WorldWideScience

Sample records for binary complex structure-a

  1. Complex Binary Number System Algorithms and Circuits

    CERN Document Server

    Jamil, Tariq

    2013-01-01

    This book is a compilation of the entire research work on the topic of Complex Binary Number System (CBNS) carried out by the author as the principal investigator and members of his research groups at various universities during the years 1992-2012. Pursuant to these efforts spanning several years, the realization of CBNS as a viable alternative to represent complex numbers in an 'all-in-one' binary number format has become possible and efforts are underway to build computer hardware based on this unique number system. It is hoped that this work will be of interest to anyone involved in computer arithmetic and digital logic design and kindle renewed enthusiasm among the engineers working in the areas of digital signal and image processing for developing newer and efficient algorithms and techniques incorporating CBNS.

  2. Reconstructing complex networks with binary-state dynamics

    CERN Document Server

    Li, Jingwen; Lai, Ying-Cheng; Grebogi, Celso

    2015-01-01

    The prerequisite for our understanding of many complex networked systems lies in the reconstruction of network structure from measurable data. Although binary-state dynamics occurring in a broad class of complex networked systems in nature and society and has been intensively investigated, a general framework for reconstructing complex networks from binary states, the inverse problem, is lacking. Here we offer a general solution to the reconstruction problem by developing a data-based linearization approach for binary-state dynamics with linear, nonlinear, discrete and stochastic switching functions. The linearization allows us to convert the network reconstruction problem into a sparse signal reconstruction problem that can be resolved efficiently and credibly by convex optimization based on compressed sensing. The completely data-based linearization method and the sparse signal reconstruction constitutes a general framework for reconstructing complex networks without any knowledge of the binary-state dynami...

  3. Binary Image Watermarking Algorithm Using Matrix of Complexity Index

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fan; ZHANG Jun-liang; SHEN Xia-jiong

    2008-01-01

    A new watermarking algorithm of binary image is proposed.The complexity index of pixels is presented to reflect the change degree of pixels and to evaluate the modifiable degree of pixels.Firstly,in a small image block,the complexity index of "jumping-change" is calculated in vertical and horizontal direction.Secondly,the matrix of the complexity index is calculated by integrating the complexity index of pixels in two directions.Finally,the matrix of the complexity index is used to embed the watermark in binary images.Experimental results show that the proposed algorithm has a good performance.

  4. Binary GCD like Algorithms for Some Complex Quadratic Rings

    DEFF Research Database (Denmark)

    Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg

    2004-01-01

    binary gcd like algorithms for the ring of integers in and , one now has binary gcd like algorithms for all complex quadratic Euclidean domains. The running time of our algorithms is O(n 2) in each ring. While there exists an O(n 2) algorithm for computing the gcd in quadratic number rings by Erich......On the lines of the binary gcd algorithm for rational integers, algorithms for computing the gcd are presented for the ring of integers in where . Thus a binary gcd like algorithm is presented for a unique factorization domain which is not Euclidean (case d=-19). Together with the earlier known...... Kaltofen and Heinrich Rolletschek, it has large constants hidden under the big-oh notation and it is not practical for medium sized inputs. On the other hand our algorithms are quite fast and very simple to implement....

  5. Dynamics of lane formation in driven binary complex plasmas

    NARCIS (Netherlands)

    Sutterlin, K. R.; Wysocki, A.; Ivlev, A. V.; Rath, C.; Thomas, H. M.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.

    2009-01-01

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation proces

  6. Perimetric Complexity of Binary Digital Images: Notes on Calculation and Relation to Visual Complexity

    Science.gov (United States)

    Watson, Andrew B.

    2011-01-01

    Perimetric complexity is a measure of the complexity of binary pictures. It is defined as the sum of inside and outside perimeters of the foreground, squared, divided by the foreground area, divided by 4p . Difficulties arise when this definition is applied to digital images composed of binary pixels. In this paper we identify these problems and propose solutions. Perimetric complexity is often used as a measure of visual complexity, in which case it should take into account the limited resolution of the visual system. We propose a measure of visual perimetric complexity that meets this requirement.

  7. The k-Error Linear Complexity and the Linear Complexity for pqn-Periodic Binary Sequences

    Institute of Scientific and Technical Information of China (English)

    ZHU Fengxiang; QI Wenfeng

    2006-01-01

    The k-error linear complexity and the linear complexity of the keystream of a stream cipher are two important standards to scale the randomness of the key stream. For a pqn-periodic binary sequences where p, q are two odd primes satisfying that 2 is a primitive root module p and q2 and gcd(p-1 , q-1)=2, we analyze the relationship between the linear complexity and the minimum value k for which the k-error linear complexity is strictly less than the linear complexity.

  8. A fast algorithm for determining the linear complexity of a binary sequence with period 2npm

    Institute of Scientific and Technical Information of China (English)

    魏仕民; 肖国镇; 陈钟

    2001-01-01

    An efficient algorithm for determining the linear complexity and the minimal polynomial of a binary sequence with period 2npm is proposed and proved, where 2 is a primitive root modulo p2. The new algorithm generalizes the algorithm for computing the linear complexity of a binary sequence with period 2 n and the algorithm for computing the linear complexity of a binary sequence with period pn,where 2 is a primitive root modulo p2.

  9. BISC: Binary SubComplexes in proteins database

    OpenAIRE

    Juettemann, Thomas; Gerloff, Dietlind L

    2010-01-01

    Binary subcomplexes in proteins database (BISC) is a new protein–protein interaction (PPI) database linking up the two communities most active in their characterization: structural biology and functional genomics researchers. The BISC resource offers users (i) a structural perspective and related information about binary subcomplexes (i.e. physical direct interactions between proteins) that are either structurally characterized or modellable entries in the main functional genomics PPI databas...

  10. On Linear Complexity of Binary Sequences Generated Using Matrix Recurrence Relation Defined Over Z4

    Directory of Open Access Journals (Sweden)

    Ramesh S

    2010-12-01

    Full Text Available This paper discusses the linear complexity property of binary sequences generated using matrix recurrence relation defined over Z4. Generally algorithm to generate random number is based on recursion with seed value/values. In this paper a linear recursion sequence of matrices or vectors over Z4is generated from which random binary sequence is obtained. It is shown that such sequences have largelinear complexity.

  11. THE 2-ERROR LINEAR COMPLEXITY OF 2n-PERIODIC BINARY SEQUENCES WITH LINEAR COMPLEXITY 2n-1

    Institute of Scientific and Technical Information of China (English)

    Zhu Fengxiang; Qi Wenfeng

    2007-01-01

    Linear complexity and κ-error linear complexity of the stream cipher are two important standards to scale the randomicity of keystreams.For the 2n-periodic periodic binary sequence with linear complexity 2n-1 and κ=2,3,the number of sequences with given κ-error linear complexity and the expected κ-error linear complexity are provided.Moreover,the proportion of the sequences whose κ-error linear complexity is bigger than the expected value is analyzed.

  12. On the probabilistic complexity of numerically checking the binary Goldbachconjecture in certain intervals

    OpenAIRE

    Deshouillers, J.-M.; Riele, te, H.

    1998-01-01

    A heuristic analysis is presented of the complexity of an algorithm which was applied recently to verify the binary Goldbach conjecture for every integer in the interval $[4,10^{14]$, as well as for every integer in $[10^k,10^k+10^9]$, for different values of $k$ up to 300. The analysis agrees reasonably well with the experimental observations.

  13. On the probabilistic complexity of numerically checking the binary Goldbachconjecture in certain intervals

    NARCIS (Netherlands)

    Deshouillers, J.-M.; Riele, H.J.J. te

    1998-01-01

    A heuristic analysis is presented of the complexity of an algorithm which was applied recently to verify the binary Goldbach conjecture for every integer in the interval $[4,10^{14]$, as well as for every integer in $[10^k,10^k+10^9]$, for different values of $k$ up to 300. The analysis agrees reaso

  14. On complexity of optimized crossover for binary representations

    OpenAIRE

    Eremeev, Anton

    2007-01-01

    We consider the computational complexity of producing the best possible offspring in a crossover, given two solutions of the parents. The crossover operators are studied on the class of Boolean linear programming problems, where the Boolean vector of variables is used as the solution representation. By means of efficient reductions of the optimized gene transmitting crossover problems (OGTC) we show the polynomial solvability of the OGTC for the maximum weight set packing...

  15. Complexity of Soils Porous Structure: A Simple Question

    Science.gov (United States)

    Benito, R. M.; Cardenas, J. P.; Santiago, A.; Borondo, F.; Losada, J. C.; Tarquis, A. M.; Grupo de Sistemas Complejos

    2011-12-01

    In the last decades scientist have realized that soil processes are implicated the biggest global challenges facing humanity such as soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. Progress in these challenges will depend on being able to understand the integrated behavior of soil as a system, and dealing with the complexity in describing soil in these terms. In this work we focus in one of the critical soil issues: soil structure and pore connectivity. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. We proposed a model to attempt to capture the complexity of the system in which we interpret porous soils as heterogeneous networks, where pores are represented by nodes and the links representing flows between them. Pore properties such as position and size are described by fixed states in a metric space, while an affinity function is introduced to bias the attachment probabilities of links according to these properties taking in account soil texture. These types of models are named as Heterogeneous Preferential Attachment (HPA). We perform an analytical study of the degree distributions in the soil model and show that under reasonable conditions all the model variants yield a multiscaling behavior in the connectivity degrees, leaving an empirically testable signature of heterogeneity in the topology of pore networks. With the aim to study in more detail topological properties of these networks, for different real soils samples an analysis of the community structure have been applied and studied depending on the values of the parameters of the porous soil model used. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils. References Cardenas, J. P. Cardenas, A. M. Tarquis, J. C

  16. Slow dynamics in a quasi-two-dimensional binary complex plasma

    CERN Document Server

    Du, Cheng-Ran; Thomas, Hubertus M; Morfill, Gregor E; Ivlev, Alexei V

    2016-01-01

    Slow dynamics in an amorphous quasi-two-dimensional complex plasma, comprised of microparticles of two different sizes, was studied experimentally. The motion of individual particles was observed using video microscopy, and the self part of the intermediate scattering function as well as the mean-squared particle displacement was calculated. The long-time structural relaxation reveals the characteristic behavior near the glass transition. Our results suggest that binary complex plasmas can be an excellent model system to study slow dynamics in classical supercooled fluids.

  17. Three-State Complex Valued Spins Coupled to Binary Branched Polymers in Two-Dimensional Quantum Gravity

    CERN Document Server

    Correia, J D; Correia, Joao D.; Wheater, John F.

    1998-01-01

    A model of complex spins (corresponding to a non-minimal model in the language of CFT) coupled to the binary branched polymer sector of quantum gravity is considered. We show that this leads to new behaviour.

  18. Markov-Binary Visibility Graph: a new method for analyzing Complex Systems

    CERN Document Server

    Sadra, Yaser; Ahadpour, Sodief

    2011-01-01

    In this work, we introduce a new and simple transformation from time series to complex networks based on markov-binary visibility graph(MBVG). Due to the simple structure of this transformation in comparison with other transformations be obtained more precise results. Moreover, several topological aspects of the constructed graph, such as degree distribution, clustering coefficient, and mean visibility length have been thoroughly investigated. Numerical simulations confirm the reliability of markov-binary visibility graph for time series analysis. This algorithm have the capability of distinguishing between uncorrelated and correlated systems. Finaly, we illustrate this algorithm analyzing the human heartbeat dynamics. The results indicate that the human heartbeat (RR-interval) time series of normally, Congestive Heart Failure (CHF) and Atrial Fibrillation (AF) subjects are uncorrelated, chaotic and correlated stochastic systems, respectively.

  19. Continued fractions for complex numbers and values of binary quadratic forms

    CERN Document Server

    Dani, S G

    2011-01-01

    We describe various properties of continued fraction expansions of complex numbers in terms of Gaussian integers. Numerous distinct such expansions are possible for a complex number. They can be arrived at through various algorithms, as also in a more general way from what we call "iteration sequences". We consider in this broader context the analogues of the Lagrange theorem characterizing quadratic surds, the growth properties of the denominators of the convergents, and the overall relation between sequences satisfying certain conditions, in terms of nonoccurrence of certain finite blocks, and the sequences involved in continued fraction expansions. The results are also applied to describe a class of binary quadratic forms with complex coefficients whose values over the set of pairs of Gaussian integers form a dense set of complex numbers.

  20. Ultra Low Complexity Soft Output Detector for Non-Binary LDPC Coded Large MIMO Systems

    CERN Document Server

    Suthisopapan, Puripong; Kasai, Kenta; Imtawil, Virasit

    2012-01-01

    The theoretic results of MIMO capacity tell us that the higher the number of antennas are employed, the higher the transmission rate is. This makes MIMO systems with hundreds of antennas very attractive but one of the major problems that obstructs such large dimensional MIMO systems from the practical realization is a high complexity of the MIMO detector. We present in this paper the new soft output MIMO detector based on matched filtering that can be applied to the large MIMO systems which are coded by the powerful non-binary LDPC codes. The per-bit complexity of the proposed detector is just 0.28% to that of low complexity soft output MMSE detector and scales only linearly with a number of antennas. Furthermore, the coded performances with small information length 800 bits are within 4.2 dB from the associated MIMO capacity.

  1. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, A. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Dörr, K. [Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Ward, T. Z.; Eres, G. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Christen, H. M.; Biegalski, M. D. [ORNL, Center for Nanophase Materials Sciences, Bethel Valley Road, Oak Ridge, Tennessee 37831-6496 (United States)

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  2. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates

    CERN Document Server

    Chaudhuri, M; Nosenko, V; Thomas, H M

    2015-01-01

    A new type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The sys- tem did not crystallize and may be characterized as disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe pat- terns. The in-plane and inter-plane particle separations exhibit nonmonotonic dependence on the discharge pressure which agrees well with theoretical predictions.

  3. Thermodynamics of the complexation between salicylaldehyde thiosemicarbazone with Cu2+ ion in methanol +1,4-dioxane binary solutions

    Directory of Open Access Journals (Sweden)

    Biswas Rashmidipta

    2014-01-01

    Full Text Available The complexation reaction between salicylaldehyde thiosemicarbazone, abbreviated as STSC, with Cu2+ ion was studied in the binary mixtures of methanol + 1,4-dioxane binary by using UV-Visible spectrophotometric and conductometric methods at different temperatures. The formation constants (Kf for the 1:1 complex, Cu2+-STSC, were calculated from computer fitting of the absorbance and molar conductance data against various mole ratios (cM:cL or cL:cM in different binary solvent mixtures. A non-linear correlation was observed for the variation of logKf for the complex against the solvent compositions. Various thermodynamic parameters (ΔH, ΔS and ΔG for the formation of Cu2+-STSC complex were also determined from the temperature dependence of the stability constants (Kf. The results showed that the complexation reaction is affected by the nature and composition of the mixed solvents.

  4. Heterometallic M/Mn (M=Cu, Co, Zn) acetate complexes as precursors for binary oxides

    International Nuclear Information System (INIS)

    A facile one-pot procedure, or so-called 'direct synthesis,' was used to prepare the novel heterometallic complexes [M2Mn(OAc)6(bpy)2], where M=Cu (1), Co (2), Zn (3), bpy=2,2'-bipyridyl, with high yields via oxidative dissolution of pure metals in a liquid phase. The complexes were characterized by an elemental analysis, single crystal X-ray diffraction method and FTIR. These complexes are proposed as precursors, whose thermal degradation may lead to the formation of solids possessing nano- to microsize levels of dispersity. The thermal behavior of the complexes obtained was studied by thermal analysis (TG/DTA/DTG) in both air and N2 and also by TPD mass-spectrometry in vacuo. The FTIR, X-ray powder diffraction (PXRD) and thermoanalytical data were used for the identification of the solid products of thermal degradation. The morphology and microstructure of the solid residues were analyzed, using scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX) at mkm and sub-micro levels. -- Graphical abstract: The novel heterometallic complexes [M2Mn(OAc)6(bpy)2] (M=Cu, Co, Zn, bpy=2,2'-bipyridyl) were isolated and used as precursors for low-temperature synthesis of binary oxides. Single crystal X-ray diffraction, FTIR, TG/DTA/DTG, TPD-MS, PXRD, SEM/EDX analysis was performed on complexes and powders. Display Omitted

  5. Complex Number Representation in RCBNS Form for Arithmetic Operations and Conversion of the Result into Standard Binary Form

    Directory of Open Access Journals (Sweden)

    Hatim Zaini

    2004-12-01

    Full Text Available paper introduces a novel method for complex number representation. The proposed Redundant Complex Binary Number System (RCBNS is developed by combining a Redundant Binary Number and a complex number in base (-1+j. Donald [1] and Walter Penny [2,3] represented complex numbers using base –j and (-1+j in the classified algorithmic models. A Redundant Complex Binary Number System consists of both real and imaginary-radix number systems that form a redundant integer digit set. This system is formed by using complex radix of (-1+j and a digit set of á= 3, where á assumes a value of -3, -2, -1, 0, 1, 2, 3. The arithmetic operations of complex numbers with this system treat the real and imaginary parts as one unit. The carry-free addition has the advantage of Redundancy in number representation in the arithmetic operations. Results of the arithmetic operations are in the RCBNS form. The two methods for conversion from the RCBNS form to the standard binary number form have been presented. In this paper the RCBNS reduces the number of steps required to perform complex number arithmetic operations, thus enhancing the speed.

  6. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation.

    Science.gov (United States)

    Kale, Avinash; Hire, Ramesh S; Hadapad, Ashok B; D'Souza, Stanislaus F; Kumar, Vinay

    2013-11-01

    The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5×10(3) M(-1) s(-1) and 0.8 s(-1), resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL(-1)) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases. PMID:23974012

  7. Tristable and multiple bistable activity in complex random binary networks of two-state units

    CERN Document Server

    Christ, Simon; Schimansky-Geier, Lutz

    2016-01-01

    We study complex networks of stochastic two-state units. Our aim is to model discrete stochastic excitable dynamics with a rest and an excited state. These two states are assumed to possess different waiting time distributions. The rest state is treated as an activation process with an exponentially distributed life time, whereas the latter in the excited state shall have a constant mean which may originate from any distribution. The activation rate of any single unit is determined by its neighbors according to a random complex network structure. In order to treat this problem in an analytical way, we use a heterogeneous mean-field approximation yielding a set of equations general valid for uncorrelated random networks. Based on this derivation we focus on random binary networks where the network is solely comprised of nodes with either of two degrees. The ratio between the two degrees is shown to be a crucial parameter. Dependent on the composition of the network the steady states show the usual transition f...

  8. Complex Analysis of the Stellar Binary V446\\,Cep; A New Massive Eclipsing Binary in Cepheus\\,OB2 Association

    CERN Document Server

    Cakirli, O; Sipahi, E; Frasca, A; Catanzaro, G

    2014-01-01

    We present new spectroscopic observations of the early type, double-lined eclipsing binary V446\\,Cep. The radial velocities and the photometric data obtained by $Hipparcos$ were analysed for deriving the astrophysical parameters of the components. Masses and radii were determined as M$_p$=17.94$\\pm$1.16 M$_{\\odot}$ and R$_p$=8.33$\\pm$0.29 R$_{\\odot}$, M$_s$=2.64$\\pm$0.30 M$_{\\odot}$ and R$_s$=2.13$\\pm$0.10 R$_{\\odot}$ for the components of V446\\,Cep. Our analyses show that V446\\,Cep is a detached Algol-type system. Based on the position of the components plotted on the theoretical Hertzsprung-Russell diagram, we estimate that the age of V446\\,Cep is about 10 Myr, neglecting the effects of mass-loss and mass exchange between the components. Using the UBVJHK magnitudes and interstellar absorption we estimated the mean distance to the system V446\\,Cep as 1100$\\pm$62\\,pc.

  9. Crystallization and preliminary X-ray analysis of binary and ternary complexes of Haloferax mediterranei glucose dehydrogenase

    International Nuclear Information System (INIS)

    Single crystals of binary and ternary complexes of wild-type and D38C mutant H. mediterranei glucose dehydrogenase have been obtained by the hanging-drop vapour-diffusion method. Haloferax mediterranei glucose dehydrogenase (EC 1.1.1.47) belongs to the medium-chain alcohol dehydrogenase superfamily and requires zinc for catalysis. In the majority of these family members, the catalytic zinc is tetrahedrally coordinated by the side chains of a cysteine, a histidine, a cysteine or glutamate and a water molecule. In H. mediterranei glucose dehydrogenase, sequence analysis indicates that the zinc coordination is different, with the invariant cysteine replaced by an aspartate residue. In order to analyse the significance of this replacement and to contribute to an understanding of the role of the metal ion in catalysis, a range of binary and ternary complexes of the wild-type and a D38C mutant protein have been crystallized. For most of the complexes, crystals belonging to space group I222 were obtained using sodium/potassium citrate as a precipitant. However, for the binary and non-productive ternary complexes with NADPH/Zn, it was necessary to replace the citrate with 2-methyl-2,4-pentanediol. Despite the radical change in conditions, the crystals thus formed were isomorphous

  10. On the computational complexity of binary and analog symmetric hopfield nets

    Science.gov (United States)

    Sima; Orponen; Antti-Poika

    2000-12-01

    We investigate the computational properties of finite binary- and analog-state discrete-time symmetric Hopfield nets. For binary networks, we obtain a simulation of convergent asymmetric networks by symmetric networks with only a linear increase in network size and computation time. Then we analyze the convergence time of Hopfield nets in terms of the length of their bit representations. Here we construct an analog symmetric network whose convergence time exceeds the convergence time of any binary Hopfield net with the same representation length. Further, we prove that the MIN ENERGY problem for analog Hopfield nets is NP-hard and provide a polynomial time approximation algorithm for this problem in the case of binary nets. Finally, we show that symmetric analog nets with an external clock are computationally Turing universal. PMID:11112262

  11. Context-adaptive binary arithmetic coding with precise probability estimation and complexity scalability for high-efficiency video coding

    Science.gov (United States)

    Karwowski, Damian; Domański, Marek

    2016-01-01

    An improved context-based adaptive binary arithmetic coding (CABAC) is presented. The idea for the improvement is to use a more accurate mechanism for estimation of symbol probabilities in the standard CABAC algorithm. The authors' proposal of such a mechanism is based on the context-tree weighting technique. In the framework of a high-efficiency video coding (HEVC) video encoder, the improved CABAC allows 0.7% to 4.5% bitrate saving compared to the original CABAC algorithm. The application of the proposed algorithm marginally affects the complexity of HEVC video encoder, but the complexity of video decoder increases by 32% to 38%. In order to decrease the complexity of video decoding, a new tool has been proposed for the improved CABAC that enables scaling of the decoder complexity. Experiments show that this tool gives 5% to 7.5% reduction of the decoding time while still maintaining high efficiency in the data compression.

  12. Stability of Rare Earth Ion-N,N′-bis(2′-Pyridine)methyl-1,10-Phenanthroline-2,9-Dimethanmine Binary Complexes

    Institute of Scientific and Technical Information of China (English)

    刘天府; 王中明; 林华宽; 朱守荣; 徐猛; 陈云悌

    2003-01-01

    The stability constants of binary complexes Ln-L (Ln=La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, L=N, N′-bis(2′-pyridine)methyl-1,10-phenanthroline-2,9- dimethanamine) were determined by pH potentiometric titration method at 25±0.1 ℃ in 0.1 mol*L-1 NaClO4. The probable structures of the corresponding complexes were proposed. The influence of the metal ions to the stability of binary complexes and the stability difference between the complexes of rare earth ion and the corresponding complexes of Co2+, Ni2+, Cu2+ ions were discussed. The stability constants of the corresponding binary complex of radioactive Pm3+ ion were estimated by linear regression.

  13. Study on mapping Quantitative Trait Loci for animal complex binary traits using Bayesian-Markov chain Monte Carlo approach

    Institute of Scientific and Technical Information of China (English)

    LIU; Jianfeng; ZHANG; Yuan; ZHANG; Qin; WANG; Lixian; ZHANG; Jigang

    2006-01-01

    It is a challenging issue to map Quantitative Trait Loci (QTL) underlying complex discrete traits, which usually show discontinuous distribution and less information, using conventional statistical methods. Bayesian-Markov chain Monte Carlo (Bayesian-MCMC) approach is the key procedure in mapping QTL for complex binary traits, which provides a complete posterior distribution for QTL parameters using all prior information. As a consequence, Bayesian estimates of all interested variables can be obtained straightforwardly basing on their posterior samples simulated by the MCMC algorithm. In our study, utilities of Bayesian-MCMC are demonstrated using simulated several animal outbred full-sib families with different family structures for a complex binary trait underlied by both a QTL and polygene. Under the Identity-by-Descent-Based variance component random model, three samplers basing on MCMC, including Gibbs sampling, Metropolis algorithm and reversible jump MCMC, were implemented to generate the joint posterior distribution of all unknowns so that the QTL parameters were obtained by Bayesian statistical inferring. The results showed that Bayesian-MCMC approach could work well and robust under different family structures and QTL effects. As family size increases and the number of family decreases, the accuracy of the parameter estimates will be improved. When the true QTL has a small effect, using outbred population experiment design with large family size is the optimal mapping strategy.

  14. New binary and ternary platinum(II) formamidine complexes: Synthesis, characterization, structural studies and in-vitro antitumor activity

    Science.gov (United States)

    Soliman, Ahmed A.; Alajrawy, Othman I.; Attaby, Fawzy A.; Linert, W.

    2016-07-01

    A series of new binary and ternary platinum(II) complexes of the type [Pt(L1-4)Cl2].xH2O and [Pt(L1-4)ox].xH2O where L = formamidine ligands and ox = oxalate, have been synthesized and characterized by elemental analyses, magnetic susceptibility, UV-vis, infrared (IR), mass spectroscopy, thermal analysis and theoretical calculations. The spectroscopic data indicated that the formamidine ligands act as bidentate N2 donors. The complexes (1-8) are diamagnetic and the optimization of their structures indicated that the geometry is distorted square planar with Cl-Pt-Cl, O-Pt-O and N-Pt-N bond angles ranged 81.73°-95.82° which is acceptable for the heteroleptic complexes. The electronic energies (a.u.) of the complexes (-893.53 to -1989.84) indicate that the complexes are more stable than the ligands. The energies of the HOMO (-0.218 to -0.244) and LUMO (-.0111to -0.134) orbitals of the complexes were negative which indicates that the complexes are stable compounds. The dipole moment of the complexes (6.23-19.89 Debye) indicates that the complexes are polarized. The complexes are thermally stable as shown from their relatively higher overall activation energies (889-2066 kJ mol-1). The complexes are proved to have a good cytotoxicity with IC50 (μM) against MCF-7 (0.040-0.117), HCT-116 (0.085-0.119) and HepG-2 (0.058-0.131) cell lines, which open the field for further application as antitumor compounds.

  15. On the complexity of the binary expansions of algebraic irrational numbers (survey)

    Science.gov (United States)

    Kaneko, Hajime

    2010-07-01

    Borel conjectured that all irrational numbers are normal in any integral base α. For each positive number ξ and integer α greater than 1, ξ is normal in base α if and only if the sequence ξαn (n = 0,1,…) is uniformly distributed modulo 1. In this paper we survey not only the digit of algebraic irrational numbers in integral base but also the fractional parts of geometric progressions whose common ratios are algebraic numbers greater than 1. In our main results, we give new lower bounds for the number of digit changes in the binary expansions of algebraic irrational numbers.

  16. Binary and ternary complexation of NpO{sub 2}{sup +} with carboxylate and aminocarboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Punam [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Van Luik, Abraham E. [Department of Energy, Carlsbad Field Office, NM (United States)

    2014-11-01

    The complex formation of NpO{sub 2}{sup +} with carboxylates: oxalic acid (Ox), malonic acid (Mal) succinic acid (Suc); glutaric acid (Glu), methylmalonic acid (Memal), oxydiacetic acid (ODA), TDA (thiodiacetic acid) and citric acid (Cit) and aminocarboxylates: iminodiacetic acid (IDA), methyliminodiacetic acid (MIDA), nitrilotriacetic acid (NTA), 2-hydroxyethylethylenediamine triacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) was studied by solvent extraction in 6.60 m NaClO{sub 4} at 25 C. The formation of only the 1: 1 NpO{sub 2}{sup +} complex was observed with the ligands under investigation. The complexation of NpO{sub 2}{sup +} with Ox, IDA, ODA and TDA was also measured at variable temperatures ranging from 25-60 C in 6.60 m NaClO{sub 4}. Results show that the complexation of NpO{sub 2}{sup +} with these ligands increases with increasing temperature. The enthalpy and entropy of complexation of NpO{sub 2}{sup +} were calculated from the temperature dependence of the stability constants using the Van't Hoff equation. Additionally, the formation of an aqueous ternary complex of the form NpO{sub 2}(X)(L) (X = EDTA or HEDTA; L = Ox or ODA) was identified for NpO{sub 2}{sup +} at 25 C. Stabilities of these complexes are measured and discussed in term of their structures and basicities.

  17. Enriching gender in PER: A binary past and a complex future

    CERN Document Server

    Traxler, Adrienne L; Blue, Jennifer; Barthelemy, Ramón

    2015-01-01

    In this article, we draw on previous reports from physics, science education, and women's studies to propose a more nuanced treatment of gender in physics education research (PER). A growing body of PER examines gender differences in participation, performance, and attitudes toward physics. We have three critiques of this work: (1) it does not question whether the achievements of men are the most appropriate standard, (2) individual experiences and student identities are undervalued, and (3) the binary model of gender is not questioned. Driven by these critiques, we propose a conception of gender that is more up-to-date with other fields and discuss gender-as-performance as an extended example. We also discuss work on the intersection of identities [e.g., gender with race and ethnicity, socioeconomic status, lesbian, gay, bisexual, and transgender (LGBT) status], much of which has been conducted outside of physics. Within PER, some studies examine the intersection of gender and race, and identify the lack of ...

  18. Complex Analysis of the Stellar Binary HD25811; A Subgiant System

    CERN Document Server

    Al-Wardat, Mashhoor A; Al-thyabat, Ahmed

    2013-01-01

    The visually close binary system HD25811 is analyzed to estimate its physical and geometrical parameters in addition to its spectral type and luminosity class. The method depends on obtaining the best fit between the entire observational spectral energy distribution (SED) of the system and synthetic SEDs created by atmospheric modeling of the individual components, consistent with the system's modified orbital elements. The parameters of the individual components of the system are derived as: $T_{\\rm eff}^{\\rm a} =6850\\pm50$\\,K, $T_{\\rm eff}^{\\rm b} =7000\\pm50$\\,K, log $g_{\\rm a}=4.04\\pm0.10$, log $g_{\\rm b}=4.15\\pm0.10$, $R_{\\rm a}=1.96\\pm0.20$\\,R$_{\\odot}$, $R_{\\rm b}=1.69\\pm0.20$\\,R$_{\\odot}$, $M_{va}=1.97\\pm0.20$, $M_{vb}=2.19\\pm0.20$, $L_a= 7.59\\pm0.70 L_\\odot, L_b= 6.16\\pm0.70 L_\\odot$ with dynamical parallax $\\pi(\\textrm{mas})=5.095\\pm 0.095$. The analysis shows that the system consists of a $1.55M_{\\odot}$ F2 primary star and a less evolved $1.50M_{\\odot}$ F1 secondary subgiant star with ages around 2...

  19. Spectrophotometric and conductometric study of the complexation of N-salicylidene-2-aminophenol with Cu2+ in methanol + 1,4-dioxane binary solutions

    Directory of Open Access Journals (Sweden)

    Biswas Rashmidipta

    2014-01-01

    Full Text Available The complexation reaction between N-salicylidene-2-aminophenol, abbreviated as SAP, with Cu2+ ion was studied in binary mixtures of methanol and 1,4-dioxane by using conductometric and spectrophotometric method at different temperatures. The stability constants (Kf for the 1:1 complex, Cu2+-SAP, were calculated from computer fitting of absorbance and molar conductance data against various mole ratios (cM:cL or cL:cM in different binary solvent mixtures. A non-linear behaviour was observed for the variation of logKf for the complex against the solvent compositions. Various thermodynamic parameters (ΔH, ΔS and ΔG for the formation of Cu2+-SAP complex were determined from the temperature dependence of stability constants (Kf. The overall results showed that the complexation reaction is entropy driven and is affected by the nature and composition of the mixed solvents.

  20. Algorithmic complexity for short binary strings applied to psychology: a primer.

    Science.gov (United States)

    Gauvrit, Nicolas; Zenil, Hector; Delahaye, Jean-Paul; Soler-Toscano, Fernando

    2014-09-01

    As human randomness production has come to be more closely studied and used to assess executive functions (especially inhibition), many normative measures for assessing the degree to which a sequence is randomlike have been suggested. However, each of these measures focuses on one feature of randomness, leading researchers to have to use multiple measures. Although algorithmic complexity has been suggested as a means for overcoming this inconvenience, it has never been used, because standard Kolmogorov complexity is inapplicable to short strings (e.g., of length l ≤ 50), due to both computational and theoretical limitations. Here, we describe a novel technique (the coding theorem method) based on the calculation of a universal distribution, which yields an objective and universal measure of algorithmic complexity for short strings that approximates Kolmogorov-Chaitin complexity.

  1. Similar strength of the NH⋯O and NH⋯S hydrogen bonds in binary complexes

    DEFF Research Database (Denmark)

    Andersen, Cecilie Lindholm; Jensen, Christine S.; Mackeprang, Kasper;

    2014-01-01

    The weakly interacting complexes of dimethylamine with dimethyl ether (DMA-DME) and with dimethylsulfide (DMA-DMS) have been detected in the gas phase using Fourier transform infrared spectroscopy at room temperature. The observed redshift of the fundamental NH-stretching frequency was found...

  2. Conductance Studies on Complex Formation between c-Methylcalix[4]resorcinarene and Titanium (III in Acetonitrile-H2O Binary Solutions

    Directory of Open Access Journals (Sweden)

    Naghmeh Saadati

    2013-09-01

    Full Text Available Calixresorcinarenes have proved to be unique molecules for molecular recognition via hydrogen bonding, hydrophobic and ionic interactions with suitable substrates such as cations. The study of the interactions involved in the complexation of different cations with calixresorcinarenes in solvent mixtures is important for a better understanding of the mechanism of biological transport, molecular recognition, and other analytical applications. This article summarizes different aspects of the complexes of the Ti3+ metal cation with c-methylcalix[4]resorcinarene (CMCR as studied by conductometry in acetonitrile (AN–water (H2O binary mixtures at different temperatures. Conductance data show that the metal cation/ligand (ML stoichiometry of the complexes in solution is 1:1 in all cases. Non-linear behaviour was observed for the variation of logKf of the complexes vs. the composition of the binary solvent mixtures. Selectivity of CMCR for the Ti3+ cation is sensitive to solvent composition; in some cases and at certain compositions of the mixed solvent systems, the selectivity order is changed. Values of thermodynamic parameters (, for formation of the CMCR–Ti3+ complexes in AN–H2O binary systems were obtained from the temperature dependence of stability constants, and the results show that the thermodynamics of complexation reactions are affected by the nature and composition of the mixed solvents.

  3. Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates.

    Science.gov (United States)

    López-Zavala, Alonso A; Quintero-Reyes, Idania E; Carrasco-Miranda, Jesús S; Stojanoff, Vivian; Weichsel, Andrzej; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R

    2014-09-01

    Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012), J. Bioenerg. Biomembr. 44, 325-331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2'-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism.

  4. Modeling of the Vela complex including the Vela supernova remnant, the binary system gamma2 Velorum, and the Gum nebula

    CERN Document Server

    Sushch, Iurii; Neronov, Andrii

    2010-01-01

    We study the geometry and dynamics of the Vela complex including the Vela supernova remnant (SNR), the binary system gamma2 Velorum and the Gum nebula. We show that the Vela SNR belongs to a subclass of non-Sedov adiabatic remnants in a cloudy interstellar medium (ISM), the dynamics of which is determined by the heating and evaporation of ISM clouds. We explain observable characteristics of the Vela SNR with a SN explosion with energy 1.4 x 10^50 ergs near the step-like boundary of the ISM with low intercloud densities (~ 10^{-3} cm^{-3}) and with a volume-averaged density of clouds evaporated by shock in the north-east (NE) part about four times higher than the one in the south-west (SW) part. The observed asymmetry between the NE and SW parts of the Vela SNR could be explained by the presence of a stellar wind bubble (SWB) blown by the nearest-to-the Earth Wolf-Rayet (WR) star in the gamma2 Velorum system. We show that the size and kinematics of gamma2 Velorum SWB agree with predictions of numerical calcula...

  5. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose.

    Science.gov (United States)

    Grizot, Sylvestre; Salem, Michèle; Vongsouthi, Vanida; Durand, Lionel; Moreau, François; Dohi, Hirofumi; Vincent, Stéphane; Escaich, Sonia; Ducruix, Arnaud

    2006-10-20

    Lipopolysaccharides constitute the outer leaflet of the outer membrane of Gram-negative bacteria and are therefore essential for cell growth and viability. The heptosyltransferase WaaC is a glycosyltransferase (GT) involved in the synthesis of the inner core region of LPS. It catalyzes the addition of the first L-glycero-D-manno-heptose (heptose) molecule to one 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue of the Kdo2-lipid A molecule. Heptose is an essential component of the LPS core domain; its absence results in a truncated lipopolysaccharide associated with the deep-rough phenotype causing a greater susceptibility to antibiotic and an attenuated virulence for pathogenic Gram-negative bacteria. Thus, WaaC represents a promising target in antibacterial drug design. Here, we report the structure of WaaC from the Escherichia coli pathogenic strain RS218 alone at 1.9 A resolution, and in complex with either ADP or the non-cleavable analog ADP-2-deoxy-2-fluoro-heptose of the sugar donor at 2.4 A resolution. WaaC adopts the GT-B fold in two domains, characteristic of one glycosyltransferase structural superfamily. The comparison of the three different structures shows that WaaC does not undergo a domain rotation, characteristic of the GT-B family, upon substrate binding, but allows the substrate analog and the reaction product to adopt remarkably distinct conformations inside the active site. In addition, both binary complexes offer a close view of the donor subsite and, together with results from site-directed mutagenesis studies, provide evidence for a model of the catalytic mechanism.

  6. Thermodynamics of Binary and Ternary Solutions of Multivalent Electrolytes with Formation of 1: 1 and 1: 2 Complexes, within the Mean Spherical Approximation

    International Nuclear Information System (INIS)

    The mean activity (γ±) and osmotic (Φ) coefficients for binary and ternary aqueous solutions of trivalent electrolytes (mainly made up of lanthanide salts) are described in the framework of the primitive model of ionic solutions, using the binding mean spherical approximation (BiMSA). This model, based on the Wertheim formalism, accounts for (chemical or electrostatic) association of ions. In this work, the multivalent cation and the anion are allowed to form 1: 1 (pairs) and 1: 2 (trimers) complexes. Expressions for γ±) and Φ are given which satisfy the Gibbs-Duhem relation. The model involves concentration-dependent cation size and effective relative permittivity, variations that can be interpreted in terms of solvent effects. The theory is applied to aqueous solutions of binary and ternary mixtures at 25 C with common anion. (authors)

  7. Complex Macrophase-Separated Nanostructure Induced by Microphase Separation in Binary Blends of Lamellar Diblock Copolymer Thin Films

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.;

    2014-01-01

    The nanostructures of thin films spin-coated from binary blends of compositionally symmetric polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GISAXS)...

  8. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    Science.gov (United States)

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent.

  9. Long-Chain Fatty Acids Elicit a Bitterness-Masking Effect on Quinine and Other Nitrogenous Bitter Substances by Formation of Insoluble Binary Complexes.

    Science.gov (United States)

    Ogi, Kayako; Yamashita, Haruyuki; Terada, Tohru; Homma, Ryousuke; Shimizu-Ibuka, Akiko; Yoshimura, Etsuro; Ishimaru, Yoshiro; Abe, Keiko; Asakura, Tomiko

    2015-09-30

    We have previously found that fatty acids can mask the bitterness of certain nitrogenous substances through direct molecular interactions. Using isothermal titration calorimetry, we investigated the interactions between sodium oleate and 22 bitter substances. The hydrochloride salts of quinine, promethazine, and propranolol interacted strongly with fatty acids containing 12 or more carbon atoms. The (1)H NMR spectra of these substances, obtained in the presence of the sodium salts of the fatty acids in dimethyl sulfoxide, revealed the formation of hydrogen bonds between the nitrogen atoms of the bitter substances and the carboxyl groups of the fatty acids. When sodium laurate and the hydrochloride salt of quinine were mixed in water, an equimolar complex formed as insoluble heterogeneous needlelike crystals. These results suggested that fatty acids interact directly with bitter substances through hydrogen bonds and hydrophobic interactions to form insoluble binary complexes that mask bitterness.

  10. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  11. Synthesis, characterization and thermal studies of binary and/or mixed ligand complexes of Cd(II), Cu(II), Ni(II) and Co(III) based on 2-(Hydroxybenzylidene) thiosemicarbazone: DNA binding affinity of binary Cu(II) complex

    Science.gov (United States)

    Saif, M.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Fouad, R.

    A new series of metal complexes of Cd(II), Cu(II), Ni(II) and Co(III) with Schiff base ligand, H2L, 2-(Hydroxybenzylidene) thiosemicarbazone were synthesized. The mixed ligand complexes were prepared by using glycine (Gly), 2-aminopyridine (2-Ampy) and 1,10-phenanthroline (Phen) as secondary ligands. The structure of these complexes was identified and confirmed by elemental analysis, molar conductivity, UV-Vis, FT-IR and 1H NMR spectroscopy and magnetic moment measurements as well as TG-DSC technique. The discussions of the prepared complexes indicate that the ligand behaves as a monoanionic tridentate ligand through ONS donor sites. Thermal studies suggested a mechanism for the degradation of the metal complexes as a function of temperature supporting the chelation modes and showed the possibility of obtaining new complexes pyrolytically in the solid state which cannot be synthesized from the solution. The absorption studies support that the binary Cu(II) complex exhibits a significant binding affinity to HS-DNA through intercalative mode.

  12. Coordination equilibria in the complex formation of guanylurea with CuII: Formation and stability of binary CuII-guanylurea and ternary CuII-guanylurea-glycinate complexes

    Indian Academy of Sciences (India)

    Tannistha Roy Barman; G N Mukherjee

    2008-07-01

    Combined pH-metric and spectrophotometric investigations on the complex formation equilibria of CuII with guanylurea (H$_{2}^{1}$NC(=O) 2NH.C(=3NH) 4NH2), hereafter, GuH, in the absence and in the presence of glycine (GlyH), in aqueous solution indicates variety of binary and mixed-ligand complexes: Cu(Gu)+, Cu(Gu)(OH); Cu(Gu)2, Cu(Gu-H)(Gu)-, Cu(Gu-H)$_{2}^{2-}$, Cu(Gu-H)(Gu-2H)3-; Cu(Gly)+, Cu(Gly) (OH); Cu(Gly)(Gu); Cu(Gly)(Gu-H)-, Cu(Gly)(Gu-2H)2-; (Gly)Cu(Gu)Cu(Gly)+, (Gly)Cu(Gu-H)Cu(Gly) and (Gly)Cu(Gu-2H)Cu(Gly)-. At pH < 6, guanylurea anion (Gu-) acts as a [(C=O), 3N-] or [=1NH, 3N-] bidentate ligand and above pH 7 it is transformed through a coordination equilibrium into a (=1N-, =3N-) bidentate ligand, similar to biguanide dianion. Occurrence of dinuclear complex species, (Gly) Cu(Gu)Cu(Gly)+, in the complexation equilibria, indicates bridging double bidentate [(1NH2, 3N-), (C=O, 4NH2)] and/or [(1NH2, 4NH2), (C=O, 3N-)] chelation by Gu- ion in an isomeric equilibrium. Above pH 6.5, the dinuclear complex decomposes mostly to the mononuclear species, Cu(Gly)(OH) and Cu(Gu)(OH) and only partly deprotonates to (Gly)Cu(Gu-H)Cu(Gly) and (Gly)Cu(Gu-2H)Cu(Gly)-. Electronic spectral shifts, with change of pH have been correlated with the possible modes of coordination of guanylurea species.

  13. Binary Planets

    Science.gov (United States)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  14. Robust hybrid raspberry-like hollow particles with complex structures: a facile method of swelling polymerization towards composite spheres.

    Science.gov (United States)

    Zhang, Xu; Yao, Xiaohui; Wang, Xiaomei; Feng, Lei; Qu, Jiayan; Liu, Pange

    2014-02-14

    A novel robust hybrid raspberry-like TiO2/PS hollow particles with complex double-shelled structures have been fabricated in large quantities by a facile swelling polymerization approach based on commercially available hollow polystyrene (PS) spheres. The crosslinked-PS protrusions are wedged firmly into the TiO2 shell, making the resultant particles both chemically and mechanically robust. By simply tuning the monomer concentration, the hierarchical morphology (the size and number of protrusion) of the surfaces can be well-controlled. Due to the dual-sized hierarchical morphology, the particulate coating possesses superhydrophobicity (water contact angle ≈ 161°). Moreover, the well-compartmentalized character is similar to that of typical Janus particles. The special particles with interfacial activity can stabilize water-in-toluene (w/o) emulsions well. Meanwhile, a TiO2 double-shelled hollow sphere with a complex structure is achieved by calcination or solvent treatment. All these unique features derived from a readily available method will endow the products with a broader range of applications.

  15. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  16. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  17. Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3

    International Nuclear Information System (INIS)

    The binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3 have been studied by ab initio molecular orbital theory and natural bond orbital (NBO) analysis. Most of the complexes involving N2, O2, F2, CO, and CO2 are found to have both hydrogen-bonded and non-hydrogen-bonded structures. The NBO analysis provides a consistent picture of the bonding in this entire family of complexes in terms of charge transfer (CT) interactions, showing the close correlation of these interactions with the van der Waals penetration distance and dissociation energy of the complex. Contrary to previous studies based on the Kitaura--Morokuma analysis, we find a clear theoretical distinction between H-bonded and non-H-bonded complexes based on the strength of CT interactions. Charge transfer is generally stronger in H-bonded than in non-H-bonded complexes. It plays an intermediate role in non-H-bonded CO2 complexes which have been studied experimentally. However, the internal rotation barrier (1 kcal mol-1) of the H2OxxxCO2 complex is found to be primarily of electrostatic origin with only a small (π-type) CT contribution. The role of electrostatic interactions, effect of electron correlation, and comparison of theory with experiment are also discussed

  18. Relationship between complex compositions and their bactericidal activity in binary mixture of sodium 1-octanesulfonate and lanthanum (III) chloride; Okutansuruhon san natoriumu-enka rantan (III) kongo suiyoekichu ni keiseisareru fukugotai no sosei to sono sakkin sayo tono kanrensei

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, K.; Furuta, T. [Saraya Co. Ltd., Osaka (Japan)

    1997-05-10

    The composition of complexes formed in aqueous solution consisting of a binary mixture of sodium 1-octanesulfonate (NaOS) and lanthanum (III) chloride (LaCl3) was studied by measuring surface tension, electric conductivity and proton spin-lattice relaxation time. In the molar ratio of octanesulfonic anion and lanthanum (III) cation below 0.1, a 3:1-complex was formed. The area per the 3:1-complex absorbed at air-water interface was 208 angstrom{sup 2} on the assumption of monomolecular layer. The formations of 2:1- and 1:1-complex were found in the vicinity of 0.5 and above 1.2 of LaCl3/NaOS, respectively. Whereas, when LaCl3 was added to 15 mol m{sup -3} NaOS, the bactericidal activity of the mixed solution against Escherichia coli ATCC 25922 markedly increased with increasing the molar ratio (LaCl3/NaOS) up to 1.0 and finally remained constant. The contribution of complexes on the bactericidal activity was estimated at 1.5:1:1 from the combination of data of complex distributions and bactericidal activity. 13 refs., 8 figs., 1 tab.

  19. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  20. Binary mask programmable hologram.

    Science.gov (United States)

    Tsang, P W M; Poon, T-C; Zhou, Changhe; Cheung, K W K

    2012-11-19

    We report, for the first time, the concept and generation of a novel Fresnel hologram called the digital binary mask programmable hologram (BMPH). A BMPH is comprised of a static, high resolution binary grating that is overlaid with a lower resolution binary mask. The reconstructed image of the BMPH can be programmed to approximate a target image (including both intensity and depth information) by configuring the pattern of the binary mask with a simple genetic algorithm (SGA). As the low resolution binary mask can be realized with less stringent display technology, our method enables the development of simple and economical holographic video display.

  1. Mutual separation characteristics for binary oxides Y2O3-Ln2O3(Ln = Sc,La,Nd,Sm) using stepwise selective chlorination-chemical vapor transport reaction mediated by vapor complexes KLnCl4

    Institute of Scientific and Technical Information of China (English)

    孙艳辉; 陈振飞; 王之昌

    2004-01-01

    Mutual separation characteristics for binary oxide mixtures Y2 O3-Sc2 O3, Y2 O3-La2 O3, Y2 O3-Nd2 O3and Y2 O3-Sm2 O3 using a stepwise selective chlorination-chemical vapor transport(SC-CVT) reaction mediated by vapor complexes KLnCl4 were investigated. The total transported yields of the chlorides produced from the oxide mixtures are in the order of NdCl3 >SmCl3 >LaCl3 >YCl3 >ScCl3 , the main deposition temperature of the chlorides is in the order of ScCl3 <YCl3 <SmCl3 <NdCl3 <LaCl3, and the largest separation factor values are 1 100 for Y . Sc,14.88 for Y : La, 9.86 for Y . Nd and 16.45 for Y . Sm in the temperature range from 1 000 K to 1 120 K, while 157.7 for La : Y, 51.6 for Nd : Y and 12.4 for Sm : Y in the temperature range from 1 200 K to 1 300 K, respectively. The results were discussed on the difference of KScCl4, KYCl4 and KLnCl4 and the selective chlorination of binary oxides at 800 K. Furthermore, the separation characteristics of vapor rare earth complex KLnCl4 were studied compared with those of LnAlnCl3n+3.

  2. PHOEBE: PHysics Of Eclipsing BinariEs

    Science.gov (United States)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  3. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  4. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  5. Crystal structure of the binary complex of cobalt and zinc chlorides with carbamide [Co(OCN2H4)5(H2O)][ZnCl4

    International Nuclear Information System (INIS)

    Mixed single crystals of [Co(OCN2H4)5(H2O)][ZnCl4] were grown by the isothermal evaporation of an aqueous solution. The crystal structure of this complex was established by X-ray diffraction (R = 0.052 based on 7003 reflections). The crystals consist of [Co(OCN2H4)5(H2O)]2+ cations containing Co atoms in an octahedral coordination and [ZnCl4]2-] anions containing Zn atoms in a tetrahedral coordination. The carbamide molecules are involved in both intramolecular and interionic hydrogen bonds. The H2O molecule forms hydrogen bonds with the anions.

  6. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  7. The Crystal Structure of a Binary Complex of Two Pseudopilins: EpsI And EpsJ From the Type 2 Secretion System of Vibrio Vulnificus

    Energy Technology Data Exchange (ETDEWEB)

    Yanez, M.E.; Korotkov, K.V.; Abendroth, J.; Hol, W.G.J.

    2009-05-28

    Type II secretion systems (T2SS) translocate virulence factors from the periplasmic space of many pathogenic bacteria into the extracellular environment. The T2SS of Vibrio cholerae and related species is called the extracellular protein secretion (Eps) system that consists of a core of multiple copies of 11 different proteins. The pseudopilins, EpsG, EpsH, EpsI, EpsJ and EpsK, are five T2SS proteins that are thought to assemble into a pseudopilus, which is assumed to interact with the outer membrane pore, and may actively participate in the export of proteins. We report here biochemical evidence that the minor pseudopilins EpsI and EpsJ from Vibrio species interact directly with one another. Moreover, the 2.3 {angstrom} resolution crystal structure of a complex of EspI and EpsJ from Vibrio vulnificus represents the first atomic resolution structure of a complex of two different pseudopilin components from the T2SS. Both EpsI and EpsJ appear to be structural extremes within the family of type 4a pilin structures solved to date, with EpsI having the smallest, and EpsJ the largest, 'variable pilin segment' seen thus far. A high degree of sequence conservation in the EpsI:EpsJ interface indicates that this heterodimer occurs in the T2SS of a large number of bacteria. The arrangement of EpsI and EpsJ in the heterodimer would correspond to a right-handed helical character of proteins assembled into a pseudopilus.

  8. Binaries in globular clusters

    Science.gov (United States)

    Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin

    1992-01-01

    Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.

  9. The binary proletariat

    OpenAIRE

    Bolt, Nate

    2000-01-01

    In the endless quest to transform itself, capitalism has spawned a new working class. The proletariat was an essential product of the industrial revolution, and the lighter, more efficient capitalism of the digital revolution has created the Binary Proletariat.

  10. Eclipsing Binary Pulsars

    CERN Document Server

    Freire, P C C

    2004-01-01

    The first eclipsing binary pulsar, PSR B1957+20, was discovered in 1987. Since then, 13 other eclipsing low-mass binary pulsars have been found, 12 of these are in globular clusters. In this paper we list the known eclipsing binary pulsars and their properties, with special attention to the eclipsing systems in 47 Tuc. We find that there are two fundamentally different groups of eclipsing binary pulsars; separated by their companion masses. The less massive systems (M_c ~ 0.02 M_sun) are a product of predictable stellar evolution in binary pulsars. The systems with more massive companions (M_c ~ 0.2 M_sun) were formed by exchange encounters in globular clusters, and for that reason are exclusive to those environments. This class of systems can be used to learn about the neutron star recycling fraction in the globular clusters actively forming pulsars. We suggest that most of these binary systems are undetectable at radio wavelengths.

  11. Stellar collisions during binary-binary and binary-single star interactions

    NARCIS (Netherlands)

    J.M. Fregeau; P. Cheung; S.F. Portegies Zwart; F.A. Rasio

    2004-01-01

    Physical collisions between stars occur frequently in dense star clusters, either via close encounters between two single stars, or during strong dynamical interactions involving binary stars. Here we study stellar collisions that occur during binary-single and binary-binary interactions, by perform

  12. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  13. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime...... mask using a directional system and a method for correcting errors in the target binary mask. The last part of the thesis, proposes a new method for objective evaluation of speech intelligibility.......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...

  14. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  15. Binary Popldation Synthcsis Study

    Institute of Scientific and Technical Information of China (English)

    HAN Zhanwen

    2011-01-01

    Binary population synthesis (BPS), an approach to evolving millions of stars (including binaries) simultaneously, plays a crucial role in our understanding of stellar physics, the structure and evolution of galaxies, and cosmology. We proposed and developed a BPS approach, and used it to investigate the formation of many peculiar stars such as hot subdwarf stars, progenitors of type la supernovae, barium stars, CH stars, planetary nebulae, double white dwarfs, blue stragglers, contact binaries, etc. We also established an evolution population synthesis (EPS) model, the Yunnan Model, which takes into account binary interactions for the first time. We applied our model for the origin of hot subdwarf stars in the study of elliptical galaxies and explained their far-UV radiation.

  16. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  17. Hypervelocity binary stars: smoking gun of massive binary black holes

    CERN Document Server

    Lu, Youjun; Lin, D N C

    2007-01-01

    The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

  18. Milli-arcsecond Binaries

    CERN Document Server

    Torres, R M; Mioduszewki, A; Rodríguez, L F

    2008-01-01

    As part of an astrometric program, we have used the Very Long Baseline Array to measure the trigonometric parallax of several young stars in the Taurus and Ophiuchus star-forming regions with great accuracy. Additionally, we have obtained an unprecedented sample of high-resolution (~ 1 mas) images of several young stellar systems. These images revealed that about 70% of the stars in our sample are very tight binary stars (with separations of a few mas). Since it is highly unlikely that 70% of all stars are such tight binaries, we argue that selection effects are at work.

  19. Binary Cumulant Varieties

    CERN Document Server

    Sturmfels, Bernd

    2011-01-01

    Algebraic statistics for binary random variables is concerned with highly structured algebraic varieties in the space of 2x2x...x2-tensors. We demonstrate the advantages of representing such varieties in the coordinate system of binary cumulants. Our primary focus lies on hidden subset models. Parametrizations and implicit equations in cumulants are derived for hyperdeterminants, for secant and tangential varieties of Segre varieties, and for certain context-specific independence models. Extending work of Rota and collaborators, we explore the polynomial inequalities satisfied by cumulants.

  20. Structure and fate of binary WR stars: Clues from spectropolarimetry

    CERN Document Server

    Hoffman, Jennifer L

    2015-01-01

    Because most massive stars have been or will be affected by a companion during the course of their evolution, we cannot afford to neglect binaries when discussing the progenitors of supernovae and GRBs. Analyzing linear polarization in the emission lines of close binary systems allows us to probe the structures of these systems' winds and mass flows, making it possible to map the complex morphologies of the mass loss and mass transfer structures that shape their subsequent evolution. In Wolf-Rayet (WR) binaries, line polarization variations with orbital phase distinguish polarimetric signatures arising from lines that scatter near the stars from those that scatter far from the orbital plane. These far-scattering lines may form the basis for a "binary line-effect method" of identifying rapidly rotating WR stars (and hence GRB progenitor candidates) in binary systems.

  1. Formation of binary radio pulsars

    International Nuclear Information System (INIS)

    In the framework of the standard scenario of the evolution of massive binary stars a study is made of the formation of final binary systems in which at least one of the components is a neutron star. It is found that about every fortieth radio pulsar must be a member of a close binary system. This is confirmed by observations. Radio pulsars are not formed in wide binary systems, possibly because of the very slow rotation of the presupernova stars

  2. Quantum Binary Symmetric Channels

    Institute of Scientific and Technical Information of China (English)

    陈小余; 仇佩亮

    2001-01-01

    Quantum binary symmetric channels are defined via the invariance of fidelity under unitary transformations ofthe input density operators. In this definition, they not only include the most studied case of the depolarizingchannel but also other channels. We investigate the character of the latter and find the maximum of the coherentinformation to estimate the capacities of the channels.

  3. Equational binary decision diagrams

    NARCIS (Netherlands)

    Groote, J.F.; Pol, J.C. van de

    2000-01-01

    We incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tautology checkin

  4. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    CERN Document Server

    Almog, Assaf

    2014-01-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of time series of activity of their fundamental elements (such as stocks or neurons respectively). While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relationships between binary and non-binary properties of financial time series. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to replicate the observed binary/non-binary relations very well, and to mathematically...

  5. Implications of Binary Properties for Theories of Star Formation

    OpenAIRE

    Larson, Richard B.

    2000-01-01

    The overall frequency and other statistical properties of binary systems suggest that star formation is intrinsically a complex and chaotic process, and that most binaries and single stars actually originate from the decay of multiple systems. Interactions between stars forming in close proximity to each other may play an important role in the star formation process itself, for example via tidally induced accretion from disks. Some of the energetic activity of newly formed stars could be due ...

  6. Binary MEMS gas sensors

    International Nuclear Information System (INIS)

    A novel sensing mechanism for electrostatic MEMS that employs static bifurcation-based sensing and binary detection is demonstrated. It is implemented as an ethanol vapour sensor that exploits the static pull-in bifurcation. Sensor detection of 5 ppm of ethanol vapour in dry nitrogen, equivalent to a detectable mass of 165 pg, is experimentally demonstrated. Sensor robustness to external disturbances is also demonstrated. A closed-form expression for the sensitivity of statically detected electrostatic MEMS sensors is derived. It is shown that the sensitivity of static bifurcation-based binary electrostatic MEMS sensors represents an upper bound on the sensitivity of static detection for given sensor dimensions and material properties. (paper)

  7. FS CMa type binaries

    CERN Document Server

    Miroshnichenko, Anatoly

    2015-01-01

    FS CMa type stars is a group of ~70 objects formerly known as unclassified stars with the B[e] phenomenon. Their very strong emission-line spectra in combination with a nearly main-sequence luminosity suggest the binary nature for them. They possess strong IR excesses due to radiation of circumstellar dust that implies a compact distribution probably in a circumbinary disk. Our long-term spectroscopic monitoring revealed neutral metal lines, which always include that of Li I 6708 \\AA, in the spectra of some FS CMa objects indicating the presence of a cool star. We present a summary of our results with a first overview of FS CMa type binaries and review possible implications for the nature and evolutionary status of the entire group.

  8. Binary-Signal Recovery

    Science.gov (United States)

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  9. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  10. Preparation and Characterization of Binary Mixture of Efavirenz and Nicotinamide

    Directory of Open Access Journals (Sweden)

    Erizal Zaini

    2015-12-01

    Full Text Available The purpose of this study was to prepare and characterize the binary mixture of efavirenz and nicotinamide. The binary mixture of efavirenz and nicotinamide (in equimolar ratio was prepared by solid state grinding and solvent dropped grinding. Characterizations were conducted by powder X-ray diffraction (PXRD, differential thermal analysis (DTA and scanning electron microscopy (SEM analysis. Interaction of efavirenz and nicotinamide in liquid states was studied by phase solubility profile. The dissolution rate studies was conducted by using USP type II apparatus in distilled water with 0.5 % sodium lauryl sulfate. Efavirenz dissolved was determined by high performance liquid chromatography (HPLC with Acetonitrile and acetic acid 1 % as mobile phase. The diffracgram of powder X-Ray analysis showed that both efavirenz and nicotinamide are highly crystalline, and equimolar binary mixtures showed a similar diffraction peaks. Thermal analysis result showed that binary mixture of efavirenz and nicotinamide form a simple eutectic mixture with the eutectic temperature (tE was 92.7 °C. The SEM analysis depicted that efavirenz and nicotinamide are polyhedral shaped particles, while binary mixture showed a homogenous aggregates of fine needle shaped particles. Phase solubility profile of the binary mixture indicated formation of a soluble complex between efavirenz and nicotinamide in 1:1 molar. The dissolution rate of the binary mixtures were significantly higher compared to the intact efavirenz.

  11. Binary optics: Trends and limitations

    Science.gov (United States)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-08-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  12. Binaries in the Kuiper Belt

    CERN Document Server

    Noll, K S; Chiang, E I; Margot, J L; Kern, S D; Noll, Keith S.; Grundy, William M.; Chiang, Eugene I.; Margot, Jean-Luc; Kern, Susan D.

    2007-01-01

    Binaries have played a crucial role many times in the history of modern astronomy and are doing so again in the rapidly evolving exploration of the Kuiper Belt. The large fraction of transneptunian objects that are binary or multiple, 48 such systems are now known, has been an unanticipated windfall. Separations and relative magnitudes measured in discovery images give important information on the statistical properties of the binary population that can be related to competing models of binary formation. Orbits, derived for 13 systems, provide a determination of the system mass. Masses can be used to derive densities and albedos when an independent size measurement is available. Angular momenta and relative sizes of the majority of binaries are consistent with formation by dynamical capture. The small satellites of the largest transneptunian objects, in contrast, are more likely formed from collisions. Correlations of the fraction of binaries with different dynamical populations or with other physical variabl...

  13. Biclustering Sparse Binary Genomic Data

    OpenAIRE

    Van Uitert, M.; Meuleman, W.; Wessels, L. F. A.

    2008-01-01

    Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two propos...

  14. Dynamics and Habitability in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Pilat-Lohinger, Elke

    2014-01-01

    Determining planetary habitability is a complex matter, as the interplay between a planet's physical and atmospheric properties with stellar insolation has to be studied in a self consistent manner. Standardized atmospheric models for Earth-like planets exist and are commonly accepted as a reference for estimates of Habitable Zones. In order to define Habitable Zone boundaries, circular orbital configurations around main sequence stars are generally assumed. In gravitationally interacting multibody systems, such as double stars, however, planetary orbits are forcibly becoming non circular with time. Especially in binary star systems even relatively small changes in a planet's orbit can have a large impact on habitability. Hence, we argue that a minimum model for calculating Habitable Zones in binary star systems has to include dynamical interactions.

  15. Processes assessment in binary mixture plant

    Directory of Open Access Journals (Sweden)

    N. Shankar Ganesh, T. Srinivas

    2013-01-01

    Full Text Available Binary fluid system has an efficient system of heat recovery compared to a single fluid system due to a better temperature match between hot and cold fluids. There are many applications with binary fluid system i.e. Kalina power generation, vapor absorption refrigeration, combined power and cooling etc. Due to involvement of three properties (pressure, temperature and concentration in the processes evaluation, the solution is complicated compared to a pure substance. The current work simplifies this complex nature of solution and analyzes the basic processes to understand the processes behavior in power generation as well as cooling plants. Kalina power plant consists of regenerator, heat recovery vapor generator, condenser, mixture, separator, turbine, pump and throttling device. In addition to some of these components, the cooling plant consists of absorber which is similar in operation of condenser. The amount of vapor at the separator decreases with an increase in its pressure and temperature.

  16. Rotational mixing in close binaries

    CERN Document Server

    de Mink, S E; Langer, N; Yoon, S -Ch; Brott, I; Glebbeek, E; Verkoulen, M; Pols, O R

    2008-01-01

    Rotational mixing is a very important but uncertain process in the evolution of massive stars. We propose to use close binaries to test its efficiency. Based on rotating single stellar models we predict nitrogen surface enhancements for tidally locked binaries. Furthermore we demonstrate the possibility of a new evolutionary scenario for very massive (M > 40 solar mass) close (P < 3 days) binaries: Case M, in which mixing is so efficient that the stars evolve quasi-chemically homogeneously, stay compact and avoid any Roche-lobe overflow, leading to very close (double) WR binaries.

  17. Evolution of Close Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  18. Low autocorrelation binary sequences

    Science.gov (United States)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  19. Microlensing modulation by binaries

    CERN Document Server

    Dubath, F; Durrer, R; Dubath, Florian; Gasparini, Maria Alice; Durrer, Ruth

    2006-01-01

    We compute the effect of the lens quadrupole on microlensing. The time dependence of the quadrupole can lead to specific modulations of the amplification signal. We study especially binary system lenses in our galaxy. The modulation is observable if the rotation period of the system is smaller than the time over which the amplification is significant and if the impact parameter of the passing light ray is sufficiently close to the Einstein radius so that the amplification is very large. Observations of this modulation can reveal important information on the quadrupole and thus on the gravitational radiation emitted by the lens.

  20. Modeling Binary Neutron Stars

    Science.gov (United States)

    Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica

    2016-03-01

    Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.

  1. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  2. PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS

    Institute of Scientific and Technical Information of China (English)

    XuChengqian; ZhaoXiaoqun

    2002-01-01

    A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP)is proposed .A new class of block design-Difference Family Pair (DFP)is also proposed .The relationship between PCSP and DFP,the properties and exising conditions of PCSP and the recursive constructions for PCSP are given.

  3. PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS

    Institute of Scientific and Technical Information of China (English)

    Xu Chengqian; Zhao Xiaoqun

    2002-01-01

    A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.

  4. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  5. Signature Visualization of Software Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  6. Planets in evolved binary systems

    CERN Document Server

    Perets, Hagai B

    2010-01-01

    Exoplanets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Second generation planetary systems should be typically found in white dwarf binary systems, and ma...

  7. Pairing mechanisms for binary stars

    CERN Document Server

    Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L; 10.1002/asna.200811061

    2008-01-01

    Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments. Binarity is also a key ingredient in stellar population studies and is a prerequisite to calibrate the binary evolution channels. In these proceedings we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as the pairing function. Many pairing functions are frequently used by observers and computational astronomers, either for the mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. These quantities, when derived from a binary survey with a mass-limited sample of target stars, ...

  8. Modeling selective intergranular oxidation of binary alloys

    Science.gov (United States)

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-01

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 μm ahead of grain boundary crack tips was documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (˜100 s of nm). We present a mathematical kinetics model that adapts Wagner's model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.

  9. Towards Physarum Binary Adders

    CERN Document Server

    Jones, Jeff; 10.1016/j.biosystems.2010.04.005

    2010-01-01

    Plasmodium of \\emph{Physarum polycephalum} is a single cell visible by unaided eye. The plasmodium's foraging behaviour is interpreted in terms of computation. Input data is a configuration of nutrients, result of computation is a network of plasmodium's cytoplasmic tubes spanning sources of nutrients. Tsuda et al (2004) experimentally demonstrated that basic logical gates can be implemented in foraging behaviour of the plasmodium. We simplify the original designs of the gates and show --- in computer models --- that the plasmodium is capable for computation of two-input two-output gate $ \\to $ and three-input two-output $ \\to $. We assemble the gates in a binary one-bit adder and demonstrate validity of the design using computer simulation.

  10. Formation of Nanoparticles in binary polymer mixtures

    Science.gov (United States)

    Cai, Tong; Lu, Xihua; Hu, Zhibin

    2000-10-01

    Formation of Nanoparticles in binary polymer mixtures Tong CAI, Xihua LU, and Zhibin HU Department of Physics, Denton, TX76203 The nanoparticles of hydrorypropyl cellulose (HPC)-polyacrylic acid (PAA) complex have been studied using light scattering method. The formation of the nanoparticles results from the hydrogen-bonding interaction between HPC and PAA. The particle size and size distribution, characterized by dynamic light scattering, depend on the HPC concentration, PAA concentration and reactive temperature. Because HPC and PAA have been approved for use inside human body by FDA, the nanoparticle obtained in this study could be used as drug carriers for controlled release.

  11. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    Science.gov (United States)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  12. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind;

    2008-01-01

    and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results....

  13. Binary Sequences from a Pair of Elliptic Curves

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhixiong; ZHANG Ning; XIAO Guozhen

    2006-01-01

    A family of binary sequences were constructed by using an elliptic curve and its twisted curves over finite fields. It was shown that these sequences possess "good" cryptographic properties of 0-1 distribution, long period and large linear complexity. The results indicate that such sequences provide strong potential applications in cryptography.

  14. Stability of binaries. Part II: Rubble-pile binaries

    Science.gov (United States)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  15. Simulating relativistic binaries with Whisky

    Science.gov (United States)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  16. Binary nucleation beyond capillarity approximation

    NARCIS (Netherlands)

    Kalikmanov, V.I.

    2010-01-01

    Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption

  17. Magnetic braking in ultracompact binaries

    CERN Document Server

    Farmer, Alison

    2010-01-01

    Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binary's component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which a...

  18. Discs in misaligned binary systems

    CERN Document Server

    Rawiraswattana, Krisada; Goodwin, Simon P

    2016-01-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-...

  19. Cryptography with DNA binary strands.

    Science.gov (United States)

    Leier, A; Richter, C; Banzhaf, W; Rauhe, H

    2000-06-01

    Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'.

  20. AN IMPROVED DESIGN OF REVERSIBLE BINARY TO BINARY CODED DECIMAL CONVERTER FOR BINARY CODED DECIMAL MULTIPLICATION

    Directory of Open Access Journals (Sweden)

    Praveena Murugesan

    2014-01-01

    Full Text Available Reversible logic gates under ideal conditions produce zero power dissipation. This factor highlights the usage of these gates in optical computing, low power CMOS design, quantum optics and quantum computing. The growth of decimal arithmetic in various applications as stressed the need to propose the study on reversible binary to BCD converter which plays a greater role in decimal multiplication for providing faster results. The different parameters such as gate count,garbage output and constant input are more optimized in the proposed fixed bit binary to binary coded decimal converter than the existing design.

  1. Binary solution model for computation of equilibrium compositions. [Modification of NASA CEC code

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C. C.; Land, R. H.; Blander, M.

    1978-06-01

    A NASA computer program (CEC) for calculation of complex equilibrium compositions has been modified to take into account the formation of an ideal binary solution from pure condensed species. The thermodynamics of the modification are discussed. Applications are presented.

  2. Binary nucleation beyond capillarity approximation

    OpenAIRE

    Kalikmanov, V.I.

    2010-01-01

    Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption is taken into account within Gibbsian approximation. Binary clusters are treated by means of statistical-mechanical considerations: tracing out the molecular degrees of freedom of the more volatil...

  3. Clostridium difficile binary toxin CDT

    OpenAIRE

    Gerding, Dale N.; Johnson, Stuart; Rupnik, Maja; Aktories, Klaus

    2013-01-01

    Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylatio...

  4. Coalescence of Binary Neutron Stars

    OpenAIRE

    Oohara, Ken-ichi; Namamura, Takashi

    1996-01-01

    The most important sources for laser-interferometric gravitational-wave detectors like LIGO or VIRGO are catastrophic events such as coalescence of a neutron-star binary. The final phase, or the last three milliseconds, of coalescence is considered. We describe results of numerical simulations of coalescing binary neutron stars using Newtonian and post-Newtonian hydrodynamics code and then discuss recent development of our 3D GR code.

  5. Coevolution of Binaries and Gaseous Discs

    CERN Document Server

    Fleming, David P

    2016-01-01

    The recent discoveries of circumbinary planets by $\\it Kepler$ raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc, and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc that drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for $10^4$ binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentri...

  6. Dielectric studies of binary mixtures of -propyl alcohol and ethylenediamine

    Indian Academy of Sciences (India)

    B S Narwade; P G Gawali; Rekha Pande; G M Kalamse

    2005-11-01

    Dielectric constant (') and dielectric loss (") of -propyl alcohol (PA), ethylenediamine (EDA) and their binary mixtures, for different mole fractions of ethylenediamine have been experimentally measured at 11.15 GHz microwave frequency. Values of density (), viscosity () and square refractive index ($n^{2}_{D}$) of binary mixtures as well as those of pure liquids are reported. Excess square refractive index, viscosity and activation energy of viscous flow have also been estimated. These parameters have been used to explain the formation of complexes in the system.

  7. The spatial structure of planetary nebulae with binary nuclei

    International Nuclear Information System (INIS)

    The formation of the spatial structure of planetary nebulae with binary central stars is considered. It is shown that the main structure (the enhanced density area) has the form of an hour-glass or a toroid. The peripheral structure (a relatively fainter shell around the main structure) has the form of an ablate spheroid. If a planetary nebula is ionised incompletely, the observed form a peripheral structure can differ from the real form of an envelope

  8. Unsupervised learning of binary vectors

    Science.gov (United States)

    Copelli Lopes da Silva, Mauro

    In this thesis, unsupervised learning of binary vectors from data is studied using methods from Statistical Mechanics of disordered systems. In the model, data vectors are distributed according to a single symmetry-breaking direction. The aim of unsupervised learning is to provide a good approximation to this direction. The difference with respect to previous studies is the knowledge that this preferential direction has binary components. It is shown that sampling from the posterior distribution (Gibbs learning) leads, for general smooth distributions, to an exponentially fast approach to perfect learning in the asymptotic limit of large number of examples. If the distribution is non-smooth, then first order phase transitions to perfect learning are expected. In the limit of poor performance, a second order phase transition ("retarded learning") is predicted to occur if the data distribution is not biased. Using concepts from Bayesian inference, the center of mass of the Gibbs ensemble is shown to have maximal average (Bayes-optimal) performance. This upper bound for continuous vectors is extended to a discrete space, resulting in the clipped center of mass of the Gibbs ensemble having maximal average performance among the binary vectors. To calculate the performance of this best binary vector, the geometric properties of the center of mass of binary vectors are studied. The surprising result is found that the center of mass of infinite binary vectors which obey some simple constraints, is again a binary vector. When disorder is taken into account in the calculation, however, a vector with continuous components is obtained. The performance of the best binary vector is calculated and shown to always lie above that of Gibbs learning and below the Bayes-optimal performance. Making use of a variational approach under the replica symmetric ansatz, an optimal potential is constructed in the limits of zero temperature and mutual overlap 1. Minimization of this potential

  9. Text Extraction and Enhancement of Binary Images Using Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    G. Sahoo; Tapas Kumar; B.L. Rains; C.M. Bhatia

    2009-01-01

    Text characters embedded in images represent a rich source of information for content-based indexing and retrieval applications. However, these text characters are difficult to be detected and recognized due to their various sizes, grayscale values, and complex backgrounds. Existing methods cannot handle well those texts with different contrast or embedded in a complex image background. In this paper, a set of sequential algorithms for text extraction and enhancement of image using cellular automata are proposed. The image enhancement includes gray level, contrast manipulation, edge detection, and filtering. First, it applies edge detection and uses a threshold to filter out for low-contrast text and simplify complex background of high-contrast text from binary image. The proposed algorithm is simple and easy to use and requires only a sample texture binary image as an input. It generates textures with perceived quality, better than those proposed by earlier published techniques. The performance of our method is demonstrated by presenting experimental results for a set of text based binary images. The quality of thresholding is assessed using the precision and recall analysis of the resultant text in the binary image.

  10. Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results

    CERN Document Server

    Samaras, N; 10.1613/jair.1776

    2011-01-01

    A non-binary Constraint Satisfaction Problem (CSP) can be solved directly using extended versions of binary techniques. Alternatively, the non-binary problem can be translated into an equivalent binary one. In this case, it is generally accepted that the translated problem can be solved by applying well-established techniques for binary CSPs. In this paper we evaluate the applicability of the latter approach. We demonstrate that the use of standard techniques for binary CSPs in the encodings of non-binary problems is problematic and results in models that are very rarely competitive with the non-binary representation. To overcome this, we propose specialized arc consistency and search algorithms for binary encodings, and we evaluate them theoretically and empirically. We consider three binary representations; the hidden variable encoding, the dual encoding, and the double encoding. Theoretical and empirical results show that, for certain classes of non-binary constraints, binary encodings are a competitive op...

  11. An Effective Digital Watermarking Algorithm for Binary Text Image

    Institute of Scientific and Technical Information of China (English)

    HU Zhihua; QIN Zhongping

    2006-01-01

    Aiming at the binary text image's characteristics of simple pixel, complex texture and bad immunity of information concealment, a digital watermarking embedment location choosing method has been put forward based upon compatible roughness set. The method divides binary text image into different equivalent classes. Equivalent classes are further divided into different subclasses according to each pixel's degree and texture changes between blocks. Through properties' combination, the embedment block and location which are fit for watermarking are found out. At last, different binary text images are chosen for emulation experiment. After being embedded, the image is compressed in JPIG-2. Gaussian noise, salt & pepper noise are added and cutting is employed to imitate the actual environment in which images may suffer from various attacks and interferences. The result shows that the detector has a sound testing effect under various conditions.

  12. The Formation of the Wide Asynchronous Binary Asteroid Population

    CERN Document Server

    Jacobson, Seth A; McMahon, Jay

    2013-01-01

    We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semi-major axes relative to most near-Earth and Main Belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, planetary flybys and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (i) these systems are formed from rotational fission, (ii) their satellites are tidally locked, (iii) their orbits are expanded by the BYORP effect, (iv) their satellites de-synchronize due to the adiabatic invariance between the libration of the secondary and the mutual orbit, and (v) the secondary avoids resynchronization due to the the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torq...

  13. Attack diagnosis on binary executables using dynamic program slicing

    Science.gov (United States)

    Huang, Shan; Zheng, Yudi; Zhang, Ruoyu

    2011-12-01

    Nowadays, the level of the practically used programs is often complex and of such a large scale so that it is not as easy to analyze and debug them as one might expect. And it is quite difficult to diagnose attacks and find vulnerabilities in such large-scale programs. Thus, dynamic program slicing becomes a popular and effective method for program comprehension and debugging since it can reduce the analysis scope greatly and drop useless data that do not influence the final result. Besides, most of existing dynamic slicing tools perform dynamic slicing in the source code level, but the source code is not easy to obtain in practice. We believe that we do need some kinds of systems to help the users understand binary programs. In this paper, we present an approach of diagnosing attacks using dynamic backward program slicing based on binary executables, and provide a dynamic binary slicing tool named DBS to analyze binary executables precisely and efficiently. It computes the set of instructions that may have affected or been affected by slicing criterion set in certain location of the binary execution stream. This tool also can organize the slicing results by function call graphs and control flow graphs clearly and hierarchically.

  14. Formation of the wide asynchronous binary asteroid population

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Seth A. [Department of Astrophysical and Planetary Science, UCB 391, University of Colorado, Boulder, CO 80309 (United States); Scheeres, Daniel J.; McMahon, Jay [Department of Aerospace Engineering Sciences, UCB 429, University of Colorado, Boulder, CO 80309 (United States)

    2014-01-01

    We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semimajor axes relative to most near-Earth and main belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide asynchronous binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.

  15. Binaries and Globular Cluster Dynamics

    CERN Document Server

    Rasio, F A; Joshi, K J; Rasio, Frederic A.; Fregeau, John M.; Joshi, Kriten J.

    2001-01-01

    We summarize the results of recent theoretical work on the dynamical evolution of globular clusters containing primordial binaries. Even a very small initial binary fraction (e.g., 10%) can play a key role in supporting a cluster against gravothermal collapse for many relaxation times. Inelastic encounters between binaries and single stars or other binaries provide a very significant energy source for the cluster. These dynamical interactions also lead to the production of large numbers of exotic systems such as ultracompact X-ray binaries, recycled radio pulsars, double degenerate systems, and blue stragglers. Our work is based on a new parallel supercomputer code implementing Henon's Monte Carlo method for simulating the dynamical evolution of dense stellar systems in the Fokker-Planck approximation. This new code allows us to calculate very accurately the evolution of a cluster containing a realistic number of stars (N ~ 10^5 - 10^6) in typically a few hours to a few days of computing time. The discrete, s...

  16. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  17. Marangoni Convection in Binary Mixtures

    CERN Document Server

    Zhang, J; Oron, A; Behringer, Robert P.; Oron, Alexander; Zhang, Jie

    2006-01-01

    Marangoni instabilities in binary mixtures are different from those in pure liquids. In contrast to a large amount of experimental work on Marangoni convection in pure liquids, such experiments in binary mixtures are not available in the literature, to our knowledge. Using binary mixtures of sodium chloride/water, we have systematically investigated the pattern formation for a set of substrate temperatures and solute concentrations in an open system. The flow patterns evolve with time, driven by surface-tension fluctuations due to evaporation and the Soret effect, while the air-liquid interface does not deform. A shadowgraph method is used to follow the pattern formation in time. The patterns are mainly composed of polygons and rolls. The mean pattern size first decreases slightly, and then gradually increases during the evolution. Evaporation affects the pattern formation mainly at the early stage and the local evaporation rate tends to become spatially uniform at the film surface. The Soret effect becomes i...

  18. Asymmetric distances for binary embeddings.

    Science.gov (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  19. Black Hole Binaries in Quiescence

    CERN Document Server

    Bailyn, Charles D

    2016-01-01

    I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in the optical and IR wavelengths allows the binary parameters to be robustly determined - as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-rary binaries, which has taken on a new importance in the era of gravitational wave astronomy.

  20. Statistical Study of Visual Binaries

    CERN Document Server

    Abdel-Rahman, H I; Elsanhoury, W H

    2016-01-01

    In this paper, some statistical distributions of wide pairs included in Double Star Catalogue are investigated. Frequency distributions and testing hypothesis are derived for some basic parameters of visual binaries. The results reached indicate that, it was found that the magnitude difference is distributed exponentially, which means that the majority of the component of the selected systems is of the same spectral type. The distribution of the mass ratios is concentrated about 0.7 which agree with Salpeter mass function. The distribution of the linear separation appears to be exponentially, which contradict with previous studies for close binaries.

  1. Coalescing binaries and Doppler experiments

    OpenAIRE

    Vecchio, A.; Bertotti, B.; Iess, L.

    1997-01-01

    We discuss the sensitivity of the CASSINI experiments to gravitational waves emitted by the in-spiral of compact binaries. We show that the maximum distance reachable by the instrument is $\\sim 100$ Mpc. In particular, CASSINI can detect massive black hole binaries with chirp mass $\\simgt 10^6 \\Ms$ in the Virgo Cluster with signal-to-noise ratio between 5 and 30 and possible compact objects of mass $\\simgt 30 \\Ms$ orbiting the massive black hole that our Galactic Centre is likely to harbour.

  2. Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order

    CERN Document Server

    Moore, Blake; Arun, K G; Mishra, Chandra Kant

    2016-01-01

    [abridged] Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but nonnegligible orbital eccentricities when they enter the low-frequency bands of ground and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary. Gravitational-wave search templates typically rely on the quasi-circular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. The quasi-Keplerian formalism provides an elegant but complex description of the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit the non-periodic contribution to the gravitational-wave phasing can be ex...

  3. Design of a Content Addressable Memory-based Parallel Processor implementing (−1+j-based Binary Number System

    Directory of Open Access Journals (Sweden)

    Tariq Jamil

    2014-11-01

    Full Text Available Contrary to the traditional base 2 binary number system, used in today’s computers, in which a complex number is represented by two separate binary entities, one for the real part and one for the imaginary part, Complex Binary Number System (CBNS, a binary number system with base (−1+j, is used to represent a given complex number in single binary string format. In this paper, CBNS is reviewed and arithmetic algorithms for this number system are presented. The design of a CBNS-based parallel processor utilizing content-addressable memory for implementation of associative dataflow concept has been described and software-related issues have also been explained.

  4. Kepler Eclipsing Binaries with Stellar Companions

    CERN Document Server

    Gies, D R; Guo, Z; Lester, K V; Orosz, J A; Peters, G J

    2015-01-01

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.

  5. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Science.gov (United States)

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  6. Hydrodynamic Simulations of Contact Binaries

    Science.gov (United States)

    Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Marcello, Dominic; Motl, Patrick M.; Staff, Jan E.

    2015-01-01

    The motivation for our project is the peculiar case of the 'red nova" V1309 Sco which erupted in September 2008. The progenitor was, in fact, a contact binary system. We are developing a simulation of contact binaries, so that their formation, structural, and merger properties could be studied using hydrodynamics codes. The observed transient event was the disruption of the secondary star by the primary, and their subsequent merger into one star; hence to replicate this behavior, we need a core-envelope structure for both the stars. We achieve this using a combination of Self Consistant Field (SCF) technique and composite polytropes, also known as bipolytropes. So far we have been able to generate close binaries with various mass ratios. Another consequence of using bipolytropes is that according to theoretical calculations, the radius of a star should expand when the core mass fraction exceeds a critical value, resulting in interesting consequences in a binary system. We present some initial results of these simulations.

  7. Discs in misaligned binary systems

    Science.gov (United States)

    Rawiraswattana, Krisada; Hubber, David A.; Goodwin, Simon P.

    2016-08-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-alignment processes, which tend to misalign the components. The alignment process dominates in systems with misalignment angle near 90°, while the anti-alignment process dominates in systems with the misalignment angle near 0° or 180°. This means that highly misaligned systems will become more aligned but slightly misaligned systems will become more misaligned.

  8. The Meritfactor of Binary Seqences

    DEFF Research Database (Denmark)

    Høholdt, Tom

    1999-01-01

    Binary sequences with small aperiodic correlations play an important role in many applications ranging from radar to modulation and testing of systems. Golay(1977) introduced the merit factor as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture is s...

  9. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Ivan I., E-mail: iis@gao.spb.ru [Pulkovo Observatory of the Russian Academy of Sciences, Pulkovskoje ave. 65, St. Petersburg 196140 (Russian Federation)

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  10. A Galactic Binary Detection Pipeline

    Science.gov (United States)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  11. A Redundant Binary Algorithm for RSA

    Institute of Scientific and Technical Information of China (English)

    施荣华

    1996-01-01

    The normal form and modified normal form for binary redundant representation are defined.A redundant binary algorithm to compute modular exponentiation for very large integers is proposed.It is shown that the proposed algorithm requires the minimum number of basic operations(modular multiplications)among all possible binary redundant representations.

  12. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  13. Cracking the Binary Code

    Directory of Open Access Journals (Sweden)

    Hazlehurst Benny

    2014-03-01

    Full Text Available This paper offers a critique of the ‘binary’ nature of much biblical interpretation and ethical belief in the Church, rejecting simplistic ‘either-or’ approaches to both. Instead there is offered an interpretation of key biblical texts through the lenses of circumstances, needs and motivation. It is argued that, when these factors are taken into account, even for Evangelicals, there is no longer a substantive biblical case against the acceptance of faithful, loving same-sex partnerships and the development of a positive Christian ethic for lesbian, gay, bisexual and transgender people. At the very least, the complexity of the interpretive task must lead to greater openness to and acceptance of those from whom we differ.

  14. Implementation of Binary Search Trees Via Smart Pointers

    Directory of Open Access Journals (Sweden)

    Ivaylo Donchev

    2015-03-01

    Full Text Available Study of binary trees has prominent place in the training course of DSA (Data Structures and Algorithms. Their implementation in C++ however is traditionally difficult for students. To a large extent these difficulties are due not so much to the complexity of algorithms as to language complexity in terms of memory management by raw pointers – the programmer must consider too many details to ensure a reliable, efficient and secure implementation. Evolution of C++ regarded to automated resource management, as well as experience in implementation of linear lists by means of C++ 11/14 lead to an attempt to implement binary search trees (BST via smart pointers as well. In the present paper, the authors share experience in this direction. Some conclusions about pedagogical aspects and effectiveness of the new classes, compared to traditional library containers and implementation with built-in pointers, are made.

  15. Accretion disk dynamics in X-ray binaries

    Science.gov (United States)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  16. Desktop setup for binary holograms

    Science.gov (United States)

    Ginter, Olaf; Rothe, Hendrik

    1996-08-01

    Binary gratings as holograms itself or as photographic masking tools for further fabrication steps can fulfill a lot of applications. The commonly used semiconductor technologies for direct writing of high resolution structures are often too expensive. On the other hand computer plots at a reasonable price with photographic reduction do not meet the needs of precision e.g. for interferometric inspection. The lack of cheap and reliable instruments for direct writing in an appropriate resolution is still a problem in fabricating synthetic holograms. Using off-the-shelf components a direct writing plotter for binary patterns can be built at moderate costs. Typical design rules as well as experimental results are given and the final setup is introduced.

  17. Close supermassive binary black holes

    Science.gov (United States)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  18. Event Rates for Binary Inspiral

    CERN Document Server

    Kalogera, V

    2001-01-01

    Double compact objects (neutron stars and black holes) found in binaries with small orbital separations are known to spiral in and are expected to coalesce eventually because of the emission of gravitational waves. Such inspiral and merger events are thought to be primary sources for ground based gravitational-wave interferometric detectors (such as LIGO). Here, we present a brief review of estimates of coalescence rates and we examine the origin and relative importance of uncertainties associated with the rate estimates. For the case of double neutron star systems, we compare the most recent rate estimates to upper limits derived in a number of different ways. We also discuss the implications of the formation of close binaries with two non-recycled pulsars.

  19. Remnants of compact binary mergers

    CERN Document Server

    Domainko, W

    2006-01-01

    We investigate the long-term evolution and observability of remnants originating from the merger of compact binary systems and discuss the differences to supernova remnants. Compact binary mergers expel much smaller amounts of mass at much higher velocities, as compared to supernovae, which will affect the dynamical evolution of their remnants. The ejecta of mergers consist of very neutron rich nuclei. Some of these neutron rich nuclei will produce observational signatures in form of gamma ray lines during their decay. The composition of the ejecta might even give interesting constraints about the internal structure of the neutron star. We further discuss the possibility that merger remnants appear as recently discovered 'dark accelerators' which are extended TeV sources which lack emission in other bands.

  20. Modified binary particle swam optimization

    Institute of Scientific and Technical Information of China (English)

    Sangwook Lee; Sangmoon Soak; Sanghoun Oh; Witold Pedrycz; Moongu Jeon

    2008-01-01

    This paper presents a modified binary particle swarm optimization(BPSO)which adopts concepts of the genotype-phenotype rep-resentation and the mutation operator of genetic algorithms.Its main feature is that the BPSO can be treated as a continuous PSO.The proposed BPSO algorithm is tested on various benchmark functions,and its performance is compared with that of the original BPSO.Experimental results show that the modified BPSO outperforms the original BPSO algorithm.

  1. Tides in asynchronous binary systems

    OpenAIRE

    Toledano, Oswaldo; Moreno, Edmundo; Koenigsberger, Gloria; Detmers, R.; Langer, Norbert

    2006-01-01

    Stellar oscillations are excited in non-synchronously rotating stars in binary systems due to the tidal forces. Tangential components of the tides can drive a shear flow which behaves as a differentially forced rotating structure in a stratified outer medium. In this paper we show that our single-layer approximation for the calculation of the forced oscillations yields results that are consistent with the predictions for the synchronization timescales in circular orbits. In addition, calibrat...

  2. Evolution of binary stars in multiple-population globular clusters - II. Compact binaries

    Science.gov (United States)

    Hong, Jongsuk; Vesperini, Enrico; Sollima, Antonio; McMillan, Stephen L. W.; D'Antona, Franca; D'Ercole, Annibale

    2016-04-01

    We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters. We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations. The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG and the SG binary fraction with the distance from the cluster centre and its dependence on the binary binding energy and cluster structural parameters. The difference between the binary fraction in the FG and the SG populations found in our simulations is consistent with the results of observational studies finding a smaller binary fraction in the SG population.

  3. Detection of unresolved binaries with multicolor photometry

    CERN Document Server

    Chulkov, D; Malkov, O; Sichevskij, S; Krussanova, N; Mironov, A; Zakharov, A; Kniazev, A

    2016-01-01

    The principal goal of this paper is to specify conditions of detection of unresolved binaries by multicolor photometry. We have developed a method for estimating the critical distance at which an unresolved binary of given mass and age can be detected. The method is applied to the photometric system of the planned Lyra-B spaceborne experiment. We have shown that some types of unresolved binary stars can be discovered and distinguished from single stars solely by means of photometric observations.

  4. Asteroid Systems: Binaries, Triples, and Pairs

    CERN Document Server

    Margot, Jean-Luc; Taylor, Patrick; Carry, Benoît; Jacobson, Seth

    2015-01-01

    In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main belt binaries have been identified. The current observational evidence confirms that small (20 km) binaries with small satellites are most likely created during large collisions.

  5. Orbital eccentricities in primordial black holes binaries

    OpenAIRE

    Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise

    2016-01-01

    It was recently suggested that the merger of $\\sim30\\,M_\\odot$ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly ecce...

  6. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  7. Detecting Near-Extremal Binary Black Holes

    Science.gov (United States)

    Hemberger, Daniel

    2014-03-01

    There is an ongoing effort in the gravitational wave astronomy community to construct a template bank for Advanced LIGO that includes gravitational waveforms from binary black hole systems with high mass ratios and spins. Using numerical relativity simulations performed with the Spectral Einstein Code, we assess the prospects for detection and parameter estimation of binaries with spins above the expected template bank cutoff spin. This analysis is restricted to equal-mass, non-precessing binaries.

  8. Be discs in binary systems I. Coplanar orbits

    CERN Document Server

    Panoglou, Despina; Vieira, Rodrigo G; Cyr, Isabelle H; Jones, Carol E; Okazaki, Atsuo T; Rivinius, Thomas

    2016-01-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio, eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar systems. We simulate such binaries with the use of a smoothed particle hydrodynamics code. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. In circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc is smaller in size, more elongated and more massive for low viscosity parameter, small orbital separation and/or high mass ratio. Highly eccentric orbits are more complex, with the disc structure and total mass strongly dependent on the orbital phas...

  9. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    We evaluate the binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Harrison, Martínez-Correa and Swarthout [2013] found that the binary lottery procedure works robustly to induce risk neutrality when subjects are given one risk task defined over...... objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  10. Speech perception of noise with binary gains

    DEFF Research Database (Denmark)

    Wang, DeLiang; Kjems, Ulrik; Pedersen, Michael Syskind;

    2008-01-01

    For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed by the i...... by the ideal binary mask. Only 16 filter channels and a frame rate of 100 Hz are sufficient for high intelligibility. The results show that, despite a dramatic reduction of speech information, a pattern of binary gains provides an adequate basis for speech perception....

  11. PopCORN: Hunting down the differences between binary population synthesis codes

    CERN Document Server

    Toonen, S; Mennekens, N; Ruiter, A J

    2013-01-01

    Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying physical processes involved. To understand the predictive power of BPS codes, we study the similarities and differences in the predicted populations of four different BPS codes for low- and intermediate-mass binaries. We investigate whether the differences are caused by different assumptions made in the BPS codes or by numerical effects. To simplify the complex problem of comparing BPS codes, we equalise the inherent assumptions as much as possible. We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and the...

  12. Massive Stars in Interactive Binaries

    Science.gov (United States)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  13. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  14. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  15. R144 : a very massive binary likely ejected from R136 through a binary-binary encounter

    CERN Document Server

    Oh, Seungkyung; Banerjee, Sambaran

    2013-01-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from a R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of $\\approx$ 355 Msun and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km/s at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with an other massive binary or single star. In addition, we discuss all massive binaries and sin...

  16. Millisecond Pulsars in Close Binaries

    CERN Document Server

    Tauris, Thomas M

    2015-01-01

    In this Habilitationsschrift (Habilitation thesis) I present my research carried out over the last four years at the Argelander Institute for Astronomy (AIfA) and the Max Planck Institute for Radio Astronomy (MPIfR). The thesis summarizes my main findings and has been written to fulfill the requirements for the Habilitation qualification at the University of Bonn. Although my work is mainly focused on the topic of millisecond pulsars (MSPs), there is a fairly broad spread of research areas ranging from the formation of neutron stars (NSs) in various supernova (SN) events, to their evolution, for example, via accretion processes in binary and triple systems, and finally to their possible destruction in merger events. The thesis is organized in the following manner: A general introduction to neutron stars and millisecond pulsars is given in Chapter 1. A selection of key papers published in 2011-2014 are presented in Chapters 2-10, ordered within five main research areas (ultra-stripped SNe in close binaries, ma...

  17. Close Binary System GO Cyg

    CERN Document Server

    Ulas, B; Keskin, V; Kose, O; Yakut, K

    2011-01-01

    In this study, we present long term photometric variations of the close binary system \\astrobj{GO Cyg}. Modelling of the system shows that the primary is filling Roche lobe and the secondary of the system is almost filling its Roche lobe. The physical parameters of the system are $M_1 = 3.0\\pm0.2 M_{\\odot}$, $M_2 = 1.3 \\pm 0.1 M_{\\odot}$, $R_1 = 2.50\\pm 0.12 R_{\\odot}$, $R_2 = 1.75 \\pm 0.09 R_{\\odot}$, $L_1 = 64\\pm 9 L_{\\odot}$, $L_2 = 4.9 \\pm 0.7 L_{\\odot}$, and $a = 5.5 \\pm 0.3 R_{\\odot}$. Our results show that \\astrobj{GO Cyg} is the most massive system near contact binary (NCB). Analysis of times of the minima shows a sinusoidal variation with a period of $92.3\\pm0.5$ years due to a third body whose mass is less than 2.3$M_{\\odot}$. Finally a period variation rate of $-1.4\\times10^{-9}$ d/yr has been determined using all available light curves.

  18. Interacting Jets from Binary Protostars

    CERN Document Server

    Murphy, G C; O'Sullivan, S; Spicer, D; Bacciotti, F; Rosén, A

    2007-01-01

    We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly pa...

  19. Measuring static complexity

    Directory of Open Access Journals (Sweden)

    Ben Goertzel

    1992-01-01

    Full Text Available The concept of “pattern” is introduced, formally defined, and used to analyze various measures of the complexity of finite binary sequences and other objects. The standard Kolmogoroff-Chaitin-Solomonoff complexity measure is considered, along with Bennett's ‘logical depth’, Koppel's ‘sophistication'’, and Chaitin's analysis of the complexity of geometric objects. The pattern-theoretic point of view illuminates the shortcomings of these measures and leads to specific improvements, it gives rise to two novel mathematical concepts--“orders” of complexity and “levels” of pattern, and it yields a new measure of complexity, the “structural complexity”, which measures the total amount of structure an entity possesses.

  20. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  1. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  2. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  3. Bayesian analysis of exoplanet and binary orbits

    OpenAIRE

    Schulze-Hartung, Tim; Launhardt, Ralf; Henning, Thomas

    2012-01-01

    We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.

  4. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, J.; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a mo

  5. Coalescing binaries as possible standard candles

    OpenAIRE

    Capozziello, S.; De Laurentis, M.; Formisano, M.

    2009-01-01

    Gravitational waves detected from well-localized inspiraling binaries would allow to determine, directly and independently, both binary luminosity and redshift. In this case, such systems could behave as "standard candles" providing an excellent probe of cosmic distances up to $z

  6. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.;

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...

  7. Cosmological distance indicators by coalescing binaries

    CERN Document Server

    De Laurentis, Mariafelicia; De Martino, Ivan; Formisano, Michelangelo

    2011-01-01

    Gravitational waves detected from well-localized inspiraling binaries would allow to determine, directly and independently, both binary luminosity and redshift. In this case, such systems could behave as "standard candles" providing an excellent probe of cosmic distances up to z < 0.1 and thus complementing other indicators of cosmological distance ladder.

  8. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    黄润乾; 曾艺蓉

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M star and a 6 M star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  9. Evolution of non-synchronized binary systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for binary evolution is introduced which can determine whether the rotation of components is synchronized with the orbital motion, and can calculate the evolution of both the synchronized and non-synchronized binary systems. With this model, the evolution of a binary system consisting of a 9 M⊙ star and a 6 M⊙ star is studied with mass transfer Case B. The result shows that the synchronization of the rotational and orbital periods can be reached when the binary system is a detached system and before the occurrence of the first mass transfer. After the onset of the first mass transfer, the binary system becomes non-synchronized. The mass accepted component (the secondary) rotates faster with a period much smaller than that of the orbital motion.

  10. Planet Scattering Around Binaries: Ejections, Not Collisions

    CERN Document Server

    Smullen, Rachel A; Shannon, Andrew

    2016-01-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically effects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Asid...

  11. Investigation of metal-polyelectrolyte complex toxicity.

    Science.gov (United States)

    Karahan, Mesut; Mustafaeva, Zeynep; Koç, Rabia Çakır; Bağırova, Melahat; Allahverdiyev, Adil M

    2014-05-01

    Water-soluble binary and ternary copper complexes of polyelectrolytes were synthesized, and the toxicity of these complexes was tested in mouse fibroblast cell line (L929) in vitro. Both the binary and ternary complexes were prepared at the ratio of 0.4 mole copper(II) ions per monomer of acrylic acid and 0.5 mole copper(II) ions per monomer of methyl vinyl ether maleic anhydride, furthermore at the ratio of 1 and 2 mole bovine serum albumin per mole of polyacrylic acid and poly(methyl vinyl ether-co-maleic anhydride), respectively. Compared to binary copper(II)-polyelectrolyte complexes, these ternary complexes have been determined to be of least toxicity. PMID:22914259

  12. Detecting gravitational waves from highly eccentric compact binaries

    CERN Document Server

    Tai, Kai Sheng; Pretorius, Frans

    2014-01-01

    In dense stellar regions, highly eccentric binaries of black holes and neutron stars can form through various n-body interactions. Such a binary could emit a significant fraction of its binding energy in a sequence of largely isolated gravitational wave bursts prior to merger. Given expected black hole and neutron star masses, many such systems will emit these repeated bursts at frequencies within the sensitive band of contemporary ground-based gravitational wave detectors. Unfortunately, existing gravitational wave searches are ill-suited to detect these signals. In this work, we adapt a "power stacking" method to the detection of gravitational wave signals from highly eccentric binaries. We implement this method as an extension of the Q-transform, a projection onto a multiresolution basis of windowed complex exponentials that has previously been used to analyze data from the network of LIGO/Virgo detectors. Our method searches for excess power over an ensemble of time-frequency tiles. We characterize the pe...

  13. Binary Cepheids from optical interferometry

    CERN Document Server

    Gallenne, A; Mérand, A; Monnier, J D; Pietrzyński, J Breitfelder G; Gieren, W

    2013-01-01

    Classical Cepheid stars have been considered since more than a century as reliable tools to estimate distances in the universe thanks to their Period-Luminosity (P-L) relationship. Moreover, they are also powerful astrophysical laboratories, providing fundamental clues for studying the pulsation and evolution of intermediate-mass stars. When in binary systems, we can investigate the age and evolution of the Cepheid, estimate the mass and distance, and constrain theoretical models. However, most of the companions are located too close to the Cepheid (1-40 mas) to be spatially resolved with a 10-meter class telescope. The only way to spatially resolve such systems is to use long-baseline interferometry. Recently, we have started a unique and long-term interferometric program that aims at detecting and characterizing physical parameters of the Cepheid companions, with as main objectives the determination of accurate masses and geometric distances.

  14. Record-Breaking Eclipsing Binary

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind

  15. Binary mixtures of chiral gases

    CERN Document Server

    Presilla, Carlo

    2015-01-01

    A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.

  16. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    Science.gov (United States)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a

  17. A Novel Architecture of RNS Based Lifting Integer Wavelet Transform (IWT and Comparative Study with Other Binary and Non-Binary DWT

    Directory of Open Access Journals (Sweden)

    Souvik Saha

    2015-07-01

    Full Text Available In this paper, a novel architecture of RNS based 1D Lifting Integer Wavelet Transform (IWT has been introduced. Advantage of Residue Number System (RNS based Lifting Scheme over RNS based Filter Bank and non-binary IWT has been discussed. The performance of traditional predicts and updates stage of binary Lifting Scheme (LS for Discrete Wavelet Transform (DWT generates huge carry propagation delay, power and complexity. As a result non binary number system is becoming popular in the field of Digital Signal Processing (DSP due to its efficient performance. In this paper also a new fixed number ROM based RNS division circuit has been proposed. The proposed architecture has been validated on Xilinx Vertex5 FPGA platform and the corresponding result and reports are shown in here.

  18. Entropy coders for image compression based on binary forward classification

    Science.gov (United States)

    Yoo, Hoon; Jeong, Jechang

    2000-12-01

    Entropy coders as a noiseless compression method are widely used as final step compression for images, and there have been many contributions to increase of entropy coder performance and to reduction of entropy coder complexity. In this paper, we propose some entropy coders based on the binary forward classification (BFC). The BFC requires overhead of classification but there is no change between the amount of input information and the total amount of classified output information, which we prove this property in this paper. And using the proved property, we propose entropy coders that are the BFC followed by Golomb-Rice coders (BFC+GR) and the BFC followed by arithmetic coders (BFC+A). The proposed entropy coders introduce negligible additional complexity due to the BFC. Simulation results also show better performance than other entropy coders that have similar complexity to the proposed coders.

  19. The Be X-ray Binary Outburst Zoo II

    Science.gov (United States)

    Kuehnel, M.; Kretschmar, P.; Nespoli, E.; Okazaki, A. T.; Schoenherr, G.; Wilson-Hodge, C. A.; Falkner, S.; Brand, T.; Anders, F.; Schwarm, F.-W.; Kreykenbohm, I.; Mueller, S.; Pottschmidt, K.; Fuerst, F.; Grinberg, V.; Wilms, J.

    2015-03-01

    We have continued our recently started systematic study of Be X-ray binary (BeXRB) outbursts. Specifically, we are developing a catalogue of outbursts including their basic properties based on nearly all available X-ray all-sky-monitors. These properties are derived by fitting asymmetric Gaussians to the outburst lightcurves. This model describes most of the outbursts covered by our preliminary catalogue well; only 13% of all datasets show more complex outburst shapes. Analyzing the basic properties, we reveal a strong correlation between the outburst length and the reached peak flux. As an example, we discuss possible models describing the observed correlation in EXO 2030+375.

  20. 2-D traveling-wave patterns in binary fluid convection

    Energy Technology Data Exchange (ETDEWEB)

    Surko, C.M.; Porta, A.L. [Univ. of California, La Jolla, CA (United States)

    1996-12-31

    An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.

  1. Kozai effect on planetesimal accretion in highly inclined binaries

    Directory of Open Access Journals (Sweden)

    Zhou J.-L.

    2011-07-01

    Full Text Available Planet formation in highly inclined binaries is a complex issue. The Kozai mechanism plays an important role in this situation, since it will lead to high eccentricity and high relative impact velocity of planetesimals, thus hinder the planetesimal accretion. However, as we will show here, the presence of gas disk in some circumstance will suppress the Kozai effect by increasing the apsidal precession rate of the planetesimals, which increases the critical inclination. A criterion of the disk mass above which Kozai effect will not occur is given.

  2. Rayleigh-Brillouin Scattering in Binary Gas Mixtures

    CERN Document Server

    Gu, Ziyu; van de Water, Willem; Marques, Wilson

    2015-01-01

    Precise measurements are performed on spectral lineshapes of spontaneous Rayleigh-Brillouin scattering in mixtures of the noble gases Ar and Kr, with He. Admixture of a light He atomic fraction results in marked changes of the spectra, although in all experiments He is merely a spectator atom: it affects the relaxation of density fluctuations of the heavy constituent, but its contribution to the scattered light intensity is negligibly small. The results are compared to a theory for the spectral lineshape without adjustable parameters, yielding excellent agreement for the case of binary mono-atomic gases, signifying a step towards modeling and understanding of light scattering in more complex molecular media.

  3. Interrupted Binary Mass Transfer in Star Clusters

    CERN Document Server

    Leigh, Nathan W C; Toonen, Silvia

    2016-01-01

    Binary mass transfer is at the forefront of some of the most exciting puzzles of modern astrophysics, including Type Ia supernovae, gamma-ray bursts, and the formation of most observed exotic stellar populations. Typically, the evolution is assumed to proceed in isolation, even in dense stellar environments such as star clusters. In this paper, we test the validity of this assumption via the analysis of a large grid of binary evolution models simulated with the SeBa code. For every binary, we calculate analytically the mean time until another single or binary star comes within the mean separation of the mass-transferring binary, and compare this time-scale to the mean time for stable mass transfer to occur. We then derive the probability for each respective binary to experience a direct dynamical interruption. The resulting probability distribution can be integrated to give an estimate for the fraction of binaries undergoing mass transfer that are expected to be disrupted as a function of the host cluster pro...

  4. Fast algorithms for generating binary holograms

    CERN Document Server

    Stuart, Dustin; Kuhn, Axel

    2014-01-01

    We describe three algorithms for generating binary-valued holograms. Our methods are optimised for producing large arrays of tightly focussed optical tweezers for trapping particles. Binary-valued holograms allow us to use a digital mirror device (DMD) as the display element, which is much faster than other alternatives. We describe how our binary amplitude holograms can be used to correct for phase errors caused by optical aberrations. Furthermore, we compare the speed and accuracy of the algorithms for both periodic and arbitrary arrangements of traps, which allows one to choose the ideal scheme depending on the circumstances.

  5. Pd-Si binary bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    YAO KeFu; CHEN Na

    2008-01-01

    Pd80+xSi20-x (x=0, 1, and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content, the glass transition temperature Tg, the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover, the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability, which can be greatly improved by fluxing treatment.

  6. Pd-Si binary bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pd80+xSi20-x (x=0,1,and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content,the glass transition temperature Tg,the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover,the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability,which can be greatly improved by fluxing treatment.

  7. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2014-01-01

    We evaluate a binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Prior research has shown this procedure to robustly induce risk neutrality when subjects are given a single risk task defined over objective probabilities. Drawing a sample from...... the same subject population, we find evidence that the binary lottery procedure also induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation of subjective probabilities in subjects...

  8. Revised photometric elements of eight eclipsing binaries

    Science.gov (United States)

    Mezzetti, M.; Predolin, F.; Giuricin, G.; Mardirossian, F.

    1980-10-01

    Photoelectric lightcurves of eight eclipsing binaries, known as detached systems, have been reanalysed by means of Wood's model in order to obtain homogeneous photometric elements. All binaries are confirmed to be detached. TU Cam, CW CMa, YZ Cas, CW Eri, CO Lac and EE Peg appear to be normal main-sequence (or near main-sequence) detached systems, but only the absolute elements of CO Lac are well-known. The detached binaries EK Cep and IQ Per are shown to be anomalous.

  9. Cassini states for black hole binaries

    OpenAIRE

    Correia, Alexandre C. M.

    2015-01-01

    Cassini states correspond to the equilibria of the spin axis of a body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black hole binary systems base...

  10. Versatile screening for binary protein-protein interactions by yeast two-hybrid mating

    NARCIS (Netherlands)

    Letteboer, S.J.F.; Roepman, R.

    2008-01-01

    Identification of binary protein-protein interactions is a crucial step in determining the molecular context and functional pathways of proteins. State-of-the-art proteomics techniques provide high-throughput information on the content of proteomes and protein complexes, but give little information

  11. HD183648: a Kepler eclipsing binary with anomalous ellipsoidal variations and a pulsating component

    Directory of Open Access Journals (Sweden)

    Derekas A.

    2015-01-01

    Full Text Available KIC 8560861 (HD 183648 is a marginally eccentric (e = 0.05 eclipsing binary with an orbital period of Porb = 31.973 d, exhibiting mmag amplitude pulsations on time scales of a few days. We present the results of the complex analysis of high and medium-resolution spectroscopic data and Kepler Q0 – Q16 long cadence photometry.

  12. Busting Up Binaries: Encounters Between Compact Binaries and a Supermassive Black Hole

    CERN Document Server

    Addison, Eric; Larson, Shane

    2015-01-01

    Given the stellar density near the galactic center, close encounters between compact object binaries and the supermassive black hole are a plausible occurrence. We present results from a numerical study of close to 13 million such encounters. Consistent with previous studies, we corroborate that, for binary systems tidally disrupted by the black hole, the component of the binary remaining bound to the hole has eccentricity ~ 0.97 and circularizes dramatically by the time it enters the classical LISA band. Our results also show that the population of surviving binaries merits attention. These binary systems experience perturbations to their internal orbital parameters with potentially interesting observational consequences. We investigated the regions of parameter space for survival and estimated the distribution of orbital parameters post-encounter. We found that surviving binaries harden and their eccentricity increases, thus accelerating their merger due gravitational radiation emission and increasing the p...

  13. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  14. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  15. Binaries Like to be Twins: Implications for Doubly Degenerate Binaries, the Supernova Ia Rate and Other Interacting Binaries

    CERN Document Server

    Pinsonneault, M H

    2006-01-01

    The recent sample of 21 detached eclipsing binaries in the Small Magellanic Cloud (Harries et al. 2003, Hilditch et al. 2005) provides a valuable test of the binary mass function for massive stars. We show that 50% of detached binaries have companions with very similar masses, q=M_2/M_1 > 0.87, where M_1, M_2 denote the masses of the two binary components, M_1 > M_2. A Salpeter relative mass function for the secondary is very strongly excluded, and the data is consistent with a flat mass function containing 55% of the systems and a ``twin'' population with q>0.95 containing the remainder. We also survey the vast existing literature discussing the mass ratio in binaries and conclude that a significant twin population (of more than 20-25%) exists in binaries that are likely to interact across a broad range of stellar masses and metallicity. Interactions involving nearly equal mass stars have distinctly different properties than those involving stars of unequal mass; the secondaries will tend to be evolved and t...

  16. Properties of planets in binary systems. The role of binary separation

    OpenAIRE

    Desidera, S.; Barbieri, M.

    2006-01-01

    The statistical properties of planets in binaries were investigated. Any difference to planets orbiting single stars can shed light on the formation and evolution of planetary systems. As planets were found around components of binaries with very different separation and mass ratio, it is particularly important to study the characteristics of planets as a function of the effective gravitational influence of the companion. A compilation of planets in binary systems was made; a search for compa...

  17. Binaries in the Hipparcos data: Keep digging

    CERN Document Server

    Pourbaix, D; Jorissen, A

    2004-01-01

    Among the 120 000 objects in the Hipparcos catalogue, only 235 were fitted with an orbital model. Besides these 235 original astrometric binaries, most Hipparcos entries with a known spectroscopic orbit (extrasolar planet or stellar companion) have now been re-processed, as part of the on-going construction of the 9th Catalogue of Spectroscopic Binary Orbits (SB9, available at http://sb9.astro.ulb.ac.be). The pitfalls and successes of this re-processing are discussed in various contexts, like (i) orbital inclinations: the holy grail for extrasolar planets (ii) searching for binaries without a priori knowledge of their spectroscopic orbital elements, and application to barium stars (iii) why not all SB9 entries yield acceptable astrometric solutions? The lessons learned from this study are useful to devise the best possible binary-detection and orbit-determination algorithms for future astrometric missions like GAIA.

  18. A mesoscopic model for binary fluids

    CERN Document Server

    Echeverria, C; Alvarez-Llamoza, O; Orozco-Guillén, E E; Morales, M; Cosenza, M G

    2016-01-01

    We propose a model to study symmetric binary fluids, based in the mesoscopic molecular simulation technique known as multiparticle collision, where space and state variables are continuous while time is discrete. We include a repulsion rule to simulate segregation processes that does not require the calculation of the interaction forces between particles, thus allowing the description of binary fluids at a mesoscopic scale. The model is conceptually simple, computationally efficient, maintains Galilean invariance, and conserves the mass and the energy in the system at micro and macro scales; while momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as density profile, width of the interface, phase separation and phase growth. We also apply the model to study binary fluids in crowded environments with consistent results.

  19. Searching for Pulsars in Close Binary Systems

    CERN Document Server

    Jouteux, S; Stappers, B W; Jonker, P; Van der Klis, M

    2001-01-01

    We present a detailed mathematical analysis of the Fourier response of binary pulsar signals whose frequencies are modulated by circular orbital motion. The fluctuation power spectrum of such signals is found to be \

  20. Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures

    DEFF Research Database (Denmark)

    Coron, Jean-Sébastien; Roy, Arnab; Vivek, Srinivas

    2015-01-01

    We describe a new technique for evaluating polynomials over binary finite fields. This is useful in the context of anti-DPA countermeasures when an S-box is expressed as a polynomial over a binary finite field. For n-bit S-boxes, our new technique has heuristic complexity O(2n/2/√n) instead of O(2n....../2) proven complexity for the Parity-Split method. We also prove a lower bound of Ω(2n/2/√n) on the complexity of any method to evaluate n-bit S-boxes; this shows that our method is asymptotically optimal. Here, complexity refers to the number of non-linear multiplications required to evaluate the...

  1. Evolution of Binary Stars in Multiple-Population Globular Clusters - II. Compact Binaries

    CERN Document Server

    Hong, Jongsuk; Sollima, Antonio; McMillan, Stephen L W; D'Antona, Franca; D'Ercole, Annibale

    2016-01-01

    We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters.We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations.The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG an...

  2. Binary is Good: A Binary Inference Framework for Primary User Separation in Cognitive Radio Networks

    CERN Document Server

    Nguyen, Huy; Han, Zhu

    2010-01-01

    Primary users (PU) separation concerns with the issues of distinguishing and characterizing primary users in cognitive radio (CR) networks. We argue the need for PU separation in the context of collaborative spectrum sensing and monitor selection. In this paper, we model the observations of monitors as boolean OR mixtures of underlying binary latency sources for PUs, and devise a novel binary inference algorithm for PU separation. Simulation results show that without prior knowledge regarding PUs' activities, the algorithm achieves high inference accuracy. An interesting implication of the proposed algorithm is the ability to effectively represent n independent binary sources via (correlated) binary vectors of logarithmic length.

  3. Dixie Valley Bottoming Binary Unit

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale [Terra-Gen Sierra Holdings, LLC, Reno, NV (United States)

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  4. Copula-based bivariate binary response models

    OpenAIRE

    Winkelmann, Rainer

    2009-01-01

    The bivariate probit model is frequently used for estimating the effect of an endogenous binary regressor on a binary outcome variable. This paper discusses simple modifications that maintain the probit assumption for the marginal distributions while introducing non-normal dependence among the two variables using copulas. Simulation results and evidence from two applications, one on the effect of insurance status on ambulatory expenditure and one on the effect of completing high school on sub...

  5. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  6. GAIA survey of galactic eclipsing binaries

    OpenAIRE

    Zwitter, Tomaz

    2002-01-01

    General importance and capabilities of observations of eclipsing binaries by the forthcoming ESA mission GAIA are discussed. Availability of spectroscopic observations and a large number of photometric bands on board will make it possible to reliably determine physical parameters for $\\sim 10^5$ binary stars. It is stressed that current methods of object by object analysis will have to be modified and included in an automatic analysis pipeline.

  7. Binary nature of the Barium stars

    International Nuclear Information System (INIS)

    We present radial-velocity spectrometer observations that indicate that Ba II stars are binary systems. The secondary stars of these systems have low masses, consistent with their being degenerate objects which have lost mass onto their primaries in a previous stage of evolution. It is suggested that the Population II equivalents, the CH stars, may also be binary systems. This may be related to the fact that they are found only in globular clusters of the lowest central concentration

  8. Binary compact object inspiral: Detection expectations

    Indian Academy of Sciences (India)

    Vassiliki Kalogera

    2004-10-01

    We review the current estimates of binary compact object inspiral rates in particular in view of the recently discovered highly relativistic binary pulsar J0737-3039. One of the robust results is that, because of this discovery, the rate estimates for binary neutron stars have increased by a factor of 6-7 independent of any uncertainties related to the pulsar population properties. This rate increase has dramatic implications for gravitational wave detectors. For initial LIGO, the most probable detection rates for double neutron star (DNS) inspirals is 1 event/(5{250) yr; at 95% confidence we obtain rates up to 1/1.5 yr. For advanced LIGO, the most probable rates are 20-1000 events/yr. These predictions, for the first time, bring the expectations for DNS detections by initial LIGO to the astrophysically relevant regime. We also use our models to predict that the large-scale Parkes multibeam pulsar survey with acceleration searches could detect an average of three to four binary pulsars similar to those known at present. In comparison, rate estimates for binaries with black holes are derived based on binary evolution calculation, and based on the optimistic ends of the ranges, remain an important candidate for inspiral detection in the next few years. We also consider another aspect of the detectability of binary inspiral: the effect of precession on the detection efficiency of astrophysically relevant binaries. Based on our current astrophysical expectations, large tilt angles are not favored. As a result the decrease in detection rate varies rather slowly with black hole spin magnitude and is within 20-30% of the maximum possible values.

  9. Texture classification by texton: statistical versus binary.

    Directory of Open Access Journals (Sweden)

    Zhenhua Guo

    Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.

  10. Spectroscopic subsystems in nearby wide binaries

    CERN Document Server

    Tokovinin, Andrei

    2015-01-01

    Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5-m telescope to study short-period systems. Data reduction is described, mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, for some of them orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binaries within 67pc. It is found that 43 binaries contain at least one subsystem and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods match the simple prescription proposed by the author (2014, AJ, 147, 87). The remaining 53 simple wide binaries with a median projected separation of 1300AU have the distri...

  11. Coronal activity from the ASAS eclipsing binaries

    CERN Document Server

    Szczygiel, D M; Paczynski, B; Pojmanski, G; Pilecki, B

    2008-01-01

    We combine the catalogue of eclipsing binaries from the All Sky Automated Survey (ASAS) with the ROSAT All Sky Survey (RASS). The combination results in 836 eclipsing binaries that display coronal activity and is the largest sample of active binary stars assembled to date. By using the (V-I) colors of the ASAS eclipsing binary catalogue, we are able to determine the distances and thus bolometric luminosities for the majority of eclipsing binaries that display significant stellar activity. A typical value for the ratio of soft X-ray to bolometric luminosity is L_X/L_bol ~ a few x 10^-4, similar to the ratio of soft X-ray to bolometric flux F_X/F_bol in the most active regions of the Sun. Unlike rapidly rotating isolated late-type dwarfs -- stars with significant outer convection zones -- a tight correlation between Rossby number and activity of eclipsing binaries is absent. We find evidence for the saturation effect and marginal evidence for the so-called "super-saturation" phenomena. Our work shows that wide-...

  12. Spectroscopic Orbits for Kepler FOV Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Williams, Stephen J.; Guo, Zhao

    2013-02-01

    We are currently involved in a four year program of precise eclipsing binary photometry with the NASA Kepler Observatory. Our goal is to search for variations in minimum light timing for intermediate mass eclipsing binaries. Such periodic variations will reveal the reflex motion caused by any distant, low mass object that orbits the close binary. it Kepler's unprecedented accuracy and continuous observations provide a unique opportunity to detect the low mass companions that are predicted to result from the angular momentum of the natal cloud. The goal of this proposal is to obtain blue spectra of short period (0.9-6d) eclipsing binaries, derive radial velocities, and produce a double-lined spectroscopic orbit (as well as estimates of the stellar effective temperatures, gravities, and metallicities). Combined with the it Kepler light curve, we will determine very accurate masses and radii for the members of the close binary, which will yield the mass-inclination product M_3 sin i for any companions detected by light travel time or other effects. An extended sample of eclipsing binaries with longer periods (up to 50d) is now being investigated to test whether the presence of a tertiary companion declines with increasing period. We propose to obtain a single spectrum at quadrature for the brightest 48 stars in this expanded sample to characterize the effective temperatures and total mass contained in these systems.

  13. Simple Linear Optical 'Binary Measurement Tree' for Single Photonic Polarization Qubit

    Institute of Scientific and Technical Information of China (English)

    HAN Yang; WU Wei; WU Chun-Wang; CHEN Ping-Xing; LI Cheng-Zu

    2009-01-01

    Positive-operator-value-measurement (POVM) is one of the essential components of quantum information process-ing (QIP). Recently a 'binary measurement tree' (BST) strategy (PRA 77, 052104) is suggested for implementing arbitrary POVM by sequential two-operator POVMs. We present a simple novel two-operator POVM module via linear optics, which is employed as block to construct a 'binary measurement tree' for implementing arbitrary POVM on single photonic polarization qubit. The total complexity of the experimental setup is significantly reduced in contrast to the previous works. As an example, we give the detailed settings of a well-known POVM.

  14. The Wolf-Rayet eclipsing binary HD 5980 in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    The Wolf-Rayet star HD 5980, which is probably associated with the bright HII region NGC 346 of the Small Magellanic Cloud, was found to be an eclipsing binary by Hoffmann, Stift and Moffat (1978). Breysacher and Perrier (1980) determined the orbital period, P=19.26 +- 0.003d, of the system whose light curve reveals a strongly eccentric orbit (e=0.47 for i=800). The behaviour of the light curve outside the eclipses shows that one is dealing with a rather complex binary system. An analysis of the spectroscopic data is presented here. (Auth.)

  15. Design and Implementation of BDB, the Binary Star Database

    Science.gov (United States)

    Kaygorodov, P.; Kovaleva, D.; Malkov, O.

    2013-02-01

    The Binary star DataBase (BDB, http://bdb.inasan.ru) is created to provide liasons between binary star catalogue data of various origin. Information on different observational types of binaries is obtained from heterogeneous sources of data - astronomical catalogues and surveys. The database allows a variety of query options useful for selected stars investigation purposes, for binary observations planning, and for construction and examination of binary datasets with certain characteristics.

  16. Virtual Control Policy for Binary Ordered Resources Petri Net Class.

    Science.gov (United States)

    Rovetto, Carlos A; Concepción, Tomás J; Cano, Elia Esther

    2016-01-01

    Prevention and avoidance of deadlocks in sensor networks that use the wormhole routing algorithm is an active research domain. There are diverse control policies that will address this problem being our approach a new method. In this paper we present a virtual control policy for the new specialized Petri net subclass called Binary Ordered Resources Petri Net (BORPN). Essentially, it is an ordinary class constructed from various state machines that share unitary resources in a complex form, which allows branching and joining of processes. The reduced structure of this new class gives advantages that allow analysis of the entire system's behavior, which is a prohibitive task for large systems because of the complexity and routing algorithms. PMID:27548170

  17. The Planet in the HR 7162 Binary System Discovered by PHASES Astrometry

    Science.gov (United States)

    Muterspaugh, Matthew W.; Lane, B. F.; Konacki, M.; Burke, B. F.; Colavita, M. M.; Shao, M.; Hartkopf, W. I.; Boss, A. P.; O'Connell, J.; Fekel, F. C.; Wiktorowicz, S. J.

    2011-01-01

    The now-completed Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) used phase-referenced long-baseline interferometry to monitor 51 binary systems with 35 micro-arcsecond measurement precision, resulting in the high-confidence detection of a planet in the HR 7162 system. The 1.5 Jupiter mass planet is in a 2 AU orbit around one of the stars, whereas the binary itself has a separation of only 19 AU. Despite the close stellar companion, this configuration is expected to be stable, based on dynamic simulations. In the context of our solar system, this is analogous to a Jovian planet just outside of Mars' orbit, with a second star at the distance of Uranus. If this configuration were present during the period of planet formation, the complex gravitational environment created by the stars would seem to disrupt planet formation mechanisms that require long times to complete (thousands of years or more). While it is possible the arrangement resulted from the planet being formed in another environment (a single star or wider binary) after which the system reached its current state via dynamic interactions (star-planet exchange with a binary, or the binary orbit shrinking by interacting with a passing star), the frequency of such interactions is very low. Because the PHASES search only had the sensitivity to rule out Jovian mass companions in 11 of our 51 systems, yet one such system was found, the result indicates either extreme luck or that there is a high frequency of 20 AU binaries hosting planets. The latter interpretation is supported by previous detections of planets in 5-6 additional 20 AU binaries in other surveys (though with less control over the statistics for determining frequency of occurrence). Thus, there is observational support suggesting that a mechanism for rapid Jovian planet formation occurs in nature.

  18. Exploring the Birth of Binary Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    More than half of all stars are thought to be in binary or multiple star systems. But how do these systems form? The misaligned spins of some binary protostars might provide a clue.Two Formation ModelsIts hard to tell how multiple-star systems form, since these systems are difficult to observe in their early stages. But based on numerical simulations, there are two proposed models for the formation of stellar binaries:Turbulent fragmentationTurbulence within a single core leads to multiple dense clumps. These clumps independently collapse to form stars that orbit each other.Disk fragmentationGravitational instabilities in a massive accretion disk cause the formation of a smaller, secondary disk within the first, resulting in two stars that orbit each other.Log column density for one of the authors simulated binary systems, just after the formation of two protostars. Diamonds indicate the protostar positions. [Adapted from Offner et al. 2016]Outflows as CluesHow can we differentiate between these formation mechanisms? Led by Stella Offner (University of Massachusetts), a team of scientists has suggested that the key isto examine the alignment of the stars protostellar outflows jets that are often emitted from the poles of young, newly forming stars.Naively, wed expect that disk fragmentation would produce binary stars with common angular momentum. As the stars spins would be aligned, they would therefore also launch protostellar jets that were aligned with each other. Turbulent fragmentation, on the other hand, would cause the stars to have independent angular momentum. This would lead to randomly oriented spins, so the protostellar jets would be misaligned.Snapshots from the authors simulations. Left panel of each pair: column density; green arrows giveprotostellar spin directions. Right panel: synthetic observations produced from the simulations; cyan arrows giveprotostellar outflow directions. [Offner et al. 2016]Simulations of FragmentationIn order to better

  19. A Novel Fast and Robust Binary Affine Invariant Descriptor for Image Matching

    Directory of Open Access Journals (Sweden)

    Xiujie Qu

    2014-01-01

    Full Text Available As the current binary descriptors have disadvantages of high computational complexity, no affine invariance, and the high false matching rate with viewpoint changes, a new binary affine invariant descriptor, called BAND, is proposed. Different from other descriptors, BAND has an irregular pattern, which is based on local affine invariant region surrounding a feature point, and it has five orientations, which are obtained by LBP effectively. Ultimately, a 256 bits binary string is computed by simple random sampling pattern. Experimental results demonstrate that BAND has a good matching result in the conditions of rotating, image zooming, noising, lighting, and small-scale perspective transformation. It has better matching performance compared with current mainstream descriptors, while it costs less time.

  20. High-energy observations of black hole binaries with the INTEGRAL satellite

    CERN Document Server

    Del Santo, Melania

    2012-01-01

    Black-hole binaries are important sources through which studying accretion onto compact objects. In the X/gamma-ray domain, these objects show several and complex spectral behaviours and transitions. Based on INTEGRAL observations collected during the last eightyears, we have now a new view on the high energy emission of black-hole binary. An additional component above 200 keV has been observed in a few systems, during either hard/intermediate or low/hard states. The nature of this hard-tail is still debated, as also the one observed in soft states. However, among a number of models, it is usually attributed to the presence of a small fraction of non-thermal electrons in a hot-Comptonising plasma. I review the high energy emission from black hole binary systems and report on some INTEGRAL observations of three different objects: 1E 1740.7-2942, GX 339-4, Cyg X-1.

  1. Clostridium and Bacillus Binary Enterotoxins: Bad for the Bowels, and Eukaryotic Being

    Directory of Open Access Journals (Sweden)

    Bradley G. Stiles

    2014-09-01

    Full Text Available Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin, Clostridium difficile (C. difficile toxin or CDT, Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC, Clostridium spiroforme (C. spiroforme toxin or CST, as well as Bacillus cereus (vegetative insecticidal protein or VIP. These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A and cell-binding (B components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.

  2. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    CERN Document Server

    Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F

    2016-01-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...

  3. Birth of Massive Black Hole Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Colpi, M.; /Milan Bicocca U.; Dotti, M.; /Insubria U., Como; Mayer, L.; /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park

    2007-11-19

    If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size ({approx}< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of {approx}< 1 Myr. The double nuclear point-like sources that may appear have typical separation of {approx}< 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.

  4. Gravitational wave background from binary systems

    International Nuclear Information System (INIS)

    Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter Ω(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, Ω(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for Ω(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.

  5. Massive gaseous discs around SMBH binaries: Binary decay and tidal disruptions

    Directory of Open Access Journals (Sweden)

    Brem P.

    2012-12-01

    Full Text Available We investigate the evolution of black hole binaries embedded within geometrically thin gas discs. Our results imply that such discs can produce black hole mergers for relatively low-mass binaries, and that a significant population of eccentric binaries might exist at separations of a few 0.01 pc. These binaries may be detectable due to the time-variable accretion on to the black holes. If the disc fragments, then the newly-born stars will continue driving the binary to its coalescence, although at a slower rate. Interestingly, our preliminary analysis shows that these stars will be disrupted at a rate of ∼10−4–2 · 10−5 events per year per system.

  6. Nonconservative Mass Transfer in Massive Binaries and the Formation of Wolf-Rayet+O Binaries

    CERN Document Server

    Shao, Yong

    2016-01-01

    The mass transfer efficiency during the evolution of massive binaries is still uncertain. We model the mass transfer processes in a grid of binaries to investigate the formation of Wolf-Rayet+O (WR+O) binaries, taking into account two kinds of non-conservative mass transfer models: Model I with rotation-dependent mass accretion and Model II of half mass accretion. Generally the mass transfer in Model I is more inefficient, with the average efficiency in a range of $\\sim0.2-0.7$ and $ \\lesssim0.2 $ for Case A and Case B mass transfer, respectively. We present the parameter distributions for the descendant WR+O binaries. By comparing the modeled stellar mass distribution with the observed Galactic WR+O binaries, we find that highly non-conservative mass transfer is required.

  7. Hybrid encoding method for hiding information by assembling double-random phase-encoding technique and binary encoding method.

    Science.gov (United States)

    Lin, Kuang Tsan

    2010-07-01

    A hybrid encoding method is used to assemble the double-random phase-encoding technique and the binary encoding method. Because the double-random phase-encoding technique is robust for noises and the binary encoding method is free of using external keys, the proposed hybrid encoding method has their advantages. The hybrid encoding method first encodes a covert image to form a complex-number matrix by using the double-random phase-encoding technique, where two random real-number matrices are used to increase the security of the encoding work. Then the elements of the two random real-number matrices and the elements of the complex-number matrix are encoded to form a binary-bit string by using the binary encoding method. Finally, the binary data in the binary-bit string are encoded into a host image to form an overt image with hidden information by using a gray-value modulation method. The decoding work is easy for authorized people, but it is very difficult for unauthorized people. Therefore, the proposed hybrid encoding method is a very useful encoding method.

  8. A cell-based design approach for RSFQ circuits using a binary decision diagram

    International Nuclear Information System (INIS)

    We propose a cell-based design approach for rapid single flux quantum (RSFQ) circuits based on a binary decision diagram (BDD). The BDD is a way to represent a logical function using a directed graph which consists of binary switches having one input and two outputs. Since complex logic circuits can be implemented in the form of regular arrays of the BDD binary switches, we can use a cell-based layout methodology for the design of the RSFQ circuits. In this study, we implemented the BDD binary switches by a D2 flip-flop. In the BDD design approach we made a cell library which contains a binary switch, pulse splitters, confluence buffers and Josephson transmission lines. All cell layouts in the library have identical widths and heights, so that any logic function can be laid out by simple connection of the library cells. As a case study, we implemented a 1-bit RSFQ half-adder and a 3-bit encoder for a flash AD converter. (author)

  9. Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction

    Science.gov (United States)

    Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin

    2012-04-01

    It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.

  10. Stability of multiplanet systems in binaries

    CERN Document Server

    Marzari, F

    2016-01-01

    When exploring the stability of multiplanet systems in binaries, two parameters are normally exploited: the critical semimajor axis ac computed by Holman and Wiegert (1999) within which planets are stable against the binary perturbations, and the Hill stability limit Delta determining the minimum separation beyond which two planets will avoid mutual close encounters. Our aim is to test whether these two parameters can be safely applied in multiplanet systems in binaries or if their predictions fail for particular binary orbital configurations. We have used the frequency map analysis (FMA) to measure the diffusion of orbits in the phase space as an indicator of chaotic behaviour. First we revisited the reliability of the empirical formula computing ac in the case of single planets in binaries and we find that, in some cases, it underestimates by 10-20% the real outer limit of stability. For two planet systems, the value of Delta is close to that computed for planets around single stars, but the level of chaoti...

  11. Orbital eccentricities in primordial black hole binaries

    Science.gov (United States)

    Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise

    2016-10-01

    It was recently suggested that the merger of ˜30 M⊙ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on time scales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO and the Einstein Telescope to such effects. We show that if PBHs make up the dark matter, then roughly one event should have a detectable eccentricity given LIGO's expected sensitivity and observing time of six years. The Einstein Telescope should see O (10 ) such events after ten years.

  12. Urey Prize Lecture: Binary Minor Planets

    Science.gov (United States)

    Margot, J. L.

    2004-11-01

    The discovery of binary systems in the near-Earth, main belt, and Kuiper belt populations provides an abundance of new data that expand our knowledge of the physics and chemistry of the solar system. Binary minor planets form as a result of collisional, tidal, and capture processes that are important to study as they play major roles in the formation and evolution of planetary systems. The frequency of occurrence of such processes directly reflects the dynamical environment in the various populations. Observations of binaries provide a powerful way to measure the bulk properties of small bodies, which in turn lead to inferences about their composition and internal structure. These data may offer a rare glimpse of what physical and chemical conditions prevailed when protoplanets formed, and what subsequent evolution took place. In the case of the Kuiper Belt, the study of a handful of binaries forces us to rethink how dense and how bright these bodies are, and to significantly revise our current mass estimates for the entire population. The number of known binary minor planets has increased dramatically over the past few years, with roughly ten new discoveries each year. I will attempt to summarize recent developments, with examples drawn from my observations with the Hubble, Palomar, Keck, Arecibo and Goldstone telescopes.

  13. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  14. A Model for Contact Binary Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understanding that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point. c) The effects of spin, orbital rotation and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered. d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M⊙ and one 5M⊙ star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.

  15. An interferometric view of binary stars

    CERN Document Server

    Boffin, Henri M J

    2016-01-01

    The study of binary stars is critical to apprehend many of the most interesting classes of stars. Moreover, quite often, the study of stars in binary systems is our only mean to constrain stellar properties, such as masses and radii. Unfortunately, a great fraction of the most interesting binaries are so compact that they can only be apprehended by high-resolution techniques, mostly by interferometry. I present some results highlighting the use of interferometry in the study of binary stars, from finding companions and deriving orbits, determining the mass and radius of stars, to studying mass transfer in symbiotic stars, and tackling luminous blue variables. In particular, I show how interferometric studies using the PIONIER instrument have allowed us to confirm a dichotomy within symbiotic stars, obtain masses of stars with a precision better than 1%, and help us find a new Eta Carinae-like system. I will also illustrate the benefits for the study of binary stars one would get from upgrading the VLT Interfe...

  16. Planet scattering around binaries: ejections, not collisions

    Science.gov (United States)

    Smullen, Rachel A.; Kratter, Kaitlin M.; Shannon, Andrew

    2016-09-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary star and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically affects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Systems similar to the only observed multiplanet circumbinary system, Kepler-47, can arise from much more tightly packed, unstable systems. Only extreme initial conditions introduce differences in the final planet populations. Thus, we suggest that any intrinsic differences in the populations are imprinted by formation.

  17. Orbital eccentricities in primordial black holes binaries

    CERN Document Server

    Cholis, Ilias; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B; Raccanelli, Alvise

    2016-01-01

    It was recently suggested that the merger of $\\sim30\\,M_\\odot$ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on timescales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO a...

  18. INTEGRAL & RXTE View of Gamma-ray Binaries

    OpenAIRE

    Jian LI; Torres, Diego F.; Zhang, Shu; WANG, JIANMIN

    2013-01-01

    Gamma-ray binaries are X-ray binaries with gamma-ray emissions. Their multi-wavelength emissions range from radio, optical, X-ray and to very high energy (TeV). X-ray emissions are crucial to understand the nature of gamma-ray binaries. INTEGRAL and RXTE have covered and monitored most of the gamma-ray binaries in hard and soft X-rays. Here we report the results of several gamma-ray binaries and possible gamma-ray binaries from INTEGRAL and RXTE.

  19. Algorithmic complexity in the minority game

    Science.gov (United States)

    Mansilla

    2000-10-01

    In this paper, we present our approach for the study of the complexity of Minority Game using tools from thermodynamics and statistical physics. Previous attempts were based on the behavior of volatility, an observable of the financial markets. Our approach focuses on some properties of the binary stream of outcomes of the game. Physical complexity, a magnitude rooted in Kolmogorov-Chaitin theory, allows us to explain some properties of collective behavior of the agents. Mutual information function, a measure related to Shannon's information entropy, was useful to observe a kind of phase transition when applied to the binary string of the whole history of the game.

  20. Gravitational waves from spinning eccentric binaries

    CERN Document Server

    Csizmadia, Péter; Rácz, István; Vasúth, Mátyás

    2012-01-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relat...

  1. Optimized Reversible Binary-Coded Decimal Adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    Abstract Babu and Chowdhury [H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture 52 (5) (2006) 272-282] recently proposed, in this journal, a reversible adder for binary-coded decimals. This paper corrects and optimizes...... in reversible logic design by drastically reducing the number of garbage bits. Specialized designs benefit from support by reversible logic synthesis. All circuit components required for optimizing the original design could also be synthesized successfully by an implementation of an existing synthesis algorithm....... Keywords: Reversible logic circuit; Full-adder; Half-adder; Parallel adder; Binary-coded decimal; Application of reversible logic synthesis...

  2. Gravitational wave background from binary systems

    CERN Document Server

    Rosado, Pablo A

    2011-01-01

    Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter $\\Omega(f)$, commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, $\\Omega(f)$ is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the ...

  3. The Expressive Power of Binary Submodular Functions

    CERN Document Server

    Zivny, Stanislav; Jeavons, Peter G

    2008-01-01

    It has previously been an open problem whether all Boolean submodular functions can be decomposed into a sum of binary submodular functions over a possibly larger set of variables. This problem has been considered within several different contexts in computer science, including computer vision, artificial intelligence, and pseudo-Boolean optimisation. Using a connection between the expressive power of valued constraints and certain algebraic properties of functions, we answer this question negatively. Our results have several corollaries. First, we characterise precisely which submodular functions of arity 4 can be expressed by binary submodular functions. Next, we identify a novel class of submodular functions of arbitrary arities which can be expressed by binary submodular functions, and therefore minimised efficiently using a so-called expressibility reduction to the Min-Cut problem. More importantly, our results imply limitations on this kind of reduction and establish for the first time that it cannot be...

  4. Binary Code Disassembly for Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Marius Popa

    2013-01-01

    Full Text Available The disassembly of binary file is used to restore the software application code in a readable and understandable format for humans. Further, the assembly code file can be used in reverse engineering processes to establish the logical flows of the computer program or its vulnerabilities in real-world running environment. The paper highlights the features of the binary executable files under the x86 architecture and portable format, presents issues of disassembly process of a machine code file and intermediate code, disassembly algorithms which can be applied to a correct and complete reconstruction of the source file written in assembly language, and techniques and tools used in binary code disassembly.

  5. Rapid Compact Binary Coalescence Parameter Estimation

    Science.gov (United States)

    Pankow, Chris; Brady, Patrick; O'Shaughnessy, Richard; Ochsner, Evan; Qi, Hong

    2016-03-01

    The first observation run with second generation gravitational-wave observatories will conclude at the beginning of 2016. Given their unprecedented and growing sensitivity, the benefit of prompt and accurate estimation of the orientation and physical parameters of binary coalescences is obvious in its coupling to electromagnetic astrophysics and observations. Popular Bayesian schemes to measure properties of compact object binaries use Markovian sampling to compute the posterior. While very successful, in some cases, convergence is delayed until well after the electromagnetic fluence has subsided thus diminishing the potential science return. With this in mind, we have developed a scheme which is also Bayesian and simply parallelizable across all available computing resources, drastically decreasing convergence time to a few tens of minutes. In this talk, I will emphasize the complementary use of results from low latency gravitational-wave searches to improve computational efficiency and demonstrate the capabilities of our parameter estimation framework with a simulated set of binary compact object coalescences.

  6. Binary Particle Model of Weak Interactions

    CERN Document Server

    Ndili, F N

    2011-01-01

    We introduce the new concept of binary particle as the basic matter unit that participates in weak interactions and not any one fermion singly. We state the quantum numbers of this binary particle, and show the concept leads us to a natural explanation of the standard model puzzle of the origin of flavor mixing and the CKM matrix. Certain other puzzles of the standard model such as the absence of flavor changing neutral currents (FCNC), are also explained naturally by the binary particle model. These puzzles are currently thought to be esoteric properties of electro weak interactions that have origins in physics beyond the standard model at some ultra high energy scales. We show that this is not necessarily the case.

  7. Modeling Flows Around Merging Black Hole Binaries

    CERN Document Server

    van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T

    2009-01-01

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...

  8. Nonlinear Tides in Close Binary Systems

    CERN Document Server

    Weinberg, Nevin N; Quataert, Eliot; Burkart, Josh

    2011-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct effects: three-mode nonlinear interactions and nonlinear excitation of modes by the time-varying gravitational potential of the companion. This paper presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism is applicable to binaries containing stars, planets, or compact objects, we focus on solar type stars with stellar or planetary companions. Our primary results include: (1) The linear tidal solution often used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited gravity waves are unstable to parametric resonance for companion masses M' > 10-100 M_Earth at orbital periods P = 1-10 days. The nearly static equilibrium tide is, however, parametrically s...

  9. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  10. The Circulation Pattern in Simulated Contact Binaries

    Science.gov (United States)

    Motl, Patrick M.; Frank, J.; Tohline, J. E.

    2006-06-01

    We present a three-dimensional hydrodynamical simulation of an initially symmetric (equal mass) binary where both components are marginally in contact. The simulation evolves the binary through approximately 150 orbital periods and within the first 20 orbits, a global velocity field is established that carries material between both components. In the equatorial plane, the flow is along a figure eight pattern with streams of material sliding past one another in the neighborhood of the inner Lagrange point. For our chosen equation of state, mass transfer is ultimately unstable in this binary though the growth time is long compared to the orbital period. We are therefore able to observe that the circulation pattern, once established, is quite close to steady state. We explore the role that similar steady state flows may play in real contact systems.

  11. Memory effect from spinning unbound binaries

    CERN Document Server

    De Vittori, Lorenzo; Gupta, Anuradha; Jetzer, Philippe

    2014-01-01

    We present a recently developed prescription to obtain ready-to-use gravitational wave (GW) polarization states for spinning compact binaries on hyperbolic orbits. We include leading order spin-orbit interactions, invoking 1.5PN-accurate quasi-Keplerian parametrization for the radial part of the orbital dynamics. We also include radiation reaction effects on $h_+$ and $h_{\\times}$ during the interaction. In the GW signals from spinning binaries there is evidence of the memory effect in both polarizations, in contrast to the non-spinning case, where only the cross polarizations exhibits non-vanishing amplitudes at infinite time. We also compute 1PN-accurate GW polarization states for non-spinning compact binaries in unbound orbits in a fully parametric way, and compare them with existing waveforms.

  12. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  13. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    International Nuclear Information System (INIS)

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886

  14. Automated analysis of eclipsing binary lightcurves with EBAS. II. Statistical analysis of OGLE LMC eclipsing binaries

    CERN Document Server

    Mazeh, T; Tamuz, O; Mazeh, Tsevi; North, Pierre; Tamuz, Omer

    2006-01-01

    In the first paper of this series we presented EBAS, a new fully automated algorithm to analyse the lightcurves of eclipsing binaries, based on the EBOP code. Here we apply the new algorithm to the whole sample of 2580 binaries found in the OGLE LMC photometric survey and derive the orbital elements for 1931 systems. To obtain the statistical properties of the short-period binaries of the LMC we construct a well defined subsample of 938 eclipsing binaries with main-sequence B-type primaries. Correcting for observational selection effects, we derive the distributions of the fractional radii of the two components and their sum, the brightness ratios and the periods of the short-period binaries. Somewhat surprisingly, the results are consistent with a flat distribution in log P between 2 and 10 days. We also estimate the total number of binaries in the LMC with the same characteristics, and not only the eclipsing binaries, to be about 5000. This figure leads us to suggest that 0.7 +- 0.4 percent of the main-sequ...

  15. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  16. Toroidal Horizons in Binary Black Hole Mergers

    OpenAIRE

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. ...

  17. Binaries in the Hipparcos data: Keep digging

    OpenAIRE

    Pourbaix, D.; Jancart, S.; Jorissen, A.

    2004-01-01

    Among the 120 000 objects in the Hipparcos catalogue, only 235 were fitted with an orbital model. Besides these 235 original astrometric binaries, most Hipparcos entries with a known spectroscopic orbit (extrasolar planet or stellar companion) have now been re-processed, as part of the on-going construction of the 9th Catalogue of Spectroscopic Binary Orbits (SB9, available at http://sb9.astro.ulb.ac.be). The pitfalls and successes of this re-processing are discussed in various contexts, like...

  18. Rotation and massive close binary evolution

    CERN Document Server

    Langer, N; Yoon, S -C; Hunter, I; Brott, I; Lennon, D J; de Mink, S E; Verheijdt, M

    2008-01-01

    We review the role of rotation in massive close binary systems. Rotation has been advocated as an essential ingredient in massive single star models. However, rotation clearly is most important in massive binaries where one star accretes matter from a close companion, as the resulting spin-up drives the accretor towards critical rotation. Here, we explore our understanding of this process, and its observable consequences. When accounting for these consequences, the question remains whether rotational effects in massive single stars are still needed to explain the observations.

  19. Binary black holes' effects on electromagnetic fields.

    Science.gov (United States)

    Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-08-21

    In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves. PMID:19792706

  20. Speckle interferometric observations of close binary stars

    CERN Document Server

    Saha, S K; Yeswanth, L; Anbazhagan, P

    2002-01-01

    Speckle interferometric technique is employed to record a series of hundreds of short-exposure images of several close binary stars with sub-arcsecond separation through a narrow band filter at the Cassegrain focus of the 2.34 meter (m) Vainu Bappu telescope (VBT), situated at Vainu Bappu Observatory (VBO), Kavalur, India. The data are recorded sequentially by a Peltier-cooled intensified CCD camera with 10 ms exposure. The auto-correlation method is applied to determine the angular separations and position angles of these binary systems.

  1. Photometric Solutions of Some Contact ASAS Binaries

    CERN Document Server

    Gezer, I

    2015-01-01

    We present the first light curve solution of 6 contact binary systems which are chosen from the ASAS catalog. The photometric elements and the estimated absolute parameters of all systems are obtained with the light curve analyses. We calculated the values of degree of contact for the systems. The location of the targets on the Hertzsprung-Russell diagram and the mass-radius plane is compared to the other well-known contact binaries and the evolutionary status of the systems are also discussed.

  2. Photometric solutions of some contact ASAS binaries

    Science.gov (United States)

    Gezer, İ.; Bozkurt, Z.

    2016-04-01

    We present the first light curve solution of 6 contact binary systems which are chosen from the ASAS catalog. The photometric elements and the estimated absolute parameters of all systems are obtained with the light curve analyses. We calculated the values of degree of contact for the systems. The location of the targets on the Hertzsprung-Russell diagram and the mass-radius plane is compared to the other well-known contact binaries and the evolutionary status of the systems are also discussed.

  3. Thermodynamics of binary gas adsorption in nanopores.

    Science.gov (United States)

    Dutta, Sujeet; Lefort, Ronan; Morineau, Denis; Mhanna, Ramona; Merdrignac-Conanec, Odile; Saint-Jalmes, Arnaud; Leclercq, Théo

    2016-09-21

    MCM-41 nanoporous silicas show a very high selectivity for monoalcohols over aprotic molecules during adsorption of a binary mixture in the gas phase. We present here an original use of gravimetric vapour sorption isotherms to characterize the role played by the alcohol hydrogen-bonding network in the adsorption process. Beyond simple selectivity, vapour sorption isotherms measured for various compositions help to completely unravel at the molecular level the step by step adsorption mechanism of the binary system in the nanoporous solid, from the first monolayers to the complete liquid condensation. PMID:27532892

  4. VLSI binary multiplier using residue number systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsi, F.; Di Cola, A.

    1982-01-01

    The idea of performing multiplication of n-bit binary numbers using a hardware based on residue number systems is considered. This paper develops the design of a VLSI chip deriving area and time upper bounds of a n-bit multiplier. To perform multiplication using residue arithmetic, numbers are converted from binary to residue representation and, after residue multiplication, the result is reconverted to the original notation. It is shown that the proposed design requires an area a=o(n/sup 2/ log n) and an execution time t=o(log/sup 2/n). 7 references.

  5. Quasi periodic oscillations in black hole binaries

    CERN Document Server

    Motta, S E

    2016-01-01

    Fast time variability is the most prominent characteristic of accreting systems and the presence of quasi periodic oscillations (QPOs) is a constant in all accreting systems, from cataclysmic variables to AGNs, passing through black hole and neutron star X-ray binaries and through the enigmatic ultra-luminous X-ray sources. In this paper I will briefly review the current knowledge of QPOs in black hole X-ray binaries, mainly focussing on their observed properties, but also mentioning the most important models that have been proposed to explain the origin of QPOs over the last decades.

  6. Spin supplementary conditions for spinning compact binaries

    CERN Document Server

    Mikóczi, Balázs

    2016-01-01

    We consider the different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conservative quantities and the dissipative part of relative motion during the gravitational radiation of each SSCs. We give the orbital elements and observed quantities of the SO dynamics, for instance the energy and the orbital angular momentum losses and waveforms and discuss their SSC dependence.

  7. Pulsations in close binaries: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Maceroni C.

    2015-01-01

    Full Text Available CoRoT and Kepler provided a precious by-product: a number of eclipsing binaries containing variable stars and, among these, non-radial pulsators. This providential occurrence allows combining independent information from two different phenomena whose synergy yields scientific results well beyond those from the single sources. In particular, the analysis of pulsations in eclipsing binary components throws light on the internal structure of the pulsating star, on the system evolution, and on the role of tidal forces in exciting the oscillations. The case study of the Kepler target KIC 3858884 is illustrative of the difficulties of analysis and of the achievements in this rapidly developing field.

  8. Inducing Risk Neutral Preferences with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2013-01-01

    We evaluate the binary lottery procedure for inducing risk neutral behavior. We strip the experimental implementation down to bare bones, taking care to avoid any potentially confounding assumptions about behavior having to be made. In particular, our evaluation does not rely on the assumed...... validity of any strategic equilibrium behavior, or even the customary independence axiom. We show that subjects sampled from our population are generally risk averse when lotteries are defined over monetary outcomes, and that the binary lottery procedure does indeed induce a statistically significant shift...... toward risk neutrality. This striking result generalizes to the case in which subjects make several lottery choices and one is selected for payment....

  9. Binary Sparse Phase Retrieval via Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2016-01-01

    Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.

  10. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    Science.gov (United States)

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  11. The first Doppler images of the eclipsing binary SZ Piscium

    Science.gov (United States)

    Xiang, Yue; Gu, Shenghong; Cameron, A. Collier; Barnes, J. R.; Zhang, Liyun

    2016-02-01

    We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September-December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.

  12. Automatic programming of binary morphological machines by PAC learning

    Science.gov (United States)

    Barrera, Junior; Tomita, Nina S.; Correa da Silva, Flavio S.; Terada, Routo

    1995-08-01

    Binary image analysis problems can be solved by set operators implemented as programs for a binary morphological machine (BMM). This is a very general and powerful approach to solve this type of problem. However, the design of these programs is not a task manageable by nonexperts on mathematical morphology. In order to overcome this difficulty we have worked on tools that help users describe their goals at higher levels of abstraction and to translate them into BMM programs. Some of these tools are based on the representation of the goals of the user as a collection of input-output pairs of images and the estimation of the target operator from these data. PAC learning is a well suited methodology for this task, since in this theory 'concepts' are represented as Boolean functions that are equivalent to set operators. In order to apply this technique in practice we must have efficient learning algorithms. In this paper we introduce two PAC learning algorithms, both are based on the minimal representation of Boolean functions, which has a straightforward translation to the canonical decomposition of set operators. The first algorithm is based on the classical Quine-McCluskey algorithm for the simplification of Boolean functions, and the second one is based on a new idea for the construction of Boolean functions: the incremental splitting of intervals. We also present a comparative complexity analysis of the two algorithms. Finally, we give some application examples.

  13. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers.

    Science.gov (United States)

    Xie, Nan; Liu, Meijiao; Deng, Hanlin; Li, Weihua; Qiu, Feng; Shi, An-Chang

    2014-02-26

    Self-assembling block copolymers provide access to the fabrication of various ordered phases. In particular, the ordered spherical phases can be used to engineer soft mesocrystals with domain size at the 5-100 nm scales. Simple block copolymers, such as diblock copolymers, form a limited number of mesocrystals. However multiblock copolymers are capable to form more complex mesocrystals. We demonstrate that designed B1AB2CB3 multiblock terpolymers, in which the A- and C-blocks form spherical domains and the packing of these spheres can be controlled by changing the lengths of the middle and terminal B-blocks, self-assemble into various binary mesocrystals with space group symmetries of a large number of binary ionic crystals, including NaCl, CsCl, ZnS, α-BN, AlB2, CaF2, TiO2, ReO3, Li3Bi, Nb3Sn(A15), and α-Al2O3. This approach can be generalized to other terpolymers as well as to tetrapolymers to obtain ternary mesocrystals. Our study provides a new concept of macromolecular metallurgy for producing crystal phases in a mesoscale and thus makes multiblock copolymers a robust platform for the engineering of functional materials.

  14. Be discs in binary systems - I. Coplanar orbits

    Science.gov (United States)

    Panoglou, Despina; Carciofi, Alex C.; Vieira, Rodrigo G.; Cyr, Isabelle H.; Jones, Carol E.; Okazaki, Atsuo T.; Rivinius, Thomas

    2016-09-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio and eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar binaries. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. We find two limiting cases with respect to the effects of eccentricity: in circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc structure appears smaller in size, more elongated and more massive for small viscosity parameter, small orbital separation and/or high mass ratio. In highly eccentric orbits, the effects are more complex, with the disc structure strongly dependent on the orbital phase. We also studied the effects of binarity in the disc continuum emission. Since the infrared and radio SED are sensitive to the disc size and density slope, the truncation and matter accumulation result in considerable modifications in the emergent spectrum. We conclude that binarity can serve as an explanation for the variability exhibited in observations of Be stars, and that our model can be used to detect invisible companions.

  15. The Solar-Type Contact Binary BX Pegasi Revisited

    CERN Document Server

    Lee, Jae Woo; Lee, Chung-Uk; Youn, Jae-Hyuck

    2009-01-01

    We present the results of new CCD photometry for the contact binary BX Peg, made during three successive months beginning on September 2008. As do historical light curves, our observations display an O'Connell effect and the November data by themselves indicate clear evidence for very short-time brightness disturbance. For these variations, model spots are applied separately to the two data set of Group I (Sep.--Oct.) and Group II (Nov.). The former is described by a single cool spot on the secondary photosphere and the latter by a two-spot model with a cool spot on the cool star and a hot one on either star. These are generalized manifestations of the magnetic activity of the binary system. Twenty light-curve timings calculated from Wilson-Devinney code were used for a period study, together with all other minimum epochs. The complex period changes of BX Peg can be sorted into a secular period decrease caused dominantly by angular momentum loss due to magnetic stellar wind braking, a light-travel-time (LTT) ...

  16. The Solar-Type Contact Binary BX Pegasi Revisited

    Science.gov (United States)

    Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Youn, Jae-Hyuck

    2009-12-01

    We present the results of new CCD photometry for the contact binary BX Peg, made during three successive months beginning on 2008 September. As do historical light curves, our observations display an O'Connell effect and the November data by themselves indicate clear evidence for very short-term brightness disturbance. For these variations, model spots are applied separately to the two data sets, Group I (Sep.-Oct.) and Group II (Nov.). The former is described by a single cool spot on the secondary photosphere and the latter by a two-spot model with a cool spot on the cool star and a hot one on either star. These are generalized manifestations of the magnetic activity of the binary system. Twenty light-curve timings calculated from Wilson-Devinney code were used for a period study, together with all other minimum epochs. The complex period changes of BX Peg can be sorted into a secular period decrease caused dominantly by angular momentum loss due to magnetic stellar wind braking, a light-travel time (LTT) effect due to the orbit of a low-mass third companion, and a previously unknown short-term oscillation. This last period modulation could be produced either by a second LTT orbit with a period of about 16 yr due to the existence of a fourth body, or by the effect of magnetic activity with a cycle length of about 12 yr.

  17. Microscopic study and modeling of thermodiffusion in binary associating mixtures.

    Science.gov (United States)

    Eslamian, Morteza; Saghir, M Ziad

    2009-12-01

    Thermodiffusion in associating mixtures is a complex phenomenon, owing to the strong dependence of the molecular structure of such mixtures on concentration. In this paper, we attempt to elucidate this phenomenon and propose a qualitative mechanism for the separation of species in binary associating mixtures. A correlation between the sign change in the thermal diffusion factor and a change in the molecular structure, mixture viscosity, and the excess entropy of mixing in such mixtures is established. To quantify this correlation, we modify our recently developed dynamic model based on the Drickamer nonequilibrium thermodynamic approach [M. Eslamian and M. Z. Saghir, Phys. Rev. E 80, 011201 (2009)] and propose expressions for the estimation of thermal diffusion factor in binary associating mixtures. The prediction power of the proposed expressions, as well as other widely used models, are examined against the experimental data. The proposed theoretical expressions are self-contained and only rely on the viscosity data as input and predict a sign change in the thermal diffusion factor in associating mixtures. PMID:20365155

  18. X-ray-binary spectra in the lamp post model

    CERN Document Server

    Vincent, F H; Zdziarski, A A; Madej, J

    2016-01-01

    [Abridged] Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole axis, emitting X-rays. The observed spectrum is made of 3 components: the direct spectrum; the thermal bump; and the reflected spectrum made of the Compton hump and the iron-line complex. Aims. We aim at computing accurately the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. Methods. We compute in full GR the illumination of a thin disk by a lamp along the rotation axis. We use the ATM21 radiative transfer code to compute the spectrum emitted along the disk. We ray trace this local spectrum to determine the reprocessed spectrum as observed at infinity. We discuss the dependence of the local and ray-traced spectra on the emission angle and spin. Results. We show the importa...

  19. Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order

    Science.gov (United States)

    Moore, Blake; Favata, Marc; Arun, K. G.; Mishra, Chandra Kant

    2016-06-01

    Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but non-negligible orbital eccentricities when they enter the low-frequency bands of ground- and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary [M. Favata, Phys. Rev. Lett. 112, 101101 (2014)]. Gravitational-wave search templates typically rely on the quasicircular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. Damour, Gopakumar, Iyer, and others have developed an elegant but complex quasi-Keplerian formalism for describing the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here, we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit, the nonperiodic contribution to the gravitational-wave phasing can be expressed explicitly as simple functions of frequency or time, with little additional complexity beyond the well-known formulas for circular binaries. These eccentric phase corrections are computed to 3PN order and to leading order in the eccentricity for the standard PN approximants. For a variety of systems, these eccentricity corrections cause significant corrections to the number of gravitational-wave cycles that sweep through a detector's frequency band. This is evaluated using several measures, including a modification of the useful cycles. By comparing to numerical solutions valid for any eccentricity, we find that our analytic solutions are valid up to e0≲0.1 for comparable-mass systems, where e0 is the eccentricity when the source enters the detector band. We also evaluate the role of periodic terms that enter the phasing and discuss how they can be incorporated into some of

  20. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  1. Model-independent inference on compact-binary observations

    CERN Document Server

    Mandel, Ilya; Colonna, Andrea; Stevenson, Simon; Tiňo, Peter; Veitch, John

    2016-01-01

    The recent advanced LIGO detections of gravitational waves from merging binary black holes enhance the prospect of exploring binary evolution via gravitational-wave observations of a population of compact-object binaries. In the face of uncertainty about binary formation models, model-independent inference provides an appealing alternative to comparisons between observed and modelled populations. We describe a procedure for clustering in the multi-dimensional parameter space of observations that are subject to significant measurement errors. We apply this procedure to a mock data set of population-synthesis predictions for the masses of merging compact binaries convolved with realistic measurement uncertainties, and demonstrate that we can accurately distinguish subpopulations of binary neutron stars, binary black holes, and mixed black hole -- neutron star binaries.

  2. Evolution of Binary Stars in Multiple-Population Globular Clusters

    CERN Document Server

    Hong, Jongsuk; Sollima, Antonio; McMillan, Stephen L W; D'Antona, Franca; D'Ercole, Annibale

    2015-01-01

    The discovery of multiple stellar populations in globular clusters has implications for all the aspects of the study of these stellar systems. In this paper, by means of N-body simulations, we study the evolution of binary stars in multiple-population clusters and explore the implications of the initial differences in the spatial distribution of different stellar populations for the evolution and survival of their binary stars. Our simulations show that initial differences between the spatial distribution of first-generation (FG) and second-generation (SG) stars can leave a fingerprint in the current properties of the binary population. SG binaries are disrupted more efficiently than those of the FG population resulting in a global SG binary fraction smaller than that of the FG. As for surviving binaries, dynamical evolution produces a difference between the SG and the FG binary binding energy distribution with the SG population characterized by a larger fraction of high binding energy (more bound) binaries. ...

  3. Preparation and Evaluation of Cyclodextrin Based Binary Systems for Taste Masking

    Directory of Open Access Journals (Sweden)

    S. T. Birhade

    2010-07-01

    Full Text Available The present study was aimed to investigate the potential of cyclodextrin complexation as an approach for taste masking. For this purpose, Rizatriptan benzoate (RZBT was selected as model drug which is having bitter taste. Taste improvement of drug by β-Cyclodextrin was done by simple complexation approach using physical and kneading mixture methods with various ratios. Taste perception study was carried out in-vitro by spectrophotometrically and in-vivo by gustatory sensation to evaluate the taste masking ability of binary complexation. The optimized taste masking ratio 1:10 of kneading mixture was selected based on bitterness score and characterized by fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC and X-ray diffractometry (XRD to identify the physicochemical interaction between drug and carrier and its effect on dissolution. In-vitro drug release studies for physical mixture and kneaded system were performed in pH 1.2 and 6.8 buffers. The FTIR, DSC and XRD studies indicated inclusion complexation in physical mixture and kneaded system. Both the binary systems showed effective taste masking and at the same time showed no limiting effect on the drug release. Whereas in comparison; kneading system showed better results. The results conclusively demonstrated effective taste masking by β-Cyclodextrin in both binary systems, which can be utilized as a novel alternative approach for effective taste masking.

  4. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  5. Orbits of Ten Visual Binary Stars

    Institute of Scientific and Technical Information of China (English)

    B.Novakovi(c)

    2007-01-01

    We present the orbits of ten visual binary stars:WDS 01015+6922.WDS 01424-0645,WDS 01461+6349,WDS 04374-0951,WDS 04478+5318,WDS 05255-0033,WDS 05491+6248,WDS 06404+4058,WDS 07479-1212,and WDS 18384+0850.We have also determined their masses,dynamical parallaxes and ephemerides.

  6. Chemically homogeneous evolution in massive binaries

    CERN Document Server

    de Mink, S E; Langer, N; Pols, O R

    2010-01-01

    Rotation can have severe consequences for the evolution of massive stars. It is now considered as one of the main parameters, alongside mass and metallicity that determine the final fate of single stars. In massive, fast rotating stars mixing processes induced by rotation may be so efficient that helium produced in the center is mixed throughout the envelope. Such stars evolve almost chemically homogeneously. At low metallicity they remain blue and compact, while they gradually evolve into Wolf-Rayet stars and possibly into progenitors of long gamma-ray bursts. In binaries this type of evolution may occur because of (I) tides in very close binaries, as a result of (II) spin up by mass transfer, as result of (III) a merger of the two stars and (IV) when one of the components in the binary was born with a very high initial rotation rate. As these stars stay compact, the evolutionary channels are very different from what classical binary evolutionary models predict. In this contribution we discuss examples of ne...

  7. Binaries are the best single stars

    CERN Document Server

    de Mink, S E; Izzard, R G

    2010-01-01

    Stellar models of massive single stars are still plagued by major uncertainties. Testing and calibrating against observations is essential for their reliability. For this purpose one preferably uses observed stars that have never experienced strong binary interaction, i.e. "true single stars". However, the binary fraction among massive stars is high and identifying "true single stars" is not straight forward. Binary interaction affects systems in such a way that the initially less massive star becomes, or appears to be, single. For example, mass transfer results in a widening of the orbit and a decrease of the luminosity of the donor star, which makes it very hard to detect. After a merger or disruption of the system by the supernova explosion, no companion will be present. The only unambiguous identification of "true single stars" is possible in detached binaries, which contain two main-sequence stars. For these systems we can exclude the occurrence of mass transfer since their birth. A further advantage is ...

  8. The Evolution of Relativistic Binary Progenitor Systems

    CERN Document Server

    Francischelli, G J; Brown, G E

    2001-01-01

    Relativistic binary pulsars, such as B1534+12 and B1913+16 are characterized by having close orbits with a binary separation of ~ 3 R_\\sun. The progenitor of such a system is a neutron star, helium star binary. The helium star, with a strong stellar wind, is able to spin up its compact companion via accretion. The neutron star's magnetic field is then lowered to observed values of about 10^{10} Gauss. As the pulsar lifetime is inversely proportional to its magnetic field, the possibility of observing such a system is, thus, enhanced by this type of evolution. We will show that a nascent (Crab-like) pulsar in such a system can, through accretion-braking torques (i.e. the "propeller effect") and wind-induced spin-up rates, reach equilibrium periods that are close to observed values. Such processes occur within the relatively short helium star lifetimes. Additionally, we find that the final outcome of such evolutionary scenarios depends strongly on initial parameters, particularly the initial binary separation a...

  9. Structure Map for Embedded Binary Alloy Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  10. The Orbital Decay of Embedded Binary Stars

    CERN Document Server

    Stahler, Steven W

    2009-01-01

    Young binaries within dense molecular clouds are subject to dynamical friction from ambient gas. Consequently, their orbits decay, with both the separation and period decreasing in time. A simple analytic expression is derived for this braking torque. The derivation utilizes the fact that each binary acts as a quadrupolar source of acoustic waves. The acoustic disturbance has the morphology of a two-armed spiral and carries off angular momentum. From the expression for the braking torque, the binary orbital evolution is also determined analytically. This type of merger may help explain the origin of high-mass stars. If infrared dark clouds, with peak densities up to 10^7 cm^{-3}, contain low-mass binaries, those with separations less than 100 AU merge within about 10^5 yr. During the last few thousand years of the process, the rate of mechanical energy deposition in the gas exceeds the stars' radiative luminosity. Successive mergers may lead to the massive star formation believed to occur in these clouds.

  11. Numerical simulations of compact object binaries

    OpenAIRE

    Pfeiffer, Harald P.

    2012-01-01

    Coalescing compact object binaries consisting of black holes and/or Neutron stars are a prime target for ground-based gravitational wave detectors. This article reviews the status of numerical simulations of these systems, with an emphasis on recent progress.

  12. Performance of binary FSK data transmission systems

    Science.gov (United States)

    Batson, B. H.

    1973-01-01

    Matched-filter detection of binary signals is discussed in terms of the probability of bit error. The equations for the probability of error are derived for coherent phase shift keying, and coherent frequency shift keying (FSK). Suboptimum detection of FSK signals is also discussed for discriminators.

  13. Constraining Binary Stellar Evolution With Pulsar Timing

    Science.gov (United States)

    Ferdman, Robert D.; Stairs, I. H.; Backer, D. C.; Burgay, M.; Camilo, F.; D'Amico, N.; Demorest, P.; Faulkner, A.; Hobbs, G.; Kramer, M.; Lorimer, D. R.; Lyne, A. G.; Manchester, R.; McLaughlin, M.; Nice, D. J.; Possenti, A.

    2006-06-01

    The Parkes Multibeam Pulsar Survey has yielded a significant number of very interesting binary and millisecond pulsars. Two of these objects are part of an ongoing timing study at the Green Bank Telescope (GBT). PSR J1756-2251 is a double-neutron star (DNS) binary system. It is similar to the original Hulse-Taylor binary pulsar system PSR B1913+16 in its orbital properties, thus providing another important opportunity to test the validity of General Relativity, as well as the evolutionary history of DNS systems through mass measurements. PSR J1802-2124 is part of the relatively new and unstudied "intermediate-mass" class of binary system, which typically have spin periods in the tens of milliseconds, and/or relatively massive (> 0.7 solar masses) white dwarf companions. With our GBT observations, we have detected the Shapiro delay in this system, allowing us to constrain the individual masses of the neutron star and white dwarf companion, and thus the mass-transfer history, in this unusual system.

  14. Binary Quadratic Forms: A Historical View

    Science.gov (United States)

    Khosravani, Azar N.; Beintema, Mark B.

    2006-01-01

    We present an expository account of the development of the theory of binary quadratic forms. Beginning with the formulation and proof of the Two-Square Theorem, we show how the study of forms of the type x[squared] + ny[squared] led to the discovery of the Quadratic Reciprocity Law, and how this theorem, along with the concept of reduction relates…

  15. Spin frequency distributions of binary millisecond pulsars

    NARCIS (Netherlands)

    A. Papitto; D.F. Torres; N. Rea; T.M. Tauris

    2014-01-01

    Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a 108−109 yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between

  16. The Binary Pulsar: Gravity Waves Exist.

    Science.gov (United States)

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  17. Spectropolarimetry of single and binary stars

    CERN Document Server

    Harries, T J

    2004-01-01

    Spectropolarimetry is a photon-hungry technique that will reach fruition in the 8-m telescope age. Here I summarize some of the stellar spectropolarimetric research that my collaborators and I have undertaken, with particular emphasis on the circumstellar environment of massive stars, symbiotic binaries, and star formation.

  18. Testing the Binary Trigger Hypothesis in FUors

    Science.gov (United States)

    Green, Joel D.; Kraus, Adam L.; Rizzuto, Aaron C.; Ireland, Michael J.; Dupuy, Trent J.; Mann, Andrew W.; Kuruwita, Rajika

    2016-10-01

    We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry at 1.59 μm and 2.12 μm that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion outbursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit (ρ =58.3+/- 1.4 mas or 30 ± 5 au) and currently much fainter than the outbursting star ({{Δ }}K\\prime =3.34+/- 0.10 mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion (M∼ 0.25{M}ȯ ) is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of {{Δ }}K\\prime ∼ 4 mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary companion. However, we argue from the system geometry and mass reservoir considerations that these outbursts are not directly tied to the orbital period (i.e., occurring at periastron passage), but instead must only occur infrequently.

  19. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes. PMID:25910104

  20. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    1993-01-01

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  1. Eclipsing Binaries with the Kepler Mission

    Science.gov (United States)

    Prsa, Andrej; Kepler Eclipsing Binary Working Group

    2012-05-01

    Kepler has revolutionized the eclipsing binary field by providing us essentially uninterrupted data of unprecedented quality. Out of 160,000 targets, we detected over 2500 eclipsing binaries. These range in orbital periods from as short as 0.3 days, all the way to several years, and encompass stellar types across the H-R diagram. In this talk I will present the collaborative effort of the Kepler Eclipsing Binary Working Group to study and characterize these systems on a statistical level: their distribution in periods, galactic latitude, spectral type, fundamental stellar properties and multiplicity as evidenced by eclipse timing variations. I will further show the gems that have sprung from this sample, which were modeled and interpreted to reveal intrinsically pulsating components, runaway encounters with massive tertiaries, stellar objects that populate the lowest end of the main sequence and circumbinary planets. I will critically review and discuss the causes of data systematics and detrending, and introduce a novel algorithm to classify light curves into morphological types using Locally Linear Embedding. Finally, I will touch on the dark side of eclipsing binaries as the primary cause of false positives in extrasolar planet detections with Kepler.

  2. Locating Restricted Facilities on Binary Maps

    CERN Document Server

    Andreica, Mugurel Ionut; Andreica, Madalina Ecaterina

    2008-01-01

    In this paper we consider several facility location problems with applications to cost and social welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. We present algorithmic solutions for all the problems. Some cases are too particular to be used in practical situations, but they are at least a starting point for more generic solutions.

  3. Bloch-Zener oscillations in binary superlattices.

    Science.gov (United States)

    Dreisow, F; Szameit, A; Heinrich, M; Pertsch, T; Nolte, S; Tünnermann, A; Longhi, S

    2009-02-20

    Bloch-Zener oscillations, i.e., the coherent superposition of Bloch oscillations and Zener tunneling between minibands of a binary lattice, are experimentally demonstrated for light waves in curved femtosecond laser-written waveguide arrays. Visualization of double-periodicity breathing and oscillation modes is reported, and synchronous tunneling leading to wave reconstruction is demonstrated.

  4. A Binary Teetering on the Edge

    Science.gov (United States)

    Motl, P. M.; D'Souza, M. C. R.; Tohline, J. E.; Frank, J.

    2005-05-01

    We present a fully three-dimensional hydrodynamical simulation of Roche lobe overflow in a binary near the stability boundary. This boundary separates evolutionary branches that correspond to either an accelerating mass transfer rate leading eventually to merger through tidal instability or to a decaying mass transfer rate as the orbit expands. The binary begins with a mass ratio of 0.4 (ratio of donor to accretor mass) and is initially assumed to be rotating synchronously. We treat the stellar components as simple polytropic fluids characterized by a polytropic index, n = 3/2. As the donor overflows its Roche lobe, the mass transfer rate initially accelerates before stabilizing and eventually dropping over a timescale of tens of orbits. We also note that for this particular binary, the accretion stream impacts on the surface of the donor rather than forming an accretion disk. This simulation allows us to measure the efficiency with which the accretion stream spins up the accretor in this "direct impact" scenario and the degree to which angular momentum is transfered back to the binary orbit via the tidal field.

  5. Face Alignment via Regressing Local Binary Features.

    Science.gov (United States)

    Ren, Shaoqing; Cao, Xudong; Wei, Yichen; Sun, Jian

    2016-03-01

    This paper presents a highly efficient and accurate regression approach for face alignment. Our approach has two novel components: 1) a set of local binary features and 2) a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. This approach achieves the state-of-the-art results when tested on the most challenging benchmarks to date. Furthermore, because extracting and regressing local binary features are computationally very cheap, our system is much faster than previous methods. It achieves over 3000 frames per second (FPS) on a desktop or 300 FPS on a mobile phone for locating a few dozens of landmarks. We also study a key issue that is important but has received little attention in the previous research, which is the face detector used to initialize alignment. We investigate several face detectors and perform quantitative evaluation on how they affect alignment accuracy. We find that an alignment friendly detector can further greatly boost the accuracy of our alignment method, reducing the error up to 16% relatively. To facilitate practical usage of face detection/alignment methods, we also propose a convenient metric to measure how good a detector is for alignment initialization.

  6. PARTICLE SEGREGATION IN FLUIDIZED BINARY-MIXTURES

    NARCIS (Netherlands)

    HOFFMANN, AC; JANSSEN, LPBM

    1993-01-01

    The particle segregation in fluidised beds consisting of different types of binary mixtures is shown to be governed by the same particle transport processes. The segregation behaviour of both ''different-density mixtures'' and ''equal-density mixtures'', two types of system which until now largely h

  7. Testing the Binary Trigger Hypothesis in FUors

    CERN Document Server

    Green, Joel D; Rizzuto, Aaron C; Ireland, Michael J; Dupuy, Trent J; Mann, Andrew W; Kuruwita, Rajika

    2016-01-01

    We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry (NRM) at 1.59 um and 2.12 um that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion outbursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit (rho = 58.3 +/- 1.4 mas or 30 +/- 5 AU) and currently much fainter than the outbursting star (delta(K') = 3.34 +/- 0.10 mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion (M ~ 0.25 Msun) is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of delta(K') ~ 4 mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary ...

  8. Binary pulsars as dark-matter probes

    CERN Document Server

    Pani, Paolo

    2015-01-01

    During the motion of a binary pulsar around the galactic center, the pulsar and its companion experience a wind of dark-matter particles that can affect the orbital motion through dynamical friction. We show that this effect produces a characteristic seasonal modulation of the orbit and causes a secular change of the orbital period whose magnitude can be well within the astonishing precision of various binary-pulsar observations. Our analysis is valid for binary systems with orbital period longer than a day. By comparing this effect with pulsar-timing measurements, it is possible to derive model-independent upper bounds on the dark-matter density at different distances $D$ from the galactic center. For example, the precision timing of J1713+0747 imposes $\\rho_{\\rm DM}\\lesssim 10^5\\,{\\rm GeV/cm}^3$ at $D\\approx7\\,{\\rm kpc}$. The detection of a binary pulsar at $D\\lesssim 10\\,{\\rm pc}$ could provide stringent constraints on dark-matter halo profiles and on growth models of the central black hole. The Square Kil...

  9. Supermassive Black Hole Binaries: The Search Continues

    CERN Document Server

    Bogdanovic, Tamara

    2014-01-01

    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.

  10. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  11. Echoes in X-ray Binaries

    CERN Document Server

    O'Brien, K; Hynes, R; Chen, W; Haswell, C; Still, M

    2002-01-01

    We present a method of analysing the correlated X-ray and optical/UV variability in X-ray binaries, using the observed time delays between the X-ray driving lightcurves and their reprocessed optical echoes. This allows us to determine the distribution of reprocessing sites within the binary. We model the time-delay transfer functions by simulating the distribution of reprocessing regions, using geometrical and binary parameters. We construct best-fit time-delay transfer functions, showing the regions in the binary responsible for the reprocessing of X-rays. We have applied this model to observations of the Soft X-ray Transient, GRO j1655-40. We find the optical variability lags the X-ray variability with a mean time delay of 19.3$pm{2.2}$ seconds. This means that the outer regions of the accretion disc are the dominant reprocessing site in this system. On fitting the data to a simple geometric model, we derive a best-fit disk half-opening angle of 13.5$^{+2.1}_{-2.8}$ degrees, which is similar to that observe...

  12. Planetary nebula progenitors that swallow binary systems

    CERN Document Server

    Soker, Noam

    2015-01-01

    I propose that some irregular `messy' planetary nebulae owe their morphologies to triple-stellar evolution where tight binary systems are tidally and frictionally destroyed inside the envelope of asymptotic giant branch (AGB) stars. The tight binary system might breakup with one star leaving the system. In an alternative evolution, one of the stars of the brook-up tight binary system falls toward the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and `messy' planetary nebula as a descendant. The evolution of the triple-stellar system before destruction can be in a full common envelope evolution (CEE) or in a grazing envelope evolution (GEE). Both before and after destruction the system might lunch pairs of opposite jets. One pronounced sig...

  13. Cassini states for black-hole binaries

    CERN Document Server

    Correia, Alexandre C M

    2016-01-01

    Cassini states correspond to equilibria of the spin axis of a celestial body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black-hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black-hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black-hole binary systems based on a Hamiltonian formalism. In absence of dissipation the problem is integrable and it is easy to identify all possible trajectories for the spin for a given value of the total angular momentum. As the system collapses due to radiation reaction, the Cassini states are shifted to different positions, which modifies the dynamics around them. This is why the final spin distribution may differ from the initial one. Our method provides a simple way of predicting the distribution of the spin of black-hole binaries at th...

  14. HI OBSERVATIONS OF BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T; SHOSTAK, S

    1993-01-01

    Observations in the 21 cm line of neutral hydrogen made with the Arecibo- and the Westerbork radio telescopes are presented of a sample of binary spiral galaxies. Completed with optical information, these observations are used to determine the spatial orientation of the spin-vectors of the galaxies

  15. What's Next? Judging Sequences of Binary Events

    Science.gov (United States)

    Oskarsson, An T.; Van Boven, Leaf; McClelland, Gary H.; Hastie, Reid

    2009-01-01

    The authors review research on judgments of random and nonrandom sequences involving binary events with a focus on studies documenting gambler's fallacy and hot hand beliefs. The domains of judgment include random devices, births, lotteries, sports performances, stock prices, and others. After discussing existing theories of sequence judgments,…

  16. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  17. Non-binary or genderqueer genders.

    Science.gov (United States)

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are 'genderqueer' or 'non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging presence and advocacy of these groups of people. Population-based studies show a small percentage--but a sizable proportion in terms of raw numbers--of people who identify as non-binary. While such genders have been extant historically and globally, they remain marginalized, and as such--while not being disorders or pathological in themselves--people with such genders remain at risk of victimization and of minority or marginalization stress as a result of discrimination. This paper therefore reviews the limited literature on this field and considers ways in which (mental) health professionals may assist the people with genderqueer and non-binary gender identities and/or expressions they may see in their practice. Treatment options and associated risks are discussed. PMID:26753630

  18. Balanced binary trees in the Tamari lattice

    CERN Document Server

    Giraudo, Samuele

    2010-01-01

    We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals [T0, T1] where T0 and T1 are balanced trees are isomorphic as posets to a hypercube. We introduce tree patterns and synchronous grammars to get a functional equation of the generating series enumerating balanced tree intervals.

  19. Merging Compact Binaries in Hierarchical Triple Systems: Resonant Excitation of Binary Eccentricity

    CERN Document Server

    Liu, Bin; Yuan, Ye-Fei

    2015-01-01

    The merging of compact binaries play an important role in astrophysical context. The gravitational waves takes the angular momentum off the merging binary, which makes the orbit of the inner binary shrink. In this work, we study the secular dynamics of merging binary with a small perturber in hierarchical triple systems. From our numerical calculations, we find that the triple system goes through a resonant state between the apsidal precession rates of two orbits during the orbital decay, and the eccentricity of the inner orbit is excited, as well as the corresponding gravita- tional wave frequency. Our numerical results could be understood under the linear approximation of small orbital eccentricities and coplanar configuration. Especially, the resonant condition and the excited eccentricity can be estimated analytically.

  20. Minimal perceptrons for memorizing complex patterns

    Science.gov (United States)

    Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo

    2016-11-01

    Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.

  1. Effective Complexity of Stationary Process Realizations

    Directory of Open Access Journals (Sweden)

    Arleta Szkoła

    2011-06-01

    Full Text Available The concept of effective complexity of an object as the minimal description length of its regularities has been initiated by Gell-Mann and Lloyd. The regularities are modeled by means of ensembles, which is the probability distributions on finite binary strings. In our previous paper [1] we propose a definition of effective complexity in precise terms of algorithmic information theory. Here we investigate the effective complexity of binary strings generated by stationary, in general not computable, processes. We show that under not too strong conditions long typical process realizations are effectively simple. Our results become most transparent in the context of coarse effective complexity which is a modification of the original notion of effective complexity that needs less parameters in its definition. A similar modification of the related concept of sophistication has been suggested by Antunes and Fortnow.

  2. A decoding method of an n length binary BCH code through (n + 1n length binary cyclic code

    Directory of Open Access Journals (Sweden)

    TARIQ SHAH

    2013-09-01

    Full Text Available For a given binary BCH code Cn of length n = 2 s - 1 generated by a polynomial of degree r there is no binary BCH code of length (n + 1n generated by a generalized polynomial of degree 2r. However, it does exist a binary cyclic code C (n+1n of length (n + 1n such that the binary BCH code Cn is embedded in C (n+1n . Accordingly a high code rate is attained through a binary cyclic code C (n+1n for a binary BCH code Cn . Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C (n+1n , while the codes Cn and C (n+1n have the same minimum hamming distance.

  3. Improved parameters of the hydrogen-deficient binary star KSPer

    CERN Document Server

    Kipper, Tonu

    2008-01-01

    Using the high resolution spectral observations obtained with the Nasmyth Echelle Spectrograph NES of the 6m telescope we analysed the optical spectrum of the hydrogen-deficient binary star KSPer. The atmospheric parameters derived are: effective temperature Teff=9500+/-300 K, surface gravity log g=2.0+/-0.5, and microturbulent velocity Vt=9.5+/-0.5km/s. The hydrogen deficiency is H/He=3x10^{-5}, iron abundance is reduced by 0.8dex; nitrogen abundance is very high [N/Fe]=1.4, but carbon and oxygen abundances are low. The star luminosity is log L/Lo=3.3. A complex absorption and emission structure of the NaI D doublet was revealed. We suggest that the emission component forms in the circumbinary gaseous envelope.

  4. Modified binary encounter Bethe model for electron-impact ionization

    CERN Document Server

    Guerra, M; Indelicato, P; Santos, J P

    2013-01-01

    Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed. The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells. The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.

  5. Logic functions and equations binary models for computer science

    CERN Document Server

    Posthoff, Christian

    2004-01-01

    Logic functions and equations are (some of) the most important concepts of Computer Science with many applications such as Binary Arithmetics, Coding, Complexity, Logic Design, Programming, Computer Architecture and Artificial Intelligence. They are very often studied in a minimum way prior to or together with their respective applications. Based on our long-time teaching experience, a comprehensive presentation of these concepts is given, especially emphasising a thorough understanding as well as numerical and computer-based solution methods. Any applications and examples from all the respective areas are given that can be dealt with in a unified way. They offer a broad understanding of the recent developments in Computer Science and are directly applicable in professional life. Logic Functions and Equations is highly recommended for a one- or two-semester course in many Computer Science or computer Science-oriented programmes. It allows students an easy high-level access to these methods and enables sophist...

  6. The Tarantula Massive Binary Monitoring: I. Observational campaign and OB-type spectroscopic binaries

    CERN Document Server

    Almeida, L A; Taylor, W; Barbá, R; Bonanos, A; Crowther, P; Damineli, A; de Koter, A; de Mink, S E; Evans, C J; Gieles, M; Grin, N J; Hénault-Brunet, V; Langer, N; Lennon, D; Lockwood, S; Apellániz, J Maíz; Moffat, A F J; Neijssel, C; Norman, C; Ramírez-Agudelo, O H; Richardson, N D; Schootemeijer, A; Shenar, T; Soszyński, I; Tramper, F; Vink, J S

    2016-01-01

    Massive binaries (MBs) play a crucial role in the Universe and knowing the distributions of their orbital parameters (OPs) is important for a wide range of topics, from stellar feedback to binary evolution channels, from the distribution of supernova types to gravitational wave progenitors. Yet, no direct measurements exist outside the Milky Way. The Tarantula Massive Binary Monitoring was designed to help fill this gap by obtaining multi-epoch radial velocity monitoring of 102 MBs in the 30 Dor. In this paper, we analyse 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined and 31 double-lined spectroscopic binaries. Overall, the OPs and binary fraction are remarkably similar across the 30 Dor region and compared to existing Galactic samples (GSs). This indicates that within these domains environmental effects are of second order in shaping the properties of MBs. A small difference is found in the distribu...

  7. Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle, Luciano; Escala, Andrés, E-mail: ldelvalleb@gmail.com [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2014-01-01

    We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation that is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.

  8. Binary Disk interaction II: Gap-Opening criteria for unequal mass binaries

    CERN Document Server

    del Valle, Luciano

    2013-01-01

    We study the interaction between an unequal mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a SMBH binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts onto the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong non-axisymmetric density perturbation that is produced in the disk, as response to the presence of the binary. Using SPH numerical simulations we tested two gap-opening criterion, one that assumes that the geometry of the density perturbation is an ellipsoid/thick-spirals and another that assumes a geometry of flat-spirals for the density perturbation. We find that the flat-spirals gap opening criterion successfully predicts which simulations will hav...

  9. Binaries migrating in a gaseous disk: Where are the Galactic center binaries?

    CERN Document Server

    Baruteau, C; Lin, D N C

    2010-01-01

    The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits, and were probably not formed in-situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inwards toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determ...

  10. Attractive Interaction Between Pulses in a Model for Binary-Mixture Convection

    CERN Document Server

    Riecke, H

    1995-01-01

    Recent experiments on convection in binary mixtures have shown that the interaction between localized waves (pulses) can be repulsive as well as {\\it attractive} and depends strongly on the relative {\\it orientation} of the pulses. It is demonstrated that the concentration mode, which is characteristic of the extended Ginzburg-Landau equations introduced recently, allows a natural understanding of that result. Within the standard complex Ginzburg-Landau equation this would not be possible.

  11. Polynomial algorithm for exact calculation of partition function for binary spin model on planar graphs

    CERN Document Server

    Karandashev, Yakov M

    2016-01-01

    In this paper we propose and realize (the code is publicly available at https://github.com/Thrawn1985/2D-Partition-Function) an algorithm for exact calculation of partition function for planar graph models with binary spins. The complexity of the algorithm is O(N^2). Test experiments shows good agreement with Onsager's analytical solution for two-dimensional Ising model of infinite size.

  12. Estimating Latent Attentional States Based on Simultaneous Binary and Continuous Behavioral Measures

    OpenAIRE

    Zhe Chen

    2015-01-01

    Cognition is a complex and dynamic process. It is an essential goal to estimate latent attentional states based on behavioral measures in many sequences of behavioral tasks. Here, we propose a probabilistic modeling and inference framework for estimating the attentional state using simultaneous binary and continuous behavioral measures. The proposed model extends the standard hidden Markov model (HMM) by explicitly modeling the state duration distribution, which yields a special example of th...

  13. Small Scale Evaporation Kinetics of a Binary Fluid Mixture

    Science.gov (United States)

    Basdeo, Carl; Ye, Dezhuang; Kalonia, Devendra; Fan, Tai-Hsi; Mechanical Engineering Team; Pharmaceutical Sciences Collaboration

    2013-03-01

    Evaporation induces a concentrating effect in liquid mixtures. The transient process has significant influence on the dynamic behaviors of a complex fluid. To simultaneously investigate the fluid properties and small-scale evaporation kinetics during the transient process, the quartz crystal microbalance is applied to a binary mixture droplet of light alcohols including both a single volatile component (a fast evaporation followed by a slow evaporation) and a mixture of two volatile components with comparable evaporation rates. The density and viscosity stratification are evaluated by the shear wave, and the evaporation kinetics is measured by the resonant signature of the acoustic p-wave. The evaporation flux can be precisely determined by the resonant frequency spikes and the complex impedance. To predict the concentration field, the moving interface, and the precision evaporation kinetics of the mixture, a multiphase model is developed to interpret the complex impedance signals based on the underlying mass and momentum transport phenomena. The experimental method and theoretical model are developed for better characterizing and understanding of the drying process involving liquid mixtures of protein pharmaceuticals.

  14. White-light Flares on Close Binaries Observed with Kepler

    Science.gov (United States)

    Gao, Qing; Xin, Yu; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang

    2016-06-01

    Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period (P orb) and rotation period (P rot, calculated for only detached binaries). We find that the AL increases with decreasing P orb or P rot, up to the critical values at P orb ∼ 3 days or P rot ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.

  15. Binary interaction dominates the evolution of massive stars

    CERN Document Server

    Sana, H; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Bouquin, J -B Le; Schneider, F R N; 10.1126/science.1223344

    2012-01-01

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, X-ray binaries and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. Over seventy per cent of all massive stars will exchange mass with a companion, leading to a binary merger in one third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  16. Twin Binaries: Studies of Stability, Mass Transfer, and Coalescence

    CERN Document Server

    Lombardi, James C; Dooley, Katherine L; Gearity, Kyle; Kalogera, Vassiliki; Rasio, Frederic A

    2010-01-01

    Motivated by suggestions that binaries with almost equal-mass components ("twins") play an important role in the formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with low mass cores (M_c ~0.15M), we find that stable contact configurations exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary. We discuss the implications of our results to the formation of binary neutron stars.

  17. 1974: the discovery of the first binary pulsar

    CERN Document Server

    Damour, Thibault

    2014-01-01

    The 1974 discovery, by Russell A. Hulse and Joseph H. Taylor, of the first binary pulsar PSR 1913+16, opened up new possibilities for the study of relativistic gravity. PSR 1913+16, as well as several other binary pulsars, provided {\\it direct} observational proofs that gravity propagates at the velocity of light and has a quadrupolar structure. Binary pulsars also provided accurate tests of the strong-field regime of relativistic gravity. General Relativity has passed all the binary pulsar tests with flying colors. The discovery of binary pulsars had also very important consequences for astrophysics: accurate measurement of neutron star masses, improved understanding of the possible evolution scenarios for the co-evolution of binary stars, proof of the existence of binary neutron stars emitting gravitational waves for hundreds of millions of years, before coalescing in catastrophic events probably leading to an important emission of electromagnetic radiation and neutrinos. This article reviews the history of...

  18. Efficient adaptation of complex-valued noiselet sensing matrices for compressed single-pixel imaging

    Science.gov (United States)

    Pastuszczak, Anna; Szczygieł, Bartłomiej; Mikołajczyk, Michał; Kotyński, Rafał

    2016-07-01

    Minimal mutual coherence of discrete noiselets and Haar wavelets makes this pair of bases an essential choice for the measurement and compression matrices in compressed-sensing-based single-pixel detectors. In this paper we propose an efficient way of using complex-valued and non-binary noiselet functions for object sampling in single-pixel cameras with binary spatial light modulators and incoherent illumination. The proposed method allows to determine m complex noiselet coefficients from m+1 binary sampling measurements. Further, we introduce a modification to the complex fast noiselet transform, which enables computationally-efficient real-time generation of the binary noiselet-based patterns using efficient integer calculations on bundled patterns. The proposed method is verified experimentally with a single-pixel camera system using a binary spatial light modulator.

  19. Efficient adaptation of complex-valued noiselet sensing matrices for compressed single-pixel imaging

    CERN Document Server

    Pastuszczak, Anna; Mikołajczyk, Michał; Kotyński, Rafał

    2016-01-01

    Minimal mutual coherence of discrete noiselets and Haar wavelets makes this pair of bases an essential choice for the measurement and compression matrices in compressed-sensing-based single-pixel detectors. In this paper we propose an efficient way of using complex-valued and non-binary noiselet functions for object sampling in single-pixel cameras with binary spatial light modulators and incoherent illumination. The proposed method allows to determine m complex noiselet coefficients from m+1 binary sampling measurements. Further, we introduce a modification to the complex fast noiselet transform, which enables computationally-efficient real-time generation of the binary noiselet-based patterns using efficient integer calculations on bundled patterns. The proposed method is verified experimentally with a single-pixel camera system using a binary spatial light modulator.

  20. Trellis-Based Check Node Processing for Low-Complexity Nonbinary LP Decoding

    CERN Document Server

    Punekar, Mayur

    2011-01-01

    Linear Programming (LP) decoding is emerging as an attractive alternative to decode Low-Density Parity-Check (LDPC) codes. However, the earliest LP decoders proposed for binary and nonbinary LDPC codes are not suitable for use at moderate and large code lengths. To overcome this problem, Vontobel et al. developed an iterative Low-Complexity LP (LCLP) decoding algorithm for binary LDPC codes. The variable and check node calculations of binary LCLP decoding algorithm are related to those of binary Belief Propagation (BP). The present authors generalized this work to derive an iterative LCLP decoding algorithm for nonbinary linear codes. Contrary to binary LCLP, the variable and check node calculations of this algorithm are in general different from that of nonbinary BP. The overall complexity of nonbinary LCLP decoding is linear in block length; however the complexity of its check node calculations is exponential in the check node degree. In this paper, we propose a modified BCJR algorithm for efficient check n...

  1. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  2. Medical image classification using spatial adjacent histogram based on adaptive local binary patterns.

    Science.gov (United States)

    Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling

    2016-05-01

    Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. PMID:27058283

  3. HD 183648: a Kepler eclipsing binary with anomalous ellipsoidal variations and a pulsating component

    CERN Document Server

    Borkovits, T; Fuller, J; Szabo, Gy M; Pavlovski, K; Csak, B; Dozsa, A; Kovacs, J; Szabo, R; Hambleton, K M; Kinemuchi, K; Kolbas, V; Kurtz, D W; Maloney, F; Prsa, A; Southworth, J; Sztakovics, J; Biro, I B; Jankovics, I

    2014-01-01

    KIC 8560861 (HD 183648) is a marginally eccentric (e=0.05) eclipsing binary with an orbital period of P_orb=31.973d, exhibiting mmag amplitude pulsations on time scales of a few days. We present the results of the complex analysis of high and medium-resolution spectroscopic data and Kepler Q0 -- Q16 long cadence photometry. The iterative combination of spectral disentangling, atmospheric analysis, radial velocity and eclipse timing variation studies, separation of pulsational features of the light curve, and binary light curve analysis led to the accurate determination of the fundamental stellar parameters. We found that the binary is composed of two main sequence stars with an age of 0.9\\+-0.2 Gyr, having masses, radii and temperatures of M_1=1.93+-0.12 M_sun, R_1=3.30+-0.07 R_sun, T_eff1=7650+-100 K for the primary, and M_2=1.06+-0.08 M_sun, R_2=1.11+-0.03 R_sun, T_eff2=6450+-100 K for the secondary. After subtracting the binary model, we found three independent frequencies, two of which are separated by tw...

  4. Evolution of Close Neutron Star Binaries

    CERN Document Server

    Ogawaguchi, W

    1996-01-01

    We have calculated evolution of neutron star binaries towards the coalescence driven by gravitational radiation. The hydrodynamical effects as well as the general relativistic effects are important in the final phase. All corrections up to post$^{2.5}$-Newtonian order and the tidal effect are included in the orbital motion. The star is approximated by a simple Newtonian stellar model called affine star model. Stellar spins and angular momentum are assumed to be aligned. We have showed how the internal stellar structure affects the stellar deformation, variations of the spins, and the orbital motion of the binary just before the contact. The gravitational wave forms from the last a few revolutions significantly depend on the stellar structure.

  5. A Binary Representation of the Genetic Code

    CERN Document Server

    Nemzer, Louis R

    2016-01-01

    This article introduces a novel binary representation of the canonical genetic code, in which each of the four mRNA nucleotide bases is assigned a unique 2-bit identifier. These designations have a physiological meaning derived from the molecular structures of, and relationships between, the bases. In this scheme, the 64 possible triplet codons are each indexed by a 6-bit label. The order of the bits reflects the hierarchical organization manifested by the DNA replication/repair and tRNA translation systems. Transition and transversion mutations are naturally expressed as basic binary operations, and the severity of the different types is analyzed. Using a principal component analysis, it is shown that physicochemical properties of amino acids related to protein folding also correlate with particular bit positions of their respective labels. Thus, the likelihood for a particular point mutation to be conservative, and therefore less likely to cause a change in protein functionality, can be estimated.

  6. Hamiltonian Hydrodynamics and Irrotational Binary Inspiral

    CERN Document Server

    Markakis, Charalampos M

    2014-01-01

    Gravitational waves from neutron-star and black-hole binaries carry valuable information on their physical properties and probe physics inaccessible to the laboratory. Although development of black-hole gravitational-wave templates in the past decade has been revolutionary, the corresponding work for double neutron-star systems has lagged. Neutron stars can be well-modelled as simple barotropic fluids during the part of binary inspiral most relevant to gravitational wave astronomy, but the crucial geometric and mathematical consequences of this simplification have remained computationally unexploited. In particular, Carter and Lichnerowicz have described barotropic fluid motion via classical variational principles as conformally geodesic. Moreover, Kelvin's circulation theorem implies that initially irrotational flows remain irrotational. Applied to numerical relativity, these concepts lead to novel Hamiltonian or Hamilton-Jacobi schemes for evolving relativistic fluid flows. Hamiltonian methods can conserve ...

  7. Toroidal Horizons in Binary Black Hole Mergers

    CERN Document Server

    Bohn, Andy; Teukolsky, Saul A

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  8. Construction of generalized binary Bent sequences

    Institute of Scientific and Technical Information of China (English)

    KE Pin-hui; CHANG Zu-ling; WEN Qiao-yan

    2006-01-01

    Bent functions in trace forms play an important role in the constructions of generalized binary Bent sequences.Trace representation of some degree two Bent functions are presented in this paper.A sufficient and necessary condition is derived to determine whether the sum of the combinations of Gold functions,tr1n(x2'+1),1≤I≤n-1,over finite fields F2n (n be even) in addition to another term tr1n/2(x2n/2+1) is a Bent function.Similar to the result presented by Khoo et al.,the condition can be verified by polynominal greatest common divisor (GCD) computation.A similar result also holds in the case Fpn (n be even,p be odd prime).Using the constructed Bent functions and Niho type Bent functions given by Dobbertin et al.,many new generalized binary Bent sequences are obtained.

  9. Binary hidden Markov models and varieties

    CERN Document Server

    Critch, Andrew J

    2012-01-01

    The technological applications of hidden Markov models have been extremely diverse and successful, including natural language processing, gesture recognition, gene sequencing, and Kalman filtering of physical measurements. HMMs are highly non-linear statistical models, and just as linear models are amenable to linear algebraic techniques, non-linear models are amenable to commutative algebra and algebraic geometry. This paper examines closely those HMMs in which all the random variables, called nodes, are binary. Its main contributions are (1) minimal defining equations for the 4-node model, comprising 21 quadrics and 29 cubics, which were computed using Gr\\"obner bases in the cumulant coordinates of Sturmfels and Zwiernik, and (2) a birational parametrization for every binary HMM, with an explicit inverse for recovering the hidden parameters in terms of observables. The new model parameters in (2) are hence rationally identifiable in the sense of Sullivant, Garcia-Puente, and Spielvogel, and each model's Zar...

  10. Binary Fingerprints at Fluctuation-Enhanced Sensing

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    We developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 25 thousands to 1 million. To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.

  11. Cosmic ray acceleration by binary neutron stars

    Science.gov (United States)

    Kundt, W.

    Young binary neutron stars, the elder brothers of pulsars, are proposed as the boosters of the ionic component of cosmic rays. Their rotational energy can be converted into beams of cosmic rays if there is enough coupling between the corotating magnetosphere and the impinging plasma, in a manner similar to the sparking of a grindstone. Power-law spectra in energy are obtained from a power-law dependence of the accelerating fields. The upper cutoff energy should not greatly exceed 10 to the 20th eV. The observed ionic cosmic-ray spectrum would result from a superposition of the injection by no more than about one million young binary neutron stars.

  12. Sequential binary decay of highly excited nuclei

    International Nuclear Information System (INIS)

    The decay of highly excited nuclei is described as a sequence of binary processes involving emission of fragments in their ground, excited-bound and unbound states. Primary together with secondary decay products lead to the final mass distributions. Asymmetric mass splittings involving nucleon emission up to symmetric binary ones are treated according to a generalized Weisskopf evaporation formalism. This procedure is implemented in the Monte-Carlo multi-step statistical model code MECO (Multisequential Evaporation COde). We examine the evolution of the calculated final mass distributions in the decay of a light compound nucleus, as the initial excitation energy increases towards the limits of complete dissociation. Comparisons are made with the predictions of the transition-stage theory, as well as a consistent Weisskopf treatment in which the decay process is described by rate equations for the generation of different fragment species. (author)

  13. Superconducting State Parameters of Binary Superconductors

    Directory of Open Access Journals (Sweden)

    Aditya M. Vora

    2012-05-01

    Full Text Available A well known pseudopotential is used to investigate the superconducting state parameters viz. electron-phonon coupling strength , Coulomb pseudopotential *, transition temperature ТС, isotope effect exponent  and effective interaction strength N0V for the AgxZn1 – x and AgxAl1 – x binary superconductors theoretically for the first time. We have incorporated here five different types of the local field correction functions to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The comparison with other such experimental values is encouraging, which confirms the applicability of the model potential in explaining the superconducting state parameters of binary mixture.

  14. BISC: binary subcomplexes in proteins database.

    Science.gov (United States)

    Juettemann, Thomas; Gerloff, Dietlind L

    2011-01-01

    Binary subcomplexes in proteins database (BISC) is a new protein-protein interaction (PPI) database linking up the two communities most active in their characterization: structural biology and functional genomics researchers. The BISC resource offers users (i) a structural perspective and related information about binary subcomplexes (i.e. physical direct interactions between proteins) that are either structurally characterized or modellable entries in the main functional genomics PPI databases BioGRID, IntAct and HPRD; (ii) selected web services to further investigate the validity of postulated PPI by inspection of their hypothetical modelled interfaces. Among other uses we envision that this resource can help identify possible false positive PPI in current database records. BISC is freely available at http://bisc.cse.ucsc.edu. PMID:21081561

  15. General Properties of Near-Contact Binaries

    Science.gov (United States)

    Oh, Kyu-Dong; Kim, Ho-Il; Kang, Young-Woon; Lee, Woo-Baik

    2000-12-01

    The general properties of the NCBs, divided into A and F types according to their spectral types, have been presented. The evolutionary status of the F type near-contact binaries are closer to that of the contact systems, i.e., W UMa type binaries, if it is assumed that the evolution of the NCBs is governed by the thermal relaxation oscillation theory. The mass-radius relation, mass-luminosity relation and H-R diagram of the NCBs provide that the A type NCBs suffer from more active mass transfer than F types. The components of the NCBs are still in main-sequence like W UMa type stars and their two components lines parallel to the ZAMS.

  16. Stellivore extraterrestrials? Binary stars as living systems

    Science.gov (United States)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data.

  17. Binary Minor Planets V9.0

    Science.gov (United States)

    Johnston, W. R.

    2016-07-01

    The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the published literature as inspired by Richardson and Walsh (2006) and similar reviews (Merline et al., 2003; Noll, 2006; Pravec et al., 2006; Pravec and Harris, 2007; Descamps and Marchis, 2008; Noll et al., 2008; Walsh, 2009). In total 297 companions in 282 systems are included. Data are presented in three tables: one for orbital and physical properties; one for companion designations, discovery information, and reference codes for data values; and one giving full references for each reference code. This data set is complete for binary/multiple components reported through 31 March 2016.

  18. Buffer Overflow Detection on Binary Code

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan-fei; LI Hui; CHEN Ke-fei

    2006-01-01

    Most solutions for detecting buffer overflow are based on source code. But the requirement for source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.

  19. Eclipsing binary stars modeling and analysis

    CERN Document Server

    Kallrath, Josef

    1999-01-01

    This book focuses on the formulation of mathematical models for the light curves of eclipsing binary stars, and on the algorithms for generating such models Since information gained from binary systems provides much of what we know of the masses, luminosities, and radii of stars, such models are acquiring increasing importance in studies of stellar structure and evolution As in other areas of science, the computer revolution has given many astronomers tools that previously only specialists could use; anyone with access to a set of data can now expect to be able to model it This book will provide astronomers, both amateur and professional, with a guide for - specifying an astrophysical model for a set of observations - selecting an algorithm to determine the parameters of the model - estimating the errors of the parameters It is written for readers with knowledge of basic calculus and linear algebra; appendices cover mathematical details on such matters as optimization, coordinate systems, and specific models ...

  20. Coalescence of Magnetized Binary Neutron Star Systems

    Science.gov (United States)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Neilsen, David; Palenzuela, Carlos; Ponce, Marcelo

    2015-01-01

    We present simulations of the merger of binary neutron star systems calculated with full general relativity and incorporating the global magnetic field structure for the stars evolved with resistive magnetohydrodynamics. Our simulation tools have recently been improved to incorporate the effects of neutrino cooling and have been generalized to allow for tabular equations of state to describe the degenerate matter. Of particular interest are possible electromagnetic counterparts to the gravitational radiation that emerges from these systems. We focus on magnetospheric interactions that ultimately tap into the gravitational potential energy of the binary to power a Poynting flux and deposition of energy through Joule heating and magnetic reconnection. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  1. Simulation of nuclei morphologies for binary alloy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We study the critical nuclei morphologies of a binary alloy by the string method. The dynamic equation of the string, connecting the metastable phase (liquid) and stable phase (solid), is governed by Helmholtz free energy for the binary alloy system at a given temperature. The stationary string through the critical nucleus (saddle point) is obtained if the relaxation time of the string is su?ciently large. The critical nucleus radius and energy barrier to nucleation of a pure alloy with isotropic interface energy in two and three dimensions are calculated, which are consistent with the classical nucleation theory. The critical nuclei morphologies are sensitive to the anisotropy strength of interface energy and interface thickness of alloy in two and three dimensions. The critical nucleus and energy barrier to nucleation become smaller if the anisotropy strength of the interface energy is increased, which means that it is much easier to form a stable nucleus if the anisotropy of the interface energy is considered.

  2. Parallel Matrix Factorization for Binary Response

    CERN Document Server

    Khanna, Rajiv; Agarwal, Deepak; Chen, Beechung

    2012-01-01

    Predicting user affinity to items is an important problem in applications like content optimization, computational advertising, and many more. While bilinear random effect models (matrix factorization) provide state-of-the-art performance when minimizing RMSE through a Gaussian response model on explicit ratings data, applying it to imbalanced binary response data presents additional challenges that we carefully study in this paper. Data in many applications usually consist of users' implicit response that are often binary -- clicking an item or not; the goal is to predict click rates, which is often combined with other measures to calculate utilities to rank items at runtime of the recommender systems. Because of the implicit nature, such data are usually much larger than explicit rating data and often have an imbalanced distribution with a small fraction of click events, making accurate click rate prediction difficult. In this paper, we address two problems. First, we show previous techniques to estimate bi...

  3. Kepler Eclipsing Binary Stars. V. Identification of 31 Eclipsing Binaries in the K2 Engineering Data-set

    CERN Document Server

    Conroy, Kyle E; Stassun, Keivan G; Bloemen, Steven; Parvizi, Mahmoud; Quarles, Billy; Boyajian, Tabetha; Barclay, Thomas; Shporer, Avi; Latham, David W; Abdul-Masih, Michael

    2014-01-01

    Over 2500 eclipsing binaries were identified and characterized from the ultra-precise photometric data provided by the Kepler space telescope. Kepler is now beginning its second mission, K2, which is proving to again provide ultra-precise photometry for a large sample of eclipsing binary stars. In the 1951 light curves covering 12 days in the K2 engineering data-set, we have identified and determined the ephemerides for 31 eclipsing binaries that demonstrate the capabilities for eclipsing binary science in the upcoming campaigns in K2. Of those, 20 are new discoveries. We describe both manual and automated approaches to harvesting the complete set of eclipsing binaries in the K2 data, provide identifications and details for the full set of eclipsing binaries present in the engineering data-set, and discuss the prospects for application of eclipsing binary searches in the K2 mission.

  4. Gravity Waves, Chaos, and Spinning Compact Binaries

    OpenAIRE

    Levin, Janna

    1999-01-01

    Spinning compact binaries are shown to be chaotic in the Post-Newtonian expansion of the two body system. Chaos by definition is the extreme sensitivity to initial conditions and a consequent inability to predict the outcome of the evolution. As a result, the spinning pair will have unpredictable gravitational waveforms during coalescence. This poses a challenge to future gravity wave observatories which rely on a match between the data and a theoretical template.

  5. Dynamics of phase separation of binary fluids

    Science.gov (United States)

    Ma, Wen-Jong; Maritan, Amos; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The results of molecular-dynamics studies of surface-tension-dominated spinodal decomposition of initially well-mixed binary fluids in the absence and presence of gravity are presented. The growth exponent for the domain size and the decay exponent of the potential energy of interaction between the two species with time are found to be 0.6 +/- 0.1, inconsistent with scaling arguments based on dimensional analysis.

  6. Automated pupil remapping with binary optics

    Science.gov (United States)

    Neal, Daniel R.; Mansell, Justin

    1999-01-01

    Methods and apparatuses for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications.

  7. Gravitational waves from binary black holes

    Indian Academy of Sciences (India)

    Bala R Iyer

    2011-07-01

    It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar’s contribution to the subject is first presented. The current status of the experimental search for gravitational waves and the attendant theoretical insights into the two-body problem in general relativity arising from computations of gravitational waves from binary black holes are then broadly reviewed.

  8. Modified Sonine approximation for granular binary mixtures

    OpenAIRE

    Garzó, Vicente; Reyes, Francisco Vega; Montanero, José María

    2008-01-01

    We evaluate in this work the hydrodynamic transport coefficients of a granular binary mixture in $d$ dimensions. In order to eliminate the observed disagreement (for strong dissipation) between computer simulations and previously calculated theoretical transport coefficients for a monocomponent gas, we obtain explicit expressions of the seven Navier-Stokes transport coefficients with the use of a new Sonine approach in the Chapman-Enskog theory. Our new approach consists in replacing, where a...

  9. Minimum degree and density of binary sequences

    DEFF Research Database (Denmark)

    Brandt, Stephan; Müttel, J.; Rautenbach, D.;

    2010-01-01

    For d,k∈N with k ≤ 2d, let g(d,k) denote the infimum density of binary sequences (x)∈{0,1} which satisfy the minimum degree condition σ(x+) ≥ k for all i∈Z with xi=1. We reduce the problem of computing g(d,k) to a combinatorial problem related to the generalized k-girth of a graph G which is defi...

  10. Modeling Flows Around Merging Black Hole Binaries

    OpenAIRE

    van Meter, James R.; Wise, John H.; Miller, M. Coleman; Reynolds, Christopher S.; Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.

    2009-01-01

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the stron...

  11. Binary outcome variables and logistic regression models

    Institute of Scientific and Technical Information of China (English)

    Xinhua LIU

    2011-01-01

    Biomedical researchers often study binary variables that indicate whether or not a specific event,such as remission of depression symptoms,occurs during the study period.The indicator variable Y takes two values,usually coded as one if the event (remission) is present and zero if the event is not present(non-remission).Let p be the probability that the event occurs ( Y =1),then 1-p will be the probability that the event does not occur ( Y =0).

  12. Binary dicots, a core of dicot games

    OpenAIRE

    Renault, Gabriel

    2014-01-01

    We study combinatorial games under mis\\`ere convention. Several sets of games have been considered earlier to better understand the behaviour of mis\\`ere games. We here connect several of these sets. In particular, we prove that comparison modulo binary dicot games is often the same as comparison modulo dicot games, and that equivalence modulo dicot games and modulo impartial games are the same when they are restricted to impartial games.

  13. Binary Schemes of Vapor Bubble Growth

    Science.gov (United States)

    Zudin, Yu. B.

    2015-05-01

    A problem on spherically symmetric growth of a vapor bubble in an infi nite volume of a uniformly superheated liquid is considered. A description of the limiting schemes of bubble growth is presented. A binary inertial-thermal bubble growth scheme characterized by such specifi c features as the "three quarters" growth law and the effect of "pressure blocking" in a vapor phase is considered.

  14. Binary progenitor models of type IIb supernovae

    CERN Document Server

    Claeys, J S W; Pols, O R; Eldridge, J J; Baes, M

    2011-01-01

    Massive stars that lose their hydrogen-rich envelope down to a few tenths of a solar mass explode as extended type IIb supernovae, an intriguing subtype that links the hydrogen-rich type II supernovae with the hydrogen-poor type Ib and Ic. The progenitors may be very massive single stars that lose their envelope due to their stellar wind, but mass stripping due to interaction with a companion star in a binary system is currently considered to be the dominant formation channel. We computed an extensive grid of binary models with the Eggleton binary evolution code. The predicted rate from our standard models, which assume conservative mass transfer, is about 6 times smaller than the current rate indicated by observations. It is larger but still comparable to the rate expected from single stars. To recover the observed rate we must generously allow for uncertainties and low accretion efficiencies in combination with limited angular momentum loss from the system. Motivated by the claims of detection and non-detec...

  15. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  16. Spinodal decomposition of chemically reactive binary mixtures

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  17. Outbursts in ultracompact X-ray binaries

    CERN Document Server

    Hameury, J -M

    2016-01-01

    Very faint X-ray binaries appear to be transient in many cases with peak luminosities much fainter than that of usual soft X-ray transients, but their nature still remains elusive. We investigate the possibility that this transient behaviour is due to the same thermal/viscous instability which is responsible for outbursts of bright soft X-ray transients, occurring in ultracompact binaries for adequately low mass-transfer rates. More generally, we investigate the observational consequences of this instability when it occurs in ultracompact binaries. We use our code for modelling the thermal-viscous instability of the accretion disc, assumed here to be hydrogen poor. We also take into account the effects of disc X-ray irradiation, and consider the impact of the mass-transfer rate on the outburst brightness. We find that one can reproduce the observed properties of both the very faint and the brighter short transients (peak luminosity, duration, recurrence times), provided that the viscosity parameter in quiesce...

  18. Spinodal decomposition of chemically reactive binary mixtures.

    Science.gov (United States)

    Lamorgese, A; Mauri, R

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration. PMID:27627358

  19. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  20. Observational Signatures of Binary Supermassive Black Holes

    CERN Document Server

    Roedig, Constanze; Miller, M Coleman

    2014-01-01

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary AGN. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength $\\lambda_n$ at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches $\\propto \\lambda_n^{16/3}$; longer wavelength searches are therefore strongly favored. A sec...

  1. On the Component Masses of Visual Binaries

    Directory of Open Access Journals (Sweden)

    Ninkovic, S.

    2010-06-01

    Full Text Available In the Sixth Catalog of Orbits of Visual Binary Stars we found those belonging to the Main Sequence to form a sample containing 432 visual binaries. Their total masses were obtained dynamically, i.e. they were calculated using the orbital elements and the new Hipparcos parallaxes. For the same pairs the total mass was also found astrophysically - by applying the mass-luminosity relation. The apparent magnitudes of the components were found in two different ways: by deriving them from total magnitudes and magnitude differences, and by taking their values directly from a catalogue. The results for these two approaches show no essential discrepancy. The values of total masses obtained dynamically have a large dispersion involving even completely unrealistic values. This is a clear indication that the input data are not sufficiently reliable. Nevertheless, in a large number of cases the agreement between total masses obtained by usin two different ways is quite satisfactory indicating that i for many visual binaries, as a rule not too distant and with high-quality orbital elements, the dynamical total masses can be reliable; ii the mass-luminosity relation yields quite satisfactory estimates for the component masses when they belong to the Main Sequence and iii a correlation between the relative parallax error and orbit grade exists.

  2. A Gray path on binary partitions

    CERN Document Server

    Colthurst, Thomas

    2009-01-01

    A binary partition of a positive integer $n$ is a partition of $n$ in which each part has size a power of two. In this note we first construct a Gray sequence on the set of binary partitions of $n$. This is an ordering of the set of binary partitions of each $n$ (or of all $n$) such that adjacent partitions differ by one of a small set of elementary transformations; here the allowed transformatios are replacing $2^k+2^k$ by $2^{k+1}$ or vice versa (or addition of a new +1). Next we give a purely local condition for finding the successor of any partition in this sequence; the rule is so simple that successive transitions can be performed in constant time. Finally we show how to compute directly the bijection between $k$ and the $k$th term in the sequence. This answers a question posed by Donald Knuth in section 7.2.1 of The Art of Computer Programming.

  3. Brown Dwarf Binaries from Disintegrating Triple Systems

    CERN Document Server

    Reipurth, Bo

    2015-01-01

    We have carried out 200,000 N-body simulations of three identical stellar embryos with masses from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. To illustrate the simulations we introduce the 'triple diagnostic diagram', which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations. The separation distribution function is in good correspondence with...

  4. A field guide to the binary stars

    Science.gov (United States)

    Trimble, V.

    1983-05-01

    Details and examples of the six phases of existence for a binary star system are described. The birth and pre-main-sequence contraction is generally obscured from observation by the presence of gas and dust clouds; it comprises 1/1000th of a system's lifetime. The main sequence, i.e., hydrogen burning, takes up to 90 pct of a star's lifetime, and has been detected in stars with masses ranging from 0.07-32 solar masses. In binary systems, the main sequence stars may or may not interact, or one companion may burn out before the other leaves the main sequence. The primary in a binary system expands to fill its Roche lobe before mass transfer begins, then continues on a Kelvin-Helmholtz time scale until the primary is smaller than the secondary, when transfer proceeds on a nuclear time scale. The depletion of hydrogen fuel or He ignition stops the mass transfer, leading to formation of a white dwarf, neutron star, or supernova that sends both the neutron star and the OB secondary off at high speeds. Back transfer can be initiated in a fifth phase and can produce black holes or dwarf novae, or supernovae. Finally, the system terminates when both stars are extinguished and fall into one another, which can also yield supernovae or black holes.

  5. On the binary expansions of algebraic numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  6. Searching for Binary Supermassive Black Holes via Variable Broad Emission Line Shifts: Low Binary Fraction

    CERN Document Server

    Wang, Lile; Ju, Wenhua; Rafikov, Roman R; Ruan, John J; Schneider, Donald P

    2016-01-01

    Supermassive black hole binaries (SMBHs) are expected to result from galaxy mergers, and thus are natural byproducts (and probes) of hierarchical structure formation in the Universe. They are also the primary expected source of low-frequency gravitational wave emission. We search for binary BHs using time-variable velocity shifts in broad Mg II emission lines of quasars with multi-epoch observations. First, we inspect velocity shifts of the binary SMBH candidates identified in Ju et al. (2013), using SDSS spectra with an additional epoch of data that lengthens the typical baseline to ~10 yr. We find variations in the line-of-sight velocity shifts over 10 years that are comparable to the shifts observed over 1-2 years, ruling out the binary model for the bulk of our candidates. We then analyze 1438 objects with 8 yr median time baselines, from which we would expect to see velocity shifts >1000 km/s from sub-pc binaries. We find only one object with an outlying velocity of 448 km/s, indicating, based on our mod...

  7. On the Neutron Star-Black Hole Binaries Produced by Binary-driven Hypernovae

    CERN Document Server

    Fryer, C L; Rueda, J A; Ruffini, R

    2015-01-01

    Binary-driven hypernovae (BdHNe) following the induced gravitational collapse (IGC) paradigm have been introduced to explain the concomitance of energetic long gamma-ray bursts (GRBs) with type Ic supernovae. The progenitor system is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core triggers a hypercritical accretion process onto the NS, which in a few seconds reach the NS critical mass, and gravitationally collapses to a black hole (BH) emitting a GRB. These tight binary systems evolve through the supernova explosion very differently than compact binary progenitors studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and momentum of the binary. Second, because the explosion timescale is on par with the orbital period, the mass ejection can not be assumed to be instantaneous. Finally, the bow shock created as the accreting NS plows through the supern...

  8. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter.

    Science.gov (United States)

    Khonina, Svetlana N; Karpeev, Sergey V; Alferov, Sergey V

    2012-06-15

    We propose a new approach to generating a pair of initial beams for a polarization converter that operates by summing up two opposite-sign circularly polarized beams. The conjugated pairs of vortex beams matched with laser modes are generated using binary diffractive optical elements (DOEs). The same binary element simultaneously serves two functions: a beam shaper and a beam splitter. Two proposed optical arrangements are compared in terms of alignment complexity and energy efficiency. The DOEs in question have been designed and fabricated. Natural experiments that demonstrate the generation of vector higher-order cylindrical beams have been conducted. PMID:22739916

  9. Symmetric Groups and Quotient Complexity of Boolean Operations

    OpenAIRE

    Bell, Jason; Brzozowski, Janusz; Moreira, Nelma; Reis, Rogério

    2013-01-01

    The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L' are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively. Denote by o any binary boolean operation that is not a constant and not a function of one argument only. For m,n ...

  10. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

    CERN Document Server

    Mandel, Ilya

    2016-01-01

    We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which, we estimate, typically merge 4 to 11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about $10$ Gpc$^{-3}$ yr$^{-1}$ at redshift $z=0$, peaking at...

  11. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  12. A precontact binary and a shallow contact binary are in the same field

    Science.gov (United States)

    Liu, Liang; Qian, Shengbang; He, Jiajia; Liao, Wenping; Liu, Nianping

    2016-06-01

    The period changes of two close binaries, V1107 Cas and AX Cas, which are in the same field, were investigated. Their periods both show a long-term decrease. After further analysis, we found that the periods have their respective cyclic oscillations (T3 = 6.74 ± 0.24 yr for V1107 Cas and T3 = 13.8 ± 0.3 yr for AX Cas), which are possibly caused by a third body due to the light-time effect. We also obtained the complete VRcIc light curves for V1107 Cas and analyzed them with the 2010 version of the Wilson-Devinney code. The photometric results reveal that V1107 Cas is a W-type shallow contact (15.2%±1.8%) binary, with a mass-ratio of 1.797 ± 0.006. The period variation and photometric solution suggest that V1107 Cas is a newly formed contact binary system. Moreover, we estimated the fundamental parameters for V1107 Cas. They are: M1 = 0.39 ± 0.01 M⊙, M2 = 0.70 ± 0.03 M⊙, R1 = 0.52 ± 0.10 R⊙, R2 = 0.68 ± 0.12 R⊙, L1 = 0.178 ± 0.108 L⊙, and L2 = 0.196 ± 0.116 L⊙. Then, based on the coplane assumption, we deduced the masses of possible third bodies to be M3 = 0.091 ± 0.019 M⊙ for V1107 Cas and M3 = 0.325 ± 0.029 M⊙ for AX Cas. Finally, we inferred the evolutional stage of AX Cas, and believe that it is a precontact binary. Thus, the precontact binary AX Cas and the shallow contact binary V1107 Cas have adjoining evolutional stages.

  13. Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure. First applications to multiplanet and multistar systems

    Science.gov (United States)

    Hamers, Adrian S.; Portegies Zwart, Simon F.

    2016-07-01

    We present a method for studying the secular gravitational dynamics of hierarchical multiple systems consisting of nested binaries, which is valid for an arbitrary number of bodies and arbitrary hierarchical structure. We derive the Hamiltonian of the system and expand it in terms of the - assumed to be - small ratios xi of binary separations. At the lowest non-trivial expansion order (quadrupole order, second order in xi), the Hamiltonian consists of terms which, individually, depend on binary pairs. At higher orders, in addition to terms depending on binary pairs, we also find terms which, individually, depend on more than two binaries. In general, at order n in xi, individual terms depend on at most n - 1 binaries. We explicitly derive the Hamiltonian including all terms up and including third order in xi (octupole order), and including the binary pairwise terms up and including fifth order in xi. These terms are orbit averaged, and we present a new algorithm for efficiently solving the equations of motion. This algorithm is highly suitable for studying the secular evolution of hierarchical systems with complex hierarchies, making long-term integrations of such systems feasible. We show that accurate results are obtained for multiplanet systems with semimajor axis ratios as large as ≈0.4, provided that high-order terms are included. In addition to multiplanet systems with a single star, we apply our results to multistar systems with multiple planets.

  14. Binary pairs of supermassive black holes - Formation in merging galaxies

    International Nuclear Information System (INIS)

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs

  15. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G; Gould, A.; Choi, J.-Y;

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba......Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010...... of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q ~ 0.1, making the companion of the lens a strong brown dwarf candidate....

  16. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    CERN Document Server

    Forgan, Duncan H

    2016-01-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycle...

  17. Low Frequency Gravitational Waves from White Dwarf MACHO Binaries

    CERN Document Server

    Hiscock, W A; Routzahn, J R; Kulick, B; Hiscock, William A.; Larson, Shane L.; Routzahn, Joshua R.; Kulick, Ben

    2000-01-01

    The possibility that Galactic halo MACHOs are white dwarfs has recently attracted much attention. Using the known properties of white dwarf binaries in the Galactic disk as a model, we estimate the possible contribution of halo white dwarf binaries to the low-frequency (10^{-5} Hz} < f < 10^{-1}Hz) gravitational wave background. Assuming the fraction of white dwarfs in binaries is the same in the halo as in the disk, we find the confusion background from halo white dwarf binaries could be five times stronger than the expected contribution from Galactic disk binaries, dominating the response of the proposed space based interferometer LISA. Low-frequency gravitational wave observations will be the key to discovering the nature of the dark MACHO binary population.

  18. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    CERN Document Server

    Breivik, Katelyn; Larson, Shane L; Kalogera, Vassiliki; Rasio, Frederic A

    2016-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity of binary black holes in the LISA frequency band can be used discriminate between binaries formed in isolation in galactic fields, and those formed in dense stellar environments such as globular clusters. In this letter, we explore the differences in orbital eccentricities of binary black hole populations as they evolve through the LISA frequency band. Overall we find that there are three distinct populations of orbital eccentricities discernible by LISA. We show that, depending on gravitational-wave frequency, anywhere fro...

  19. Evolution Of Binary Supermassive Black Holes In Rotating Nuclei

    CERN Document Server

    Rasskazov, Alexander

    2016-01-01

    Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary's orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary's orbital eccentricity as well. We present a general treatment of this problem based on the Fokker-Planck equation for f, defined as the probability distribution for the binary's orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker-Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: 1) the orientation of the binar...

  20. Effect of repeated presentation on sweetness intensity of binary and ternary mixtures of sweeteners.

    Science.gov (United States)

    Schiffman, Susan S; Sattely-Miller, Elizabeth A; Graham, Brevick G; Zervakis, Jennifer; Butchko, Harriett H; Stargel, W Wayne

    2003-03-01

    The purpose of the present study was to determine the effect of repeated presentation of the same sweet stimulus on sweetness intensity ratings. The sweet stimuli tested in this study were binary and ternary blends of 14 sweeteners that varied widely in chemical structure. A trained panel evaluated the sweetness intensity over four sips of a given mixture presented at 30 s intervals. The individual components in the binary sweetener combinations were intensity-anchored with 5% sucrose, while the individual sweeteners in the ternary mixtures were intensity-anchored with 3% sucrose (according to formulae developed previously). Each self-mixture was also evaluated (e.g. acesulfame-K-acesulfame-K). The main finding of this study was that mixtures consisting of two or three different sweeteners exhibited less reduction in sweetness intensity over four repeated sips than a single sweetener at an equivalent sweetness level. Furthermore, ternary combinations tended to be slightly more effective than binary combinations at lessening the effect of repeated exposure to a given sweet stimulus. These findings suggest that the decline in sweetness intensity experienced over repeated exposure to a sweet stimulus could be reduced by the blending of sweeteners. PMID:12714444

  1. Nonlinear Dynamics, Lorenz Model and Formation of Binary Stars

    OpenAIRE

    Chang, Yi-Fang

    2008-01-01

    Based on the Lorenz model derived from the equations of hydrodynamics of nebula, we discuss the formation of binary stars by the qualitative analysis theory of nonlinear equation. Here the two wings in the Lorenz model form just the binary stars, whose Roche surface is result of evolution under certain condition. The nonlinear interaction plays a crucial role, and is necessary condition of the formation of binary stars and of multiple stars. While the linear equations form only a single star....

  2. On the formation of Be stars through binary interaction

    OpenAIRE

    Shao, Yong; Li, Xiang-Dong

    2014-01-01

    Be stars are rapidly rotating B type stars. The origin of their rapid rotation is not certain, but binary interaction remains to be a possibility. In this work we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. We calculate the binary evolution with both stars evolving simultaneously and consider different possible mass accretion histories for the accretor. From the calculated results we obtain the critical mass ratios $q_{\\rm cr}$ that determine ...

  3. Magnetic Interaction in Ultra-compact Binary Systems

    CERN Document Server

    Wu, Kinwah

    2009-01-01

    This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.

  4. Magnetic interaction in ultra-compact binary systems

    Institute of Scientific and Technical Information of China (English)

    Kinwah WU

    2009-01-01

    This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.

  5. How I Learned to Stop Worrying and Love Eclipsing Binaries

    OpenAIRE

    Moe, Maxwell

    2015-01-01

    Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital ...

  6. Segregation phases in a vibrated binary granular layer

    OpenAIRE

    Reis, P. M.; Ehrhardt, G.; Mullin, T.

    2003-01-01

    We present the results of an experimental study of patterned segregation in a horizontally shaken shallow layer of a binary mixture of dry particles. As the compacity, $C$, of the mixture was increased, the evolution of three distinct phases was observed. We classify them as binary gas, segregation liquid and segregation crystal phases using macroscopic and microscopic measures. The binary gas to segregation liquid transition is consistent with a continuous phase transition and includes the c...

  7. Automatic classification of eclipsing binaries light curves using neural networks

    CERN Document Server

    Sarro, L M; Giménez, A

    2005-01-01

    In this work we present a system for the automatic classification of the light curves of eclipsing binaries. This system is based on a classification scheme that aims to separate eclipsing binary sistems according to their geometrical configuration in a modified version of the traditional classification scheme. The classification is performed by a Bayesian ensemble of neural networks trained with {\\em Hipparcos} data of seven different categories including eccentric binary systems and two types of pulsating light curve morphologies.

  8. Information Measures: the Curious Case of the Binary Alphabet

    OpenAIRE

    Jiao, Jiantao; Courtade, Thomas; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2014-01-01

    Four problems related to information divergence measures defined on finite alphabets are considered. In three of the cases we consider, we illustrate a contrast which arises between the binary-alphabet and larger-alphabet settings. This is surprising in some instances, since characterizations for the larger-alphabet settings do not generalize their binary-alphabet counterparts. Specifically, we show that $f$-divergences are not the unique decomposable divergences on binary alphabets that sati...

  9. Status and Future of Deep Searches for Compact Binary Mergers

    Science.gov (United States)

    Nitz, Alexander` Harvey; LIGO Scientific Collaboration

    2016-06-01

    Deep offline searches for gravitational waves from binary black hole, binary neutron star, and neutron star- black hole mergers were conducted during the first Advanced LIGO observing run, and recently Advanced LIGO announced the first detection of gravitational waves from a binary black hole merger. We discuss the recent results, the methodology of the high latency searches, along with improvements for the upcoming observing runs.

  10. Asymptotic bound on binary self-orthogonal codes

    Institute of Scientific and Technical Information of China (English)

    DING Yang

    2009-01-01

    We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the in-formation rate R = 1/2, by our constructive lower bound, the relative minimum distance δ≈ 0.0595 (for GV bound, δ≈0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.

  11. Asymptotic bound on binary self-orthogonal codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the in-formation rate R = 1/2, by our constructive lower bound, the relative minimum distance δ≈ 0.0595 (for GV bound, δ≈ 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.

  12. Complex Beauty

    OpenAIRE

    Franceschet, Massimo

    2014-01-01

    Complex systems and their underlying convoluted networks are ubiquitous, all we need is an eye for them. They pose problems of organized complexity which cannot be approached with a reductionist method. Complexity science and its emergent sister network science both come to grips with the inherent complexity of complex systems with an holistic strategy. The relevance of complexity, however, transcends the sciences. Complex systems and networks are the focal point of a philosophical, cultural ...

  13. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  14. Caustics of 1/rn binary gravitational lenses: from galactic haloes to exotic matter

    Science.gov (United States)

    Bozza, V.; Melchiorre, C.

    2016-03-01

    We investigate the caustic topologies for binary gravitational lenses made up of two objects whose gravitational potential declines as 1/rn. With n1 regime can be obtained with some violations of the energy conditions, one famous example being the Ellis wormhole. Gravitational lensing provides a natural arena to distinguish and identify such exotic objects in our Universe. We find that there are still three topologies for caustics as in the standard Schwarzschild binary lens, with the main novelty coming from the secondary caustics of the close topology, which become huge at higher n. After drawing caustics by numerical methods, we derive a large amount of analytical formulae in all limits that are useful to provide deeper insight in the mathematics of the problem. Our study is useful to better understand the phenomenology of galaxy lensing in clusters as well as the distinct signatures of exotic matter in complex systems.

  15. Cache-Oblivious Search Trees via Binary Trees of Small Height

    DEFF Research Database (Denmark)

    Brodal, G.S.; Fagerberg, R.; Jacob, R.

    2002-01-01

    We propose a version of cache oblivious search trees which is simpler than the previous proposal of Bender, Demaine and Farach-Colton and has the same complexity bounds. In particular, our data structure avoids the use of weight balanced B-trees, and can be implemented as just a single array......, and range queries in worst case O(logB n + k/B) memory transfers, where k is the size of the output.The basic idea of our data structure is to maintain a dynamic binary tree of height log n+O(1) using existing methods, embed this tree in a static binary tree, which in turn is embedded in an array in a cache...... oblivious fashion, using the van Emde Boas layout of Prokop.We also investigate the practicality of cache obliviousness in the area of search trees, by providing an empirical comparison of different methods for laying out a search tree in memory....

  16. Dissipative particle dynamics simulation study on the binary mixture phase separation coupled with polymerization.

    Science.gov (United States)

    Liu, Hong; Qian, Hu-Jun; Zhao, Ying; Lu, Zhong-Yuan

    2007-10-14

    The influence of polymerization on the phase separation of binary immiscible mixtures has been investigated by the dissipative particle dynamics simulations in two dimensions. During polymerization, the bulk viscosity increases, which consequently slows down the spinodal decomposition process. The domain size growth is monitored in the simulations. The absence of 23 exponent for inertial hydrodynamic mechanism clearly reflects the suppressing effect of polymerization on the phase separation. Due to the increasing viscosity, the individual phase may be trapped in a metastable stage instead of the lamellar morphology identified for symmetric mixtures. Moreover, the polymerization induced phase separation in the binary miscible mixture has been studied. The domain growth is strongly dependent on the polymerization probability, which is naturally related to the activation energy for polymerization. The observed complex phase separation behavior is attributed to the interplay between the increasing thermodynamic driving force for phase separation and the increasing viscosity that suppresses phase separation as the polymerization proceeds. PMID:17935435

  17. Simultaneous spectrophotometric determination of binary mixtures of surfactants using continuous wavelet transformation

    International Nuclear Information System (INIS)

    This work presents a simple, rapid, and novel method for simultaneous determination of binary mixtures of some surfactants using continuous wavelet transformation. The method is based on the difference in the effect of surfactants Cetyltrimethylammoniumbromide (CTAB), dodecyl trimethylammonium bromide (DTAB), cetylpyridinium bromide (CPB) and TritonX-100 (TX-100) on the absorption spectra of complex of Beryllium with Chrome Azurol S (CAS) at pH 5.4. Binary mixtures of CTAB-DTAB, DTAB-CPB and CTAB-TX-100 were analyzed without prior separation steps. Different mother wavelets from the family of continuous wavelet transforms were selected and applied under the optimal conditions for simultaneous determinations. The proposed methods, under the working conditions, were successfully applied to simultaneous determination of surfactants in hair conditioner and mouthwash samples.

  18. Shared and Distributed Memory Parallel Security Analysis of Large-Scale Source Code and Binary Applications

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, D; Barany, G; Panas, T

    2007-08-30

    Many forms of security analysis on large scale applications can be substantially automated but the size and complexity can exceed the time and memory available on conventional desktop computers. Most commercial tools are understandably focused on such conventional desktop resources. This paper presents research work on the parallelization of security analysis of both source code and binaries within our Compass tool, which is implemented using the ROSE source-to-source open compiler infrastructure. We have focused on both shared and distributed memory parallelization of the evaluation of rules implemented as checkers for a wide range of secure programming rules, applicable to desktop machines, networks of workstations and dedicated clusters. While Compass as a tool focuses on source code analysis and reports violations of an extensible set of rules, the binary analysis work uses the exact same infrastructure but is less well developed into an equivalent final tool.

  19. A novel Fingervein Recognition System based on Monogenic Local Binary Pattern Features

    Directory of Open Access Journals (Sweden)

    Alima DAMAK MASMOUDI

    2014-01-01

    Full Text Available As a new approach to human identification, fingervein recognition is becoming an active biometric recognition mode. This paper focuses on fingervein recognition system. First, a preprocessing algorithm is used to enhance each fingervein image. Then, an improvement technique of feature extraction based on Monogenic Local Binary Pattern (MLBP is presented. This novel metric integrates the conventional LBP (Local Binary Pattern with the other two rotation invariant measures (local phase and local surface type to lower the computational complexity while slightly increasing the matching accuracy. Experimental results show that the proposed algorithm offres best performances in fingervein recognition. In fact, the area under curve of proposed approach has very close to unity (0.91

  20. Equilibrium vortex lattices of a binary rotating atomic Bose-Einstein condensate with unequal atomic masses

    Science.gov (United States)

    Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping; Han, Wei; Zhang, Shou-Gang; Zhang, Xiao-Fei

    2016-10-01

    We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose-Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with our numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses.

  1. ANNEXATION OF TWO KINDS OF SOLUTION IN BINARY METALLIC MELTS

    Institute of Scientific and Technical Information of China (English)

    J.Zhang

    2004-01-01

    After investigation on the thervnodynamic properties of a small number of binary metallic melts,the structural units of which cannot be wholly determined by the corresponding phase diagrams,it was found that they can be determined by the principle of annexation of two kinds of solutions in binary metallic melts.According to the principle of annexation,calculating models of mass action concentrations for several binary metallic melts have been formulated.The calculated results agree well with practice,showing that this principle is a reliable basis for determination of the structural units for some binary metallic melts.

  2. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  3. White-Light Flares on Close Binaries Observed with Kepler

    CERN Document Server

    Gao, Qing; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang

    2016-01-01

    Based on Kepler data, we present the results of a search for white-light flares on 1049 close binaries. We identify 234 flare binaries, on which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies ("detachedness"). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10-20 percent lower than those in detached and semi-detached systems. We calculate the binary flares activity level (AL) of all the flare binaries, and discuss its variations along the orbital period (P_orb) and rotation period (P_rot, calculated for only detached binaries). We find that AL increases with decreasing P_orb or P_rot up to the critical values at P_orb near 3 days or P_rot near 1.5 days, thereafter, the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in 2 eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate ...

  4. Intervals of balanced binary trees in the Tamari lattice

    CERN Document Server

    Giraudo, Samuele

    2011-01-01

    We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals [T, T'] where T and T' are balanced binary trees are isomorphic as posets to a hypercube. We introduce synchronous grammars that allow to generate tree-like structures and obtain fixed-point functional equations to enumerate these. We also introduce imbalance tree patterns and show that they can be used to describe some sets of balanced binary trees that play a particular role in the Tamari lattice. Finally, we investigate other families of binary trees that are also closed by interval in the Tamari lattice.

  5. Observational signatures of binary supermassive black holes

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, Constanze; Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2014-04-20

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  6. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋

    1996-01-01

    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  7. On Totally Reducible Binary Forms: I

    Indian Academy of Sciences (India)

    C Hooley

    2001-08-01

    Let () be the number of positive numbers up to a large limit that are expressible in essentially more than one way by a binary form that is a product of > 2 distinct linear factors with integral coefficients. We prove that $$(n) = O\\left(n^{2/l-_l+\\epsilon}\\right),$$ where \\begin{equation*}_l=\\begin{cases}1/l^2, \\quad\\text{if}\\quad l=3,\\\\ (l-2)/l^2(l-1), \\quad\\text{if}\\quad l>3,\\end{cases}\\end{equation*} thus demonstrating in particular that it is exceptional for a number represented by to have essentially more than one representation.

  8. Computer Vision Using Local Binary Patterns

    CERN Document Server

    Pietikainen, Matti; Zhao, Guoying; Ahonen, Timo

    2011-01-01

    The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, b

  9. Interatomic Potentials for Some Binary Oxides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using atomistic computer simulation methods we have derived a new set of interatomic potential parameters for some binary oxides, comprising divalent transition elements (rock-salt structured)and tetrava)ent metals. Computational techniques based on the minimization of the crystal energy with respect to atomic coordinates have been employed. Crystal properties were calculated and compared with the experimental data to check the reliability of our potential models. Intrinsic (Schottky and Frenkel) defect energies were also calculated and compared with previous studies.There is a good agreement between these calculations, which shows that the new potential parameters are reliable and can be used with confidence for future investigations.

  10. Statistical kinetic treatment of relativistic binary collisions.

    Science.gov (United States)

    Peano, F; Marti, M; Silva, L O; Coppa, G

    2009-02-01

    In particle-based algorithms, the effect of binary collisions is commonly described in a statistical way, using Monte Carlo techniques. It is shown that, in the relativistic regime, stringent constraints should be considered on the sampling of particle pairs for collision, which are critical to ensure physically meaningful results, and that nonrelativistic sampling criteria (e.g., uniform random pairing) yield qualitatively wrong results, including equilibrium distributions that differ from the theoretical Jüttner distribution. A general procedure for relativistically consistent algorithms is provided, and verified with three-dimensional Monte Carlo simulations, thus opening the way to the numerical exploration of the statistical properties of collisional relativistic systems. PMID:19391799

  11. Binary Colloidal Alloy Test-5: Phase Separation

    Science.gov (United States)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  12. Multiple Human Tracking Using Binary Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Toshiaki Miyazaki

    2015-06-01

    Full Text Available To create a context-aware environment, human locations and movement paths must be considered. In this paper, we propose an algorithm that tracks human movement paths using only binary sensed data obtained by infrared (IR sensors attached to the ceiling of a room. Our algorithm can estimate multiple human movement paths without a priori knowledge of the number of humans in the room. By repeating predictions and estimations of human positions and links from the previous human positions to the estimated ones at each time period, human movement paths can be estimated. Simulation-based evaluation results show that our algorithm can dynamically trace human movement paths.

  13. Iterative Method for Generating Correlated Binary Sequences

    CERN Document Server

    Usatenko, O V; Apostolov, S S; Makarov, N M; Krokhin, A A

    2014-01-01

    We propose a new efficient iterative method for generating random correlated binary sequences with prescribed correlation function. The method is based on consecutive linear modulations of initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. Robustness and efficiency for the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to the single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  14. 6384 Kervin: A Possible Hungaria Binary Asteroid

    Science.gov (United States)

    Warner, Brian D.; Aznar Macia, Amadeo

    2016-04-01

    Analysis of CCD photometric observations in late 2015 of the Hungaria asteroid 6384 Kervin indicates that it may be a binary asteroid with a primary lightcurve of P1 = 3.6194 ± 0.0001 h, A1 = 0.06 ± 0.01 mag. The secondary lightcurve parameters are P2 = 15.94 ± 0.01 h, A2 = 0.03 ± 0.01 mag. No mutual events (occultations or eclipses) were observed. However, other indicators give an estimated diameter ratio on the order of Ds/Dp ~ 0.3, possibly greater.

  15. Associative memory - An optimum binary neuron representation

    Science.gov (United States)

    Awwal, A. A.; Karim, M. A.; Liu, H. K.

    1989-01-01

    Convergence mechanism of vectors in the Hopfield's neural network is studied in terms of both weights (i.e., inner products) and Hamming distance. It is shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, weights (which in turn depend on the neuron representation) are found to play a more dominant role in the convergence mechanism. Consequently, a new binary neuron representation for associative memory is proposed. With the new neuron representation, the associative memory responds unambiguously to the partial input in retrieving the stored information.

  16. Model for magnetic-nonmagnetic binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Razafimandimby, H. [Departement de Physique, Universite de Toliara, 601 Toliara (Madagascar); Randrianasoloharisoa, D. [LPMR, Universite d' Antananarivo (Madagascar); Rakotomahevitra, A. [Departement des Sciences Exactes, Universite de Mahajanga, BP 155 (Madagascar); Parlebas, J.C. [IPCMS, UMR 7504 CNRS-Universite Louis Pasteur, 23 rue du Loess, BP 43, 67034 Strasbourg (France)

    2007-10-15

    An extension of a mean-field approximation (MFA) developed within standard basis operators (SBO) is used to study magnetism in magnetic-nonmagnetic binary alloys. The Curie temperature is calculated from the free energy within the framework of the present approach. The calculated results are in fair agreement with the theoretical results of other research groups for the same problem but utilizing other methods. Finally, the case of NiPt alloys is briefly examined as an example test for the comparison with experiment. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Is the Coma cluster binary dominated?

    International Nuclear Information System (INIS)

    It is investigated whether the model of an expanding cluster dominated by a massive binary galaxy, first suggested by Valtonen and Byrd (1979), is consistent with optical data on the surface density and velocity dispersion of the Coma cluster. The evolution of this model is simulated for a wide variety of initial conditions. It is found that galaxy counts in the model can be made to agree with observation, but that the observed velocity dispersion profile cannot be reproduced. A number of other arguments suggest that the central galaxies in Coma cannot be as massive as required by the model. This model is not a viable representation of the Coma cluster. 25 refs

  18. The Benchmark Eclipsing Binary V530 Ori

    DEFF Research Database (Denmark)

    Torres, Guillermo; Lacy, Claud H. Sandberg; Pavlovski, Kresimir;

    2015-01-01

    We report accurate measurements of the physical properties (mass, radius, temperature) of components of the G+M eclipsing binary V530 On. The M-type secondary shows a larger radius and a cooler temperature than predicted by standard stellar evolution models, as has been found for many other low-m......-mass stars and ascribed to the effects of magnetic activity and/or spots. We show that models from the Dartmouth series that incorporate magnetic fields are able to match the observations with plausible field strengths of 1-2 kG, consistent with a rough estimate we derive for that star....

  19. UV Emission line shifts of symbiotic binaries

    OpenAIRE

    Friedjung, M.; Mikolajewska, J.; Zajczyk, A.; Eriksson, M.

    2010-01-01

    Relative and absolute emission line shifts have been previously found for symbiotic binaries, but their cause was not clear. This work aims to better understand the emission line shifts. Positions of strong emission lines were measured on archival UV spectra of Z And, AG Dra, RW Hya, SY Mus and AX Per and relative shifts between the lines of different ions compared. Profiles of lines of RW Hya and Z And were also examined. The reality of the relative shift between resonance and intercombinati...

  20. Binary quadratic forms an algorithmic approach

    CERN Document Server

    Buchmann, Johannes

    2007-01-01

    The book deals with algorithmic problems related to binary quadratic forms, such as finding the representations of an integer by a form with integer coefficients, finding the minimum of a form with real coefficients and deciding equivalence of two forms. In order to solve those problems, the book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography. It requires only basic mathematical knowledge.

  1. Binary Modulation Formats in Optical Access Networks

    Directory of Open Access Journals (Sweden)

    Vladimir Tejkal

    2010-01-01

    Full Text Available In this paper the binary modulation formats and their application in passive optical networks have been discussed. Passive optical networks are characterized by dividing the optical signal between several end users by using passive splitters, which added a significant attenuation to the network. The performance of the selected modulation formats, depending on the transmitter power in order to verify that there is no signal distortion, has been examined in our simulations. A minimal error rate of the system for each modulation format has been also examined. Finding a suitable modulation, which would allow extension of the distance and splitting ration in current passive optical networks, has been the main aim.

  2. Double riches: asteroseismology in eclipsing binaries

    CERN Document Server

    Southworth, John

    2015-01-01

    The study of eclipsing binaries is our primary source of measured properties of normal stars, achieved through analysis of light and radial velocity curves of eclipsing systems. The study of oscillations and pulsations is increasingly vital for determining the properties of single stars, and investigating the physical phenomena active in their interiors. Combining the two methods holds the promise of establishing stringent tests of stellar evolutionary theory, and of calibrating model-dependent asteroseismology with empirically measured stellar properties. I review recent advances and outline future work.

  3. Heats of formation of binary semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.; Sastry, B.S.R. [Department of Electronics and Instrumentation Indian School of Mines, Dhanbad 826 004 (India)

    2005-03-01

    Heats of formation of tetrahedrally coordinated II-VI and III-V groups of binary semiconductors have been calculated using plasmon energy data. Two simple relations between plasmon energy and heats of formation have been proposed. One is based on spectroscopic model of Phillips and Van Vechten and other is based on the best-fit data of heats of formation. The calculated values of heats of formation from both the equations are compared with the experimental values and the values reported by earlier workers. A fairly good agreement has been obtained between them. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼3[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  5. Nonlinear Tides in Close Binary Systems

    Science.gov (United States)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three

  6. Randomized Binary Consensus with Faulty Agents

    Directory of Open Access Journals (Sweden)

    Alexander Gogolev

    2014-05-01

    Full Text Available This paper investigates self-organizing binary majority consensus disturbed by faulty nodes with random and persistent failure. We study consensus in ordered and random networks with noise, message loss and delays. Using computer simulations, we show that: (1 explicit randomization by noise, message loss and topology can increase robustness towards faulty nodes; (2 commonly-used faulty nodes with random failure inhibit consensus less than faulty nodes with persistent failure; and (3 in some cases, such randomly failing faulty nodes can even promote agreement.

  7. The orbital evolution of binary galaxies

    Science.gov (United States)

    Chan, R.; Junqueira, S.

    2001-02-01

    We present the results of self-consistent numerical simulations performed to study the orbital circularization of binary galaxies. We have generalized a previous model (Junqueira & de Freitas Pacheco 1994) and confirmed partially their results. The orbital evolution of pairs of galaxies is faster when we consider interacting pairs with contacting ``live'' galaxy halos but the circularization time remains larger than the Hubble time. Besides, the time behavior of the orbits has changed in comparison with previous work because of tidal forces and dynamical friction acting on the halos.

  8. Anonymizing Binary Tables is APX-hard

    CERN Document Server

    Bonizzoni, Paola; Dondi, Riccardo

    2007-01-01

    The problem of publishing personal data without giving up privacy is increasingly important. An interesting formalization is the $k$-anonymization, where all rows in a table are clustered in sets of at least $k$ records, and all the entries for which records in the same cluster have different values are suppressed. The problem has been shown to be NP-hard when the records values are over a ternary alphabet and $k=3$. In this paper we show that the problem is not only NP-hard, but also APX-hard, when the records values are over a binary alphabet and $k=3$.

  9. Binary Nucleation of Water and Sodium Chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Thomas [Institute of Thermomechanics ASCR, Prague, Czech Republic; Marsik, Frantisek [Institute of Thermomechanics ASCR, Prague, Czech Republic; Palmer, Donald [ORNL

    2005-01-01

    Nucleation processes in the binary water-sodium chloride system are investigated in the sense of the classical nucleation theory (CNT). The CNT is modified to be able to handle the electrolytic nature of the system and is employed to investigate the acceleration of the nucleation process due to the presence of sodium chloride in the steam. This phenomenon, frequently observed in the Wilson zone of steam turbines, is called early condensation. Therefore, the nucleation rates of the water-sodium chloride mixture are of key importance in the power cycle industry.

  10. The Gaia Mission, Binary Stars and Exoplanets

    CERN Document Server

    Eyer, Laurent; Holl, Berry; North, Pierre; Zucker, Shay; Evans, Dafydd W; Pourbaix, Dimitri; Hodgkin, Simon T; Thuillot, William; Mowlavi, Nami; Carry, Benoit

    2015-01-01

    On the 19th of December 2013, the Gaia spacecraft was successfully launched by a Soyuz rocket from French Guiana and started its amazing journey to map and characterise one billion celestial objects with its one billion pixel camera. In this presentation, we briefly review the general aims of the mission and describe what has happened since launch, including the Ecliptic Pole scanning mode. We also focus especially on binary stars, starting with some basic observational aspects, and then turning to the remarkable harvest that Gaia is expected to yield for these objects.

  11. Dynamic Binary Modification Tools, Techniques and Applications

    CERN Document Server

    Hazelwood, Kim

    2011-01-01

    Dynamic binary modification tools form a software layer between a running application and the underlying operating system, providing the powerful opportunity to inspect and potentially modify every user-level guest application instruction that executes. Toolkits built upon this technology have enabled computer architects to build powerful simulators and emulators for design-space exploration, compiler writers to analyze and debug the code generated by their compilers, software developers to fully explore the features, bottlenecks, and performance of their software, and even end-users to extend

  12. Binary magnetic structures in HoEr

    DEFF Research Database (Denmark)

    Howard, B.K.; Bohr, J.

    1991-01-01

    The magnetic structure of a single crystal of the rare earth random alloy Ho50% Er50% has been investigated by elastic neutron diffraction measurements in the temperature range 120-10 K. Three distinct magnetic phases are identified below the Neel temperature of 104 K. The high-temperature phase...... observed between 104 K and 47.5 K is a binary magnetic structure where the holmium and erbium moments belong to different modulated c-axis spirals. The intermediate-temperature phase between 47.5 K and 35 K is a simple basal plane spiral. Below 35 K, the measurements suggest a ferrimagnetic structure in...

  13. Retrograde binaries of massive black holes in circum-binary accretion discs

    CERN Document Server

    Amaro-Seoane, Pau; Dotti, Massimo; Colpi, Monica

    2016-01-01

    We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole which in turn affect the binary hardening and eccentricity evolution. We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Different accretion prescriptions result in different disc's surface densities which alter the black hole's dynamics back. Full 3D SPH realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less compu...

  14. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

    Science.gov (United States)

    Mandel, Ilya; de Mink, Selma E.

    2016-05-01

    We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which we estimate typically merge 4-11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about 10 Gpc-3 yr-1 at redshift z = 0, peaking at twice this rate at z = 0.5. This means that this channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common-envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The events from this channel may be distinguished by the preference for nearly equal-mass components and high masses, with typical total masses between 50 and 110 M⊙. Unlike the conventional isolated binary evolution scenario that involves shrinkage of the orbit during a common-envelope phase, short time delays are unlikely for this channel, implying that we do not expect mergers at high redshift.

  15. Multilevel Cross-Dependent Binary Longitudinal Data

    KAUST Repository

    Serban, Nicoleta

    2013-10-16

    We provide insights into new methodology for the analysis of multilevel binary data observed longitudinally, when the repeated longitudinal measurements are correlated. The proposed model is logistic functional regression conditioned on three latent processes describing the within- and between-variability, and describing the cross-dependence of the repeated longitudinal measurements. We estimate the model components without employing mixed-effects modeling but assuming an approximation to the logistic link function. The primary objectives of this article are to highlight the challenges in the estimation of the model components, to compare two approximations to the logistic regression function, linear and exponential, and to discuss their advantages and limitations. The linear approximation is computationally efficient whereas the exponential approximation applies for rare events functional data. Our methods are inspired by and applied to a scientific experiment on spectral backscatter from long range infrared light detection and ranging (LIDAR) data. The models are general and relevant to many new binary functional data sets, with or without dependence between repeated functional measurements.

  16. Can low metallicity binaries avoid merging?

    CERN Document Server

    de Mink, S E; Pols, O R

    2007-01-01

    Rapid mass transfer in a binary system can drive the accreting star out of thermal equilibrium, causing it to expand. This can lead to a contact system, strong mass loss from the system and possibly merging of the two stars. In low metallicity stars the timescale for heat transport is shorter due to the lower opacity. The accreting star can therefore restore thermal equilibrium more quickly and possibly avoid contact. We investigate the effect of accretion onto main sequence stars with radiative envelopes with different metallicities. We find that a low metallicity (Z<0.001), 4 solar mass star can endure a 10 to 30 times higher accretion rate before it reaches a certain radius than a star at solar metallicity. This could imply that up to two times fewer systems come into contact during rapid mass transfer when we compare low metallicity. This factor is uncertain due to the unknown distribution of binary parameters and the dependence of the mass transfer timescale on metallicity. In a forthcoming paper we w...

  17. A Compact Supermassive Binary Black Hole System

    CERN Document Server

    Rodríguez, C; Zavala, R T; Peck, A B; Pollack, L K; Romani, R W

    2006-01-01

    We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magnitude. These results are based upon recent multi-frequency observations using the Very Long Baseline Array (VLBA) which reveal two compact, variable, flat-spectrum, active nuclei within the elliptical host galaxy of 0402+379. Multi-epoch observations from the VLBA also provide constraints on the total mass and dynamics of the system. Low spectral resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity systems with a combined mass of the two black holes of ~1.5 x 10^8 solar masses. The two nuclei appear stationary while the jets emanating from the weaker of the two nuclei appear to move out and terminate in bright hot spots. The discovery of this system has implications for the number of close binary black holes that might be sources of gravi...

  18. Binary rf pulse compression experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here.

  19. The binary-rich cluster Abell 2244

    International Nuclear Information System (INIS)

    A structural, luminosity, and velocity study of the cluster Abell 2244 is presented. A2244 was selected for study from the list of Struble and Rood because of its unusually binary-rich population in an evolved cD-type cluster environment, a contradiction in terms of cluster collapse scenarios versus the formation and survival of bound pairs. In comparison with the Coma cluster, A2244 is a slightly poorer version with a suspected deficiency in the number of cluster members in the core. This evidence, combined with the high-velocity dispersion of the cluster, suggests that a low-velocity population of galaxies has been consumed by the central cD galaxy. The central cD galaxy has a single low-velocity companion deep in its envelope and cross sections of its surface-brightness profile suggest that it is in transition from a depressed central surface-brightness object to a high central concentration system, a point of contention in merger models. All but two of the binary galaxies were found to be projections with other cluster members or stars and, thus, are not in conflict with the advanced dynamical age of the cluster. 35 refs

  20. The Electromagnetic Signals of Compact Binary Mergers

    CERN Document Server

    Piran, T; Rosswog, S

    2012-01-01

    Compact binary mergers are prime sources of gravitational waves (GWs), targeted by current and next generation detectors. The question "what is the observable electromagnetic (EM) signature of a compact binary merger?" is an intriguing one with crucial consequences to the quest for gravitational waves. We present a large set of numerical simulations that focus on the electromagnetic signals that emerge from the dynamically ejected sub-relativistic material. These outflows produce on a time scale of a day macronovae - short-lived optical/UV signals powered by radioactive decay. In addition, the outflow interaction with the surrounding matter inevitably leads to a long-lasting radio emission. We calculate the expected radio signals from these outflows on time scales longer than a year, when the sub-relativistic ejecta dominate the emission. We discuss their detectability in 1.4 GHz and 150 MHz and compare it with an updated estimate of the detectability of short GRBs' orphan afterglows. We find that mergers wit...

  1. Tertiary companions to close spectroscopic binaries

    CERN Document Server

    Tokovinin, A; Thomas, S; Udry, S

    2006-01-01

    We have surveyed a sample of 165 solar-type spectroscopic binaries (SB) with periods from 1 to 30 days for higher-order multiplicity. 62 targets have been observed with the NACO adaptive optics system and 13 new physical tertiary companions were detected. Another 12 new wide companions (5 still tentative) were retrieved from the 2MASS sky survey. Our binaries belong to 161 stellar systems; of these 64 are triple, 11 quadruple and 7 quintuple. After correction for incomplete detection, the fraction of SBs with additional companions is 63% +- 5%. We find that this fraction is a strong function of the SB period P, reaching 96% for P12d. Period distributions of SBs with and without tertiaries are significantly different, but their mass ratio distributions are identical. New statistical data on the multiplicity of close SBs indicate that their periods and mass ratios were established very early, but periods of SBs within triples were further shortened by angular momentum exchange with companions.

  2. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  3. OJ 287 binary black hole system

    CERN Document Server

    Valtonen, Mauri

    2011-01-01

    The light curve of the quasar OJ 287 extends from 1891 up today without major gaps. Here we summarize the results of the 2005 - 2010 observing campaign. The main results are the following: (1) The 2005 October optical outburst came at the expected time, thus confirming the general relativistic precession in the binary black hole system. This result disproved the model of a single black hole system with accretion disk oscillations, as well as several toy models of binaries without relativistic precession. In the latter models the main outburst would have been a year later. (2) The nature of the radiation of the 2005 October outburst was expected to be bremsstrahlung from hot gas at the temperature of $3\\times 10^{5}$ $^{\\circ}$K. This was confirmed by combined ground based and ultraviolet observations using the XMM-Newton X-ray telescope. (3) A secondary outburst of the same nature was expected at 2007 September 13. Within the accuracy of observations (about 6 hours), it started at the correct time. Thus the p...

  4. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.;

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing......-278/OGLE-2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured...... masses of the brown dwarf companions are 0.02 ± 0.01 M⊙ and 0.019 ± 0.002 M⊙ for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events...

  5. Spectroscopic binaries with components of similar mass

    CERN Document Server

    Lucy, L B

    2006-01-01

    The assertion that there is an intrinsic excess of binaries with mass ratios q \\simeq 1 - the twin hypothesis - is investigated. A strong version of this hypothesis (H_s), due to Lucy & Ricco (1979) and Tokovinin (2000), refers to a narrow peak in the distribution function psi(q) for q \\ga 0.95. A weak version (H_w), due to Halbwachs et al. (2003), refers to a broad peak for q \\ga 0.8. Current data on SB2's is analysed and H_s is found to be statistically significant for a sample restricted to orbits of high precision. But claims that H_s is significant for binaries with special characteristics are not confirmed since the sample sizes are well below the minimum required for a reliable test. With regard to H_w, additional observational evidence is not presented, but evidence to the contrary in the form of Hogeveen's (1992b) model of biased sampling with psi \\propto q^{-2} is criticized. Specifically, his success in thus fitting catalogued data depends on implausible assumptions about the research methodolo...

  6. Thirty New Low-Mass Spectroscopic Binaries

    CERN Document Server

    Shkolnik, Evgenya L; Liu, Michael C; Reid, I Neill; Cameron, Andrew C

    2010-01-01

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s and 1 SB4, increasing the number of known low-mass SBs by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass EBs, bringing the count of known M dwarf EBs to 15. BD -22 5866, the SB4, is fully described in Shkolnik et al. 2008 and CCDM J04404+3127 B consists of a two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P_rot to determine the true orbital parameters. For those with no P_rot, we us...

  7. Speakers' choice of frame in binary choice

    Directory of Open Access Journals (Sweden)

    Marc van Buiten

    2009-02-01

    Full Text Available A distinction is proposed between extit{recommending for} preferred choice options and extit{recommending against} non-preferred choice options. In binary choice, both recommendation modes are logically, though not psychologically, equivalent. We report empirical evidence showing that speakers recommending for preferred options predominantly select positive frames, which are less common when speakers recommend against non-preferred options. In addition, option attractiveness is shown to affect speakers' choice of frame, and adoption of recommendation mode. The results are interpreted in terms of three compatibility effects, (i extit{recommendation mode---valence framing compatibility}: speakers' preference for positive framing is enhanced under extit{recommending for} and diminished under extit{recommending against} instructions, (ii extit{option attractiveness---valence framing compatibility}: speakers' preference for positive framing is more pronounced for attractive than for unattractive options, and (iii extit{recommendation mode---option attractiveness compatibility}: speakers are more likely to adopt a extit{recommending for} approach for attractive than for unattractive binary choice pairs.

  8. Modeling and analysis of advanced binary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  9. Ordering in binary transition metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rusakov, G. [Institute for Metal Physics UB RAS, 18 Kovalevskoj St., 620990 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation); Son, L., E-mail: ldson@yandex.ru [Ural State Pedagogical University, 26 Cosmonavtov Ave, 620017 Ekaterinburg (Russian Federation); Efimova, E. [Institute for Metal Physics UB RAS, 18 Kovalevskoj St., 620990 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation); Dubinin, N. [Institute for Metallurgy UB RAS, 101 Amundsen St., 620016 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation)

    2012-03-20

    We present the phenomenological thermodynamic modeling of binary alloys which demonstrate solubility of the components at high temperatures, and form intermediate phase near equiatomic composition at lower ones (the so-called sigma-phase). Besides, the regular solution miscibility gap takes place also. The nonequilibrium thermodynamic potential is written out as a sum of the free energy of regular solution and polynomial term of scalar order parameter {phi}, which describes the {sigma}-phase ordering. There are four parameters in the model: the energy of regular solution mixing, the energy of {sigma}-phase formation at zero temperature, and the widths of temperature and concentration intervals of {sigma}-phase existence in the alloy with frozen-in random distribution of components. Up to now, both phase transitions which take place in a number of transition metals binary alloys (the {sigma}-phase formation and miscibility in the regular solution) have been treated separately. In present work, the standard technique of phase diagram calculation allows us to analyze all possible phase diagrams which may arise in the alloy.

  10. Binary droplet collision at high Weber number

    Science.gov (United States)

    Pan, Kuo-Long; Chou, Ping-Chung; Tseng, Yu-Jen

    2009-09-01

    By using the techniques developed for generating high-speed droplets, we have systematically investigated binary droplet collision when the Weber number (We) was increased from the range usually tested in previous studies on the order of 10 to a much larger value of about 5100 for water (a droplet at 23 m/s with a diameter of 0.7 mm). Various liquids were also used to explore the effects of viscosity and surface tension. Specifically, beyond the well-known regimes at moderate We’s, which exhibited coalescence, separation, and separation followed by satellite droplets, we found different behaviors showing a fingering lamella, separation after fingering, breakup of outer fingers, and prompt splattering into multiple secondary droplets as We was increased. The critical Weber numbers that mark the boundaries between these impact regimes are identified. The specific impact behaviors, such as fingering and prompt splattering or splashing, share essential similarity with those also observed in droplet-surface impacts, whereas substantial variations in the transition boundaries may result from the disparity of the boundary conditions at impacts. To compare the outcomes of both types of collisions, a simple model based on energy conservation was carried out to predict the maximum diameter of an expanding liquid disk for a binary droplet collision. The results oppose the dominance of viscous drag, as proposed by previous studies, as the main deceleration force to effect a Rayleigh-Taylor instability and ensuing periphery fingers, which may further lead to the formations of satellite droplets.

  11. Convergence Speed of Binary Interval Consensus

    CERN Document Server

    Draief, Moez

    2012-01-01

    We consider the convergence time for solving the binary consensus problem using the interval consensus algorithm proposed by B\\' en\\' ezit, Thiran and Vetterli (2009). In the binary consensus problem, each node initially holds one of two states and the goal for each node is to correctly decide which one of these two states was initially held by a majority of nodes. We derive an upper bound on the expected convergence time that holds for arbitrary connected graphs, which is based on the location of eigenvalues of some contact rate matrices. We instantiate our bound for particular networks of interest, including complete graphs, paths, cycles, star-shaped networks, and Erd\\" os-R\\' enyi random graphs; for these graphs, we compare our bound with alternative computations. We find that for all these examples our bound is tight, yielding the exact order with respect to the number of nodes. We pinpoint the fact that the expected convergence time critically depends on the voting margin defined as the difference betwe...

  12. A Speeding Binary in the Galactic Halo

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  13. ALIGNMENT OF SUPERMASSIVE BLACK HOLE BINARY ORBITS AND SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421 (United States); Krolik, Julian H., E-mail: miller@astro.umd.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2013-09-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from {approx}1 pc to {approx}10{sup -3}-10{sup -2} pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time {approx}few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor {approx}(m{sub 1}/m{sub 2}){sup 1/2} > 1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignment can significantly reduce the recoil speed resulting from subsequent black hole merger.

  14. Conception for enhanced mass transport in binary nanofluids

    Science.gov (United States)

    Xuan, Yimin

    2009-12-01

    Besides their application in enhancing heat transfer, suspended nanoparticles have been found to improve mass transfer process inside binary nanofluids. The concepts of enhanced mass transfer in binary nanofluids are involved. By means of the heat and mass transfer analogy, the approaches for determining the mass diffusivity and mass transfer coefficient are proposed and discussed.

  15. Two Improved Access Methods on Compact Binary (CB) Trees.

    Science.gov (United States)

    Shishibori, Masami; Koyama, Masafumi; Okada, Makoto; Aoe, Jun-ichi

    2000-01-01

    Discusses information retrieval and the use of binary trees as a fast access method for search strategies such as hashing. Proposes new methods based on compact binary trees that provide faster access and more compact storage, explains the theoretical basis, and confirms the validity of the methods through empirical observations. (LRW)

  16. A HYBRID THINNING ALGORITHM FOR BINARY TOPOGRAPHY MAP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A hybrid thinning algorithm for binary topography maps is proposed on the basis of parallel thinning templates in this paper.The algorithm has a high processing speed and the strong ability of noise immunity and preservation of connectivity and skeleton symmetry. Experimental results show that the algorithm can solve t he thinning problem of binary maps effectively.

  17. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  18. An eccentric binary millisecond pulsar in the Galactic plane

    NARCIS (Netherlands)

    D.J. Champion; S.M. Ransom; P. Lazarus; F. Camilo; C. Bassa; V.M. Kaspi; D.J. Nice; P.C.C. Freire; I.H. Stairs; J. van Leeuwen; B.W. Stappers; J.M. Cordes; J.W.T. Hessels; D.R. Lorimer; Z. Arzoumanian; D.C. Backer; N.D.R. Bhat; S. Chatterjee; I. Cognard; J.S. Deneva; C.A. Faucher-Giguère; B.M. Gaensler; J. Han; F.A. Jenet; L. Kasian; V.I. Kondratiev; M. Kramer; J. Lazio; M.A. McLaughlin; A. Venkataraman; W. Vlemmings

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+ 0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric ( e = 0.44) 95- day orbit around

  19. Alignment of supermassive black hole binary orbits and spins

    CERN Document Server

    Miller, M Coleman

    2013-01-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from ~1 pc to 0.001 - 0.01 pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor ~(m_1/m_2)^{1/2}>1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignm...

  20. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    Science.gov (United States)

    Forgan, Duncan

    2016-08-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycles (of order 1000 years) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter timescale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15,000 year timescales. This produces climate oscillations of similar strength to the variation on the orbital timescale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100,000 years in duration, which are further modulated by neighbouring planets.