Verification of LHS distributions.
Energy Technology Data Exchange (ETDEWEB)
Swiler, Laura Painton
2006-04-01
This document provides verification test results for normal, lognormal, and uniform distributions that are used in Sandia's Latin Hypercube Sampling (LHS) software. The purpose of this testing is to verify that the sample values being generated in LHS are distributed according to the desired distribution types. The testing of distribution correctness is done by examining summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chisquare test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is acceptable.
Photospheric activity, rotation and magnetic interaction in LHS 6343 A
Herrero, E; Ribas, I; Jordi, C; Morales, J C
2013-01-01
Context. The Kepler mission has recently discovered a brown dwarf companion transiting one member of the M4V+M5V visual binary system LHS 6343 AB with an orbital period of 12.71 days. Aims. The particular interest of this transiting system lies in the synchronicity between the transits of the brown dwarf C component and the main modulation observed in the light curve, which is assumed to be caused by rotating starspots on the A component. We model the activity of this star by deriving maps of the active regions that allow us to study stellar rotation and the possible interaction with the brown dwarf companion. Methods. An average transit profile was derived, and the photometric perturbations due to spots occulted during transits are removed to derive more precise transit parameters. We applied a maximum entropy spot model to fit the out-of-transit optical modulation as observed by Kepler during an uninterrupted interval of 500 days. It assumes that stellar active regions consist of cool spots and bright facul...
Montet, Benjamin T.; Johnson, John Asher; Fortney, Jonathan J.; Desert, Jean-Michel
2016-01-01
There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmosphere of a non-inflated brown dwarf with a measured mass and radius. ...
Montet, Benjamin T; Fortney, Jonathan J; Desert, Jean-Michel
2016-01-01
There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly-irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmosphere of a non-inflated brown dwarf with a measured mass and radius. Here, we analyze four Spitzer observations of secondary eclipses of LHS 6343 C behind LHS 6343 A. Jointly fitting the eclipses with a Gaussian process noise model of the instrumental systematics, we measure eclipse depths of 1.06 \\pm 0.21 ppt at 3.6 microns and 2.09 \\pm 0.08 ppt at 4.5 microns, corresponding to brightness temperatures of 1026 \\pm 57 K and 1249 \\pm 36 K, respectively. We then apply brown dwarf evolutionary models to infer a bolometric luminosity log(L_star / L_sun) = -5.16 \\pm 0.04. Given the known physica...
Synthesis of polymer nanocomposites using layered hydroxide salts (LHS)
Energy Technology Data Exchange (ETDEWEB)
NONE
2011-07-01
In this work latexes of poly (methyl methacrylate) were synthesized via emulsion polymerization using layered hydroxide salts (LHS) as reinforcements: zinc hydroxide nitrate (Zn{sub 5}(OH){sub 8}(NO{sub 3}){sub 2{center_dot}}2H{sub 2}O) and copper hydroxide acetate (Cu{sub 2}(OH){sub 3}CH{sub 3}COO.H{sub 2}O). The LHSs were characterized by X-ray powder diffraction (XRPD). Mastersizer analysis indicated the particle diameter of the latexes. Molecular weights and conversion data were also obtained. (author)
Identification of strong photometric activity in the components of LHS 1070
Almeida, L A; Martioli, E
2010-01-01
Activity in low-mass stars is an important ingredient in the evolution of such objects. Fundamental physical properties such as age, rotation, magnetic field are correlated with activity. Aims: We show that two components of the low-mass triple system LHS 1070 exhibit strong flaring activity. We identify the flaring components and obtained an improved astrometric solution for the LHS 1070 A/(B+C) system. Methods: Time-series CCD observations were used to monitor LHS 1070 in the B and I_C bands. H-band data were used to obtain accurate astrometry for the LHS 1070 A/(B+C) system. Results: We have found that two components of the triple system LHS 1070 exhibit photometric activity. We identified that components A and B are the flaring objects. We estimate the total energy, ~2.0 x 10^{33} ergs, and the magnetic field strength, ~5.5 kG, of the flare observed in LHS 1070 B. This event is the largest amplitude, \\Delta B > 8.2 mag, ever observed in a flare star.
A user`s guide to LHS: Sandia`s Latin Hypercube Sampling Software
Energy Technology Data Exchange (ETDEWEB)
Wyss, G.D.; Jorgensen, K.H. [Sandia National Labs., Albuquerque, NM (United States). Risk Assessment and Systems Modeling Dept.
1998-02-01
This document is a reference guide for LHS, Sandia`s Latin Hypercube Sampling Software. This software has been developed to generate either Latin hypercube or random multivariate samples. The Latin hypercube technique employs a constrained sampling scheme, whereas random sampling corresponds to a simple Monte Carlo technique. The present program replaces the previous Latin hypercube sampling program developed at Sandia National Laboratories (SAND83-2365). This manual covers the theory behind stratified sampling as well as use of the LHS code both with the Windows graphical user interface and in the stand-alone mode.
International Nuclear Information System (INIS)
The present paper deals with the utilization of advanced sampling statistical methods to perform uncertainty and sensitivity analysis on numerical models. Such models may represent physical phenomena, logical structures (such as boolean expressions) or other systems, and various of their intrinsic parameters and/or input variables are usually treated as random variables simultaneously. In the present paper a simple method to scale-up Latin Hypercube Sampling (LHS) samples is presented, starting with a small sample and duplicating its size at each step, making it possible to use the already run numerical model results with the smaller sample. The method does not distort the statistical properties of the random variables and does not add any bias to the samples. The results is a significant reduction in numerical models running time can be achieved (by re-using the previously run samples), keeping all the advantages of LHS, until an acceptable representation level is achieved in the output variables. (author)
An astrometric companion to the nearby metal-poor, low-mass star LHS 1589
Lepine, S; Shara, M M; Cruz, K L; Skemer, A; Lepine, Sebastien; Shara, Michael M.; Cruz, Kelle L.; Skemer, Andrew
2007-01-01
We report the discovery of a companion to the high proper motion star LHS 1589, a nearby high-velocity, low-mass subdwarf. The companion (LHS 1589B) is located 0.220"+/-0.004" to the southwest of the primary (LHS 1589A), and is 0.5 magnitude fainter than the primary in the K_s band. The pair was resolved with the IRCAL infrared camera at Lick Observatory, operating with the Laser Guide Star Adaptive Optics system. A low-resolution spectrum obtained at MDM observatory confirms that the system consists of a pair of low-mass subdwarfs, with a composite spectral type sdK7.5. A photometric distance estimate places the system at a distance d=78+/-18 parsecs from the Sun. We also measure a radial velocity V_rad=75+/-25 km/s which, together with the proper motion and estimated distance, suggests that the star is roaming the inner Galactic halo on a highly eccentric orbit. With a projected orbital separation s=17.2+/-4.8 AU, we estimate the orbital period of the system to be in the range 95 yr < P < 370 yr. This...
Sharpening of scanned originals using the luminance, hue, and saturation (LHS) coordinate system
Govrin, Omri
1994-05-01
A digital sharpening algorithm which operates in the luminance, hue and saturation (LHS) color space was applied to simulated images and digital images scanned on a CMYK scanner. The spatial algorithm was the same as the one used in normal operations. Edge detection was performed in the HS space on the luminance (L) image and the sharp signal derived from it was added to the original unsharpened L image. The effect of sharpening the saturation (S) image was also tested. The resulting images were transformed back to the CMYK space, printed and compared to images sharpened in the RGB space with various conventional algorithms. Results show that sharpening in the LHS space avoids contours with color different from that of the object and maintains the original color of very fine details, in contrast to the conventional RGB sharpening algorithm. Some aspects of this method, however, should still be improved before its advantages can justify the changes necessary for implementation in the color separation scanner.
Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.
2014-03-01
Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.
A magnetic model for low/hard state of black hole binaries
Ye, Yong-Chun; Huang, Chang-Yin; Cao, Xiao-Feng
2015-01-01
A magnetic model for low/hard state (LHS) of black hole X-ray binaries (BHXBs),H1743-322 and GX 339-4, is proposed based on the transportation of magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with quasi-steady jet is modelled based on transportation of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.
VizieR Online Data Catalog: Probing the LHS Catalog (Gizis+ 1997)
Gizis, J. E.; Reid; I. N.
1997-11-01
We present moderate resolution spectroscopy of 111 cool dwarf stars to supplement the observations we have already presented in the Palomar/MSU Nearby-Star Spectroscopic Survey. The sample consists of 71 suspected nearby stars added to the Preliminary Third Catalog of Nearby Stars since 1991 as well as 40 faint red stars selected from the LHS catalog. The study was aimed at identifying interesting red dwarfs, particularly new nearby, ultracool dwarfs, and very metal-poor stars. The observations were made using the Palomar 60-inch, the Hale 200-inch and the Las Campanas 100-inch telescopes between June 1995 and January 1996. The spectral resolution is approximately 3 Angstroms per pixel with wavelength coverage from 6200 to 7500 Angstroms. Table 2 contains bandstrengths for TiO, CaH, and CaOH indices. (4 data files).
Energy Technology Data Exchange (ETDEWEB)
Petelet, Matthieu; Asserin, Olivier [CEA, DRT / LITEN / DTH / LTA, Bat 611, 91191 Gif sur Yvette Cedex (France); Iooss, Bertrand [CEA, DEN / CAD / DER / SESI / LCFR, Bat 212, 13108 St-Paul-lez-Durance Cedex (France); Petelet, Matthieu; Loredo, Alexandre [ISAT / LRMA, 49 rue Melle Bourgeois, BP 31, 58027 Nevers Cedex (France)
2006-07-01
In this work, the method of sensitivity analysis allowing to identify the inlet data the most influential on the variability of the responses (residual stresses and distortions). Classically, the sensitivity analysis is carried out locally what limits its validity domain to a given material. A global sensitivity analysis method is proposed; it allows to cover a material domain as wide as those of the steels series. A probabilistic modeling giving the variability of the material parameters in the steels series is proposed. The original aspect of this work consists in the use of the sampling method by latin hypercubes (LHS) of the material parameters which forms the inlet data (dependent of temperature) of the numerical simulations. Thus, a statistical approach has been applied to the welding numerical simulation: LHS sampling of the material properties, global sensitivity analysis what has allowed the reduction of the material parameterization. (O.M.)
A magnetic model for low/hard state of black hole binaries
Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng
2016-03-01
A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.
Drummond, J.
2011-09-01
Two Excel Spreadsheet files are offered to help calibrate telescope or camera image scale and orientation with binary stars for any time. One is a personally selected list of fixed position binaries and binaries with well-determined orbits, and the other contains all binaries with published orbits. Both are derived from the web site of the Washington Double Star Library. The spreadsheets give the position angle and separation of the binaries for any entered time by taking advantage of Excel's built in iteration function to solve Kepler's transcendental equation.
Shore, S N; van den Heuvel, EPJ
1994-01-01
This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.
Ryan, Keegan; Nakajima, Miki; Stevenson, David J.
2014-11-01
Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.
LHS 2803B: A VERY WIDE MID-T DWARF COMPANION TO AN OLD M DWARF IDENTIFIED FROM PAN-STARRS1
International Nuclear Information System (INIS)
We report the discovery of a wide (∼1400 AU projected separation), common proper motion companion to the nearby M dwarf LHS 2803 (PSO J207.0300-13.7422). This object was discovered during our census of the local T dwarf population using Pan-STARRS1 and Two Micron All Sky Survey data. Using the Infrared Telescope Facility/SpeX near-infrared spectroscopy, we classify the secondary to be spectral type T5.5. University of Hawaii 2.2 m/SuperNova Integral Field Spectrograph optical spectroscopy indicates that the primary has a spectral type of M4.5, with approximately solar metallicity and no measurable Hα emission. We use this lack of activity to set a lower age limit for the system of 3.5 Gyr. Using a comparison with chance alignments of brown dwarfs and nearby stars, we conclude that the two objects are unlikely to be a chance association. The primary's photometric distance of 21 pc and its proper motion implies thin disk kinematics. Based on these kinematics and its metallicity, we set an upper age limit for the system of 10 Gyr. Evolutionary model calculations suggest that the secondary has a mass of 72±47 MJup, temperature of 1120 ± 80 K, and log g = 5.4 ± 0.1 dex. Model atmosphere fitting to the near-IR spectrum gives similar physical parameters of 1100 K and log g = 5.0.
LHS 2803B: A VERY WIDE MID-T DWARF COMPANION TO AN OLD M DWARF IDENTIFIED FROM PAN-STARRS1
Energy Technology Data Exchange (ETDEWEB)
Deacon, Niall R. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Mann, Andrew W.; Burgett, William S.; Chambers, Ken C.; Kaiser, Nick; Kudritzki, Rolf-Peter; Morgan, Jeff S.; Tonry, John L.; Wainscoat, Richard J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Redstone, Joshua A. [Facebook, 1601 Willow Road, Menlo Park, CA 94025 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North Aohoku Place, Hilo, HI 96720 (United States); Price, Paul A., E-mail: deacon@mpia.de [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)
2012-09-20
We report the discovery of a wide ({approx}1400 AU projected separation), common proper motion companion to the nearby M dwarf LHS 2803 (PSO J207.0300-13.7422). This object was discovered during our census of the local T dwarf population using Pan-STARRS1 and Two Micron All Sky Survey data. Using the Infrared Telescope Facility/SpeX near-infrared spectroscopy, we classify the secondary to be spectral type T5.5. University of Hawaii 2.2 m/SuperNova Integral Field Spectrograph optical spectroscopy indicates that the primary has a spectral type of M4.5, with approximately solar metallicity and no measurable H{alpha} emission. We use this lack of activity to set a lower age limit for the system of 3.5 Gyr. Using a comparison with chance alignments of brown dwarfs and nearby stars, we conclude that the two objects are unlikely to be a chance association. The primary's photometric distance of 21 pc and its proper motion implies thin disk kinematics. Based on these kinematics and its metallicity, we set an upper age limit for the system of 10 Gyr. Evolutionary model calculations suggest that the secondary has a mass of 72{+-}{sup 4}{sub 7} M{sub Jup}, temperature of 1120 {+-} 80 K, and log g = 5.4 {+-} 0.1 dex. Model atmosphere fitting to the near-IR spectrum gives similar physical parameters of 1100 K and log g = 5.0.
DEFF Research Database (Denmark)
Keiding, Hans; Peleg, Bezalel
2006-01-01
Abstract A social choice rule (SCR) is a collection of social choice correspondences, one for each agenda. An effectivity rule is a collection of effectivity functions, one for each agenda. We prove that every monotonic and superadditive effectivity rule is the effectivity rule of some SCR. A SCR...... is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...... effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...
Eclipsing binaries in open clusters
DEFF Research Database (Denmark)
Southworth, John; Clausen, J.V.
Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...
PHOEBE: PHysics Of Eclipsing BinariEs
Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick
2011-06-01
PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.
International Nuclear Information System (INIS)
Numerical integrations of encounters of pairs of binaries have been used to study the class of interactions, called fly-bys, in which the two-binary configuration survives. It is shown that these typically weak interactions can be treated by means of a first-order perturbation theory. A simple simulation model for obtaining the energy transfer rate between various degrees of freedom has been constructed. The model was employed to estimate the additional energy transfer arising from impact parameters larger than those used in the numerical experiments. In the hard binary limit the total energy transfer caused by binary-binary encounters is dominated by the collisional interactions in which the two-binary configuration is destroyed. (author)
Sahade, Jorge; Ter Haar, D
1978-01-01
Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied
Bolt, Nate
2000-01-01
In the endless quest to transform itself, capitalism has spawned a new working class. The proletariat was an essential product of the industrial revolution, and the lighter, more efficient capitalism of the digital revolution has created the Binary Proletariat.
Freire, P C C
2004-01-01
The first eclipsing binary pulsar, PSR B1957+20, was discovered in 1987. Since then, 13 other eclipsing low-mass binary pulsars have been found, 12 of these are in globular clusters. In this paper we list the known eclipsing binary pulsars and their properties, with special attention to the eclipsing systems in 47 Tuc. We find that there are two fundamentally different groups of eclipsing binary pulsars; separated by their companion masses. The less massive systems (M_c ~ 0.02 M_sun) are a product of predictable stellar evolution in binary pulsars. The systems with more massive companions (M_c ~ 0.2 M_sun) were formed by exchange encounters in globular clusters, and for that reason are exclusive to those environments. This class of systems can be used to learn about the neutron star recycling fraction in the globular clusters actively forming pulsars. We suggest that most of these binary systems are undetectable at radio wavelengths.
Han, Z
2008-01-01
In this talk, we present the general principles of binary evolution and give two examples. The first example is the formation of subdwarf B stars (sdBs) and their application to the long-standing problem of ultraviolet excess (also known as UV-upturn) in elliptical galaxies. The second is for the progenitors of type Ia supernovae (SNe Ia). We discuss the main binary interactions, i.e., stable Roche lobe overflow (RLOF) and common envelope (CE) evolution, and show evolutionary channels leading to the formation of various binary-related objects. In the first example, we show that the binary model of sdB stars of Han et al. (2002, 2003) can reproduce field sdB stars and their counterparts, extreme horizontal branch (EHB) stars, in globular clusters. By applying the binary model to the study of evolutionary population synthesis, we have obtained an ``a priori'' model for the UV-upturn of elliptical galaxies and showed that the UV-upturn is most likely resulted from binary interactions. This has major implications...
Directory of Open Access Journals (Sweden)
Joshua A. Faber
2012-07-01
Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Moruz, Gabriel
2006-01-01
It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees. For...... all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...
Binary Popldation Synthcsis Study
Institute of Scientific and Technical Information of China (English)
HAN Zhanwen
2011-01-01
Binary population synthesis （BPS）, an approach to evolving millions of stars （including binaries） simultaneously, plays a crucial role in our understanding of stellar physics, the structure and evolution of galaxies, and cosmology. We proposed and developed a BPS approach, and used it to investigate the formation of many peculiar stars such as hot subdwarf stars, progenitors of type la supernovae, barium stars, CH stars, planetary nebulae, double white dwarfs, blue stragglers, contact binaries, etc. We also established an evolution population synthesis （EPS） model, the Yunnan Model, which takes into account binary interactions for the first time. We applied our model for the origin of hot subdwarf stars in the study of elliptical galaxies and explained their far-UV radiation.
Binary and Millisecond Pulsars
Directory of Open Access Journals (Sweden)
Lorimer Duncan R.
2008-11-01
Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.
Binary and Millisecond Pulsars
Lorimer, D R
2008-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 solar masses, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e=0.44) orbit around an unevolved companion.
Hypervelocity binary stars: smoking gun of massive binary black holes
Lu, Youjun; Lin, D N C
2007-01-01
The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.
Torres, R M; Mioduszewki, A; Rodríguez, L F
2008-01-01
As part of an astrometric program, we have used the Very Long Baseline Array to measure the trigonometric parallax of several young stars in the Taurus and Ophiuchus star-forming regions with great accuracy. Additionally, we have obtained an unprecedented sample of high-resolution (~ 1 mas) images of several young stellar systems. These images revealed that about 70% of the stars in our sample are very tight binary stars (with separations of a few mas). Since it is highly unlikely that 70% of all stars are such tight binaries, we argue that selection effects are at work.
Sturmfels, Bernd
2011-01-01
Algebraic statistics for binary random variables is concerned with highly structured algebraic varieties in the space of 2x2x...x2-tensors. We demonstrate the advantages of representing such varieties in the coordinate system of binary cumulants. Our primary focus lies on hidden subset models. Parametrizations and implicit equations in cumulants are derived for hyperdeterminants, for secant and tangential varieties of Segre varieties, and for certain context-specific independence models. Extending work of Rota and collaborators, we explore the polynomial inequalities satisfied by cumulants.
Formation of binary radio pulsars
International Nuclear Information System (INIS)
In the framework of the standard scenario of the evolution of massive binary stars a study is made of the formation of final binary systems in which at least one of the components is a neutron star. It is found that about every fortieth radio pulsar must be a member of a close binary system. This is confirmed by observations. Radio pulsars are not formed in wide binary systems, possibly because of the very slow rotation of the presupernova stars
Compressing Binary Decision Diagrams
DEFF Research Database (Denmark)
Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...
Equational binary decision diagrams
Groote, J.F.; Pol, J.C. van de
2000-01-01
We incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tautology checkin
International Nuclear Information System (INIS)
A novel sensing mechanism for electrostatic MEMS that employs static bifurcation-based sensing and binary detection is demonstrated. It is implemented as an ethanol vapour sensor that exploits the static pull-in bifurcation. Sensor detection of 5 ppm of ethanol vapour in dry nitrogen, equivalent to a detectable mass of 165 pg, is experimentally demonstrated. Sensor robustness to external disturbances is also demonstrated. A closed-form expression for the sensitivity of statically detected electrostatic MEMS sensors is derived. It is shown that the sensitivity of static bifurcation-based binary electrostatic MEMS sensors represents an upper bound on the sensitivity of static detection for given sensor dimensions and material properties. (paper)
Binary Tetrahedral Flavor Symmetry
Eby, David A
2013-01-01
A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...
Compressing Binary Decision Diagrams
Hansen, Esben Rune; Tiedemann, Peter
2008-01-01
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.
Griebeler, Elmer L.
2011-01-01
Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition
Massive Black Hole Binary Evolution
Directory of Open Access Journals (Sweden)
Merritt David
2005-11-01
Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.
Acid Rain. Teacher's Guide. LHS GEMS.
Hocking, Colin; Barber, Jacqueline; Coonrod, Jan
This teacher's guide presents a unit on acid rain and introduces hands-on activities for sixth through eighth grade students. In each unit, students act as real scientists and gather evidence by using science process skills such as observing, measuring and recording data, classifying, role playing, problem solving, critical thinking, synthesizing…
Biclustering Sparse Binary Genomic Data
Van Uitert, M.; Meuleman, W.; Wessels, L. F. A.
2008-01-01
Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two propos...
Evolution of Close Binary Systems
Energy Technology Data Exchange (ETDEWEB)
Yakut, K; Eggleton, P
2005-01-24
We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.
Report IAU Comm. 42, Close Binary Stars
Ribas, Ignasi; Scarfe, Colin D.; Torres, Guillermo; Rucinski, Slavek M.; Sion, Edward M.; Richards, Mercedes T.; Niarchos, Panayiotis; Olah, Katalin
2008-01-01
Brief summaries are given about (1) close binary research from the perspective of the Bibliography of Close Binaries, (2) low-mass binaries and model discrepancies, (3) W UMa-type binaries, (4) cataclysmic variables, (5) Algol binaries, (6) the oEA stars, (7) effects of binarity on stellar activity.
Low autocorrelation binary sequences
Packebusch, Tom; Mertens, Stephan
2016-04-01
Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.
International Nuclear Information System (INIS)
Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.
Bu, Tian-Ming; Zhang, Peng
2011-01-01
Many problems in Computer Science can be abstracted to the following question: given a set of objects and rules respectively, which new objects can be produced? In the paper, we consider a succinct version of the question: given a set of binary strings and several operations like conjunction and disjunction, which new binary strings can be generated? Although it is a fundamental problem, to the best of our knowledge, the problem hasn't been studied yet. In this paper, an O(m^2n) algorithm is presented to determine whether a string s is representable by a set W, where n is the number of strings in W and each string has the same length m. However, looking for the minimum subset from a set to represent a given string is shown to be NP-hard. In addition, we prove that counting the number of strings representable is #P-complete. But if the operator negation can be used, the number is some power of 2. This di?erence maybe help us understand the problem more profoundly.
Relativistic Binaries in Globular Clusters
Directory of Open Access Journals (Sweden)
Benacquista Matthew J.
2006-02-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Binaries in Globular Clusters
Directory of Open Access Journals (Sweden)
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS
Institute of Scientific and Technical Information of China (English)
XuChengqian; ZhaoXiaoqun
2002-01-01
A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP)is proposed .A new class of block design-Difference Family Pair (DFP)is also proposed .The relationship between PCSP and DFP,the properties and exising conditions of PCSP and the recursive constructions for PCSP are given.
PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS
Institute of Scientific and Technical Information of China (English)
Xu Chengqian; Zhao Xiaoqun
2002-01-01
A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.
Pairing mechanisms for binary stars
Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L; 10.1002/asna.200811061
2008-01-01
Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments. Binarity is also a key ingredient in stellar population studies and is a prerequisite to calibrate the binary evolution channels. In these proceedings we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as the pairing function. Many pairing functions are frequently used by observers and computational astronomers, either for the mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. These quantities, when derived from a binary survey with a mass-limited sample of target stars, ...
Planets in Binary Star Systems
Haghighipour, Nader
2010-01-01
The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...
Towards Physarum Binary Adders
Jones, Jeff; 10.1016/j.biosystems.2010.04.005
2010-01-01
Plasmodium of \\emph{Physarum polycephalum} is a single cell visible by unaided eye. The plasmodium's foraging behaviour is interpreted in terms of computation. Input data is a configuration of nutrients, result of computation is a network of plasmodium's cytoplasmic tubes spanning sources of nutrients. Tsuda et al (2004) experimentally demonstrated that basic logical gates can be implemented in foraging behaviour of the plasmodium. We simplify the original designs of the gates and show --- in computer models --- that the plasmodium is capable for computation of two-input two-output gate $ \\to $ and three-input two-output $ \\to $. We assemble the gates in a binary one-bit adder and demonstrate validity of the design using computer simulation.
Eccentric Binary Millisecond Pulsars
Freire, Paulo C C
2009-01-01
In this paper we review the recent discovery of several millisecond pulsars (MSPs) in eccentric binary systems. Timing these MSPs we were able to estimate (and in one case precisely measure) their masses. These results suggest that, as a class, MSPs have a much wider range of masses (1.3 to > 2 solar masses) than the normal and mildly recycled pulsars found in double neutron star (DNS) systems (1.25 < Mp < 1.44 solar masses). This is very likely to be due to the prolonged accretion episode that is thought to be required to form a MSP. The likely existence of massive MSPs makes them a powerful probe for understanding the behavior of matter at densities larger than that of the atomic nucleus; in particular, the precise measurement of the mass of PSR J1903+0327 ($1.67 +/- 0.01 solar masses) excludes several "soft" equations of state for dense matter.
Pourbaix, D.; Arenou, F.; Halbwachs, J.-L.; Siopis, C.
2013-02-01
Gaia's five-year observation baseline might naively lead to the expectation that it will be possible to fit the parallax of any sufficiently nearby object with the default five-parameter model (position at a reference epoch, parallax and proper motion). However, simulated Gaia observations of a `model Universe' composed of nearly 107 objects, 50% of which turn out to be multiple stars, show that the single-star hypothesis can severely affect parallax estimation and that more sophisticated models must be adopted. In principle, screening these spurious single-star solutions is rather straightforward, for example by evaluating the quality of the fits. However, the simulated Gaia observations also reveal that some seemingly acceptable single-star solutions can nonetheless lead to erroneous distances. These solutions turn out to be binaries with an orbital period close to one year. Without auxiliary (e.g., spectroscopic) data, they will remain unnoticed.
Binary black hole spectroscopy
International Nuclear Information System (INIS)
We study parameter estimation with post-Newtonian (PN) gravitational waveforms for the quasi-circular, adiabatic inspiral of spinning binary compact objects. In particular, the performance of amplitude-corrected waveforms is compared with that of the more commonly used restricted waveforms, in Advanced LIGO and EGO. With restricted waveforms, the properties of the source can only be extracted from the phasing. In the case of amplitude-corrected waveforms, the spectrum encodes a wealth of additional information, which leads to dramatic improvements in parameter estimation. At distances of ∼100 Mpc, the full PN waveforms allow for high-accuracy parameter extraction for total mass up to several hundred solar masses, while with the restricted ones the errors are steep functions of mass, and accurate parameter estimation is only possible for relatively light stellar mass binaries. At the low-mass end, the inclusion of amplitude corrections reduces the error on the time of coalescence by an order of magnitude in Advanced LIGO and a factor of 5 in EGO compared to the restricted waveforms; at higher masses these differences are much larger. The individual component masses, which are very poorly determined with restricted waveforms, become measurable with high accuracy if amplitude-corrected waveforms are used, with errors as low as a few per cent in Advanced LIGO and a few tenths of a per cent in EGO. The usual spin-orbit parameter β is also poorly determined with restricted waveforms (except for low-mass systems in EGO), but the full waveforms give errors that are small compared to the largest possible value consistent with the Kerr bound. This suggests a way of finding out if one or both of the component objects violate this bound. On the other hand, we find that the spin-spin parameter σ remains poorly determined even when the full waveform is used. Generally, all errors have but a weak dependence on the magnitudes and orientations of the spins. We also briefly
Strong Lensing by Binary Galaxies
Shin, E M
2008-01-01
We study the problem of gravitational lensing by binary galaxies, idealized as two isothermal spheres. In a wide binary, each galaxy possesses individual tangential, nearly astroidal, caustics and roundish radial caustics. As the separation of the binary is made smaller, the caustics undergo a sequence of metamorphoses. The first metamorphosis occurs when the tangential caustics merge to form a single six-cusped caustic, lying interior to the radial caustics. At still smaller separations, the six-cusped caustic undergoes the second metamorphosis and splits into a four-cusped caustic and two three-cusped caustics, which shrink to zero size (an elliptic umbilic catastrophe) before they enlarge again and move away from the origin perpendicular to the binary axis. Finally, a third metamorphosis occurs as the three-cusp caustics join the radial caustics, leaving an inner distorted astroid caustic enclosed by two outer caustics. The maximum number of images possible is 7. Classifying the multiple imaging according ...
Magnetic braking in ultracompact binaries
Farmer, Alison
2010-01-01
Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binary's component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which a...
Discs in misaligned binary systems
Rawiraswattana, Krisada; Goodwin, Simon P
2016-01-01
We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-...
Cryptography with DNA binary strands.
Leier, A; Richter, C; Banzhaf, W; Rauhe, H
2000-06-01
Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'. PMID:10963862
Directory of Open Access Journals (Sweden)
Praveena Murugesan
2014-01-01
Full Text Available Reversible logic gates under ideal conditions produce zero power dissipation. This factor highlights the usage of these gates in optical computing, low power CMOS design, quantum optics and quantum computing. The growth of decimal arithmetic in various applications as stressed the need to propose the study on reversible binary to BCD converter which plays a greater role in decimal multiplication for providing faster results. The different parameters such as gate count,garbage output and constant input are more optimized in the proposed fixed bit binary to binary coded decimal converter than the existing design.
Belloni, T M
2016-01-01
The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...
Binary nucleation beyond capillarity approximation
Kalikmanov, V.I.
2010-01-01
Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption is taken into account within Gibbsian approximation. Binary clusters are treated by means of statistical-mechanical considerations: tracing out the molecular degrees of freedom of the more volatil...
Clostridium difficile binary toxin CDT
Gerding, Dale N.; Johnson, Stuart; Rupnik, Maja; Aktories, Klaus
2013-01-01
Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylatio...
Coalescence of Binary Neutron Stars
Oohara, Ken-ichi; Namamura, Takashi
1996-01-01
The most important sources for laser-interferometric gravitational-wave detectors like LIGO or VIRGO are catastrophic events such as coalescence of a neutron-star binary. The final phase, or the last three milliseconds, of coalescence is considered. We describe results of numerical simulations of coalescing binary neutron stars using Newtonian and post-Newtonian hydrodynamics code and then discuss recent development of our 3D GR code.
Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results
Samaras, N; 10.1613/jair.1776
2011-01-01
A non-binary Constraint Satisfaction Problem (CSP) can be solved directly using extended versions of binary techniques. Alternatively, the non-binary problem can be translated into an equivalent binary one. In this case, it is generally accepted that the translated problem can be solved by applying well-established techniques for binary CSPs. In this paper we evaluate the applicability of the latter approach. We demonstrate that the use of standard techniques for binary CSPs in the encodings of non-binary problems is problematic and results in models that are very rarely competitive with the non-binary representation. To overcome this, we propose specialized arc consistency and search algorithms for binary encodings, and we evaluate them theoretically and empirically. We consider three binary representations; the hidden variable encoding, the dual encoding, and the double encoding. Theoretical and empirical results show that, for certain classes of non-binary constraints, binary encodings are a competitive op...
Binaries and Globular Cluster Dynamics
Rasio, F A; Joshi, K J; Rasio, Frederic A.; Fregeau, John M.; Joshi, Kriten J.
2001-01-01
We summarize the results of recent theoretical work on the dynamical evolution of globular clusters containing primordial binaries. Even a very small initial binary fraction (e.g., 10%) can play a key role in supporting a cluster against gravothermal collapse for many relaxation times. Inelastic encounters between binaries and single stars or other binaries provide a very significant energy source for the cluster. These dynamical interactions also lead to the production of large numbers of exotic systems such as ultracompact X-ray binaries, recycled radio pulsars, double degenerate systems, and blue stragglers. Our work is based on a new parallel supercomputer code implementing Henon's Monte Carlo method for simulating the dynamical evolution of dense stellar systems in the Fokker-Planck approximation. This new code allows us to calculate very accurately the evolution of a cluster containing a realistic number of stars (N ~ 10^5 - 10^6) in typically a few hours to a few days of computing time. The discrete, s...
Exoplanets Bouncing Between Binary Stars
Moeckel, Nickolas
2012-01-01
Exoplanetary systems are found not only among single stars, but also binaries of widely varying parameters. Binaries with separations of 100--1000 au are prevalent in the Solar neighborhood; at these separations planet formation around a binary member may largely proceed as if around a single star. During the early dynamical evolution of a planetary system, planet--planet scattering can eject planets from a star's grasp. In a binary, the motion of a planet ejected from one star has effectively entered a restricted three-body system consisting of itself and the two stars, and the equations of motion of the three body problem will apply as long as the ejected planet remains far from the remaining planets. Depending on its energy, escape from the binary as a whole may be impossible or delayed until the three-body approximation breaks down, and further close interactions with its planetary siblings boost its energy when it passes close to its parent star. Until then this planet may be able to transition from the ...
Using Binary Code Instrumentation in Computer Security
Directory of Open Access Journals (Sweden)
Marius POPA
2013-01-01
Full Text Available The paper approaches the low-level details of the code generated by compilers whose format permits outside actions. Binary code modifications are manually done when the internal format is known and understood, or automatically by certain tools developed to process the binary code. The binary code instrumentation goals may be various from security increasing and bug fixing to development of malicious software. The paper highlights the binary code instrumentation techniques by code injection to increase the security and reliability of a software application. Also, the paper offers examples for binary code formats understanding and how the binary code injection may be applied.
The structure of contact binaries
Kaehler, H
2003-01-01
In radiative layers of rotating stars the luminosity carried by circulation currents through a surface of constant entropy (circulation luminosity) is shown to be positive. The corresponding decrease in the temperature gradient is important in the secondary of contact binaries. This result removes the deadlock in the theory of contact binaries. The resulting treatment of contact binaries is investigated, assuming thermal equilibrium. If the circulation luminosity is adjusted to give a prescribed temperature difference between the components, details turn out to be unimportant. The temperature difference is bound to be positive. The fractional extent of radiative regions is larger in the secondary than in the primary. In the course of evolution the period increases and the mass ratio decreases. A survey of unevolved and evolved contact configurations is presented. Observational tests are passed. In stable systems the degree of contact is small. Stable systems in the period-colour diagram, unevolved and evolved...
Practical Binary Adaptive Block Coder
Reznik, Yuriy A
2007-01-01
This paper describes design of a low-complexity algorithm for adaptive encoding/ decoding of binary sequences produced by memoryless sources. The algorithm implements universal block codes constructed for a set of contexts identified by the numbers of non-zero bits in previous bits in a sequence. We derive a precise formula for asymptotic redundancy of such codes, which refines previous well-known estimate by Krichevsky and Trofimov, and provide experimental verification of this result. In our experimental study we also compare our implementation with existing binary adaptive encoders, such as JBIG's Q-coder, and MPEG AVC (ITU-T H.264)'s CABAC algorithms.
Coalescing binaries and Doppler experiments
Vecchio, A.; Bertotti, B.; Iess, L.
1997-01-01
We discuss the sensitivity of the CASSINI experiments to gravitational waves emitted by the in-spiral of compact binaries. We show that the maximum distance reachable by the instrument is $\\sim 100$ Mpc. In particular, CASSINI can detect massive black hole binaries with chirp mass $\\simgt 10^6 \\Ms$ in the Virgo Cluster with signal-to-noise ratio between 5 and 30 and possible compact objects of mass $\\simgt 30 \\Ms$ orbiting the massive black hole that our Galactic Centre is likely to harbour.
Rectangular Decomposition of Binary Images
Czech Academy of Sciences Publication Activity Database
Suk, Tomáš; Höschl, Cyril; Flusser, Jan
Berlin : Springer, 2012 - (Blanc-Talon, J.; Popescu, D.; Philips, W.; Scheunders, P.), s. 213-224 ISBN 978-3-642-33139-8. - (Lecture Notes in Computer Science. 7517). [Advanced Concepts for Intelligent Vision Systems (Acivs 2012). Brno (CZ), 04.09.2012-07.09.2012] R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : binary image decomposition * generalized delta-method * distance transformation * quadtree * bipartite graph * image compression * fast convolution Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2012/ZOI/suk-rectangular decomposition of binary images.pdf
Kepler Eclipsing Binaries with Stellar Companions
Gies, D R; Guo, Z; Lester, K V; Orosz, J A; Peters, G J
2015-01-01
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.
Frame theory for binary vector spaces
Bodmann, Bernhard G.; Le, My; Reza, Letty; Tobin, Matthew; Tomforde, Mark
2009-01-01
We develop the theory of frames and Parseval frames for finite-dimensional vector spaces over the binary numbers. This includes characterizations which are similar to frames and Parseval frames for real or complex Hilbert spaces, and the discussion of conceptual differences caused by the lack of a proper inner product on binary vector spaces. We also define switching equivalence for binary frames, and list all equivalence classes of binary Parseval frames in lowest dimensions, excluding cases...
Using Binary Code Instrumentation in Computer Security
Marius POPA; Sergiu Marin CAPISIZU
2013-01-01
The paper approaches the low-level details of the code generated by compilers whose format permits outside actions. Binary code modifications are manually done when the internal format is known and understood, or automatically by certain tools developed to process the binary code. The binary code instrumentation goals may be various from security increasing and bug fixing to development of malicious software. The paper highlights the binary code instrumentation techniques by code injection to...
Discs in misaligned binary systems
Rawiraswattana, Krisada; Hubber, David A.; Goodwin, Simon P.
2016-08-01
We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-alignment processes, which tend to misalign the components. The alignment process dominates in systems with misalignment angle near 90°, while the anti-alignment process dominates in systems with the misalignment angle near 0° or 180°. This means that highly misaligned systems will become more aligned but slightly misaligned systems will become more misaligned.
A Galactic Binary Detection Pipeline
Littenberg, Tyson B.
2011-01-01
The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.
CFD Simulations of Binary Nucleation
Czech Academy of Sciences Publication Activity Database
Herrmann, E.; Brus, David; Hyvärinen, A-P.; Kulmala, M.
Helsinki : -, 2010, P3U16. ISBN N. [International Aerosol Conference IAC 2010. Helsinki (FI), 29.08.2010-03.09.2010] Grant ostatní: FCR(FI) 1118615 Institutional research plan: CEZ:AV0Z40720504 Keywords : nucleation * binary * parameterization Subject RIV: CF - Physical ; Theoretical Chemistry www.iac2010.fi
Eccentricity distribution of wide binaries
Tokovinin, Andrei
2015-01-01
A sample of 477 solar-type binaries within 67pc with projected separations larger than 50AU is studied by a new statistical method. Speed and direction of the relative motion are determined from the short observed arcs or known orbits, and their joint distribution is compared to the numerical simulations. By inverting the observed distribution with the help of simulations, we find that average eccentricity of wide binaries is 0.59+-0.02 and the eccentricity distribution can be modeled as f(e) ~= 1.2 e + 0.4. However, wide binaries containing inner subsystems, i.e. triple or higher-order multiples, have significantly smaller eccentricities with the average e = 0.52+-0.05 and the peak at e ~ 0.5. We find that the catalog of visual orbits is strongly biased against large eccentricities. A marginal evidence of eccentricity increasing with separation (or period) is found for this sample. Comparison with spectroscopic binaries proves the reality of the controversial period-eccentricity relation. The average eccentr...
A Redundant Binary Algorithm for RSA
Institute of Scientific and Technical Information of China (English)
施荣华
1996-01-01
The normal form and modified normal form for binary redundant representation are defined.A redundant binary algorithm to compute modular exponentiation for very large integers is proposed.It is shown that the proposed algorithm requires the minimum number of basic operations(modular multiplications)among all possible binary redundant representations.
Competitive learning for binary valued data
Leisch, Friedrich; Weingessel, Andreas; Dimitriadou, Evgenia
1998-01-01
We propose a new approach for using online competitive learning on binary data. The usual Euclidean distance is replaced by binary distance measures, which take possible asymmetries of binary data into account and therefore provide a "different point of view" for looking at the data. The method is demonstrated on two artificial examples and applied on tourist marketing research data. (author's abstract)
Permutation Entropy for Random Binary Sequences
Directory of Open Access Journals (Sweden)
Lingfeng Liu
2015-12-01
Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.
Remnants of compact binary mergers
Domainko, W
2006-01-01
We investigate the long-term evolution and observability of remnants originating from the merger of compact binary systems and discuss the differences to supernova remnants. Compact binary mergers expel much smaller amounts of mass at much higher velocities, as compared to supernovae, which will affect the dynamical evolution of their remnants. The ejecta of mergers consist of very neutron rich nuclei. Some of these neutron rich nuclei will produce observational signatures in form of gamma ray lines during their decay. The composition of the ejecta might even give interesting constraints about the internal structure of the neutron star. We further discuss the possibility that merger remnants appear as recently discovered 'dark accelerators' which are extended TeV sources which lack emission in other bands.
Event Rates for Binary Inspiral
Kalogera, V
2001-01-01
Double compact objects (neutron stars and black holes) found in binaries with small orbital separations are known to spiral in and are expected to coalesce eventually because of the emission of gravitational waves. Such inspiral and merger events are thought to be primary sources for ground based gravitational-wave interferometric detectors (such as LIGO). Here, we present a brief review of estimates of coalescence rates and we examine the origin and relative importance of uncertainties associated with the rate estimates. For the case of double neutron star systems, we compare the most recent rate estimates to upper limits derived in a number of different ways. We also discuss the implications of the formation of close binaries with two non-recycled pulsars.
Modified binary particle swam optimization
Institute of Scientific and Technical Information of China (English)
Sangwook Lee; Sangmoon Soak; Sanghoun Oh; Witold Pedrycz; Moongu Jeon
2008-01-01
This paper presents a modified binary particle swarm optimization(BPSO)which adopts concepts of the genotype-phenotype rep-resentation and the mutation operator of genetic algorithms.Its main feature is that the BPSO can be treated as a continuous PSO.The proposed BPSO algorithm is tested on various benchmark functions,and its performance is compared with that of the original BPSO.Experimental results show that the modified BPSO outperforms the original BPSO algorithm.
Tides in asynchronous binary systems
Toledano, Oswaldo; Moreno, Edmundo; Koenigsberger, Gloria; Detmers, R.; Langer, Norbert
2006-01-01
Stellar oscillations are excited in non-synchronously rotating stars in binary systems due to the tidal forces. Tangential components of the tides can drive a shear flow which behaves as a differentially forced rotating structure in a stratified outer medium. In this paper we show that our single-layer approximation for the calculation of the forced oscillations yields results that are consistent with the predictions for the synchronization timescales in circular orbits. In addition, calibrat...
Galaxy Rotation and Rapid Supermassive Binary Coalescence
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood
2015-09-01
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
Visual Binaries in the Orion Nebula Cluster
Reipurth, Bo; Connelley, Michael S; Bally, John
2007-01-01
We have carried out a major survey for visual binaries towards the Orion Nebula Cluster using HST images obtained with an H-alpha filter. Among 781 likely ONC members more than 60" from theta-1 Ori C, we find 78 multiple systems (75 binaries and 3 triples), of which 55 are new discoveries, in the range from 0.1" to 1.5". About 9 binaries are likely line-of-sight associations. We find a binary fraction of 8.8%+-1.1% within the limited separation range from 67.5 to 675 AU. The field binary fraction in the same range is a factor 1.5 higher. Within the range 150 AU to 675 AU we find that T Tauri associations have a factor 2.2 more binaries than the ONC. The binary separation distribution function of the ONC shows unusual structure, with a sudden steep decrease in the number of binaries as the separation increases beyond 0.5", corresponding to 225 AU. We have measured the ratio of binaries wider than 0.5" to binaries closer than 0.5" as a function of distance from the Trapezium, and find that this ratio is signifi...
Evolution of binary stars in multiple-population globular clusters - II. Compact binaries
Hong, Jongsuk; Vesperini, Enrico; Sollima, Antonio; McMillan, Stephen L. W.; D'Antona, Franca; D'Ercole, Annibale
2016-04-01
We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters. We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations. The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG and the SG binary fraction with the distance from the cluster centre and its dependence on the binary binding energy and cluster structural parameters. The difference between the binary fraction in the FG and the SG populations found in our simulations is consistent with the results of observational studies finding a smaller binary fraction in the SG population.
Orbital eccentricities in primordial black holes binaries
Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise
2016-01-01
It was recently suggested that the merger of $\\sim30\\,M_\\odot$ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly ecce...
Asteroid Systems: Binaries, Triples, and Pairs
Margot, Jean-Luc; Taylor, Patrick; Carry, Benoît; Jacobson, Seth
2015-01-01
In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main belt binaries have been identified. The current observational evidence confirms that small (20 km) binaries with small satellites are most likely created during large collisions.
Relativistic Gravity and Binary Radio Pulsars
Kaspi, V. M.
1999-01-01
Following a summary of the basic principles of pulsar timing, we present a review of recent results from timing observations of relativistic binary pulsars. In particular, we summarize the status of timing observations of the much celebrated original binary pulsar PSR B1913+16, draw attention to the recent confirmation of strong evidence for geodetic precession in this system, review the recent measurement of multiple post-Keplerian binary parameters for PSR B1534+12, and describe the Parkes ...
Microlensing Signature of Binary Black Holes
Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson
2012-01-01
We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.
Detection of unresolved binaries with multicolor photometry
Chulkov, D; Malkov, O; Sichevskij, S; Krussanova, N; Mironov, A; Zakharov, A; Kniazev, A
2016-01-01
The principal goal of this paper is to specify conditions of detection of unresolved binaries by multicolor photometry. We have developed a method for estimating the critical distance at which an unresolved binary of given mass and age can be detected. The method is applied to the photometric system of the planned Lyra-B spaceborne experiment. We have shown that some types of unresolved binary stars can be discovered and distinguished from single stars solely by means of photometric observations.
Relativistic Gravity and Binary Radio Pulsars
Kaspi, V M
1999-01-01
Following a summary of the basic principles of pulsar timing, we present a review of recent results from timing observations of relativistic binary pulsars. In particular, we summarize the status of timing observations of the much celebrated original binary pulsar PSR B1913+16, draw attention to the recent confirmation of strong evidence for geodetic precession in this system, review the recent measurement of multiple post-Keplerian binary parameters for PSR B1534+12, and describe the Parkes Multibeam survey, a major survey of the Galactic Plane which promises to discover new relativistic binary pulsar systems.
Speech perception of noise with binary gains
DEFF Research Database (Denmark)
Wang, DeLiang; Kjems, Ulrik; Pedersen, Michael Syskind;
2008-01-01
For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed by the i...... by the ideal binary mask. Only 16 filter channels and a frame rate of 100 Hz are sufficient for high intelligibility. The results show that, despite a dramatic reduction of speech information, a pattern of binary gains provides an adequate basis for speech perception....
International Nuclear Information System (INIS)
In work on the basis of a method of the kinetic equations it is output the differential equations for binary density and a binary stream of particles of electro conducting magnetic liquids. These equations are the nonuniform equations of parabolic type. The solution of these equations completely feature existential behaviour of binary density and a binary stream of particles of electro conducting magnetic liquids, i.e. process of a structural relaxation. (author)
Massive Stars in Interactive Binaries
St.-Louis, Nicole; Moffat, Anthony F. J.
Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when
Young and Waltzing Binary Stars
2001-10-01
ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a
The structures of binary compounds
Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR
1990-01-01
- Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders
R144 : a very massive binary likely ejected from R136 through a binary-binary encounter
Oh, Seungkyung; Banerjee, Sambaran
2013-01-01
R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from a R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of $\\approx$ 355 Msun and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km/s at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with an other massive binary or single star. In addition, we discuss all massive binaries and sin...
Millisecond Pulsars in Close Binaries
Tauris, Thomas M
2015-01-01
In this Habilitationsschrift (Habilitation thesis) I present my research carried out over the last four years at the Argelander Institute for Astronomy (AIfA) and the Max Planck Institute for Radio Astronomy (MPIfR). The thesis summarizes my main findings and has been written to fulfill the requirements for the Habilitation qualification at the University of Bonn. Although my work is mainly focused on the topic of millisecond pulsars (MSPs), there is a fairly broad spread of research areas ranging from the formation of neutron stars (NSs) in various supernova (SN) events, to their evolution, for example, via accretion processes in binary and triple systems, and finally to their possible destruction in merger events. The thesis is organized in the following manner: A general introduction to neutron stars and millisecond pulsars is given in Chapter 1. A selection of key papers published in 2011-2014 are presented in Chapters 2-10, ordered within five main research areas (ultra-stripped SNe in close binaries, ma...
Polarization in binary microlensing events
International Nuclear Information System (INIS)
The light received by source stars in microlensing events may be significantly polarized if both an efficient photon-scattering mechanism is active in the source stellar atmosphere and a differential magnification is therein induced by the lensing system. The best candidate events for observing polarization are highly magnified events with source stars belonging to the class of cool, giant stars in which the stellar light is polarized by photon scattering on dust grains contained in their envelopes. The presence in the stellar atmosphere of an internal cavity devoid of dust produces polarization profiles with a two peaks structure. Hence, the time interval between them gives an important observable quantity directly related to the size of the internal cavity and to the model parameters of the lens system. We show that, during a microlensing event, the expected polarization variability can solve an ambiguity that arises in some cases, related to the binary or planetary lensing interpretation of the perturbations observed near the maximum of the event light-curve. We consider a specific event case for which the parameter values corresponding to the two solutions are given. Then, assuming a polarization model for the source star, we compute the two expected polarization profiles. The position of the two peaks appearing in the polarization curves and the characteristic time interval between them allow us to distinguish between the binary and planetary lens solutions. (paper)
Pulsating Components in Binary and Multiple Stellar Systems --- A Catalog of Oscillating Binaries
Zhou, A. -Y.
2010-01-01
We present an up-to-date catalog of pulsating binaries, i.e. the binary and multiple stellar systems containing pulsating components, along with a statistics on them. Compared to the earlier compilation by Soydugan et al.(2006a) of 25 delta Scuti-type `oscillating Algol-type eclipsing binaries' (oEA), the recent collection of 74 oEA by Liakos et al.(2012), and the collection of Cepheids in binaries by Szabados (2003a), the numbers and types of pulsating variables in binaries are now extended....
The Evolution of Compact Binary Star Systems
Directory of Open Access Journals (Sweden)
Yungelson, Lev R.
2006-12-01
Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.
The Evolution of Compact Binary Star Systems
Directory of Open Access Journals (Sweden)
Konstantin A. Postnov
2014-05-01
Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.
Eliciting Subjective Probabilities with Binary Lotteries
DEFF Research Database (Denmark)
Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd
We evaluate the binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Harrison, Martínez-Correa and Swarthout [2013] found that the binary lottery procedure works robustly to induce risk neutrality when subjects are given one risk task defined over o...
Pulsed Accretion onto Eccentric and Circular Binaries
Muñoz, Diego J
2016-01-01
We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ~5 times the binary period P_b,accretion onto an eccentric binary is predominantly modulated at the period ~1P_b. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10-20 times larger than its companion. This "symmetry breaking" between the stars, however, alternates over timescales of order 200 P_b, and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the ...
ECCENTRIC EVOLUTION OF SUPERMASSIVE BLACK HOLE BINARIES
International Nuclear Information System (INIS)
In recent numerical simulations, it has been found that the eccentricity of supermassive black hole (SMBH)-intermediate black hole (IMBH) binaries grows toward unity through interactions with the stellar background. This increase of eccentricity reduces the merging timescale of the binary through the gravitational radiation to a value well below the Hubble time. It also gives a theoretical explanation of the existence of eccentric binaries such as that in OJ287. In self-consistent N-body simulations, this increase of eccentricity is always observed. On the other hand, the result of the scattering experiment between SMBH binaries and field stars indicated that the eccentricity dose not change significantly. This discrepancy leaves the high eccentricity of the SMBH binaries in N-body simulations unexplained. Here, we present a stellar-dynamical mechanism that drives the increase of the eccentricity of an SMBH binary with a large mass ratio. There are two key processes involved. The first one is the Kozai mechanism under a non-axisymmetric potential, which effectively randomizes the angular momenta of surrounding stars. The other is the selective ejection of stars with prograde orbits. Through these two mechanisms, field stars extract the orbital angular momentum of the SMBH binary. Our proposed mechanism causes the increase in the eccentricity of most of SMBH binaries, resulting in the rapid merger through gravitational wave radiation. Our result has given a definite solution to the 'last-parsec problem'.
Microlensing Binaries with Candidate Brown Dwarf Companions
DEFF Research Database (Denmark)
Shin, I.-G; Han, C.; Gould, A.;
2012-01-01
Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...
Gravitational radiation, inspiraling binaries, and cosmology
Chernoff, David F.; Finn, Lee S.
1993-01-01
We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.
Gravitational waves from inspiralling binary black holes
International Nuclear Information System (INIS)
Binary black holes are the most promising candidate sources for the first generation of earth-based interferometric gravitational-wave detectors. We summarize and discuss the state-of-the-art analytical techniques developed during the last few years to better describe the late dynamical evolution of binary black holes of comparable masses
Bayesian analysis of exoplanet and binary orbits
Schulze-Hartung, Tim; Henning, Thomas
2012-01-01
We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.
Planet Scattering Around Binaries: Ejections, Not Collisions
Smullen, Rachel A; Shannon, Andrew
2016-01-01
Transiting circumbinary planets discovered by Kepler provide unique insight into binary and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically effects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Asid...
Orbital dynamics of binary boson star systems
International Nuclear Information System (INIS)
We extend our previous studies of head-on collisions of boson stars by considering orbiting binary boson stars. We concentrate on equal-mass binaries and study the dynamical behavior of boson/boson and boson/antiboson pairs. We examine the gravitational wave output of these binaries and compare with other compact binaries. Such a comparison lets us probe the apparent simplicity observed in gravitational waves produced by black hole binary systems. In our system of interest however, there is an additional internal freedom which plays a significant role in the system's dynamics, namely, the phase of each star. Our evolutions show rather simple behavior at early times, but large differences occur at late times for the various initial configurations
Logistic chaotic maps for binary numbers generations
International Nuclear Information System (INIS)
Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.
Polarization in binary microlensing events
Ingrosso, G; Nucita, A A; Strafella, F; Novati, S Calchi; Jetzer, Ph; Liuzzi, G; Zakharov, A
2013-01-01
The light received by source stars in microlensing events may be significantly polarized if both an efficient photon scattering mechanism is active in the source stellar atmosphere and a differential magnification is therein induced by the lensing system. The best candidate events for observing polarization are highly magnified events with source stars belonging to the class of cool, giant stars {in which the stellar light is polarized by photon scattering on dust grains contained in their envelopes. The presence in the stellar atmosphere of an internal cavity devoid of dust produces polarization profiles with a two peaks structure. Hence, the time interval between them gives an important observable quantity directly related to the size of the internal cavity and to the model parameters of the lens system.} We show that {during a microlensing event} the expected polarization variability can solve an ambiguity, that arises in some cases, related to the binary or planetary lensing interpretation of the perturba...
Binary Cepheids from optical interferometry
Gallenne, A; Mérand, A; Monnier, J D; Pietrzyński, J Breitfelder G; Gieren, W
2013-01-01
Classical Cepheid stars have been considered since more than a century as reliable tools to estimate distances in the universe thanks to their Period-Luminosity (P-L) relationship. Moreover, they are also powerful astrophysical laboratories, providing fundamental clues for studying the pulsation and evolution of intermediate-mass stars. When in binary systems, we can investigate the age and evolution of the Cepheid, estimate the mass and distance, and constrain theoretical models. However, most of the companions are located too close to the Cepheid (1-40 mas) to be spatially resolved with a 10-meter class telescope. The only way to spatially resolve such systems is to use long-baseline interferometry. Recently, we have started a unique and long-term interferometric program that aims at detecting and characterizing physical parameters of the Cepheid companions, with as main objectives the determination of accurate masses and geometric distances.
Binary theory of electronic stopping
Sigmund, P
2002-01-01
Binary stopping theory has been developed to characterize the electronic stopping of swift heavy ions in matter. It is an extension of Bohr's classical theory of 1913 incorporating screening, higher-order-Z sub 1 and shell corrections, high-speed quantum and relativity corrections as well as projectile excitation and ionization. The main numerical input comes from optical properties. The computation of shell corrections involves orbital velocity distributions of target and projectile electrons. Calculated stopping parameters depend on ion charge. Equilibrium stopping forces may be computed by adoption of a suitable model for the equilibrium charge state. This paper summarizes the current status of the theory, in particular the sensitivity of its predictions to pertinent input. Charge-dependent stopping forces have been calculated for selected systems and compared to experimental results. Equilibrium stopping forces calculated for a wide variety of ion-target combinations are compared with experimental data fr...
Binary mixtures of chiral gases
Presilla, Carlo
2015-01-01
A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.
Gamma-ray binaries and related systems
Dubus, Guillaume
2013-01-01
After initial claims and a long hiatus, it is now established that several binary stars emit high (0.1-100 GeV) and very high energy (>100 GeV) gamma rays. A new class has emerged called 'gamma-ray binaries', since most of their radiated power is emitted beyond 1 MeV. Accreting X-ray binaries, novae and a colliding wind binary (eta Car) have also been detected - 'related systems' that confirm the ubiquity of particle acceleration in astrophysical sources. Do these systems have anything in common ? What drives their high-energy emission ? How do the processes involved compare to those in other sources of gamma rays: pulsars, active galactic nuclei, supernova remnants ? I review the wealth of observational and theoretical work that have followed these detections, with an emphasis on gamma-ray binaries. I present the current evidence that gamma-ray binaries are driven by rotation-powered pulsars. Binaries are laboratories giving access to different vantage points or physical conditions on a regular timescale as ...
Interrupted Binary Mass Transfer in Star Clusters
Leigh, Nathan W C; Toonen, Silvia
2016-01-01
Binary mass transfer is at the forefront of some of the most exciting puzzles of modern astrophysics, including Type Ia supernovae, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this time-scale to the mean time for stable mass transfer to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing mass transfer that are expected to be disrupted as a function of the host cluster pro...
Pd-Si binary bulk metallic glass
Institute of Scientific and Technical Information of China (English)
YAO KeFu; CHEN Na
2008-01-01
Pd80+xSi20-x (x=0, 1, and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content, the glass transition temperature Tg, the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover, the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability, which can be greatly improved by fluxing treatment.
Pd-Si binary bulk metallic glass
Institute of Scientific and Technical Information of China (English)
2008-01-01
Pd80+xSi20-x (x=0,1,and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content,the glass transition temperature Tg,the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover,the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability,which can be greatly improved by fluxing treatment.
Eliciting Subjective Probabilities with Binary Lotteries
DEFF Research Database (Denmark)
Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd
2014-01-01
We evaluate a binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Prior research has shown this procedure to robustly induce risk neutrality when subjects are given a single risk task defined over objective probabilities. Drawing a sample from the...... same subject population, we find evidence that the binary lottery procedure also induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation of subjective probabilities in subjects with...
Cassini states for black hole binaries
Correia, Alexandre C. M.
2015-01-01
Cassini states correspond to the equilibria of the spin axis of a body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black hole binary systems base...
Fast algorithms for generating binary holograms
Stuart, Dustin; Kuhn, Axel
2014-01-01
We describe three algorithms for generating binary-valued holograms. Our methods are optimised for producing large arrays of tightly focussed optical tweezers for trapping particles. Binary-valued holograms allow us to use a digital mirror device (DMD) as the display element, which is much faster than other alternatives. We describe how our binary amplitude holograms can be used to correct for phase errors caused by optical aberrations. Furthermore, we compare the speed and accuracy of the algorithms for both periodic and arbitrary arrangements of traps, which allows one to choose the ideal scheme depending on the circumstances.
CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES
International Nuclear Information System (INIS)
We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results
CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES
Energy Technology Data Exchange (ETDEWEB)
Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)
2013-11-10
We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.
Compact Binaries in Star Clusters I - Black Hole Binaries Inside Globular Clusters
Downing, J. M. B.; Benacquista, M. J.; Giersz, M.; Spurzem, R.
2009-01-01
We study the compact binary population in star clusters, focusing on binaries containing black holes, using a self-consistent Monte Carlo treatment of dynamics and full stellar evolution. We find that the black holes experience strong mass segregation and become centrally concentrated. In the core the black holes interact strongly with each other and black hole-black hole binaries are formed very efficiently. The strong interactions, however, also destroy or eject the black hole-black hole bi...
Properties of planets in binary systems. The role of binary separation
Desidera, S.; Barbieri, M.
2006-01-01
The statistical properties of planets in binaries were investigated. Any difference to planets orbiting single stars can shed light on the formation and evolution of planetary systems. As planets were found around components of binaries with very different separation and mass ratio, it is particularly important to study the characteristics of planets as a function of the effective gravitational influence of the companion. A compilation of planets in binary systems was made; a search for compa...
Binaries in the Hipparcos data: Keep digging
Pourbaix, D; Jorissen, A
2004-01-01
Among the 120 000 objects in the Hipparcos catalogue, only 235 were fitted with an orbital model. Besides these 235 original astrometric binaries, most Hipparcos entries with a known spectroscopic orbit (extrasolar planet or stellar companion) have now been re-processed, as part of the on-going construction of the 9th Catalogue of Spectroscopic Binary Orbits (SB9, available at http://sb9.astro.ulb.ac.be). The pitfalls and successes of this re-processing are discussed in various contexts, like (i) orbital inclinations: the holy grail for extrasolar planets (ii) searching for binaries without a priori knowledge of their spectroscopic orbital elements, and application to barium stars (iii) why not all SB9 entries yield acceptable astrometric solutions? The lessons learned from this study are useful to devise the best possible binary-detection and orbit-determination algorithms for future astrometric missions like GAIA.
A mesoscopic model for binary fluids
Echeverria, C; Alvarez-Llamoza, O; Orozco-Guillén, E E; Morales, M; Cosenza, M G
2016-01-01
We propose a model to study symmetric binary fluids, based in the mesoscopic molecular simulation technique known as multiparticle collision, where space and state variables are continuous while time is discrete. We include a repulsion rule to simulate segregation processes that does not require the calculation of the interaction forces between particles, thus allowing the description of binary fluids at a mesoscopic scale. The model is conceptually simple, computationally efficient, maintains Galilean invariance, and conserves the mass and the energy in the system at micro and macro scales; while momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as density profile, width of the interface, phase separation and phase growth. We also apply the model to study binary fluids in crowded environments with consistent results.
Red-giant stars in eccentric binaries
Directory of Open Access Journals (Sweden)
Beck P. G.
2015-01-01
Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.
Evolution of Binary Stars in Multiple-Population Globular Clusters - II. Compact Binaries
Hong, Jongsuk; Sollima, Antonio; McMillan, Stephen L W; D'Antona, Franca; D'Ercole, Annibale
2016-01-01
We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters.We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations.The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG an...
Tidal capture formation of Low Mass X-Ray Binaries from wide binaries in the field
Michaely, Erez
2015-01-01
We present a potentially efficient dynamical formation scenario for Low Mass X-ray Binaries (LMXBs) in the field, focusing on black-hole (BH) LMXBs. In this formation channel LMXBs are formed from wide binaries $(>1000$ AU) with a BH component and a stellar companion. The wide binary is perturbed by fly-by's of field stars and its orbit random-walks and changes over time. This diffusion process can drive the binary into a sufficiently eccentric orbit such that the binary components tidally interact at peri-center and the binary evolves to become a short period binary, which eventually evolves into an LMXB. The formation rate of LMXBs through this channel mostly depends on the number of such BH wide binaries progenitors, which in turn depends on the velocity kicks imparted to BHs (or NSs) at birth. We consider several models for the formation and survival of such wide binaries, and calculate the LMXB formation rates for each model. We find that models where BHs form through direct collapse with no/little natal...
Binary is Good: A Binary Inference Framework for Primary User Separation in Cognitive Radio Networks
Nguyen, Huy; Han, Zhu
2010-01-01
Primary users (PU) separation concerns with the issues of distinguishing and characterizing primary users in cognitive radio (CR) networks. We argue the need for PU separation in the context of collaborative spectrum sensing and monitor selection. In this paper, we model the observations of monitors as boolean OR mixtures of underlying binary latency sources for PUs, and devise a novel binary inference algorithm for PU separation. Simulation results show that without prior knowledge regarding PUs' activities, the algorithm achieves high inference accuracy. An interesting implication of the proposed algorithm is the ability to effectively represent n independent binary sources via (correlated) binary vectors of logarithmic length.
Dixie Valley Bottoming Binary Unit
Energy Technology Data Exchange (ETDEWEB)
McDonald, Dale [Terra-Gen Sierra Holdings, LLC, Reno, NV (United States)
2014-12-21
This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.
Structure of simple (binary) oxides
International Nuclear Information System (INIS)
Crystal structures of different simple and binary oxides of M3O, M2O, MO, MO2, MO4, MO3, M2O3, M3O4, M2O5, M2O7 composition as well as lowest cesium oxides (Cs7O, Cs4O, Cs11O3) are considered. Cs3O crystals are constructed out of the colomns of the Cs3O composition consisting of octahedrals OCs6 jointed through the opposite faces. This is the ZrI3 ''antistructure''. Cs2O has the CdCl2 antistructure. ZrO2, HfO2, CeO2, ThO2, UO2, NpO2, PuO2, AmO2, CmO2, PoO2 oxides have the structural type of fluorite of rutile - VO2, NbO2, TaO2, MoO2, ReO2 oxides, of wurtzite - BeO. The NbO oxide is unique, in its structure the oxygen and niobium atoms form four complanar bonds. A three-dimensional skeleton constructed out of the octahedral structural units Nb6 (Nb-Nb 2.98 A) is separated. ZrO2 is a polymorphous, at 1100 grad. the monoclinic modification transfers to tetragonal. M2O7 oxides are Re2O7, Tc2O7
Detecting Eccentric Globular Cluster Binaries with LISA
Benacquista, M.
2001-01-01
The energy carried in the gravitational wave signal from an eccentric binary is spread across several harmonics of the orbital frequency. The inclusion of the harmonics in the analysis of the gravitational wave signal increases the signal-to-noise ratio of the detected signal for binaries whose fundamental frequency is below the galactic confusion-limited noise cut-off. This can allow for an improved angular resolution for sources whose orbital period is greater than 2000 s. Globular cluster ...
Copula-based bivariate binary response models
Winkelmann, Rainer
2009-01-01
The bivariate probit model is frequently used for estimating the effect of an endogenous binary regressor on a binary outcome variable. This paper discusses simple modifications that maintain the probit assumption for the marginal distributions while introducing non-normal dependence among the two variables using copulas. Simulation results and evidence from two applications, one on the effect of insurance status on ambulatory expenditure and one on the effect of completing high school on sub...
Binary compact object inspiral: Detection expectations
Indian Academy of Sciences (India)
Vassiliki Kalogera
2004-10-01
We review the current estimates of binary compact object inspiral rates in particular in view of the recently discovered highly relativistic binary pulsar J0737-3039. One of the robust results is that, because of this discovery, the rate estimates for binary neutron stars have increased by a factor of 6-7 independent of any uncertainties related to the pulsar population properties. This rate increase has dramatic implications for gravitational wave detectors. For initial LIGO, the most probable detection rates for double neutron star (DNS) inspirals is 1 event/(5{250) yr; at 95% confidence we obtain rates up to 1/1.5 yr. For advanced LIGO, the most probable rates are 20-1000 events/yr. These predictions, for the first time, bring the expectations for DNS detections by initial LIGO to the astrophysically relevant regime. We also use our models to predict that the large-scale Parkes multibeam pulsar survey with acceleration searches could detect an average of three to four binary pulsars similar to those known at present. In comparison, rate estimates for binaries with black holes are derived based on binary evolution calculation, and based on the optimistic ends of the ranges, remain an important candidate for inspiral detection in the next few years. We also consider another aspect of the detectability of binary inspiral: the effect of precession on the detection efficiency of astrophysically relevant binaries. Based on our current astrophysical expectations, large tilt angles are not favored. As a result the decrease in detection rate varies rather slowly with black hole spin magnitude and is within 20-30% of the maximum possible values.
Planet Scattering Around Binaries: Ejections, Not Collisions
Smullen, Rachel A.; Kratter, Kaitlin M.; Shannon, Andrew
2016-01-01
Transiting circumbinary planets discovered by Kepler provide unique insight into binary and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in...
GAIA survey of galactic eclipsing binaries
Zwitter, Tomaz
2002-01-01
General importance and capabilities of observations of eclipsing binaries by the forthcoming ESA mission GAIA are discussed. Availability of spectroscopic observations and a large number of photometric bands on board will make it possible to reliably determine physical parameters for $\\sim 10^5$ binary stars. It is stressed that current methods of object by object analysis will have to be modified and included in an automatic analysis pipeline.
Formation of Compact Binaries in Globular Clusters
Rappaport, Saul; Pfahl, Eric; Rasio, Fred; Podsiadlowski, Philipp
2001-01-01
We report here on two complementary population synthesis studies which relate directly to the formation and evolution of neutron star binaries in globular clusters. In the first, we compute the probability of retaining neutron stars in globular clusters, and quantitatively confirm the idea that the retention fraction for neutron stars born in binary systems is greatly enhanced over those born in isolated stars. However, the retention fraction may well be insufficient to explain the current po...
Diffusion in ordered binary solid systems
International Nuclear Information System (INIS)
This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)
Binary nature of the Barium stars
International Nuclear Information System (INIS)
We present radial-velocity spectrometer observations that indicate that Ba II stars are binary systems. The secondary stars of these systems have low masses, consistent with their being degenerate objects which have lost mass onto their primaries in a previous stage of evolution. It is suggested that the Population II equivalents, the CH stars, may also be binary systems. This may be related to the fact that they are found only in globular clusters of the lowest central concentration
On homogeneous nontransitive binary perfect code
Mogilnykh, I. Yu.; Solov'eva, F. I.
2014-01-01
Studying binary perfect codes we show the existence of homogeneous nontransitive codes. Thus, as far as perfect codes are concerned, the propelinear codes are strictly contained in transitive codes, wheresas homogeneous codes form a strict subclass of transitive codes. In the work we deduce a necessary and sufficient condition for transitivity of perfect binary codes of rank one more than that of Hamming code. The paper is in Russian.
Texture classification by texton: statistical versus binary.
Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane
2014-01-01
Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346
Texture classification by texton: statistical versus binary.
Directory of Open Access Journals (Sweden)
Zhenhua Guo
Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.
Direct Exoplanet Detection with Binary Differential Imaging
Rodigas, Timothy J; Mamajek, Eric E; Males, Jared R; Close, Laird M; Morzinski, Katie; Hinz, Philip M; Kaib, Nathan
2015-01-01
Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by 4\\asec ~with MagAO/Clio-2 at 3.9 \\microns, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI's 5$\\sigma$ contrast is \\about 0.5 mags better than ADI's within \\about 1\\asec ~for the particular binary we observed. Because planets typically reside close to their host stars, BD...
Spectroscopic Orbits for Kepler FOV Eclipsing Binaries
Matson, Rachel A.; Gies, Douglas R.; Williams, Stephen J.; Guo, Zhao
2013-02-01
We are currently involved in a four year program of precise eclipsing binary photometry with the NASA Kepler Observatory. Our goal is to search for variations in minimum light timing for intermediate mass eclipsing binaries. Such periodic variations will reveal the reflex motion caused by any distant, low mass object that orbits the close binary. it Kepler's unprecedented accuracy and continuous observations provide a unique opportunity to detect the low mass companions that are predicted to result from the angular momentum of the natal cloud. The goal of this proposal is to obtain blue spectra of short period (0.9-6d) eclipsing binaries, derive radial velocities, and produce a double-lined spectroscopic orbit (as well as estimates of the stellar effective temperatures, gravities, and metallicities). Combined with the it Kepler light curve, we will determine very accurate masses and radii for the members of the close binary, which will yield the mass-inclination product M_3 sin i for any companions detected by light travel time or other effects. An extended sample of eclipsing binaries with longer periods (up to 50d) is now being investigated to test whether the presence of a tertiary companion declines with increasing period. We propose to obtain a single spectrum at quadrature for the brightest 48 stars in this expanded sample to characterize the effective temperatures and total mass contained in these systems.
Stability and Coalescence of Massive Twin Binaries
Hwang, Jason A; Rasio, Frederic A; Kalogera, Vassiliki
2015-01-01
Massive stars are usually found in binaries, and binaries with periods less than 10 days may have a preference for near equal component masses. In this paper we investigate the evolution of these binaries all the way to contact and the possibility that these systems can be progenitors of double neutron star binaries. The small orbital separations of observed double neutron star binaries suggest that the progenitor systems underwent a common envelope phase at least once during their evolution. Bethe & Brown (1998) proposed that massive binary twins will undergo a common envelope evolution while both components are ascending the red giant branch or asymptotic giant branch simultaneously, also known as double-core evolution. Using models generated from the stellar evolution code Evolve Zero Age Main Sequence, we determine the range of mass ratios resulting in both components simultaneously ascending the RGB or AGB as a function of the difference in birth times, t. We find that, even for a generous t=5 Myr, t...
Spectroscopic subsystems in nearby wide binaries
Tokovinin, Andrei
2015-01-01
Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5-m telescope to study short-period systems. Data reduction is described, mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, for some of them orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binaries within 67pc. It is found that 43 binaries contain at least one subsystem and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods match the simple prescription proposed by the author (2014, AJ, 147, 87). The remaining 53 simple wide binaries with a median projected separation of 1300AU have the distri...
Design and Implementation of BDB, the Binary Star Database
Kaygorodov, P.; Kovaleva, D.; Malkov, O.
2013-02-01
The Binary star DataBase (BDB, http://bdb.inasan.ru) is created to provide liasons between binary star catalogue data of various origin. Information on different observational types of binaries is obtained from heterogeneous sources of data - astronomical catalogues and surveys. The database allows a variety of query options useful for selected stars investigation purposes, for binary observations planning, and for construction and examination of binary datasets with certain characteristics.
Exploring the Birth of Binary Stars
Kohler, Susanna
2016-08-01
More than half of all stars are thought to be in binary or multiple star systems. But how do these systems form? The misaligned spins of some binary protostars might provide a clue.Two Formation ModelsIts hard to tell how multiple-star systems form, since these systems are difficult to observe in their early stages. But based on numerical simulations, there are two proposed models for the formation of stellar binaries:Turbulent fragmentationTurbulence within a single core leads to multiple dense clumps. These clumps independently collapse to form stars that orbit each other.Disk fragmentationGravitational instabilities in a massive accretion disk cause the formation of a smaller, secondary disk within the first, resulting in two stars that orbit each other.Log column density for one of the authors simulated binary systems, just after the formation of two protostars. Diamonds indicate the protostar positions. [Adapted from Offner et al. 2016]Outflows as CluesHow can we differentiate between these formation mechanisms? Led by Stella Offner (University of Massachusetts), a team of scientists has suggested that the key isto examine the alignment of the stars protostellar outflows jets that are often emitted from the poles of young, newly forming stars.Naively, wed expect that disk fragmentation would produce binary stars with common angular momentum. As the stars spins would be aligned, they would therefore also launch protostellar jets that were aligned with each other. Turbulent fragmentation, on the other hand, would cause the stars to have independent angular momentum. This would lead to randomly oriented spins, so the protostellar jets would be misaligned.Snapshots from the authors simulations. Left panel of each pair: column density; green arrows giveprotostellar spin directions. Right panel: synthetic observations produced from the simulations; cyan arrows giveprotostellar outflow directions. [Offner et al. 2016]Simulations of FragmentationIn order to better
Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F
2016-01-01
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...
Towards the field binary population: Influence of orbital decay on close binaries
Korntreff, Christina; Pfalzner, Susanne
2012-01-01
Surveys of the binary populations in the solar neighbourhood have shown that the periods of G- and M-type stars are log-normally distributed. However, observations of young binary populations suggest a log-uniform distribution. Clearly some process(es) change the period distribution over time. Most stars form in star clusters, in which two important dynamical processes occur: i) gas-induced orbital decay of embedded binary systems and ii) destruction of soft binaries in three-body interactions. The emphasis here is on orbital decay which has been largely neglected so far. Using a combination of Monte-Carlo and dynamical nbody modelling it is demonstrated here that the cluster dynamics destroys the number of wide binaries, but leaves short-period binaries basically undisturbed even for a initially log-uniform distribution. By contrast orbital decay significantly reduces the number and changes the properties of short-period binaries, but leaves wide binaries largely uneffected. Until now it was unclear whether ...
Gravitational wave background from binary systems
International Nuclear Information System (INIS)
Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter Ω(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, Ω(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for Ω(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.
Birth of Massive Black Hole Binaries
Energy Technology Data Exchange (ETDEWEB)
Colpi, M.; /Milan Bicocca U.; Dotti, M.; /Insubria U., Como; Mayer, L.; /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park
2007-11-19
If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size ({approx}< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of {approx}< 1 Myr. The double nuclear point-like sources that may appear have typical separation of {approx}< 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.
Massive gaseous discs around SMBH binaries: Binary decay and tidal disruptions
Directory of Open Access Journals (Sweden)
Brem P.
2012-12-01
Full Text Available We investigate the evolution of black hole binaries embedded within geometrically thin gas discs. Our results imply that such discs can produce black hole mergers for relatively low-mass binaries, and that a significant population of eccentric binaries might exist at separations of a few 0.01 pc. These binaries may be detectable due to the time-variable accretion on to the black holes. If the disc fragments, then the newly-born stars will continue driving the binary to its coalescence, although at a slower rate. Interestingly, our preliminary analysis shows that these stars will be disrupted at a rate of ∼10−4–2 · 10−5 events per year per system.
Serial binary interval ratios improve rhythm reproduction
Directory of Open Access Journals (Sweden)
XiangWu
2013-08-01
Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.
Urey Prize Lecture: Binary Minor Planets
Margot, J. L.
2004-11-01
The discovery of binary systems in the near-Earth, main belt, and Kuiper belt populations provides an abundance of new data that expand our knowledge of the physics and chemistry of the solar system. Binary minor planets form as a result of collisional, tidal, and capture processes that are important to study as they play major roles in the formation and evolution of planetary systems. The frequency of occurrence of such processes directly reflects the dynamical environment in the various populations. Observations of binaries provide a powerful way to measure the bulk properties of small bodies, which in turn lead to inferences about their composition and internal structure. These data may offer a rare glimpse of what physical and chemical conditions prevailed when protoplanets formed, and what subsequent evolution took place. In the case of the Kuiper Belt, the study of a handful of binaries forces us to rethink how dense and how bright these bodies are, and to significantly revise our current mass estimates for the entire population. The number of known binary minor planets has increased dramatically over the past few years, with roughly ten new discoveries each year. I will attempt to summarize recent developments, with examples drawn from my observations with the Hubble, Palomar, Keck, Arecibo and Goldstone telescopes.
Orbital eccentricities in primordial black holes binaries
Cholis, Ilias; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B; Raccanelli, Alvise
2016-01-01
It was recently suggested that the merger of $\\sim30\\,M_\\odot$ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on timescales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO a...
Spherical hashing: binary code embedding with hyperspheres.
Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui
2015-11-01
Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement. PMID:26440269
An interferometric view of binary stars
Boffin, Henri M J
2016-01-01
The study of binary stars is critical to apprehend many of the most interesting classes of stars. Moreover, quite often, the study of stars in binary systems is our only mean to constrain stellar properties, such as masses and radii. Unfortunately, a great fraction of the most interesting binaries are so compact that they can only be apprehended by high-resolution techniques, mostly by interferometry. I present some results highlighting the use of interferometry in the study of binary stars, from finding companions and deriving orbits, determining the mass and radius of stars, to studying mass transfer in symbiotic stars, and tackling luminous blue variables. In particular, I show how interferometric studies using the PIONIER instrument have allowed us to confirm a dichotomy within symbiotic stars, obtain masses of stars with a precision better than 1%, and help us find a new Eta Carinae-like system. I will also illustrate the benefits for the study of binary stars one would get from upgrading the VLT Interfe...
Planet Scattering Around Binaries: Ejections, Not Collisions
Smullen, Rachel A.; Kratter, Kaitlin M.; Shannon, Andrew
2016-06-01
Transiting circumbinary planets discovered by Kepler provide unique insight into binary star and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically effects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Systems similar to the only observed multi-planet circumbinary system, Kepler-47, can arise from much more tightly packed, unstable systems. Only extreme initial conditions introduce differences in the final planet populations. Thus, we suggest that any intrinsic differences in the populations are imprinted by formation.
Investigating Dark Energy with Black Hole Binaries
International Nuclear Information System (INIS)
The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accrete dark energy. The accretion induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state w[z] of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. This talk describes how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy.
INTEGRAL & RXTE View of Gamma-ray Binaries
Jian LI; Torres, Diego F.; Zhang, Shu; WANG, JIANMIN
2013-01-01
Gamma-ray binaries are X-ray binaries with gamma-ray emissions. Their multi-wavelength emissions range from radio, optical, X-ray and to very high energy (TeV). X-ray emissions are crucial to understand the nature of gamma-ray binaries. INTEGRAL and RXTE have covered and monitored most of the gamma-ray binaries in hard and soft X-rays. Here we report the results of several gamma-ray binaries and possible gamma-ray binaries from INTEGRAL and RXTE.
The Circulation Pattern in Simulated Contact Binaries
Motl, Patrick M.; Frank, J.; Tohline, J. E.
2006-06-01
We present a three-dimensional hydrodynamical simulation of an initially symmetric (equal mass) binary where both components are marginally in contact. The simulation evolves the binary through approximately 150 orbital periods and within the first 20 orbits, a global velocity field is established that carries material between both components. In the equatorial plane, the flow is along a figure eight pattern with streams of material sliding past one another in the neighborhood of the inner Lagrange point. For our chosen equation of state, mass transfer is ultimately unstable in this binary though the growth time is long compared to the orbital period. We are therefore able to observe that the circulation pattern, once established, is quite close to steady state. We explore the role that similar steady state flows may play in real contact systems.
TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS
International Nuclear Information System (INIS)
Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 105-106 years.
Gravitational waves from spinning eccentric binaries
Csizmadia, Péter; Rácz, István; Vasúth, Mátyás
2012-01-01
This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relat...
Binary Particle Model of Weak Interactions
Ndili, F N
2011-01-01
We introduce the new concept of binary particle as the basic matter unit that participates in weak interactions and not any one fermion singly. We state the quantum numbers of this binary particle, and show the concept leads us to a natural explanation of the standard model puzzle of the origin of flavor mixing and the CKM matrix. Certain other puzzles of the standard model such as the absence of flavor changing neutral currents (FCNC), are also explained naturally by the binary particle model. These puzzles are currently thought to be esoteric properties of electro weak interactions that have origins in physics beyond the standard model at some ultra high energy scales. We show that this is not necessarily the case.
A binary spelling interface with random errors.
Perelmouter, J; Birbaumer, N
2000-06-01
An algorithm for design of a spelling interface based on a modified Huffman's algorithm is presented. This algorithm builds a full binary tree that allows to maximize an average probability to reach a leaf where a required character is located when a choice at each node is made with possible errors. A means to correct errors (a delete-function) and an optimization method to build this delete-function into the binary tree are also discussed. Such a spelling interface could be successfully applied to any menu-orientated alternative communication system when a user (typically, a patient with devastating neuromuscular handicap) is not able to express an intended single binary response, either through motor responses or by using of brain-computer interfaces, with an absolute reliability. PMID:10896195
Hybrid Black-Hole Binary Initial Data
Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela
2010-01-01
"Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."
Modeling Flows Around Merging Black Hole Binaries
van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T
2009-01-01
Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...
Nonlinear Tides in Close Binary Systems
Weinberg, Nevin N; Quataert, Eliot; Burkart, Josh
2011-01-01
We study the excitation and damping of tides in close binary systems, accounting for the leading order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct effects: three-mode nonlinear interactions and nonlinear excitation of modes by the time-varying gravitational potential of the companion. This paper presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism is applicable to binaries containing stars, planets, or compact objects, we focus on solar type stars with stellar or planetary companions. Our primary results include: (1) The linear tidal solution often used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited gravity waves are unstable to parametric resonance for companion masses M' > 10-100 M_Earth at orbital periods P = 1-10 days. The nearly static equilibrium tide is, however, parametrically s...
Gravitational wave background from binary systems
Rosado, Pablo A
2011-01-01
Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter $\\Omega(f)$, commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, $\\Omega(f)$ is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the ...
Binary Code Disassembly for Reverse Engineering
Directory of Open Access Journals (Sweden)
Marius Popa
2013-01-01
Full Text Available The disassembly of binary file is used to restore the software application code in a readable and understandable format for humans. Further, the assembly code file can be used in reverse engineering processes to establish the logical flows of the computer program or its vulnerabilities in real-world running environment. The paper highlights the features of the binary executable files under the x86 architecture and portable format, presents issues of disassembly process of a machine code file and intermediate code, disassembly algorithms which can be applied to a correct and complete reconstruction of the source file written in assembly language, and techniques and tools used in binary code disassembly.
Supermassive Black Hole Binaries as Galactic Blenders
Kandrup, H E; Terzic, B; Bohn, C L; Kandrup, Henry E.; Sideris, Ioannis V.; Terzic, Balsa; Bohn, Courtlandt L.
2003-01-01
This paper focuses on the dynamical implications of close supermassive black hole binaries both as an example of resonant phase mixing and as a potential explanation of inversions and other anomalous features observed in the luminosity profiles of some elliptical galaxies. The presence of a binary comprised of black holes executing nearly periodic orbits leads to the possibility of a broad resonant coupling between the black holes and various stars in the galaxy. This can result in efficient chaotic phase mixing and, in many cases, systematic increases in the energies of stars and their consequent transport towards larger radii. Allowing for the presence of a supermassive black hole binary with plausible parameter values near the center of a spherical, or nearly spherical, galaxy characterised initially by a Nuker density profile enables one to reproduce in considerable detail the central surface brightness distributions of such galaxies as NGC 3706.
CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES
International Nuclear Information System (INIS)
We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886
CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES
Energy Technology Data Exchange (ETDEWEB)
Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)
2013-11-10
We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.
Binary black holes' effects on electromagnetic fields.
Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David
2009-08-21
In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves. PMID:19792706
Spin supplementary conditions for spinning compact binaries
Mikóczi, Balázs
2016-01-01
We consider the different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conservative quantities and the dissipative part of relative motion during the gravitational radiation of each SSCs. We give the orbital elements and observed quantities of the SO dynamics, for instance the energy and the orbital angular momentum losses and waveforms and discuss their SSC dependence.
Quasi periodic oscillations in black hole binaries
Motta, S E
2016-01-01
Fast time variability is the most prominent characteristic of accreting systems and the presence of quasi periodic oscillations (QPOs) is a constant in all accreting systems, from cataclysmic variables to AGNs, passing through black hole and neutron star X-ray binaries and through the enigmatic ultra-luminous X-ray sources. In this paper I will briefly review the current knowledge of QPOs in black hole X-ray binaries, mainly focussing on their observed properties, but also mentioning the most important models that have been proposed to explain the origin of QPOs over the last decades.
Photometric constraints on binary asteroid dynamics
Scheirich, Peter
2015-08-01
To date, about 50 binary NEAs, 20 Mars-crossing and 80 small MB asteroids are known. We observe also a population of about 200 unbound asteroid systems (asteroid pairs). I will review the photometric observational data we have for the best observed cases and compare them with theories of binary and paired asteroids evolution.The observed characteristics of asteroid systems suggest their formation by rotational fission of parent rubble-pile asteroids after being spun up by the YORP effect. The angular momentum content of binary asteroids is close to critical. The orientations of satellite orbits of observed binary systems are non-random; the orbital poles concentrate near the obliquities of 0 and 180 degrees, i.e., near the YORP asymptotic states.Recently, a significant excess of retrograde satellite orbits was detected, which is not yet explained characteristic.An evolution of binary system depend heavily on the BYORP effect. If BYORP is contractive, the primary and secondary could end in a tidal-BYORP equilibrium. Observations of mutual events between binary components in at least four apparitions are needed for BYORP to be revealed by detecting a quadratic drift in mean anomaly of the satellite. I will show the observational evidence of single-synchronous binary asteroid with tidally locked satellite (175706 1996 FG3), i.e, with the quadratic drift equal to zero, and binary asteroid with contracting orbit (88710 2001 SL9), with positive value of the quadratic drift (the solution for the quadratic drift is ambiguous so far, with possible values of 5 and 8 deg/yr2).The spin configuration of the satellite play a crucial role in the evolution of the system under the influence of the BYORP effect. I will show that the rotational lightcurves of the satellites show that most of them have small libration amplitudes (up to 20 deg.), with a few interesting exceptions.Acknowledgements: This work has been supported by the Grant Agency of the Czech Republic, Grant P209
Binary Sparse Phase Retrieval via Simulated Annealing
Directory of Open Access Journals (Sweden)
Wei Peng
2016-01-01
Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.
Inducing Risk Neutral Preferences with Binary Lotteries
DEFF Research Database (Denmark)
Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd
2013-01-01
We evaluate the binary lottery procedure for inducing risk neutral behavior. We strip the experimental implementation down to bare bones, taking care to avoid any potentially confounding assumptions about behavior having to be made. In particular, our evaluation does not rely on the assumed...... validity of any strategic equilibrium behavior, or even the customary independence axiom. We show that subjects sampled from our population are generally risk averse when lotteries are defined over monetary outcomes, and that the binary lottery procedure does indeed induce a statistically significant shift...... toward risk neutrality. This striking result generalizes to the case in which subjects make several lottery choices and one is selected for payment....
Toroidal Horizons in Binary Black Hole Mergers
Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-01-01
We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. ...
Binaries in the Hipparcos data: Keep digging
Pourbaix, D.; Jancart, S.; Jorissen, A.
2004-01-01
Among the 120 000 objects in the Hipparcos catalogue, only 235 were fitted with an orbital model. Besides these 235 original astrometric binaries, most Hipparcos entries with a known spectroscopic orbit (extrasolar planet or stellar companion) have now been re-processed, as part of the on-going construction of the 9th Catalogue of Spectroscopic Binary Orbits (SB9, available at http://sb9.astro.ulb.ac.be). The pitfalls and successes of this re-processing are discussed in various contexts, like...
Apsidal motion in eclipsing binary GG Orionis
Yilan, E.; Bulut, I.
2016-03-01
The study of apsidal motion in binary stars with eccentric orbit is well known as an important source of information for the stellar internal structure as well as the possibility of verification of general relativity. In this study, the apsidal motion of the eccentric eclipsing binary GG Ori (P = 6.631 days, e = 0.22) has been analyzed using the times of minimum light taken from the literature and databases and the elements of apsidal motion have been computed. The method described by Giménez and García-Pelayo (1983) has been used for the apsidal motion analysis.
Decomposition of Binary Signed-Graphic Matroids
Pitsoulis, Leonidas
2010-01-01
In this paper we employ Tutte's theory of bridges to derive a decomposition theorem for binary matroids arising from signed graphs. The proposed decomposition differs from previous decomposition results on matroids that have appeared in the literature in the sense that it is not based on $k$-sums, but rather on the operation of deletion of a cocircuit. Specifically, it is shown that certain minors resulting from the deletion of a cocircuit of a binary matroid will be graphic matroids apart from exactly one that will be signed-graphic, if and only if the matroid is signed-graphic.
Quantitative spectroscopy of close binary stars
Pavlovski, K
2011-01-01
The method of spectral disentangling has now created the opportunity for studying the chemical composition in previously inaccessible components of binary and multiple stars. This in turn makes it possible to trace their chemical evolution, a vital aspect in understanding the evolution of stellar systems. We review different ways to reconstruct individual spectra from eclipsing and non-eclipsing systems, and then concentrate on some recent applications to detached binaries with high-mass and intermediate-mass stars, and Algol-type mass-transfer systems.
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.
Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R
2015-12-01
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52} erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs. PMID:26684106
Retrograde binaries of massive black holes in circum-binary accretion discs
Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica
2016-01-01
We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole...
A Survey Design for a Sensitive Binary Variable Correlated with Another Nonsensitive Binary Variable
Jun-Wu Yu; Guo-Liang Tian; Yang Lu
2013-01-01
Tian et al. (2007) introduced a so-called hidden sensitivity model for evaluating the association of two sensitive questions with binary outcomes. However, in practice, we sometimes need to assess the association between one sensitive binary variable (e.g., whether or not a drug user, the number of sex partner being ⩽1 or >1, and so on) and one nonsensitive binary variable (e.g., good or poor health status, with or without cervical cancer, and so on). To address this issue, by sufficiently ut...
Adiabatic Mass Loss Model in Binary Stars
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the
Evolution of Binary Stars in Multiple-Population Globular Clusters
Hong, Jongsuk; Sollima, Antonio; McMillan, Stephen L W; D'Antona, Franca; D'Ercole, Annibale
2015-01-01
The discovery of multiple stellar populations in globular clusters has implications for all the aspects of the study of these stellar systems. In this paper, by means of N-body simulations, we study the evolution of binary stars in multiple-population clusters and explore the implications of the initial differences in the spatial distribution of different stellar populations for the evolution and survival of their binary stars. Our simulations show that initial differences between the spatial distribution of first-generation (FG) and second-generation (SG) stars can leave a fingerprint in the current properties of the binary population. SG binaries are disrupted more efficiently than those of the FG population resulting in a global SG binary fraction smaller than that of the FG. As for surviving binaries, dynamical evolution produces a difference between the SG and the FG binary binding energy distribution with the SG population characterized by a larger fraction of high binding energy (more bound) binaries. ...
Model-independent inference on compact-binary observations
Mandel, Ilya; Colonna, Andrea; Stevenson, Simon; Tiňo, Peter; Veitch, John
2016-01-01
The recent advanced LIGO detections of gravitational waves from merging binary black holes enhance the prospect of exploring binary evolution via gravitational-wave observations of a population of compact-object binaries. In the face of uncertainty about binary formation models, model-independent inference provides an appealing alternative to comparisons between observed and modelled populations. We describe a procedure for clustering in the multi-dimensional parameter space of observations that are subject to significant measurement errors. We apply this procedure to a mock data set of population-synthesis predictions for the masses of merging compact binaries convolved with realistic measurement uncertainties, and demonstrate that we can accurately distinguish subpopulations of binary neutron stars, binary black holes, and mixed black hole -- neutron star binaries.
BINARY ASTEROID ENCOUNTERS WITH TERRESTRIAL PLANETS: TIMESCALES AND EFFECTS
International Nuclear Information System (INIS)
Many asteroids that make close encounters with terrestrial planets are in a binary configuration. Here, we calculate the relevant encounter timescales and investigate the effects of encounters on a binary's mutual orbit. We use a combination of analytical and numerical approaches with a wide range of initial conditions. Our test cases include generic binaries with close, moderate, and wide separations, as well as seven well-characterized near-Earth binaries. We find that close approaches (<10 Earth radii) occur for almost all binaries on 1-10 million year timescales. At such distances, our results suggest substantial modifications to a binary's semimajor axis, eccentricity, and inclination, which we quantify. Encounters within 30 Earth radii typically occur on sub-million year timescales and significantly affect the wider binaries. Important processes in the lives of near-Earth binaries, such as tidal and radiative evolution, can be altered or stopped by planetary encounters.
Formation and evolution of X-ray binaries
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.
Binary Solid-Liquid Phase Equilibria
Ellison, Herbert R.
1978-01-01
Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)
The Environment of Binary Nuetron Star Mergers
Wiggins, Brandon
2016-04-01
In addition to detections by LIGO, binary neutron star mergers may be detected via luminous interaction with surrounding interstellar media. Upcoming observations including the VLASS survey may be able to detect such interactions and offer constraints on the binary neutron star merger rate. In this talk, I will present the results of cosmological simulations of a cluster of galaxies followed down to redshift 0. Our calculation includes star formation from which we infer a supernova and binary neutron star production rate. Using pre-existing models of neutron star binaries, we follow the positions of neutron star pairs in the cluster potential throughout cosmic time allowing us to identify regions in which neutron stars merge. We present statistics of many Monte Carlo instances of nuetron star pairs and trajectories allowing us to constrain the approximate fraction of neutron stars merging in dense gas. Our work has implications for R-process enrichment of galaxies in addition to predicting electromagnetic counterparts to gravitational wave detections of neutron star mergers.
The Evolution of Relativistic Binary Progenitor Systems
Francischelli, G J; Brown, G E
2001-01-01
Relativistic binary pulsars, such as B1534+12 and B1913+16 are characterized by having close orbits with a binary separation of ~ 3 R_\\sun. The progenitor of such a system is a neutron star, helium star binary. The helium star, with a strong stellar wind, is able to spin up its compact companion via accretion. The neutron star's magnetic field is then lowered to observed values of about 10^{10} Gauss. As the pulsar lifetime is inversely proportional to its magnetic field, the possibility of observing such a system is, thus, enhanced by this type of evolution. We will show that a nascent (Crab-like) pulsar in such a system can, through accretion-braking torques (i.e. the "propeller effect") and wind-induced spin-up rates, reach equilibrium periods that are close to observed values. Such processes occur within the relatively short helium star lifetimes. Additionally, we find that the final outcome of such evolutionary scenarios depends strongly on initial parameters, particularly the initial binary separation a...
The Binary Pulsar: Gravity Waves Exist.
Will, Clifford
1987-01-01
Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)
A Binary Teetering on the Edge
Motl, P. M.; D'Souza, M. C. R.; Tohline, J. E.; Frank, J.
2005-05-01
We present a fully three-dimensional hydrodynamical simulation of Roche lobe overflow in a binary near the stability boundary. This boundary separates evolutionary branches that correspond to either an accelerating mass transfer rate leading eventually to merger through tidal instability or to a decaying mass transfer rate as the orbit expands. The binary begins with a mass ratio of 0.4 (ratio of donor to accretor mass) and is initially assumed to be rotating synchronously. We treat the stellar components as simple polytropic fluids characterized by a polytropic index, n = 3/2. As the donor overflows its Roche lobe, the mass transfer rate initially accelerates before stabilizing and eventually dropping over a timescale of tens of orbits. We also note that for this particular binary, the accretion stream impacts on the surface of the donor rather than forming an accretion disk. This simulation allows us to measure the efficiency with which the accretion stream spins up the accretor in this "direct impact" scenario and the degree to which angular momentum is transfered back to the binary orbit via the tidal field.
Pedestrian Detection Using Gradient Local Binary Patterns
Jiang, Ning; Xu, Jiu; Goto, Satoshi
In recent years, local pattern based features have attracted increasing interest in object detection and recognition systems. Local Binary Pattern (LBP) feature is widely used in texture classification and face detection. But the original definition of LBP is not suitable for human detection. In this paper, we propose a novel feature named gradient local binary patterns (GLBP) for human detection. In this feature, original 256 local binary patterns are reduced to 56 patterns. These 56 patterns named uniform patterns are used for generating a 56-bin histogram. And gradient value of each pixel is set as the weight which is always same in LBP based features in histogram calculation to computing the values in 56 bins for histogram. Experiments are performed on INRIA dataset, which shows the proposal GLBP feature is discriminative than histogram of orientated gradient (HOG), Semantic Local Binary Patterns (S-LBP) and histogram of template (HOT). In our experiments, the window size is fixed. That means the performance can be improved by boosting methods. And the computation of GLBP feature is parallel, which make it easy for hardware acceleration. These factors make GLBP feature possible for real-time pedestrian detection.
Binary translation using peephole translation rules
Bansal, Sorav; Aiken, Alex
2010-05-04
An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.
Flip-flopping binary black holes.
Lousto, Carlos O; Healy, James
2015-04-10
We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes. PMID:25910104
Numerical simulations of compact object binaries
Pfeiffer, Harald P.
2012-01-01
Coalescing compact object binaries consisting of black holes and/or Neutron stars are a prime target for ground-based gravitational wave detectors. This article reviews the status of numerical simulations of these systems, with an emphasis on recent progress.
PARTICLE SEGREGATION IN FLUIDIZED BINARY-MIXTURES
HOFFMANN, AC; JANSSEN, LPBM
1993-01-01
The particle segregation in fluidised beds consisting of different types of binary mixtures is shown to be governed by the same particle transport processes. The segregation behaviour of both ''different-density mixtures'' and ''equal-density mixtures'', two types of system which until now largely h
Planetary nebula progenitors that swallow binary systems
Soker, Noam
2015-01-01
I propose that some irregular `messy' planetary nebulae owe their morphologies to triple-stellar evolution where tight binary systems are tidally and frictionally destroyed inside the envelope of asymptotic giant branch (AGB) stars. The tight binary system might breakup with one star leaving the system. In an alternative evolution, one of the stars of the brook-up tight binary system falls toward the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and `messy' planetary nebula as a descendant. The evolution of the triple-stellar system before destruction can be in a full common envelope evolution (CEE) or in a grazing envelope evolution (GEE). Both before and after destruction the system might lunch pairs of opposite jets. One pronounced sig...
Locating Restricted Facilities on Binary Maps
Andreica, Mugurel Ionut; Andreica, Madalina Ecaterina
2008-01-01
In this paper we consider several facility location problems with applications to cost and social welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. We present algorithmic solutions for all the problems. Some cases are too particular to be used in practical situations, but they are at least a starting point for more generic solutions.
Cassini states for black hole binaries
Correia, Alexandre C. M.
2016-03-01
Cassini states correspond to the equilibria of the spin axis of a body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black hole binary systems based on a Hamiltonian formalism. In absence of dissipation, the problem is integrable and it is easy to identify all possible trajectories for the spin for a given value of the total angular momentum. As the system collapses due to radiation reaction, the Cassini states are shifted to different positions, which modifies the dynamics around them. This is why the final spin distribution may differ from the initial one. Our method provides a simple way of predicting the distribution of the spin of black hole binaries at the end of the inspiral phase.
Non-binary or genderqueer genders.
Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy
2016-01-01
Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are 'genderqueer' or 'non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging presence and advocacy of these groups of people. Population-based studies show a small percentage--but a sizable proportion in terms of raw numbers--of people who identify as non-binary. While such genders have been extant historically and globally, they remain marginalized, and as such--while not being disorders or pathological in themselves--people with such genders remain at risk of victimization and of minority or marginalization stress as a result of discrimination. This paper therefore reviews the limited literature on this field and considers ways in which (mental) health professionals may assist the people with genderqueer and non-binary gender identities and/or expressions they may see in their practice. Treatment options and associated risks are discussed. PMID:26753630
Eclipsing Binaries with the Kepler Mission
Prsa, Andrej; Kepler Eclipsing Binary Working Group
2012-05-01
Kepler has revolutionized the eclipsing binary field by providing us essentially uninterrupted data of unprecedented quality. Out of 160,000 targets, we detected over 2500 eclipsing binaries. These range in orbital periods from as short as 0.3 days, all the way to several years, and encompass stellar types across the H-R diagram. In this talk I will present the collaborative effort of the Kepler Eclipsing Binary Working Group to study and characterize these systems on a statistical level: their distribution in periods, galactic latitude, spectral type, fundamental stellar properties and multiplicity as evidenced by eclipse timing variations. I will further show the gems that have sprung from this sample, which were modeled and interpreted to reveal intrinsically pulsating components, runaway encounters with massive tertiaries, stellar objects that populate the lowest end of the main sequence and circumbinary planets. I will critically review and discuss the causes of data systematics and detrending, and introduce a novel algorithm to classify light curves into morphological types using Locally Linear Embedding. Finally, I will touch on the dark side of eclipsing binaries as the primary cause of false positives in extrasolar planet detections with Kepler.
Spin frequency distributions of binary millisecond pulsars
A. Papitto; D.F. Torres; N. Rea; T.M. Tauris
2014-01-01
Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 108−109 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between
Short-timescale variability in cataclysmic binaries
International Nuclear Information System (INIS)
Rapid variability, including flickering and pulsations, has been detected in cataclysmic binaries at optical and x-ray frequencies. In the case of the novalike variable TT Arietis, simultaneous observations reveal that the x-ray and optical flickering activity is strongly correlated, while short period pulsations are observed that occur at the same frequencies in both wavelength bands
Cassini states for black-hole binaries
Correia, Alexandre C M
2016-01-01
Cassini states correspond to equilibria of the spin axis of a celestial body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black-hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black-hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black-hole binary systems based on a Hamiltonian formalism. In absence of dissipation the problem is integrable and it is easy to identify all possible trajectories for the spin for a given value of the total angular momentum. As the system collapses due to radiation reaction, the Cassini states are shifted to different positions, which modifies the dynamics around them. This is why the final spin distribution may differ from the initial one. Our method provides a simple way of predicting the distribution of the spin of black-hole binaries at th...
Supermassive Black Hole Binaries: The Search Continues
Bogdanovic, Tamara
2014-01-01
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.
Binary nucleation of water and sodium chloride
Czech Academy of Sciences Publication Activity Database
Němec, Tomáš; Maršík, František; Palmer, A.
2006-01-01
Roč. 124, č. 4 (2006), 0445091-0445096. ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA101/05/2536 Institutional research plan: CEZ:AV0Z20760514 Keywords : binary nucleation * sodium chloride * water Subject RIV: BJ - Thermodynamics Impact factor: 3.166, year: 2006
Generating quality tetrahedral meshes from binary volumes
DEFF Research Database (Denmark)
Hansen, Mads Fogtmann; Bærentzen, Jakob Andreas; Larsen, Rasmus
2010-01-01
use these measures to generate high quality meshes from signed distance maps. This paper also describes an approach for computing (smooth) signed distance maps from binary volumes as volumetric data in many cases originate from segmentation of objects from imaging techniques such as CT, MRI, etc. The...
Binary pulsars as dark-matter probes
Pani, Paolo
2015-01-01
During the motion of a binary pulsar around the galactic center, the pulsar and its companion experience a wind of dark-matter particles that can affect the orbital motion through dynamical friction. We show that this effect produces a characteristic seasonal modulation of the orbit and causes a secular change of the orbital period whose magnitude can be well within the astonishing precision of various binary-pulsar observations. Our analysis is valid for binary systems with orbital period longer than a day. By comparing this effect with pulsar-timing measurements, it is possible to derive model-independent upper bounds on the dark-matter density at different distances $D$ from the galactic center. For example, the precision timing of J1713+0747 imposes $\\rho_{\\rm DM}\\lesssim 10^5\\,{\\rm GeV/cm}^3$ at $D\\approx7\\,{\\rm kpc}$. The detection of a binary pulsar at $D\\lesssim 10\\,{\\rm pc}$ could provide stringent constraints on dark-matter halo profiles and on growth models of the central black hole. The Square Kil...
Testing the Binary Trigger Hypothesis in FUors
Green, Joel D; Rizzuto, Aaron C; Ireland, Michael J; Dupuy, Trent J; Mann, Andrew W; Kuruwita, Rajika
2016-01-01
We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry (NRM) at 1.59 um and 2.12 um that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion outbursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit (rho = 58.3 +/- 1.4 mas or 30 +/- 5 AU) and currently much fainter than the outbursting star (delta(K') = 3.34 +/- 0.10 mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion (M ~ 0.25 Msun) is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of delta(K') ~ 4 mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary ...
Constraining Binary Stellar Evolution With Pulsar Timing
Ferdman, Robert D.; Stairs, I. H.; Backer, D. C.; Burgay, M.; Camilo, F.; D'Amico, N.; Demorest, P.; Faulkner, A.; Hobbs, G.; Kramer, M.; Lorimer, D. R.; Lyne, A. G.; Manchester, R.; McLaughlin, M.; Nice, D. J.; Possenti, A.
2006-06-01
The Parkes Multibeam Pulsar Survey has yielded a significant number of very interesting binary and millisecond pulsars. Two of these objects are part of an ongoing timing study at the Green Bank Telescope (GBT). PSR J1756-2251 is a double-neutron star (DNS) binary system. It is similar to the original Hulse-Taylor binary pulsar system PSR B1913+16 in its orbital properties, thus providing another important opportunity to test the validity of General Relativity, as well as the evolutionary history of DNS systems through mass measurements. PSR J1802-2124 is part of the relatively new and unstudied "intermediate-mass" class of binary system, which typically have spin periods in the tens of milliseconds, and/or relatively massive (> 0.7 solar masses) white dwarf companions. With our GBT observations, we have detected the Shapiro delay in this system, allowing us to constrain the individual masses of the neutron star and white dwarf companion, and thus the mass-transfer history, in this unusual system.
Performance of binary FSK data transmission systems
Batson, B. H.
1973-01-01
Matched-filter detection of binary signals is discussed in terms of the probability of bit error. The equations for the probability of error are derived for coherent phase shift keying, and coherent frequency shift keying (FSK). Suboptimum detection of FSK signals is also discussed for discriminators.
BINARY WAVELET TRANSFORM FOR IMAGE REPRESENTATION
Directory of Open Access Journals (Sweden)
ASHOK.M
2011-08-01
Full Text Available The MRA (Multi resolution analysis for an image provides specific information localized in space or frequency domain .In this paper an efficient representation of the visual information is presented using Binary wavelet Transform for both color and gray level image. Analytical results shows that this method proves to be more efficient in representing the visual information than the earlier
A semantic constraint on binary determiners
Zuber, Richard
2009-01-01
Abstract A type $${\\langle{1^2, 1}\\rangle}$$ quantifier F is symmetric iff F(X, X)(Y) = F(Y, Y)(X). It is shown that quantifiers denoted by irreducible binary determiners in natural languages are both conservative and symmetric and not only conservative.
Orbits of Ten Visual Binary Stars
Institute of Scientific and Technical Information of China (English)
B.Novakovi(c)
2007-01-01
We present the orbits of ten visual binary stars:WDS 01015+6922.WDS 01424-0645,WDS 01461+6349,WDS 04374-0951,WDS 04478+5318,WDS 05255-0033,WDS 05491+6248,WDS 06404+4058,WDS 07479-1212,and WDS 18384+0850.We have also determined their masses,dynamical parallaxes and ephemerides.
The Benchmark Eclipsing Binary V530 Ori
DEFF Research Database (Denmark)
Torres, Guillermo; Lacy, Claud H. Sandberg; Pavlovski, Kresimir;
2015-01-01
We report accurate measurements of the physical properties (mass, radius, temperature) of components of the G+M eclipsing binary V530 On. The M-type secondary shows a larger radius and a cooler temperature than predicted by standard stellar evolution models, as has been found for many other low-m...
Cluster selection in binary nuclear models
Buck, B; Pérez, S M
2000-01-01
We present a simple prescription for selecting the cluster and core in a binary cluster-model description of a nucleus. The prescription reproduces the cluster-core combinations used in earlier successful applications of the model, predicts others, and extends the good agreement previously found with observed B(E2; 2 sup + -> 0 sup +) values of actinide nuclei. Refs. 31 (author)
Merging Compact Binaries in Hierarchical Triple Systems: Resonant Excitation of Binary Eccentricity
Liu, Bin; Yuan, Ye-Fei
2015-01-01
The merging of compact binaries play an important role in astrophysical context. The gravitational waves takes the angular momentum off the merging binary, which makes the orbit of the inner binary shrink. In this work, we study the secular dynamics of merging binary with a small perturber in hierarchical triple systems. From our numerical calculations, we find that the triple system goes through a resonant state between the apsidal precession rates of two orbits during the orbital decay, and the eccentricity of the inner orbit is excited, as well as the corresponding gravita- tional wave frequency. Our numerical results could be understood under the linear approximation of small orbital eccentricities and coplanar configuration. Especially, the resonant condition and the excited eccentricity can be estimated analytically.
Goicovic, Felipe G; Cuadra, Jorge; Stasyszyn, Federico
2016-01-01
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave (GW) dominated regime is poorly understood and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal-mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible pericentre distances and relative inclinations of the cloud-binary encounter. We show that the evolution of the binary orbit is dominated by the exchange of angular momentum through gas accretion during the first sta...
Radio evidence for binary super massive black holes
Ekers, R. D.
2016-02-01
I present examples of radio AGN with binary nuclei which provide the direct radio evidence for binary Super Massive Black Holes (SMBH) driving the AGN activity. There is also other evidence for distorted radio morphology and periodic variability which may indicate the presence of a second (inactive) SMBH. Finally I enumerate a number of possible radio tracers for the binary SMBH merger events.
Abdul-Masih, Michael; Conroy, Kyle; Bloemen, Steven; Boyajian, Tabetha; Doyle, Laurance R; Johnston, Cole; Kostov, Veselin; Latham, David W; Matijevic, Gal; Shporer, Avi; Southworth, John
2016-01-01
The Kepler Mission has provided unprecedented, nearly continuous photometric data of $\\sim$200,000 objects in the $\\sim$105 deg$^{2}$ field of view from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in May of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters and analytical approximation fits for every known eclipsing binary system in the Kepler Field of View. Using Target Pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e. targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separa...
A decoding method of an n length binary BCH code through (n + 1n length binary cyclic code
Directory of Open Access Journals (Sweden)
TARIQ SHAH
2013-09-01
Full Text Available For a given binary BCH code Cn of length n = 2 s - 1 generated by a polynomial of degree r there is no binary BCH code of length (n + 1n generated by a generalized polynomial of degree 2r. However, it does exist a binary cyclic code C (n+1n of length (n + 1n such that the binary BCH code Cn is embedded in C (n+1n . Accordingly a high code rate is attained through a binary cyclic code C (n+1n for a binary BCH code Cn . Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C (n+1n , while the codes Cn and C (n+1n have the same minimum hamming distance.
Binary Disk interaction II: Gap-Opening criteria for unequal mass binaries
del Valle, Luciano
2013-01-01
We study the interaction between an unequal mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a SMBH binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts onto the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong non-axisymmetric density perturbation that is produced in the disk, as response to the presence of the binary. Using SPH numerical simulations we tested two gap-opening criterion, one that assumes that the geometry of the density perturbation is an ellipsoid/thick-spirals and another that assumes a geometry of flat-spirals for the density perturbation. We find that the flat-spirals gap opening criterion successfully predicts which simulations will hav...
Binaries migrating in a gaseous disk: Where are the Galactic center binaries?
Baruteau, C; Lin, D N C
2010-01-01
The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits, and were probably not formed in-situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inwards toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determ...
White-light Flares on Close Binaries Observed with Kepler
Gao, Qing; Xin, Yu; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang
2016-06-01
Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period (P orb) and rotation period (P rot, calculated for only detached binaries). We find that the AL increases with decreasing P orb or P rot, up to the critical values at P orb ∼ 3 days or P rot ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.
Detectability of Gravitational Waves from High-Redshift Binaries.
Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto
2016-03-11
Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms. PMID:27015470
Twin Binaries: Studies of Stability, Mass Transfer, and Coalescence
Lombardi, James C; Dooley, Katherine L; Gearity, Kyle; Kalogera, Vassiliki; Rasio, Frederic A
2010-01-01
Motivated by suggestions that binaries with almost equal-mass components ("twins") play an important role in the formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with low mass cores (M_c ~0.15M), we find that stable contact configurations exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary. We discuss the implications of our results to the formation of binary neutron stars.
Template Mode Hierarchies for Binary Black Hole Mergers
Healy, James; Pekowsky, Larne; Shoemaker, Deirdre
2013-01-01
Matched filtering is a popular data analysis framework used to search for gravitational wave signals emitted by compact object binaries. The templates used in matched filtering searches are constructed predominantly from the quadrupolar mode because this mode is the energetically most dominant channel. However, for highly precessing binaries or binaries with moderately large mass ratios, significant power is also carried by higher-order modes. We investigate how the inclusion of higher modes in the templates increases the prospects for detecting gravitational waves. Specifically, we use numerical relativity waveforms from the late inspiral and coalescence of binary black holes to identify mode hierarchies that cover the sky of binary orientations. We show that the ordering in these hierarchies depends on the characteristics of the binary system and the mode strengths. Our study demonstrates that detecting moderately high precessing or unequal mass binaries requires the inclusion of higher modes in the templat...
Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle
International Nuclear Information System (INIS)
Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C
Phenomenological gravitational waveforms from spinning coalescing binaries
Sturani, R; Cadonati, L; Guidi, G M; Healy, J; Shoemaker, D; Vicere', A
2010-01-01
An accurate knowledge of the coalescing binary gravitational waveform is crucial for match filtering techniques, which are currently used in the observational searches performed by the LIGO-Virgo collaboration. Following an earlier paper by the same authors we expose the construction of analytical phenomenological waveforms describing the signal sourced by generically spinning binary systems. The gap between the initial inspiral part of the waveform, described by spin-Taylor approximants, and its final ring-down part, described by damped exponentials, is bridged by a phenomenological phase calibrated by comparison with the dominant spherical harmonic mode of a set of waveforms including both numerical and phenomenological waveforms of a different type. All waveforms considered describe equal mass systems with dimension-less spin magnitudes equal to 0.6. The noise-weighted overlap integral between numerical and phenomenological waveforms ranges between 0.93 and 0.98 for a wide span of mass values.
Spin-Spin Coupling in Asteroidal Binaries
Batygin, Konstantin; Morbidelli, Alessandro
2015-11-01
Gravitationally bound binaries constitute a substantial fraction of the small body population of the solar system, and characterization of their rotational states is instrumental to understanding their formation and dynamical evolution. Unlike planets, numerous small bodies can maintain a perpetual aspheroidal shape, giving rise to a richer array of non-trivial gravitational dynamics. In this work, we explore the rotational evolution of triaxial satellites that orbit permanently deformed central objects, with specific emphasis on quadrupole-quadrupole interactions. Our analysis shows that in addition to conventional spin-orbit resonances, both prograde and retrograde spin-spin resonances naturally arise for closely orbiting, highly deformed bodies. Application of our results to the illustrative examples of (87) Sylvia and (216) Kleopatra multi-asteroid systems implies capture probabilities slightly below ~10% for leading-order spin-spin resonances. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.
BISC: binary subcomplexes in proteins database.
Juettemann, Thomas; Gerloff, Dietlind L
2011-01-01
Binary subcomplexes in proteins database (BISC) is a new protein-protein interaction (PPI) database linking up the two communities most active in their characterization: structural biology and functional genomics researchers. The BISC resource offers users (i) a structural perspective and related information about binary subcomplexes (i.e. physical direct interactions between proteins) that are either structurally characterized or modellable entries in the main functional genomics PPI databases BioGRID, IntAct and HPRD; (ii) selected web services to further investigate the validity of postulated PPI by inspection of their hypothetical modelled interfaces. Among other uses we envision that this resource can help identify possible false positive PPI in current database records. BISC is freely available at http://bisc.cse.ucsc.edu. PMID:21081561
Error detection by binary sparse matrices
International Nuclear Information System (INIS)
Error detection is a crucial process in an information transmission protocol like TCP for attaining reliable communications over unreliable channels. The most important performance measure for an error detection scheme is its undetected error probability, which is the probability corresponding to the event such that an erroneous received word passes the detection test. The paper reviews the author's results on an analysis of the undetected error probability of ensembles of m x n binary matrices. The ensemble of binary sparse matrices called the Bernoulli ensemble whose members are considered as matrices generated from i.i.d. Bernoulli source is mainly discussed here. The error exponent of the average undetected error probability and closed form expressions for the variance of the undetected error probability will be presented.
Hamiltonian Hydrodynamics and Irrotational Binary Inspiral
Markakis, Charalampos M
2014-01-01
Gravitational waves from neutron-star and black-hole binaries carry valuable information on their physical properties and probe physics inaccessible to the laboratory. Although development of black-hole gravitational-wave templates in the past decade has been revolutionary, the corresponding work for double neutron-star systems has lagged. Neutron stars can be well-modelled as simple barotropic fluids during the part of binary inspiral most relevant to gravitational wave astronomy, but the crucial geometric and mathematical consequences of this simplification have remained computationally unexploited. In particular, Carter and Lichnerowicz have described barotropic fluid motion via classical variational principles as conformally geodesic. Moreover, Kelvin's circulation theorem implies that initially irrotational flows remain irrotational. Applied to numerical relativity, these concepts lead to novel Hamiltonian or Hamilton-Jacobi schemes for evolving relativistic fluid flows. Hamiltonian methods can conserve ...
Processes assessment in binary mixture plant
Directory of Open Access Journals (Sweden)
N. Shankar Ganesh, T. Srinivas
2013-01-01
Full Text Available Binary fluid system has an efficient system of heat recovery compared to a single fluid system due to a better temperature match between hot and cold fluids. There are many applications with binary fluid system i.e. Kalina power generation, vapor absorption refrigeration, combined power and cooling etc. Due to involvement of three properties (pressure, temperature and concentration in the processes evaluation, the solution is complicated compared to a pure substance. The current work simplifies this complex nature of solution and analyzes the basic processes to understand the processes behavior in power generation as well as cooling plants. Kalina power plant consists of regenerator, heat recovery vapor generator, condenser, mixture, separator, turbine, pump and throttling device. In addition to some of these components, the cooling plant consists of absorber which is similar in operation of condenser. The amount of vapor at the separator decreases with an increase in its pressure and temperature.
Binary hidden Markov models and varieties
Critch, Andrew J
2012-01-01
The technological applications of hidden Markov models have been extremely diverse and successful, including natural language processing, gesture recognition, gene sequencing, and Kalman filtering of physical measurements. HMMs are highly non-linear statistical models, and just as linear models are amenable to linear algebraic techniques, non-linear models are amenable to commutative algebra and algebraic geometry. This paper examines closely those HMMs in which all the random variables, called nodes, are binary. Its main contributions are (1) minimal defining equations for the 4-node model, comprising 21 quadrics and 29 cubics, which were computed using Gr\\"obner bases in the cumulant coordinates of Sturmfels and Zwiernik, and (2) a birational parametrization for every binary HMM, with an explicit inverse for recovering the hidden parameters in terms of observables. The new model parameters in (2) are hence rationally identifiable in the sense of Sullivant, Garcia-Puente, and Spielvogel, and each model's Zar...
Johnston, W. R.
2016-07-01
The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the published literature as inspired by Richardson and Walsh (2006) and similar reviews (Merline et al., 2003; Noll, 2006; Pravec et al., 2006; Pravec and Harris, 2007; Descamps and Marchis, 2008; Noll et al., 2008; Walsh, 2009). In total 297 companions in 282 systems are included. Data are presented in three tables: one for orbital and physical properties; one for companion designations, discovery information, and reference codes for data values; and one giving full references for each reference code. This data set is complete for binary/multiple components reported through 31 March 2016.
Modulated Binary-Ternary Dual Semiconductor Heterostructures.
Prusty, Gyanaranjan; Guria, Amit K; Mondal, Indranil; Dutta, Anirban; Pal, Ujjwal; Pradhan, Narayan
2016-02-18
A generic modular synthetic strategy for the fabrication of a series of binary-ternary group II-VI and group I-III-VI coupled semiconductor nano-heterostructures is reported. Using Ag2 Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe-AgInSe2 , CdSe-AgGaSe2 , ZnSe-AgInSe2 , and ZnSe-AgGaSe2 . Among these, dispersive type-II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi-conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated. PMID:26800297
Parallel Matrix Factorization for Binary Response
Khanna, Rajiv; Agarwal, Deepak; Chen, Beechung
2012-01-01
Predicting user affinity to items is an important problem in applications like content optimization, computational advertising, and many more. While bilinear random effect models (matrix factorization) provide state-of-the-art performance when minimizing RMSE through a Gaussian response model on explicit ratings data, applying it to imbalanced binary response data presents additional challenges that we carefully study in this paper. Data in many applications usually consist of users' implicit response that are often binary -- clicking an item or not; the goal is to predict click rates, which is often combined with other measures to calculate utilities to rank items at runtime of the recommender systems. Because of the implicit nature, such data are usually much larger than explicit rating data and often have an imbalanced distribution with a small fraction of click events, making accurate click rate prediction difficult. In this paper, we address two problems. First, we show previous techniques to estimate bi...
Superconducting State Parameters of Binary Superconductors
Directory of Open Access Journals (Sweden)
Aditya M. Vora
2012-05-01
Full Text Available A well known pseudopotential is used to investigate the superconducting state parameters viz. electron-phonon coupling strength , Coulomb pseudopotential *, transition temperature ТС, isotope effect exponent and effective interaction strength N0V for the AgxZn1 – x and AgxAl1 – x binary superconductors theoretically for the first time. We have incorporated here five different types of the local field correction functions to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The comparison with other such experimental values is encouraging, which confirms the applicability of the model potential in explaining the superconducting state parameters of binary mixture.
Sequential binary decay of highly excited nuclei
International Nuclear Information System (INIS)
The decay of highly excited nuclei is described as a sequence of binary processes involving emission of fragments in their ground, excited-bound and unbound states. Primary together with secondary decay products lead to the final mass distributions. Asymmetric mass splittings involving nucleon emission up to symmetric binary ones are treated according to a generalized Weisskopf evaporation formalism. This procedure is implemented in the Monte-Carlo multi-step statistical model code MECO (Multisequential Evaporation COde). We examine the evolution of the calculated final mass distributions in the decay of a light compound nucleus, as the initial excitation energy increases towards the limits of complete dissociation. Comparisons are made with the predictions of the transition-stage theory, as well as a consistent Weisskopf treatment in which the decay process is described by rate equations for the generation of different fragment species. (author)
Simulation of nuclei morphologies for binary alloy
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We study the critical nuclei morphologies of a binary alloy by the string method. The dynamic equation of the string, connecting the metastable phase (liquid) and stable phase (solid), is governed by Helmholtz free energy for the binary alloy system at a given temperature. The stationary string through the critical nucleus (saddle point) is obtained if the relaxation time of the string is su?ciently large. The critical nucleus radius and energy barrier to nucleation of a pure alloy with isotropic interface energy in two and three dimensions are calculated, which are consistent with the classical nucleation theory. The critical nuclei morphologies are sensitive to the anisotropy strength of interface energy and interface thickness of alloy in two and three dimensions. The critical nucleus and energy barrier to nucleation become smaller if the anisotropy strength of the interface energy is increased, which means that it is much easier to form a stable nucleus if the anisotropy of the interface energy is considered.
Binary Brayton cycle with two isothermal processes
International Nuclear Information System (INIS)
Highlights: • This paper presents binary Brayton cycle with two isothermal processes. • Different parameters affecting the cycle performance have been studied. • The present cycle is a promising cycle for future power generation. - Abstract: The literature introduced isothermal concept and binary Brayton cycle as two promising methods used to enhance the performance of the gas turbine. Consequently, this work presents a cycle based on the blending of the two methods. This cycle is composed of gas turbine topping cycle with isothermal combustion and air turbine bottoming cycle with isothermal heating. Different parameters affecting the cycle performance have been studied. Simulations demonstrate that the present cycle achieves drastic enhancement in performance. The cycle merits justify its potential utilization for future power generation
Toroidal Horizons in Binary Black Hole Mergers
Bohn, Andy; Teukolsky, Saul A
2016-01-01
We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.
A Binary Representation of the Genetic Code
Nemzer, Louis R
2016-01-01
This article introduces a novel binary representation of the canonical genetic code, in which each of the four mRNA nucleotide bases is assigned a unique 2-bit identifier. These designations have a physiological meaning derived from the molecular structures of, and relationships between, the bases. In this scheme, the 64 possible triplet codons are each indexed by a 6-bit label. The order of the bits reflects the hierarchical organization manifested by the DNA replication/repair and tRNA translation systems. Transition and transversion mutations are naturally expressed as basic binary operations, and the severity of the different types is analyzed. Using a principal component analysis, it is shown that physicochemical properties of amino acids related to protein folding also correlate with particular bit positions of their respective labels. Thus, the likelihood for a particular point mutation to be conservative, and therefore less likely to cause a change in protein functionality, can be estimated.
Binary Fingerprints at Fluctuation-Enhanced Sensing
Chang, Hung-Chih; King, Maria D; Kwan, Chiman
2009-01-01
We developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 25 thousands to 1 million. To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.
Dynamics and Habitability in Binary Star Systems
Eggl, Siegfried; Pilat-Lohinger, Elke
2014-01-01
Determining planetary habitability is a complex matter, as the interplay between a planet's physical and atmospheric properties with stellar insolation has to be studied in a self consistent manner. Standardized atmospheric models for Earth-like planets exist and are commonly accepted as a reference for estimates of Habitable Zones. In order to define Habitable Zone boundaries, circular orbital configurations around main sequence stars are generally assumed. In gravitationally interacting multibody systems, such as double stars, however, planetary orbits are forcibly becoming non circular with time. Especially in binary star systems even relatively small changes in a planet's orbit can have a large impact on habitability. Hence, we argue that a minimum model for calculating Habitable Zones in binary star systems has to include dynamical interactions.
Buffer Overflow Detection on Binary Code
Institute of Scientific and Technical Information of China (English)
ZHENG Yan-fei; LI Hui; CHEN Ke-fei
2006-01-01
Most solutions for detecting buffer overflow are based on source code. But the requirement for source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.
Construction of generalized binary Bent sequences
Institute of Scientific and Technical Information of China (English)
KE Pin-hui; CHANG Zu-ling; WEN Qiao-yan
2006-01-01
Bent functions in trace forms play an important role in the constructions of generalized binary Bent sequences.Trace representation of some degree two Bent functions are presented in this paper.A sufficient and necessary condition is derived to determine whether the sum of the combinations of Gold functions,tr1n(x2'+1),1≤I≤n-1,over finite fields F2n (n be even) in addition to another term tr1n/2(x2n/2+1) is a Bent function.Similar to the result presented by Khoo et al.,the condition can be verified by polynominal greatest common divisor (GCD) computation.A similar result also holds in the case Fpn (n be even,p be odd prime).Using the constructed Bent functions and Niho type Bent functions given by Dobbertin et al.,many new generalized binary Bent sequences are obtained.
Conroy, Kyle E; Stassun, Keivan G; Bloemen, Steven; Parvizi, Mahmoud; Quarles, Billy; Boyajian, Tabetha; Barclay, Thomas; Shporer, Avi; Latham, David W; Abdul-Masih, Michael
2014-01-01
Over 2500 eclipsing binaries were identified and characterized from the ultra-precise photometric data provided by the Kepler space telescope. Kepler is now beginning its second mission, K2, which is proving to again provide ultra-precise photometry for a large sample of eclipsing binary stars. In the 1951 light curves covering 12 days in the K2 engineering data-set, we have identified and determined the ephemerides for 31 eclipsing binaries that demonstrate the capabilities for eclipsing binary science in the upcoming campaigns in K2. Of those, 20 are new discoveries. We describe both manual and automated approaches to harvesting the complete set of eclipsing binaries in the K2 data, provide identifications and details for the full set of eclipsing binaries present in the engineering data-set, and discuss the prospects for application of eclipsing binary searches in the K2 mission.
Binary pulsar - a test for general relativity
International Nuclear Information System (INIS)
The binary system of PSR1913 + 16 contains the pulsar and an, as yet unknown, companion. If this star is a compact object too, then the data can be interpreted in terms of general relativistic effects. This leads to the conclusion that the decay of the orbit must be due to the emission of gravitational waves. The nature of the unseen companion is discussed in detail
Gravitational waves from binary black holes
Indian Academy of Sciences (India)
Bala R Iyer
2011-07-01
It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar’s contribution to the subject is ﬁrst presented. The current status of the experimental search for gravitational waves and the attendant theoretical insights into the two-body problem in general relativity arising from computations of gravitational waves from binary black holes are then broadly reviewed.
Gravity Waves, Chaos, and Spinning Compact Binaries
Levin, Janna
1999-01-01
Spinning compact binaries are shown to be chaotic in the Post-Newtonian expansion of the two body system. Chaos by definition is the extreme sensitivity to initial conditions and a consequent inability to predict the outcome of the evolution. As a result, the spinning pair will have unpredictable gravitational waveforms during coalescence. This poses a challenge to future gravity wave observatories which rely on a match between the data and a theoretical template.
Modeling Flows Around Merging Black Hole Binaries
van Meter, James R.; Wise, John H.; Miller, M. Coleman; Reynolds, Christopher S.; Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.
2009-01-01
Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the stron...
Minimum degree and density of binary sequences
DEFF Research Database (Denmark)
Brandt, Stephan; Müttel, J.; Rautenbach, D.;
2010-01-01
For d,k∈N with k ≤ 2d, let g(d,k) denote the infimum density of binary sequences (x)∈{0,1} which satisfy the minimum degree condition σ(x+) ≥ k for all i∈Z with xi=1. We reduce the problem of computing g(d,k) to a combinatorial problem related to the generalized k-girth of a graph G which is...
Reconciliation with Non-Binary Species Trees
Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton; Durand, Dannie
2008-01-01
Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for...
Binary dicots, a core of dicot games
Renault, Gabriel
2014-01-01
We study combinatorial games under mis\\`ere convention. Several sets of games have been considered earlier to better understand the behaviour of mis\\`ere games. We here connect several of these sets. In particular, we prove that comparison modulo binary dicot games is often the same as comparison modulo dicot games, and that equivalence modulo dicot games and modulo impartial games are the same when they are restricted to impartial games.
Modified Sonine approximation for granular binary mixtures
Garzó, Vicente; Reyes, Francisco Vega; Montanero, José María
2008-01-01
We evaluate in this work the hydrodynamic transport coefficients of a granular binary mixture in $d$ dimensions. In order to eliminate the observed disagreement (for strong dissipation) between computer simulations and previously calculated theoretical transport coefficients for a monocomponent gas, we obtain explicit expressions of the seven Navier-Stokes transport coefficients with the use of a new Sonine approach in the Chapman-Enskog theory. Our new approach consists in replacing, where a...
Mergers of Binary Neutron Star Systems
Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven; Neilsen, David; Palenzuela, Carlos
2016-04-01
We present results from fully relativistic simulations of binary neutron star mergers varying the tabular equation of state used to approximate the degenerate material and the mass ratio. The simulations incorporate both magnetic fields and the effects of neutrino cooling. In particular, we examine the amount and properties of material ejected from the merger. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.
Dynamics of phase separation of binary fluids
Ma, Wen-Jong; Maritan, Amos; Banavar, Jayanth R.; Koplik, Joel
1992-01-01
The results of molecular-dynamics studies of surface-tension-dominated spinodal decomposition of initially well-mixed binary fluids in the absence and presence of gravity are presented. The growth exponent for the domain size and the decay exponent of the potential energy of interaction between the two species with time are found to be 0.6 +/- 0.1, inconsistent with scaling arguments based on dimensional analysis.
The Binary Choice Approach of Laffer Curve
Mihai Mutascu
2012-01-01
The paper analyzes empirically, based on “Laffer effects”, in Romania’s case, the relationship between tax revenues (dependent variable) and tax rates (independent variables). The analysis is based on the construction of a binary choice model (Linear Probit Model) and the data set is covering the period 1999 - 2009 (first trimester), with quarterly frequency. The main results show that the two “Laffer effects” have a different probability of existence. If the government knows which the maximu...
Pressure effects in multiphase binary diffusion couples
Subramanyam, Dilip; Notis, Michael R.; Goldstein, Joseph I.
1985-04-01
A systematic study has been carried out of the effect of pressure upon growth kinetics of intermediate phases formed in diffusion couples in the binary systems Ni-Al, U-A1, and U-Cu. Even though applied pressures greater than 100 MPa and long times were investigated little or no pressure effect was observed, in disagreement with previous literature reports. The magnitude of observed pressure effects falls within that expected by closure of Kirkendall porosity.
Relativistic apsidal motion in eccentric eclipsing binaries
Czech Academy of Sciences Publication Activity Database
Wolf, M.; Claret, L.; Kotková, Lenka; Kučáková, H.; Kocián, R.; Brát, L.; Svoboda, P.; Šmelcer, L.
2010-01-01
Roč. 509, January (2010), A18/1-A18/14. ISSN 0004-6361 Grant ostatní: GA ČR(CZ) GA205/04/2063; GA ČR(CZ) GA205/06/0217 Institutional research plan: CEZ:AV0Z10030501 Keywords : binaries eclipsing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010
Binary magnetic structures in HoEr
DEFF Research Database (Denmark)
Howard, B.K.; Bohr, J.
observed between 104 K and 47.5 K is a binary magnetic structure where the holmium and erbium moments belong to different modulated c-axis spirals. The intermediate-temperature phase between 47.5 K and 35 K is a simple basal plane spiral. Below 35 K, the measurements suggest a ferrimagnetic structure in...... which the holmium and erbium moments are indistinguishable and form a conical sprial with a half-cone angle of 20-degrees....
Outbursts in ultracompact X-ray binaries
Hameury, J -M
2016-01-01
Very faint X-ray binaries appear to be transient in many cases with peak luminosities much fainter than that of usual soft X-ray transients, but their nature still remains elusive. We investigate the possibility that this transient behaviour is due to the same thermal/viscous instability which is responsible for outbursts of bright soft X-ray transients, occurring in ultracompact binaries for adequately low mass-transfer rates. More generally, we investigate the observational consequences of this instability when it occurs in ultracompact binaries. We use our code for modelling the thermal-viscous instability of the accretion disc, assumed here to be hydrogen poor. We also take into account the effects of disc X-ray irradiation, and consider the impact of the mass-transfer rate on the outburst brightness. We find that one can reproduce the observed properties of both the very faint and the brighter short transients (peak luminosity, duration, recurrence times), provided that the viscosity parameter in quiesce...
A radio pulsing white dwarf binary star
Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J
2016-01-01
White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...
Spinodal decomposition of chemically reactive binary mixtures
Lamorgese, A.; Mauri, R.
2016-08-01
We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.
A field guide to the binary stars
Trimble, V.
1983-05-01
Details and examples of the six phases of existence for a binary star system are described. The birth and pre-main-sequence contraction is generally obscured from observation by the presence of gas and dust clouds; it comprises 1/1000th of a system's lifetime. The main sequence, i.e., hydrogen burning, takes up to 90 pct of a star's lifetime, and has been detected in stars with masses ranging from 0.07-32 solar masses. In binary systems, the main sequence stars may or may not interact, or one companion may burn out before the other leaves the main sequence. The primary in a binary system expands to fill its Roche lobe before mass transfer begins, then continues on a Kelvin-Helmholtz time scale until the primary is smaller than the secondary, when transfer proceeds on a nuclear time scale. The depletion of hydrogen fuel or He ignition stops the mass transfer, leading to formation of a white dwarf, neutron star, or supernova that sends both the neutron star and the OB secondary off at high speeds. Back transfer can be initiated in a fifth phase and can produce black holes or dwarf novae, or supernovae. Finally, the system terminates when both stars are extinguished and fall into one another, which can also yield supernovae or black holes.
On the binary expansions of algebraic numbers
Energy Technology Data Exchange (ETDEWEB)
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl
2003-07-01
Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.
A Gray path on binary partitions
Colthurst, Thomas
2009-01-01
A binary partition of a positive integer $n$ is a partition of $n$ in which each part has size a power of two. In this note we first construct a Gray sequence on the set of binary partitions of $n$. This is an ordering of the set of binary partitions of each $n$ (or of all $n$) such that adjacent partitions differ by one of a small set of elementary transformations; here the allowed transformatios are replacing $2^k+2^k$ by $2^{k+1}$ or vice versa (or addition of a new +1). Next we give a purely local condition for finding the successor of any partition in this sequence; the rule is so simple that successive transitions can be performed in constant time. Finally we show how to compute directly the bijection between $k$ and the $k$th term in the sequence. This answers a question posed by Donald Knuth in section 7.2.1 of The Art of Computer Programming.
Circumstellar disks around binary stars in Taurus
International Nuclear Information System (INIS)
We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10–4 M ☉. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of Fmm∝M∗1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.
Circumstellar disks around binary stars in Taurus
Energy Technology Data Exchange (ETDEWEB)
Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)
2014-03-20
We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.
Binary progenitor models of type IIb supernovae
Claeys, J S W; Pols, O R; Eldridge, J J; Baes, M
2011-01-01
Massive stars that lose their hydrogen-rich envelope down to a few tenths of a solar mass explode as extended type IIb supernovae, an intriguing subtype that links the hydrogen-rich type II supernovae with the hydrogen-poor type Ib and Ic. The progenitors may be very massive single stars that lose their envelope due to their stellar wind, but mass stripping due to interaction with a companion star in a binary system is currently considered to be the dominant formation channel. We computed an extensive grid of binary models with the Eggleton binary evolution code. The predicted rate from our standard models, which assume conservative mass transfer, is about 6 times smaller than the current rate indicated by observations. It is larger but still comparable to the rate expected from single stars. To recover the observed rate we must generously allow for uncertainties and low accretion efficiencies in combination with limited angular momentum loss from the system. Motivated by the claims of detection and non-detec...
Observational signatures of binary supermassive black holes
International Nuclear Information System (INIS)
Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ n at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λn16/3; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.
On the Neutron Star-Black Hole Binaries Produced by Binary-driven Hypernovae
Fryer, C L; Rueda, J A; Ruffini, R
2015-01-01
Binary-driven hypernovae (BdHNe) following the induced gravitational collapse (IGC) paradigm have been introduced to explain the concomitance of energetic long gamma-ray bursts (GRBs) with type Ic supernovae. The progenitor system is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core triggers a hypercritical accretion process onto the NS, which in a few seconds reach the NS critical mass, and gravitationally collapses to a black hole (BH) emitting a GRB. These tight binary systems evolve through the supernova explosion very differently than compact binary progenitors studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and momentum of the binary. Second, because the explosion timescale is on par with the orbital period, the mass ejection can not be assumed to be instantaneous. Finally, the bow shock created as the accreting NS plows through the supern...
A Survey Design for a Sensitive Binary Variable Correlated with Another Nonsensitive Binary Variable
Directory of Open Access Journals (Sweden)
Jun-Wu Yu
2013-01-01
Full Text Available Tian et al. (2007 introduced a so-called hidden sensitivity model for evaluating the association of two sensitive questions with binary outcomes. However, in practice, we sometimes need to assess the association between one sensitive binary variable (e.g., whether or not a drug user, the number of sex partner being ⩽1 or >1, and so on and one nonsensitive binary variable (e.g., good or poor health status, with or without cervical cancer, and so on. To address this issue, by sufficiently utilizing the information contained in the non-sensitive binary variable, in this paper, we propose a new survey scheme, called combination questionnaire design/model, which consists of a main questionnaire and a supplemental questionnaire. The introduction of the supplemental questionnaire which is indeed a design of direct questioning can effectively reduce the noncompliance behavior since more respondents will not be faced with the sensitive question. Likelihood-based inferences including maximum likelihood estimates via the expectation-maximization algorithm, asymptotic confidence intervals, and bootstrap confidence intervals of parameters of interest are derived. A likelihood ratio test is provided to test the association between the two binary random variables. Bayesian inferences are also discussed. Simulation studies are performed, and a cervical cancer data set in Atlanta is used to illustrate the proposed methods.
Energy Technology Data Exchange (ETDEWEB)
Samsing, Johan [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); MacLeod, Morgan; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
2014-03-20
The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a {sup 2/7}. Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.
Learning Compact Binary Face Descriptor for Face Recognition.
Lu, Jiwen; Liong, Venice Erin; Zhou, Xiuzhuang; Zhou, Jie
2015-10-01
Binary feature descriptors such as local binary patterns (LBP) and its variations have been widely used in many face recognition systems due to their excellent robustness and strong discriminative power. However, most existing binary face descriptors are hand-crafted, which require strong prior knowledge to engineer them by hand. In this paper, we propose a compact binary face descriptor (CBFD) feature learning method for face representation and recognition. Given each face image, we first extract pixel difference vectors (PDVs) in local patches by computing the difference between each pixel and its neighboring pixels. Then, we learn a feature mapping to project these pixel difference vectors into low-dimensional binary vectors in an unsupervised manner, where 1) the variance of all binary codes in the training set is maximized, 2) the loss between the original real-valued codes and the learned binary codes is minimized, and 3) binary codes evenly distribute at each learned bin, so that the redundancy information in PDVs is removed and compact binary codes are obtained. Lastly, we cluster and pool these binary codes into a histogram feature as the final representation for each face image. Moreover, we propose a coupled CBFD (C-CBFD) method by reducing the modality gap of heterogeneous faces at the feature level to make our method applicable to heterogeneous face recognition. Extensive experimental results on five widely used face datasets show that our methods outperform state-of-the-art face descriptors. PMID:26340256
Mandel, Ilya
2016-01-01
We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which, we estimate, typically merge 4 to 11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about $10$ Gpc$^{-3}$ yr$^{-1}$ at redshift $z=0$, peaking at...
A precontact binary and a shallow contact binary are in the same field
Liu, Liang; Qian, Shengbang; He, Jiajia; Liao, Wenping; Liu, Nianping
2016-06-01
The period changes of two close binaries, V1107 Cas and AX Cas, which are in the same field, were investigated. Their periods both show a long-term decrease. After further analysis, we found that the periods have their respective cyclic oscillations (T3 = 6.74 ± 0.24 yr for V1107 Cas and T3 = 13.8 ± 0.3 yr for AX Cas), which are possibly caused by a third body due to the light-time effect. We also obtained the complete VRcIc light curves for V1107 Cas and analyzed them with the 2010 version of the Wilson-Devinney code. The photometric results reveal that V1107 Cas is a W-type shallow contact (15.2%±1.8%) binary, with a mass-ratio of 1.797 ± 0.006. The period variation and photometric solution suggest that V1107 Cas is a newly formed contact binary system. Moreover, we estimated the fundamental parameters for V1107 Cas. They are: M1 = 0.39 ± 0.01 M⊙, M2 = 0.70 ± 0.03 M⊙, R1 = 0.52 ± 0.10 R⊙, R2 = 0.68 ± 0.12 R⊙, L1 = 0.178 ± 0.108 L⊙, and L2 = 0.196 ± 0.116 L⊙. Then, based on the coplane assumption, we deduced the masses of possible third bodies to be M3 = 0.091 ± 0.019 M⊙ for V1107 Cas and M3 = 0.325 ± 0.029 M⊙ for AX Cas. Finally, we inferred the evolutional stage of AX Cas, and believe that it is a precontact binary. Thus, the precontact binary AX Cas and the shallow contact binary V1107 Cas have adjoining evolutional stages.
Lee ( ), Chien-Hsiu
2015-11-01
Eclipsing binaries provide a unique opportunity to measure fundamental properties of stars. With the advent of all-sky surveys, thousands of eclipsing binaries have been reported, yet their light curves are not fully exploited. The goal of this work is to make use of the eclipsing binary light curves delivered by all-sky surveys. We attempt to extract physical parameters of the binary systems from their light curves and colour. Inspired by the work of Devor et al., we use the Detached Eclipsing Binary Light curve fitter (DEBIL) and the Method for Eclipsing Component Identification (MECI) to derive basic properties of the binary systems reported by the All Sky Automated Survey, the Northern Sky Variability Survey, and the Lincoln Near Earth Asteroids Research. We derive the mass, fractional radius, and age for 783 binary systems. We report a subsample of eccentric systems and compare their properties to the tidal circularization theory. With MECI, we are able to estimate the distance of the eclipsing binary systems and use them to probe the structure of the Milky Way. Following the approach of Devor et al., we demonstrate that DEBIL and MECI are instrumental to investigate eclipsing binary light curves in the era of all-sky surveys, and provide estimates of stellar parameters of both binary components without spectroscopic information.
Binary pairs of supermassive black holes - Formation in merging galaxies
International Nuclear Information System (INIS)
A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs
Binary pulsar evolution: unveiled links and new species
Possenti, Andrea
2013-03-01
In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.
Microlensing Binaries Discovered through High-magnification Channel
DEFF Research Database (Denmark)
Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.;
2012-01-01
Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba......Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010...... of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q ~ 0.1, making the companion of the lens a strong brown dwarf candidate....
Milankovitch Cycles of Terrestrial Planets in Binary Star Systems
Forgan, Duncan H
2016-01-01
The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycle...
Distinguishing Between Formation Channels for Binary Black Holes with LISA
Breivik, Katelyn; Larson, Shane L; Kalogera, Vassiliki; Rasio, Frederic A
2016-01-01
The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity of binary black holes in the LISA frequency band can be used discriminate between binaries formed in isolation in galactic fields, and those formed in dense stellar environments such as globular clusters. In this letter, we explore the differences in orbital eccentricities of binary black hole populations as they evolve through the LISA frequency band. Overall we find that there are three distinct populations of orbital eccentricities discernible by LISA. We show that, depending on gravitational-wave frequency, anywhere fro...
Nonlinear Dynamics, Lorenz Model and Formation of Binary Stars
Chang, Yi-Fang
2008-01-01
Based on the Lorenz model derived from the equations of hydrodynamics of nebula, we discuss the formation of binary stars by the qualitative analysis theory of nonlinear equation. Here the two wings in the Lorenz model form just the binary stars, whose Roche surface is result of evolution under certain condition. The nonlinear interaction plays a crucial role, and is necessary condition of the formation of binary stars and of multiple stars. While the linear equations form only a single star....
On the formation of Be stars through binary interaction
Shao, Yong; Li, Xiang-Dong
2014-01-01
Be stars are rapidly rotating B type stars. The origin of their rapid rotation is not certain, but binary interaction remains to be a possibility. In this work we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. We calculate the binary evolution with both stars evolving simultaneously and consider different possible mass accretion histories for the accretor. From the calculated results we obtain the critical mass ratios $q_{\\rm cr}$ that determine ...
Magnetic Interaction in Ultra-compact Binary Systems
Wu, Kinwah
2009-01-01
This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.
Magnetic interaction in ultra-compact binary systems
Institute of Scientific and Technical Information of China (English)
Kinwah WU
2009-01-01
This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.
Automatic classification of eclipsing binaries light curves using neural networks
Sarro, L M; Giménez, A
2005-01-01
In this work we present a system for the automatic classification of the light curves of eclipsing binaries. This system is based on a classification scheme that aims to separate eclipsing binary sistems according to their geometrical configuration in a modified version of the traditional classification scheme. The classification is performed by a Bayesian ensemble of neural networks trained with {\\em Hipparcos} data of seven different categories including eccentric binary systems and two types of pulsating light curve morphologies.
How I Learned to Stop Worrying and Love Eclipsing Binaries
Moe, Maxwell
2015-01-01
Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital ...
NEW BINARY PARTICLE SWARM OPTIMIZATION WITH IMMUNITY-CLONAL ALGORITHM
Dina EL-Gammal; Amr Badr; Mostafa Abd El Azeim
2013-01-01
Particle Swarm Optimization used to solve a continuous problem and has been shown to perform well however, binary version still has some problems. In order to solve these problems a new technique called New Binary Particle Swarm Optimization using Immunity-Clonal Algorithm (NPSOCLA) is proposed This Algorithm proposes a new updating strategy to update the position vector in Binary Particle Swarm Optimization (BPSO), which further combined with Immunity-Clonal Algorithm to improve the optimiza...
Information Measures: the Curious Case of the Binary Alphabet
Jiao, Jiantao; Courtade, Thomas; No, Albert; Venkat, Kartik; Weissman, Tsachy
2014-01-01
Four problems related to information divergence measures defined on finite alphabets are considered. In three of the cases we consider, we illustrate a contrast which arises between the binary-alphabet and larger-alphabet settings. This is surprising in some instances, since characterizations for the larger-alphabet settings do not generalize their binary-alphabet counterparts. Specifically, we show that $f$-divergences are not the unique decomposable divergences on binary alphabets that sati...
Simple methods for evaluating and comparing binary experiments
Thomas A. Weber
2010-01-01
We consider a confidence parametrization of binary information sources in terms of appropriate likelihood ratios. This parametrization is used for Bayesian belief updates and for the equivalent comparison of binary experiments. In contrast to the standard parametrization of a binary information source in terms of its specificity and its sensitivity, one of the two confidence parameters is sufficient for a Bayesian belief update conditional on a signal realization. We introduce a confidence-au...
Segregation phases in a vibrated binary granular layer
Reis, P. M.; Ehrhardt, G.; Mullin, T.
2003-01-01
We present the results of an experimental study of patterned segregation in a horizontally shaken shallow layer of a binary mixture of dry particles. As the compacity, $C$, of the mixture was increased, the evolution of three distinct phases was observed. We classify them as binary gas, segregation liquid and segregation crystal phases using macroscopic and microscopic measures. The binary gas to segregation liquid transition is consistent with a continuous phase transition and includes the c...
Geographically Weighted Local Statistics Applied to Binary Data
Brunsdon, Chris; Fotheringham, Stewart; Charlton, Martin
2002-01-01
This paper considers the application of geographically weighting to summary statistics for binary data. We argue that geographical smoothing techniques that are applied to descriptive statistics for ratio and interval scale data may also be applied to descriptive statistics for binary categorical data. Here we outline how this may be done, focussing attention on the odds ratio statistic used for summarising the linkage between a pair of binary variables. An example of this is applied to data ...
Asymptotic bound on binary self-orthogonal codes
Institute of Scientific and Technical Information of China (English)
DING Yang
2009-01-01
We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the in-formation rate R = 1/2, by our constructive lower bound, the relative minimum distance δ≈ 0.0595 (for GV bound, δ≈0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.
Asymptotic bound on binary self-orthogonal codes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the in-formation rate R = 1/2, by our constructive lower bound, the relative minimum distance δ≈ 0.0595 (for GV bound, δ≈ 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.
Evolution of a ring around the Pluto-Charon binary
Bromley, B. C.; Kenyon, S J
2015-01-01
We consider the formation of satellites around the Pluto-Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of "...
Improving geothermal power plants with a binary cycle
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2015-12-01
The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.
DESTRUCTION OF BINARY MINOR PLANETS DURING NEPTUNE SCATTERING
International Nuclear Information System (INIS)
The existence of extremely wide binaries in the low-inclination component of the Kuiper Belt provides a unique handle on the dynamical history of this population. Some popular frameworks of the formation of the Kuiper Belt suggest that planetesimals were moved there from lower semimajor axis orbits by scattering encounters with Neptune. We test the effects such events would have on binary systems and find that wide binaries are efficiently destroyed by the kinds of scattering events required to create the Kuiper Belt with this mechanism. This indicates that a binary-bearing component of the cold Kuiper Belt was emplaced through a gentler mechanism or was formed in situ.
ANNEXATION OF TWO KINDS OF SOLUTION IN BINARY METALLIC MELTS
Institute of Scientific and Technical Information of China (English)
J.Zhang
2004-01-01
After investigation on the thervnodynamic properties of a small number of binary metallic melts,the structural units of which cannot be wholly determined by the corresponding phase diagrams,it was found that they can be determined by the principle of annexation of two kinds of solutions in binary metallic melts.According to the principle of annexation,calculating models of mass action concentrations for several binary metallic melts have been formulated.The calculated results agree well with practice,showing that this principle is a reliable basis for determination of the structural units for some binary metallic melts.
Binary GCD like Algorithms for Some Complex Quadratic Rings
DEFF Research Database (Denmark)
Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg
2004-01-01
binary gcd like algorithms for the ring of integers in and , one now has binary gcd like algorithms for all complex quadratic Euclidean domains. The running time of our algorithms is O(n 2) in each ring. While there exists an O(n 2) algorithm for computing the gcd in quadratic number rings by Erich......On the lines of the binary gcd algorithm for rational integers, algorithms for computing the gcd are presented for the ring of integers in where . Thus a binary gcd like algorithm is presented for a unique factorization domain which is not Euclidean (case d=-19). Together with the earlier known...
White-Light Flares on Close Binaries Observed with Kepler
Gao, Qing; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang
2016-01-01
Based on Kepler data, we present the results of a search for white-light flares on 1049 close binaries. We identify 234 flare binaries, on which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies ("detachedness"). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10-20 percent lower than those in detached and semi-detached systems. We calculate the binary flares activity level (AL) of all the flare binaries, and discuss its variations along the orbital period (P_orb) and rotation period (P_rot, calculated for only detached binaries). We find that AL increases with decreasing P_orb or P_rot up to the critical values at P_orb near 3 days or P_rot near 1.5 days, thereafter, the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in 2 eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate ...
Electronic band structures of binary skutterudites
International Nuclear Information System (INIS)
The electronic properties of complex binary skutterudites, MX3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures
Electronic band structures of binary skutterudites
Energy Technology Data Exchange (ETDEWEB)
Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)
2015-10-25
The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.
Observational signatures of binary supermassive black holes
Energy Technology Data Exchange (ETDEWEB)
Roedig, Constanze; Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)
2014-04-20
Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.
Anonymizing Binary Tables is APX-hard
Bonizzoni, Paola; Dondi, Riccardo
2007-01-01
The problem of publishing personal data without giving up privacy is increasingly important. An interesting formalization is the $k$-anonymization, where all rows in a table are clustered in sets of at least $k$ records, and all the entries for which records in the same cluster have different values are suppressed. The problem has been shown to be NP-hard when the records values are over a ternary alphabet and $k=3$. In this paper we show that the problem is not only NP-hard, but also APX-hard, when the records values are over a binary alphabet and $k=3$.
Astronomical Plate Archives and Binary Blazars Studies
Czech Academy of Sciences Publication Activity Database
Hudec, René
2011-01-01
Roč. 32, 1-2 (2011), s. 91-95. ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant ostatní: GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011
Statistical kinetic treatment of relativistic binary collisions.
Peano, F; Marti, M; Silva, L O; Coppa, G
2009-02-01
In particle-based algorithms, the effect of binary collisions is commonly described in a statistical way, using Monte Carlo techniques. It is shown that, in the relativistic regime, stringent constraints should be considered on the sampling of particle pairs for collision, which are critical to ensure physically meaningful results, and that nonrelativistic sampling criteria (e.g., uniform random pairing) yield qualitatively wrong results, including equilibrium distributions that differ from the theoretical Jüttner distribution. A general procedure for relativistically consistent algorithms is provided, and verified with three-dimensional Monte Carlo simulations, thus opening the way to the numerical exploration of the statistical properties of collisional relativistic systems. PMID:19391799
6384 Kervin: A Possible Hungaria Binary Asteroid
Warner, Brian D.; Aznar Macia, Amadeo
2016-04-01
Analysis of CCD photometric observations in late 2015 of the Hungaria asteroid 6384 Kervin indicates that it may be a binary asteroid with a primary lightcurve of P1 = 3.6194 ± 0.0001 h, A1 = 0.06 ± 0.01 mag. The secondary lightcurve parameters are P2 = 15.94 ± 0.01 h, A2 = 0.03 ± 0.01 mag. No mutual events (occultations or eclipses) were observed. However, other indicators give an estimated diameter ratio on the order of Ds/Dp ~ 0.3, possibly greater.
Associative memory - An optimum binary neuron representation
Awwal, A. A.; Karim, M. A.; Liu, H. K.
1989-01-01
Convergence mechanism of vectors in the Hopfield's neural network is studied in terms of both weights (i.e., inner products) and Hamming distance. It is shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, weights (which in turn depend on the neuron representation) are found to play a more dominant role in the convergence mechanism. Consequently, a new binary neuron representation for associative memory is proposed. With the new neuron representation, the associative memory responds unambiguously to the partial input in retrieving the stored information.
International Nuclear Information System (INIS)
Optical observations of X-ray binaries and their interpretation are described. A number of early-type stars which are identified as companions of X-ray sources are photometrically and spectroscopically observed. The spectra were obtained with the coude spectrograph attached to the 1.5 m telescope of the European Southern Observatory, La Silla, Chile. Registrations of the spectra were made with the Faul-Coradi microphotometer of the Observatory at Utrecht. To study radial velocity variations, the positions of the spectral lines were measured with the Grant comparator of the University of Groningen
Model for magnetic-nonmagnetic binary alloys
Energy Technology Data Exchange (ETDEWEB)
Razafimandimby, H. [Departement de Physique, Universite de Toliara, 601 Toliara (Madagascar); Randrianasoloharisoa, D. [LPMR, Universite d' Antananarivo (Madagascar); Rakotomahevitra, A. [Departement des Sciences Exactes, Universite de Mahajanga, BP 155 (Madagascar); Parlebas, J.C. [IPCMS, UMR 7504 CNRS-Universite Louis Pasteur, 23 rue du Loess, BP 43, 67034 Strasbourg (France)
2007-10-15
An extension of a mean-field approximation (MFA) developed within standard basis operators (SBO) is used to study magnetism in magnetic-nonmagnetic binary alloys. The Curie temperature is calculated from the free energy within the framework of the present approach. The calculated results are in fair agreement with the theoretical results of other research groups for the same problem but utilizing other methods. Finally, the case of NiPt alloys is briefly examined as an example test for the comparison with experiment. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Is the Coma cluster binary dominated?
International Nuclear Information System (INIS)
It is investigated whether the model of an expanding cluster dominated by a massive binary galaxy, first suggested by Valtonen and Byrd (1979), is consistent with optical data on the surface density and velocity dispersion of the Coma cluster. The evolution of this model is simulated for a wide variety of initial conditions. It is found that galaxy counts in the model can be made to agree with observation, but that the observed velocity dispersion profile cannot be reproduced. A number of other arguments suggest that the central galaxies in Coma cannot be as massive as required by the model. This model is not a viable representation of the Coma cluster. 25 refs
Double riches: asteroseismology in eclipsing binaries
Southworth, John
2015-01-01
The study of eclipsing binaries is our primary source of measured properties of normal stars, achieved through analysis of light and radial velocity curves of eclipsing systems. The study of oscillations and pulsations is increasingly vital for determining the properties of single stars, and investigating the physical phenomena active in their interiors. Combining the two methods holds the promise of establishing stringent tests of stellar evolutionary theory, and of calibrating model-dependent asteroseismology with empirically measured stellar properties. I review recent advances and outline future work.
NONLINEAR TIDES IN CLOSE BINARY SYSTEMS
International Nuclear Information System (INIS)
We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼3[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing
Nonlinear Tides in Close Binary Systems
Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh
2012-06-01
We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three
Computer Vision Using Local Binary Patterns
Pietikainen, Matti; Zhao, Guoying; Ahonen, Timo
2011-01-01
The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, b
Stretchable Binary Fresnel Lens for Focus Tuning.
Li, Xueming; Wei, Lei; Poelma, René H; Vollebregt, Sten; Wei, Jia; Urbach, Hendrik Paul; Sarro, Pasqualina M; Zhang, Guo Qi
2016-01-01
This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchability of the PDMS. By stretching the elastomeric composite in radial direction, the lens focal length is tuned. Good focusing response is demonstrated and a large focus change (≥24%) was achieved by stretching lenses up to 11.4%. PMID:27139747
Physical Structure of Four Symbiotic Binaries
Kenyon, Scott J. (Principal Investigator)
1997-01-01
Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the
Binary magnetic structures in HoEr
DEFF Research Database (Denmark)
Howard, B.K.; Bohr, J.
1991-01-01
The magnetic structure of a single crystal of the rare earth random alloy Ho50% Er50% has been investigated by elastic neutron diffraction measurements in the temperature range 120-10 K. Three distinct magnetic phases are identified below the Neel temperature of 104 K. The high-temperature phase...... observed between 104 K and 47.5 K is a binary magnetic structure where the holmium and erbium moments belong to different modulated c-axis spirals. The intermediate-temperature phase between 47.5 K and 35 K is a simple basal plane spiral. Below 35 K, the measurements suggest a ferrimagnetic structure in...
Binary quadratic forms an algorithmic approach
Buchmann, Johannes
2007-01-01
The book deals with algorithmic problems related to binary quadratic forms, such as finding the representations of an integer by a form with integer coefficients, finding the minimum of a form with real coefficients and deciding equivalence of two forms. In order to solve those problems, the book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography. It requires only basic mathematical knowledge.
Binary Colloidal Alloy Test-5: Phase Separation
Lynch, Matthew; Weitz, David A.; Lu, Peter J.
2008-01-01
The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.
Multiple Human Tracking Using Binary Infrared Sensors
Directory of Open Access Journals (Sweden)
Toshiaki Miyazaki
2015-06-01
Full Text Available To create a context-aware environment, human locations and movement paths must be considered. In this paper, we propose an algorithm that tracks human movement paths using only binary sensed data obtained by infrared (IR sensors attached to the ceiling of a room. Our algorithm can estimate multiple human movement paths without a priori knowledge of the number of humans in the room. By repeating predictions and estimations of human positions and links from the previous human positions to the estimated ones at each time period, human movement paths can be estimated. Simulation-based evaluation results show that our algorithm can dynamically trace human movement paths.
On Totally Reducible Binary Forms: I
Indian Academy of Sciences (India)
C Hooley
2001-08-01
Let () be the number of positive numbers up to a large limit that are expressible in essentially more than one way by a binary form that is a product of > 2 distinct linear factors with integral coefficients. We prove that $$(n) = O\\left(n^{2/l-_l+\\epsilon}\\right),$$ where \\begin{equation*}_l=\\begin{cases}1/l^2, \\quad\\text{if}\\quad l=3,\\\\ (l-2)/l^2(l-1), \\quad\\text{if}\\quad l>3,\\end{cases}\\end{equation*} thus demonstrating in particular that it is exceptional for a number represented by to have essentially more than one representation.
Binary Nucleation of Water and Sodium Chloride
Energy Technology Data Exchange (ETDEWEB)
Nemec, Thomas [Institute of Thermomechanics ASCR, Prague, Czech Republic; Marsik, Frantisek [Institute of Thermomechanics ASCR, Prague, Czech Republic; Palmer, Donald [ORNL
2005-01-01
Nucleation processes in the binary water-sodium chloride system are investigated in the sense of the classical nucleation theory (CNT). The CNT is modified to be able to handle the electrolytic nature of the system and is employed to investigate the acceleration of the nucleation process due to the presence of sodium chloride in the steam. This phenomenon, frequently observed in the Wilson zone of steam turbines, is called early condensation. Therefore, the nucleation rates of the water-sodium chloride mixture are of key importance in the power cycle industry.
HD 161306: a radiatively interacting Be binary?
Czech Academy of Sciences Publication Activity Database
Koubský, Pavel; Kotková, Lenka; Kraus, Michaela; Yang, S.; Šlechta, Miroslav; Harmanec, P.; Wolf, M.; Votruba, Viktor; Kubát, Jiří; Kubátová, Brankica; Niemczura, E.; Škoda, Petr
2014-01-01
Roč. 567, July (2014), A57/1-A57/4. ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-21373S; GA MŠk LG14026 Grant ostatní: ESA(XE) ESA-PECS project no. 98058; GA ČR(CZ) GAP209/10/0715 Institutional support: RVO:67985815 Keywords : binaries: spectroscopic * stars: emission-line * Be: stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014
The Gaia Mission, Binary Stars and Exoplanets
Eyer, Laurent; Holl, Berry; North, Pierre; Zucker, Shay; Evans, Dafydd W; Pourbaix, Dimitri; Hodgkin, Simon T; Thuillot, William; Mowlavi, Nami; Carry, Benoit
2015-01-01
On the 19th of December 2013, the Gaia spacecraft was successfully launched by a Soyuz rocket from French Guiana and started its amazing journey to map and characterise one billion celestial objects with its one billion pixel camera. In this presentation, we briefly review the general aims of the mission and describe what has happened since launch, including the Ecliptic Pole scanning mode. We also focus especially on binary stars, starting with some basic observational aspects, and then turning to the remarkable harvest that Gaia is expected to yield for these objects.
Iterative Method for Generating Correlated Binary Sequences
Usatenko, O V; Apostolov, S S; Makarov, N M; Krokhin, A A
2014-01-01
We propose a new efficient iterative method for generating random correlated binary sequences with prescribed correlation function. The method is based on consecutive linear modulations of initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. Robustness and efficiency for the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to the single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.
UV Emission line shifts of symbiotic binaries
Friedjung, M.; Mikolajewska, J.; Zajczyk, A.; Eriksson, M.
2010-01-01
Relative and absolute emission line shifts have been previously found for symbiotic binaries, but their cause was not clear. This work aims to better understand the emission line shifts. Positions of strong emission lines were measured on archival UV spectra of Z And, AG Dra, RW Hya, SY Mus and AX Per and relative shifts between the lines of different ions compared. Profiles of lines of RW Hya and Z And were also examined. The reality of the relative shift between resonance and intercombinati...
Retrograde binaries of massive black holes in circum-binary accretion discs
Amaro-Seoane, Pau; Dotti, Massimo; Colpi, Monica
2016-01-01
We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole which in turn affect the binary hardening and eccentricity evolution. We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Different accretion prescriptions result in different disc's surface densities which alter the black hole's dynamics back. Full 3D SPH realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less compu...
Mandel, Ilya; de Mink, Selma E.
2016-05-01
We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which we estimate typically merge 4-11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about 10 Gpc-3 yr-1 at redshift z = 0, peaking at twice this rate at z = 0.5. This means that this channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common-envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The events from this channel may be distinguished by the preference for nearly equal-mass components and high masses, with typical total masses between 50 and 110 M⊙. Unlike the conventional isolated binary evolution scenario that involves shrinkage of the orbit during a common-envelope phase, short time delays are unlikely for this channel, implying that we do not expect mergers at high redshift.
Abdul-Masih, Michael; Prša, Andrej; Conroy, Kyle; Bloemen, Steven; Boyajian, Tabetha; Doyle, Laurance R.; Johnston, Cole; Kostov, Veselin; Latham, David W.; Matijevič, Gal; Shporer, Avi; Southworth, John
2016-04-01
The Kepler mission has provided unprecedented, nearly continuous photometric data of ∼200,000 objects in the ∼105 deg2 field of view (FOV) from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in May of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters, and analytical approximation fits for every known eclipsing binary system in the Kepler FOV. Using target pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e., targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separate light curves for each quarter of available data by optimizing the signal-to-noise ratio, the relative percent eclipse depth, and the flux eclipse depth. We present 289 new eclipsing binaries in the Kepler FOV that were not targets for observation, and these have been added to the catalog. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu.
A Compact Supermassive Binary Black Hole System
Rodríguez, C; Zavala, R T; Peck, A B; Pollack, L K; Romani, R W
2006-01-01
We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magnitude. These results are based upon recent multi-frequency observations using the Very Long Baseline Array (VLBA) which reveal two compact, variable, flat-spectrum, active nuclei within the elliptical host galaxy of 0402+379. Multi-epoch observations from the VLBA also provide constraints on the total mass and dynamics of the system. Low spectral resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity systems with a combined mass of the two black holes of ~1.5 x 10^8 solar masses. The two nuclei appear stationary while the jets emanating from the weaker of the two nuclei appear to move out and terminate in bright hot spots. The discovery of this system has implications for the number of close binary black holes that might be sources of gravi...
Observations of accretion discs in interacting binaries
Honey, William Bruce
Cataclysmic and X-ray binaries (CV and LMXB) are considered, and new observations of both types of source are considered. Chapter 1 gives an introduction to the subject and presents a study of the evolution and period relationships of these objects. Chapter 2 studies the superoutburst of a system. The observational data presented in the Chapter are used to place constraints on the geometry of the system, and also upon the theoretical models examined; only eccentric disc models are found to be acceptable. A tidally dominated eccentric accretion disc is considered, and good agreement between the observations and a tidally distorted disc simulation is achieved. In Chapter 3, a search for the superhump phenomenon is conducted. No such superhump behavior was found. These observations support the ideas first raised in Chapter 2 of the importance of tidal behavior in dwarf novae. Chapter 4 reviews observations of black hole candidates, and lists the generally expected 'fingerprint' thought to be associated with black holes in binary systems. Chapter 5 reports on observations of the LMXB GX339-4 and the discovery of the period for the system. Constraints on the system parameters are given and a model is presented that is compatible with the observations. Chapter 6 reviews the work done and considers other important observational evidence that is to be found in the literature and is pertinent to the work in this thesis.
Multilevel Cross-Dependent Binary Longitudinal Data
Serban, Nicoleta
2013-10-16
We provide insights into new methodology for the analysis of multilevel binary data observed longitudinally, when the repeated longitudinal measurements are correlated. The proposed model is logistic functional regression conditioned on three latent processes describing the within- and between-variability, and describing the cross-dependence of the repeated longitudinal measurements. We estimate the model components without employing mixed-effects modeling but assuming an approximation to the logistic link function. The primary objectives of this article are to highlight the challenges in the estimation of the model components, to compare two approximations to the logistic regression function, linear and exponential, and to discuss their advantages and limitations. The linear approximation is computationally efficient whereas the exponential approximation applies for rare events functional data. Our methods are inspired by and applied to a scientific experiment on spectral backscatter from long range infrared light detection and ranging (LIDAR) data. The models are general and relevant to many new binary functional data sets, with or without dependence between repeated functional measurements.
Gravitational redshift from a binary system
Energy Technology Data Exchange (ETDEWEB)
Steklain, Andre [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil)
2011-07-01
Full text: In this work we study the gravitational redshift of a binary system in general relativity. We employ a mixed metric obtained from the matching of a 1PN metric with two perturbed Schwarzschild metrics, based on previous works [Alvi, Phys. Rev. D, 61, 124013 (2000)]. This metric is well known, and has been considered for several applications [Steklain et al, Phys. Lett. A, 373, 188, (2009)]. We consider a massless observer in a timelike geodesic of this metric measuring the redshift of the system. The observer concentrates the redshift measurements in one of the massive bodies and is influenced by the mass of the second body. We find that there is a substantial contribution of the second mass in some cases. We compare with experimental data obtained for real binary systems of white dwarfs [Vennes et al, Astroph. J., L37 (1991)]. We also discuss these results for more massive systems, and make some predictions for very massive systems, like black holes, although it extrapolates the limit of the 1PN approximation used. Is well known that the major contribution of the observed redshift is from the universe expansion, but these results indicate that the influence of the gravitational redshift may be underestimated at some systems. (author)
Tertiary companions to close spectroscopic binaries
Tokovinin, A; Thomas, S; Udry, S
2006-01-01
We have surveyed a sample of 165 solar-type spectroscopic binaries (SB) with periods from 1 to 30 days for higher-order multiplicity. 62 targets have been observed with the NACO adaptive optics system and 13 new physical tertiary companions were detected. Another 12 new wide companions (5 still tentative) were retrieved from the 2MASS sky survey. Our binaries belong to 161 stellar systems; of these 64 are triple, 11 quadruple and 7 quintuple. After correction for incomplete detection, the fraction of SBs with additional companions is 63% +- 5%. We find that this fraction is a strong function of the SB period P, reaching 96% for P12d. Period distributions of SBs with and without tertiaries are significantly different, but their mass ratio distributions are identical. New statistical data on the multiplicity of close SBs indicate that their periods and mass ratios were established very early, but periods of SBs within triples were further shortened by angular momentum exchange with companions.
Transient High Mass X-ray Binaries
Paul, Biswajit
2011-01-01
High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the transient HMXBs are found to be Be/X-ray binaries in which the companion Be star with its circumstellar disk governs the outburst. These outbursts are understood to be due to the sudden enhanced mass accretion to the neutron star and is likely to be associated with changes in the circumstellar disk of the companion. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter bursts. X-ray, infrared and optical observations of these objects provide vital information regarding these systems. Here we review some key observational properties of the transient HMXBs and also discuss some important recent developments from studies of this class of sources. The X-ray properties of these objects are discussed in some...
Thirty New Low-Mass Spectroscopic Binaries
Shkolnik, Evgenya L; Liu, Michael C; Reid, I Neill; Cameron, Andrew C
2010-01-01
As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s and 1 SB4, increasing the number of known low-mass SBs by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass EBs, bringing the count of known M dwarf EBs to 15. BD -22 5866, the SB4, is fully described in Shkolnik et al. 2008 and CCDM J04404+3127 B consists of a two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P_rot to determine the true orbital parameters. For those with no P_rot, we us...
Speakers' choice of frame in binary choice
Directory of Open Access Journals (Sweden)
Marc van Buiten
2009-02-01
Full Text Available A distinction is proposed between extit{recommending for} preferred choice options and extit{recommending against} non-preferred choice options. In binary choice, both recommendation modes are logically, though not psychologically, equivalent. We report empirical evidence showing that speakers recommending for preferred options predominantly select positive frames, which are less common when speakers recommend against non-preferred options. In addition, option attractiveness is shown to affect speakers' choice of frame, and adoption of recommendation mode. The results are interpreted in terms of three compatibility effects, (i extit{recommendation mode---valence framing compatibility}: speakers' preference for positive framing is enhanced under extit{recommending for} and diminished under extit{recommending against} instructions, (ii extit{option attractiveness---valence framing compatibility}: speakers' preference for positive framing is more pronounced for attractive than for unattractive options, and (iii extit{recommendation mode---option attractiveness compatibility}: speakers are more likely to adopt a extit{recommending for} approach for attractive than for unattractive binary choice pairs.
Ordering in binary transition metal alloys
Energy Technology Data Exchange (ETDEWEB)
Rusakov, G. [Institute for Metal Physics UB RAS, 18 Kovalevskoj St., 620990 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation); Son, L., E-mail: ldson@yandex.ru [Ural State Pedagogical University, 26 Cosmonavtov Ave, 620017 Ekaterinburg (Russian Federation); Efimova, E. [Institute for Metal Physics UB RAS, 18 Kovalevskoj St., 620990 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation); Dubinin, N. [Institute for Metallurgy UB RAS, 101 Amundsen St., 620016 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation)
2012-03-20
We present the phenomenological thermodynamic modeling of binary alloys which demonstrate solubility of the components at high temperatures, and form intermediate phase near equiatomic composition at lower ones (the so-called sigma-phase). Besides, the regular solution miscibility gap takes place also. The nonequilibrium thermodynamic potential is written out as a sum of the free energy of regular solution and polynomial term of scalar order parameter {phi}, which describes the {sigma}-phase ordering. There are four parameters in the model: the energy of regular solution mixing, the energy of {sigma}-phase formation at zero temperature, and the widths of temperature and concentration intervals of {sigma}-phase existence in the alloy with frozen-in random distribution of components. Up to now, both phase transitions which take place in a number of transition metals binary alloys (the {sigma}-phase formation and miscibility in the regular solution) have been treated separately. In present work, the standard technique of phase diagram calculation allows us to analyze all possible phase diagrams which may arise in the alloy.
Convergence Speed of Binary Interval Consensus
Draief, Moez
2012-01-01
We consider the convergence time for solving the binary consensus problem using the interval consensus algorithm proposed by B\\' en\\' ezit, Thiran and Vetterli (2009). In the binary consensus problem, each node initially holds one of two states and the goal for each node is to correctly decide which one of these two states was initially held by a majority of nodes. We derive an upper bound on the expected convergence time that holds for arbitrary connected graphs, which is based on the location of eigenvalues of some contact rate matrices. We instantiate our bound for particular networks of interest, including complete graphs, paths, cycles, star-shaped networks, and Erd\\" os-R\\' enyi random graphs; for these graphs, we compare our bound with alternative computations. We find that for all these examples our bound is tight, yielding the exact order with respect to the number of nodes. We pinpoint the fact that the expected convergence time critically depends on the voting margin defined as the difference betwe...
Modeling and analysis of advanced binary cycles
Energy Technology Data Exchange (ETDEWEB)
Gawlik, K.
1997-12-31
A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.
The binary-rich cluster Abell 2244
International Nuclear Information System (INIS)
A structural, luminosity, and velocity study of the cluster Abell 2244 is presented. A2244 was selected for study from the list of Struble and Rood because of its unusually binary-rich population in an evolved cD-type cluster environment, a contradiction in terms of cluster collapse scenarios versus the formation and survival of bound pairs. In comparison with the Coma cluster, A2244 is a slightly poorer version with a suspected deficiency in the number of cluster members in the core. This evidence, combined with the high-velocity dispersion of the cluster, suggests that a low-velocity population of galaxies has been consumed by the central cD galaxy. The central cD galaxy has a single low-velocity companion deep in its envelope and cross sections of its surface-brightness profile suggest that it is in transition from a depressed central surface-brightness object to a high central concentration system, a point of contention in merger models. All but two of the binary galaxies were found to be projections with other cluster members or stars and, thus, are not in conflict with the advanced dynamical age of the cluster. 35 refs
The Electromagnetic Signals of Compact Binary Mergers
Piran, T; Rosswog, S
2012-01-01
Compact binary mergers are prime sources of gravitational waves (GWs), targeted by current and next generation detectors. The question "what is the observable electromagnetic (EM) signature of a compact binary merger?" is an intriguing one with crucial consequences to the quest for gravitational waves. We present a large set of numerical simulations that focus on the electromagnetic signals that emerge from the dynamically ejected sub-relativistic material. These outflows produce on a time scale of a day macronovae - short-lived optical/UV signals powered by radioactive decay. In addition, the outflow interaction with the surrounding matter inevitably leads to a long-lasting radio emission. We calculate the expected radio signals from these outflows on time scales longer than a year, when the sub-relativistic ejecta dominate the emission. We discuss their detectability in 1.4 GHz and 150 MHz and compare it with an updated estimate of the detectability of short GRBs' orphan afterglows. We find that mergers wit...
ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL
Directory of Open Access Journals (Sweden)
Kok Hwa Yu
2011-10-01
Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.
A Speeding Binary in the Galactic Halo
Kohler, Susanna
2016-04-01
The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a
Observations of Binary and Millisecond Pulsars at Xinjiang Astronomical Observatory
Indian Academy of Sciences (India)
Jingbo Wang; Na Wang; Jianping Yuan; Zhiyong Liu
2014-09-01
We present the first results of radio timing observations of binary and millisecond pulsars in China. We have timed four binary pulsars for 9 years, using Nanshan 25-m radio telescope. The long time span has enabled us to determine their rotation and orbital parameters.
Optical studies of massive X-ray binaries
International Nuclear Information System (INIS)
Photometric and spectroscopic studies of several optical counterparts of massive X-ray binaries are presented. Subjects of study were the binary systems:HD77581/4U0900-40 (Vela X-1), HD153919/4U1700-37, Wray 977/4U1223-62 and Sk160/4U0115-74 (=SMC X-1). (Auth.)
The state of globular clusters at birth II: primordial binaries
Leigh, Nathan W C; Marks, Michael; Webb, Jeremy J; Hypki, Arkadiusz; Heinke, Craig O; Kroupa, Pavel; Sills, Alison
2014-01-01
(abridged) In this paper, we constrain the properties of primordial binary populations in Galactic globular clusters using the MOCCA Monte Carlo code for cluster evolution. Our results are compared to the observations of Milone et al. (2012) using the photometric binary populations as proxies for the true underlying distributions, in order to test the hypothesis that the data are consistent with an universal initial binary fraction near unity and the binary orbital parameter distributions of Kroupa (1995). With the exception of a few possible outliers, we find that the data are to first-order consistent with the universality hypothesis. Specifically, the present-day binary fractions inside the half-mass radius r$_{\\rm h}$ can be reproduced assuming either high initial binary fractions near unity with a dominant soft binary component as in the Kroupa distribution combined with high initial densities (10$^4$-10$^6$ M$_{\\odot}$ pc$^{-3}$), or low initial binary fractions ($\\sim$ 5-10%) with a dominant hard binar...
Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries
DEFF Research Database (Denmark)
Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon
2016-01-01
. Here we seek evidence for the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure...
The angular velocity of the apsidal rotation in binary stars
Vasilev, B V
2004-01-01
The shape of a rotating star consisting of equilibrium plasma is considered. The velocity of apsidal rotation of close binary stars (periastron rotation) which depends on the star shapes is calculated. The obtained estimations are in a good agreement with the observation data of the apsidal motion in binary systems.
White dwarf-red dwarf binaries in the Galaxy
Besselaar, E.J.M. van den
2007-01-01
This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are
Grammar-Based Specification and Parsing of Binary File Formats
Directory of Open Access Journals (Sweden)
William Underwood
2012-03-01
Full Text Available The capability to validate and view or play binary file formats, as well as to convert binary file formats to standard or current file formats, is critically important to the preservation of digital data and records. This paper describes the extension of context-free grammars from strings to binary files. Binary files are arrays of data types, such as long and short integers, floating-point numbers and pointers, as well as characters. The concept of an attribute grammar is extended to these context-free array grammars. This attribute grammar has been used to define a number of chunk-based and directory-based binary file formats. A parser generator has been used with some of these grammars to generate syntax checkers (recognizers for validating binary file formats. Among the potential benefits of an attribute grammar-based approach to specification and parsing of binary file formats is that attribute grammars not only support format validation, but support generation of error messages during validation of format, validation of semantic constraints, attribute value extraction (characterization, generation of viewers or players for file formats, and conversion to current or standard file formats. The significance of these results is that with these extensions to core computer science concepts, traditional parser/compiler technologies can potentially be used as a part of a general, cost effective curation strategy for binary file formats.
An eccentric binary millisecond pulsar in the Galactic plane
D.J. Champion; S.M. Ransom; P. Lazarus; F. Camilo; C. Bassa; V.M. Kaspi; D.J. Nice; P.C.C. Freire; I.H. Stairs; J. van Leeuwen; B.W. Stappers; J.M. Cordes; J.W.T. Hessels; D.R. Lorimer; Z. Arzoumanian; D.C. Backer; N.D.R. Bhat; S. Chatterjee; I. Cognard; J.S. Deneva; C.A. Faucher-Giguère; B.M. Gaensler; J. Han; F.A. Jenet; L. Kasian; V.I. Kondratiev; M. Kramer; J. Lazio; M.A. McLaughlin; A. Venkataraman; W. Vlemmings
2008-01-01
Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+ 0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric ( e = 0.44) 95- day orbit around
Milankovitch Cycles of Terrestrial Planets in Binary Star Systems
Forgan, Duncan
2016-08-01
The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycles (of order 1000 years) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter timescale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15,000 year timescales. This produces climate oscillations of similar strength to the variation on the orbital timescale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100,000 years in duration, which are further modulated by neighbouring planets.
Single-, two-, and three-phase binary-alloy systems
Tenney, D. R.
1980-01-01
Series of three computer programs solves one-dimensional transient diffusion problems in single-and multiphase binary-alloy systems. Accurate understanding of diffusion process in binary-alloy system is important for development of metal matrix composites, some protective coatings, and thin-film technology.
IUE observations of the eclipsing binary Epsilon Aurigae
International Nuclear Information System (INIS)
It is stated that the eclipsing binary Epsilon Aur is a most peculiar binary system and it has not been explained satisfactorily. Observations of this system using the International Ultraviolet Explorer (IUE) collected at the Villafranca Satellite Tracking Station of the European Space Agency are here reported. (author)
Binary and ternary fission within the statistical model
International Nuclear Information System (INIS)
The binary and ternary nuclear fission are treated within the statistical model. At the scission point we calculate the potentials as functions of the deformations of the fragments in the dinuclear model. The potentials give the mass and charge distributions of the fission fragments. The ternary fission is assumed to occur during the binary fission. (author)
Simultaneous inference of a binary composite endpoint and its components
DEFF Research Database (Denmark)
Große Ruse, M; Ritz, Christian; Hothorn, Ludwig A.
2016-01-01
Binary composite endpoints offer some advantages as a way to succinctly combine evidence from a number of related binary endpoints recorded in the same clinical trial into a single outcome. However, as some concerns about the clinical relevance as well as the interpretation of such composite...
Timing Detection of Eclipsing Binary Planets and Transiting Extrasolar Moons
Doyle, L. R.; Deeg, H. J.
2003-01-01
We investigate the improved detection of extrasolar planets around eclipsing binaries using eclipse minima timing, and extrasolar moons around transiting planets using transit timing, offered by the upcoming COROT (ESA, 2005), Kepler (NASA, 2007), and Eddington (ESA 2008) spacecraft missions. Hundreds of circum-binary planets should be discovered, and a thorough survey of moons around transiting planets will be accomplished by these missions.
Idempotents, Mattson-Solomon Polynomials and Binary LDPC codes
Horan, R.; Tjhai, C.; Tomlinson, M; Ambroze, M.; Ahmed, M
2005-01-01
We show how to construct an algorithm to search for binary idempotents which may be used to construct binary LDPC codes. The algorithm, which allows control of the key properties of sparseness, code rate and minimum distance, is constructed in the Mattson-Solomon domain. Some of the new codes, found by using this technique, are displayed.
Decoding the final state in binary black hole mergers
Healy, James; Shoemaker, Deirdre
2014-01-01
We demonstrate that in binary black hole mergers there is a direct correlation between the frequency of the gravitational wave at peak amplitude and the mass and spin of the final black hole. This correlation could potentially assist with the analysis of gravitational wave observations from binary black hole mergers.
Binary pattern analysis for 3D facial action unit detection
Sandbach, Georgia; Zafeiriou, Stefanos; Pantic, Maja
2012-01-01
In this paper we propose new binary pattern features for use in the problem of 3D facial action unit (AU) detection. Two representations of 3D facial geometries are employed, the depth map and the Azimuthal Projection Distance Image (APDI). To these the traditional Local Binary Pattern is applied, a
ALIGNMENT OF SUPERMASSIVE BLACK HOLE BINARY ORBITS AND SPINS
Energy Technology Data Exchange (ETDEWEB)
Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421 (United States); Krolik, Julian H., E-mail: miller@astro.umd.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)
2013-09-01
Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from {approx}1 pc to {approx}10{sup -3}-10{sup -2} pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time {approx}few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor {approx}(m{sub 1}/m{sub 2}){sup 1/2} > 1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignment can significantly reduce the recoil speed resulting from subsequent black hole merger.
Observer bias in randomised clinical trials with binary outcomes
DEFF Research Database (Denmark)
Hróbjartsson, Asbjørn; Thomsen, Ann Sofia Skou; Emanuelsson, Frida; Tendal, Britta; Hilden, Jørgen; Boutron, Isabelle; Ravaud, Philippe; Brorson, Stig
2012-01-01
To evaluate the impact of non-blinded outcome assessment on estimated treatment effects in randomised clinical trials with binary outcomes.......To evaluate the impact of non-blinded outcome assessment on estimated treatment effects in randomised clinical trials with binary outcomes....
Statistical analysis of a comprehensive list of visual binaries
Kovaleva, D; Yungelson, L; Chulkov, D; Yikdem, G M
2016-01-01
Visual binary stars are the most abundant class of observed binaries. The most comprehensive list of data on visual binaries compiled recently by cross-matching the largest catalogues of visual binaries allowed a statistical investigation of observational parameters of these systems. The dataset was cleaned by correcting uncertainties and misclassifications, and supplemented with available parallax data. The refined dataset is free from technical biases and contains 3676 presumably physical visual pairs of luminosity class V with known angular separations, magnitudes of the components, spectral types, and parallaxes. We also compiled a restricted sample of 998 pairs free from observational biases due to the probability of binary discovery. Certain distributions of observational and physical parameters of stars of our dataset are discussed.
Evolution of a ring around the Pluto-Charon binary
Bromley, B C
2015-01-01
We consider the formation of satellites around the Pluto-Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons -- Styx, Nix, Kerberos and Hydra. Yet how the satellites emerged from the compact ring is uncertain. Here we show that a particle ring can spread from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of `most circular' orbits, akin to circular ones in a Keplerian potential. Ring particles can damp to these orbits, avoiding destructive collisions. Damping and diffusion can also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles get trapped near resonances that sweep outward with the tidal evolution of the Pluto-Charon binary. With simple models and numerical experiments, we show how the Pluto-Charon impact ring may have expanded into a broad disk, ou...
Non-negative Matrix Factorization for Binary Data
DEFF Research Database (Denmark)
Larsen, Jacob Søgaard; Clemmensen, Line Katrine Harder
We propose the Logistic Non-negative Matrix Factorization for decomposition of binary data. Binary data are frequently generated in e.g. text analysis, sensory data, market basket data etc. A common method for analysing non-negative data is the Non-negative Matrix Factorization, though this is in...... theory not appropriate for binary data, and thus we propose a novel Non-negative Matrix Factorization based on the logistic link function. Furthermore we generalize the method to handle missing data. The formulation of the method is compared to a previously proposed method (Tome et al., 2015). We compare...... the performance of the Logistic Non-negative Matrix Factorization to Least Squares Non-negative Matrix Factorization and Kullback-Leibler (KL) Non-negative Matrix Factorization on sets of binary data: a synthetic dataset, a set of student comments on their professors collected in a binary term...
Exploring the consequences of pairing algorithms for binary stars
Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L
2008-01-01
Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments (see, e.g., Blaauw 1991, and references therein). Binarity is also a key ingredient in stellar population studies, and is a prerequisite to calibrate the binary evolution channels. In this paper we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as pairing functions. These pairing functions are frequently used by observers and computational astronomers, either for their mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. The mass ratio distribution and binary fraction deriv...
An Introduction to the Evolution of Single and Binary Stars
Benacquista, Matthew
2013-01-01
An Introduction to the Evolution of Single and Binary Stars provides physicists with an understanding of binary and single star evolution, beginning with a background and introduction of basic astronomical concepts. Although a general treatment of stellar structure and evolution is included, the text stresses the physical processes that lead to stellar mass compact object binaries that may be sources of observable gravitational radiation. Basic concepts of astronomy, stellar structure and atmospheres, single star evolution, binary systems and mass transfer, compact objects, and dynamical systems are covered in the text. Readers will understand the astrophysics behind the populations of compact object binary systems and have sufficient background to delve deeper into specific areas of interest. In addition, derivations of important concepts and worked examples are included. No previous knowledge of astronomy is assumed, although a familiarity with undergraduate quantum mechanics, classical mechanics, and therm...
Binary Decision Diagrams and Its Variable Ordering for Disjoint Network
Directory of Open Access Journals (Sweden)
Manoj Singhal
2012-05-01
Full Text Available We know that binary decision diagram is a data structure that is used to store a Boolean function. They are used to find out the terminal reliability of a computer communication network. To generate the binary decision diagram of a given computer communication network, we need to order the edges of the given computer communication network because the size of the binary decision diagram is dependent on the ordering of the variables (edges. There are three types of variable ordering; optimal, good and bad ordering. Optimal ordering are those ordering which generate minimum size binary decision diagram. In this paper we have shown that if a directed computer communication network has m disjoints min-paths then m! optimal variable orderings exist to generate the binary decision diagrams of the given computer communication network.
Binaries and the dynamical mass of star clusters
Kouwenhoven, M B N
2007-01-01
The total mass of a distant star cluster is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii, under the implicit assumption that all stars are single (although it is known that most stars form part of binary systems). The components of binary stars exhibit orbital motion, which increases the measured velocity dispersion, resulting in a dynamical mass overestimation. In this article we quantify the effect of neglecting the binary population on the derivation of the dynamical mass of a star cluster. We find that the presence of binaries plays an important role for clusters with total mass M 10^5 Msun, binaries do not affect the dynamical mass estimation significantly, provided that the cluster is significantly compact (half-mass radius < 5 pc).
Resolved astrometric orbits of ten O-type binaries
Bouquin, J -B Le; Gosset, E; De Becker, M; Duvert, G; Absil, O; Anthonioz, F; Berger, J -P; Ertel, S; Grellmann, R; Guieu, S; Kervella, P; Rabus, M; Willson, M
2016-01-01
Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2). We follow-up ten O+O binaries with AMBER, PIONIER and GRAVITY at the VLTI. Here, we report about 130 astrometric observations over the last 7 years. We combine this dataset with distance estimates to compute the total mass of the systems. We also compute preliminary individual component masses for the five systems with available SB2 radial velocities. Nine over the ten binaries have their three dimensional orbit well constrained. Four of them are known colliding wind, non-thermal radio emitters, and thus constitute valuable targets for future high angular resolution radio imaging. Two binaries break the correlation between period and eccentricity tentatively observed in previous studies. It suggests either that massive star formation produce a wide range of systems, or that several binary formation mechanisms ...
Where Are The Circumbinary Planets of Contact Binaries?
Demircan, O
2014-01-01
Up to present date, no circumbinary planet around contact binaries were discovered neither by transit method nor by the minima times variation, although they are known having third component stars around. We thus ask: where are the circumbinary planets of contact binaries? By considering the physical and geometrical parameters we simulated the light curves of contact binaries with possible transiting circumbinary jovian planets. It seems either the circumbinary jovian planets are not formed around contact binaries, probably due to dynamical effects of the binary and third component stars, or they are present but the discovery of such planets were not possible so far due to larger distortions then expected in the photometric data and in the minima times.
Binary classification of items of interest in a repeatable process
Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo
2014-06-24
A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.
Almog, Assaf
2014-01-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of time series of activity of their fundamental elements (such as stocks or neurons respectively). While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relationships between binary and non-binary properties of financial time series. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to replicate the observed binary/non-binary relations very well, and to mathematically...
Kepler Eclipsing Binary Stars. II. 2165 Eclipsing Binaries in the Second Data Release
Slawson, Robert W; Welsh, William F; Orosz, Jerome A; Rucker, Michael; Batalha, Natalie M; Doyle, Laurance R; Engle, Scott G; Conroy, Kyle; Coughlin, Jared; Gregg, Trevor Ames; Fetherolf, Tara; Short, Donald R; Windmiller, Gur; Fabrycky, Daniel C; Howell, Steve B; Jenkins, Jon M; Uddin, Kamal; Mullally, Fergal; Seader, Shawn E; Thompson, Susan E; Sanderfer, Dwight T; Borucki, William; Koch, David
2011-01-01
The Kepler Mission provides nearly continuous monitoring of ~156 000 objects with unprecedented photometric precision. Coincident with the first data release, we presented a catalog of 1879 eclipsing binary systems identified within the 115 square degree Kepler FOV. Here, we provide an updated catalog augmented with the second Kepler data release which increases the baseline nearly 4-fold to 125 days. 386 new systems have been added, ephemerides and principle parameters have been recomputed. We have removed 42 previously cataloged systems that are now clearly recognized as short-period pulsating variables and another 58 blended systems where we have determined that the Kepler target object is not itself the eclipsing binary. A number of interesting objects are identified. We present several exemplary cases: 4 EBs that exhibit extra (tertiary) eclipse events; and 8 systems that show clear eclipse timing variations indicative of the presence of additional bodies bound in the system. We have updated the period a...
Lyapunov timescales and black hole binaries
International Nuclear Information System (INIS)
Black hole binaries support unstable orbits at very close separations. In the simplest case of geodesics around a Schwarzschild black hole the orbits, though unstable, are regular. Under perturbation the unstable orbits can become the locus of chaos. All unstable orbits, whether regular or chaotic, can be quantified by their Lyapunov exponents. The exponents are observationally relevant since the phase of gravitational waves can decohere in a Lyapunov time. If the timescale for dissipation due to gravitational waves is shorter than the Lyapunov time, chaos will be damped and essentially unobservable. We find that the two timescales can be comparable. We emphasize that the Lyapunov exponents must only be used cautiously for several reasons: they are relative and depend on the coordinate system used, they vary from orbit to orbit, and finally they can be deceptively diluted by transient behaviour for orbits which pass in and out of unstable regions
Eccentricities of Double Neutron Star Binaries
Ihm, C M; Belczynski, K; Ihm, Catherine Mia; Kalogera, Vassiliki; Belczynski, Krzysztof
2005-01-01
Recent pulsar surveys have increased the number of observed double neutron stars (DNS) in our galaxy enough so that observable trends in their properties are starting to emerge. In particular, it has been noted that the majority of DNS have eccentricities less than 0.3, surprisingly low values for systems that must stay bound after two supernovae. To investigate this trend, we generate many different theoretical distributions of DNS eccentricities using Monte Carlo population synthesis methods. We determine which eccentricity distributions are most consistent with the observed sample of DNS binaries. In agreement with Chaurasia & Bailes (2005), we find that highly eccentric, close DNS are less likely to be observed because of their accelerated orbital evolution due to gravitational wave emission and possible early mergers. Based on our results for close DNS, we also find that models with vanishingly or moderately small kicks (sigma < about 50 km/s) are inconsistent with the current observed sample of s...
A Numerical Study of Boson Star Binaries
Mundim, Bruno C
2010-01-01
This thesis describes a numerical study of binary boson stars within the context of an approximation to general relativity. The approximation we adopt places certain restrictions on the dynamical variables of general relativity (conformal flatness of the 3-metric), and on the time-slicing of the spacetime (maximal slicing). The resulting modeling problem requires the solution of a coupled nonlinear system of 4 hyperbolic, and 5 elliptic partial differential equations (PDEs) in three space dimensions and time. We approximately solve this system as an initial-boundary value problem, using finite difference techniques and well known, computationally efficient numerical algorithms such as the multigrid method in the case of the elliptic equations. Careful attention is paid to the issue of code validation, and a key part of the thesis is the demonstration that, as the basic scale of finite difference discretization is reduced, our numerical code generates results that converge to a solution of the continuum system...
Local binary patterns new variants and applications
Jain, Lakhmi; Nanni, Loris; Lumini, Alessandra
2014-01-01
This book introduces Local Binary Patterns (LBP), arguably one of the most powerful texture descriptors, and LBP variants. This volume provides the latest reviews of the literature and a presentation of some of the best LBP variants by researchers at the forefront of textual analysis research and research on LBP descriptors and variants. The value of LBP variants is illustrated with reported experiments using many databases representing a diversity of computer vision applications in medicine, biometrics, and other areas. There is also a chapter that provides an excellent theoretical foundation for texture analysis and LBP in particular. A special section focuses on LBP and LBP variants in the area of face recognition, including thermal face recognition. This book will be of value to anyone already in the field as well as to those interested in learning more about this powerful family of texture descriptors.
Multistable binary decision making on networks
Lucas, Andrew
2012-01-01
We propose a simple model for a binary decision making process on a graph, motivated by modeling social decision making with cooperative individuals. The model is similar to a random field Ising model or fiber bundle model, but with key differences on heterogeneous networks. For many types of disorder and interactions between the nodes, we predict discontinuous phase transitions with mean field theory which are largely independent of network structure. We show how these phase transitions can also be understood by studying microscopic avalanches, and describe how network structure enhances fluctuations in the distribution of avalanches. We suggest theoretically the existence of a "glassy" spectrum of equilibria associated with a typical phase, even on infinite graphs, so long as the first moment of the degree distribution is finite. This behavior implies that the model is robust against noise below a certain scale, and also that phase transitions can switch from discontinuous to continuous on networks with too...
Domain Size Distribution in Segregating Binary Superfluids
Takeuchi, Hiromitsu
2016-05-01
Domain size distribution in phase separating binary Bose-Einstein condensates is studied theoretically by numerically solving the Gross-Pitaevskii equations at zero temperature. We show that the size distribution in the domain patterns arising from the dynamic instability obeys a power law in a scaling regime according to the dynamic scaling analysis based on the percolation theory. The scaling behavior is kept during the relaxation dynamics until the characteristic domain size becomes comparable to the linear size of the system, consistent with the dynamic scaling hypothesis of the phase-ordering kinetics. Our numerical experiments indicate the existence of a different scaling regime in the size distribution function, which can be caused by the so-called coreless vortices.
NONLINEAR TIDES IN CLOSE BINARY SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
Weinberg, Nevin N. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Arras, Phil [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Quataert, Eliot; Burkart, Josh, E-mail: nevin@mit.edu [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States)
2012-06-01
We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' {approx}> 10-100 M{sub Circled-Plus} at orbital periods P Almost-Equal-To 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P {approx}< 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N Almost-Equal-To 10{sup 3}[P/10 days] for a solar-type star) and drives them as a single
Gravitational Radiation from Compact Binary Pulsars
Antoniadis, John
2014-01-01
An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems - if modeled properly - provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have enabled a series of precise mass measurements in such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.
Fractal characteristics for binary noise radar waveform
Li, Bing C.
2016-05-01
Noise radars have many advantages over conventional radars and receive great attentions recently. The performance of a noise radar is determined by its waveforms. Investigating characteristics of noise radar waveforms has significant value for evaluating noise radar performance. In this paper, we use binomial distribution theory to analyze general characteristics of binary phase coded (BPC) noise waveforms. Focusing on aperiodic autocorrelation function, we demonstrate that the probability distributions of sidelobes for a BPC noise waveform depend on the distances of these sidelobes to the mainlobe. The closer a sidelobe to the mainlobe, the higher the probability for this sidelobe to be a maximum sidelobe. We also develop Monte Carlo framework to explore the characteristics that are difficult to investigate analytically. Through Monte Carlo experiments, we reveal the Fractal relationship between the code length and the maximum sidelobe value for BPC waveforms, and propose using fractal dimension to measure noise waveform performance.
Relativistic calculations of coalescing binary neutron stars
Indian Academy of Sciences (India)
Joshua Faber; Phillippe Grandclément; Frederic Rasio
2004-10-01
We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.
Periastron advance in black-hole binaries.
Le Tiec, Alexandre; Mroué, Abdul H; Barack, Leor; Buonanno, Alessandra; Pfeiffer, Harald P; Sago, Norichika; Taracchini, Andrea
2011-09-30
The general relativistic (Mercury-type) periastron advance is calculated here for the first time with exquisite precision in full general relativity. We use accurate numerical relativity simulations of spinless black-hole binaries with mass ratios 1/8≤m(1)/m(2)≤1 and compare with the predictions of several analytic approximation schemes. We find the effective-one-body model to be remarkably accurate and, surprisingly, so also the predictions of self-force theory [replacing m(1)/m(2)→m(1)m(2)/(m(1)+m(2))(2)]. Our results can inform a universal analytic model of the two-body dynamics, crucial for ongoing and future gravitational-wave searches. PMID:22107182
SIMPLE QUALITY ASSESSMENT FOR BINARY IMAGES
Institute of Scientific and Technical Information of China (English)
Zhang Chun'e; Qiu Zhengding
2007-01-01
Usually image assessment methods could be classified into two categories: subjective assessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean Opinion Score). This paper presents an objective quality assessment algorithm special for binary images. In the algorithm, noise energy is measured by Euclidean distance between noises and signals and the structural effects caused by noise are described by Euler number change. The assessment on image quality is calculated quantitatively in terms of PSNR (Peak Signal to Noise Ratio). Our experiments show that the results of the algorithm are highly correlative with subjective MOS and the algorithm is more simple and computational saving than traditional objective assessment methods.
Stability limits in binary fluids mixtures.
Imre, Attila R; Kraska, Thomas
2005-02-01
The stability limits in binary fluid mixtures are investigated on the basis of the global phase diagram approach employing a model for the attracting hard-sphere fluid. In addition to the diffusion spinodals the mechanical spinodals are included. As a result one finds topologically different types of the diffusion spinodals while only one shape exists for the mechanical spinodals which are present in the region of liquid-vapor equilibria only. The diffusion spinodals represent the underlying properties of the phase behavior. The types of stable phase behavior therefore resemble that of the spinodal behavior. The different shapes of the spinodals can be important for nonequilibrium processes in nature and technology. PMID:15740388
MAXI monitoring of blazars and blackhole binaries
Negoro, Hitoshi; Ueda, Yoshihiro; Isobe, Naoki; Sugizaki, Mutsumi; Mihara, Tatehiro; Matsuoka, Masaru
2015-01-01
Since August 2009, MAXI experiment on the ISS has been performing all-sky X-ray monitoring. With MAXI, we detected flaring activities of some blazers, including Mrk 421, Mrk 501, and 3C 273. Recently, new X-ray flaring activities were detected from two blazers, MAXI J1930+093 = 2FGL J1931.1+0938 (Atel#5943) and 2MAXI J0243-582 = BZB J0244-5819 (Atel#6012). The MAXI monitoring also covers black hole binaries, including Cyg X-1 and Cyg X-3 which emit GeV gamma-rays. Their gamma-ray emission was found to coincide with their X-ray state transitions. We present light curves and outstanding events of these sources.
Binary Pulse Compression Techniques for MST Radars
Woodman, R. F.; Sulzer, M. P.; Farley, D. T.
1984-01-01
In most mesosphere-stratosphere-troposphere (MST) applications pulsed radars are peak power limited and have excess average power capability. Short pulses are required for good range resolution but the problem of range biguity (signals received simultaneously from more than one altitude) sets a minimum limit on the interpulse period (IPP). Pulse compression is a echnique which allows more of the transmitter average power capacity to be used without scarificing range resolution. Binary phase coding methods for pulse compression are discussed. Many aspects of codes and decoding and their applications to MST experiments are addressed; this includes Barker codes and longer individual codes, and then complementary codes and other code sets. Software decoding, hardware decoders, and coherent integrators are also discussed.
Pattern formation in triboelectrically charged binary packings
Schella, Andre; Vincent, Thomas; Herminghaus, Stephan; Schröter, Matthias
2015-11-01
Electrostatic self-assembly is an interesting route to aim at creating well-defined microstructures. In this spirit, we study the process of self-assembling for vertically shaken granular materials. Our system consists from 1 to 400 plastic beads of 3mm size made from Teflon and Nylon in 2D and 3D geometries. We find self-organization in four, five and sixfold order which is due to charging of the system via triboelectric effects between the grains. We observe that the binary system solidifies on a time scale of a few minutes. Image processing is used to extract the structural and dynamical properties of the assemblies. The mixture ratio is tuned from 1:5 to 5:1 and the humidity level is varied between 10% and 90% leading to various transitions between the morphologies.
Flow structure in magnetic close binary stars
International Nuclear Information System (INIS)
The current understanding of mass exchange processes between close binary system (CBS) components is reviewed, with particular attention on the mass flow structure and accretion disk physics. Using 3D MHD calculation results, the variation of key accretion disk characteristics with the accretor magnetic field is studied and the magnetic field generation process is analyzed. In particular, it is shown that the quasi-periodic process of toroidal magnetic field generation in disks results in alternating accretion and decretion regimes in the inner regions of the disk. By treating MHD flows in CBSs self-consistently, disk formation conditions are established and a separation criterion between intermediate-polar and polar flows is found. The possibility of using MHD simulation results for explaining observations is discussed. (reviews of topical problems)
Generic Phase Diagram of Binary Superlattices
Tkachenko, Alexei
Emergence of a large variety of self-assembled superlattices is a dramatic recent trend in the fields of nanoparticle and colloidal sciences. Motivated by this development, we propose a model that combines simplicity with a remarkably rich phase behavior, applicable to a wide range of such self-assembled systems. Those include nanoparticle and colloidal assemblies driven by DNA-mediated interactions, electrostatics, and possibly, by controlled drying. In our model, a binary system of Large and Small hard sphere (L and S)interact via selective short-range (''sticky'') attraction. In its simplest version, this Binary Sticky Sphere model features attraction only between 'S' and 'L' particles, respectively. We demonstrate that in the limit when this attraction is sufficiently strong compared to kT, the problem becomes purely geometrical: the thermodynamically preferred state should maximize the number of S-L contacts. A general procedure for constructing the phase diagram as a function of system composition f, and particle size ratio r, is outlined. In this way, the global phase behavior can be calculated very efficiently, for a given set of plausible candidate phases. Furthermore, the geometric nature of the problem enables us to generate those candidate phases through a well defined and intuitive construction. We calculate the phase diagrams both for 2D and 3D systems, and compare the results with existing experiments. Most of the 3D superlattices observed to date are featured in our phase diagram, while several more are yet to be discovered. The research was carried out at the CFN, DOE Office of Science Facility, at BNL, under Contract No. DE-SC0012704.
Dynamic thermodiffusion model for binary liquid mixtures.
Eslamian, Morteza; Saghir, M Ziad
2009-07-01
Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring's reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models. PMID:19658691
Dynamic thermodiffusion model for binary liquid mixtures
Eslamian, Morteza; Saghir, M. Ziad
2009-07-01
Following the nonequilibrium thermodynamics approach, we develop a dynamic model to emulate thermo-diffusion process and propose expressions for estimating the thermal diffusion factor in binary nonassociating liquid mixtures. Here, we correlate the net heat of transport in thermodiffusion with parameters, such as the mixture temperature and pressure, the size and shape of the molecules, and mobility of the components, because the molecules have to become activated before they can move. Based on this interpretation, the net heat of transport of each component can be somehow related to the viscosity and the activation energy of viscous flow of the same component defined in Eyring’s reaction-rate theory [S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941)]. This modeling approach is different from that of Haase and Kempers, in which thermodiffusion is considered as a function of the thermostatic properties of the mixture such as enthalpy. In simulating thermodiffusion, by correlating the net heat of transport with the activation energy of viscous flow, effects of the above mentioned parameters are accounted for, to some extent of course. The model developed here along with Haase-Kempers and Drickamer-Firoozabadi models linked with the Peng-Robinson equation of sate are evaluated against the experimental data for several recent nonassociating binary mixtures at various temperatures, pressures, and concentrations. Although the model prediction is still not perfect, the model is simple and easy to use, physically justified, and predicts the experimental data very good and much better than the existing models.
Unification of binary star ephemeris solutions
International Nuclear Information System (INIS)
Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.
Most Double Degenerate Low Mass White Dwarf Binaries Merge
Brown, Warren R; Kenyon, Scott J; Gianninas, A
2016-01-01
We estimate the merger rate of double degenerate binaries containing extremely low mass (ELM) <0.3 Msun white dwarfs in the Galaxy. Such white dwarfs are detectable for timescales of 0.1 Gyr -- 1 Gyr in the ELM Survey; the binaries they reside in have gravitational wave merger times of 0.001 Gyr -- 100 Gyr. To explain the observed distribution requires that most ELM white dwarf binary progenitors detach from the common envelope phase with <1 hr orbital periods. We calculate the local space density of ELM white dwarf binaries and estimate a merger rate of 3e-3/yr over the entire disk of the Milky Way; the merger rate in the halo is 10 times smaller. The ELM white dwarf binary merger rate exceeds by a factor of 40 the formation rate of stable mass transfer AM CVn binaries, marginally exceeds the rate of underluminous supernovae, and is identical to the formation rate of R CrB stars. On this basis, we conclude that ELM white dwarf binaries can be the progenitors of all observed AM CVn and possibly underlum...
Radial Velocity Studies of Close Binary Stars. XII.
Pribulla, Theodor; Rucinski, Slavek M.; Conidis, George; DeBond, Heide; Thomson, J. R.; Gazeas, Kosmas; Ogłoza, Waldemar
2007-05-01
Radial velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for 10 close binary systems: OO Aql, CC Com, V345 Gem, XY Leo, AM Leo, V1010 Oph, V2612 Oph, XX Sex, W UMa, and XY UMa. Most of these binaries have been observed spectroscopically before, but our data are of higher quality and consistency than in the previous studies. While most of the studied eclipsing pairs are contact binaries, V1010 Oph is probably a detached or semidetached double-lined binary, and XY UMa is a detached, chromospherically active system whose broadening functions clearly show well-defined and localized dark spots on the primary component. A particularly interesting case is XY Leo, which is a member of visually unresolved quadruple system composed of a contact binary and a detached, noneclipsing, active binary with an 0.805 day orbital period. V345 Gem and AM Leo are known members of visual binaries. We found faint visual companions at about 2"-3" from XX Sex and XY UMa. Based on data obtained at the David Dunlap Observatory, University of Toronto.
Radial Velocity Studies of Close Binary Stars. XII
Pribulla, T; Conidis, G; De Bond, H; Thomson, J R; Gazeas, K; Ogloza, W; Pribulla, Theodor; Rucinski, Slavek M.; Conidis, George; Bond, Heide De; Gazeas, Kosmas; Ogloza, Waldemar
2006-01-01
Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for ten close binary systems: OO Aql, CC Com, V345 Gem, XY Leo, AM Leo, V1010 Oph, V2612 Oph, XX Sex, W UMa, and XY UMa. Most of these binaries have been observed spectroscopically before, but our data are of higher quality and consistency than in the previous studies. While most of the studied eclipsing pairs are contact binaries, V1010 Oph is probably a detached or semi-detached double-lined binary and XY UMa is a detached, chromospherically active system whose broadening functions clearly show well defined and localized dark spots on the primary component. A particularly interesting case is XY Leo, which is a member of visually unresolved quadruple system composed of a contact binary and a detached, non-eclipsing, active binary with 0.805 days orbital period. V345 Gem and AM Leo are known members of visual binaries. We found faint visual companions at about 2-3 arcsec from XX Sex and XY UMa.
Radial Velocity Studies of Close Binary Stars.X
Rucinski, S M; Ogloza, W; De Bond, H; Thomson, J R; Mochnacki, S W; Capobianco, C C; Conidis, G; Rogoziecki, P; Rucinski, Slavek M.; Pych, Wojtek; Ogloza, Waldemar; Bond, Heide De; Mochnacki, Stefan W.; Capobianco, Christopher C.; Conidis, George
2005-01-01
Radial-velocity measurements and sine-curve fits to the orbital velocity variations are presented for the ninth set of ten close binary systems: V395 And, HS Aqr, V449 Aur, FP Boo, SW Lac, KS Peg, IW Per, V592 Per, TU UMi, FO Vir. The first three are very close, possibly detached, early-type binaries and all three require further investigation. Particularly interesting is V395 And whose spectral type is as early as B7/8 for a 0.685 day orbit binary. KS Peg and IW Per are single-line binaries, with the former probably hosting a very small star or a massive planet as a secondary component. We have detected a low-mass secondary in an important semi-detached system FO Vir at q=0.125+/-0.005. The contact binary FP Boo is also a very small mass-ratio system, q=0.106+/-0.005. The other contact binaries in this group are V592 Per, TU UMi and the well known SW Lac. V592 Per and TU UMi have bright tertiary companions; for these binaries, and for V395 And, we used a novel technique of the broadening functions arranged i...
Ultra-short period binaries from the Catalina Surveys
International Nuclear Information System (INIS)
We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, Sloan Digital Sky Survey, and GALEX multi-color photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M dwarf+M dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool white dwarf (WD)+M dwarf binaries. Only a few such systems are currently known. Unlike warmer WD systems, their UV flux and optical colors and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically selected ultra-short period contact binary candidates and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.
Preparation and Characterization of Binary Mixture of Efavirenz and Nicotinamide
Directory of Open Access Journals (Sweden)
Erizal Zaini
2015-12-01
Full Text Available The purpose of this study was to prepare and characterize the binary mixture of efavirenz and nicotinamide. The binary mixture of efavirenz and nicotinamide (in equimolar ratio was prepared by solid state grinding and solvent dropped grinding. Characterizations were conducted by powder X-ray diffraction (PXRD, differential thermal analysis (DTA and scanning electron microscopy (SEM analysis. Interaction of efavirenz and nicotinamide in liquid states was studied by phase solubility profile. The dissolution rate studies was conducted by using USP type II apparatus in distilled water with 0.5 % sodium lauryl sulfate. Efavirenz dissolved was determined by high performance liquid chromatography (HPLC with Acetonitrile and acetic acid 1 % as mobile phase. The diffracgram of powder X-Ray analysis showed that both efavirenz and nicotinamide are highly crystalline, and equimolar binary mixtures showed a similar diffraction peaks. Thermal analysis result showed that binary mixture of efavirenz and nicotinamide form a simple eutectic mixture with the eutectic temperature (tE was 92.7 °C. The SEM analysis depicted that efavirenz and nicotinamide are polyhedral shaped particles, while binary mixture showed a homogenous aggregates of fine needle shaped particles. Phase solubility profile of the binary mixture indicated formation of a soluble complex between efavirenz and nicotinamide in 1:1 molar. The dissolution rate of the binary mixtures were significantly higher compared to the intact efavirenz.
Binary compact object coalescence rates: The role of elliptical galaxies
O'Shaughnessy, R; Belczynski, K
2009-01-01
We estimate binary compact object merger detection rates for LIGO, including the binaries formed in ellipticals long ago. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for elliptical- and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4\\times 10^{-3} {Mpc}^{-3}{Myr}^{-1} for binary black holes (BH), 3\\times 10^{-2} {Mpc}^{-3}{Myr}^{-1} for binary neutron stars (NS), and 10^{-2} {Mpc}^{-3}{Myr}^{-1} for BH-NS binaries. Mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are dominated by the contribution from spiral galaxies. Using only models that reproduce current observations of Galactic NS-NS binaries, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (as ...
Extrasolar Binary Planets II: Detectability by Transit Observations
Lewis, K M; Nagasawa, M; Ida, S
2015-01-01
We discuss the detectability of gravitationally bounded pairs of gas-giant planets (which we call "binary planets") in extrasolar planetary systems that are formed through orbital instability followed by planet-planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai, Nagasawa and Ida (Paper I). Paper I showed that the formation probability of a binary is as much as $\\sim 10\\%$ for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is 3--5 times the sum of physical radii of the planets. The binary planets are stable during main sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light cu...
Star formation environments and the distribution of binary separations
Brandner, Wolfgang; Koehler, Rainer
1998-01-01
We have carried out K-band speckle observations of a sample of 114 X-ray selected weak-line T Tauri stars in the nearby Scorpius-Centaurus OB association. We find that for binary T Tauri stars closely associated to the early type stars in Upper Scorpius, the youngest subgroup of the OB association, the peak in the distribution of binary separations is at 90 A.U. For binary T Tauri stars located in the direction of an older subgroup, but not closely associated to early type stars, the peak in ...
Discovery of a Faint Eclipsing Binary GSC 02265-01456
Indian Academy of Sciences (India)
D. F. Guo; K. Li; S. M. Hu; Y. G. Jiang; D. Y. Gao; X. Chen
2015-09-01
When observing the transiting extrasolar planets, we found a new eclipsing binary named GSC 02265-01456. The and c observations were carried out for this binary. The photometric light curves of the two bands were simultaneously analyzed using the W–D code. The solutions show that GSC 02265-01456 is an extremely low mass ratio ( = 0.087) overcontact binary system with a contact degree of = 82.5%. The difference between the two maxima of the light curve can be explained by a dark spot on the primary component.
Speckle interferometry of secondary components in nearby visual binaries
Tokovinin, Andrei
2016-01-01
Statistical characterization of secondary subsystems in binaries helps to distinguish between various scenarios of multiple-star formation. The DSSI speckle instrument was used at the Gemini-N telescope for several hours in 2015 July to probe binarity of 25 secondary components in nearby solar-type binaries. Six new subsystems were resolved, with meaningful detection limits for the remaining targets. The large incidence of secondary subsystems agrees with other similar studies. The newly resolved subsystem HIP 115417 Ba,Bb causes deviations in the observed motion of the outer binary from which an astrometric orbit of Ba,Bb with a period of 117 years is deduced.
Ongoing surveys for close binary central stars and wider implications
Miszalski, Brent
2011-01-01
Binary central stars have long been invoked to explain the vexing shapes of planetary nebulae (PNe) despite there being scant direct evidence to support this hypothesis. Modern large-scale surveys and improved observing strategies have allowed us to significantly boost the number of known close binary central stars and estimate at least 20% of PNe have close binary nuclei that passed through a common-envelope (CE) phase. The larger sample of post-CE nebulae appears to have a high proportion o...
Light and Life: Exotic Photosynthesis in Binary Star Systems
O'Malley-James, J T; Cockell, C S; Greaves, J S
2011-01-01
The potential for hosting photosynthetic life on Earth-like planets within binary/multiple stellar systems was evaluated by modelling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in: (i) close-binary systems; (ii) wide-binary systems and (iii) three-star systems were investigated and a range of stable radiation environments found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic forms of photosynthetic life, such as infrared photosynthesisers and organisms specialised for specific spectral niches.
Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures
Directory of Open Access Journals (Sweden)
M. Dotti
2012-01-01
Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.
Pulsar Binaries as Gravitational-Wave Sources: Rate predictions
Kim, Chunglee
2009-01-01
Pulsar binaries are important targets for ground-based and future space-borne gravitational-wave (GW) detectors. In order for improving detector design and assessing detector performances, it is a prerequisite to understand the astrophysics of GW sources such as the population size or merger rates. Here, we summarize recent results for Galactic merger rates of two known types of pulsar binaries: (a) double-neutron star-system (DNS) and (b) neutron star-white dwarf (NS-WD) binaries. Based on t...
Dielectric properties of binary solutions a data handbook
Akhadov, Y Y
1980-01-01
Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv
Time markers in interstellar communication. [with binary star civilizations
Pace, G. W.; Walker, J. C. G.
1975-01-01
The chances that two civilizations establish contact with each other by means of interstellar radio communication are exceedingly small in the absence of time markers which will tell the two civilizations when to search for one another. In the case of binary stars, suitable time markers are provided by the apastron and the periastron. Single star civilization would transmit signals to binaries at the observation of apastron and periastron and the binary star civilization would scan single stars at the proper time for the reception of these signals.
Tidal capture formation of low-mass X-ray binaries from wide binaries in the field
Michaely, Erez; Perets, Hagai B.
2016-06-01
We present a dynamical formation scenario for low mass X-ray binaries (LMXBs) in the field, focusing on black hole (BH) LMXBs. In this formation channel, LMXBs are formed from wide binaries (>1000 au) with a BH component and a stellar companion. The wide binary is perturbed by fly-bys of field stars, its orbit random walks, until driven into a sufficiently eccentric orbit such that the binary components tidally interact and the binary evolves to become a short period binary, which eventually evolves into an LMXB. We consider several models for the formation and survival of such wide binaries, and calculate the LMXB formation rates for each model. We find that models where BHs form through direct collapse with no/little natal kicks can give rise to high formation rates comparable with those inferred from observations. This formation scenario had several observational signatures: (1) the number density of LMXBs generally follows the background stellar density, beside the densest regions, where the dependence is stronger, (2) the mass function of the BH stellar companion should be comparable to the mass function of the background stellar population, likely peaking at 0.4-0.6 M⊙, and (3) the LMXBs orbit should not correlate with the spin of the BH. These aspects generally differ from the expectations from previously suggested LMXB formation models following common envelope binary stellar evolution. We note that neutron star LMXBs can similarly form from wide binaries, but their formation rate through this channel is likely significantly smaller due to their much higher natal kicks.
Construction of binary status information system using PC network
International Nuclear Information System (INIS)
Binary status information system is a part of establishing reactor parameter with Pc that function as MPR-30 Process Computer. Binary Alarm system, consist of interface hardware and input binary module terminal, prepare the information that be displayed in text message and graphical form. Monitor software give facilities that binary status of RSG-GAS components can be monitored using computer network (LAN). This program consist of two part : reside in server computer and reside in user computer. Program in server acquire data from interface and than store it in data base (Access file). Than, user computer read this file and display it in Dynamic Process and Instrumentation Diagram. The number of user computer can be more then one because data base was designed for multi-user operation
A New Binary Carbazole Alkaloid from Murraya koenigii
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A new binary carbazole alkaloid, 8, 8"-biskoenigine (1), along with its monomer,kocnigine, was isolated from the dried leaves of Murraya koenigii collected in Xishuangbanna,Yunnan province. The structure of 1 was established by spectroscopic methods.
Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization
Sassatelli, Lucile
2007-01-01
In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-binary parts in their factor graph representation. The class of Hybrid LDPC codes is obviously larger than existing types of codes, which gives more degrees of freedom to find good codes where the existing codes show their limits. We give two examples where hybrid LDPC codes show their interest.
POPCORN: A comparison of binary population synthesis codes
Claeys, J.S.W.A.; Toonen, S.; Mennekens, N.
2013-01-01
We compare the results of three binary population synthesis codes to understand the differences in their results. As a first result we find that when equalizing the assumptions the results are similar. The main differences arise from deviating physical input.
POPCORN: A comparison of binary population synthesis codes
Claeys, J S W; Mennekens, N
2012-01-01
We compare the results of three binary population synthesis codes to understand the differences in their results. As a first result we find that when equalizing the assumptions the results are similar. The main differences arise from deviating physical input.
Equilibrium, Stability and Orbital Evolution of Close Binary Systems
Lai, D; Shapiro, S L
1993-01-01
We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-ma...
Relating binary-star planetary systems to central configurations
Veras, Dimitri
2016-01-01
Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than ten degrees, and (v) the deviation increases as the substellar masse...
KOI-3278: a self-lensing binary star system.
Kruse, Ethan; Agol, Eric
2014-04-18
Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution. PMID:24744369
BPASS predictions for Binary Black-Hole Mergers
Eldridge, J J
2016-01-01
Using the Binary Population and Spectral Synthesis code BPASS, we have calculated the rates, timescales and mass distributions for binary black hole mergers as a function of metallicity. We consider these in the context of the recently reported 1st LIGO event detection. We find that the event has a low probability of arising from a stellar population with initial metallicity mass fraction above $Z=0.010$. Binary black hole merger events with the reported masses are most likely in populations between Z=0.0001 and 0.002 (Z < 0.1Z_sun). The masses inferred for the black holes in the binary progenitor of GW 150914 are close to the predicted peak in the mass distribution for such events. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.
Massive Black Hole Binary Mergers in Dynamical Galactic Environments
Kelley, Luke Zoltan; Hernquist, Lars
2016-01-01
Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar 'loss-cone' scattering, and viscous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most...
Tidal disruption events from supermassive black hole binaries
Coughlin, Eric R; Nixon, Chris; Begelman, Mitchell C
2016-01-01
We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries ($10^6M_{\\odot}$), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially-unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall mor...
Reconstructing complex networks with binary-state dynamics
Li, Jingwen; Lai, Ying-Cheng; Grebogi, Celso
2015-01-01
The prerequisite for our understanding of many complex networked systems lies in the reconstruction of network structure from measurable data. Although binary-state dynamics occurring in a broad class of complex networked systems in nature and society and has been intensively investigated, a general framework for reconstructing complex networks from binary states, the inverse problem, is lacking. Here we offer a general solution to the reconstruction problem by developing a data-based linearization approach for binary-state dynamics with linear, nonlinear, discrete and stochastic switching functions. The linearization allows us to convert the network reconstruction problem into a sparse signal reconstruction problem that can be resolved efficiently and credibly by convex optimization based on compressed sensing. The completely data-based linearization method and the sparse signal reconstruction constitutes a general framework for reconstructing complex networks without any knowledge of the binary-state dynami...
Properties of M31. V: 298 Eclipsing Binaries from PAndromeda
Lee, C -H; Seitz, S; Bender, R; Riffeser, A; Kodric, M; Hopp, U; Snigula, J; Goessl, C; Kudritzki, R -P; Burgett, W; Chambers, K; Hodapp, K; Kaiser, N; Waters, C
2014-01-01
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey (Massey et al. 2006) and select 13 candidates brighter than 20.5 magnitude in V. The relative physical parameters of these detached candidates are further characterized with Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor (2005). We will followup the detached eclipsing binaries spectroscopically and determine the distance to M31.
BBO and the Neutron-Star-Binary Subtraction Problem
Cutler, C
2006-01-01
The Big Bang Observer (BBO) is a proposed space-based gravitational-wave (GW) mission designed primarily to search for an inflation-generated GW background in the frequency range 0.1-1 Hz. The major astrophysical foreground in this range is gravitational radiation from inspiraling compact binaries. This foreground is expected to be much larger than the inflation-generated background, so to accomplish its main goal, BBO must be sensitive enough to identify and subtract out practically all such binaries in the observable universe. It is somewhat subtle to decide whether BBO's current baseline design is sufficiently sensitive for this task, since, at least initially, the dominant noise source impeding identification of any one binary is confusion noise from all the others. Here we present a self-consistent scheme for deciding whether BBO's baseline design is indeed adequate for subtracting out the binary foreground. We conclude that the current baseline should be sufficient. However if BBO's instrumental sensiti...
Binary black holes on a budget: Simulations using workstations
Marronetti, P; Brügmann, B; González, J; Hannam, M; Husa, S; Sperhake, U; Marronetti, Pedro; Tichy, Wolfgang; Bruegmann, Bernd; Gonzalez, Jose; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich
2007-01-01
Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we present results obtained using dual processor workstations with comparable quality to those obtained using much larger computer resources. For this, we use the multi-layered refinement level code BAM, based on the moving punctures method. BAM provides grid structures composed of boxes of increasing resolution near the center of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particular useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries wit...
Improvements to the construction of binary black hole initial data
Ossokine, Serguei; Pfeiffer, Harald P; Boyle, Michael; Szilágyi, Béla
2015-01-01
Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the Spectral Einstein Code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.
A supremum-type RESET test for binary choice models
Esmeralda Ramalho; Joaquim Ramalho; Jose M.R. Murteira
2012-01-01
This note introduces a supremum-type RESET statistic for testing the specification of binary choice regression models. A Monte Carlo simulation study reveals very promising results for the proposed statistic.
KOI-3278: A Self-Lensing Binary Star System
Kruse, Ethan
2014-01-01
Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.
Polarisation modulation in X-ray binaries
Ingram, Adam; Maccarone, Thomas
2016-07-01
X-ray polarimetry promises to provide a powerful new lever arm for studying accretion onto black holes with the next generation of X-ray telescopes. I will discuss how polarisation can be used to help constrain the physical origin of quasi-periodic oscillations (QPOs) observed in the X-ray light curves of accreting black holes. QPOs may be signatures of the frame dragging effect: in General Relativity, a spinning black hole twists up the surrounding space-time, causing vertical precession of nearby orbits. In the truncated disc / precessing inner flow model, the entire inner accretion flow precesses as a solid body causing a modulation in the X-ray flux through solid angle and Doppler effects. This model also predicts the observed polarisation of the X-ray signal to vary quasi-periodically. I will summarise our work to model the polarisation signal from a precessing accretion flow, starting with simple assumptions about the emission mechanism but taking General Relativity fully into account. We find that it should be possible to measure the predicted modulation in polarisation degree for a reasonable region of parameter space with a polarimeter capable of detecting ~60 counts per second from a bright black hole binary. I will also show that sensitivity can be greatly improved by correlating the signal with a high count rate reference band signal.
Binary Scientific Star Coauthors Core Size
Ausloos, Marcel
2014-01-01
It is examined whether the relationship $ J \\propto A/r^{\\alpha}$, and the subsequent coauthor core notion (Ausloos 2013), between the number ($J$) of joint publications (JP) by a "main scientist" (LI) with her/his coauthors (CAs) can be extended to a team-like system. This is done by considering that each coauthor can be so strongly tied to the LI that they are forming {\\it binary scientific star} (BSS) systems with respect to their other collaborators. Moreover, publications in peer review journals and in "proceedings", both often thought to be of "different quality", are separetely distinguished. The role of a time interval for measuring $J$ and $\\alpha$ is also examined. New indirect measures are also introduced. For making the point, two LI cases with numerous CAs are studied. It is found that only a few BSS need to be usefully examined. The exponent $\\alpha$ turns out to be "second scientist" weakly dependent, but still "size" and "publication type" dependent, according to the number of CAs or JP. The C...
Measuring Massive Black Hole Binaries with LISA
Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.
2009-01-01
The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.
Phemenological Modeling of Eclipsing Binary Stars
Andronov, Ivan L; Chinarova, Lidia L
2016-01-01
We review the method NAV (New Algol Variable) first introduced in 2012Ap.....55..536A, which uses the locally-dependent shapes of eclipses in an addition to the trigonometric polynomial of the second order (which typically describes the "out-of-eclipse" part of the light curve with effects of reflection, ellipticity and O'Connell). Eclipsing binary stars are believed to show distinct eclipses only if belonging to the EA type. With a decreasing eclipse width, the statistically optimal value of the trigonometric polynomial s (2003ASPC..292..391A) drastically increases from ~2 for elliptic (EL) variables without eclipses, ~6-8 for EW and up to ~30-50 for some EA with narrow eclipses. In this case of large number of parameters, the smoothing curve becomes very noisy and apparent waves (the Gibbs phenomenon) may be seen. The NAV set of the parameters may be used for classification in the GCVS, VSX and similar catalogs. The maximal number of parameters is m=12, which corresponds to s=5, if correcting both the perio...
Time coding with a binary scaler
International Nuclear Information System (INIS)
A binary scaler is normally used in time-of-flight selectors to code the arrival time of an event and to send it in the appropriate address of a memory. Such scalers involve special problems; two are examined in this paper: (a) The scaler periodically receives long series of impulses. The constituent flip-flops, particularly the first, have to be specially designed for these working conditions, which appear rather more severe than those of the purely random or strictly periodic operations. (b) It is advantageous to catch, in flight, the coded number representing the arrival time of an event, and so avoid a momentary stop of the scaler and artificial restoration of the normal count afterwards. It can be caught in flight provided that the transit time in the scaler is less than the input pulse period. A scaler with a very short transit time has been developed, and then a scaler with simultaneously driven elements. The latter, designed to operate at 10 MHz, comprises ten flip-flops and reaches its stable state 5 x 10-8 s after the injection of each input pulse. (author)
Phase transformations in binary colloidal monolayers.
Yang, Ye; Fu, Lin; Marcoux, Catherine; Socolar, Joshua E S; Charbonneau, Patrick; Yellen, Benjamin B
2015-03-28
Phase transformations can be difficult to characterize at the microscopic level due to the inability to directly observe individual atomic motions. Model colloidal systems, by contrast, permit the direct observation of individual particle dynamics and of collective rearrangements, which allows for real-space characterization of phase transitions. Here, we study a quasi-two-dimensional, binary colloidal alloy that exhibits liquid-solid and solid-solid phase transitions, focusing on the kinetics of a diffusionless transformation between two crystal phases. Experiments are conducted on a monolayer of magnetic and nonmagnetic spheres suspended in a thin layer of ferrofluid and exposed to a tunable magnetic field. A theoretical model of hard spheres with point dipoles at their centers is used to guide the choice of experimental parameters and characterize the underlying materials physics. When the applied field is normal to the fluid layer, a checkerboard crystal forms; when the angle between the field and the normal is sufficiently large, a striped crystal assembles. As the field is slowly tilted away from the normal, we find that the transformation pathway between the two phases depends strongly on crystal orientation, field strength, and degree of confinement of the monolayer. In some cases, the pathway occurs by smooth magnetostrictive shear, while in others it involves the sudden formation of martensitic plates. PMID:25677504
Binary decision making with very heterogeneous influence
International Nuclear Information System (INIS)
We consider an extension of a binary decision model in which nodes make decisions based on influence-biased averages of their neighbors’ states, similar to Ising spin glasses with on-site random fields. In the limit where these influences become very heavy-tailed, the behavior of the model dramatically changes. On complete graphs, or graphs where nodes with large influence have large degree, this model is characterized by a new ‘phase’ with an unpredictable number of macroscopic shocks, with no associated critical phenomena. On random graphs where the degree of the most influential nodes is small compared to population size, a predictable ‘glassy’ phase without phase transitions emerges. Analytic results about both of these new phases are obtainable in limiting cases. We use numerical simulations to explore the model for more general scenarios. The phases associated with very influential decision makers are easily distinguishable experimentally from a homogeneous influence phase in many circumstances, in the context of our simple model. (paper)
Entropic Behavior of Binary Carbonaceous Mesophases
Directory of Open Access Journals (Sweden)
Alejandro D. Rey
2008-08-01
Full Text Available The Maier-Saupe model for binary mixtures of uniaxial discotic nematogens, formulated in a previous study [1], is used to compute and characterize orientational entropy [2] and orientational specific heat. These thermodynamic quantities are used to determine mixture type (ideal or non-ideal which arise due to their different intrinsic properties, determined by the molecular weight asymmetry ÃŽÂ”Mw and the molecular interaction parameter ÃŽÂ². These molecular properties are also used to characterize the critical concentration where the mixture behaves like a single component system and exhibits the minimum nematic to isotropic (NI transition temperature (pseudo-pure mixture. A transition within the nematic phase takes place at this specific concentration. According to the Maier-Saupe model, in a single mesogen, entropy at NI transition is a universal value; in this work we quantify the mixing effect on this universal property. The results and analysis provide a new tool to characterize molecular interaction and molecular weight differences in mesogenic mixtures using standard calorimetric measurements.
The Binary Perfect Phylogeny with Persistent characters
Braghin, Chiara; Trucco, Gabriella; Bonizzoni, Paola
2011-01-01
The near-perfect phylogeny over binary set of characters has been proposed as an extension of the too restrictive model of the perfect phylogeny in order to model biological events such as homoplasy. However the model appears to be too general to model some situations and is computationally inefficient on some instances. In this paper we consider the problem of reconstructing a near-perfect phylogeny where only a type of homoplasy is allowed in the tree: we consider back mutations according to notion of {\\em persistency}, that is characters can be gained and lost at most once. The notion of persistency leads to the problem of the Persistent Perfect Phylogeny (referred as P-PPH). By exploring combinatorial properties of the problem we develop an exact algorithm for solving the P-PPH problem that in the worst case runs in time that is exponential in the number of characters, but is polynomial in the number of species. Indeed, we show that the P-PPH problem can be restated as a special case of the Incomplete Per...
Binary discrete method of topology optimization
Institute of Scientific and Technical Information of China (English)
MEI Yu-lin; WANG Xiao-ming; CHENG Geng-dong
2007-01-01
The numerical non-stability of a discrete algorithm of topology optimization can result from the inaccurate evaluation of element sensitivities. Especially, when material is added to elements, the estimation of element sensitivities is very inaccurate,even their signs are also estimated wrong. In order to overcome the problem, a new incremental sensitivity analysis formula is constructed based on the perturbation analysis of the elastic equilibrium increment equation, which can provide us a good estimate of the change of the objective function whether material is removed from or added to elements,meanwhile it can also be considered as the conventional sensitivity formula modified by a non-local element stiffness matrix. As a consequence, a binary discrete method of topology optimization is established, in which each element is assigned either a stiffness value of solid material or a small value indicating no material, and the optimization process can remove material from elements or add material to elements so as to make the objective function decrease. And a main advantage of the method is simple and no need of much mathematics, particularly interesting in engineering application.
On the multiplicity of binary recurrences
Institute of Scientific and Technical Information of China (English)
董晓蕾; 沈灏
2003-01-01
LetA ∈ N,B ∈ Z with gcd (A,B) = 1 ,B(∈/){ - 1,0,1 }. For the binary recurrence (Lucas se-quence) of the form u0 = 0, u1 = 1 , un+2 = Aun+1 + Bun, let N1 (A,B,k) be the number of the terms n of | un= k, where k ∈ N. In this paper, using a new result of Bilu, Hanrot and Voutier on prinmitive divisors, weproved thatN1(A,B,k) ≤lexceptN1(1, -2,1) =5[n = 1,2,3,5,13], N1(1, -3,1) =3[n = 1,2,5],N1(1,-5,1) =3[n = 1,2,7],N1(1,B,1) =2(B(∈/) {-2, -3, -5})[n = 1,2], N1(12, -55,1) =2[n = 1,5], N1(12,-377,1) =2[n = 1,5], N1(A,B,1) =2(A2 +B =±1,A ＞ 1)[n = 1,3], N1(1,-2,3) = 2[n = 4,8], N1(A,B,A) = 2(A2 +2B =±1,A ＞ l[n = 2,4]. For Lehmer sequence, we gota similar result. In addition, we also obtained some applications of the above results to some Diophantime equa-tions.
Tidally distorted accretion discs in binary stars
Ogilvie, G. I.
2002-03-01
The non-axisymmetric features observed in the discs of dwarf novae in outburst are usually considered to be spiral shocks, which are the non-linear relatives of tidally excited waves. This interpretation suffers from a number of problems. For example, the natural site of wave excitation lies outside the Roche lobe, the disc must be especially hot, and most treatments of wave propagation do not take into account the vertical structure of the disc. In this paper I construct a detailed semi-analytical model of the non-linear tidal distortion of a thin, three-dimensional accretion disc by a binary companion on a circular orbit. The analysis presented here allows for vertical motion and radiative energy transport, and introduces a simple model for the turbulent magnetic stress. The m=2 inner vertical resonance has an important influence on the amplitude and phase of the tidal distortion. I show that the observed patterns find a natural explanation if the emission is associated with the tidally thickened sectors of the outer disc, which may be irradiated from the centre. According to this hypothesis, it may be possible to constrain the physical parameters of the disc through future observations.
Multilevel training of binary morphological operators.
Hirata, Nina S T
2009-04-01
The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multi-level design approach to deal with the issue of designing large neighborhood based operators. The main idea is inspired from stacked generalization (a multi-level classifier design approach) and consists in, at each training level, combining the outcomes of the previous level operators. The final operator is a multi-level operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperforms the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multi-level approach to obtain better results. PMID:19229085
Magneto Binary Nanofluid Convection in Porous Medium
Directory of Open Access Journals (Sweden)
Jyoti Sharma
2016-01-01
Full Text Available The effect of an externally impressed magnetic field on the stability of a binary nanofluid layer in porous medium is considered in this work. The conservation equations related to the system are solved using normal mode technique and Galerkin method to analyze the problem. The complex expressions are approximated to get useful results. Mode of heat transfer is stationary for top heavy distribution of nanoparticles in the fluid layer and top heavy nanofluids are very less stable than regular fluids. Oscillatory motions are possible for bottom heavy distribution of nanoparticles and they are not much influenced by properties of different nanoparticles. A comparative analysis of the instability of water based nanofluids with metallic (Cu, Ag and semiconducting (TiO2, SiO2 nanoparticles under the influence of magnetic field is examined. Semiconducting nanofluids are found to be more stable than metallic nanofluids. Porosity destabilizes the layer while solute difference (at the boundaries of the layer stabilizes it. Magnetic field stabilizes the fluid layer system significantly.
Formation and Evolution of Binary Asteroids
Walsh, Kevin J
2015-01-01
Satellites of asteroids have been discovered in nearly every known small body population, and a remarkable aspect of the known satellites is the diversity of their properties. They tell a story of vast differences in formation and evolution mechanisms that act as a function of size, distance from the Sun, and the properties of their nebular environment at the beginning of Solar System history and their dynamical environment over the next 4.5 Gyr. The mere existence of these systems provides a laboratory to study numerous types of physical processes acting on asteroids and their dynamics provide a valuable probe of their physical properties otherwise possible only with spacecraft. Advances in understanding the formation and evolution of binary systems have been assisted by: 1) the growing catalog of known systems, increasing from 33 to nearly 250 between the Merline et al. (2002) Asteroids III chapter and now, 2) the detailed study and long-term monitoring of individual systems such as 1999 KW4 and 1996 FG3, 3...
Localized modes in nonlinear binary kagome ribbons
Beličev, P. P.; Gligorić, G.; Radosavljević, A.; Maluckov, A.; Stepić, M.; Vicencio, R. A.; Johansson, M.
2015-11-01
The localized mode propagation in binary nonlinear kagome ribbons is investigated with the premise to ensure controlled light propagation through photonic lattice media. Particularity of the linear system characterized by the dispersionless flat band in the spectrum is the opening of new minigaps due to the "binarism." Together with the presence of nonlinearity, this determines the guiding mode types and properties. Nonlinearity destabilizes the staggered rings found to be nondiffracting in the linear system, but can give rise to dynamically stable ringlike solutions of several types: unstaggered rings, low-power staggered rings, hour-glass-like solutions, and vortex rings with high power. The type of solutions, i.e., the energy and angular momentum circulation through the nonlinear lattice, can be controlled by suitable initial excitation of the ribbon. In addition, by controlling the system "binarism" various localized modes can be generated and guided through the system, owing to the opening of the minigaps in the spectrum. All these findings offer diverse technical possibilities, especially with respect to the high-speed optical communications and high-power lasers.
UV Emission line shifts of symbiotic binaries
Friedjung, M; Zajczyk, A; Eriksson, M
2010-01-01
Relative and absolute emission line shifts have been previously found for symbiotic binaries, but their cause was not clear. This work aims to better understand the emission line shifts. Positions of strong emission lines were measured on archival UV spectra of Z And, AG Dra, RW Hya, SY Mus and AX Per and relative shifts between the lines of different ions compared. Profiles of lines of RW Hya and Z And were also examined. The reality of the relative shift between resonance and intercombination lines of several times ionised atoms was clearly shown except for AG Dra. This redshift shows a well defined variation with orbital phase for Z And and RW Hya. In addition the intercombination lines from more ionised atoms and especially OIV are redshifted with respect to those from less ionised atoms. Other effects are seen in the profiles. The resonance-intercombination line shift variation can be explained in quiescence by P Cygni shorter wavelength component absorption, due to the wind of the cool component, which ...
Implications of Binary Properties for Theories of Star Formation
Larson, Richard B.
2000-01-01
The overall frequency and other statistical properties of binary systems suggest that star formation is intrinsically a complex and chaotic process, and that most binaries and single stars actually originate from the decay of multiple systems. Interactions between stars forming in close proximity to each other may play an important role in the star formation process itself, for example via tidally induced accretion from disks. Some of the energetic activity of newly formed stars could be due ...
BISC: Binary SubComplexes in proteins database
Juettemann, Thomas; Gerloff, Dietlind L
2010-01-01
Binary subcomplexes in proteins database (BISC) is a new protein–protein interaction (PPI) database linking up the two communities most active in their characterization: structural biology and functional genomics researchers. The BISC resource offers users (i) a structural perspective and related information about binary subcomplexes (i.e. physical direct interactions between proteins) that are either structurally characterized or modellable entries in the main functional genomics PPI databas...
Thermodynamic analysis of the Ga-Pb binary system
Directory of Open Access Journals (Sweden)
Manasijević Dragan
2003-01-01
Full Text Available Thermodynamic properties of binary Ga-Pb alloys were investigated experimentally and analytically. Quantitative differential thermal analysis was used for determination of integral mixing enthalpies for the gallium-reach alloys, at the constant temperature inside the liquid two-phase region. Calculation of gallium activities in the temperature range of 800-1000 K was done using Chou’s calculation model developed for binary systems with miscibility gap existence.
The Classical Linear Regression Model with one Incomplete Binary Variable
Toutenburg, Helge; Nittner, T.
1999-01-01
We present three different methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the so-called pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are confined to one independent binary variable: complete case analysis, zero order regression, categorical zero order regression, pi imputation, single imputation, mu...
Linking electromagnetic and gravitational radiation in coalescing binary neutron stars
Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L.; Ponce, Marcelo; Anderson, Matthew; Neilsen, David; Motl, Patrick
2013-01-01
We expand on our study of the gravitational and electromagnetic emissions from the late stage of an inspiraling neutron star binary as presented in Ref. \\cite{Palenzuela:2013hu}. Interactions between the stellar magnetospheres, driven by the extreme dynamics of the merger, can yield considerable outflows. We study the gravitational and electromagnetic waves produced during the inspiral and merger of a binary neutron star system using a full relativistic, resistive MHD evolution code. We show ...
Angular Momentum Transport in Double White Dwarf Binaries
Motl, Patrick M.; Tohline, J. E.; Frank, J.
2006-12-01
We present numerical simulations of dynamically unstable mass transfer in a double white dwarf binary with initial mass ratio, q = 0.4. The binary components are approximated as polytropes of index n = 3/2 and the synchronously rotating, semi-detached equilibrium binary is evolved hydrodynamically with the gravitational potential being computed through the solution of Poisson's equation. Upon initiating deep contact, the mass transfer rate grows by more than an order of magnitude over approximately ten orbits, as would be expected for dynamically unstable mass transfer. However, the mass transfer rate then reaches a peak value, the binary expands and the mass transfer event subsides. The binary must therefore have crossed the critical mass ratio for stability against dynamical mass transfer. Despite the initial loss of orbital angular momentum into the spin of the accreting star, we find that the accretor's spin saturates and angular momentum is returned to the orbit more efficiently than has been previously suspected for binaries in the direct impact accretion mode. To explore this surprising result, we directly measure the critical mass ratio for stability by imposing artificial angular momentum loss at various rates to drive the binary to an equilibrium mass transfer rate. For one of these driven evolutions, we attain equilibrium mass transfer and deduce that the mass ratio for stability is approximately 2/3. This is consistent with the result for mass transferring binaries that effectively return angular momentum to the orbit through an accretion disk. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311 and in part through NASA's ATP program grant NAG5-13430. The computations were performed primarily at NCSA through grant MCA98N043 and at LSU's Center for Computation & Technology.
Local Binary Patterns Calculated Over Gaussian Derivative Images
Jain, Varun; Crowley, James L.; Lux, Augustin
2014-01-01
International audience In this paper we present a new static descriptor for facial image analysis. We combine Gaussian derivatives with Local Binary Patterns to provide a robust and powerful descriptor especially suited to extracting texture from facial images. Gaussian features in the form of image derivatives form the input to the Linear Binary Pattern(LBP) operator instead of the original image. The proposed descriptor is tested for face recognition and smile detection. For face recogni...
Binary and recycled pulsars: 30 years after observational discovery
Bisnovatyi-Kogan, G. S.
2006-01-01
Binary radio pulsars, first discovered by Hulse and Taylor in 1974 [1], are a unique tool for experimentally testing general relativity (GR), whose validity has been confirmed with a precision unavailable in laboratory experiments. In particular, indirect evidence of the existence of gravitational waves has been obtained. Radio pulsars in binary systems (which have come to be known as recycled) have completed the accretion stage, during which neutron star spins reach millisecond periods and t...
XOR-based artificial bee colony algorithm for binary optimization
KIRAN, Mustafa Servet; Gündüz, Mesut
2012-01-01
The artificial bee colony (ABC) algorithm, which was inspired by the foraging and dance behaviors of real honey bee colonies, was first introduced for solving numerical optimization problems. When the solution space of the optimization problem is binary-structured, the basic ABC algorithm should be modified for solving this class of problems. In this study, we propose XOR-based modification for the solution-updating equation of the ABC algorithm in order to solve binary optimization pro...
On the nature of the "radio quiet" black hole binaries
Soleri, Paolo; Fender, Rob
2011-01-01
The coupling between accretion processes and ejection mechanisms in accreting black holes in binary systems can be investigated by empirical relations between the X-ray/radio and X-ray/optical-infrared luminosities. These correlations are valid over several orders of magnitude and were initially thought to be universal. However, recently, many black hole binaries have been found to produce jets that, given certain accretion-powered luminosities, are fainter than expected from the earlier corr...
Observing complete gravitational wave signals from dynamical capture binaries
East, William E.; McWilliams, Sean T.; Levin, Janna; Pretorius, Frans
2012-01-01
We assess the detectability of the gravitational wave signals from highly eccentric compact binaries. We use a simple model for the inspiral, merger, and ringdown of these systems. The model is based on mapping the binary to an effective single black hole system described by a Kerr metric, thereby including certain relativistic effects such as zoom-whirl-type behavior. The resultant geodesics source quadrupolar radiation and, in turn, are evolved under its dissipative effects. At the light ri...
PRECESSION. Dynamics of spinning black-hole binaries with python
Gerosa, Davide; Kesden, Michael
2016-01-01
We present the numerical code PRECESSION: a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulae obtained from...
A Telescopic Binary Learning Machine for Training Neural Networks
Brunato, Mauro; Battiti, Roberto
2015-01-01
This paper proposes a new algorithm based on multi-scale stochastic local search with binary representation for training neural networks. In particular, we study the effects of neighborhood evaluation strategies, the effect of the number of bits per weight and that of the maximum weight range used for mapping binary strings to real values. Following this preliminary investigation, we propose a telescopic multi-scale version of local search where the number of bits is increased in an adaptive ...
KBT: Operating System Kernel Level Binary Translation System
Haitao Jiang; Yun Xu; Yin Liao; Guojie Jin; Guoliang Chen
2013-01-01
with the diversification of hardware platforms, software compatibility issue has become increasingly prominent. Virtual machine with dynamic binary translation system is the key technology to solve this problem. This paper designs an operating system kernel level virtual machine with binary translation systems (KBT) which is embedded into kernel space as a kernel module. KBT reduces the number of virtual layers of the computer system, and introduces further optimization strategies using kerne...
Empirical Constraints on Common Envelope Evolution in Wide Binaries
Geller, Aaron M.; Hurley, J. R.; Mathieu, R. D.
2012-01-01
If a giant star in a binary overfills its Roche lobe, the giant's convective envelope may respond by expanding faster than its Roche lobe, transferring mass on a dynamical time scale, and creating a common envelope (CE) that engulfs both stars. Orbital energy may then be transferred from the binary to the envelope, which can shrink the orbit and drive away the material, leaving behind a detached system containing the white dwarf core of the giant. Such a CE event is thought to be critical for explaining certain populations of exotic stars (e.g., cataclysmic variables). Yet the application of CE evolution to binary population synthesis and N-body or Monte Carlo star cluster models requires many poorly constrained assumptions, which may lead to unphysical evolutionary paths. In fact, we find that such fictitious systems are created regularly within our N-body models of the old (7 Gyr) open cluster NGC 188. Most notably, the model predicts a population of post-CE long-period ( 1000 days) circular solar-type main sequence - white dwarf binaries, that are not present in our observations of the true binaries in NGC 188, or any other solar-type binary population in the literature (in star clusters or in the field). The absence of such post-CE systems in real binary populations places important limits on parameters used in most models of CE evolution, and may suggest that more binaries undergo stable mass transfer than has previously been assumed. We discuss how various solutions to this problem would impact other observable stellar populations, including cataclysmic variables, symbiotic stars and blue stragglers.
Massive Black Hole Binary Mergers in Dynamical Galactic Environments
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars
2016-01-01
Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate ...
Properties of the Binary Black Hole Merger GW150914
Abbott, B.P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X; Anderson, S. B.; Arai, K; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.
2016-01-01
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36^(+5...
A Ternary Algebra with Applications to Binary Quadratic Forms
Goins, Edray Herber
2009-01-01
We discuss multiplicative properties of the binary quadratic form $a x^2 + b x y + c y^2$ by considering a ring of matrices which is closed under a triple product. We prove that the ring forms a ternary algebra in the sense of Hestenes, and then derive both multiplicative formulas for a large class of binary quadratic forms and a type of multiplication for points on a conic section which generalizes the algebra of rational points on the unit circle.
The Impact of Gaia and LSST on Binaries and Exoplanets
DEFF Research Database (Denmark)
Eyer, L.; Dubath, P.; Mowlavi, N.;
2012-01-01
Two upcoming large scale surveys, the ESA Gaia and LSST projects, will bring a new era in astronomy. The number of binary systems that will be observed and detected by these projects is enormous, estimations range from millions for Gaia to several tens of millions for LSST. We review some tools t...... that should be developed and also what can be gained from these missions on the subject of binaries and exoplanets from the astrometry, photometry, radial velocity and their alert systems....
Binary Opposition Relations of Characters in “Araby”
Institute of Scientific and Technical Information of China (English)
高洁
2014-01-01
“Araby” is a wel-known short story written.According to Greimas’ theory,narratives contain six aspects which form three binary oppositions:Subject/Object,Sender/Receiver,and Helper/Opponent.In this thesis,the author wil work out the binary opposition relations between the characters in “Araby” based on A.J.Greimas’ “Actantial Model”.
Foaming binary solution mixtures of low molecular surfactant and polyelectrolyte
Aidarova, S. B.; Musabekov, K. B.; Ospanova, Z. B.; Güden, Mustafa
2006-01-01
The lifetime of water solution foams of sodium dodecylsulfate (DDS, low molecular weight surfactant) and sodium carboxymethylcellulose (SCMC, polyelectrolyte) and their binary mixtures was experimentally investigated. The effects of ionic strength and acidity on the foam life were also determined. In binary solutions, a synergic effect of DDS and SCMC on the surface tension reduction, most likely resulting from the interaction of the surfactant with polymer, was found. The addition of NaCl in...
Highlights on eclipsing binary variables from Araucaria Project
Directory of Open Access Journals (Sweden)
Karczmarek Paulina
2015-01-01
Full Text Available The Araucaria Project, which main goal is to provide precise determination of the cosmic distance scale, has recently made a set of discoveries involving variable stars in binary systems. Among these discoveries we highlight three: 1% precise measurement of a Cepheid's dynamical mass and its projection factor, accurate determination of both stellar and orbital parameters of eclipsing binary consisting of two Cepheid variables, and discovery of new class of variable stars, mimicking RR Lyrae pulsators.
Excess Molar Volume of Binary Systems Containing Mesitylene
Morávková, L. (Lenka); Sedláková, Z.
2013-01-01
This paper presents a review of density measurements for binary systems containing 1,3,5-trimethylbenzene (mesitylene) with a variety of organic compounds at atmospheric pressure. Literature data of the binary systems were divided into nine basic groups by the type of contained organic compound with mesitylene. The excess molar volumes calculated from the experimental density values have been compared with literature data. Densities were measured by a few experimental methods, namely using a ...
Multiples among detached eclipsing binaries from the ASAS catalog
Hełminiak, K G; Ratajczak, M; Jordán, A; Espinoza, N; Brahm, R; Kambe, E; Ukita, N
2015-01-01
For more than three years now we have been conducting a spectroscopic survey of detached eclipsing binaries (DEBs) from the All-Sky Automated Survey (ASAS) database. Thousands of high-resolution spectra of over 300 systems were secured, and used for radial velocity measurements and spectral analysis. In our sample we found a zoo of multiple systems, such as spectroscopic triples and quadruples, visual binaries with eclipsing components, and circumbinary low-mass companions, including sub-stellar-mass candidates
KIC 7177553: A Quadruple System of Two Close Binaries
Lehmann, H.; Borkovits, T.; Rappaport, S. A.; Ngo, H.; Mawet, D.; Csizmadia, Sz.; Forgács-Dajka, E.
2016-03-01
KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ˜100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (˜167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000-3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.