development of the automatic procedure to generate input constants for core model more easily. In this research a new procedure is established for the generation of core model for NPP simulator. Therefore, with the development of core model implementation technology for NPP simulator, it is expected that core model of the simulator will be updated with ease and in timely manner.
Margalit, Ben
2016-01-01
We construct time-dependent one-dimensional (vertically averaged) models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disk midplane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disk dynamics. A model for disk outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the midplane to a fixed value $\\lesssim 0$. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disk outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disk evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD disks does not exhibit this behavior, which instead depends sensitively on factors con...
Nuclear inertia for fission in a generalized cranking model
International Nuclear Information System (INIS)
A time dependent formalism which is appropriate for β vibrations and fission is developed for a generalized cranking model. The formalism leads to additional terms in the density matrix which affect the nuclear inertia. The case of a harmonic oscillator potential is used to demonstrate the contribution of the pairing gap term on the β vibrational inertia for Pu 240. The inertia remains finite and close to the limiting irrotational value
The nuclear field treatment of some exactly soluble models
International Nuclear Information System (INIS)
The nuclear field theory is applied to physically meaningful models which are exactly soluble. The particles are coupled through monopole particle-hole and/or pairing forces, which do not mix states with a different number of particles and holes. It is possible to sum up all the field diagrams and, thus, one obtains the exact results in all cases. Therefore, the overcompleteness of the basis and the violations of the Pauli principle are corrected for within the field treatment. (Auth.)
Lowest eigenvalue of the nuclear shell model Hamiltonian
Shen, J J; Arima, A
2010-01-01
In this paper we investigate regular patterns of matrix elements of the nuclear shell model Hamiltonian $H$, by sorting the diagonal matrix elements from the smaller to larger values. By using simple plots of non-zero matrix elements and lowest eigenvalues of artificially constructed "sub-matrices" $h$ of $H$, we propose a new and simple formula which predicts the lowest eigenvalue with remarkable precisions.
Replica field theory for deterministic models binary sequences with low autocorrelation
Marinari, E; Ritort, F
1994-01-01
We study systems without quenched disorder with a complex landscape, and we use replica symmetry theory to describe them. We discuss the Golay-Bernasconi-Derrida approximation of the low autocorrelation model, and we reconstruct it by using replica calculations. Then we consider the full model, its low T properties (with the help of number theory) and a Hartree-Fock resummation of the high-temperature series. We show that replica theory allows to solve the model in the high T phase. Our solution is based on one-link integral techniques, and is based on substituting a Fourier transform with a generic unitary transformation. We discuss this approach as a powerful tool to describe systems with a complex landscape in the absence of quenched disorder.
Binary nucleation beyond capillarity approximation
Kalikmanov, V.I.
2010-01-01
Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption is taken into account within Gibbsian approximation. Binary clusters are treated by means of statistical-mechanical considerations: tracing out the molecular degrees of freedom of the more volatil...
Stirling System Modeling for Space Nuclear Power Systems
Lewandowski, Edward J.; Johnson, Paul K.
2008-01-01
A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.
Thermophysical Modeling of Contact Binary Near-Earth Asteroid 1996 HW1
Magri, C.; Howell, E. S.; Nolan, M. C.; Taylor, P. A.; Fernández, Y. R.; Mueller, M.; Rivkin, A. S.; Vervack, R. J., Jr.
2011-01-01
Near-Earth asteroid (8567) 1996 HW1 was observed spectroscopically at 1.9-4.0 microns during August- October 2008 using the SpeX instrument at NASA's Infrared Telescope Facility (IRTF). These spectra are being modeled using a new thermophysical program that accounts for the object's spin orientation
Simple Derivation of the Lifetime and the Distribution of Faces for a Binary Subdivision Model
Hayashi, Yukio
The iterative random subdivision of rectangles is used as a generation model of networks in physics, computer science, and urban planning. However, these researches were independent. We consider some relations in them, and derive fundamental properties for the average lifetime depending on birth-time and the balanced distribution of rectangle faces.
Simple Derivation of the Lifetime and the Distribution of Faces for a Binary Subdivision Model
Hayashi, Yukio
2015-01-01
The iterative random subdivision of rectangles is used as a generation model of networks in physics, computer science, and urban planning. However, these researches were independent. We consider some relations in them, and derive fundamental properties for the average lifetime depending on birth-time and the balanced distribution of rectangle faces.
International Nuclear Information System (INIS)
Benchmarking efforts in the fall of 2006 showed significant performance gaps in multiple measured processes between the Slovenske Elektrarne (SE) nuclear organization and the highest performing nuclear organizations in the world. While overall performance of the SE nuclear fleet was good and in the second quartile, when compared to the worldwide population of Pressurized Water Reactors (PWR), SE leadership set new goals to improve safety and operational performance to the first decile of the worldwide PWR Fleet. To meet these goals the SE nuclear team initiated a project to identify and implement the Best Practice nuclear processes in multiple areas. The benchmarking process identified the Standard Nuclear Performance Model (SNPM), used in the US nuclear fleet, as the industry best practice process model. The Slovenske Elektrarne nuclear management team used various change management techniques to clearly establish the case for organizational and process change within the nuclear organization. The project organization established by the SE nuclear management team relied heavily on functional line organization personnel to gain early acceptance of the project goals and methods thereby reducing organizational opposition to the significant organizational and process changes. The choice of a standardized process model used, all or in part, by approximately one third of the nuclear industry worldwide greatly facilitated the development and acceptance of the changes. Use of a nuclear proven templated software platform significantly reduced development and testing efforts for the resulting fully integrated solution. In the spring of 2007 SE set in motion a set of initiatives that has resulted in a significant redesign of most processes related to nuclear plant maintenance and continuous improvement. Significant organizational structure changes have been designed and implemented to align the organization to the SNPM processes and programs. The completion of the initial
Benchmarking nuclear models for Gamow-Teller response
Litvinova, E; Fang, D -L; Marketin, T; Zegers, R G T
2014-01-01
A comparative study of the nuclear Gamow-Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended "jj77" model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow-Teller response functions are calculated for 208-Pb, 132-Sn and 78-Ni within both RTBA and QRPA. The strengths obtained for 208-Pb are compared to data that enables a firm model benchmarking. For the nucleus 132-Sn, also SM calculations are performed within the model space truncated at the level of a particle-hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph+ph...
U(6)-Phonon model of nuclear collective motion
Ganev, H. G.
2015-05-01
The U(6)-phonon model of nuclear collective motion with the semi-direct product structure [HW(21)]U(6) is obtained as a hydrodynamic (macroscopic) limit of the fully microscopic proton-neutron symplectic model (PNSM) with Sp(12, R) dynamical group. The phonon structure of the [HW(21)]U(6) model enables it to simultaneously include the giant monopole and quadrupole, as well as dipole resonances and their coupling to the low-lying collective states. The U(6) intrinsic structure of the [HW(21)]U(6) model, from the other side, gives a framework for the simultaneous shell-model interpretation of the ground state band and the other excited low-lying collective bands. It follows then that the states of the whole nuclear Hilbert space which can be put into one-to-one correspondence with those of a 21-dimensional oscillator with an intrinsic (base) U(6) structure. The latter can be determined in such a way that it is compatible with the proton-neutron structure of the nucleus. The macroscopic limit of the Sp(12, R) algebra, therefore, provides a rigorous mechanism for implementing the unified model ideas of coupling the valence particles to the core collective degrees of freedom within a fully microscopic framework without introducing redundant variables or violating the Pauli principle.
U(6)-phonon model of nuclear collective motion
International Nuclear Information System (INIS)
The U(6)-phonon model of nuclear collective motion with the semi-direct product structure [HW(21)]U(6) is obtained as a hydrodynamic (macroscopic) limit of the fully microscopic proton–neutron symplectic model (PNSM) with Sp(12, R) dynamical group. The phonon structure of the [HW(21)]U(6) model enables it to simultaneously include the giant monopole and quadrupole, as well as dipole resonances and their coupling to the low-lying collective states. The U(6) intrinsic structure of the [HW(21)]U(6) model, from the other side, gives a framework for the simultaneous shell-model interpretation of the ground state band and the other excited low-lying collective bands. It follows then that the states of the whole nuclear Hilbert space which can be put into one-to-one correspondence with those of a 21-dimensional oscillator with an intrinsic (base) U(6) structure. The latter can be determined in such a way that it is compatible with the proton–neutron structure of the nucleus. The macroscopic limit of the Sp(12, R) algebra, therefore, provides a rigorous mechanism for implementing the unified model ideas of coupling the valence particles to the core collective degrees of freedom within a fully microscopic framework without introducing redundant variables or violating the Pauli principle. (author)
Institute of Scientific and Technical Information of China (English)
P Susial; D Garca; R Susial; YC Clavijo; A Martn
2016-01-01
The vapor–liquid equilibrium of binary mixtures of propyl acetate, butyl acetate and isobutyl acetate with meth-anol has been determined at a constant pressure of 0.6 MPa. Results have been modeled with the Peng–Robinson equation, a traditional cubic equation of state widely employed in chemical industries, as well as with the perturbed-chain statistical associating fluid PC-SAFT theory of Gross–Sadowski. By correlation of the binary inter-action parameters of these equations, the measured vapor–liquid equilibrium data can be accurately predicted. Thus, this work shows that these models are able to represent the experimental data for systems with associating compounds via hydrogen bonding.
Hydrodynamics of Rotating Stars and Close Binary Interactions: Compressible Ellipsoid Models
Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.
1994-01-01
We develop a new formalism to study the dynamics of fluid polytropes in three dimensions. The stars are modeled as compressible ellipsoids and the hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. Both viscous dissipation and the gravitational radiation reaction are incorporated. We establish the validity of our approximations and demonstrate the simplicity and power of the method by rederiving a...
Nuclear liquid-drop model and surface-curvature effects
International Nuclear Information System (INIS)
Nuclear liquid-drop model is revisited and an explicit introduction of the surface-curvature terms is presented. The corresponding parameters of the extended classical energy formula are adjusted to the contemporarily known nuclear binding energies and fission-barrier heights. Using 2766 binding energies of nuclei with Z≥8 and N≥8 it is shown that the performance of the new approach is improved by a factor of about 6, compared to the previously published liquid-drop model results, in terms of the masses (new rms deviation =0.698 MeV) and the fission barriers by a factor of about 3.5 (new rms deviation of the fission barriers of isotopes with Z>70 is B>=0.88 MeV). The role of the nuclear surface-curvature terms and their effects on the description of the experimental quantities are discussed in detail. For comparison, the parameters of the more 'traditional' classical energy expressions are refitted, taking into account the nuclear masses known today and the performances of several variants of the model are compared. The isospin dependence in the new description of the barriers is in a good agreement with the extended Thomas-Fermi approach. It also demonstrates a good qualitative agreement with the fission lifetime systematics tested on the long chain of Fermium isotopes known experimentally. The new approach offers a very high stability in terms of the extrapolation from the narrower range of nuclides to a more extended one--a property of particular interest for the contemporary exotic beam projects: the corresponding properties are illustrated and discussed. The new description of the fission barriers being significantly improved, in particular, the new calculated barriers being lower, flatter, but stiffer against high-multipolarity deformations. The chances for 'extra' stabilization of the hyperdeformed minima at high spin increase, thus calling for the new total energy Strutinsky-type calculations
NUCFRG3: Light ion improvements to the nuclear fragmentation model
Energy Technology Data Exchange (ETDEWEB)
Adamczyk, A.M., E-mail: aadamczy@utk.edu [University of Tennessee, Department of Nuclear Engineering, 315 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Norman, R.B., E-mail: Ryan.B.Norman@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States); Sriprisan, S.I., E-mail: isriprisan@PVAMU.edu [Prairie View A and M University, Department of Chemical Engineering, P.O. Box 519, Prairie View, TX 77446 (United States); Townsend, L.W., E-mail: ltownsen@utk.edu [University of Tennessee, Department of Nuclear Engineering, 315 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Norbury, J.W., E-mail: John.W.Norbury@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States); Blattnig, S.R., E-mail: Steve.R.Blattnig@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States); Slaba, T.C., E-mail: Tony.C.Slaba@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States)
2012-06-21
Light ion improvements to the nuclear fragmentation model, NUCFRG, are reported. Improvements include the replacement of the simple light ion production model with a light ion coalescence model and an improved electromagnetic dissociation (EMD) formalism. Prior versions of the model provide reasonable overall agreement with measured data; however, those versions lack a physics-based description for coalescence and EMD. The version reported herein, NUCFRG3, has improved the theoretical descriptions of these mechanisms and offers additional benefits, such as the capability to calculate EMD cross-sections for single deuteron, triton, helion, and alpha particle emission. NUCFRG3 model evaluation and validation show that the predictive capability has been improved and strengthened by the light ion physics-based changes. Based on increased capability and better theoretical grounding, it is recommended that NUCFRG3 replace its predecessors for space radiation assessments and other applications.
Multilevel flow modeling of Monju Nuclear Power Plant
DEFF Research Database (Denmark)
Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay;
2011-01-01
functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained......Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...... with reasoning tools for fault diagnosis and control and is proposed to be used as a central knowledge base giving integrated support in diagnosis and maintenance tasks. Recent developments of MFM include the introduction of concepts for representation of control functions and the relations between plant...
Model-space nuclear matter calculations with the Bonn potential
Energy Technology Data Exchange (ETDEWEB)
Engvik, L.; Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.
1992-08-01
In this work the authors have examined a model-space Brueckner-Hartree-Fock (MBHF) approach to the single-particle energies in nuclear matter, employing three recent versions of the Bonn meson-exchange potential model. The non-relativistic MBHF calculations form the well known ''Coester'' band, where the potential which exhibits the weakest tensor force yields the largest binding energy per nucleon. Correcting for relativistic effects, the MBHF calculations result in too little binding. The implications are discussed. 12 refs., 2 figs.
Model-space nuclear matter calculations with the Bonn potential
Energy Technology Data Exchange (ETDEWEB)
Engvik, L.; Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.
1992-08-01
In this work the authors have examined a model-space Brueckner-Hartree-Fock (MBHF) approach to the single-particle energies in nuclear matter, employing three recent versions of the Bonn meson-exchange potential model. The non-relativistic MBHF calculations form the well known ``Coester`` band, where the potential which exhibits the weakest tensor force yields the largest binding energy per nucleon. Correcting for relativistic effects, the MBHF calculations result in too little binding. The implications are discussed. 12 refs., 2 figs.
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Energy Technology Data Exchange (ETDEWEB)
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
One-dimensional computational modeling on nuclear reactor problems
International Nuclear Information System (INIS)
In this article, we present a computational modeling, which gives us a dynamic view of some applications of Nuclear Engineering, specifically in the power distribution and the effective multiplication factor (keff) calculations. We work with one-dimensional problems of deterministic neutron transport theory, with the linearized Boltzmann equation in the discrete ordinates (SN) formulation, independent of time, with isotropic scattering and then built a software (Simulator) for modeling computational problems used in a typical calculations. The program used in the implementation of the simulator was Matlab, version 7.0. (author)
A Toy Model for 3:2 Ratio of kHz QPO Frequency in Black Hole X-ray Binaries
Wang, Ding-Xiong; Ye, Yong-Chun; Ma, Ren-Yi; Gong, Xiao-Long
2005-06-01
Production of pairs of high frequency quasi-periodic oscillations (QPOs) in black hole X-ray binaries is discussed based on a model of non-axisymmetric magnetic coupling of a rotating black hole (BH) with its surrounding accretion disk, in which a puzzling 3:2 ratio of the upper frequency to the lower frequency is explained. In addition, the correlation of the pairs of high frequency QPOs with the jets from microquasars is discussed.
Kinetic energy for the nuclear Yang-Mills collective model
Rosensteel, George; Sparks, Nick
2015-10-01
The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM, has two hidden mathematical structures, one Lie group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new unexplored feature that shares the same mathematical origin as Yang-Mills, viz., a vector bundle with a non-abelian structure group and a connection. Using the de Rham Laplacian ▵ = * d * d from differential geometry for the kinetic energy extends significantly the physical scope of the GCM model. This Laplacian contains a ``magnetic'' term due to the coupling between base manifold rotational and fiber vorticity degrees of freedom. When the connection specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator. More generally, the connection yields a moment of inertia that is intermediate between the extremes of irrotational flow and rigid body motion.
GRA/RIAM model development at Darlington Nuclear
International Nuclear Information System (INIS)
In 2004, the Darlington Nuclear (DN) Plant of Ontario Power Generation (OPG) undertook a project, in partnership with Nuclear Safety Solutions (NSS) Limited, to develop Risk-Informed Asset Management (RIAM) and Generation Risk Assessment (GRA) models. The models are intended to optimize plant decision-making. The objective of this paper is to present the scope of the project, the methodology employed, the results and the potential applications. DN has recognized the strategic importance of RIAM in the plant decision-making process and has begun its implementation. The required work was split into three phases. Phase 1 involved industry benchmarking, along with collection and review of the industry literature such as EPRI publications and other relevant papers. Based on the review, a description of the requirements to produce a prototype RIAM model was developed. Phase 2 consisted of the development of prototype RIAM and GRA models. Phase 3, currently underway, consists of the work required to translate the prototype models into an operational decision-making tool. RIAM and GRA are relatively new concepts hence the related methodology and the tools are still evolving. NSS has tailored the available methodology to suit the needs of the DN plant. Draft EPRI guides on GRA/RIAM were used in developing DN specific methodology. The details are provided in the paper. At DN, RIAM is expected to support business decisions by facilitating the assessment of risks associated with projects, programs and business case alternatives. These applications are further discussed in the paper. (author)
Energy Technology Data Exchange (ETDEWEB)
Mahaki, Hanie, E-mail: hanieh.mahaki@gmail.com [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Memarpoor-Yazdi, Mina; Chamani, Jamshidkhan [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Reza Saberi, Mohammad [Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)
2013-02-15
The aim of the present study was to describe the competition of ropinirole hydrochloride (RP) and aspirin (ASA) in binding to human serum albumin (HSA) in physiological buffer (pH=7.4) using multi-spectroscopic, molecular modeling and zeta-potential measurements. Fluorescence analysis was used to define the binding and quenching properties of drug-HSA complexes in binary and ternary systems. Fluorescence spectroscopy showed that in the presence of RP, the binding constant of HSA-ASA was increased. Static quenching was confirmed to result in the fluorescence quenching and FRET. The effect of drugs on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy, three-dimensional fluorescence spectra and circular dichroism (CD). The RLS method determined the critical aggregation concentration of drugs on HSA in binary and ternary systems that confirmed the zeta potential results. Structural modeling showed that the affinity of each of the drugs to HSA in binary and ternary systems confirms the spectroscopic results. - Highlights: Black-Right-Pointing-Pointer We studied the interaction of ropinirole hydrochloride and aspirin with HSA. Black-Right-Pointing-Pointer Molecular modeling and zeta-potential used to describe competitive interaction. Black-Right-Pointing-Pointer We determined the critical induced aggregation concentration of both drugs on HSA. Black-Right-Pointing-Pointer The binding mechanism of drugs as separate and simultaneous to HSA has been compared. Black-Right-Pointing-Pointer The binding site of both drugs as simultaneous effects on HSA has been determined.
International Nuclear Information System (INIS)
The general goal of the project is to develop and implement computer codes and input files to compute nuclear densities of state. Such densities are important input into calculations of statistical neutron capture, and are difficult to access experimentally. In particular, we will focus on calculating densities for nuclides in the mass range A ∼ 50-100. We use statistical spectroscopy, a moments method based upon a microscopic framework, the interacting shell model. Second year goals and milestones: Develop two or three competing interactions (based upon surface-delta, Gogny, and NN-scattering) suitable for application to nuclei up to A = 100. Begin calculations for nuclides with A = 50-70
Thermodynamic model of natural, medieval and nuclear waste glass durability
International Nuclear Information System (INIS)
A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (106 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table
Binary collision model for neon Auger spectra from neon ion bombardment of the aluminum surface
Pepper, S. V.
1986-01-01
A model is developed to account for the angle-resolved Auger spectra from neon ion bombardment of the aluminum surface recently obtained by Pepper and Aron. The neon is assumed to be excited in a single asymmetric neon-aluminum-collision and scattered back into the vacuum where it emits an Auger electron. The velocity of the Auger electron acquires a Doppler shift by virtue of the emission from a moving source. The dependence of the Auger peak shape and energy on the incident ion energy, angle of incidence and on the angle of Auger electron emission with respect to the surface is presented. Satisfactory agreement with the angle resolved experimental observations is obtained. The dependence of the angle-integrated Auger yield on the incident ion energy and angle of incidence is also obtained and shown to be in satisfactory agreement with available experimental evidence.
Mayoral, E; Nahmad-Achar, E
2016-03-10
We study and predict the interfacial tension, solubility parameters, and Flory-Huggins parameters of binary mixtures as functions of pressure and temperature, using multiscale numerical simulation. A mesoscopic approach is proposed for simulating the pressure dependence of the interfacial tension for binary mixtures, at different temperatures, using classical dissipative particle dynamics (DPD). The thermodynamic properties of real systems are reproduced via the parametrization of the repulsive interaction parameters as functions of pressure and temperature via molecular dynamics simulations. Using this methodology, we calculate and analyze the cohesive energy density and the solubility parameters of different species obtaining excellent agreement with reported experimental behavior. The pressure- and temperature-dependent Flory-Huggins and repulsive DPD interaction parameters for binary mixtures are also obtained and validated against experimental data. This multiscale methodology offers the benefit of being applicable for any species and under difficult or nonfeasible experimental conditions, at a relatively low computational cost. PMID:26840645
Mayoral, E
2016-01-01
We study and predict the interfacial tension, solubility parameters and Flory-Huggins parameters of binary mixtures as functions of pressure and temperature, using multiscale numerical simulation. A mesoscopic approach is proposed for simulating the pressure dependence of the interfacial tension for binary mixtures, at different temperatures, using classical Dissipative Particle Dynamics (DPD). The thermodynamic properties of real systems are reproduced via the parametrization of the repulsive interaction parameters as functions of pressure and temperature via Molecular Dynamics simulations. Using this methodology, we calculate and analyze the cohesive density energy and the solubility parameters of different species obtaining excellent agreement with reported experimental behavior. The pressure- and temperature-dependent Flory-Huggins and repulsive DPD interaction parameters for binary mixtures are also obtained and validated against experimental data. This multiscale methodology offers the benefit of being ...
Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling
International Nuclear Information System (INIS)
Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration. (paper)
The Period Variation of and a Spot Model for the Eclipsing Binary AR Bootis
Lee, Jae Woo; Lee, Chung-Uk; Kim, Seung-Lee; Koch, Robert H
2009-01-01
New CCD photometric observations of the eclipsing system AR Boo were obtained from February 2006 to April 2008. The star's photometric properties are derived from detailed studies of the period variability and of all available light curves. We find that over about 56 years the orbital period of the system has varied due to a combination of an upward parabola and a sinusoid rather than in a monotonic fashion. Mass transfer from the less massive primary to the more massive secondary component is likely responsible for at least a significant part of the secular period change. The cyclical variation with a period of 7.57 yrs and a semi-amplitude of 0.0015 d can be produced either by a light-travel-time effect due to an unseen companion with a scaled mass of $M_3 \\sin i_3$=0.081 $M_\\odot$ or by a magnetic period modulation in the secondary star. Historical light curves of AR Boo, as well as our own, display season-to-season light variability, which are best modeled by including both a cool spot and a hot one on th...
System evaluation model for selecting spent nuclear fuel storage concepts
International Nuclear Information System (INIS)
President Reagan has challenged the nuclear community to develop a safe and economical system to handle spent fuel assemblies from commercial nuclear power generating stations and high level radioactive wastes from fuel reprocessing facilities. This paper will illustrate a management system approach used to identify and evaluate monitored, retrievable fuel storage concepts that fulfill ten key criteria for meeting the functional requirements and system objectives of the National Nuclear Waste Management Program. These selection criteria include: health and safety, schedule, costs, socio-economic factors and environmental factors. An MRS (Monitored Retrievable Storage) System is designed to safety store spent fuel assemblies and high level waste in a dry, passively cooled environment for an indefinite period of time up to 100 years. Forth-five feasible MRS design concepts utilizing 20 basic storage methods were initially screened and reduced to 15 concepts with 7 methods. A system evaluation model was developed to evaluate the ability of each of the remaining 15 alternative concepts to meet the selection criteria. This model allows the ranking of each system according to MRS needs and life-cycle costs. The methodology used to establish the selection criteria, develop a weight of importance for each criterion and assess the relative merit of each MRS system will be described. The impact of cost relative to technical criteria will be discussed along with experience in obtaining relative merit data and its application in the model. This system evaluation model is universally applicable when many concepts in various stages of design and cost development need to be evaluated. It provides a structured approach which allows the evaluators to make a rational, well-founded selection
Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling
Energy Technology Data Exchange (ETDEWEB)
Danon, Yaron; Nazarewicz, Witold; Talou, Patrick
2013-02-18
This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.
Isotope thermometery in nuclear multifragmentation
Agrawal, B. K.; Samaddar, S. K.; Sil, Tapas; J. N.
1998-01-01
A systematic study of the effect of fragment$-$fragment interaction, quantum statistics, $\\gamma$-feeding and collective flow is made in the extraction of the nuclear temperature from the double ratio of the isotopic yields in the statistical model of one-step (Prompt) multifragmentation. Temperature is also extracted from the isotope yield ratios generated in the sequential binary-decay model. Comparison of the thermodynamic temperature with the extracted temperatures for different isotope r...
Energy Technology Data Exchange (ETDEWEB)
Das, N., E-mail: nirupamd@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mittra, J. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Pabi, S.K. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur 721 302 (India); Kulkarni, U.D.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)
2013-02-15
Highlights: Black-Right-Pointing-Pointer A methodology was proposed to predict amorphous forming compositions (AFCs). Black-Right-Pointing-Pointer Chemical contribution to enthalpy of mixing {proportional_to} enthalpy of amorphous for AFCs. Black-Right-Pointing-Pointer Accuracy in the prediction of AFC-range was noticed in Al-Ni-Ti system. Black-Right-Pointing-Pointer Mechanical alloying (MA) results of Al-Ni-Ti followed the predicted AFC-range. Black-Right-Pointing-Pointer Earlier MA results of Al-Ni-Ti also conformed to the predicted AFC-range. - Abstract: From the earlier works on the prediction of amorphous forming composition range (AFCR) using Miedema based model and also, on mechanical alloying experiments it has been observed that all amorphous forming compositions of a given alloy system falls within a linear band when the chemical contribution to enthalpy of the solid solution ({Delta}H{sup ss}) is plotted against the enthalpy of mixing in the amorphous phase ({Delta}H{sup amor}). On the basis of this observation, a methodology has been proposed in this article to identify the AFCR of a ternary system that is likely to be more precise than what can be obtained using {Delta}H{sup amor} - {Delta}H{sup ss} < 0 criterion. MA experiments on various compositions of Al-Ni-Ti system, producing amorphous, crystalline, and mixture of amorphous plus crystalline phases have been carried out and the phases have been characterized using X-ray diffraction and transmission electron microscopy techniques. Data from the present MA experiments and, also, from the literature have been used to validate the proposed approach. Also, the proximity of compositions, producing a mixture of amorphous and crystalline phases to the boundary of AFCR in the Al-Ni-Ti ternary has been found useful to validate the effectiveness of the prediction.