WorldWideScience

Sample records for bimped biological mechanisms

  1. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  2. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment......The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  3. Epigenetics: Biology's Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2011-04-01

    Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  4. Epigenetics: Biology's Quantum Mechanics.

    Science.gov (United States)

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  5. Bis(imino)pyridine (BIMP) Fe(II) catalyses one-pot green condensation of resorcinol, malononitrile, aromatic aldehydes and cyclohexanone

    Indian Academy of Sciences (India)

    Saman Damavandi; Reza Sandaroos

    2012-03-01

    A novel, efficient and green approach for the synthesis of pyranopyridine derivatives through one-pot, four-component reaction of resorcinol, malononitrile, aromatic aldehydes and cyclohexanone using bis(imino)pyridine (BIMP) Fe(II) catalyst under solvent-free and ultrasonic irradiation is described.

  6. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  7. Mechanical Instabilities of Biological Tubes

    Science.gov (United States)

    Hannezo, Edouard; Prost, Jacques; Joanny, Jean-François

    2012-07-01

    We study theoretically the morphologies of biological tubes affected by various pathologies. When epithelial cells grow, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated: varicose, dilated, sinuous, or sausagelike. They are all found in pathologies of tracheal, renal tubes, or arteries. The final shape depends crucially on the mechanical parameters of the tissues: Young’s modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation.

  8. Mechanical Instabilities of Biological Tubes

    CERN Document Server

    Hannezo, Edouard; Prost, Jacques; 10.1103/PhysRevLett.109.018101

    2012-01-01

    We study theoretically the shapes of biological tubes affected by various pathologies. When epithelial cells grow at an uncontrolled rate, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated : varicose, enlarged, sinusoidal or sausage-like, all of which are found in pathologies of tracheal, renal tubes or arteries. The final shape depends crucially on the mechanical parameters of the tissues : Young modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation.

  9. Mechanics of biological polymer composites

    Science.gov (United States)

    Lomakin, Joseph

    2009-12-01

    displayed a darker coloration and significantly increased n of 0.0470.004, suggesting both cuticles to be less cross-linked, a finding consistent with reduced beta-alanine metabolism. Suppression of the tanning enzyme laccase2 (TcLac2) resulted in a pale cuticle with an n of 0.043+/-0.005, implicating laccases in the formation of both pigments and cross-links during sclerotization. Cuticular cross-linking was increased and n decreased with decreased expression of structural proteins, CP10 and CP20. This work establishes n as an important novel parameter for confirming metabolic pathways within load bearing tissues and for understanding structure function relationships within biological polymer composites. Additionally, Tribolium castaneum elytral indentation modulus (800+/-200 MPa) was determined by nanoindentation and a 4nm regular hexagonal pattern on the dorsal side of elytra investigated via scanning, transmission and atomic microscopy. Based on studied biological materials, the combination of rigid macromolecules immersed in a ductile matrix was found to be significant in achieving exceptional mechanical performance. Inspired by this biological design principle, the synthesis, properties and structure of Poly(ethylene glycol) diacrylate/agarose semi-interpenetrating network hydrogels were explored. The resulting novel composite materials were 9x stiffer than agarose and 5x tougher than PEGDA alone and showed good biocompatibility, suggesting promise as a scaffold material for tissue engineering constructs for cartilage regeneration.

  10. The concept of mechanism in biology.

    Science.gov (United States)

    Nicholson, Daniel J

    2012-03-01

    The concept of mechanism in biology has three distinct meanings. It may refer to a philosophical thesis about the nature of life and biology ('mechanicism'), to the internal workings of a machine-like structure ('machine mechanism'), or to the causal explanation of a particular phenomenon ('causal mechanism'). In this paper I trace the conceptual evolution of 'mechanism' in the history of biology, and I examine how the three meanings of this term have come to be featured in the philosophy of biology, situating the new 'mechanismic program' in this context. I argue that the leading advocates of the mechanismic program (i.e., Craver, Darden, Bechtel, etc.) inadvertently conflate the different senses of 'mechanism'. Specifically, they all inappropriately endow causal mechanisms with the ontic status of machine mechanisms, and this invariably results in problematic accounts of the role played by mechanism-talk in scientific practice. I suggest that for effective analyses of the concept of mechanism, causal mechanisms need to be distinguished from machine mechanisms, and the new mechanismic program in the philosophy of biology needs to be demarcated from the traditional concerns of mechanistic biology.

  11. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  12. Bioinspiration: applying mechanical design to experimental biology.

    Science.gov (United States)

    Flammang, Brooke E; Porter, Marianne E

    2011-07-01

    The production of bioinspired and biomimetic constructs has fostered much collaboration between biologists and engineers, although the extent of biological accuracy employed in the designs produced has not always been a priority. Even the exact definitions of "bioinspired" and "biomimetic" differ among biologists, engineers, and industrial designers, leading to confusion regarding the level of integration and replication of biological principles and physiology. By any name, biologically-inspired mechanical constructs have become an increasingly important research tool in experimental biology, offering the opportunity to focus research by creating model organisms that can be easily manipulated to fill a desired parameter space of structural and functional repertoires. Innovative researchers with both biological and engineering backgrounds have found ways to use bioinspired models to explore the biomechanics of organisms from all kingdoms to answer a variety of different questions. Bringing together these biologists and engineers will hopefully result in an open discourse of techniques and fruitful collaborations for experimental and industrial endeavors.

  13. Multiaxial mechanical behavior of biological materials.

    Science.gov (United States)

    Sacks, Michael S; Sun, Wei

    2003-01-01

    For native and engineered biological tissues, there exist many physiological, surgical, and medical device applications where multiaxial material characterization and modeling is required. Because biological tissues and many biocompatible elastomers are incompressible, planar biaxial testing allows for a two-dimensional (2-D) stress-state that can be used to fully characterize their three-dimensional (3-D) mechanical properties. Biological tissues exhibit complex mechanical behaviors not easily accounted for in classic elastomeric constitutive models. Accounting for these behaviors by careful experimental evaluation and formulation of constitutive models continues to be a challenging area in biomechanical modeling and simulation. The focus of this review is to describe the application of multiaxial testing techniques to soft tissues and their relation to modern biomechanical constitutive theories.

  14. The mechanics of soft biological composites.

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thao D. (Sandia National Laboratories, Livermore, CA); Grazier, John Mark; Boyce, Brad Lee; Jones, Reese E. (Sandia National Laboratories, Livermore, CA)

    2007-10-01

    Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue in the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.

  15. Biology beyond biochemistry: The mechanics of life

    Science.gov (United States)

    Wiggins, Paul A.

    In the last half century, biologists have made great strides towards understanding the intricate structure of the cell and the relation between this structure and cellular function. Single-molecule techniques and advances in microscopy have also significantly changed the way in which biologists ask and answer questions. As biological measurements and techniques have become increasingly quantitative, they have allowed biologists to ask ever more quantitative questions: How do the molecular machines, which comprise the cell function microscopically? Can we understand the design principles that govern the structure and function of biological systems on a microscopic scale? One outcome of this new generation of quantitative biological questions is the need to greet quantitative experiments with models at a higher level of abstraction than the traditional cartoons of molecular biology. In this thesis, I present two such quantitative models. In the first half of this thesis, I present a physical model for mechanotransduction. Mechanosensitive channels are the central agents employed by cells to transduce mechanical stimuli. Our senses of hearing and touch are both examples of this functional motif. The Mechanosensitive Channel of Large conductance (MscL) is arguably the simplest and best studied mechanosensitive channel. I present analytic estimates for the forces and free energy generated by bilayer deformation which reveal a compelling and intuitive model for the function of the MscL channel, analogous to the nucleation of a second phase. The competition between hydrophobic mismatch of the protein with the surrounding membrane and tension results in a surprisingly rich story, which can provide both a quantitative comparison to measurements of the opening tension for MscL when reconstituted in bilayers of different thickness and qualitative insights into the function of the MscL channel and other transmembrane proteins. In the second half of this thesis, I examine

  16. Multiscale mechanical modeling of soft biological tissues

    Science.gov (United States)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  17. Synthetic biology: a challenge to mechanical explanations in biology?

    Science.gov (United States)

    Morange, Michel

    2012-01-01

    In their plans to modify organisms, synthetic biologists have contrasted engineering and tinkering. By drawing this contrast between their endeavors and what has happened during the evolution of organisms by natural selection, they underline the novelty of their projects and justify their ambitions. Synthetic biologists are at odds with a long tradition that has considered organisms as "perfect machines." This tradition had already been questioned by Stephen Jay Gould in the 1970s and received a major blow with the comparison made by François Jacob between organisms and the results of "bricolage" (tinkering). These contrasts between engineering and tinkering, synthetic biology and evolution, have no raison d'être. Machines built by humans are increasingly inspired by observations made on organisms. This is not a simple reversal of the previous trend-the mechanical conception of organisms-in which the characteristics of the latter were explained by comparison with human-built machines. Relations between organisms and machines have always been complex and ambiguous.

  18. [From the mechanical complexity in biology].

    Science.gov (United States)

    Uribe, Libia Herrero

    2008-03-01

    From the mechanical complexity in biology. Through history, each century has brought new discoveries and beliefs that have resulted in different perspectives to study life organisms. In this essay, 1 define three periods: in the first, organisms were studied in the context of their environment, in the second, on the basis of physical and chemical laws, and on the third, systemically. My analysis starts with primitive humans, continues to Aristoteles and Newton, Lamarck and Darwin, the DNA doble helix discovery, and the beginnings of reduccionism in science. I propose that life is paradigmatical, that it obeys physical and chemical laws but cannot be explained by them I review the systemic theory, autopoiesis, discipative structures and non- linear dynamics. 1 propose that the deterministic, lineal and quantitative paradigm of nature are not the only way to study nature and invite the reader to explore the complexity paradigm.

  19. Biological Mechanism of Silver Nanoparticle Toxicity

    Science.gov (United States)

    Armstrong, Najealicka Nicole

    Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities above that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, these investigations were attempted to monitor the effects of AgNPs at a non-lethal concentration on wild type Drosophila melanogaster by exposing them to nanoparticles throughout their development. All adult flies raised in AgNP doped food indicated that of not more than 50 mg/L had no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised after AgNP feeding. The determination of the amount of free ionic silver (Ag+) indicated that the observed biological effects had resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, were decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Furthermore, copper supplementation restored the loss of AgNP induced demelanization, and the reduction of functional Ctr1 in Ctr1 heterozygous mutants caused the flies to be resistant to demelanization. Consequently, these studies proposed a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explained the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, these investigations demonstrated that Drosophila, an established genetic model system, can be well utilized for further

  20. Research Progression on Biological Mechanism of Post-stroke Depression

    Institute of Scientific and Technical Information of China (English)

    Lin Facai; Huang Dehong

    2014-01-01

    The biological mechanism of post-stroke depression (PSD) is still unclear. However, there are two hypothesises including primary endogenous mechanism and reactive mechanism. This study mainly reviewed the biological mechanism of PSD from the aspects of neuroanatomy, neurotransmitter, neuroendocrinology, inlfammatory response, neurtrophin and neuropeptide.

  1. Biological Robustness: Paradigms, Mechanisms, and Systems Principles

    Directory of Open Access Journals (Sweden)

    James Michael Whitacre

    2012-05-01

    Full Text Available Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g. mutational, environmental are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior.

  2. Discriminative topological features reveal biological network mechanisms

    Directory of Open Access Journals (Sweden)

    Levovitz Chaya

    2004-11-01

    Full Text Available Abstract Background Recent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them. Results We present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model. Conclusions Our method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.

  3. Changes of trabecular bone under control of biologically mechanical mechanism

    Science.gov (United States)

    Wang, C.; Zhang, C. Q.; Dong, X.; Wu, H.

    2008-10-01

    In this study, a biological process of bone remodeling was considered as a closed loop feedback control system, which enables bone to optimize and renew itself over a lifetime. A novel idea of combining strain-adaptive and damage-induced remodeling algorithms at Basic Multicellular Unit (BMU) level was introduced. In order to make the outcomes get closer to clinical observation, the stochastic occurrence of microdamage was involved and a hypothesis that remodeling activation probability is related to the value of damage rate was assumed. Integrated with Finite Element Analysis (FEA), the changes of trabecular bone in morphology and material properties were simulated in the course of five years. The results suggest that deterioration and anisotropy of trabecluar bone are inevitable with natural aging, and that compression rather than tension can be applied to strengthen the ability of resistance to fracture. This investigation helps to gain more insight the mechanism of bone loss and identify improved treatment and prevention for osteoporosis or stress fracture.

  4. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld

    2016-01-01

    , but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor......Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain's internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses....... In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal...

  5. Modeling the mechanisms of biological GTP hydrolysis

    DEFF Research Database (Denmark)

    Carvalho, Alexandra T.P.; Szeler, Klaudia; Vavitsas, Konstantinos;

    2015-01-01

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond...... in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way...... on the ribosome and in small GTPases....

  6. Mechanical and biological properties of keratose biomaterials.

    Science.gov (United States)

    de Guzman, Roche C; Merrill, Michelle R; Richter, Jillian R; Hamzi, Rawad I; Greengauz-Roberts, Olga K; Van Dyke, Mark E

    2011-11-01

    The oxidized form of extractable human hair keratin proteins, commonly referred to as keratose, is gaining interest as a biomaterial for multiple tissue engineering studies including those directed toward peripheral nerve, spinal cord, skin, and bone regeneration. Unlike its disulfide cross-linked counterpart, kerateine, keratose does not possess a covalently cross-linked network structure and consequently displays substantially different characteristics. In order to understand its mode(s) of action and potential for clinical translatability, detailed characterization of the composition, physical properties, and biological responses of keratose biomaterials are needed. Keratose was obtained from end-cut human hair fibers by peracetic acid treatment, followed by base extraction, and subsequent dialysis. Analysis of lyophilized keratose powder determined that it contains 99% proteins by mass with amino acid content similar to human hair cortex. Metallic elements were also found in minute quantities. Protein oxidation led to disulfide bond cleavage and drastic reduction of free thiols due to conversion of sulfhydryl to sulfonic acid, chain fragmentation, and amino acid modifications. Mass spectrometry identified the major protein constituents as a heterogeneous mixture of 15 hair keratins (type I: K31-35 and K37-39, and type II: K81-86) with small amounts of epithelial keratins which exist in monomeric, dimeric, multimeric, and even degraded forms. Re-hydration with PBS enabled molecular assembly into an elastic solid-like hydrogel. Highly-porous scaffolds formed by lyophilization of the gel had the compression behavior of a cellular foam material and reverted back to gel upon wetting. Cytotoxicity assays showed that the EC50 for various cell lines were attained at 8-10 mg/mL keratose, indicating the non-toxic nature of the material. Implantation in mouse subcutaneous tissue pockets demonstrated that keratose resorption follows a rectangular hyperbolic regression

  7. CRISPR-Cas: biology, mechanisms and relevance.

    Science.gov (United States)

    Hille, Frank; Charpentier, Emmanuelle

    2016-11-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes-termed spacers-into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent.This article is part of the themed issue 'The new bacteriology'.

  8. CRISPR-Cas: biology, mechanisms and relevance

    Science.gov (United States)

    Hille, Frank

    2016-01-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148

  9. Editorial:Mechanics of biological and bio-inspired materials%Editorial: Mechanics of biological and bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Baohua Jia

    2012-01-01

    The field of mechanics of biological and bio-inspired materials underwent an exciting development over the past several years,which made it stand at the cutting edge of both engineering mechanics and biomechanics.As an intriguing interdisciplinary research field,it aims at elucidating the fundamental principles in nature's design of strong,multi-functional and smart Materials by focusing on the assembly,deformation,stability and failure of the materials.These principles should have wide applications in not only material sciences and mechanical engineering but also biomedical engineering.For instance,the knowledge in Mechanical principles of biological materials is very helpful for addressing some major challenges in material sciences and engineering.They also have the potential to provide quantitative understanding about how forces and deformation affect human being's health,diseases and treatment at tissue,cellular and molecular levels.This special subject on "mechanics of biological and bio-inspired materials" collects a few studies on recent development by leading scientists in this field.The biological materials or systems in these studies include cell,cytoskeleton (e.g.,microtubulus,intermediate filaments),lipid molecules and composite system of lipid and nanoparticle,tissue,and biological attachment systems,etc.

  10. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  11. Early mechanisms in radiation-induced biological damage

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical. (ACR)

  12. Research of the Mechanism of Enhancing Biological Treatment by Chitosan

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; QIN Bing; CHEN Dong-hui

    2006-01-01

    Chitosan of different molecular weight (M. W. ) was added into SBR bioreactor to treat domestic wastewater. From comparison of treatment efficiency, sludge activity, sludge structure etc., we revealed the mechanism that chitosan enhanced the biological treatment function of activated sludge. The results proved that, chitosan is certain to restrain the reaction of activated sludge, but it do improve the structure of sludge fiocs and increase the treatment efficiency of activated sludge. The bigger the M. W. of chitosan is, the better the efficiency of enhancing biological treatment can be.

  13. On the mechanical theory for biological pattern formation

    Science.gov (United States)

    Bentil, D. E.; Murray, J. D.

    1993-02-01

    We investigate the pattern-forming potential of mechanical models in embryology proposed by Oster, Murray and their coworkers. We show that the presence of source terms in the tissue extracellular matrix and cell density equations give rise to spatio-temporal oscillations. An extension of one such model to include ‘biologically realistic long range effects induces the formation of stationary spatial patterns. Previous attempts to solve the full system were in one dimension only. We obtain solutions in one dimension and extend our simulations to two dimensions. We show that a single mechanical model alone is capable of generating complex but regular spatial patterns rather than the requirement of model interaction as suggested by Nagorcka et al. and Shaw and Murray. We discuss some biological applications of the models among which are would healing and formation of dermatoglyphic (fingerprint) patterns.

  14. Mechanical engineering problems in preserving biological objects by temperature lowering.

    Science.gov (United States)

    Dvorák, Z

    1990-01-01

    Analysis of dangers caused by mechanical refrigerating and liquid nitrogen systems used for low temperature preserving of biological material and safety measures to be adopted. Hazards are caused by moving or protruding parts of the machinery, its hot parts, noise and vibration, work in cold rooms, possible destruction of pressure vessels, refrigerant inflammation or explosion, breathing the refrigerant or its decomposition products, direct contact of the refrigerant with the skin or mucous tissues, depletion of stratospheric ozone or contamination of food-stuffs.

  15. Mechanisms of the formation of biological signaling profiles

    Science.gov (United States)

    Teimouri, Hamid; Kolomeisky, Anatoly B.

    2016-12-01

    The formation and growth of multi-cellular organisms and tissues from several genetically identical embryo cells is one of the most fundamental natural phenomena. These processes are stimulated and governed by multiple biological signaling molecules, which are also called morphogens. Embryo cells are able to read and pass genetic information by measuring the non-uniform concentration profiles of signaling molecules. It is widely believed that the establishment of concentration profiles of morphogens, commonly referred as morphogen gradients, is a result of complex biophysical and biochemical processes that might involve diffusion and degradation of locally produced signaling molecules. In this review, we discuss various theoretical aspects of the mechanisms for morphogen gradient formation, including stationary and transient dynamics, the effect of source delocalization, diffusion, different degradation mechanisms, and the role of spatial dimensions. Theoretical predictions are compared with experimental observations. In addition, we analyze the potential alternative mechanisms of the delivery of biological signals in embryo cells and tissues. Current challenges in understanding the mechanisms of morphogen gradients and future directions are also discussed.

  16. Biological Jumping Mechanism Analysis and Modeling for Frog Robot

    Institute of Scientific and Technical Information of China (English)

    Meng Wang; Xi-zhe Zang; Ji-zhuang Fan; Jie Zhao

    2008-01-01

    This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-off phase, aerial phase and landing phase. We find the similar trajectories of hindlimb joints during jump, the important effect of foot during take-off and the role of forelimb in supporting the body. Based on the observation, the frog jump is simplified and a mechanical model is put forward. The robot leg is represented by a 4-bar spring/linkage mechanism model, which has three Degrees of Freedom (DOF) at hip joint and one DOF (passive) at tarsometatarsal joint on the foot. The shoulder and elbow joints each has one DOF for the balancing function of arm.The ground reaction force of the model is analyzed and compared with that of frog during take-off. The results show that the model has the same advantages of low likelihood of premature lift-off and high efficiency as the frog. Analysis results and the model can be employed to develop and control a robot capable of mimicking the jumping behavior of flog.

  17. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  18. Mutant p53: multiple mechanisms define biologic activity in cancer

    Directory of Open Access Journals (Sweden)

    Michael Paul Kim

    2015-11-01

    Full Text Available The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of p53 alterations involve missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may acquire novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in multiple model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 are reviewed and their limitations discussed.

  19. Mechanism of long-range proton translocation along biological membranes.

    Science.gov (United States)

    Medvedev, Emile S; Stuchebrukhov, Alexei A

    2013-02-14

    Recent experiments suggest that protons can travel along biological membranes up to tens of micrometers, but the mechanism of transport is unknown. To explain such a long-range proton translocation we describe a model that takes into account the coupled bulk diffusion that accompanies the migration of protons on the surface. We show that protons diffusing at or near the surface before equilibrating with the bulk desorb and re-adsorb at the surface thousands of times, giving rise to a power-law desorption kinetics. As a result, the decay of the surface protons occurs very slowly, allowing for establishing local gradient and local exchange, as was envisioned in the early local models of biological energy transduction.

  20. Direct landfill disposal versus Mechanical Biological Treatment (MBT

    Directory of Open Access Journals (Sweden)

    Kulhawik Katarzyna

    2016-09-01

    Full Text Available After the implementation of a new waste management system, in which recycling is the most dominating process, landfill disposal still appears to be the most popular method of waste management in Poland, in which waste undergoes gradual decomposition and the influence of climate conditions, for example, air and atmospheric fallout, leads to the production of leachate and biogas emissions, which contribute to continual threats to the natural environment and humans. The above-mentioned threats can be limited by applying suitable techniques of waste treatment before its disposal. A technology that is oriented to these aims is a mechanical biological treatment (MBT before disposal.

  1. Combined Mechanical and Electrical Study of Polymers of Biological Origin

    Science.gov (United States)

    Zsoldos, G.; Szoda, K.; Marossy, K.

    2017-02-01

    Thermally Simulated Depolarization Current measurement is an excellent but not widely used method for identifying relaxation processes in polymers. The DMA method is used here to analyze the mechanical changes depend on temperature in biopolymers. The two techniques take advantage of the energy changes involved in the various phase transitions of certain polymer molecules. This allows for several properties of the material to be ascertained; melting points, enthalpies of melting, crystallization temperatures, glass transition temperatures and degradation temperatures. The examined biopolymer films are made from biological materials such as proteins and polysaccharides. These materials have gained wide usage in pharmaceutical, medical and food areas. The uses of biopolymer films depend on their structure and mechanical properties. This work is based on pectin and gelatin films. The films were prepared by casting. The casting technique used aqueous solutions in each case of sample preparation. The manufacturing process of the pectin and gelatin films was a single stage solving process.

  2. Tennis Forehand Stroke Action of Biological Mechanics Analysis

    Directory of Open Access Journals (Sweden)

    Feng Li

    2013-05-01

    Full Text Available Forehand technique is the basic tennis technology, the highest utilization rate technology, but also the most lethal technology and one of the magic weapons of a tennis match. Grasp the qualitative and quantitative methods combined, the combination of video, movie, analytical and computer technology, combining the principles of the movement mechanics and mathematical statistics. Based on the biological mechanics principle and according to the latest research results of the element analysis and logic analysis, analysis of forehand stroke technical movement, which make us more subtle and correct understand forehand technique and eventually be able to provide a scientific theoretical guidance and practical reference for tennis teaching and training and make a small contribution to perfect tennis skills and innovation.

  3. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  4. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management.

    Science.gov (United States)

    Deng, Yanyong; Misselwitz, Benjamin; Dai, Ning; Fox, Mark

    2015-09-18

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This is present in at least half of patients with irritable bowel syndrome (IBS) and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  5. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management

    Directory of Open Access Journals (Sweden)

    Yanyong Deng

    2015-09-01

    Full Text Available Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs. This is present in at least half of patients with irritable bowel syndrome (IBS and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  6. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  7. Fluid Mechanics of Biological Surfaces and their Technological Application

    Science.gov (United States)

    Bechert, D. W.; Bruse, M.; Hage, W.; Meyer, R.

    A survey is given on fluid-dynamic effects caused by the structure and properties of biological surfaces. It is demonstrated that the results of investigations aiming at technological applications can also provide insights into biophysical phenomena. Techniques are described both for reducing wall shear stresses and for controlling boundary-layer separation. (a) Wall shear stress reduction was investigated experimentally for various riblet surfaces including a shark skin replica. The latter consists of 800 plastic model scales with compliant anchoring. Hairy surfaces are also considered, and surfaces in which the no-slip condition is modified. Self-cleaning surfaces such as that of lotus leaves represent an interesting option to avoid fluid-dynamic deterioration by the agglomeration of dirt. An example of technological implementation is discussed for riblets in long-range commercial aircraft. (b) Separation control is also an important issue in biology. After a few brief comments on vortex generators, the mechanism of separation control by bird feathers is described in detail. Self-activated movable flaps (=artificial bird feathers) represent a high-lift system enhancing the maximum lift of airfoils by about 20%. This is achieved without perceivable deleterious effects under cruise conditions. Finally, flight experiments on an aircraft with laminar wing and movable flaps are presented.

  8. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  9. Quantum information and the problem of mechanisms of biological evolution.

    Science.gov (United States)

    Melkikh, Alexey V

    2014-01-01

    One of the most important conditions for replication in early evolution is the de facto elimination of the conformational degrees of freedom of the replicators, the mechanisms of which remain unclear. In addition, realistic evolutionary timescales can be established based only on partially directed evolution, further complicating this issue. A division of the various evolutionary theories into two classes has been proposed based on the presence or absence of a priori information about the evolving system. A priori information plays a key role in solving problems in evolution. Here, a model of partially directed evolution, based on the learning automata theory, which includes a priori information about the fitness space, is proposed. A potential repository of such prior information is the states of biologically important molecules. Thus, the need for extended evolutionary synthesis is discussed. Experiments to test the hypothesis of partially directed evolution are proposed.

  10. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    CERN Document Server

    Kononova, Olga; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2015-01-01

    We present a new theory for modeling forced indentation spectral lineshapes of biological particles, which considers non-linear Hertzian deformation due to an indenter-particle physical contact and bending deformations of curved beams modeling the particle structure. The bending of beams beyond the critical point triggers the particle dynamic transition to the collapsed state, an extreme event leading to the catastrophic force drop as observed in the force (F)-deformation (X) spectra. The theory interprets fine features of the spectra: the slope of the FX curves and the position of force-peak signal, in terms of mechanical characteristics --- the Young's moduli for Hertzian and bending deformations E_H and E_b, and the probability distribution of the maximum strength with the strength of the strongest beam F_b^* and the beams' failure rate m. The theory is applied to successfully characterize the $FX$ curves for spherical virus particles --- CCMV, TrV, and AdV.

  11. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  12. [Molecular Biology on the Mechanisms of Autism Spectrum Disorder for Clinical Psychiatrists].

    Science.gov (United States)

    Makinodan, Manabu

    2015-01-01

    While, in general, a certain number of clinical psychiatrists might not be familiar with molecular biology, the mechanisms of mental illnesses have been uncovered by molecular biology for decades. Among mental illnesses, even biological psychiatrists and neuroscientists have paid less attention to the biological treatment of autism spectrum disorder (ASD) than Alzheimer's disease and schizophrenia since ASD has been regarded as a developmental disorder that was seemingly untreatable. However, multifaceted methods of molecular biology have revealed the mechanisms that would lead to the medication of ASD. In this article, how molecular biology dissects the pathobiology of ASD is described in order to announce the possibilities of biological treatment for clinical psychiatrists.

  13. Physicochemical Mechanisms of Synergistic Biological Action of Combinations of Aromatic Heterocyclic Compounds

    Directory of Open Access Journals (Sweden)

    Maxim P. Evstigneev

    2013-01-01

    Full Text Available The mechanisms of synergistic biological effects observed in the simultaneous use of aromatic heterocyclic compounds in combination are reviewed, and the specific biological role of heteroassociation of aromatic molecules is discussed.

  14. Biology and Mechanics of Blood Flows Part II: Mechanics and Medical Aspects

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part II of this two-volume sequence, Mechanics and Medical Aspects, refers to the extraction of input data at the macroscopic scale for modeling the cardiovascular system, and complements Part I, which focuses on nanoscopic and microscopic components and processes. This volume contains chapters on anatomy, physiology, continuum mechanics, as well as pathological changes in the vasculature walls including the heart and their treatments. Methods of numerical simulations are given and illustrated in particular by application to wall diseases. This authoritative book will appeal to any biologist, chemist, physicist, or applied mathematician interested in the functioning of the cardiovascular system.

  15. Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism.

    Science.gov (United States)

    Guo, Peixuan; Noji, Hiroyuki; Yengo, Christopher M; Zhao, Zhengyi; Grainge, Ian

    2016-03-01

    The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA.

  16. Green house gas emissions from composting and mechanical biological treatment.

    Science.gov (United States)

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.

  17. Quantum selfish gene (biological evolution in terms of quantum mechanics)

    CERN Document Server

    Ozhigov, Yuri I

    2014-01-01

    I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase is the sum of "aspirations" to change the classical states of meta- genes. Each individual life thus becomes one of possible outcomes of the virtual quantum measurement of this function. The evolution of genomes is described by the unitary operator in the space of psi-functions or by Kossovsky-Lindblad equation in the case of open biosystems. This operator contains all the information about specific conditions under which individuals are, and how "aspirations" of their meta- genes may be implemented at the biochemical lev...

  18. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology

    Institute of Scientific and Technical Information of China (English)

    Sarah C Shuck; Emily A Short; John J Turchi

    2008-01-01

    Repair of bulky DNA adducts by the nucleotide excision repair (NER) pathway is one of the more versatile DNA repair pathways for the removal of DNA lesions. There are two subsets of the NER pathway, global genomic-NER (GG-NER) and transcription-coupled NER (TC-NER), which differ only in the step involving recognition of the DNA lesion. Following recognition of the damage, the sub-pathways then converge for the incision/excision steps and subsequent gap filling and ligation steps. This review will focus on the GGR sub-pathway of NER while the TCR sub-pathway will be covered in another article in this issue. The ability of the NER pathway to repair a wide array of adducts stems, in part, from the mechanisms involved in the initial recognition step of the damaged DNA and results in NER impacting an equally wide array of human physiological responses and events. In this review, the impact of NER on carcinogenesis, neurological function, sensitivity to environmental factors and sensitivity to cancer therapeutics will be discussed. The knowledge generated in our understanding of the NER pathway over the past 40 years has resulted from advances in the fields of animal model systems, mammalian genetics and in vitro biochemistry, as well as from reconstitution studies and structural analyses of the proteins and enzymes that participate in this pathway. Each of these avenues of research has contributed significantly to our understanding of how the NER pathway works and how alterations in NER activity, both positive and negative, influence human biology.

  19. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  20. Searching for a conceptual language in Systems Biology: Hints from Statistical Mechanics?

    Science.gov (United States)

    Matek, Christian

    2013-04-01

    The search for a unified framework describing the causal structure of biological entities is one of the main aims of Systems Biology. This comment tries to make the point that universal structures may be found in Systems Biology, in analogy with the success of Statistical Mechanics in describing a large variety of different physical systems in a single conceptual framework.

  1. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  2. Duplication: a Mechanism Producing Disassortative Mixing Networks in Biology

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Zeng-Rong; WANG Jia-Zeng

    2007-01-01

    Assortative/disassortative mixing is an important topological property of a network. A network is called assortative mixing if the nodes in the network tend to connect to their connectivity peers, or disassortative mixing if nodes with low degrees are more likely to connect with high-degree nodes. We have known that biological networks such as protein-protein interaction networks (PPI), gene regulatory networks, and metabolic networks tend to be disassortative. On the other hand, in biological evolution, duplication and divergence are two fundamental processes. In order to make the relationship between the property of disassortative mixing and the two basic biological principles clear and to study the cause of the disassortative mixing property in biological networks, we present a random duplication model and an anti-preference duplication model. Our results show that disassortative mixing networks can be obtained by both kinds of models from uncorrelated initial networks.Moreover, with the growth of the network size, the disassortative mixing property becomes more obvious.

  3. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms

    DEFF Research Database (Denmark)

    van den Tempel, Nathalie; Horsman, Michael R; Kanaar, Roland

    2016-01-01

    systematic and rational manner. In addition, the novel insights in hyperthermia's many biological effects on tumour cells will ultimately result in new treatment regimes. For example, the molecular effects of hyperthermia on the essential cellular process of DNA repair suggest novel combination therapies......, with DNA damage response targeting drugs that should now be clinically explored. Here, we provide an overview of recent studies on the various macroscopic and microscopic biological effects of hyperthermia. We indicate the significance of these effects on current treatments and suggest how they will help......It has long been established that hyperthermia increases the therapeutic benefit of radiation and chemotherapy in cancer treatment. During the last few years there have been substantial technical improvements in the sources used to apply and measure heat, which greatly increases enthusiasm...

  4. High Energy Density Nastic Structures Using Biological Transport Mechanisms

    Science.gov (United States)

    2007-02-28

    occur at the cell wall and membranes of inter-cellular organelles to transport nutrients in the plant. The concentration of ions from the active and... Planta , Vol. 179, June 1989, pp. 32–42. [4] Delrot, S., Atanassova, R., Gomes, E., and Thevenot, P., “Plasma Membrane Transporters : A Machinery...DATES COVERED Final Progress Report; 9/27/04 to 11/30/06 4. TITLE AND SUBTITLE High Energy Density Nastic Structures Using Biological Transport

  5. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.

  6. Changes of color coordinates of biological tissue with superficial skin damage due to mechanical trauma

    Science.gov (United States)

    Pteruk, Vail; Mokanyuk, Olexander; Kvaternuk, Olena; Yakenina, Lesya; Kotyra, Andrzej; Romaniuk, Ryszard S.; Dussembayeva, Shynar

    2015-12-01

    Change of color coordinates of normal and pathological biological tissues is based on calculated spectral diffuse reflection. The proposed color coordinates of normal and pathological biological tissues of skin provided using standard light sources, allowing accurately diagnose skin damage due to mechanical trauma with a blunt object for forensic problems.

  7. Biological evaluation of mechanical circulatory support systems in calves

    NARCIS (Netherlands)

    Rakhorst, G; VanDerMeer, J; Kik, C; Mihaylov, D; Havlik, P; Trinkl, J; Monties, [No Value

    1996-01-01

    Data from animal experiments with mechanical circulatory support systems (MCSS) performed in Groningen and Marseille over the past years were used to obtain normal values of hematological, coagulation, rheological and blood chemistry parameters in calves. These parameters were divided between two gr

  8. Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing.

    Science.gov (United States)

    Buganza Tepole, A; Kuhl, E

    2016-01-01

    Wound healing is a synchronized cascade of chemical, biological, and mechanical phenomena, which act in concert to restore the damaged tissue. An imbalance between these events can induce painful scarring. Despite intense efforts to decipher the mechanisms of wound healing, the role of mechanics remains poorly understood. Here, we establish a computational systems biology model to identify the chemical, biological, and mechanical mechanisms of scar formation. First, we introduce the generic problem of coupled chemo-bio-mechanics. Then, we introduce the model problem of wound healing in terms of a particular chemical signal, inflammation, a particular biological cell type, fibroblasts, and a particular mechanical model, isotropic hyperelasticity. We explore the cross-talk between chemical, biological, and mechanical signals and show that all three fields have a significant impact on scar formation. Our model is the first step toward rigorous multiscale, multifield modeling in wound healing. Our formulation has the potential to improve effective wound management and optimize treatment on an individualized patient-specific basis.

  9. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone.

    Science.gov (United States)

    Augat, Peter; Simon, Ulrich; Liedert, Astrid; Claes, Lutz

    2005-03-01

    Fracture repair, which aims at regaining the functional competence of a bone, is a complex and multifactorial process. For the success of fracture repair biology and mechanics are of immense importance. The biological and mechanical environments must be compatible with the processes of cell and tissue proliferation and differentiation. The biological environment is characterized by the vascular supply and by many biochemical components, the biochemical milieu. A good vascular supply is a prerequisite for the initiation of the fracture repair process. The biochemical milieu involves complex interactions among local and systemic regulatory factors such as growth factors or cytokines. The mechanical environment is determined by the local stress and strain within the fracture. However, the local stress and strain is not accessible, and the mechanical environment, therefore, is described by global mechanical factors, e.g., gap size or interfragmentary movement. The relationship between local stress and strain and the global mechanical factors can be obtained by numerical models (Finite Element Model). Moreover, there is considerable interaction between biological factors and mechanical factors, creating a biomechanical environment for the fracture healing process. The biomechanical environment is characterized by osteoblasts and osteocytes that sense the mechanical signal and express biological markers, which effect the repair process. This review will focus on the effects of biomechanical factors on fracture repair as well as the effects of age and osteoporosis.

  10. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Science.gov (United States)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  11. Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification.

    Science.gov (United States)

    Boschi-Muller, S; Motorin, Y

    2013-12-01

    Modified nucleotides are universally conserved in all living kingdoms and are present in almost all types of cellular RNAs, including tRNA, rRNA, sn(sno)RNA, and mRNA and in recently discovered regulatory RNAs. Altogether, over 110 chemically distinct RNA modifications have been characterized and localized in RNA by various analytical methods. However, this impressive list of known modified nucleotides is certainly incomplete, mainly due to difficulties in identification and characterization of these particular residues in low abundance cellular RNAs. In DNA, modified residues are formed by both enzymatic reactions (like DNA methylations, for example) and by spontaneous chemical reactions resulting from oxidative damage. In contrast, all modified residues characterized in cellular RNA molecules are formed by specific action of dedicated RNA-modification enzymes, which recognize their RNA substrate with high specificity. These RNA-modification enzymes display a great diversity in terms of the chemical reaction and use various low molecular weight cofactors (or co-substrates) in enzymatic catalysis. Depending on the nature of the target base and of the co-substrate, precise chemical mechanisms are used for appropriate activation of the base and the co-substrate in the enzyme active site. In this review, we give an extended summary of the enzymatic mechanisms involved in formation of different methylated nucleotides in RNA, as well as pseudouridine residues, which are almost universally conserved in all living organisms. Other interesting mechanisms include thiolation of uridine residues by ThiI and the reaction of guanine exchange catalyzed by TGT. The latter implies the reversible cleavage of the N-glycosidic bond in order to replace the initially encoded guanine by an aza-guanosine base. Despite the extensive studies of RNA modification and RNA-modification machinery during the last 20 years, our knowledge on the exact chemical steps involved in catalysis of RNA

  12. Mechanisms of sound seattering by biological targets and their aggregates

    Directory of Open Access Journals (Sweden)

    Natalia Gorska

    2006-03-01

    Full Text Available Natalia Gorska's thesis is based on a set of 9 papers published in scientific journals (Gorska & Klusek 1998, Gorska 2000, Gorska & Chu 2001a, b, Gorska & Ona 2003a, b and conference proceedings (Gorska & Klusek 1994, Gorska 1999, Gorska & Chu 2000, which broadly summarise her integrated research achievements in underwater acoustics from 1994 to 2003. She is the sole author of two of the articles (Gorska 1999, 2000, and is the first co-author, taking a leading part, in the others (Gorska & Klusek 1994, 1998, Gorska & Chu 2000, Gorska & Chu 200la, b, Gorska & Ona 2003a, b.     Her research objective was to work out the theoretical background to certain problems of sound scattering by biological targets - single individuals and aggregated layers of fish and zooplankton - in relation to environmental conditions in the sea. In the study she focused on acoustical extinction and backscattering, including the phenomenon of echo interference. In conjunction wit h the co-authors of papers Gorska & Ona 2003a, b, Gorska & Chu 2001a, b and Gorska & Chu 2000, she was able to apply and verify her theoretical results empirically.

  13. The role of mechanics in biological and bio-inspired systems.

    Science.gov (United States)

    Egan, Paul; Sinko, Robert; LeDuc, Philip R; Keten, Sinan

    2015-07-06

    Natural systems frequently exploit intricate multiscale and multiphasic structures to achieve functionalities beyond those of man-made systems. Although understanding the chemical make-up of these systems is essential, the passive and active mechanics within biological systems are crucial when considering the many natural systems that achieve advanced properties, such as high strength-to-weight ratios and stimuli-responsive adaptability. Discovering how and why biological systems attain these desirable mechanical functionalities often reveals principles that inform new synthetic designs based on biological systems. Such approaches have traditionally found success in medical applications, and are now informing breakthroughs in diverse frontiers of science and engineering.

  14. Mapping Transcriptional Networks in Plants: Data-Driven Discovery of Novel Biological Mechanisms.

    Science.gov (United States)

    Gaudinier, Allison; Brady, Siobhan M

    2016-04-29

    In plants, systems biology approaches have led to the generation of a variety of large data sets. Many of these data are created to elucidate gene expression profiles and their corresponding transcriptional regulatory mechanisms across a range of tissue types, organs, and environmental conditions. In an effort to map the complexity of this transcriptional regulatory control, several types of experimental assays have been used to map transcriptional regulatory networks. In this review, we discuss how these methods can be best used to identify novel biological mechanisms by focusing on the appropriate biological context. Translating network biology back to gene function in the plant, however, remains a challenge. We emphasize the need for validation and insight into the underlying biological processes to successfully exploit systems approaches in an effort to determine the emergent properties revealed by network analyses.

  15. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    Science.gov (United States)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  16. Biological mechanisms determining the success of RNA interference in insects.

    Science.gov (United States)

    Wynant, Niels; Santos, Dulce; Vanden Broeck, Jozef

    2014-01-01

    Insects constitute the largest group of animals on this planet, having a huge impact on our environment, as well as on our quality of life. RNA interference (RNAi) is a posttranscriptional gene silencing mechanism triggered by double-stranded (ds)RNA fragments. This process not only forms the basis of a widely used reverse genetics research method in many different eukaryotes but also holds great promise to contribute to the species-specific control of agricultural pests and to combat viral infections in beneficial and disease vectoring insects. However, in many economically important insect species, such as flies, mosquitoes, and caterpillars, systemic delivery of naked dsRNA does not trigger effective gene silencing. Although many components of the RNAi pathway have initially been deciphered in the fruit fly, Drosophila melanogaster, it will be of major importance to investigate this process in a wider variety of species, including dsRNA-sensitive insects such as locusts and beetles, to elucidate the factors responsible for the remarkable variability in RNAi efficiency, as observed in different insects. In this chapter, we review the current knowledge on the RNAi pathway, as well as the most recent insights into the mechanisms that might determine successful RNAi in insects.

  17. Mechanics of dynamic needle insertion into a biological material.

    Science.gov (United States)

    Mahvash, Mohsen; Dupont, Pierre E

    2010-04-01

    During needle-based procedures, transitions between tissue layers often lead to rupture events that involve large forces and tissue deformations and produce uncontrollable crack extensions. In this paper, the mechanics of these rupture events is described, and the effect of insertion velocity on needle force, tissue deformation, and needle work is analyzed. Using the J integral method from fracture mechanics, rupture events are modeled as sudden crack extensions that occur when the release rate J of strain energy concentrated at the tip of the crack exceeds the fracture toughness of the material. It is shown that increasing the velocity of needle insertion will reduce the force of the rupture event when it increases the energy release rate. A nonlinear viscoelastic Kelvin model is then used to predict the relationship between the deformation of tissue and the rupture force at different velocities. The model predicts that rupture deformation and work asymptotically approach minimum values as needle velocity increases. Consequently, most of the benefit of using a higher needle velocity can be achieved using a finite velocity that is inversely proportional to the relaxation time of the tissue. Experiments confirm the analytical predictions with multilayered porcine cardiac tissue.

  18. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    Science.gov (United States)

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era.

  19. Elucidating the coordination chemistry and mechanism of biological nitrogen fixation.

    Science.gov (United States)

    Dance, Ian

    2007-08-03

    How does the enzyme nitrogenase reduce the inert molecule N2 to NH3 under ambient conditions that are so different from the energy-expensive conditions of the best industrial practices? This review focuses on recent theoretical investigations of the catalytic site, the iron-molybdenum cofactor FeMo-co, and the way in which it is hydrogenated by protons and electrons and then binds N2. Density functional calculations provide reaction profiles and activation energies for possible mechanistic steps. This establishes a conceptual framework and the principles for the coordination chemistry of FeMo-co that are essential to the chemical mechanism of catalysis. The model advanced herein explains relevant experimental data.

  20. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  1. Unravelling novel synergies between organometallic and biological partners: a quantum mechanics/molecular mechanics study of an artificial metalloenzyme.

    Science.gov (United States)

    Ortega-Carrasco, Elisabeth; Lledós, Agustí; Maréchal, Jean-Didier

    2014-07-06

    In recent years, the design of artificial metalloenzymes obtained by the insertion of homogeneous catalysts into biological macromolecules has become a major field of research. These hybrids, and the corresponding X-ray structures of several of them, are offering opportunities to better understand the synergy between organometallic and biological subsystems. In this work, we investigate the resting state and activation process of a hybrid inspired by an oxidative haemoenzyme but presenting an unexpected reactivity and structural features. An extensive series of quantum mechanics/molecular mechanics calculations show that the resting state and the activation processes of the novel enzyme differ from naturally occurring haemoenzymes in terms of the electronic state of the metal, participation of the first coordination sphere of the metal and the dynamic process. This study presents novel insights into the sensitivity of the association between organometallic and biological partners and illustrates the molecular challenge that represents the design of efficient enzymes based on this strategy.

  2. Ideas and perspectives: climate-relevant marine biologically driven mechanisms in Earth system models

    Science.gov (United States)

    Hense, Inga; Stemmler, Irene; Sonntag, Sebastian

    2017-01-01

    The current generation of marine biogeochemical modules in Earth system models (ESMs) considers mainly the effect of marine biota on the carbon cycle. We propose to also implement other biologically driven mechanisms in ESMs so that more climate-relevant feedbacks are captured. We classify these mechanisms in three categories according to their functional role in the Earth system: (1) biogeochemical pumps, which affect the carbon cycling; (2) biological gas and particle shuttles, which affect the atmospheric composition; and (3) biogeophysical mechanisms, which affect the thermal, optical, and mechanical properties of the ocean. To resolve mechanisms from all three classes, we find it sufficient to include five functional groups: bulk phyto- and zooplankton, calcifiers, and coastal gas and surface mat producers. We strongly suggest to account for a larger mechanism diversity in ESMs in the future to improve the quality of climate projections.

  3. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  4. Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: A review

    CERN Document Server

    Trenchard, Hugh

    2016-01-01

    Energy saving mechanisms are ubiquitous in nature. Aerodynamic and hydrodynamic drafting, vortice uplift, Bernoulli suction, thermoregulatory coupling, path following, physical hooks, synchronization, and cooperation are only some of the better-known examples. While drafting mechanisms also appear in non-biological systems such as sedimentation and particle vortices, the broad spectrum of these mechanisms appears more diversely in biological systems including bacteria, spermatozoa, various aquatic species, birds, land animals, semi-fluid dwellers like turtle hatchlings, as well as human systems. We present the thermodynamic framework for energy saving mechanisms, and we review evidence in favor of the variation range hypothesis. This hypothesis posits that, as an evolutionary process, the variation range between strongest and weakest group members converges on the equivalent energy saving quantity that is generated by the energy saving mechanism. We also review self-organized structures that emerge due to ene...

  5. The radical-pair mechanism as a paradigm for the emerging science of quantum biology

    CERN Document Server

    Kominis, I K

    2015-01-01

    The radical-pair mechanism was introduced in the 1960's to explain anomalously large EPR and NMR signals in chemical reactions of organic molecules. It has evolved to the cornerstone of spin chemistry, the study of the effect electron and nuclear spins have on chemical reactions, with the avian magnetic compass mechanism and the photosynthetic reaction center dynamics being prominent biophysical manifestations of such effects. In recent years the radical-pair mechanism was shown to be an ideal biological system where the conceptual tools of quantum information science can be fruitfully applied. We will here review recent work making the case that the radical-pair mechanism is indeed a major driving force of the emerging field of quantum biology.

  6. The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics

    Science.gov (United States)

    Rempe, Caroline S.; Burris, Kellie P.; Lenaghan, Scott C.; Stewart, C. Neal

    2017-01-01

    Drug resistance of bacterial pathogens is a growing problem that can be addressed through the discovery of compounds with novel mechanisms of antibacterial activity. Natural products, including plant phenolic compounds, are one source of diverse chemical structures that could inhibit bacteria through novel mechanisms. However, evaluating novel antibacterial mechanisms of action can be difficult and is uncommon in assessments of plant phenolic compounds. With systems biology approaches, though, antibacterial mechanisms can be assessed without the bias of target-directed bioassays to enable the discovery of novel mechanism(s) of action against drug resistant microorganisms. This review article summarizes the current knowledge of antibacterial mechanisms of action of plant phenolic compounds and discusses relevant methodology. PMID:28360902

  7. Moisture sorption, biological durability, and mechanical performance of WPC containing modified wood and polylactates

    Directory of Open Access Journals (Sweden)

    B. Kristoffer Segerholm

    2012-11-01

    Full Text Available Biological durability is an important feature for wood-plastic composites (WPC intended for outdoor applications. One route to achieving WPC products with increased biological durability is to use wood preservative agents in the formulation of the WPC. Another option could be to use a chemically modified wood component that already exhibits increased resistance to biological degradation. There is also a need to use biobased thermoplastics made from renewable resources, which would decrease the dependency on petrochemically-produced thermoplastics in the future. The objective of this study was to examine moisture sorption properties, biological durability, and mechanical performance of injection-molded WPC samples based on acetylated or thermally modified wood components and a polylactate matrix. The biological durability was evaluated in a terrestrial microcosm (TMC test according to ENV 807, followed by mechanical evaluation in a center point bending test. The moisture sorption properties were investigated via both water soaking and exposure in a high-humidity climate. Low or negligible mass losses were observed in the TMC test for all WPC samples. However, the mechanical evaluation after exposure in the TMC test showed 35-40% losses in both strength and stiffness for the WPC containing an unmodified wood component.

  8. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections…

  9. Resource Letter TTSM-1: Teaching thermodynamics and statistical mechanics in introductory physics, chemistry, and biology

    CERN Document Server

    Dreyfus, Benjamin W; Meltzer, David E; Sawtelle, Vashti

    2014-01-01

    This Resource Letter draws on discipline-based education research from physics, chemistry, and biology to collect literature on the teaching of thermodynamics and statistical mechanics in the three disciplines. While the overlap among the disciplinary literatures is limited at present, we hope this Resource Letter will spark more interdisciplinary interaction.

  10. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Betskii, O.V.

    1994-07-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  11. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  12. Shell and membrane theories in mechanics and biology from macro- to nanoscale structures

    CERN Document Server

    Mikhasev, Gennadi

    2015-01-01

    This book presents the latest results related to shells  characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.

  13. A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing

    Science.gov (United States)

    Glatt, Vaida; Evans, Christopher H.; Tetsworth, Kevin

    2017-01-01

    In order to achieve consistent and predictable fracture healing, a broad spectrum of growth factors are required to interact with one another in a highly organized response. Critically important, the mechanical environment around the fracture site will significantly influence the way bone heals, or if it heals at all. The role of the various biological factors, the timing, and spatial relationship of their introduction, and how the mechanical environment orchestrates this activity, are all crucial aspects to consider. This review will synthesize decades of work and the acquired knowledge that has been used to develop new treatments and technologies for the regeneration and healing of bone. Moreover, it will discuss the current state of the art in experimental and clinical studies concerning the application of these mechano-biological principles to enhance bone healing, by controlling the mechanical environment under which bone regeneration takes place. This includes everything from the basic principles of fracture healing, to the influence of mechanical forces on bone regeneration, and how this knowledge has influenced current clinical practice. Finally, it will examine the efforts now being made for the integration of this research together with the findings of complementary studies in biology, tissue engineering, and regenerative medicine. By bringing together these diverse disciplines in a cohesive manner, the potential exists to enhance fracture healing and ultimately improve clinical outcomes. PMID:28174539

  14. A model of how different biology experts explain molecular and cellular mechanisms.

    Science.gov (United States)

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations.

  15. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.

  16. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44(+), αSMA(+), Vimentin(+) and CD105(-) human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children.

  17. Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: A review.

    Science.gov (United States)

    Trenchard, Hugh; Perc, Matjaž

    2016-09-01

    Energy saving mechanisms are ubiquitous in nature. Aerodynamic and hydrodynamic drafting, vortice uplift, Bernoulli suction, thermoregulatory coupling, path following, physical hooks, synchronization, and cooperation are only some of the better-known examples. While drafting mechanisms also appear in non-biological systems such as sedimentation and particle vortices, the broad spectrum of these mechanisms appears more diversely in biological systems that include bacteria, spermatozoa, various aquatic species, birds, land animals, semi-fluid dwellers like turtle hatchlings, as well as human systems. We present the thermodynamic framework for energy saving mechanisms, and we review evidence in favor of the variation range hypothesis. This hypothesis posits that, as an evolutionary process, the variation range between strongest and weakest group members converges on the equivalent energy saving quantity that is generated by the energy saving mechanism. We also review self-organized structures that emerge due to energy saving mechanisms, including convective processes that can be observed in many systems over both short and long time scales, as well as high collective output processes in which a form of collective position locking occurs.

  18. [Modern evolutional developmental biology: mechanical and molecular genetic or phenotypic approaches?].

    Science.gov (United States)

    Vorob'eva, É I

    2010-01-01

    Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.

  19. Biological Effect of Ultraviolet Photocatalysis on Nanoscale Titanium with a Focus on Physicochemical Mechanism.

    Science.gov (United States)

    Wu, Jingyi; Zhou, Lei; Ding, Xianglong; Gao, Yan; Liu, Xiangning

    2015-09-15

    Physicochemical properties, regulated by various surface modifications, influence the biological performance of materials. The interaction between surface charge and biomolecules is key to understanding the mechanism of surface-tissue integration. The objective of this study was to evaluate the biological response to a nanoscale titanium surface after ultraviolet (UVC, λ = 250 ± 20 nm) irradiation and to analyze the effects via a physicochemical mechanism. The surface characteristics were evaluated by field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, surface profilometry, and contact angle assay. In addition, we applied the zeta-potential, a direct method to measure the electrostatic charge on UV-treated and UV-untreated titanium nanotube surfaces. The effect of the Ti surface after UV treatment on the biological process was determined by analyzing bovine serum albumin (BSA) adsorption and osteoblast-like MG-63 early adhesion, morphology, cytoskeletal arrangement, proliferation, and focal adhesion. Compared to an anodized titanium nanotube coating, UV irradiation altered the contact angles on the control surface from 51.5° to 6.2° without changing the surface topography or roughness. Furthermore, titanium nanotubes after UV treatment showed a significant reduction in the content of acidic hydroxyl groups and held less negative charge than the anodized coating. With regard to the biological response, along with an enhanced capability to adsorb BSA, osteoblasts exhibited higher colonization and viability on the UV-treated material. The results suggest that UV treatment enhances the biocompatibility by reducing the electrostatic repulsion between biomaterials and biomolecules.

  20. Piezo-actuated parallel mechanism for biological cell release at high speed.

    Science.gov (United States)

    Avci, Ebubekir; Hattori, Takayuki; Kamiyama, Kazuto; Kojima, Masaru; Horade, Mitsuhiro; Mae, Yasushi; Arai, Tatsuo

    2015-10-01

    In this paper, a dynamic releasing approach is proposed for high-speed biological cell manipulation. A compact parallel mechanism for grasping and releasing microobjects is used to generate controllable vibration to overcome the strong adhesion forces between the end effector and the manipulated object. To reach the required acceleration of the end effector, which is necessary for the detachment of the target object by overcoming adhesion forces, vibration in the end effector is generated by applying sinusoidal voltage to the PZT actuator of the parallel mechanism. For the necessary acceleration, we focus on the possible range of the frequency of the PZT-actuator-induced vibration, while minimizing the amplitude of the vibration (14 nm) to achieve precise positioning. The effect of the air and liquid environments on the required vibration frequency for successful release is investigated. For the first time, release results of microbeads and biological cells are compared. Release of the biological cells with 100 % success rate suggests that the proposed active release method is an appropriate solution for adhered biological cells during the release task.

  1. Exploring the MACH Model's Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of…

  2. Mechanical-biological waste conditioning with controlled venting - the Meisenheim mechanical-biological waste conditioning plant; Mechanisch-biologische Restabfallbehandlung nach dem Kaminzugverfahren - MBRA Meisenheim

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O. [Abfallwirtschaftsbetrieb Landkreis Bad Kreuznach, Bad Kreuznach (Germany)

    1998-12-31

    The decision of the rural district of Bad Kreuznach to propose creating facilities for mechanical-biological waste conditioning at the new northern Meisenheim landfill was consistent and correct. It will ensure that the material deposited at this new, state-of-the-art landfill is organically `lean` and can be deposited with a high density. Preliminary sifting of the material prior to depositing safeguards that no improper components are inadvertently included. Three years of operation warrant the statement that waste components that cannot be appropriately biologically conditioned should be eliminated prior to rotting. (orig.) [Deutsch] Die Entscheidung des Landkreises Bad Kreuznach, der neu eingerichteten Norddeponie Meisenheim eine MBRA vorzuschlaten, war auf jeden Fall konsequent und richtig. Es ist damit sicher gestellt, dass in diesem neuen nach dem Stand der Technik eingerichteten Deponiebereich von Anfang an ein Material eingelagert wird, das `organisch abgemagert` ist und mit hoher Einbaudichte eingebaut werden kann. Die Sichtung des gesamten Deponie-Inputs in der Vorsortierhalle gibt ein Stueck Sicherheit, dass keine nicht zugelassenen Stoffe verdeckt dem Ablagerungsbereich der Deponie zugefuehrt werden. Nach mehr als 3 Jahren Betriebszeit kann festgestellt werden, dass biologisch nicht sinnvoll behandelbare Abfallbestandteile vor dem Rotteprozess abgetrennt werden sollten. (orig.)

  3. A biological mechanism for Bayesian feature selection: Weight decay and raising the LASSO.

    Science.gov (United States)

    Connor, Patrick; Hollensen, Paul; Krigolson, Olav; Trappenberg, Thomas

    2015-07-01

    Biological systems are capable of learning that certain stimuli are valuable while ignoring the many that are not, and thus perform feature selection. In machine learning, one effective feature selection approach is the least absolute shrinkage and selection operator (LASSO) form of regularization, which is equivalent to assuming a Laplacian prior distribution on the parameters. We review how such Bayesian priors can be implemented in gradient descent as a form of weight decay, which is a biologically plausible mechanism for Bayesian feature selection. In particular, we describe a new prior that offsets or "raises" the Laplacian prior distribution. We evaluate this alongside the Gaussian and Cauchy priors in gradient descent using a generic regression task where there are few relevant and many irrelevant features. We find that raising the Laplacian leads to less prediction error because it is a better model of the underlying distribution. We also consider two biologically relevant online learning tasks, one synthetic and one modeled after the perceptual expertise task of Krigolson et al. (2009). Here, raising the Laplacian prior avoids the fast erosion of relevant parameters over the period following training because it only allows small weights to decay. This better matches the limited loss of association seen between days in the human data of the perceptual expertise task. Raising the Laplacian prior thus results in a biologically plausible form of Bayesian feature selection that is effective in biologically relevant contexts.

  4. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2016-11-24

    Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD7) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.

  5. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wongnate, T.; Sliwa, D.; Ginovska, B.; Smith, D.; Wolf, M. W.; Lehnert, N.; Raugei, S.; Ragsdale, S. W.

    2016-05-19

    Methyl-coenzyme M reductase (MCR), the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the production of over one billion tons of methane per year. The mechanism of methane synthesis is unknown, with the two leading proposals involving either a methyl-nickel(III) (Mechanism I) or methyl radical/Ni(II)-thiolate (Mechanism II) intermediate(s). When the reaction between the active Ni(I) enzyme with substrates was studied by transient kinetic, spectroscopic and computational methods, formation of an EPR-silent Ni(II)-thiolate intermediate was positively identified by magnetic circular dichroism spectroscopy. There was no evidence for an EPR-active methyl-Ni(III) species. Temperature-dependent transient kinetic studies revealed that the activation energy for the initial catalytic step closely matched the value computed by density functional theory for Mechanism II. Thus, our results demonstrate that biological methane synthesis occurs by generation of a methyl radical.

  6. Teaching Fluid Mechanics for Undergraduate Students in Applied Industrial Biology: from Theory to Atypical Experiments

    CERN Document Server

    Absi, Rafik; Dufour, Florence; Huet, Denis; Bennacer, Rachid; Absi, Tahar

    2011-01-01

    EBI is a further education establishment which provides education in applied industrial biology at level of MSc engineering degree. Fluid mechanics at EBI was considered by students as difficult who seemed somewhat unmotivated. In order to motivate them, we applied a new play-based pedagogy. Students were asked to draw inspiration from everyday life situations to find applications of fluid mechanics and to do experiments to verify and validate some theoretical results obtained in course. In this paper, we present an innovative teaching/learning pedagogy which includes the concept of learning through play and its implications in fluid mechanics for engineering. Examples of atypical experiments in fluid mechanics made by students are presented. Based on teaching evaluation by students, it is possible to know how students feel the course. The effectiveness of this approach to motivate students is presented through an analysis of students' teaching assessment. Learning through play proved a great success in fluid...

  7. Physical mechanisms and biological significance of supramolecular protein self-assembly.

    Science.gov (United States)

    Kentsis, Alex; Borden, Katherine L B

    2004-04-01

    In living cells, chemical reactions of metabolism, information processing, growth and development are organized in a complex network of interactions. At least in part, the organization of this network is accomplished as a result of physical assembly by supramolecular scaffolds. Indeed, most proteins function in cells within the context of multimeric or supramolecular assemblies. With the increasing availability of atomic structures and molecular thermodynamics, it is possible to recast the problem of non-covalent molecular self-assembly from a unified perspective of structural thermodynamics and kinetics. Here, we present a generalized theory of self-assembly based on Wegner's kinetic model and use it to delineate three physical mechanisms of self-assembly: as limited by association of assembly units (nucleation), by association of monomers (isodesmic), and by conformational reorganization of monomers that is coupled to assembly (conformational). Thus, we discuss actin, tubulin, clathrin, and the capsid of icosahedral cowpea chlorotic mottle virus with respect to assembly of architectural scaffolds that perform largely mechanical functions, and pyruvate dehydrogenase, and RING domain proteins PML, arenaviral Z, and BRCA1:BARD1 with regard to assembly of supramolecular enzymes with metabolic and chemically directive functions. In addition to the biological functions made possible by supramolecular self-assembly, such as mesoscale mechanics of architectural scaffolds and metabolic coupling of supramolecular enzymes, we show that the physical mechanisms of self-assembly and their structural bases are biologically significant as well, having regulatory roles in both formation and function of the assembled structures in health and disease.

  8. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications.

  9. Life Cycle Assessment of mechanical biological pre-treatment of Municipal Solid Waste: a case study.

    Science.gov (United States)

    Beylot, Antoine; Vaxelaire, Stéphane; Zdanevitch, Isabelle; Auvinet, Nicolas; Villeneuve, Jacques

    2015-05-01

    The environmental performance of mechanical biological pre-treatment (MBT) of Municipal Solid Waste is quantified using Life Cycle Assessment (LCA), considering one of the 57 French plants currently in operation as a case study. The inventory is mostly based on plant-specific data, extrapolated from on-site measurements regarding mechanical and biological operations (including anaerobic digestion and composting of digestate). The combined treatment of 46,929 tonnes of residual Municipal Solid Waste and 12,158 tonnes of source-sorted biowaste (as treated in 2010 at the plant) generates 24,550 tonnes CO2-eq as an impact on climate change, 69,943kg SO2-eq on terrestrial acidification and 19,929kg NMVOC-eq on photochemical oxidant formation, in a life-cycle perspective. On the contrary MBT induces environmental benefits in terms of fossil resource depletion, human toxicity (carcinogenic) and ecotoxicity. The results firstly highlight the relatively large contribution of some pollutants, such as CH4, emitted at the plant and yet sometimes neglected in the LCA of waste MBT. Moreover this study identifies 4 plant-specific operation conditions which drive the environmental impact potentials induced by MBT: the conditions of degradation of the fermentable fraction, the collection of gaseous flows emitted from biological operations, the abatement of collected pollutants and NOx emissions from biogas combustion. Finally the results underline the relatively large influence of the operations downstream the plant (in particular residuals incineration) on the environmental performance of waste MBT.

  10. Mechanism Interpretation of the Biological Brain Cooling and Its Inspiration on Bionic Engineering

    Institute of Scientific and Technical Information of China (English)

    Xu Xue; Jing Liu

    2011-01-01

    The brain is one of the most important organs in a biological body which can only work in a relatively stable temperature range. However, many environmental factors in biosphere would cause cerebral temperature fluctuations. To sustain and regulate the brain temperature, many mechanisms of biological brain cooling have been evolved, including Selective Brain Cooling (SBC), cooling through surface water evaporation, respiration, behavior response and using special anatomical appendages. This article is dedicated to present a summarization and systematic interpretation on brain cooling strategies developed in animals by classifying and comparatively analyzing each typical biological brain cooling mechanism from the perspective of bio-heat transfer. Meanwhile, inspirations from such cooling in nature were proposed for developing advanced bionic engineering technologies especially with two focuses on therapeutic hypothermia and computer chip cooling areas. It is expected that many innovations can be achieved along this way to find out new cooling methodologies for a wide variety of industrial applications which will be highly efficient, energy saving, flexible or even intelligent.

  11. Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Silvia Sookoian

    Full Text Available The abnormal accumulation of fat in the liver is often related either to metabolic risk factors associated with metabolic syndrome in the absence of alcohol consumption (nonalcoholic fatty liver disease, NAFLD or to chronic alcohol consumption (alcoholic fatty liver disease, AFLD. Clinical and histological studies suggest that NAFLD and AFLD share pathogenic mechanisms. Nevertheless, current data are still inconclusive as to whether the underlying biological process and disease pathways of NAFLD and AFLD are alike. Our primary aim was to integrate omics and physiological data to answer the question of whether NAFLD and AFLD share molecular processes that lead to disease development. We also explored the extent to which insulin resistance (IR is a distinctive feature of NAFLD. To answer these questions, we used systems biology approaches, such as gene enrichment analysis, protein-protein interaction networks, and gene prioritization, based on multi-level data extracted by computational data mining. We observed that the leading disease pathways associated with NAFLD did not significantly differ from those of AFLD. However, systems biology revealed the importance of each molecular process behind each of the two diseases, and dissected distinctive molecular NAFLD and AFLD-signatures. Comparative co-analysis of NAFLD and AFLD clarified the participation of NAFLD, but not AFLD, in cardiovascular disease, and showed that insulin signaling is impaired in fatty liver regardless of the noxa, but the putative regulatory mechanisms associated with NAFLD seem to encompass a complex network of genes and proteins, plausible of epigenetic modifications. Gene prioritization showed a cancer-related functional map that suggests that the fatty transformation of the liver tissue is regardless of the cause, an emerging mechanism of ubiquitous oncogenic activation. In conclusion, similar underlying disease mechanisms lead to NAFLD and AFLD, but specific ones depict a

  12. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.

    Science.gov (United States)

    Roberts, Thomas J; Azizi, Emanuel

    2011-02-01

    The muscles that power vertebrate locomotion are associated with springy tissues, both within muscle and in connective tissue elements such as tendons. These springs share in common the same simple action: they stretch and store elastic strain energy when force is applied to them and recoil to release energy when force decays. Although this elastic action is simple, it serves a diverse set of functions, including metabolic energy conservation, amplification of muscle power output, attenuation of muscle power input, and rapid mechanical feedback that may aid in stability. In recent years, our understanding of the mechanisms and importance of biological springs in locomotion has advanced significantly, and it has been demonstrated that elastic mechanisms are essential for the effective function of the muscle motors that power movement. Here, we review some recent advances in our understanding of elastic mechanisms, with an emphasis on two proposed organizing principles. First, we review the evidence that the various functions of biological springs allow the locomotor system to operate beyond the bounds of intrinsic muscle properties, including metabolic and mechanical characteristics, as well as motor control processes. Second, we propose that an energy-based framework is useful for interpreting the diverse functions of series-elastic springs. In this framework, the direction and timing of the flow of energy between the body, the elastic element and the contracting muscle determine the function served by the elastic mechanism (e.g. energy conservation vs power amplification). We also review recent work demonstrating that structures such as tendons remodel more actively and behave more dynamically than previously assumed.

  13. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    Science.gov (United States)

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes.

  14. Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties.

    Science.gov (United States)

    Bose, Susmita; Dasgupta, Sudip; Tarafder, Solaiman; Bandyopadhyay, Amit

    2010-09-01

    Despite the excellent bioactivity of hydroxyapatite (HA) ceramics, poor mechanical strength has limited the applications of these materials primarily to coatings and other non-load-bearing areas as bone grafts. Using synthesized HA nanopowder, dense compacts with grain sizes in the nanometer to micrometer range were processed via microwave sintering between 1000 and 1150 degrees C for 20 min. Here we demonstrate that the mechanical properties, such as compressive strength, hardness and indentation fracture toughness, of HA compacts increased with a decrease in grain size. HA with 168 +/- 86 nm grain size showed the highest compressive strength of 395 +/- 42 MPa, hardness of 8.4+/-0.4 GPa and indentation fracture toughness of 1.9 +/- 0.2 MPa m(1/2). To study the in vitro biological properties, HA compacts with grain size between 168 nm and 1.16 microm were assessed for in vitro bone cell-material interactions with human osteoblast cell line. Vinculin protein expression for cell attachment and bone cell proliferation using MTT assay showed that surfaces with finer grains provided better bone cell-material interactions than coarse-grained samples. Our results indicate simultaneous improvements in mechanical and biological properties in microwave sintered HA compacts with nanoscale grain size.

  15. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  16. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design.

    Science.gov (United States)

    Prodanov, Dimiter; Delbeke, Jean

    2016-01-01

    Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it.

  17. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning.

  18. Modeling of the bacterial mechanism of methicillin-resistance by a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ida Autiero

    Full Text Available BACKGROUND: A microorganism is a complex biological system able to preserve its functional features against external perturbations and the ability of the living systems to oppose to these external perturbations is defined "robustness". The antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a beta-lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs. These PBPs are involved in the synthesis of peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival. METHODOLOGY: The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the data of molecular interactions are stored in Systems Biology Markup Language (SBML. To simulate the dynamic behaviour of this biochemical network, the kinetic equations were associated with each reaction. CONCLUSIONS: Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome and the synthesis of peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to understand the general mechanism regarding the cellular resistance to some antibiotics.

  19. A comparison of molecular biology mechanism of Shewanella putrefaciens between fresh and terrestrial sewage wastewater

    Directory of Open Access Journals (Sweden)

    Jiajie Xu

    2016-11-01

    Full Text Available Municipal and industrial wastewater is often discharged into the environment without appropriate treatment, especially in developing countries. As a result, many rivers and oceans are contaminated. It is urgent to control and administer treatments to these contaminated rivers and oceans. However, most mechanisms of bacterial colonization in contaminated rivers and oceans were unknown, especially in sewage outlets. We found Shewanella putrefaciens to be the primary bacteria in the terrestrial sewage wastewater outlets around Ningbo City, China. Therefore, in this study, we applied a combination of differential proteomics, metabolomics, and real-time fluorescent quantitative PCR techniques to identify bacteria intracellular metabolites. We found S. putrefaciens had 12 different proteins differentially expressed in freshwater culture than when grown in wastewater, referring to the formation of biological membranes (Omp35, OmpW, energy metabolism (SOD, deoxyribose-phosphate pyrophosphokinase, fatty acid metabolism (beta-ketoacyl synthase, secondary metabolism, TCA cycle, lysine degradation (2-oxoglutarate reductase, and propionic acid metabolism (succinyl coenzyme A synthetase. The sequences of these 12 differentially expressed proteins were aligned with sequences downloaded from NCBI. There are also 27 differentially concentrated metabolites detected by NMR, including alcohols (ethanol, isopropanol, amines (dimethylamine, ethanolamine, amino acids (alanine, leucine, amine compounds (bilinerurine, nucleic acid compounds (nucleosides, inosines, organic acids (formate, acetate. Formate and ethanolamine show significant difference between the two environments and are possibly involved in energy metabolism, glycerophospholipid and ether lipids metabolism to provide energy supply and material basis for engraftment in sewage. Because understanding S. putrefaciens’s biological mechanism of colonization (protein, gene express and metabolites in

  20. The basic science of hair biology: what are the causal mechanisms for the disordered hair follicle?

    Science.gov (United States)

    Breitkopf, Trisia; Leung, Gigi; Yu, Mei; Wang, Eddy; McElwee, Kevin J

    2013-01-01

    A hair disorder can be difficult to define, but patients are typically motivated to seek treatment when their hair growth patterns are significantly different from their cultural group or when growth patterns change significantly. The causes of hair disorders are many and varied, but fundamentally the disorder is a consequence of aberrant alterations of normal hair biology. The potential trigger factors for hair disorders can be attributed to inflammation, genetics, the environment, or hormones, of which the relative contributions vary for different diagnoses, between individuals, and over time. This article discusses the causal mechanisms for the disordered hair follicle.

  1. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Science.gov (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  2. Floral biology and reproductive mechanisms of the Ocimum canum Sims (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Cláudio Lúcio Fernandes Amaral

    2008-06-01

    Full Text Available The Ocimum genus (Lamiaceae presents essential oils used in the pharmaceutical, perfume, cosmetics and culinary industries. The aim of this paper was to study the fl oral biology and breeding mechanisms of Ocimum canum Sims. in relation to improved plant breeding. Ocimum canum has inflorescences with white, protandrous and hermaphoditic flowers. The osmophores are located at the anthers and stigma. Anthesis occurs between 10:30 and 11:30 a.m. The main fl oral visitors were bees of the Apis and Augochloropsis genuses. Ocimum canum presents a breeding system with a predominance of outcrossing that possibly demonstrates the wide reproductive flexibility of this species.

  3. DTAF dye concentrations commonly used to measure microscale deformations in biological tissues alter tissue mechanics.

    Directory of Open Access Journals (Sweden)

    Spencer E Szczesny

    Full Text Available Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 µg/ml may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of this fluorescent dye in future experiments and for interpreting the results of previous work. Incremental strain testing demonstrated that high DTAF concentrations (≥100 µg/ml increase the quasi-static modulus and yield strength of rat tail tendon fascicles while reducing their viscoelastic behavior. Subsequent multiscale testing and modeling suggests that these effects are due to a stiffening of the collagen fibrils and strengthening of the interfibrillar matrix. Despite these changes in tissue behavior, the fundamental deformation mechanisms underlying fascicle mechanics appear to remain intact, which suggests that conclusions from previous multiscale investigations of strain transfer are still valid. The effects of lower DTAF concentrations (≤10 µg/ml on tendon mechanics were substantially smaller and potentially negligible; nevertheless, no concentration was found that did not at least slightly alter the tissue behavior. Therefore, future studies should either reduce DTAF concentrations as much as possible or use other dyes/techniques for measuring microscale deformations.

  4. Extruded collagen fibres for tissue engineering applications: effect of crosslinking method on mechanical and biological properties.

    Science.gov (United States)

    Enea, Davide; Henson, Frances; Kew, Simon; Wardale, John; Getgood, Alan; Brooks, Roger; Rushton, Neil

    2011-06-01

    Reconstituted collagen fibres are promising candidates for tendon and ligament tissue regeneration. The crosslinking procedure determines the fibres' mechanical properties, degradation rate, and cell-fibre interactions. We aimed to compare mechanical and biological properties of collagen fibres resulting from two different types of crosslinking chemistry based on 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide (EDC). Fibres were crosslinked with either EDC or with EDC and ethylene-glycol-diglycidyl-ether (EDC/EGDE). Single fibres were mechanically tested to failure and bundles of fibres were seeded with tendon fibroblasts (TFs) and cell attachment and proliferation were determined over 14 days in culture. Collagen type I and tenascin-C production were assessed by immunohistochemistry and dot-blotting. EDC chemistry resulted in fibres with average mechanical properties but the highest cell proliferation rate and matrix protein production. EDC/EGDE chemistry resulted in fibres with improved mechanical properties but with a lower biocompatibility profile. Both chemistries may provide useful structures for scaffolding regeneration of tendon and ligament tissue and will be evaluated for in vivo tendon regeneration in future experiments.

  5. 2-Deoxy Glucose Modulates Expression and Biological Activity of VEGF in a SIRT-1 Dependent Mechanism.

    Science.gov (United States)

    Kunhiraman, Haritha; Edatt, Lincy; Thekkeveedu, Sruthi; Poyyakkara, Aswini; Raveendran, Viji; Kiran, Manikantan Syamala; Sudhakaran, Perumana; Kumar, Sameer V B

    2017-02-01

    Reprogramming of energy metabolism particularly switching over of cells to aerobic glycolysis leading to accumulation of lactate is a hallmark of cancer. Lactate can induce angiogenesis, an important process underlying tumor growth and metastasis. VEGF is one of the most important cytokines which regulate this process and the present study was designed to examine if blocking glycolytic pathway in tumor cells can affect its angiogenic potency with respect to VEGF. For this, the expression and biological activity of VEGF synthesized and secreted by tumor derived cell lines in the presence or absence of 2-deoxy glucose (2-DG), an inhibitor of glycolysis was determined. The results suggested that inhibition of glycolysis using sub-lethal doses of 2-DG down-regulated the expression of VEGF and also significantly reduced its biological activity. Further mechanistic studies revealed that the down regulation of VEGF gene expression by 2-DG was due to an increase in SIRT-1 activity and the reduced biological activity was found to be due to an increase in the PAR modification of VEGF. Activity of SIRT-1 and PAR modification of VEGF in turn, was found to be correlated to the cellular NAD(+) levels. The results presented here therefore suggest that treatment of cancer cells with 2-DG can significantly reduce its overall angiogenic potency through transcriptional and post-translational mechanisms. J. Cell. Biochem. 118: 252-262, 2017. © 2016 Wiley Periodicals, Inc.

  6. Biological roles and functional mechanisms of arenavirus Z protein in viral replication.

    Science.gov (United States)

    Wang, Jialong; Danzy, Shamika; Kumar, Naveen; Ly, Hinh; Liang, Yuying

    2012-09-01

    Arenaviruses can cause severe hemorrhagic fever diseases in humans, with limited prophylactic or therapeutic measures. A small RING-domain viral protein Z has been shown to mediate the formation of virus-like particles and to inhibit viral RNA synthesis, although its biological roles in an infectious viral life cycle have not been directly addressed. By taking advantage of the available reverse genetics system for a model arenavirus, Pichinde virus (PICV), we provide the direct evidence for the essential biological roles of the Z protein's conserved residues, including the G2 myristylation site, the conserved C and H residues of RING domain, and the poorly characterized C-terminal L79 and P80 residues. Dicodon substitutions within the late (L) domain (PSAPPYEP) of the PICV Z protein, although producing viable mutant viruses, have significantly reduced virus growth, a finding suggestive of an important role for the intact L domain in viral replication. Further structure-function analyses of both PICV and Lassa fever virus Z proteins suggest that arenavirus Z proteins have similar molecular mechanisms in mediating their multiple functions, with some interesting variations, such as the role of the G2 residue in blocking viral RNA synthesis. In summary, our studies have characterized the biological roles of the Z protein in an infectious arenavirus system and have shed important light on the distinct functions of its domains in virus budding and viral RNA regulation, the knowledge of which may lead to the development of novel antiviral drugs.

  7. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research

    Institute of Scientific and Technical Information of China (English)

    Benjamin; M; Leon; Thomas; M; Maddox

    2015-01-01

    The incidence of diabetes mellitus(DM) continues to rise and has quickly become one of the most prevalent and costly chronic diseases worldwide. A close link exists between DM and cardiovascular disease(CVD), which is the most prevalent cause of morbidity and mortality in diabetic patients. Cardiovascular(CV) risk factors such as obesity, hypertension and dyslipidemia are common in patients with DM, placing them at increased risk for cardiac events. In addition, many studies have found biological mechanisms associated with DM that independently increase the risk of CVD in diabetic patients. Therefore, targeting CV risk factors in patients with DM is critical to minimize the long-term CV complications of the disease. This paper summarizes the relationship between diabetes and CVD, examines possible mechanisms of disease progression, discusses current treatment recommendations, and outlines future research directions.

  8. Mineral proximity influences mechanical response of proteins in biological mineral-protein hybrid systems.

    Science.gov (United States)

    Ghosh, Pijush; Katti, Dinesh R; Katti, Kalpana S

    2007-03-01

    The organic phase of nacre, which is composed primarily of proteins, has an extremely high elastic modulus as compared to that of bulk proteins, and also undergoes large deformation before failure. One reason for this unusually high modulus could be the mineral-organic interactions. In this work, we elucidate the specific role of mineral proximity on the structural response of proteins in biological structural composites such as nacre through molecular modeling. The "glycine-serine" domain of a nacre protein Lustrin A has been used as a model system. It is found that the amount of work needed to unfold is significantly higher when the GS domain is pulled in the proximity of aragonite. These results indicate that the proximity of aragonite has a significant effect on the unfolding mechanisms of proteins when pulled. These results will provide very useful information in designing synthetic biocomposites, as well as further our understanding of mechanical response in structural composites in nature.

  9. Effects of added ZnTCP on mechanical and biological properties of apatite cement

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, K.; Suzuki, K. [Okayama Univ. Dental School (Japan). Dept. of Biomaterials; Miyamoto, Y.; Toh, T.; Yuasa, T.; Nagayama, M. [Tokushima Univ. (Japan). First Dept. of Oral and Maxillofacial Surgery; Ito, A. [National Inst. for Advanced Interdisciplinary Research, MITT, Ibaragi (Japan)

    2001-07-01

    Effects of added Zn doped {beta}-tricalcium phosphate (ZnTCP) on mechanical and biological properties of apatite cement (AC) was studied. Powder X-ray diffractometer revealed that ZnTCP shows no reactivity with AC. The mechanical strength of AC decreased increasing amounts of added ZnTCP. We observed no effect on the setting time of AC when the amount of ZnTCP was 10% or less. Proliferation of the osteoblastic cells was significantly increased on the surface of AC containing 5% ZnTCP when compared with that containing no ZnTCP. In contrast, proliferation of the cells decreased on the surface of AC containing 10% ZnTCP when compared with that free from ZnTCP; indicating cytotoxity. We concluded therefore, that addition of ZnTCP to AC might be useful to enhance the osteoconductivity of AC when release of Zn{sup 2+} can be carefully regulated. (orig.)

  10. A few nascent methods for measuring mechanical properties of the biological cell.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos (Purdue University, West Lafayette, IN); Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a

  11. New insight into the molecular mechanisms of the biological effects of DNA minor groove binders.

    Directory of Open Access Journals (Sweden)

    Xinbo Zhang

    Full Text Available BACKGROUND: Bisbenzimides, or Hoechst 33258 (H258, and its derivative Hoechst 33342 (H342 are archetypal molecules for designing minor groove binders, and widely used as tools for staining DNA and analyzing side population cells. They are supravital DNA minor groove binders with AT selectivity. H342 and H258 share similar biological effects based on the similarity of their chemical structures, but also have their unique biological effects. For example, H342, but not H258, is a potent apoptotic inducer and both H342 and H258 can induce transgene overexpression in in vitro studies. However, the molecular mechanisms by which Hoechst dyes induce apoptosis and enhance transgene overexpression are unclear. METHODOLOGY/PRINCIPAL FINDINGS: To determine the molecular mechanisms underlying different biological effects between H342 and H258, microarray technique coupled with bioinformatics analyses and multiple other techniques has been utilized to detect differential global gene expression profiles, Hoechst dye-specific gene expression signatures, and changes in cell morphology and levels of apoptosis-associated proteins in malignant mesothelioma cells. H342-induced apoptosis occurs in a dose-dependent fashion and is associated with morphological changes, caspase-3 activation, cytochrome c mitochondrial translocation, and cleavage of apoptosis-associated proteins. The antagonistic effect of H258 on H342-induced apoptosis indicates a pharmacokinetic basis for the two dyes' different biological effects. Differential global gene expression profiles induced by H258 and H342 are accompanied by unique gene expression signatures determined by DNA microarray and bioinformatics software, indicating a genetic basis for their different biological effects. CONCLUSIONS/SIGNIFICANCE: A unique gene expression signature associated with H342-induced apoptosis provides a new avenue to predict and classify the therapeutic class of minor groove binders in the drug

  12. Organic fraction of municipal solid waste from mechanical selection: biological stabilization and recovery options.

    Science.gov (United States)

    Cesaro, Alessandra; Russo, Lara; Farina, Anna; Belgiorno, Vincenzo

    2016-01-01

    Although current trends address towards prevention strategies, the organic fraction of municipal solid waste is greatly produced, especially in high-income contexts. Its recovery-oriented collection is a common practice, but a relevant portion of the biodegradable waste is not source selected. Mechanical and biological treatments (MBT) are the most common option to sort and stabilize the biodegradable matter ending in residual waste stream. Following the changes of the framework around waste management, this paper aimed at analyzing the quality of the mechanically selected organic waste produced in MBT plants, in order to discuss its recovery options. The material performance was obtained by its composition as well as by its main chemical and physical parameters; biological stability was also assessed by both aerobic and anaerobic methods. On this basis, the effectiveness of an aerobic biostabilization process was assessed at pilot scale. After 21 days of treatment, results proved that the biomass had reached an acceptable biostabilization level, with a potential Dynamic Respirometric Index (DRIP) value lower than the limit required for its use as daily or final landfill cover material. However, the final stabilization level was seen to be influenced by scaling factors and the 21 days of treatment turned to be not so adequate when applied in the existing full-scale facility.

  13. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions.

    Science.gov (United States)

    Chang, H; Xiao, X; Li, M

    2017-03-14

    ZNF804A (zinc-finger protein 804A) has been recognized as a schizophrenia risk gene across multiple world populations. Its intronic single-nucleotide polymorphism (SNP) rs1344706 is among one of the strongest susceptibility variants that have achieved genome-wide significance in genome-wide association studies (GWAS) for schizophrenia and has been widely and intensively studied. To elucidate the biological mechanisms underlying the genetic risk conferred by rs1344706, we retrospectively analyzed the progresses in brain gene expression quantitative trait loci (eQTL) analyses, ZNF804A-induced pathway alterations in neural cells and changes in synaptic phenotypes associated with ZNF804A expression. Based on these data, we hypothesize a potential biological mechanism for a genetic risk allele of ZNF804A in schizophrenia pathogenesis. We also review the efforts being made to characterize the affected intermediate phenotypes using neuroimaging and neuropsychological approaches. We then discuss additional common and rare ZNF804A variants in schizophrenia susceptibility and the potential genetic heterogeneity of these genomic loci between Europeans and Asians. This review for we believe the first time systematically presents the evidence for ZNF804A, describing its discovery and likely roles in brain development and schizophrenia pathogenesis. We believe that this work has summarized this information with a systemic and broad assessment of recent findings.Molecular Psychiatry advance online publication, 14 March 2017; doi:10.1038/mp.2017.19.

  14. A transcriptomics-based biological framework for studying mechanisms of endocrine disruption in small fish species.

    Science.gov (United States)

    Wang, Rong-Lin; Bencic, David; Villeneuve, Daniel L; Ankley, Gerald T; Lazorchak, Jim; Edwards, Stephen

    2010-07-01

    This study sought to construct a transcriptomics-based framework of signal transduction pathways, transcriptional regulatory networks, and the hypothalamic-pituitary gonadal (HPG) axis in zebrafish (Danio rerio) to facilitate formulation of specific, testable hypotheses regarding the mechanisms of endocrine disruption in fish. For the analyses involved, we used data from a total of more than 300 microarrays representing 58 conditions, which encompassed 4 tissue types from zebrafish of both genders exposed for 1 of 3 durations to 10 different test chemicals (17alpha-ethynyl estradiol, fadrozole, 17beta-trenbolone, fipronil, prochloraz, flutamide, muscimol, ketoconazole, trilostane, and vinclozolin). Differentially expressed genes were identified by one class t-tests for each condition, and those with false discovery rates of less than 40% and treatment/control ratios > or =1.3-fold were mapped to orthologous human, mouse, and rat pathways by Ingenuity Pathway Analysis to look for overrepresentation of known biological pathways. To complement the analysis of known biological pathways, the genes regulated by approximately 1800 transcription factors were inferred using the ARACNE mutual information-based algorithm. The resulting gene sets for all transcriptional factors, along with a group of compiled HPG-axis genes and approximately 130 publicly available biological pathways, were analyzed for their responses to the 58 treatment conditions by Gene Set Enrichment Analysis (GSEA) and its variant, Extended-GSEA. The biological pathways and transcription factors associated with multiple distinct treatments showed substantial interactions among the HPG-axis, TGF-beta, p53, and several of their cross-talking partners. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell cycle, and apoptosis.

  15. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Directory of Open Access Journals (Sweden)

    Francesca Marini

    2016-08-01

    Full Text Available Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2, the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs. Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine’s principles.

  16. The consequence of biologic graft processing on blood interface biocompatibility and mechanics.

    Science.gov (United States)

    Van de Walle, Aurore B; Uzarski, Joseph S; McFetridge, Peter S

    2015-09-01

    Processing ex vivo derived tissues to reduce immunogenicity is an effective approach to create biologically complex materials for vascular reconstruction. Due to the sensitivity of small diameter vascular grafts to occlusive events, the effect of graft processing on critical parameters for graft patency, such as peripheral cell adhesion and wall mechanics, requires detailed analysis. Isolated human umbilical vein sections were used as model allogenic vascular scaffolds that were processed with either: 1. sodium dodecyl sulfate (SDS), 2. ethanol/acetone (EtAc), or 3. glutaraldehyde (Glu). Changes in material mechanics were assessed via uniaxial tensile testing. Peripheral cell adhesion to the opaque grafting material was evaluated using an innovative flow chamber that allows direct observation of the blood-graft interface under physiological shear conditions. All treatments modified the grafts tensile strain and stiffness properties, with physiological modulus values decreasing from Glu 240±12 kPa to SDS 210±6 kPa and EtAc 140±3 kPa, Papplied to the umbilical vein scaffold were shown to modify structural mechanics and cell adhesion properties, with the EtAc treatment reducing thrombotic events relative to SDS treated samples. This approach allows time and cost effective prescreening of clinically relevant grafting materials to assess initial cell reactivity.

  17. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    Science.gov (United States)

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  18. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  19. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  20. Statistical mechanics in biology: how ubiquitous are long-range correlations?

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Goldberger, Z. D.; Havlin, S.; Mantegna, R. N.; Ossadnik, S. M.; Peng, C. K.; Simons, M.

    1994-01-01

    The purpose of this opening talk is to describe examples of recent progress in applying statistical mechanics to biological systems. We first briefly review several biological systems, and then focus on the fractal features characterized by the long-range correlations found recently in DNA sequences containing non-coding material. We discuss the evidence supporting the finding that for sequences containing only coding regions, there are no long-range correlations. We also discuss the recent finding that the exponent alpha characterizing the long-range correlations increases with evolution, and we discuss two related models, the insertion model and the insertion-deletion model, that may account for the presence of long-range correlations. Finally, we summarize the analysis of long-term data on human heartbeats (up to 10(4) heart beats) that supports the possibility that the successive increments in the cardiac beat-to-beat intervals of healthy subjects display scale-invariant, long-range "anti-correlations" (a tendency to beat faster is balanced by a tendency to beat slower later on). In contrast, for a group of subjects with severe heart disease, long-range correlations vanish. This finding suggests that the classical theory of homeostasis, according to which stable physiological processes seek to maintain "constancy," should be extended to account for this type of dynamical, far from equilibrium, behavior.

  1. Mechanism and biological role of profilin-Srv2/CAP interaction.

    Science.gov (United States)

    Bertling, Enni; Quintero-Monzon, Omar; Mattila, Pieta K; Goode, Bruce L; Lappalainen, Pekka

    2007-04-01

    Profilin and cyclase-associated protein (CAP, known in yeast as Srv2) are ubiquitous and abundant actin monomer-binding proteins. Profilin catalyses the nucleotide exchange on actin monomers and promotes their addition to filament barbed ends. Srv2/CAP recycles newly depolymerized actin monomers from ADF/cofilin for subsequent rounds of polymerization. Srv2/CAP also harbors two proline-rich motifs and has been suggested to interact with profilin. However, the mechanism and biological role of the possible profilin-Srv2/CAP interaction has not been investigated. Here, we show that Saccharomyces cerevisiae Srv2 and profilin interact directly (K(D) approximately 1.3 microM) and demonstrate that a specific proline-rich motif in Srv2 mediates this interaction in vitro and in vivo. ADP-actin monomers and profilin do not interfere with each other's binding to Srv2, suggesting that these three proteins can form a ternary complex. Genetic and cell biological analyses on an Srv2 allele (srv2-201) defective in binding profilin reveals that a direct interaction with profilin is not essential for Srv2 cellular function. However, srv2-201 causes a moderate increase in cell size and partially suppresses the cell growth and actin organization defects of an actin binding mutant profilin (pfy1-4). Together these data suggest that Srv2 is an important physiological interaction partner of profilin.

  2. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

    Directory of Open Access Journals (Sweden)

    Carlos José Alvarez-Gallego

    2015-02-01

    Full Text Available The organic fraction of municipal solid waste (OFMSW usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC, soluble chemical oxygen demand (sCOD, total volatile fatty acids (TVFA and acidogenic substrate as carbon (ASC. The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160–180–200 °C, 3.5–5.0–6.5 bar and 2–3–4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  3. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    Science.gov (United States)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment.

  4. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    Science.gov (United States)

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-02-09

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  5. Biological, mechanical, and technological considerations affecting the longevity of intracortical electrode recordings.

    Science.gov (United States)

    Harris, James P; Tyler, Dustin J

    2013-01-01

    Intracortical electrodes are important tools, with applications ranging from fundamental laboratory studies to potential solutions to intractable clinical applications. However, the longevity and reliability of the interfaces remain their major limitation to the wider implementation and adoption of this technology, especially in broader translational work. Accordingly, this review summarizes the most significant biological and technical factors influencing the long-term performance of intracortical electrodes. In a laboratory setting, intracortical electrodes have been used to study the normal and abnormal function of the brain. This improved understanding has led to valuable insights regarding many neurological conditions. Likewise, clinical applications of intracortical brain-machine interfaces offer the ability to improve the quality of life of many patients afflicted with high-level paralysis from spinal cord injury, brain stem stroke, amyotrophic lateral sclerosis, or other conditions. It is widely hypothesized that the tissue response to the electrodes, including inflammation, limits their longevity. Many studies have examined and modified the tissue response to intracortical electrodes to improve future intracortical electrode technologies. Overall, the relationship between biological, mechanical, and technological considerations are crucial for the fidelity of chronic electrode recordings and represent a presently active area of investigation in the field of neural engineering.

  6. Green tea catechins: biologic properties, proposed mechanisms of action, and clinical implications.

    Science.gov (United States)

    Rosen, Ted

    2012-11-01

    Botanical products, including and especially green tea leaves, have a wide range of both reputed and demonstrated health benefits and have been used medicinally for thousands of years. This paper focuses on green tea catechins, principally reviewing their known biologic properties and potential mechanisms of action (MOAs). The primary objective is to discuss the proposed antiviral, antiproliferative, and immunostimulatory activity of catechins based on strong evidence from in vitro and in vivo studies conducted to date, including two preclinical in vitro studies with sinecatechins, a proprietary mixture of catechins. This review also discusses the clinical implications of catechins for the treatment of external genital and perianal warts (EGWs) and other conditions caused by human papillomavirus (HPV). While the MOA of catechins in the treatment of EGWs and other HPV-related conditions may be related to or associated with postulated or proven antiviral and immunostimulatory activity, the precise clinical significance of the various in vitro findings remains largely unknown.

  7. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Idil Uysal

    2014-08-01

    Full Text Available Hydroxyapatite (HA co-doped with Zn2+ and F− ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F− ions incorporation into HA structure. Co-doping of Zn2+ and F− ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F− addition into HA significantly improved its density. Microhardness was increased with Zn2+ addition and further increase was detected with F− co-doping. Zn2+ and F− co-doped samples had higher fracture toughness than pure HA. Zn2+ incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol% F− addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  8. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Idil Uysal; Feride Severcana; Aysen Tezcanera; Zafer Evisa

    2014-01-01

    Hydroxyapatite (HA) co-doped with Zn2+ and F- ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F- ions incorporation into HA structure. Co-doping of Zn2 + and F- ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F- addition into HA significantly improved its density. Microhardness was increased with Zn2 + addition and further increase was detected with F- co-doping. Zn2+ and F- co-doped samples had higher fracture toughness than pure HA. Zn2+incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol%F- addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  9. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-01-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials...... for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different...... scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT...

  10. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  11. [Mechanism of intermolecular energy transfer and reception of ultralow action by chemical and biological systems].

    Science.gov (United States)

    Gall', L N; Gall', N R

    2009-01-01

    A novel concept of intermolecular energy transfer and reception of the ultralow action in living systems is proposed. The concept is based on the methods of nonlinear mathematical physics used in description of energy movement along molecular chains and on quantum mechanical ideas concerning signal formation in anisotropic media. A concept of a molecular cell as an indivisible structural unit and a constituent of a biological (chemical) system has been put forward and substantiated, which manifests collective features of the unity of molecules, physical fields, and energetically strained bound water media in processes of energy transfer and reception. Both intermolecular energy transfer and amplification of the ultralow action has been shown to be the components of a unified energy process in a living system, and the physical basis of both processes is the unity of molecules and water-field media in a molecular cell.

  12. Mechanisms of interaction and biological effects of extremely-low-frequency electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-07-01

    Evidence is mounting, that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers. The implications of these findings for promotion of tumor growth by ELF fields are also reviewed.

  13. Untangling nociceptive, neuropathic and neuroplastic mechanisms underlying the biological domain of back pain.

    Science.gov (United States)

    Hush, Julia M; Stanton, Tasha R; Siddall, Philip; Marcuzzi, Anna; Attal, Nadine

    2013-05-01

    SUMMARY Current clinical practice guidelines advocate a model of diagnostic triage for back pain, underpinned by the biopsychosocial paradigm. However, limitations of this clinical model have become apparent: it can be difficult to classify patients into the diagnostic triage categories; patients with 'nonspecific back pain' are clearly not a homogenous group; and mean effects of treatments based on this approach are small. In this article, it is proposed that the biological domain of the biopsychosocial model needs to be reconceptualized using a neurobiological mechanism-based approach. Recent evidence about nociceptive and neuropathic contributors to back pain is outlined in the context of maladaptive neuroplastic changes of the somatosensory system. Implications for clinical practice and research are discussed.

  14. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India); Santhosh, L.G., E-mail: lgsanthu2006@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India)

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  15. Approaching magnetic field effects in biology using the radical pair mechanism

    Science.gov (United States)

    Canfield, Jeffrey Michael

    1997-11-01

    The overall goal of this thesis has been to explain any of the reported magnetic field effects in biology (magnetic orientation of many species and/or health effects, such as cancer, due to man-made electromagnetic fields) using the radical pair mechanism, a quantum mechanical mechanism known for over 20 years that lets singlet-to-triplet yields (which can be related to reaction rates) of radical pair reactions depend on applied magnetic fields. This goal seems reasonable considering the known roles of many biological free radicals in cancer, disease, aging, development, and cellular signaling, the constant reminders in the media to take anti-oxidant vitamins to protect against certain deleterious free radicals, and the success of the radical pair mechanism in explaining magnetic field effects in photosynthetic reaction centers. To approach the above goal, this thesis develops several methods (using perturbation theory and other techniques in the Schrodinger and Liouville formalisms) for calculating singlet-to-triplet yields in combinations of steady and oscillating fields (some of these algorithms are more versatile or efficient while others give more insight, and all serve as cross-checks on each other) and uses these tools to explore and explain a number of interesting phenomena such as yields sensitive to the magnitude and orientation of earth-strength (0.5 G) steady fields as well as the magnitude, orientation, and frequency of very weak (7 mG or less) oscillating fields. In particular, this thesis examines such effects in several coenzyme B12 systems, systems long studied by EPR (Electron Paramagnetic Resonance, the chief method for determining the spin Hamiltonians, spin relaxation rates, and other parameters needed for calculations) in which organometallic cobalt-carbon bonds are often cleaved homolytically to form radical pairs. Among the B12-dependent enzymes are ribonucleotide reductase (which converts RNA to DNA nucleotides), methyl malonyl CoA mutase

  16. Cell biological mechanism for triggering of ABA accumulation under water stress in Vicia faba leaves.

    Science.gov (United States)

    Zhang, D; He, F; Jia, W

    2001-08-01

    Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves of Vicia faba. Mannitol at 890 mmol * kg(-1) osmotic concentration induced an increase of more than 5 times in ABA concentration in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentration in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol * kg(-1) concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumulation. Neither Ca(2+)-chelating agent EGTA nor Ca(2+)channel activator A23187 nor the two cytoskeleton inhibitors, colchicine and cytochalasin B, had any effect on water stress-induced ABA accumulation. Interestingly water stress-induced ABA accumulation was effectively inhibited by a non-plasmalemma-permeable sulfhydryl-modifier PCMBS (p-chloromercuriphenyl-sulfonic acid), suggesting that plasmalemma protein(s) may be involved in the triggering of water stress-induced ABA accumulation, and the protein may contain sulfhydryl group at its function domain.

  17. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  18. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Tien, Lee W; Trimmer, Barry; Hudson, Samuel M; Kaplan, David L

    2010-10-05

    A route toward mechanically robust, rapidly actuating, and biologically functionalized polymeric actuators using macroporous soft materials is described. The materials were prepared by combining silk protein and a synthetic polymer (poly(N-isopropylacrylamide) (PNIAPPm)) to form interpenetrating network materials and macroporous structures by freeze-drying, with hundreds of micrometer diameter pores and exploiting the features of both polymers related to dynamic materials and structures. The chemically cross-linked PNIPAAm networks provided stimuli-responsive features, while the silk interpenetrating network formed by inducing protein β-sheet crystallinity in situ for physical cross-links provided material robustness, improved expansion force, and enzymatic degradability. The macroporous hybrid hydrogels showed enhanced thermal-responsive properties in comparison to pure PNIPAAm hydrogels, nonporous silk/PNIPAAm hybrid hydrogels, and previously reported macroporous PNIPAAm hydrogels. These new systems reach near equilibrium sizes in shrunken/swollen states in less than 1 min, with the structural features providing improved actuation rates and stable oscillatory properties due to the macroporous transport and the mechanically robust silk network. Confocal images of the hydrated hydrogels around the lower critical solution temperature (LCST) revealed macropores that could be used to track changes in the real time morphology upon thermal stimulus. The material system transformed from a macroporous to a nonporous structure upon enzymatic degradation. To extend the utility of the system, an affinity platform for a switchable or tunable system was developed by immobilizing biotin and avidin on the macropore surfaces.

  19. Evidence for protonic communication at the speed of sound: An alternate mechanism for specific biological signaling

    CERN Document Server

    Fichtl, Bernhard; Schneider, Matthias F

    2015-01-01

    Local changes in pH are known to significantly alter the state and activity of proteins and in particular enzymes. pH variations induced by pulses propagating along soft interfaces (e.g. the lipid bilayer) would therefore constitute an important pillar towards a new physical mechanism of biochemical regulation and biological signaling. Here we investigate the pH-induced physical perturbation of a lipid interface and the physiochemical nature of the subsequent acoustic propagation. Pulses are stimulated by local acidification of a lipid monolayer and propagate, in analogy to sound, at velocities controlled by the two-dimensional compressibility of the interface. With transient local pH changes of 0.6 units directly observed at the interface and velocities up to 1.4 m/s this represents hitherto the fastest protonic communication observed. Furthermore simultaneously propagating mechanical and electrical changes in the lipid interface up to 8 mN/m and 100 mV are detected, exposing the thermodynamic nature of thes...

  20. Photobiomodulation on senescence

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.

  1. Beller Lectureship Talk: Active response of biological cells to mechanical stress

    Science.gov (United States)

    Safran, Samuel

    2009-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.

  2. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earth’s crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complex—heterogeneous assemblages of mineral grains, pores, and fractures—and visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of

  3. Biologically-initiated rock crust on sandstone: Mechanical and hydraulic properties and resistance to erosion

    Science.gov (United States)

    Slavík, Martin; Bruthans, Jiří; Filippi, Michal; Schweigstillová, Jana; Falteisek, Lukáš; Řihošek, Jaroslav

    2017-02-01

    Biocolonization on sandstone surfaces is known to play an important role in rock disintegration, yet it sometimes also aids in the protection of the underlying materials from rapid erosion. There have been few studies comparing the mechanical and/or hydraulic properties of the BIRC (Biologically-Initiated Rock Crust) with its subsurface. As a result, the overall effects of the BIRC are not yet well understood. The objective of the present study was to briefly characterize the BIRC from both the mineralogical and biological points of view, and especially to quantify the effect of the BIRC upon the mechanical and hydraulic properties of friable sandstone. The mineralogical investigation of a well-developed BIRC showed that its surface is enriched in kaolinite and clay- to silt-sized quartz particles. Total organic carbon increases with the age of the BIRC. Based on DNA sequencing and microscopy, the BIRC is formed by various fungi, including components of lichens and green algae. Using the method of drilling resistance, by measuring tensile strength, and based on water jet testing, it was determined that a BIRC is up to 12 times less erodible and has 3-35 times higher tensile strength than the subsurface friable sandstone. Saturated hydraulic conductivity of the studied BIRC is 15-300 times lower than the subsurface, and was measured to also decrease in capillary water absorption (2-33 times). Water-vapor diffusion is not significantly influenced by the presence of the BIRC. The BIRC thus forms a hardened surface which protects the underlying material from rain and flowing water erosion, and considerably modifies the sandstone's hydraulic properties. Exposing the material to calcination (550 °C), and experiments with the enzyme zymolyase indicated that a major contribution to the surface hardening is provided by organic matter. In firmer sandstones, the BIRC may still considerably decrease the rate of weathering, as it is capable of providing cohesion to strongly

  4. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  5. Production of biologically safe and mechanically improved reduced graphene oxide/hydroxyapatite composites

    Science.gov (United States)

    Elif, Öztürk; Belma, Özbek; İlkay, Şenel

    2017-01-01

    As research trends included the improvement of the mechanical properties of hydroxyapatite (HA) for biological applications, HA was reinforced with different concentrations of reduced graphene oxide (RGO) in HA. In this context, graphene oxide was synthesized using the chemical exfoliation method and reduced using an environmentally safe and green method. As a green method, RGO was obtained using Melissa officinalis (melisa) extract and used as a second phase combination to the HA structure. RGO-HA composites with different concentrations of RGO in HA (0.25, 0.5, 1.0, 2.0% wt.) were prepared using the liquid precipitation method. Then they were pelleted and sintered. Characterization studies were carried out using UV-vis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), zetasizer (ZS), x-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. The mechanical properties of the composites were analyzed using a universal testing machine. Compared to pure HA, the compressive strength values of composites were increased significantly with the increase in RGO content. The optimum increase was observed for the RGO-HA (1%) composite, which was 3.2 times higher than the pure HA sample. Therefore, the RGO-HA (1%) composite was chosen as the best composition, and its cytotoxic and proliferative effects were examined using a minimum essential media elution test and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that RGO-HA (1%) composites are biocompatible and even though they are proliferative at concentrations lower than 25%.

  6. Epigenetic Mechanisms Shape the Biological Response to Trauma and Risk for PTSD: A Critical Review

    Directory of Open Access Journals (Sweden)

    Morgan Heinzelmann

    2013-01-01

    Full Text Available Posttraumatic stress disorder (PTSD develops in approximately one-quarter of trauma-exposed individuals, leading us and others to question the mechanisms underlying this heterogeneous response to trauma. We suggest that the reasons for the heterogeneity relate to a complex interaction between genes and the environment, shaping each individual’s recovery trajectory based on both historical and trauma-specific variables. Epigenetic modifications provide a unique opportunity to elucidate how preexisting risk factors may contribute to PTSD risk through changes in the methylation of DNA. Preexisting risks for PTSD, including depression, stress, and trauma, result in differential DNA methylation of endocrine genes, which may then result in a different biological responses to trauma and subsequently a greater risk for PTSD onset. Although these relationships are complex and currently inadequately described, we provide a critical review of recent studies to examine how differences in genetic and proteomic biomarkers shape an individual’s vulnerability to PTSD development, thereby contributing to a heterogeneous response to trauma.

  7. Diabetes, gestational diabetes and the risk of cancer in women: epidemiologic evidence and possible biologic mechanisms.

    Science.gov (United States)

    Chodick, Gabriel; Zucker, Inbar

    2011-03-01

    At present, more than 10% of adult American women are diagnosed with diabetes mellitus (DM). As the prevalence of the disease increases, there is greater interest in the relationship between DM and other major health issues, such as cancer - one of the leading causes of death in the western world. This paper reviews the literature on the relationship between Type 2 DM and different types of cancer among women. We discuss the possible biological mechanisms that may link diabetes and cancer, important confounders, shared risk factors and a short review of the epidemiologic literature on the association between Type 2 DM and cancer of specific organs (pancreas, liver, colorectal, bladder, endometrial, non-Hodgkin's lymphoma and breast). We also examine the association between gestational diabetes, a closely related risk factor for DM in women, and subsequent risk of cancer. Cancer survival of diabetic women is also briefly discussed. The paper concludes with an agenda for future research targeting the relationship between diabetes and cancer.

  8. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Directory of Open Access Journals (Sweden)

    Steven C Bagley

    2016-04-01

    Full Text Available Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford, and compared to a large database of published disease-associated genetic variants (VARIMED; data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  9. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation.

    Science.gov (United States)

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2016-05-01

    Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.

  10. The permeability and transport mechanism of graphene quantum dots (GQDs) across the biological barrier.

    Science.gov (United States)

    Wang, Xin-Yi; Lei, Rong; Huang, Hong-Duang; Wang, Na; Yuan, Lan; Xiao, Ru-Yue; Bai, Li-Dan; Li, Xue; Li, Li-Mei; Yang, Xiao-da

    2015-02-07

    As an emerging nanomaterial, graphene quantum dots (GQDs) have shown enormous potential in theranostic applications. However, many aspects of the biological properties of GQDs require further clarification. In the present work, we prepared two sizes of GQDs and for the first time investigated their membrane permeabilities, one of the key factors of all biomedical applications, and transport mechanisms on a Madin Darby Canine Kidney (MDCK) cell monolayer. The experimental results revealed that under ∼300 mg L(-1), GQDs were innoxious to MDCK and did not affect the morphology and integrity of the cell monolayer. The Papp values were determined to be 1-3 × 10(-6) cm s(-1) for the 12 nm GQDs and 0.5-1.5 × 10(-5) cm s(-1) for the 3 nm GQDs, indicating that the 3 nm GQDs are well-transported species while the 12 nm GQDs have a moderate membrane permeability. The transport and uptake of GQDs by MDCK cells were both time and concentration-dependent. Moreover, the incubation of cells with GQDs enhanced the formation of lipid rafts, while inhibition of lipid rafts with methyl-β-cyclodextrin almost eliminated the membrane transport of GQDs. Overall, the experimental results suggested that GQDs cross the MDCK cell monolayer mainly through a lipid raft-mediated transcytosis. The present work has indicated that GQDs are a novel, low-toxic, highly-efficient general carrier for drugs and/or diagnostic agents in biomedical applications.

  11. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions.

    Science.gov (United States)

    Cheng, Guyue; Sa, Wei; Cao, Chen; Guo, Liangliang; Hao, Haihong; Liu, Zhenli; Wang, Xu; Yuan, Zonghui

    2016-01-01

    Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas, and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.

  12. Quinoxaline 1, 4-di-N-oxides: Biological activities and mechanisms of actions

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-03-01

    Full Text Available Quinoxaline 1, 4-di-N-oxides (QdNOs have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.

  13. Mechanism and stereoselectivity of biologically important oxygenation reactions of the 7-dehydrocholesterol radical.

    Science.gov (United States)

    Rajeev, Ramanan; Sunoj, Raghavan B

    2013-07-19

    The mechanism of free radical oxygenation of 7-dehydrocholesterol (7-DHC), one of the biologically important sterols, is investigated by using density functional theory. The energetic origin of the product distribution and the stereoelectronic factors involved in various mechanistic pathways are delineated. The addition of triplet molecular oxygen to two types of conjugatively stabilized radicals, generated by the removal of the reactive allylic hydrogens from C9 or C14 positions, respectively denoted as H9 and H14 pathways, is studied. The distortion-interaction analysis of the C-O bond formation transition states suggests that the energetic preference toward the α prochiral face stems from reduced skeletal distortions of the cholesterol backbone as compared to that in the corresponding β prochiral face. This insight derived through a detailed quantitative analysis of the stereocontrolling transition states suggests that the commonly found interpretations solely based on steric interactions between the incoming oxygen and the protruding angular methyl groups (C10, C13 methyls) in the β face calls for adequate refinement. The relative energies of the transition states for molecular oxygen addition to C9, C5, and C14 (where spin densities are higher) and the ensuing products thereof are in agreement with the experimentally reported distribution of oxygenated 7-DHCs.

  14. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis.

    Science.gov (United States)

    Borow, Kenneth M; Nelson, John R; Mason, R Preston

    2015-09-01

    Residual cardiovascular (CV) risk remains in dyslipidemic patients despite intensive statin therapy, underscoring the need for additional intervention. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, is incorporated into membrane phospholipids and atherosclerotic plaques and exerts beneficial effects on the pathophysiologic cascade from onset of plaque formation through rupture. Specific salutary actions have been reported relating to endothelial function, oxidative stress, foam cell formation, inflammation, plaque formation/progression, platelet aggregation, thrombus formation, and plaque rupture. EPA also improves atherogenic dyslipidemia characterized by reduction of triglycerides without raising low-density lipoprotein cholesterol. Other beneficial effects of EPA include vasodilation, resulting in blood pressure reductions, as well as improved membrane fluidity. EPA's effects are at least additive to those of statins when given as adjunctive therapy. In this review, we present data supporting the biologic plausibility of EPA as an anti-atherosclerotic agent with potential clinical benefit for prevention of CV events, as well as its cellular effects and molecular mechanisms of action. REDUCE-IT is an ongoing, randomized, controlled study evaluating whether the high-purity ethyl ester of EPA (icosapent ethyl) at 4 g/day combined with statin therapy is superior to statin therapy alone for reducing CV events in high-risk patients with mixed dyslipidemia. The results from this study are expected to clarify the role of EPA as adjunctive therapy to a statin for reduction of residual CV risk.

  15. Physical Activity and Gastrointestinal Cancers: Primary and Tertiary Preventive Effects and Possible Biological Mechanisms

    Directory of Open Access Journals (Sweden)

    Karen Steindorf

    2015-07-01

    Full Text Available Gastrointestinal cancers account for 37% of all cancer deaths worldwide, underlining the need to further investigate modifiable factors for gastrointestinal cancer risk and prognosis. This review summarizes the corresponding evidence for physical activity (PA, including, briefly, possible biological mechanisms. Despite high public health relevance, there is still a scarcity of studies, especially for tertiary prevention. Besides the convincing evidence of beneficial effects of PA on colon cancer risk, clear risk reduction for gastroesophageal cancer was identified, as well as weak indications for pancreatic cancer. Inverse associations were observed for liver cancer, yet based on few studies. Only for rectal cancer, PA appeared to be not associated with cancer risk. With regard to cancer-specific mortality of the general population, published data were rare but indicated suggestive evidence of protective effects for colon and liver cancer, and to a lesser extent for rectal and gastroesophageal cancer. Studies in cancer patients on cancer-specific and total mortality were published for colorectal cancer only, providing good evidence of inverse associations with post-diagnosis PA. Overall, evidence of associations of PA with gastrointestinal cancer risk and progression is promising but still limited. However, the already available knowledge further underlines the importance of PA to combat cancer.

  16. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity.

    Science.gov (United States)

    Johnston, Helinor J; Hutchison, Gary R; Christensen, Frans M; Aschberger, Karin; Stone, Vicki

    2010-04-01

    This review provides a comprehensive critical review of the available literature purporting to assess the toxicity of carbon fullerenes. This is required as prior to the widespread utilization and production of fullerenes, it is necessary to consider the implications of exposure for human health. Traditionally, fullerenes are formed from 60 carbon atoms, arranged in a spherical cage-like structure. However, manipulation of surface chemistry and molecular makeup has created a diverse population of fullerenes, which exhibit drastically different behaviors. The cellular processes that underlie observed fullerene toxicity will be discussed and include oxidative, genotoxic, and cytotoxic responses. The antioxidant/cytoprotective properties of fullerenes (and the attributes responsible for driving these phenomena) have been considered and encourage their utilization within the treatment of oxidant-mediated disease. A number of studies have focused on improving the water solubility of fullerenes in order to enable their exploitation within biological systems. Manipulating fullerene water solubility has included the use of surface modifications, solvents, extended stirring, and mechanical processes. However, the ability of these processes to also impact on fullerene toxicity requires assessment, especially when considering the use of solvents, which particularly appear to enhance fullerene toxicity. A number of the discussed investigations were not conducted to reveal if fullerene behavior was due to their nanoparticle dimensions but instead addressed the biocompatibility and toxicity of fullerenes. The hazards to human health, associated with fullerene exposure, are uncertain at this time, and further investigations are required to decipher such effects before an effective risk assessment can be conducted.

  17. Molecular mechanism and biological function of miRNA-155 and its target genes on endometriosis

    Institute of Scientific and Technical Information of China (English)

    Na Ji; Li Zhao; Xin Feng; Li-Mei Luo; Ting Liang; Chen-Yu Zhuang; Li-Hua Zhang

    2015-01-01

    Objective:To explore molecular mechanism and biological function of miR-155 and its target genes on endometriosis.Methods: The expression of miR-155 in Ems patient and healthy control were assayed by RT-PCR. After miR-155 mimic and inhibitor were transfected into Ems endometrial cells for 48 h, the viability of cell was detected by MTT assay. Transwell migration and invasion assay were used to detect cell migration and invasion. The expression of cell apoptotic protein Bax and Bcl-2, matrix metalloproteinase (MMP 2) and MMP 9 were assayed by western blot.Results: The expression of miR-155 in Ems patient was more than that in the health control (P<0.01). After miR-155 mimic and inhibitor were transfected into Ems endometrial cells for 48 h, miR-155 over-expression could increase cell viability, and promoted cell migration and invasion, which was related to down-regulation of Bax along with up-regulation of Bcl-2, MMP 2 and MMP 9.Conclusion:These results suggested miR-155 lower expression inhibit endometrial cell proliferation and migration of the Ems.

  18. Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.

    Science.gov (United States)

    Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B

    2015-01-01

    Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions.

  19. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps as state-of-the-art technologies for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates...... municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre-treatment......, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested...

  20. Formation of the vertical heterogeneity in the Lake Shira ecosystem: the biological mechanisms and the mathematical model

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Belolipetsky, V.M.; Zotina, T.A.; Gulati, R.D.

    2002-01-01

    Data on the seasonal changes in vertical heterogeneity of the physical-chemical and biological parameters of the thermally stratified Shira Lake ecosystem (Khakasia, Siberia) in 1996–2000 have been analyzed. The interaction mechanisms involving: (1) The plankton populations in aerobic and anaerobic

  1. The Biological “Invariant of Motion” vs. “Struggle for Life”? On the Possible Quantum Mechanical Origin and Evolution of Semiotic Controls in Biology

    Directory of Open Access Journals (Sweden)

    András Balázs

    2013-10-01

    Full Text Available A novel, alternative and deeper view to the “selfish gene” paradigm is presented, describable as the “selfish code” frame. Introducing it, we put forth a quantum mechanical algorithm as a new description of the intracellular protein synthetizing machinery. The successive steps of the algorithm are, tentatively, semiotic constraints of the well-known quantum mechanical molecular “internal measurement” type. It is proposed that this molecular algorithm mediates a quantum mechanical time reversed dynamics with a primordial special version of this latter molecular measurement type (“mixed measurement” as its origin. It is furthermore suggested that this intracellular regressive algorithmical dynamics is a component of biological “motion”, the other, strongly coupled component being the macroscopic phenotypic motion. The biological “invariant of motion” of this hierarchically coupled overall generalized dynamics is suggested to be the evolutionally converged invariant genetic code vocabulary. It forms, possibly, the underlying internal “driving force” of evolution, as being “struggle for life”.

  2. Induced Resistance as a Mechanism of Biological Control by Lysobacter enzymogenes Strain C3.

    Science.gov (United States)

    Kilic-Ekici, Ozlem; Yuen, Gary Y

    2003-09-01

    ABSTRACT Induced resistance was found to be a mechanism for biological control of leaf spot, caused by Bipolaris sorokiniana, in tall fescue (Festuca arundinacea) using the bacterium Lysobacter enzymogenes strain C3. Resistance elicited by C3 suppressed germination of B. sorokiniana conidia on the phylloplane in addition to reducing the severity of leaf spot. The pathogen-inhibitory effect could be separated from antibiosis by using heat-inactivated cells of C3 that retained no antifungal activity. Application of live or heat-killed cells to tall fescue leaves resulted only in localized resistance confined to the treated leaf, whereas treatment of roots resulted in systemic resistance expressed in the foliage. The effects of foliar and root applications of C3 were long lasting, as evidenced by suppression of conidial germination and leaf spot development even when pathogen inoculation was delayed 15 days after bacterial treatment. When C3 population levels and germination of pathogen conidia was examined on leaf segments, germination percentage was reduced on all segments from C3-treated leaves compared with segments from non-treated leaves, but no dose-response relationship typical of antagonism was found. Induced resistance by C3 was not host or pathogen specific; foliar application of heat-killed C3 cells controlled B. sorokiniana on wheat and also was effective in reducing the severity of brown patch, caused by Rhizoctonia solani, on tall fescue. Treatments of tall fescue foliage or roots with C3 resulted in significantly elevated peroxidase activity compared with the control.

  3. Characterization and Modeling of a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Conrad, M. E.; Jones, T. L.; Olsen, N. J.

    2010-12-01

    A design is being formulated for a large-scale subsurface experimental facility at the 4850 foot level of the Homestake Mine in South Dakota. The purpose of the experiment is to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock under stress and would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL). Key questions we propose to answer are: 1) What are the effective reaction rates for mineral-fluid interaction in fractured rock under stress?; 2) How does mineral and fluid chemistry affect fracture mechanical behavior and permeability changes under stress at elevated temperatures?; and 3) How do microbial communities evolve in fractured rock under a thermal gradient and under changing stress conditions? In addition to the experiment as an in-situ laboratory for studying crustal processes, it has significant benefits for evaluating stimulation and production in Enhanced Geothermal Systems. Design and planning of the experiment included characterization of the geological, chemical, and isotopic characteristics of the rock and seeping fluids, thermal-hydrological and reactive transport modeling. During a reconnaissance study, strong heterogeneity in fracture fluxes and permeability were observed at the block site with some open boreholes continuously flowing at up to 1 liter/minute, and locally elevated fluid temperatures. A two-dimensional thermal-hydrological model was developed to evaluate fluid fluxes and temperatures as a function of heat input and borehole heater configuration. The dual permeability model considers fluid flow and heat transfer between an array of fractures and rock matrix, both having permeability anisotropy. A horizontal rock matrix permeability of 10-18 m2 was based on recent lab measurements, with a vertical matrix permeability estimated to be one order-of-magnitude higher to account for the strong nearly vertical foliation in the Homestake and Poorman

  4. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    or torque sensing systems; thereby capable of implementing the model on small legged robots driven by, e.g., standard servo motors. Thus, the VAAM minimizes hardware and reduces system complexity. From this point of view, the model opens up another way of simulating muscle behaviors on artificial machines......Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint......, variably compliant joint motions can be produced without mechanically bulky and complex mechanisms or complex force/toque sensing at each joint. Moreover, through tuning the damping coefficient of the VAAM, the functions of the VAAM are comparable to biological muscles. Originality/value – The model (i...

  5. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk.

    Science.gov (United States)

    Costa, Pedro M; Fadeel, Bengt

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global 'omics' approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials.

  6. Mechanism, vitalism and organicism in late nineteenth and twentieth-century biology: the importance of historical context.

    Science.gov (United States)

    Allen, Garland E

    2005-06-01

    The term 'mechanism' has been used in two quite different ways in the history of biology. Operative, or explanatory mechanism refers to the step-by-step description or explanation of how components in a system interact to yield a particular outcome (as in the 'mechanism of enzyme action' or the 'mechanism of synaptic transmission'). Philosophical Mechanism, on the other hand, refers to a broad view of organisms as material entities, functioning in ways similar to machines--that is, carrying out a variety of activities based on known chemical and physical processes. In the early twentieth century philosophical Mechanism became the foundation of a 'new biology' that sought to establish the life sciences on the same solid and rigorous foundation as the physical sciences, including a strong emphasis on experimentation. In the context of the times this campaign was particularly aimed at combating the reintroduction of more holistic, non-mechanical approaches into the life sciences (organicism, vitalism). In so doing, Mechanists failed to see some of the strong points of non-vitalistic holistic thinking. The two approaches are illustrated in the work of Jacques Loeb and Hans Spemann.

  7. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration

    OpenAIRE

    Wang, B.; Yang, W.; McKittrick, J; Meyers, MA

    2016-01-01

    © 2015 Elsevier Ltd. A ubiquitous biological material, keratin represents a group of insoluble, usually high-sulfur content and filament-forming proteins, constituting the bulk of epidermal appendages such as hair, nails, claws, turtle scutes, horns, whale baleen, beaks, and feathers. These keratinous materials are formed by cells filled with keratin and are considered 'dead tissues'. Nevertheless, they are among the toughest biological materials, serving as a wide variety of interesting func...

  8. Holistic systems biology approaches to molecular mechanisms of human helper T cell differentiation to functionally distinct subsets.

    Science.gov (United States)

    Chen, Z; Lönnberg, T; Lahesmaa, R

    2013-08-01

    Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions.

  9. EU-OPENSCREEN-chemical tools for the study of plant biology and resistance mechanisms.

    Science.gov (United States)

    Meiners, Torsten; Stechmann, Bahne; Frank, Ronald

    2014-10-01

    EU-OPENSCREEN is an academic research infrastructure initiative in Europe for enabling researchers in all life sciences to take advantage of chemical biology approaches to their projects. In a collaborative effort of national networks in 16 European countries, EU-OPENSCREEN will develop novel chemical compounds with external users to address questions in, among other fields, systems and network biology (directed and selective perturbation of signalling pathways), structural biology (compound-target interactions at atomic resolution), pharmacology (early drug discovery and toxicology) and plant biology (response of wild or crop plants to environmental and agricultural substances). EU-OPENSCREEN supports all stages of a tool development project, including assay adaptation, high-throughput screening and chemical optimisation of the 'hit' compounds. All tool compounds and data will be made available to the scientific community. EU-OPENSCREEN integrates high-capacity screening platforms throughout Europe, which share a rationally selected compound collection comprising up to 300,000 (commercial and proprietary compounds collected from European chemists). By testing systematically this chemical collection in hundreds of assays originating from very different biological themes, the screening process generates enormous amounts of information about the biological activities of the substances and thereby steadily enriches our understanding of how and where they act.

  10. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Anderson, Bruce [Department of Civil Engineering, Queen' s University, Kingston K7L3N6 (Canada); Cheng, Shuiping, E-mail: shpcheng@tongji.edu.cn [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2016-05-15

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg·L{sup −1}). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (Φ{sub PSII}) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. - Highlights: • Physiological responses of the wetland plant to triazophos

  11. Biological mechanisms driving the seasonal changes in the internal loading of phosphorus in shallow lakes

    Institute of Scientific and Technical Information of China (English)

    XIE; Ping

    2006-01-01

    Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment,leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was

  12. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  13. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects.

    Science.gov (United States)

    Tian, Baoyu; Yang, Jinkui; Zhang, Ke-Qin

    2007-08-01

    As a group of important natural enemies of nematode pests, nematophagous bacteria exhibit diverse modes of action: these include parasitizing; producing toxins, antibiotics, or enzymes; competing for nutrients; inducing systemic resistance of plants; and promoting plant health. They act synergistically on nematodes through the direct suppression of nematodes, promoting plant growth, and facilitating the rhizosphere colonization and activity of microbial antagonists. This review details the nematophagous bacteria known to date, including parasitic bacteria, opportunistic parasitic bacteria, rhizobacteria, Cry protein-forming bacteria, endophytic bacteria and symbiotic bacteria. We focus on recent research developments concerning their pathogenic mechanisms at the biochemical and molecular levels. Increased understanding of the molecular basis of the various pathogenic mechanisms of the nematophagous bacteria could potentially enhance their value as effective biological control agents. We also review a number of molecular biological approaches currently used in the study of bacterial pathogenesis in nematodes. We discuss their merits, limitations and potential uses.

  14. An Integrated Review of Psychological Stress in Parkinson’s Disease: Biological Mechanisms and Symptom and Health Outcomes

    Directory of Open Access Journals (Sweden)

    Kim Wieczorek Austin

    2016-01-01

    Full Text Available Parkinson’s disease (PD is characterized by complex symptoms and medication-induced motor complications that fluctuate in onset, severity, responsiveness to treatment, and disability. The unpredictable and debilitating nature of PD and the inability to halt or slow disease progression may result in psychological stress. Psychological stress may exacerbate biological mechanisms believed to contribute to neuronal loss in PD and lead to poorer symptom and health outcomes. The purpose of this integrated review is to summarize and appraise animal and human research studies focused on biological mechanisms, symptom, and health outcomes of psychological stress in PD. A search of the electronic databases PubMed/Medline and CINAHL from 1980 to the present using the key words Parkinson’s disease and stress, psychological stress, mental stress, and chronic stress resulted in 11 articles that met inclusion criteria. The results revealed significant associations between psychological stress and increased motor symptom severity and loss of dopamine-producing neurons in animal models of PD and between psychological stress and increased symptom severity and poorer health outcomes in human subjects with PD. Further research is needed to fully elucidate the underlying biological mechanisms responsible for these relationships, for the ultimate purpose of designing targeted interventions that may modify the disease trajectory.

  15. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues.

  16. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation.

    Science.gov (United States)

    Sharma, Deepika; Kanneganti, Thirumala-Devi

    2016-06-20

    Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome.

  17. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  18. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior.

    Science.gov (United States)

    Feldstein Ewing, Sarah W; Chung, Tammy

    2013-06-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real-time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examine brain-based mechanisms of change, whereas others examine brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors.

  19. Clinical indications and biological mechanisms of splenic irradiation in autoimmune diseases

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, M.; Becker, G. [Tuebingen Univ. (Germany). Abt. fuer Strahlenonkologie; Einsele, H.; Bamberg, M. [Tuebingen Univ. (Germany). Abt. fuer Innere Medizin 2

    2001-02-01

    Background: Splenic irradiation (SI) is a fairly unknown treatment modality in autoimmune disorders like autoimmune thrombocytopenia (AIT) or autoimmune hemolytic anemia (AIHA), which may provide an effective, low toxic and cost-effective treatment for selected patients. Patients, Materials and Methods: This article reviews the limited experiences on splenic irradiation in autoimmune thrombocytopenia by analyzing the current studies including 71 patients and some preliminary reports on splenic irradiation in autoimmune hemolytic anemia. Results: In autoimmune thrombocytopenia between 40 and 90% of all patients responded, but most of them relapsed within 4 to 6 months after splenic irradiation. Between 10 and 20% of all patients had a sustained response. The efficacy of splenic irradiation in HIV-associated cases of thrombocytopenia is probably lower than in other forms of autoimmune thrombocytopenia, but especially in this group immunosuppressive drug treatment of autoimmune thrombocytopenia exposes some problems. In autoimmune hemolytic anemia there are some case reports about efficacy of splenic irradiation. Toxicity of splenic irradiation in both diseases was very moderate. Conclusions: For HIV patients, for elderly patients or patients at high risk for complications following splenectomy splenic irradiation might be a treatment option. Splenic irradiation as preoperative treatment in patients not responding to or not suitable for immunosuppressive drugs prior to splenectomy may be a promising new application of splenic irradiation to reduce adverse effects of splenectomy in thrombocytopenic patients. A further analysis of the biological mechanisms underlying splenic irradiation may help to improve patient selection, to optimize dose concepts and treatment schedules and will improve understanding of radiotherapy as an immunomodulatory treatment modality. (orig.) [German] Hintergrund: Die Bestrahlung der Milz zur Behandlung von haematologischen

  20. An Inquiry-Infused Introductory Biology Laboratory That Integrates Mendel's Pea Phenotypes with Molecular Mechanisms

    Science.gov (United States)

    Kudish, Philip; Schlag, Erin; Kaplinsky, Nicholas J.

    2015-01-01

    We developed a multi-week laboratory in which college-level introductory biology students investigate Mendel's stem length phenotype in peas. Students collect, analyze and interpret convergent evidence from molecular and physiological techniques. In weeks 1 and 2, students treat control and experimental plants with Gibberellic Acid (GA) to…

  1. The radical-pair mechanism as a paradigm for the emerging science of quantum biology

    OpenAIRE

    Kominis, I. K.

    2015-01-01

    The radical-pair mechanism was introduced in the 1960's to explain anomalously large EPR and NMR signals in chemical reactions of organic molecules. It has evolved to the cornerstone of spin chemistry, the study of the effect electron and nuclear spins have on chemical reactions, with the avian magnetic compass mechanism and the photosynthetic reaction center dynamics being prominent biophysical manifestations of such effects. In recent years the radical-pair mechanism was shown to be an idea...

  2. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri

    Directory of Open Access Journals (Sweden)

    Hiroshi Tamura

    2009-04-01

    Full Text Available Chitosan with a molecular weight (MW of 104 Da and 13% degree of acetylation (DA was extracted from the mycelia of the fungus Gongronella butleri USDB 0201 grown in solid substrate fermentation and used to prepare scaffolds by the freeze-drying method. The mechanical and biological properties of the fungal chitosan scaffolds were evaluated and compared with those of scaffolds prepared using chitosans obtained from shrimp and crab shells and squid bone plates (MW 105-106 Da and DA 10-20%. Under scanning electron microscopy, it was observed that all scaffolds had average pore sizes of approximately 60-90 mm in diameter. Elongated pores were observed in shrimp chitosan scaffolds and polygonal pores were found in crab, squid and fungal chitosan scaffolds. The physico-chemical properties of the chitosans had an effect on the formation of pores in the scaffolds, that consequently influenced the mechanical and biological properties of the scaffolds. Fungal chitosan scaffolds showed excellent mechanical, water absorption and lysozyme degradation properties, whereas shrimp chitosan scaffolds (MW 106Da and DA 12% exhibited the lowest water absorption properties and lysozyme degradation rate. In the evaluation of biocompatibility of chitosan scaffolds, the ability of fibroblast NIH/3T3 cells to attach on all chitosan scaffolds was similar, but the proliferation of cells with polygonal morphology was faster on crab, squid and fungal chitosan scaffolds than on shrimp chitosan scaffolds. Therefore fungal chitosan scaffold, which has excellent mechanical and biological properties, is the most suitable scaffold to use as a template for tissue regeneration.

  3. Thermal and nonThermal Mechanisms of Biological Interaction of Microwaves

    CERN Document Server

    Williams, J M

    2001-01-01

    Research in the past on the biological effects of microwaves often has been based on faulty assumptions. The major flaw has been the premise that microwaves only produce thermal effects in tissue. This premise easily may be proven physically incorrect. Furthermore, assuming only thermal effects leads one to an optimist's error of quantification in which calories are counted instead of joules. Past investigations have been misled both by these assumptions and by stereotyped experiments using only narrow band radiation sources. Recent studies show that wide band microwaves bring out biological effects which are unrelated to those caused by heat flow. A review by Kenneth Foster provides a basis for criticism and improved understanding. PACS: 87.10 87.22 87.50 87.54

  4. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions

    OpenAIRE

    Cheng, Guyue; Sa, Wei; Cao, Chen; Guo, Liangliang; Hao, Haihong; Liu, Zhenli; Wang, Xu; Yuan, Zonghui

    2016-01-01

    Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and ba...

  5. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, A. G. [Universidade Tecnologica Federal do Parana, Departamento Academico de Fisica (Brazil); Barison, A. [Universidade Federal do Parana, Departamento de Quimica (Brazil); Oliveira, V. S. [Universidade Federal do Parana, Departamento de Fisica (Brazil); Foti, L.; Krieger, M. A. [Fundacao Oswaldo Cruz, Instituto de Biologia Molecular do Parana (Brazil); Dhalia, R.; Viana, I. F. T. [Fundacao Oswaldo Cruz, Centro de Pesquisas Aggeu Magalhaes (Brazil); Schreiner, W. H., E-mail: wido@fisica.ufpr.br [Universidade Federal do Parana, Departamento de Fisica (Brazil)

    2012-09-15

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV-Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the {mu}M range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation-reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V{sub 2}O{sub 5} form.

  6. Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments

    Directory of Open Access Journals (Sweden)

    Bruno Rafael Ramos de Mattos

    2015-01-01

    Full Text Available Inflammatory bowel diseases (IBD are characterized by chronic inflammation of the intestinal tract associated with an imbalance of the intestinal microbiota. Crohn’s disease (CD and ulcerative colitis (UC are the most widely known types of IBD and have been the focus of attention due to their increasing incidence. Recent studies have pointed out genes associated with IBD susceptibility that, together with environment factors, may contribute to the outcome of the disease. In ulcerative colitis, there are several therapies available, depending on the stage of the disease. Aminosalicylates, corticosteroids, and cyclosporine are used to treat mild, moderate, and severe disease, respectively. In Crohn’s disease, drug choices are dependent on both location and behavior of the disease. Nowadays, advances in treatments for IBD have included biological therapies, based mainly on monoclonal antibodies or fusion proteins, such as anti-TNF drugs. Notwithstanding the high cost involved, these biological therapies show a high index of remission, enabling a significant reduction in cases of surgery and hospitalization. Furthermore, migration inhibitors and new cytokine blockers are also a promising alternative for treating patients with IBD. In this review, an analysis of literature data on biological treatments for IBD is approached, with the main focus on therapies based on emerging recombinant biomolecules.

  7. Easy synthesis of highly fluorescent carbon dots from albumin and their photoluminescent mechanism and biological imaging applications.

    Science.gov (United States)

    Hu, Xiaohua; An, Xueqin; Li, Lielie

    2016-01-01

    A simple and green approach was developed to synthesize highly fluorescent carbon dots (CDs) using albumin as a carbon source in aqueous solution at room temperature. The CDs were characterized by excellent monodispersion, superior photostability, pH-independent emission, long fluorescence lifetime and high quantum yield (QY). The photoluminescent (PL) mechanism of CDs was explored by means of time-resolved PL decay, and the results revealed that PL originated from the emission of both defect state and intrinsic state. In addition, biological imaging with the application of CDs was carried out in human breast cancer Bcap-37 cell, which demonstrated that CDs were provided with an excellent biocompatibility, low cytotoxicity and good transmembrane ability. Besides, CDs could be considered as a potential substitute for organic dyes or semiconductor quantum dots (SQDs) in biological imaging.

  8. Mechanical-biological waste treatment and anaerobic processes. 59. information meeting, Neuwied, October 1999; Mechanisch-biologische Restabfallbehandlung und Anaerobverfahren. 59. Informationsgespraech in Neuwied im Oktober 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O.; Euler, H.; Leonhardt, H.W. [comps.

    1999-10-01

    This proceedings volume discusses the specifications for and cost of mechanical-biological waste treatment, the optimisation of economic efficiency and pollutant emissons, the combination of mechanical-biological and thermal waste treatment processes, the value of mechanical-biological waste treatment, waste management concepts, process engineering and practical experience, and the eco-balance of the process. [German] Themen dieses Proceedingsbandes sind: Anforderungen und Kosten der mechanisch-biologischen Abfallbehandlung; Optimierung der Wirtschaftlichkeit und Emissionssituation; Kombination von mechanisch-biologischer und thermischer Muellbehandlung; Bewertung der mechanisch-biologischen Abfallbehandlung, Abfallwirtschaftskonzepte, Verfahrenstechnik und Betriebserfahrungen; Oekobilanz. (SR)

  9. A computational study of the protein-ligand interactions in CDK2 inhibitors: using quantum mechanics/molecular mechanics interaction energy as a predictor of the biological activity.

    Science.gov (United States)

    Alzate-Morales, Jans H; Contreras, Renato; Soriano, Alejandro; Tuñon, Iñaki; Silla, Estanislao

    2007-01-15

    We report a combined quantum mechanics/molecular mechanics (QM/MM) study to determine the protein-ligand interaction energy between CDK2 (cyclin-dependent kinase 2) and five inhibitors with the N(2)-substituted 6-cyclohexyl-methoxy-purine scaffold. The computational results in this work show that the QM/MM interaction energy is strongly correlated to the biological activity and can be used as a predictor, at least within a family of substrates. A detailed analysis of the protein-ligand structures obtained from molecular dynamics simulations shows specific interactions within the active site that, in some cases, have not been reported before to our knowledge. The computed interaction energy gauges the strength of protein-ligand interactions. Finally, energy decomposition and multiple regression analyses were performed to check the contribution of the electrostatic and van der Waals energies to the total interaction energy and to show the capabilities of the computational model to identify new potent inhibitors.

  10. Mechanism of the biological response to winter cooling in the northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.; PrasannaKumar, S.; Bhattathiri, P.M.A.; DileepKumar, M.; Raghukumar, S.; Nair, K.K.C.; Ramaiah, N.

    , and that this mechanism of nutrient supply is a dominant control on winter primary productivity. Observed seasonal changes in bacterial and microzooplankton populations may provide an explanation for the Arabian Sea 'paradox' that mesozooplankton biomass remains more...

  11. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    Science.gov (United States)

    Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  12. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Pei Feng

    Full Text Available A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP scaffolds via selective laser sintering (SLS. We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO. Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF, indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  13. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    Institute of Scientific and Technical Information of China (English)

    YUAN Wu-Jie; LUO Xiao-Shu; JIANG Pin-Qun

    2007-01-01

    In this paper,we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism.Then we study excitement properties of the model under alternating current (AC) stimulation.The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli,such as refractory period and the brain neural excitement response induced by different intensities of nolse and coupling.The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  14. COD FRACTIONS IN THE PROCESS OF MECHANICAL-BIOLOGICAL TREATMENT SEWAGE

    Directory of Open Access Journals (Sweden)

    Joanna Smyk

    2015-11-01

    Full Text Available The aim of the research was to determine the COD fraction thereof in sewage and their changes in the effluent after further treatment processes. The study was conducted in a sewage treatment plant in Bialystok (RLM> 100000. In sewage the highest concentrations occurred in the suspension of the organic fractions slowly biodegradable XS (303.7 mg O2/l and dissolved organic compounds readily biodegradable SS (263 mg O2/l. The lower amounts were irreducible fractions dissolved in sewage and suspended SI (56 mg O2/l and XI (101.2 mg O2/l. Almost 80% of the total COD fractions were biodegradable (SS + XS. In the treated wastewater soluble fraction SI-biodegradable (56 mg O2/l occurred in the highest concentration. The flow of wastewater by components of sewage treatment plant resulted the complete removal of biologically degradable fraction of dissolved SS. More than 94.5% of the total COD in waste water purified fractions were biologically decomposable (SI + XI. Moreover, based on the analysis of studies the following soil removal was found: BOD5 – 99.4%, COD – 92.9%, total nitrogen – 93.4%, total phosphorus – 92%. After waste water treatment, ammonia nitrogen was completely removed while the nitrate concentration increased to 4.6 mg N/dm3.

  15. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates.

    Science.gov (United States)

    Lonkar, Pallavi; Dedon, Peter C

    2011-05-01

    Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.

  16. Ultrasound Attenuation in Biological Tissue Predicted by the Modified Doublet Mechanics Model

    Institute of Scientific and Technical Information of China (English)

    JIANG Xin; LIU Xiao-Zhou; WU Jun-Ru

    2009-01-01

    Experimental results have shown that in the megahertz frequency range the relationship between the acoustic attenuation coefficient in soft tissues and frequency is nearly linear. The classical continuum mechanics (CCM),which assumes that the material is uniform and continuous, fails to explain this relationship particularly in the high megahertz range. Doublet mechanics (DM) is a new elastic theory which takes the discrete nature of material into account. The current DM theory however does not consider the loss. We revise the doublet mechanics (DM)theory by including the loss term, and calculate the attenuation of a soft tissue as a function of frequency using the modified the DM theory (MDM). The MDM can now well explain the nearly linear relationship between the acoustic attenuation coefficient in soft tissues and frequency.

  17. Mechanical integrity and adhesion of thin films for applications in electronics packaging and cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jin; Wan Kaitak; Chian Kermsin

    2003-01-22

    A new theoretical model was developed for a pull-off adhesion test using an axisymmetric flat punch and a rectangular flat punch adhered to a thin polymer film interface. An elastic solution was derived to portray the mechanical integrity of the thin film. A mechanical energy release rate was calculated numerically. As the punch was pulled away from the adhered film, the film deformed under mixed bending and stretching. Both stiffness and thickness of the film were allowed to vary. The derived solid-film 'pull-off' events sharply contrast with the abrupt pull-off in solid-solid adhesion as predicted by the classical JKR theory.

  18. Mimic-biology research on self-recovering mechanism of cavity-type crack

    Institute of Scientific and Technical Information of China (English)

    YUAN; Chaolong; (袁朝龙); ZHONG; Yuexian; (钟约先); MA; Qingxian; (马庆贤); CAO; Qixiang; (曹起骧)

    2002-01-01

    Modeling method was used to research the recovering law of inner cavity-type cracks during the processes of high-temperature plastic deformation. It was found that the self-recovering of cavity-type fault was similar to the self-healing of wound of skin and fracture. The self-recovering process of cavity-type fault was investigated according to the rule of self-healing of wound in human body. The recrystallization mechanism of self-recovering of cavity-type fault was discovered. A new method is presented to study the self-recovering mechanism of cavity-type cracks.

  19. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    Science.gov (United States)

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential

  20. Systems Cancer Biology and the Controlling Mechanisms for the J-Shaped Cancer Dose Response: Towards Relaxing the LNT Hypothesis.

    Science.gov (United States)

    Lou, In Chio; Zhao, Yuchao; Wu, Yingjie; Ricci, Paolo F

    2012-01-01

    The hormesis phenomena or J-shaped dose response have been accepted as a common phenomenon regardless of the involved biological model, endpoint measured and chemical class/physical stressor. This paper first introduced a mathematical dose response model based on systems biology approach. It links molecular-level cell cycle checkpoint control information to clonal growth cancer model to predict the possible shapes of the dose response curves of Ionizing Radiation (IR) induced tumor transformation frequency. J-shaped dose response curves have been captured with consideration of cell cycle checkpoint control mechanisms. The simulation results indicate the shape of the dose response curve relates to the behavior of the saddle-node points of the model in the bifurcation diagram. A simplified version of the model in previous work of the authors was used mathematically to analyze behaviors relating to the saddle-node points for the J-shaped dose response curve. It indicates that low-linear energy transfer (LET) is more likely to have a J-shaped dose response curve. This result emphasizes the significance of systems biology approach, which encourages collaboration of multidiscipline of biologists, toxicologists and mathematicians, to illustrate complex cancer-related events, and confirm the biphasic dose-response at low doses.

  1. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    Science.gov (United States)

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation.

  2. Biogenesis and Mechanism of Action of Small Non-Coding RNAs: Insights from the Point of View of Structural Biology

    Science.gov (United States)

    Costa, Marina C.; Leitão, Ana Lúcia; Enguita, Francisco J.

    2012-01-01

    Non-coding RNAs are dominant in the genomic output of the higher organisms being not simply occasional transcripts with idiosyncratic functions, but constituting an extensive regulatory network. Among all the species of non-coding RNAs, small non-coding RNAs (miRNAs, siRNAs and piRNAs) have been shown to be in the core of the regulatory machinery of all the genomic output in eukaryotic cells. Small non-coding RNAs are produced by several pathways containing specialized enzymes that process RNA transcripts. The mechanism of action of these molecules is also ensured by a group of effector proteins that are commonly engaged within high molecular weight protein-RNA complexes. In the last decade, the contribution of structural biology has been essential to the dissection of the molecular mechanisms involved in the biosynthesis and function of small non-coding RNAs. PMID:22949860

  3. Enforced Scale Selection in Field Theories of Mechanical and Biological Systems

    DEFF Research Database (Denmark)

    Tarp, Jens Magelund

    The collective motion of driven or self-propelled interacting units is in many natural systems known to produce complex patterns. This thesis considers two continuum field theories commonly used in describing pattern formation and dynamics: The first one, the phase field crystal model, which desc...... dynamics of single crystals. Secondly, a continuum theory describing mesoscopic turbulence of biological active matter, which is used to study long-range ordered vorticity patterns generated by cell divisions in a endothelial cell layer.......The collective motion of driven or self-propelled interacting units is in many natural systems known to produce complex patterns. This thesis considers two continuum field theories commonly used in describing pattern formation and dynamics: The first one, the phase field crystal model, which...

  4. Stochastic dynamics of magnetic nanoparticles and a mechanism of biological orientation in the geomagnetic field

    CERN Document Server

    Binhi, V N

    2004-01-01

    The rotations of microscopic magnetic particles, magnetosomes, embedded into the cytoskeleton are considered. A great number of magnetosomes are shown to possess two stable equilibrium positions, between which there occur transitions under the influence of thermal disturbances. The random rotations attain the value of order of radian. The rate of the transitions and the probability of magnetosomes to stay in the different states depend on magnetic field direction with respect to an averaged magnetosome's orientation. This effect explains the ability of migrant birds to faultless orientation in long-term passages in the absence of the direct visibility of optical reference points. The sensitivity to deviation from an `ideal' orientation is estimated to be 1-2 degrees. Possible participation of magnetosomes in biological effects caused by microwave electromagnetic fields is discussed.

  5. Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

    Energy Technology Data Exchange (ETDEWEB)

    Ekworomadu, MarCia T.; Poor, Catherine B.; Owens, Cedric P.; Balderas, Miriam A.; Fabian, Marian; Olson, John S.; Murphy, Frank; Balkabasi, Erol; Honsa, Erin S.; He, Chuan; Goulding, Celia W.; Maresso, Anthony W. (Baylor); (UCI); (Cornell); (Rice); (UC)

    2014-10-02

    To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3{sub 10}-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3{sub 10}-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with

  6. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    Science.gov (United States)

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  7. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.

    Science.gov (United States)

    Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min

    2010-06-01

    Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion

  8. Determining Chemical Reactivity Driving Biological Activity from SMILES Transformations: The Bonding Mechanism of Anti-HIV Pyrimidines

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2013-07-01

    Full Text Available Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC and the Branching SMILES (BraS, respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.

  9. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    Science.gov (United States)

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI.

  10. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins.

    Science.gov (United States)

    Gremski, Luiza Helena; Trevisan-Silva, Dilza; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Meissner, Gabriel Otto; Wille, Ana Carolina Martins; Vuitika, Larissa; Dias-Lopes, Camila; Ullah, Anwar; de Moraes, Fábio Rogério; Chávez-Olórtegui, Carlos; Barbaro, Katia Cristina; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2014-06-01

    The Loxosceles genus spiders (the brown spiders) are encountered in all the continents, and the clinical manifestations following spider bites include skin necrosis with gravitational lesion spreading and occasional systemic manifestations, such as intravascular hemolysis, thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of toxins especially enriched in three molecular families: the phospholipases D, astacin-like metalloproteases and Inhibitor Cystine Knot (ICK) peptides. Other toxins with low level of expression also present in the venom include the serine proteases, serine protease inhibitors, hyaluronidases, allergen factors and translationally controlled tumor protein (TCTP). The mechanisms by which the Loxosceles venoms act and exert their noxious effects are not fully understood. Except for the brown spider venom phospholipase D, which causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological activities of the other venom toxins remain unclear. The objective of the present review is to provide insights into the brown spider venoms and loxoscelism based on recent results. These insights include the biology of brown spiders, the clinical features of loxoscelism and the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this review includes a description of the novel toxins revealed by molecular biology and proteomics techniques, the data regarding three-dimensional toxin structures, and the mechanism of action of these molecules. Finally, the biotechnological applications of the venom components, especially for those toxins reported as recombinant molecules, and the challenges for future study are discussed.

  11. Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus.

    Science.gov (United States)

    Ferguson, K A; Njap, F; Nicola, W; Skinner, F K; Campbell, S A

    2015-12-01

    Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3-12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.

  12. Mechanism of Action for Anti-Radiation Vaccine in Reducing the Biological Impact of High-Dose Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2006-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. We partially analyzed the biochemical characteristics of the SRDs. The SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  13. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  14. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties.

    Science.gov (United States)

    Kashiwazaki, Haruhiko; Kishiya, Yusuke; Matsuda, Atsushi; Yamaguchi, Keisuke; Iizuka, Tadashi; Tanaka, Junzo; Inoue, Nobuo

    2009-01-01

    We fabricated novel chitosan/hydroxyapatite (HAp) nanocomposites with porous structure by the co-precipitation and porogen leaching method. SEM observation confirmed that the porous chitosan/HAp nanocomposites with 60.6% and 87.1% porosity showed the interconnective pores with pore diameters in the range of 100-200 mum. The composites were found to be mechanically flexible and could be easily formed into any desired shape. The mechanical strength was enhanced by the heat treatment with saturated steam, which was ascribed to the formation of hydrogen bonds between chitosan molecules. The composites subcutaneously implanted in the backs of SD rats for 3 weeks caused little inflammation, and new blood vessel growth and giant cells were found around the composite accompanied with roughening of the surface due to degradation, showing good biocompatibility and biodegradation.

  15. Studying chemical reactions in biological systems with MBN Explorer: implementation of molecular mechanics with dynamical topology

    CERN Document Server

    Sushko, Gennady B; Verkhovtsev, Alexey V; Volkov, Sergey N; Solov'yov, Andrey V

    2015-01-01

    The concept of molecular mechanics force field has nowadays been widely accepted for studying various processes in biomolecular systems. In this paper we suggest a modification for the standard CHARMM force field, that permits simulations of systems with dynamically changing molecular topologies. The implementation of the modified force field was carried out in the popular program MBN Explorer, and, to support the development, in this paper we provide several case studies where dynamical topology is necessary. In particular, it is shown, that the modified molecular mechanics force field can be applied for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation or collision induced damage, transformation and fragmentation processes involving biomolecular systems.

  16. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options

    Science.gov (United States)

    Lee, Chang-Ro; Lee, Jung Hun; Park, Moonhee; Park, Kwang Seung; Bae, Il Kwon; Kim, Young Bae; Cha, Chang-Jun; Jeong, Byeong Chul; Lee, Sang Hee

    2017-01-01

    Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized. PMID:28348979

  17. Mechanisms of cell protection by adaptation to chronic and acute hypoxia: molecular biology and clinical practice.

    Science.gov (United States)

    Corbucci, G G; Marchi, A; Lettieri, B; Luongo, C

    2005-11-01

    Several experimental and clinical studies have shown that specific biochemical and molecular pathways are involved in the myocardial and skeletal muscle cell tolerance to acute and/or chronic hypoxic injury. A number of different factors were proposed to play a role in the preservation of tissue viability, but to a few of them a pivotal role in the adaptive mechanisms to hypoxic stimuli could be ascribed. Starting from the observation that mitochondrial electron transport chain (ETC) enzymic complexes are the targets of oxygen reduced availability, most of data are compatible with a mechanism of enzymic adaptation in which the nitric oxide (NO) generation plays the major role. If the partial and reversible NO-induced inhibition of ETC enzymic complexes represents the most rapid and prominent adaptive mechanism in counteracting the damaging effects of hypoxia, the sarcolemmal and mitochondrial K+(ATP) channels activation results to be closely involved in cytoprotection. This process is depending on protein kinase C (PKC) isoform activation triggered by reactive oxygen species (ROS) generation, adenosine triphosphate (ATP) depletion and Ca++ overload. It is well known that all these factors are present in hypoxia-induced oxidative damage and mitochondrial Ca++ altered pools represent powerful stimuli in the damaging processes. The activation of mitochondrial K+(ATP) channels leads to a significant reduction of Ca++ influx and attenuation of mitochondrial Ca++ overload. Closely linked to these adaptive changes signal transduction pathways are involved in the nuclear DNA damage and repair mechanisms. On this context, an essential role is played by the hypoxia-induced factor-1alpha (HIF-1alpha) in terms of key transcription factor involved in oxygen-dependent gene regulation. The knowledge of the biochemical and molecular sequences involved in these adaptive processes call for a re-evaluation of the therapeutic approach to hypoxia-induced pathologies. On this light

  18. Biology of lithium response in bipolar disorder : genetic mechanisms and telomeres

    OpenAIRE

    Martinsson, Lina

    2016-01-01

    Background: Bipolar disorder is a common, chronic and severe mental illness, causing suffering and large costs. Lithium treatment is the golden standard and works in 2/3 of patients, of which 50% are called lithium responders. There is strong evidence that both bipolar disorder and the degree of lithium response are highly heritable, although many mechanisms are unknown. Short telomere length has been found in both somatic and psychiatric disorders, but little is known about te...

  19. Biological control mechanisms of D-pinitol against powdery mildew in cucumber

    OpenAIRE

    Chen, J; Fernandez, Diana; Wang, D. D.; Chen, Y. J.; Dai, G. H.

    2014-01-01

    D-pinitol is an effective agent for controlling powdery mildew (Podosphaera xanthii) in cucumber. In this study, we determined the mechanisms of D-pinitol in controlling powdery mildew in cucumber plants. We compared P. xanthii development on cucumber leaf surface treated with D-pinitol or water (2 mg ml(-1)) at different time points after inoculation. The germinating conidia, hyphae, and conidiophores of the pathogen were severely damaged by D-pinitol at any time of application tested. The h...

  20. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Lee, Andrew H; Symington, Lorraine S; Fidock, David A

    2014-09-01

    Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.

  1. A new technique to improve the mechanical and biological performance of ultra high molecular weight polyethylene using a nylon coating.

    Science.gov (United States)

    Firouzi, Dariush; Youssef, Aya; Amer, Momen; Srouji, Rami; Amleh, Asma; Foucher, Daniel A; Bougherara, Habiba

    2014-04-01

    A new patent pending technique is proposed in this study to improve the mechanical and biological performance of ultra high molecular weight polyethylene (UHMWPE), i.e., to uniformly coat nylon onto the UHMWPE fiber (Firouzi et al., 2012). Mechanical tests were performed on neat and new nylon coated UHMWPE fibers to examine the tensile strength and creep resistance of the samples at different temperatures. Cytotoxicity and osteolysis induced by wear debris of the materials were investigated using (MTT) assay, and RT-PCR for tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) osteolysis markers. Mechanical test results showed substantial improvement in maximum creep time, maximum breaking force, and toughness values of Nylon 6,6 and Nylon 6,12 coated UHMWPE fibers between average 15% and 60% at 25, 50, and 70°C. Furthermore, cytotoxicity studies have demonstrated significant improvement in cell viability using the nylon coated UHMWPE over the neat one (72.4% vs 54.8%) for 48h and (80.7 vs 5%) for 72h (PNylon 6,6 coated UHMWPE (2.5 fold increase for TNFα at 48h, and three fold increase for IL-6 at 72h (Pnylon could be used as a novel material in clinical applications with lower cytotoxicity, less wear debris-induced osteolysis, and superior mechanical properties compared to neat UHMWPE.

  2. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2014-01-01

    In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.

  3. Omega-3 Fatty Acids and Depression: Scientific Evidence and Biological Mechanisms

    Directory of Open Access Journals (Sweden)

    Giuseppe Grosso

    2014-01-01

    Full Text Available The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries’ diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.

  4. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms.

    Science.gov (United States)

    Grosso, Giuseppe; Galvano, Fabio; Marventano, Stefano; Malaguarnera, Michele; Bucolo, Claudio; Drago, Filippo; Caraci, Filippo

    2014-01-01

    The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA) in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries' diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.

  5. Functionalization of Titanium with Chitosan via Silanation: Evaluation of Biological and Mechanical Performances

    Science.gov (United States)

    Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte

    2012-01-01

    Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation. PMID:22859940

  6. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Science.gov (United States)

    Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte

    2012-01-01

    Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  7. Biological effects of mechanically and chemically dispersed oil on the Icelandic scallop (Chlamys islandica).

    Science.gov (United States)

    Frantzen, Marianne; Regoli, Francesco; Ambrose, William G; Nahrgang, Jasmine; Geraudie, Perrine; Benedetti, Maura; Locke, William L; Camus, Lionel

    2016-05-01

    This study aimed to simulate conditions in which dispersant (Dasic NS) might be used to combat an oil spill in coastal sub-Arctic water of limited depth and water exchange in order to produce input data for Net Environmental Benefit Analysis (NEBA) of Arctic and sub-Arctic coastal areas. Concentration dependent differences in acute responses and long-term effects of a 48h acute exposure to dispersed oil, with and without the application of a chemical dispersant, were assessed on the Arctic filter feeding bivalve Chlamys islandica. Icelandic scallops were exposed for 48h to a range of spiked concentrations of mechanically and chemically dispersed oil. Short-term effects were assessed in terms of lysosomal membrane stability, superoxide dismutase, catalase, gluthatione S-transferases, glutathione peroxidases, glutathione reductase, glutathione, total oxyradical scavenging capacity, lipid peroxidation and peroxisomal proliferation. Post-exposure survival, growth and reproductive investment were followed for 2 months to evaluate any long-term consequence. Generally, similar effects were observed in scallops exposed to mechanically and chemically dispersed oil. Limited short-term effects were observed after 48h, suggesting that a different timing would be required for measuring the possible onset of such effects. There was a concentration dependent increase in cumulative post-exposure mortality, but long-term effects on gonadosomatic index, somatic growth/condition factor did not differ among treatments.

  8. COX inhibitors Indomethacin and Sulindac derivatives as antiproliferative agents: synthesis, biological evaluation, and mechanism investigation.

    Science.gov (United States)

    Chennamaneni, Snigdha; Zhong, Bo; Lama, Rati; Su, Bin

    2012-10-01

    Cyclooxygenase (COX) inhibitors Indomethacin and its structural analogs Sulindac exhibit cell growth inhibition and apoptosis inducing activities in various cancer cell lines via COX independent mechanisms. In this study, the molecular structures of Indomethacin and Sulindac were used as starting scaffolds to design novel analogs and their effects on the proliferation of human cancer cells were evaluated. Compared to Indomethacin and Sulindac inhibiting cancer cell proliferation with IC(50)s of more than 1 mM, the derivatives displayed significantly increased activities. Especially, one of the Indomethacin analogs inhibited the growth of a series of cancer cell lines with IC(50)s around 0.5 μM-3 μM. Mechanistic investigation revealed that the new analog was in fact a tubulin inhibitor, although the parental compound Indomethacin did not show any tubulin inhibitory activity. Tubulin polymerization assay indicated this compound inhibited tubulin assembly at high concentrations, but promoted this process at low concentrations which is a very unique mechanism. The binding mode of this compound in tubulin was predicted using the molecular docking simulation.

  9. Statistical mechanics of tuned cell signalling: sensitive collective response by synthetic biological circuits

    Science.gov (United States)

    Voliotis, M.; Liverpool, T. B.

    2017-03-01

    Living cells sense and process environmental cues through noisy biochemical mechanisms. This apparatus limits the scope of engineering cells as viable sensors. Here, we highlight a mechanism that enables robust, population-wide responses to external stimulation based on cellular communication, known as quorum sensing. We propose a synthetic circuit consisting of two mutually repressing quorum sensing modules. At low cell densities the system behaves like a genetic toggle switch, while at higher cell densities the behaviour of nearby cells is coupled via diffusible quorum sensing molecules. We show by systematic coarse graining that at large length and timescales that the system can be described using the Ising model of a ferromagnet. Thus, in analogy with magnetic systems, the sensitivity of the population-wide response, or its ‘susceptibility’ to a change in the external signal, is highly enhanced for a narrow range of cell–cell coupling close to a critical value. We expect that our approach will be used to enhance the sensitivity of synthetic bio-sensing networks.

  10. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Directory of Open Access Journals (Sweden)

    Pauline Renoud

    Full Text Available Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  11. MECHANICAL AND BIOLOGICAL PERFORMANCE OF SODIUM METAPERIODATE-IMPREGNATED PLASTICIZED WOOD (PW

    Directory of Open Access Journals (Sweden)

    Md.Rezaur Rahman

    2010-04-01

    Full Text Available Malaysia, especially the Borneo Island state of Sarawak, has a large variety of tropical wood species. In this study, selected raw tropical wood species namely Artocarpus Elasticus, Artocarpus Rigidus, Xylopia spp., Koompassia Malaccensis, and Eugenia spp. were chemically treated with sodium metaperiodate to convert them into plasticized wood (PW. Manufactured plasticized wood samples were characterized using, Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical testing (modulus of elasticity (MOE, modulus of rupture (MOR, static Young’s modulus (Es, decay resistance, and water absorption. MOE and MOR were calculated using a three-point bending test. Es and decay resistance were calculated using the compression parallel to grain test and the natural laboratory decay test, respectively. The manufactured PW yielded higher MOE, MOR, and Es. PW had a lower water content compared to the untreated wood and had high resistance to decay exposure, with Eugenia spp. having the highest resistance compared to the others.

  12. A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations.

    Science.gov (United States)

    Gips, Bart; van der Eerden, Jan P J M; Jensen, Ole

    2016-08-01

    The visual system receives a wealth of sensory information of which only little is relevant for behaviour. We present a mechanism in which alpha oscillations serve to prioritize different components of visual information. By way of simulated neuronal networks, we show that inhibitory modulation in the alpha range (~ 10 Hz) can serve to temporally segment the visual information to prevent information overload. Coupled excitatory and inhibitory neurons generate a gamma rhythm in which information is segmented and sorted according to excitability in each alpha cycle. Further details are coded by distributed neuronal firing patterns within each gamma cycle. The network model produces coupling between alpha phase and gamma (40-100 Hz) amplitude in the simulated local field potential similar to that observed experimentally in human and animal recordings.

  13. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Qian Qin; Young Xu; Tao He; Chunlin Qin; Jianming Xu

    2012-01-01

    This article reviews the molecular structure,expression pattern,physiological function,pathological roles and molecular mechanisms of Twist1 in development,genetic disease and cancer.Twist1 is a basic helix-loop-helix domaincontaining transcription factor.It forms homo- or hetero-dimers in order to bind the Nde1 E-box element and activate or repress its target genes.During development,Twistl is essential for mesoderm specification and differentiation.Heterozygous loss-of-function mutations of the human Twist1 gene cause several diseases including the SaethreChotzen syndrome.The Twist1-null mouse embryos die with unclosed cranial neural tubes and defective head mesenchyme,somites and limb buds.Twist1 is expressed in breast,liver,prostate,gastric and other types of cancers,and its expression is usually associated with invasive and metastatic cancer phenotypes.In cancer cells,Twistl is upregulated by multiple factors including SRC-1,STAT3,MSX2,HIF-1α,integrin-linked kinase and NF-κB.Twist1 significantly enhances epithelial-mesenchymal transition (EMT) and cancer cell migration and invasion,hence promoting cancer metastasis.Twistl promotes EMT in part by directly repressing E-cadherin expression by recruiting the nucleosome remodeling and deacetylase complex for gene repression and by upregulating Bmil,AKT2,YB-1,etc.Emerging evidence also suggests that Twist1 plays a role in expansion and chemotherapeutic resistance of cancer stem cells.Further understanding of the mechanisms by which Twist1 promotes metastasis and identification of Twist1 functional modulators may hold promise for developing new strategies to inhibit EMT and cancer metastasis.

  14. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    Science.gov (United States)

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  15. 生物除磷的机理及工艺%Mechanism and Processes of Biological Phosphorus Removal

    Institute of Scientific and Technical Information of China (English)

    欧阳子民

    2011-01-01

    水体富营养化是世界性难题,其中磷是主要限制因子。生物除磷工艺具有结构简单、污泥产量少、运行费用较低、便于操作和磷的回收等优点。在介绍PAO和DPB除磷原理的基础上,综述国内外生物除磷的研究进展,并介绍应用较多的除磷工艺,以供污水防治参考。%The phosphorus is the limited nutrient in eutrophication of the waterbody,which is a significant worldwide problem. The process of biological removal of phosphorus in waterbody is structure simple, sludge production less,low-cost,convenient in operation and reelaimation. Based on the introduction of the mechanism of PAO and DPB ,the updated progresses and processes in biological removal of phosphorus in waterbody were summarized in this paper, so as to provide references for the control of waste water.

  16. Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and in vitro biological response.

    Science.gov (United States)

    Hadjicharalambous, Chrystalleni; Buyakov, Ales; Buyakova, Svetlana; Kulkov, Sergey; Chatzinikolaidou, Maria

    2015-04-23

    Zirconia (ZrO2) and alumina (Al2O3) based ceramics are widely used for load-bearing applications in bone repair due to their excellent mechanical properties and biocompatibility. They are often regarded as bioinert since no direct bone-material interface is created unless a porous structure intercedes, leading to better bone bonding. In this regard, investigating interactions between cells and porous ceramics is of great interest. In the present study, we report on the successful fabrication of sintered alumina A-61, zirconia Z-50 and zirconia/alumina composite ZA-60 ceramics with medium porosities of 61, 50 and 60%, respectively, indicating a bimodal pore size distribution and good interconnectivity. They exhibit elastic moduli of 3-10 GPa and compressive strength values of 60-240 MPa, similar to those of human cortical bone.We performed in vitro cell-material investigations comparing the adhesion, proliferation and differentiation of mouse pre-osteoblasts MC3T3-E1 on the three porous materials. While all three ceramics demonstrate a strong cell attachment, better cell spreading is observed on zirconia-containing substrates. Significantly higher cell growth was quantified on the latter ceramics, revealing an increased alkaline phosphatase activity, higher collagen production and increased calcium biomineralization compared to A-61. Hence, these porous zirconia-containing ceramics elicit superior biological responses over porous alumina of similar porosity, promoting enhanced biological interaction, with potential use as non-degradable bone grafts or as implant coatings.

  17. [Mechanism of the biological impact of weak electromagnetic fields and in vitro effects of degassing of blood].

    Science.gov (United States)

    Shatalov, V M

    2012-01-01

    The physical validity of the mechanism proposed by the author is discussed. According to the theory a prolonged exposure to weak electromagnetic fields leads to an enlargement of the micro-bubbles and degassing of bioliquid. Degassing alters the physical and chemical properties of bioliquid that affect some medical and biological indicators. The following changes in some blood parameters during degassing in vitro were analyzed: a decrease in the glucose concentration, an abnormal activation of blood clotting, an increase in the rate of blood cell aggregation, a decrease in the effectiveness of aspirin as an inhibitor of platelet aggregation and the slowing of indirect anticoagulants. All of this evidences a possible correlation between the increasing electromagnetic pollution and the risk of cardiovascular disease.

  18. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  19. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2010-06-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  20. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  1. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  2. The biological mechanisms and behavioral functions of opsin-based light detection by the skin

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    2016-08-01

    Full Text Available Light detection not only forms the basis of vision (via visual retinal photoreceptors, but can also occur in other parts of the body, including many non-rod/non-cone ocular cells, the pineal complex, the deep brain, and the skin. Indeed, many of the photopigments (an opsin linked to a light-sensitive 11-cis retinal chromophore that mediate color vision in the eyes of vertebrates are also present in the skin of animals such as reptiles, amphibians, crustaceans and fishes (with related photoreceptive molecules present in cephalopods, providing a localized mechanism for light detection across the surface of the body. This form of non-visual photosensitivity may be particularly important for animals that can change their coloration by altering the dispersion of pigments within the chromatophores (pigment containing cells of the skin. Thus, skin coloration may be directly color matched or tuned to both the luminance and spectral properties of the local background environment, thereby facilitating behavioral functions such as camouflage, thermoregulation, and social signaling. This review examines the diversity and sensitivity of opsin-based photopigments present in the skin and considers their putative functional roles in mediating animal behavior. Furthermore, it discusses the potential underlying biochemical and molecular pathways that link shifts in environmental light to both photopigment expression and chromatophore photoresponses. Although photoreception that occurs independently of image formation remains poorly understood, this review highlights the important role of non-visual light detection in facilitating the multiple functions of animal coloration.

  3. A bioconjugate approach toward squalamine mimics: Insight into the mechanism of biological action.

    Science.gov (United States)

    Chen, Wen-Hua; Shao, Xue-Bin; Moellering, Robert; Wennersten, Christine; Regen, Steven L

    2006-01-01

    A short and efficient synthesis has been devised for a family of squalamine mimics, based on the use of cholic acid, deoxycholic acid, lithocholic acid, putrescine, and spermine as starting materials. Those mimics that contain two facially amphiphilic sterol-spermidine conjugates show strong antibacterial activity against a broad spectrum of Gram-positive bacteria; their corresponding activities against a broad spectrum of Gram-negative bacteria are relatively moderate. Larger mimics, containing four such sterol-spermidine conjugates, exhibit very weak activities. Reversal of the pendent spermidine moiety and a putrescine linkage on the A- and D-rings had little consequence on the antibacterial activity for the most active of the squalamine mimics, which contained two sterol-polyamine units; similar results were obtained with squalamine mimics made from only one sterol unit. Detailed structure-activity measurements, in combination with kinetic studies carried out using liposomes as model membranes, support a mechanism of action involving noncovalent dimers as ion transporting species, most probably via the formation of pores or channels.

  4. A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint

    Science.gov (United States)

    Rios-Estepa, Rigoberto; Turner, Glenn W.; Lee, James M.; Croteau, Rodney B.; Lange, B. Markus

    2008-01-01

    The integration of mathematical modeling and experimental testing is emerging as a powerful approach for improving our understanding of the regulation of metabolic pathways. In this study, we report on the development of a kinetic mathematical model that accurately simulates the developmental patterns of monoterpenoid essential oil accumulation in peppermint (Mentha × piperita). This model was then used to evaluate the biochemical processes underlying experimentally determined changes in the monoterpene pathway under low ambient-light intensities, which led to an accumulation of the branchpoint intermediate (+)-pulegone and the side product (+)-menthofuran. Our simulations indicated that the environmentally regulated changes in monoterpene profiles could only be explained when, in addition to effects on biosynthetic enzyme activities, as yet unidentified inhibitory effects of (+)-menthofuran on the branchpoint enzyme pulegone reductase (PR) were assumed. Subsequent in vitro analyses with recombinant protein confirmed that (+)-menthofuran acts as a weak competitive inhibitor of PR (Ki = 300 μM). To evaluate whether the intracellular concentration of (+)-menthofuran was high enough for PR inhibition in vivo, we isolated essential oil-synthesizing secretory cells from peppermint leaves and subjected them to steam distillations. When peppermint plants were grown under low-light conditions, (+)-menthofuran was selectively retained in secretory cells and accumulated to very high levels (up to 20 mM), whereas under regular growth conditions, (+)-menthofuran levels remained very low (<400 μM). These results illustrate the utility of iterative cycles of mathematical modeling and experimental testing to elucidate the mechanisms controlling flux through metabolic pathways. PMID:18287058

  5. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    Science.gov (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.

  6. The mechanism of methylated seed oil on enhancing biological efficacy of topramezone on weeds.

    Science.gov (United States)

    Zhang, Jinwei; Jaeck, Ortrud; Menegat, Alexander; Zhang, Zongjian; Gerhards, Roland; Ni, Hanwen

    2013-01-01

    Methylated seed oil (MSO) is a recommended adjuvant for the newly registered herbicide topramezone in China and also in other countries of the world, but the mechanism of MSO enhancing topramezone efficacy is still not clear. Greenhouse and laboratory experiments were conducted to determine the effects of MSO on efficacy, solution property, droplet spread and evaporation, active ingredient deposition, foliar absorption and translocation of topramezone applied to giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medic.). Experimental results showed that 0.3% MSO enhanced the efficacy of topramezone by 1.5-fold on giant foxtail and by 1.0-fold on velvetleaf. When this herbicide was mixed with MSO, its solution surface tension and leaf contact angle decreased significantly, its spread areas on weed leaf surfaces increased significantly, its wetting time was shortened on giant foxtail but not changed on velvetleaf, and less of its active ingredient crystal was observed on the treated weed leaf surfaces. MSO increased the absorption of topramezone by 68.9% for giant foxtail and by 45.9% for velvetleaf 24 hours after treatment. It also apparently promoted the translocation of this herbicide in these two weeds.

  7. The mechanism of methylated seed oil on enhancing biological efficacy of topramezone on weeds.

    Directory of Open Access Journals (Sweden)

    Jinwei Zhang

    Full Text Available Methylated seed oil (MSO is a recommended adjuvant for the newly registered herbicide topramezone in China and also in other countries of the world, but the mechanism of MSO enhancing topramezone efficacy is still not clear. Greenhouse and laboratory experiments were conducted to determine the effects of MSO on efficacy, solution property, droplet spread and evaporation, active ingredient deposition, foliar absorption and translocation of topramezone applied to giant foxtail (Setaria faberi Herrm. and velvetleaf (Abutilon theophrasti Medic.. Experimental results showed that 0.3% MSO enhanced the efficacy of topramezone by 1.5-fold on giant foxtail and by 1.0-fold on velvetleaf. When this herbicide was mixed with MSO, its solution surface tension and leaf contact angle decreased significantly, its spread areas on weed leaf surfaces increased significantly, its wetting time was shortened on giant foxtail but not changed on velvetleaf, and less of its active ingredient crystal was observed on the treated weed leaf surfaces. MSO increased the absorption of topramezone by 68.9% for giant foxtail and by 45.9% for velvetleaf 24 hours after treatment. It also apparently promoted the translocation of this herbicide in these two weeds.

  8. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.

    Science.gov (United States)

    Caparrós, C; Guillem-Martí, J; Molmeneu, M; Punset, M; Calero, J A; Gil, F J

    2014-11-01

    The generation of titanium foams is a promising strategy for modifying the mechanical properties of intervertebral reinforcements. Thus, the aim of this study was to compare the in vitro biological response of Ti6Al4V alloys with different pore sizes for use in intervertebral implants in terms of the adhesion, proliferation, and differentiation of pre-osteoblastic cells. We studied the production of Ti6Al4V foams by powder metallurgy and the biological responses to Ti6Al4V foams were assessed in terms of different pore interconnectivities and elastic moduli. The Ti6Al4V foams obtained had similar porosities of approximately 34%, but different pore sizes (66 µm for fine Ti6Al4V and 147 µm for coarse Ti6Al4V) due to the sizes of the microsphere used. The Ti6Al4V foams had a slightly higher Young׳s modulus compared with cancellous bone. The dynamic mechanical properties of the Ti6Al4V foams were slightly low, but these materials can satisfy the requirements for intervertebral prosthesis applications. The cultured cells colonized both sizes of microspheres near the pore spaces, where they occupied almost the entire area of the microspheres when the final cell culture time was reached. No statistical differences in cell proliferation were observed; however, the cells filled the pores on fine Ti6Al4V foams but they only colonized the superficial microspheres, whereas the cells did not fill the pores on coarse Ti6Al4V foams but they were distributed throughout most of the material. In addition, the microspheres with wide pores (coarse Ti6Al4V) stimulated higher osteoblast differentiation, as demonstrated by the Alcaline Phosphatase (ALP) activity. Our in vitro results suggest that foams with wide pore facilitate internal cell colonization and stimulate osteoblast differentiation.

  9. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, M., E-mail: m.bahrami@ma.iut.ac.ir; Fathi, M.H.; Ahmadian, M.

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co–Cr–Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co–Cr–Mo alloy to bioactive type by adding 10, 15, and 20 wt.% HA which have lower modulus elasticity and higher microhardness. - Graphical abstract: The present investigation has been based on the production of composite materials based on Co–Cr–Mo alloy with different amounts of hydroxyapatite nanobioceramic powder using the powder metallurgy route. Mechanical and biological properties of the composites were investigated. A significant increase in microhardness and decrease in modulus elasticity of the sintered composites were observed. - Highlights: • Co-base alloy/hydroxyapatite composites were prepared by powder metallurgy. • Composite microhardness is improved in comparison with Co-base alloy. • Modulus elasticity decrease by about 53–63% in comparison with Co-base alloy. • Apatite nucleus is formed on the surface of composites after soaking test. • Bioinert Co–Cr–Mo alloy is successfully converted to a bioactive type.

  10. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    Science.gov (United States)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  11. Integrated Surface and Mechanical Characterization of Freestanding Biological and Other Nano-Structures Using Atomic Force Microscopy

    Science.gov (United States)

    Wang, Xin

    This dissertation is focused on surface and mechanical characterization of freestanding biological and other nano-structures using atomic force microscopy including two parts: cell mechanics and nano-structure mechanics. The main purpose of this work is to investigate how the nano- / micro-scale mechanical properties affect macro-scale function. In cancer cells, efficacy of drug delivery is oftentimes declined due to the thick dendritic network of oligosaccharide mucin chains on the cell surface. AFM is used to measure the force needed to pierce the mucin layer to reach the cell surface. A pool of ovarian, pancreatic, lung, colorectal and breast cancer cells are characterized. The studies offer additional support for the development of clinical and pharmaceutical approaches to combat mucin over-expression in tumors during cancer chemotherapy. Macroscopic adhesion-aggregation and subsequent transportation of microorganisms in porous medium are closely related to the microscopic deformation and adhesion mechanical properties. The classical Tabor's parameter is modified. Multiple bacterial strains are characterized in terms of aggregates size, aggregation index and transportation kinetics. AFM is employed to obtain the microscopic coupled adhesion-deformation properties. The strong correlation between Tabor's parameter and aggregation-deposition-transportation suggests the AFM characterization is capable of making reliable predication of macroscopic behavior. A novel "nano-cheese-cutter" is fabricated on tipless AFM cantilever to measure elastic modulus and interfacial adhesion of a 1-D freestanding nano-structure. A single electrospun fiber is attached to the free end of AFM cantilever, while another fiber is similarly prepared on a mica substrate in an orthogonal direction. An external load is applied to deform the two fibers into complementary V-shapes. This work is extended to investigate the interfacial adhesion energy between dissimilar materials. SWCNT thin

  12. [Mechanisms underlying physiological functions of food factors via non-specific interactions with biological proteins].

    Science.gov (United States)

    Murakami, Akira

    2015-01-01

      We previously reported that zerumbone, a sesquiterpene found in Zingiber zerumbet SMITH, showed notable cancer preventive effects in various organs of experimental rodents. This agent up-regulated nuclear factor-E2-related factor (Nrf2)-dependent expressions of anti-oxidative and xenobiotics-metabolizing enzymes, leading to an increased self-defense capacity. On the other hand, zerumbone markedly suppressed the expression of cyclooxygenase-2, an inducible pro-inflammatory enzyme, by disrupting mRNA stabilizing processes. Binding experiments using a biotin derivative of zerumbone demonstrated that Keap1, an Nrf2 repressive protein, is one of its major binding proteins that promotes their dissociation for inducing Nrf2 transactivation. We then generated a specific antibody against zerumbone-modified proteins and found that zerumbone modified numerous cellular proteins in a non-specific manner, with global distribution of the modified proteins seen not only in cytoplasm but also the nucleus. Based on those observations, zerumbone was speculated to cause proteo-stress, a notion supported by previous findings that it increased the C-terminus of Hsc70 interacting protein-dependent protein ubiquitination and also promoted aggresome formation. Interestingly, zerumbone counteracted proteo-stress and heat stress via up-regulation of the protein quality control systems (PQCs), e.g., heat shock proteins (HSPs), ubiquitin-proteasome, and autophagy. Meanwhile, several phytochemicals, including ursolic acid and curcumin, were identified as marked HSP70 inducers, whereas most nutrients tested were scarcely active. Recent studies have revealed that PQCs play important roles in the prevention of many lifestyle related diseases, such as cancer, thus non-specific binding of phytochemicals to cellular proteins may be a novel and unique mechanism underlying their physiological activities.

  13. Keratins extracted from Merino wool and Brown Alpaca fibres: thermal, mechanical and biological properties of PLLA based biocomposites.

    Science.gov (United States)

    Fortunati, E; Aluigi, A; Armentano, I; Morena, F; Emiliani, C; Martino, S; Santulli, C; Torre, L; Kenny, J M; Puglia, D

    2015-02-01

    Keratins extracted from Merino wool (KM) and Brown Alpaca fibres (KA) by sulphitolysis and commercial hydrolyzed keratins (KH) were used as fillers in poly(l-lactic) acid based biocomposites processed by solvent casting in chloroform. Different contents (1 wt.% and 5 wt.%) of keratins were considered and the morphological, thermal, mechanical, chemical and biological behaviours of the developed PLLA biocomposites were investigated. The results confirmed that surface morphologies of biocomposites revealed specific round-like surface topography function of different microsized keratin particles in different weight contents, such as the analysis of bulk morphologies which confirmed a phase adhesion strictly dependent by the keratin source. Transparency and thermal responses were deeply affected by the presence of the different keratins and their interaction with the PLLA matrix. Tensile test results underlined the possibility to modulate the mechanical behaviour of PLLA selecting the keratin type and content in order to influence positively the elastic and/or plastic response. It was demonstrated that surface characteristics of PLLA/KA systems also influenced the bovine serum albumin adsorption, moreover PLLA and PLLA biocomposites based on different kinds of keratins supported the culture of human bone-marrow mesenchymal stem cells, indicating that these biocomposites could be useful materials for medical applications.

  14. Integrating cell biology, image analysis, and computational mechanical modeling to analyze the contributions of cellulose and xyloglucan to stomatal function.

    Science.gov (United States)

    Rui, Yue; Yi, Hojae; Kandemir, Baris; Wang, James Z; Puri, Virendra M; Anderson, Charles T

    2016-06-01

    Cell walls are likely to be essential determinants of the amazing strength and flexibility of the guard cells that surround each stomatal pore in plants, but surprisingly little is known about cell wall composition, organization, and dynamics in guard cells. Recent analyses of cell wall organization and stomatal function in the guard cells of Arabidopsis thaliana mutants with defects in cellulose and xyloglucan have allowed for the development of new hypotheses about the relative contributions of these components to guard cell function. Advanced image analysis methods can allow for the automated detection of key structures, such as microtubules (MTs) and Cellulose Synthesis Complexes (CSCs), in guard cells, to help determine their contributions to stomatal function. A major challenge in the mechanical modeling of dynamic biological structures, such as guard cell walls, is to connect nanoscale features (e.g., wall polymers and their molecular interactions) with cell-scale mechanics; this challenge can be addressed by applying multiscale computational modeling that spans multiple spatial scales and physical attributes for cell walls.

  15. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment.

    Science.gov (United States)

    Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan

    2014-01-01

    In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.

  16. Mineral and Protein-Bound Water and Latching Action Control Mechanical Behavior at Protein-Mineral Interfaces in Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Pijush Ghosh

    2008-01-01

    Full Text Available The nacre structure consists of laminated interlocked mineral platelets separated by nanoscale organic layers. Here, the role of close proximity of mineral to the proteins on mechanical behavior of the protein is investigated through steered molecular dynamics simulations. Our simulations indicate that energy required for unfolding protein in the proximity of mineral aragonite is several times higher than that for isolated protein in the absence of the mineral. Here, we present details of specific mechanisms which result in higher energy for protein unfolding in the proximity of mineral. At the early stage of pulling, peaks in the load-displacement (LD plot at mineral proximity are quantitatively correlated to the interaction energy between atoms involved in the latching phenomenon of amino acid side chain to aragonite surface. Water plays an important role during mineral and protein interaction and water molecules closer to the mineral surface are highly oriented and remain rigidly attached as the protein strand is pulled. Also, the high magnitude of load for a given displacement originates from attractive interactions between the protein, protein-bound water, and mineral. This study provides an insight into mineral-protein interactions that are predominant in biological nanocomposites and also provides guidelines towards design of biomimetic nanocomposites.

  17. Exploring the MACH Model’s Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students’ written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students’ metacognition about their understanding of biological mechanisms. PMID:27252295

  18. Cell biological mechanism for triggering of ABA accumula-tion under water stress in Vicia faba leaves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves of Vicia faba. Mannitol at 890 mmol· kg-1 osmotic concentration induced an increase of more than 5 times in ABA concentra-tion in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentra-tion in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol·kg-1 concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumulation. Neither Ca2+-che- lating agent EGTA nor Ca2+ channel activator A23187 nor the two cytoskeleton inhibitors, colchicine and cyto-chalasin B, had any effect on water stress-induced ABA accumulation. Interestingly water stress-induced ABA accumulation was effectively inhibited by a non-plasmalemma-perme- able sulfhy-dryl-modifier PCMBS (p-chloromercuriphenyl-sulfonic acid), suggesting that plasmalemma pro-tein(s) may be involved in the triggering of water stress-induced ABA accumulation, and the protein may contain sulfhydryl group at its function domain.

  19. Free radicals in biological energy conversion: EPR studies of model systems. Final report. [Mechanism of chlorophyll participation in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Tollin, G.

    1976-08-31

    Energy conversion in photosynthesis is known to proceed via light-induced one-electron transfer reactions involving chlorophyll and electron donors and acceptors. Although the chemical identities of all of the components have not as yet been elucidated, considerable evidence has been accumulated which points to quinones (Q) as primary electron acceptors in both green plants and bacterial photosynthesis. Furthermore, it has been established that the initial photoprocess leads to the formation of a chlorophyll cation radical (C./sup +/). The research described in this report has as its goal the elucidation of the molecular-electronic mechanism of chlorophyll participation in photosynthesis. The following reactions have been observed: (a) Photoproduction of C./sup +/ in solution in the absence of added electron acceptors. This is a low quantum yield reaction which proceeds via the lowest excited singlet state. Bacteriochlorophyll also undergoes this reaction, whereas pheophytin does not. (b) One-electron phototransfer between the chlorophyll lowest triplet state and quinones to yield a radical pair (C./sup +/ - Q./sup +/). This may either recombine or separate. The C./sup +/ formed upon separation is unstable and reacts with hydroxylic compounds to regenerate chlorophyll. The Q./sup -/ species partly reacts with oxidized solvent and partly disproportionates. Both bacteriochlorophyll and pheophytin are also able to react with quinones in this manner. The quenching of the chlorophyll lowest singlet state by quinones does not, however, lead to detectable radical formation. These reactions seem to provide acceptable models for certain aspects of photosynthetic energy conversion, and thus elucidation of their detailed mechanisms should lead to useful insights into the nature of the biological process.

  20. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.

    Science.gov (United States)

    Hesaraki, Saeed; Safari, Mojgan; Shokrgozar, Mohammad Ali

    2009-10-01

    In this study, composites of beta-tricalcium phosphate (beta-TCP) and sol gel derived bioactive glass (10, 25, and 40 wt %) based on the SiO(2)-CaO-MgO-P(2)O(5) system were prepared and sintered at 1000-1200 degrees C. The mechanical properties were investigated by measuring bending strength, Vickers hardness and fracture toughness. Structural properties were evaluated by XRD and SEM analysis, and the biological properties were studied by soaking the samples in simulated body fluid (SBF) and in contact with osteoblastic cell for viability assay. When the samples were sintered at 1200 degrees C, the mechanical strength increased, up to 34%, by increasing the amount of bioactive glass phase. In contrast, it decreased when the samples were sintered at 1000 and 1100 degrees C. The results showed that the strength could be improved up to 56% when more firing period was used. Incorporation of the bioactive glass phase into beta-TCP increased the microhardness but did not significantly change the fracture toughness. Phase analysis revealed that beta-TCP or magnesium-substituted beta-TCP was the main crystalline phase of the composites beside some calcium silicate crystallized in the bioactive glass phase. Plenty precipitation of calcium phosphate layer onto the surfaces of the beta-TCP/bioactive glass composites soaked in SBF indicated superior bioactivity of these materials compared to pure beta-TCP without any precipitation. The ability of beta-TCP/bioactive glass composites to support the growth of human osteoblastic cells was considerably better than that of pure beta-TCP. These results may be used to indicate which compositions and processing conditions can provide appropriate materials for hard tissue regeneration.

  1. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  2. A linear laser scanner to measure cross-sectional shape and area of biological specimens during mechanical testing.

    Science.gov (United States)

    Vergari, Claudio; Pourcelot, Philippe; Holden, Laurène; Ravary-Plumioën, Bérangère; Laugier, Pascal; Mitton, David; Crevier-Denoix, Nathalie

    2010-10-01

    Measure of the cross-sectional area (CSA) of biological specimens is a primary concern for many biomechanical tests. Different procedures are presented in literature but besides the fact that noncontact techniques are required during mechanical testing, most of these procedures lack accuracy or speed. Moreover, they often require a precise positioning of the specimen, which is not always feasible, and do not enable the measure of the same section during tension. The objective of this study was to design a noncontact, fast, and accurate device capable of acquiring CSA of specimens mounted on a testing machine. A system based on the horizontal linear displacement of two charge-coupled device reflectance laser devices next to the specimen, one for each side, was chosen. The whole measuring block is mounted on a vertical linear guide to allow following the measured zone during sample tension (or compression). The device was validated by measuring the CSA of metallic rods machined with geometrical shapes (circular, hexagonal, semicircular, and triangular) as well as an equine superficial digital flexor tendon (SDFT) in static condition. We also performed measurements during mechanical testing of three SDFTs, obtaining the CSA variations until tendon rupture. The system was revealed to be very fast with acquisition times in the order of 0.1 s and interacquisition time of about 1.5 s. Measurements of the geometrical shapes yielded mean errors lower than 1.4% (n=20 for each shape) while the tendon CSA at rest was 90.29 ± 1.69 mm(2) (n=20). As for the tendons that underwent tension, a mean of 60 measures were performed for each test, which lasted about 2 min until rupture (at 20 mm/min), finding CSA variations linear with stress (R(2)>0.85). The proposed device was revealed to be accurate and repeatable. It is easy to assemble and operate and capable of moving to follow a defined zone on the specimen during testing. The system does not need precise centering of the sample

  3. Behaviour at landfills of waste having undergone mechanic-biological and thermal conditioning; Deponieverhalten mechanisch-biologisch und thermisch behandelten Restabfalls

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.; Dach, J.; Jager, J. [Institut WAR, Darmstadt (Germany). FG Abfalltechnik

    1998-12-31

    The work studies, in landfill test reactors, water, gas and heat transport as well as gas and leachate formation in waste having undergone mechanical-biological and thermal conditioning. (orig.) [Deutsch] Es wurde der Wasser-, Gas- und Waermetransport, sowie die Gasbildung- und Sickerwasserbelastung mechanisch-biologisch und thermisch vorbehandelter Abfaelle in Deponieversuchsreaktoren untersucht. (orig.)

  4. The molecular biological mechanism of mitochondrial diseases%线粒体病的分子生物学机制

    Institute of Scientific and Technical Information of China (English)

    刘誉; 韦建鸽; 吴彬彬; 兰菲菲

    2011-01-01

    线粒体病是一种少见的能量代谢病,病情复杂多样,从单一组织损伤或无明显临床症状到多系统发病乃致患者早期死亡,在临床上容易误诊或漏诊,甚至延误治疗.由于线粒体的结构与功能受核基闪组(nDNA)与线粒体基冈组(mtDNA)双重调控,其中大多数线粒体酶、结构蛋白和各种蛋白因子由nDNA编码,因而多数原发性线粒体病是nDNA突变所致,符合孟德尔遗传定律,少数则由于mtDNA缺陷造成,属于母系遗传,两种DNA突变所引起的分子病理机制和临床表型特征有所不同.本文综述线粒体病的遗传模式、分类、分子生物学特点及其分子机制的研究进展.%Mitochondrial diseases are a group of rare disorders due to defects of energy metabolism in mitochondria.The clinical phenotype of mitochondrial diseases ranges from a single structural defect in tissues or no symptoms to multisystemic lesions or even death in early ages.Therefore, this type of diseases are often clinically misdiagnosed or even delayed for treatment.Biologically, structure and function of mitochondria are under the dual control of the mitochondrial genome (mtDNA) and the nuclear genome (nDNA).Due to the fact that most of the enzymes and protein factors of mitochondria are encoded by nDNA, primary mitochondrial diseases are mainly caused by mutations in the nuclear genome and thus are of Mendelian inherited disorders, while others caused by mutations in mtDNA are maternally inherited.The molecular pathogenesis and clinical phenotype vary with mutations in nDNA or mtDNA.This review describes the inheritance, classification and molecular biological mechanisms of mitochondrial diseases.

  5. A computational functional genomics based self-limiting self-concentration mechanism of cell specialization as a biological role of jumping genes.

    Science.gov (United States)

    Lötsch, Jörn; Ultsch, Alfred

    2016-01-01

    Specialization is ubiquitous in biological systems and its manifold mechanisms are active research topics. Although clearly adaptive, the way in which specialization of cells is realized remains incompletely understood as it requires the reshaping of a cell's genome to favor particular biological processes in the competition on a cell's functional capacity. Here, a self-specialization mechanism is identified as a possible biological role of jumping genes, in particular LINE-1 retrotransposition. The mechanism is self-limiting and consistent with its evolutionary preservation despite its likely gene-breaking effects. The scenario we studied was the need for a cell to process a longer exposition to an extraordinary situation, for example continuous exposure to the nociceptive input or the intake of addictive drugs. Both situations may evolve toward chronification. The mechanism involves competition within a gene set in which a subset of genes cooperating in particular biological processes. The subset carries a piece of information, consisting of the LINE-1 sequence, about the destruction of their functional competitor genes which are not involved in that process. During gene transcription, an active copy of LINE-1 is co-transcribed. At a certain low probability, a subsequently transcribed and thus actually exposed gene can be rendered nonfunctional by LINE-1 retrotransposition in a relevant gene part. As retrotransposition needs time it is unlikely that LINE-1 retrotranspose into its own carrier gene. This reshapes the cell genome toward self-specializing of those biological processes that are carried out with a high number of LINE-1 containing genes. Self-termination of the mechanism is achieved by allowing LINE-1 to also occasionally jump into the coding region of itself, thus destroying the information about competitor destruction by successively decreasing the number of LINE-1 until the mechanism ceases. Employing a computational functional genomics approach, we

  6. Simulating Biological and Non-Biological Motion

    Science.gov (United States)

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  7. Fabrication mechanism of nanostructured HA/TNTs biomedical coatings: an improvement in nanomechanical and in vitro biological responses.

    Science.gov (United States)

    Ahmadi, Shahab; Riahi, Zohreh; Eslami, Aylar; Sadrnezhaad, S K

    2016-10-01

    In this paper, a mechanism for fabrication of nanostructured hydroxyapatite coating on TiO2 nanotubes is presented. Also, the physical, biological, and nanomechanical properties of the anodized Ti6Al4V alloy consisting TiO2 nanotubes, electrodeposited hydroxyapatite, and the hydroxyapatite/TiO2 nanotubes double layer coating on Ti6Al4V alloy implants are compared. Mean cell viability of the samples being 84.63 % for uncoated plate, 91.53 % for electrodeposited hydroxyapatite, and 94.98 % for hydroxyapatite/TiO2 nanotubes coated sample were in the acceptable range. Merely anodized prototype had the highest biocompatibility of 110 % with respect to the control sample. Bonding strength of hydroxyapatite deposit to the substrate increased from 12 ± 2 MPa to 25.4 ± 2 MPa using intermediate TiO2 nanotubes layer. Hardness and elastic modulus of the anodized surface were 956 MPa and 64.7 GPa, respectively. The corresponding values for hydroxyapatite deposit were approximately measured 44.3 MPa and 0.66 GPa, respectively, while the average obtained values for hardness (159.3 MPa) and elastic modulus (2.25 GPa) of the hydroxyapatite/TiO2 nanotubes double coating improved more than 30 % of the pure hydroxyapatite deposit. Friction coefficient (ξ) of the anodized surface was 0.32 ± 0.02. The calculated friction coefficient enhanced from 0.65 ± 0.04 for sole hydroxyapatite layer to the 0.46 ± 0.02 for hydroxyapatite/TiO2 nanotubes due to presence of nanotubular TiO2 intermediate layer.

  8. Synthesis, uptake mechanism characterization and biological evaluation of {sup 18}F labeled fluoroalkyl phenylalanine analogs as potential PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Wang Limin [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Qu Wenchao; Lieberman, Brian P.; Ploessl, Karl [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2011-01-15

    Introduction: Amino acids based tracers represent a promising class of tumor metabolic imaging agents with successful clinical applications. Two new phenylalanine derivatives, p-(2-[{sup 18}F]fluoroethyl)-L-phenylalanine (FEP, [{sup 18}F]2) and p-(3-[{sup 18}F]fluoropropyl)-L-phenylalanine (FPP, [{sup 18}F]3) were synthesized and evaluated in comparison to clinically utilized O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine (FET, [{sup 18}F]1). Methods: FEP ([{sup 18}F]2) and FPP ([{sup 18}F]3) were successfully synthesized by a rapid and efficient two-step nucleophilic fluorination of tosylate precursors and deprotection reaction. In vitro cell uptake studies were carried out in 9L glioma cells. In vivo studies, 9L tumor xenografts were implanted in Fisher 344 rats. Results: FEP ([{sup 18}F]2) and FPP ([{sup 18}F]3) could be efficiently labeled within 90 min with good enantiomeric purity (>95%), good yield (11-37%) and high specific activity (21-69 GBq/{mu}mol). Cell uptake studies showed FEP had higher uptake than FPP as well as reference ligand FET ([{sup 18}F]1). Uptake mechanism studies suggested that FEP is a selective substrate for system L and prefers its subtype LAT1. In vivo biodistribution studies demonstrated FEP had specific accumulation in tumor cells and tumor to background ratio reached 1.45 at 60 min. Small animal positron emission tomography (PET) imaging studies showed FEP was comparable to FET for imaging rats bearing 9L tumor model. FEP had high uptake in 9L tumor compared to surrounding tissue and was quickly excreted through urinary tract. Conclusion: Biological evaluations indicate that FEP ([{sup 18}F]2) is a potential useful tracer for tumor imaging with PET.

  9. A multicomponent bioactive tissue-engineered blood vessel: Fabrication, mechanical evaluation and biological evaluation with physiological-relevant conditions

    Science.gov (United States)

    Bonani, Walter

    The high long-term failure rate of synthetic vascular grafts in the replacement of small vessels is known to be associated with the lack of physiological signals to vascular cells causing adverse hemodynamic, inflammatory or coagulatory events. Current studies focus on developing engineered vascular devices with ability of directing cell activity in vitro and in vivo for tissue regeneration. It is also known that controlled molecule release from scaffolds can dramatically increase the scaffold ability of directing cell activities in vitro and in vivo for tissue regeneration. To address the mechanical and biological problems associated with graft materials, we demonstrated a degradable polyester-fibroin composite tubular scaffolds which shows well-integrated nanofibrous structure, endothelial-conducive surface and anisotropic mechanical property, suitable as engineered vascular constructs. Tissue regeneration needs not only functional biomolecules providing signaling cues to cells and guide tissue remodeling, but also an adequate modality of molecule delivery. In fact, healthy tissue formation requires specific signals at well-defined place and time. To develop scaffolds with multi-modal presentation of biomolecules, we patterned electrospun nanofibers over the thickness of the 3-dimensional scaffolds by programming the deposition of interpenetrating networks of degradable polymers poly(a-caprolactone) and poly(lactide-co-glycolide) acid in tailored proportion. Fluorescent model molecules, drug and growth factors were embedded in the polymeric fibers with different techniques and release profiles were obtained and discussed. Fabrication process resulted in precise gradient patterns of materials and functional biomolecules throughout the thickness of the scaffold. These graded materials showed programmable spatio-temporal control over the release. Molecule release profiles on each side of the scaffolds were used to determine the separation efficiency of molecule

  10. Gap junctional intercellular communication as a biological "Rosetta stone" in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy.

    Science.gov (United States)

    Trosko, James E

    2007-08-01

    In spite of the early speculation by Loewenstein that one of the critical distinguishing phenotypes of cancers from normal cells was the dysfunction of gap junctional intercellular communication (GJIC), this hypothesis has not captured the attention of most birth defects and cancer researchers. Moreover, even with later demonstrations that factors that influence normal development and carcinogenesis by modulating GJIC, such as chemical teratogens and tumor-promoting chemicals, inflammatory factors, hormones and growth factors, antisense connexin genes, knockout mouse models, human inherited mutated connexin genes, si-connexin RNA, chemopreventive and chemotherapeutic chemicals, it is rare that one sees any reference to these studies by the mainstream investigators in these fields. Based on the assumption that the evolutionarily conserved connexin genes found in metazoans are needed for normal development and the maintenance of health and T. Dobzhansky's statement "Nothing in biology makes sense except in the light of evolution," a short review of the roles of endogenous and exogenous modulators of GJIC will be made in the context of the multistage, multimechanism process of carcinogenesis, the stem cell theory of carcinogenesis, the discovery and characterization of normal adult stem "cancer stem" cells and the observation that two distinct classes of GJIC-deficient cancer cells are known. The implications of these observations to a "systems biological" view of the role of gap junctions and the nutritional prevention and treatment of several chronic diseases and cancer will be discussed.

  11. Systems Cancer Biology and the Controlling Mechanisms for the J-Shaped Cancer Dose Response: Towards Relaxing the LNT Hypothesis

    OpenAIRE

    Lou, In Chio; Zhao, Yuchao; Wu, YingJie; Ricci, Paolo F

    2012-01-01

    The hormesis phenomena or J-shaped dose response have been accepted as a common phenomenon regardless of the involved biological model, endpoint measured and chemical class/physical stressor. This paper first introduced a mathematical dose response model based on systems biology approach. It links molecular-level cell cycle checkpoint control information to clonal growth cancer model to predict the possible shapes of the dose response curves of Ionizing Radiation (IR) induced tumor transforma...

  12. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  13. Spectroscopic investigation on kinetics, thermodynamics and mechanism for electron transfer reaction of iron(III) complex with sulphur centered radical in stimulated biological system.

    Science.gov (United States)

    Deepalakshmi, S; Sivalingam, A; Kannadasan, T; Subramaniam, P; Sivakumar, P; Brahadeesh, S T

    2014-04-24

    Electron transfer reactions of biological organic sulphides with several metal ions to generate sulphide radical cations are a great concern in biochemical process. To understand the mechanism, a stimulated biological system having model compounds, iron(III)-bipyridyl complex with thio-diglycolic acid (TDGA) was investigated. Spectroscopic study reveals the kinetics and thermodynamics of the reaction in aqueous perchloric acid medium. The reaction follows first and fractional order of 0.412 with respect to [Fe(bpy)3](3+) and TDGA, respectively. The oxidation is insensitive to variation in [H(+)] but slightly decreases with increase in ionic strength ([I]). Addition of acrylamide, a radical scavenger has no effect on the rate of the reaction. The high negative value of ΔS(#) (-74.3±1.09 J K(-1) mol(-1)) indicates the complex formed has a definite orientation higher than the reactants. Based on the above results, a suitable reaction mechanism for this reaction is proposed.

  14. Mechanical-biological waste treatment with thermal processing of partial fractions; Mechanisch-biologische Restabfallbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Technologies for mechanical-biological treatment of waste in the Land of Hessen were compared including thermal processes like combustion and gasification. The new and more rigid limiting values specified in the Technical Guide for Municipal Waste Treatment (Technische Anleitung Siedlungsabfall - TASI) get a special mention. [Deutsch] Verschiedene Technologien der mechanisch-biologischen Restabfallbehandlung im Raum Hessen wurden unter Einbezug thermischer Verfahren (Verbrennung, Vergasung) miteinander verglichen. Dabei wurden besonders auf die verschaerften Grenzwerte der Technischen Anleitung Siedlungsabfall (TASI) eingegangen. (ABI)

  15. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects

    Directory of Open Access Journals (Sweden)

    Dong J

    2013-03-01

    Full Text Available Jingjing Dong,1,* Geng Cui,2,* Long Bi,1,* Jie Li,3 Wei Lei11Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China; 2Institute of Orthopedics, General Hospital of PLA, Beijing, People’s Republic of China; 3Institute of Gynecology and Obstetrics, General Hospital of PLA, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L ratios (g/mL of 1:1, 3:1, and 5:1 (g/mL, and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC–FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05. The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation

  16. Biological activity and mechanical stability of sol-gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber.

    Science.gov (United States)

    Pannier, Angela; Mkandawire, Martin; Soltmann, Ulrich; Pompe, Wolfgang; Böttcher, Horst

    2012-02-01

    Biofilters with long lifetime and high storage stability are very important for bioremediation processes to ensure the readiness at the occurrence of sudden contaminations. By using the freeze-gelation technique, living cells can be immobilized within a mechanically and chemically stable ceramic-like matrix. Due to a freeze-drying step, the embedded microorganisms are converted into a preserved form. In that way, they can be stored under dry conditions, which comply better with storage, transport, and handling requirements. Thus, in contrast to other immobilization techniques, there is no need for storage in liquid or under humid atmosphere. The biological activity, mechanical strength, and the structure of the biologically active ceramic-like composites (biocers) produced by freeze gelation have been investigated by using the phenol-degrading bacteria Rhodococcus ruber as model organism. Samples of freeze-gelation biocers have been investigated after defined storage periods, demonstrating nearly unchanged mechanical strength of the immobilization matrix as well as good storage stability of the activity of the immobilized cells over several months of storage at 4 °C. Repeated-batch tests demonstrated further that the freeze-gelation biocers can be repeatedly used over a period of more than 12 months without losing its bioactivity. Thus, these results show that freeze-gelation biocers have high potential of being scaled up from laboratory test systems to applications in real environment because of their long bioactivity as well as mechanical stability.

  17. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  18. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  19. A Systems Biology Strategy to Identify Molecular Mechanisms of Action and Protein Indicators of Traumatic Brain Injury

    Science.gov (United States)

    2014-11-14

    microtubule-associated protein tau, which has been shown to be predictive of clinical outcome and intracranial pressure after severe TBI (Zemlan et al., 2002... intracranial pressure and clinical outcome. Brain Res 947:131–139. Zhang J, Yang Y, Wang Y, Zhang J, Wang Z, Yin M, Shen X. 2011. Identification of hub...1 illustrates the systems biology strategy. We started by performing computational analyses to generate TABLE I. Summary of the Four TBI Gene

  20. Utilization and Mechanism of Trichoderma in Biological Control%木霉菌在生物防治上的应用及拮抗机制

    Institute of Scientific and Technical Information of China (English)

    王芊

    2001-01-01

    简述了拮抗木霉菌在生物防治上的应用前景。许多木霉种群如哈茨木霉、绿色木霉、钩状木霉、长枝木霉等都是植物病原真菌的拮抗菌。木霉菌的作用机制多种多样,包括产生抗生素、重寄生作用、溶菌作用、竞争作用等。%The prospect of antifungal Trichoderma in the utilization of biological control was analysed. Many Kinds of Trichoderma can be used as a method of biological control against plant pathogens. such as T.harzianum, T.viride, T.hamatum and so on. The antifungal mechanism of Trichoderma is varied, including antibiotic, dissolve hypha, parasitism and competition.

  1. Evidence of the Role of R-Spondin 1 and Its Receptor Lgr4 in the Transmission of Mechanical Stimuli to Biological Signals for Bone Formation

    Science.gov (United States)

    Shi, Gui-Xun; Zheng, Xin-Feng; Zhu, Chao; Li, Bo; Wang, Yu-Ren; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2017-01-01

    The bone can adjust its mass and architecture to mechanical stimuli via a series of molecular cascades, which have been not yet fully elucidated. Emerging evidence indicated that R-spondins (Rspos), a family of secreted agonists of the Wnt/β-catenin signaling pathway, had important roles in osteoblastic differentiation and bone formation. However, the role of Rspo proteins in mechanical loading-influenced bone metabolism has never been investigated. In this study, we found that Rspo1 was a mechanosensitive protein for bone formation. Continuous cyclic mechanical stretch (CMS) upregulated the expression of Rspo1 in mouse bone marrow mesenchymal stem cells (BMSCs), while the expression of Rspo1 in BMSCs in vivo was downregulated in the bones of a mechanical unloading mouse model (tail suspension (TS)). On the other hand, Rspo1 could promote osteogenesis of BMSCs under CMS through activating the Wnt/β-catenin signaling pathway and could rescue the bone loss induced by mechanical unloading in the TS mice. Specifically, our results suggested that Rspo1 and its receptor of leucine-rich repeat containing G-protein-coupled receptor 4 (Lgr4) should be a novel molecular signal in the transmission of mechanical stimuli to biological signal in the bone, and this signal should be in the upstream of Wnt/β-catenin signaling for bone formation. Rspo1/Lgr4 could be a new potential target for the prevention and treatment of disuse osteoporosis in the future. PMID:28272338

  2. Cell biology perspectives in phage biology.

    Science.gov (United States)

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  3. Combining mechanical-biological residual waste treatment plants with the carbonisation-combustion process; Kombination MBA mit dem Schwel-Brenn-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Diekmann, J.; Wiehn, G. [Siemens AG Unternehmensbereich KWU, Erlangen (Germany). Bereich Energieerzeugung

    1998-09-01

    The disposal market for household waste is strongly influenced by the legal framework governing it. A further factor that makes it difficult for the authorities responsible for disposal to decide on residual waste disposal by means of thermal or mechanical-biological treatment plants is the downward pressure on disposal prices from inexpensive, underused landfills. This makes it all the more important for a future-oriented waste management to develop a both economically and ecologically optimised waste disposal concept. In this situation there is much in favour of adopting a concept consisting of a combination of mechanical, mechanical-biological, and thermal treatment which takes due account of waste disposal concepts at the regional and supraregional scale. [Deutsch] Der Entsorgungsmarkt fuer Siedlungsabfaelle wird stark durch die Entwicklung der rechtlichen Rahmenbedingungen beeinflusst. Hinzu kommt, dass der Entscheidungsprozess der oeffentlichen Entsorgungstraeger zur Restabfallentsorgung mittels thermischer oder mechanisch-biologischer Anlagen durch den Druck auf die Entsorgungspreise aufgrund der kostenguenstigen, nicht ausgelasteten Deponien erschwert wird. Umso mehr muss das Ziel einer zukunftsorientierten Abfallwirtschaft sein, unter oekonomischen und oekologischen Gesichtspunkten ein optimiertes Abfallkonzept aufzubauen. Hier kann es sehr hilfreich sein, sich eines Konzeptes, bestehend aus der Kombination von mechanischer, mechanisch-biologischer und thermischer Behandlung unter Beruecksichtigung des regionalen und ueberregionalen Abfallkonzeptes zu bedienen. (orig./SR)

  4. Etiology of lumbar lordosis and its pathophysiology: a review of the evolution of lumbar lordosis, and the mechanics and biology of lumbar degeneration.

    Science.gov (United States)

    Sparrey, Carolyn J; Bailey, Jeannie F; Safaee, Michael; Clark, Aaron J; Lafage, Virginie; Schwab, Frank; Smith, Justin S; Ames, Christopher P

    2014-05-01

    The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.

  5. A Systems Biology Approach to Understanding the Mechanisms of Action of an Alternative Anticancer Compound in Comparison to Cisplatin

    Directory of Open Access Journals (Sweden)

    Elise P. Wright

    2014-11-01

    Full Text Available Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics.

  6. Effects of silica addition on the chemical, mechanical and biological properties of a new α-Tricalcium Phosphate/Tricalcium Silicate Cement

    Directory of Open Access Journals (Sweden)

    Loreley Morejón-Alonso

    2011-12-01

    Full Text Available The addition of tricalcium silicate (C3S to apatite cements results in an increase of bioactivity and improvement in the mechanical properties. However, adding large amounts raises the local pH at early stages, which retards the precipitation of hydroxyapatite and produces a loss of mechanical strength. The introduction of Pozzolanic materials in cement pastes could be an effective way to reduces basicity and enhance their mechanical resistance; thus, the effect of adding silica on the chemical, mechanical and biological properties of α-tricalcium phosphate/C3S cement was studied. Adding silica produces a reduction in the early pH and a decrease in setting times; nevertheless, the presence of more calcium silicate hydrate (C-S-H delays the growth of hydroxyapatite crystals and consequently, reduces early compressive strength. The new formulations show a good bioactivity, but higher cytotoxicity than traditional cements and additions higher than 2.5% of SiO2 cause a lack of mechanical strength and an elevated degradability.

  7. Seasonal and interannual variability of physical and biological dynamics at the shelfbreak front of the Middle Atlantic Bight: nutrient supply mechanisms

    Directory of Open Access Journals (Sweden)

    R. He

    2011-10-01

    Full Text Available A high-resolution, 3-dimensional coupled biophysical model is used to simulate ocean circulation and ecosystem variations at the shelfbreak front of the Middle Atlantic Bight (MAB. Favorable comparisons between satellite observations and model hindcast solutions from January 2004 to November 2007 indicate the model has intrinsic skills in resolving fundamental physical and biological dynamics at the MAB shelfbreak. Seasonal and interannual variability of ocean physical and biological states and their driving mechanisms are further analyzed. The domain-wide upper water column nutrient content is found to peak in late winter-early spring. Phytoplankton spring bloom starts 1–2 months later, followed by zooplankton bloom in early summer. Our analysis shows the variability of shelfbreak nutrient supply is controlled by local mixing that deepens the mixed layer and injects deep ocean nutrients into the upper water column and alongshore nutrient transport by the shelfbreak jet and associated currents. Nutrient vertical advection associated with the shelfbreak bottom boundary layer convergence is another significant contributor. Spring mean nutrient budget diagnostics along the Nantucket transect are compared between nutrient rich 2004 and nutrient poor 2007. Physical advection and diffusion play the major role in determining strong interannual variations in shelfbreak nutrient content. The biological (source minus sink term is very similar between these two years.

  8. 植物精油生物活性作用机理研究进展%Advances in Mechanism of Biological Activities of Plant Essential Oils

    Institute of Scientific and Technical Information of China (English)

    陈建烟; 李永裕; 吴少华

    2012-01-01

    Plant essential oils have multifold biological activities,have been widely used in medical care,food industry, cosmetic,agricultural fields and etc. In this paper,the mechanism of several biological activities of plant essential oils have been summarized,such as antibacterial,anticancer.antineoplastic.antioxidative,delaying senile,preventing and curing cardiovascular diseases,antiviral,anti-inflammatory and many other biological activities. Then,some research emphases and breakthroughs of plant essential oils in the future have been proposed.%植物精油具有多种生物活性,被广泛应用于医疗保健、食品工业、化妆品、农业等多个领域.本文综述植物精油抗菌、抗癌、抑制肿瘤细胞生长、抗氧化、延缓衰老、防治心血管疾病、抗病毒、消炎等多种生物活性的作用机理,并展望植物精油今后研究的重点及突破方向.

  9. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  10. The Mechanisms and Quantification of the Selective Permeability in Transport Across Biological Barriers : the Example of Kyotorphin

    NARCIS (Netherlands)

    Serrano, Isa D.; Freire, Joao M.; Carvalho, Miguel V.; Neves, Mafalda; Melo, Manuel N.; Castanho, Miguel A. R. B.

    2014-01-01

    This paper addresses the mechanisms behind selective endothelial permeability and their regulations. The singular properties of each of the seven blood-tissues barriers. Then, it further revisits the physical, quantitative meaning of permeability, and the way it should be measured based on sound phy

  11. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.

    Science.gov (United States)

    Yamamoto, Ikuo; Ota, Ren; Zhu, Rui; Lawn, Murray; Ishimatsu, Takakazu; Nagayasu, Takeshi; Yamasaki, Naoya; Takagi, Katsunori; Koji, Takehiko

    2015-01-01

    In the area of manufacturing surgical instruments, the ability to rapidly design, prototype and test surgical instruments is critical. This paper provides a simple case study of the rapid development of two bio-mechanism based surgical instruments which are ergonomic, aesthetic and were successfully designed, prototyped and conceptually tested in a very short period of time.

  12. Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations.

    Science.gov (United States)

    Zhao, Xin; Olsen, Irwin; Li, Haoying; Gellynck, Kris; Buxton, Paul G; Knowles, Jonathan C; Salih, Vehid; Young, Anne M

    2010-03-01

    A poly(propylene glycol-co-lactide) dimethacrylate adhesive with monocalcium phosphate monohydrate (MCPM)/beta-tricalcium phosphate (beta-TCP) fillers in various levels has been investigated. Water sorption by the photo-polymerized materials catalyzed varying filler conversion to dicalcium phosphate (DCP). Polymer modulus was found to be enhanced upon raising total calcium phosphate content. With greater DCP levels, faster release of phosphate and calcium ions and improved buffering of polymer degradation products were observed. This could reduce the likelihood of pH-catalyzed bulk degradation and localized acid production and thereby may prevent adverse biological responses. Bone-like MG-63 cells were found to attach, spread and have normal morphology on both the polymer and composite surfaces. Moreover, composites implanted into chick embryo femurs became closely apposed to the host tissue and did not appear to induce adverse immunological reaction. The above results suggest that the new composite materials hold promise as clinical effective bone adhesives.

  13. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    Science.gov (United States)

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  14. Fostering synergy between cell biology and systems biology

    OpenAIRE

    2015-01-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules; predicting mechanisms and identifying generalizable themes; generating hypotheses...

  15. Mineral and Protein-Bound Water and Latching Action Control Mechanical Behavior at Protein-Mineral Interfaces in Biological Nanocomposites

    OpenAIRE

    Pijush Ghosh; Katti, Dinesh R.; Kalpana S. Katti

    2008-01-01

    The nacre structure consists of laminated interlocked mineral platelets separated by nanoscale organic layers. Here, the role of close proximity of mineral to the proteins on mechanical behavior of the protein is investigated through steered molecular dynamics simulations. Our simulations indicate that energy required for unfolding protein in the proximity of mineral aragonite is several times higher than that for isolated protein in the absence of the mineral. Here, we present details of spe...

  16. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    Science.gov (United States)

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h(-1)) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch(-1)) seeds (P  0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  17. Mechanisms of stochastic focusing and defocusing in biological reaction networks: insight from accurate chemical master equation (ACME) solutions.

    Science.gov (United States)

    Giirsoy, Gamze; Terebus, Anna; Cao, Youfang; Liang, Jie; Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang; Gursoy, Gamze; Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-08-01

    Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.

  18. Kinetics and mechanism of superoxide radical reactions with some biologically important compounds in aqueous solutions. Pulse radiolysis

    Science.gov (United States)

    Revina, A. A.; Amiragova, M. I.; Volod'ko, V. V.; Vannikov, A. V.

    Microsecond pulse radiolysis of oxygenated aqueous solutions containing 0.02 mol dm -3 sodium formate and 2 mmol dm -3 phosphate buffer at pH 7 was used to generate superoxide anion radicals. The influence of some biologically important compounds upon the rate of O ⨪2 decay was monitored spectrophotometrically in the range of 245-300 nm. Hematoporphyrin (HP), hemin C (HC), catalase (Cat), cobalt sulfophthalocyanine (CoTSPc) were studied. Among the investigated compounds only Cat was found to show a high catalytic efficiency towards the self-decay of O ⨪2. A red shift of O ⨪2 absorption band and slowing down of its decay were observed to take place by adding HP or CoTSPc to the solutions containing formate ions in excess. This effect is associated with the formation of a transient superoxo-complex. An appearance of an intermediate species with absorption maxima at 350 nm and half-life of about 2s was observed to accompany the superoxo-complex of CoTSPc decay. In the aerated solution of HP the intensity of absorbance at 260 nm was found to be independent of the presence of formate ions.

  19. Effect and mechanism of RUNX3 gene on biological characteristics of human esophageal squamous cell carcinoma (ESCC).

    Science.gov (United States)

    Chen, Huaxia; Wang, Zhou; Wang, Shuai; Zhang, Zhiping; Shi, Shanshan

    2015-01-01

    The aim of this study was to investigate the role of RUNX3 in esophageal squamous cell carcinoma (ESCC) cells biological behavior and the relationship between the expression of RUNX3 and MMP-9, TIMP-1, ICAM-1. RUNX3 levels in 90 esophageal squamous cell carcinoma specimens using immunohistochemical staining to examine the correlation between RUNX3 expression and clinical stage of ESCC. Furthermore, the role of RUNX3 in ESCC progression was evaluated in vitro by siRNA-mediated knockdown of RUNX3 or lentivirus-mediated over-expression of RUNX3 in ESCC cell lines. The expression and activities of MMP-9, TIMP-1, and ICAM-1 were analyzed. We found decreased expression of RUNX3 in ESCC tissue to be significantly related to T stage of tumor (p cells resulted in promoting cell growth, migration, and invasion. Additionally, MMP-9 and ICAM-1 were upregulated in RUNX3-knockdown cells. Notably, RUNX3 over-expression in Kyse150 cells could significantly decrease MMP-9 and ICAM-1. Tumorigenesis in vivo was significantly determined. The study indicates that low expression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells migration, invasion, and tumorigenesis, which may be caused by RUNX3's interaction with MMP-9 and ICAM-1; RUNX3 may be a potential therapeutic target for ESCC.

  20. Cytoprotection of Human Endothelial Cells Against Oxidative Stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): Application of Systems Biology to Understand the Mechanism of Action

    Science.gov (United States)

    2014-04-03

    oyl]imidazole (CDDO-Im): Application of systems biology to understand the mechanism of action Xinyu Wang a,n, James A. Bynumb,c, Solomon Stavchansky...2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): Application of systems biology to understand the mechanism of action 5a. CONTRACT...wide systems biology approach. In the study, we examined the cytoprotective effect of CDDO-Im against oxidative stress in HUVEC and compared it to

  1. A Systems Biology Approach to Understanding the Mechanisms of Action of Chinese Herbs for Treatment of Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Yonghua Wang

    2012-10-01

    Full Text Available Traditional Chinese Medicine (TCM involves a broad range of empirical testing and refinement and plays an important role in the health maintenance for people all over the world. However, due to the complexity of Chinese herbs, a full understanding of TCM’s action mechanisms is still unavailable despite plenty of successful applications of TCM in the treatment of various diseases, including especially cardiovascular diseases (CVD, one of the leading causes of death. Thus in the present work, by incorporating the chemical predictors, target predictors and network construction approaches, an integrated system of TCM has been constructed to systematically uncover the underlying action mechanisms of TCM. From three representative Chinese herbs, i.e., Ligusticum chuanxiong Hort., Dalbergia odorifera T. Chen and Corydalis yanhusuo WT Wang which have been widely used in CVD treatment, by combinational use of drug absorption, distribution, metabolism and excretion (ADME screening and network pharmacology techniques, we have generated 64 bioactive ingredients and identified 54 protein targets closely associated with CVD, of which 29 are common targets (52.7% of the three herbs. The result provides new information on the efficiency of the Chinese herbs for the treatment of CVD and also explains one of the basic theories of TCM, i.e., “multiple herbal drugs can treat one disease”. The predicted potential targets were then mapped to target-disease and target-signal pathway connections, which revealed the relationships of the active ingredients with their potential targets, diseases and signal systems. This means that for the first time, the action mechanism of these three important Chinese herbs for the treatment of CVD is uncovered, by generating and identifying both their active ingredients and novel targets specifically related to CVD, which clarifies some of the common conceptions in TCM, and thus provides clues to modernize such specific herbal

  2. Biological and artificial cognition: what can we learn about mechanisms by modelling physical cognition problems using artificial intelligence planning techniques?

    Science.gov (United States)

    Chappell, Jackie; Hawes, Nick

    2012-10-05

    Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended.

  3. Biological and artificial cognition: what can we learn about mechanisms by modelling physical cognition problems using artificial intelligence planning techniques?

    Science.gov (United States)

    Chappell, Jackie; Hawes, Nick

    2012-01-01

    Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended. PMID:22927571

  4. Mechanisms of Action and Dose-Response Relationships Governing Biological Control of Fusarium Wilt of Tomato by Nonpathogenic Fusarium spp.

    Science.gov (United States)

    Larkin, R P; Fravel, D R

    1999-12-01

    ABSTRACT Three isolates of nonpathogenic Fusarium spp. (CS-1, CS-20, and Fo47), previously shown to reduce the incidence of Fusarium wilt diseases of multiple crops, were evaluated to determine their mechanisms of action and antagonist-pathogen inoculum density relationships. Competition for nutrients, as represented by a reduction in pathogen saprophytic growth in the presence of the biocontrol isolates, was observed to be an important mechanism of action for isolate Fo47, but not for isolates CS-1 and CS-20. All three biocontrol isolates demonstrated some degree of induced systemic resistance in tomato (Lycopersicon esculentum) and watermelon (Citrullus lanatus) plants, as determined by split-root tests, but varied in their relative abilities to reduce disease. Isolate CS-20 provided the most effective control (39 to 53% disease reduction), while Fo47 provided the least effective control (23 to 25% reduction) in split-root tests. Dose-response relationships also differed considerably among the three biocon-trol isolates, with CS-20 significantly reducing disease incidence at antagonist doses as low as 100 chlamydospores per g of soil (cgs) and at pathogen densities up to 10(5) cgs. Isolate CS-1 also was generally effective at antagonist densities of 100 to 5,000 cgs, but only when pathogen densities were below 10(4) cgs. Isolate Fo47 was effective only at antagonist densities of 10(4) to 10(5) cgs, regardless of pathogen density. Epidemiological dose-response models (described by linear, negative exponential, hyperbolic saturation [HS], and logistic [LG] functions) fit to the observed data were used to quantify differences among the biocontrol isolates and establish biocontrol characteristics. Each isolate required a different model to best describe its dose-response characteristics, with the HS/HS, LG/HS, and LG/LG models (pathogen/biocontrol components) providing the best fit for isolates CS-1, CS-20, and Fo47, respectively. Model parameters (defining effective

  5. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  6. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies.

    Science.gov (United States)

    Couto, Marcos; Sánchez, Carina; Dávila, Belén; Machín, Valentina; Varela, Javier; Álvarez, Guzmán; Cabrera, Mauricio; Celano, Laura; Aguirre-López, Beatriz; Cabrera, Nallely; de Gómez-Puyou, Marieta Tuena; Gómez-Puyou, Armando; Pérez-Montfort, Ruy; Cerecetto, Hugo; González, Mercedes

    2015-08-12

    The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM). Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.

  7. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies

    Directory of Open Access Journals (Sweden)

    Marcos Couto

    2015-08-01

    Full Text Available The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM. Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.

  8. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties.

    Science.gov (United States)

    Dehaghani, Majid Taghian; Ahmadian, Mehdi

    2016-04-01

    Porous nano-composites were successfully prepared on addition of 58S bioactive glass to Co-base alloy with porosities of 37.2-58.8% by the combination of milling, space-holder and powder metallurgy techniques. The results of X-ray diffraction analysis showed that induced strain during milling of the Co-base alloy powder and also isothermal heat treatment during sintering process led to HCP↔FCC phase transformation which affected mechanical properties of the samples during compression test. Field emission scanning electron microscopy images showed that despite the remaining 58S powder in nanometer size in the composite, there were micro-particles due to sintering at high temperature which led to two different apatite morphologies after immersion in simulated body fluid. Calculated elastic modulus and 0.2% proof strength from stress-strain curves of compression tests were in the range of 2.2-8.3GPa and 34-198MPa, respectively. In particular, the mechanical properties of sample with 37.2% were found to be similar to those of human cortical bone. Apatite formation which was identified by scanning electron microscopy (SEM), pH meter and Fourier-transform infrared spectroscopy (FTIR) analysis showed that it could successfully convert bioinert Co-base alloy to bioactive type by adding 58S bioglass nano-particles. SEM images of cell cultured on the porous nano-composite with 37.2% porosity showed that cells properly grew on the surface and inside the micro and macro-pores.

  9. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    Science.gov (United States)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  10. A bioreactor test system to mimic the biological and mechanical environment of oral soft tissues and to evaluate substitutes for connective tissue grafts.

    Science.gov (United States)

    Mathes, Stephanie H; Wohlwend, Lorenz; Uebersax, Lorenz; von Mentlen, Roger; Thoma, Daniel S; Jung, Ronald E; Görlach, Christoph; Graf-Hausner, Ursula

    2010-12-15

    Gingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity. In order to pre-evaluate a collagen sponge intended to serve as a substitute for autogenous connective tissue grafts (CTGs), a dynamic bioreactor system was developed. Pressure and shear forces can be applied in this bioreactor in addition to a constant medium perfusion to cell-material constructs. Three-dimensional volume changes and stiffness of the matrices were analyzed. In addition, cell responses such as cell vitality and extracellular matrix (ECM) production were investigated. The number of metabolic active cells constantly increased under fully dynamic culture conditions. The sponges remained elastic even after mechanical forces were applied for 14 days. Analysis of collagen type I and fibronectin revealed a statistically significant accumulation of these ECM molecules (P tissue remodeling processes, was observed under dynamic conditions only. The results indicate that the tested in vitro cell culture system was able to mimic both the biological and mechanical environments of the clinical situation in a healing wound.

  11. Mechanisms of antitmnor biological effect of magnetic field%磁场抗肿瘤生物效应机制

    Institute of Scientific and Technical Information of China (English)

    黄昌硕

    2010-01-01

    磁场抑制肿瘤机制较为复杂,并且有众多的影响因素制约着磁场作用效果.磁场可以抑制肿瘤细胞分裂,并可作用于肿瘤细胞的细胞器、细胞膜,以及非肿瘤组织,从而间接起到抑制肿瘤的作用.其可能机制为磁场能选择性破坏肿瘤细胞的DNA,抑制肿瘤细胞的恶性增殖;激活自由基间接损伤DNA;调控肿瘤细胞的增殖分裂周期;作用于肿瘤细胞质内线粒体、蛋白酶等生命物质以及肿瘤细胞的细胞膜,从而破坏肿瘤细胞功能,减少肿瘤细胞的养分而抑制或杀死肿瘤细胞等.%The mechanisms of magnetic field inhibiting tumors are very complicated,and there are many factors limiting the effect of magnetic field.Magnetic field affect on cell division and growth,and also could impact on cell organelle and cell membrane of tumor cells as well as non-tumor tissue,so indirectly play roles in inhibiting tumors.The possible mechanisms of magnetic field inhibiting tumors are damaging DNA of tumor cells ,inhibiting malignant proliferation of tumor cells stimulating of free radical production to break DNA strand indirectly,regulating tumor cells cycle,affecting on the protoplast of tumor cells,such as mitochondria and protease,and impacting on the cell membrane of tumor cells so as to break the function of tumor cells,decreasing the nutrient supply for the tumor cells and improving the body's immune system so as to inhibit or kill tumor cells.

  12. Charge-transfer interaction of drug quinidine with quinol, picric acid and DDQ:Spectroscopic characterization and biological activity studies towards understanding the drug-receptor mechanism

    Institute of Scientific and Technical Information of China (English)

    Hala H. Eldaroti; Suad A. Gadir; Moamen S. Refat; Abdel Majid A. Adam

    2014-01-01

    Investigation of charge-transfer (CT) complexes of drugs has been recognized as an important phenomenon in understanding of the drug-receptor binding mechanism. Structural, thermal, morpholo-gical and biological behavior of CT complexes formed between drug quinidine (Qui) as a donor and quinol (QL), picric acid (PA) or dichlorodicyanobenzoquinone (DDQ) as acceptors were reported. The newly synthesized CT complexes have been spectroscopically characterized via elemental analysis;infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy; powder X-ray diffraction (PXRD);thermogravimetric (TG) analysis and scanning electron microscopy (SEM). It was found that the obtained complexes are nanoscale, semi-crystalline particles, thermally stable and spontaneous. The molecular composition of the obtained complexes was determined using spectrophotometric titration method and was found to be 1:1 ratios (donor:acceptor). Finally, the biological activities of the obtained CT complexes were tested for their antibacterial activities. The results obtained herein are satisfactory for estimation of drug Qui in the pharmaceutical form.

  13. Preliminary research on regulatory effect of estrogen on malignant biological behaviors of triple-negative breast cancer cells and its molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Tian-Fang Zhou

    2016-01-01

    Objective:To study the regulating effect of estrogen on malignant biological behaviors of triple-negative breast cancer cells and its molecular mechanisms. Methods:Triple-negative breast cancer cell lines MDA-MB-468 were cultured and treated with different doses of estrogen and 10-6 mol/L estrogen combined with GPR30 antagonist G15 for 12 h, 24 h and 48 h, and then cell viability, migration as well as mRNA expression levels of ITGβ1, Sema 4D, MK, c-Met and AEG-1 were detected. Results:Estradiol could increase cell viability, reduce scratch area and increase mRNA expression levels of ITGβ1, Sema 4D, MK, c-Met and AEG-1 in dose-dependent and time-dependent manner;after estradiol combined with G15 treatment, cell viability was significantly lower than that of estradiol treatment alone, scratch area was significantly larger than that of estradiol treatment alone, and mRNA contents of ITGβ1, Sema 4D, MK, c-Met and AEG-1 were significantly lower than those of estradiol treatment alone. Conclusion:Estrogen can regulate the malignant biological behaviors of triple-negative breast cancer cells, promote cell proliferation and migration, and increase the expression of related genes through GPR30.

  14. Reduction in pathogen populations at grapevine wound sites is associated with the mechanism underlying the biological control of crown gall by rhizobium vitis strain ARK-1.

    Science.gov (United States)

    Kawaguchi, Akira

    2014-09-17

    A nonpathogenic strain of Rhizobium (=Agrobacterium) vitis, ARK-1, limited the development of grapevine crown gall. A co-inoculation with ARK-1 and the tumorigenic strain VAT07-1 at a 1:1 cell ratio resulted in a higher population of ARK-1 than VAT07-1 in shoots without tumors, but a significantly lower population of ARK-1 than VAT07-1 in grapevine shoots with tumors. ARK-1 began to significantly suppress the VAT07-1 population 2 d after the inoculation. This result indicated that ARK-1 reduced the pathogen population at the wound site through biological control. Although ARK-1 produced a zone of inhibition against other tumorigenic Rhizobium spp. in in vitro assays, antibiosis depended on the culture medium. ARK-1 did not inhibit the growth of tumorigenic R. radiobacter strain AtC1 in the antibiosis assay, but suppressed the AtC1-induced formation of tumors on grapevine shoots, suggesting that antibiosis by ARK-1 may not be the main mechanism responsible for biological control.

  15. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs.

  16. Under the skin: using theories from biology and the social sciences to explore the mechanisms behind the black-white health gap.

    Science.gov (United States)

    Green, Tiffany L; Darity, William A

    2010-04-01

    Equity and social well-being considerations make Black-White health disparities an area of important concern. Although previous research suggests that discrimination- and poverty-related stressors play a role in African American health outcomes, the mechanisms are unclear. Allostatic load is a concept that can be employed to demonstrate how environmental stressors, including psychosocial ones, may lead to a cumulative physiological toll on the body. We discuss both the usefulness of this framework for understanding how discrimination can lead to worse health among African Americans, and the challenges for conceptualizing biological risk with existing data and methods. We also contrast allostatic load with theories of historical trauma such as posttraumatic slavery syndrome. Finally, we offer our suggestions for future interdisciplinary research on health disparities.

  17. Biological functions of Piriformospora indica and its action mechanisms%印度梨形孢的生物学效应及其作用机制

    Institute of Scientific and Technical Information of China (English)

    宋凤鸣; 毛克克; 吴铖铖; 李大勇

    2011-01-01

    Piriformospora indica is one of recently found endophytic fungus in plants.This minireview summarizes the characteristics of P.indica, mutualistic interactions between P.indica and its host plants, biological functions and its action mechanisms of P.indica in plant growth/development and tolerance against biotic and abiotic stresses.%印度梨形孢(Piriformospora indica)是最近发现的一种植物根部内生真菌.本文简要综述了印度梨形孢的生物学性状、与植物的互作以及在促进植物生长发育、提高抗病抗逆能力的作用及其机制.

  18. Moving from capstones toward cornerstones: successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders.

    Science.gov (United States)

    Kopp, Nathan; Climer, Sharlee; Dougherty, Joseph D

    2015-01-01

    The substantial progress in the last few years toward uncovering genetic causes and risk factors for autism spectrum disorders (ASDs) has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein-protein interaction networks, gene ontologies (GOs) annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with ASDs could provide the cornerstones needed to build toward broadly applicable therapeutic approaches.

  19. Moving from Capstones towards Cornerstones: Successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Nathan eKopp

    2015-10-01

    Full Text Available The substantial progress in the last few years towards uncovering genetic causes and risk factors for autism spectrum disorders (ASD has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein-protein interaction networks, Gene Ontologies annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare-variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with autism spectrum disorders could provide the cornerstones needed to build towards broadly applicable therapeutic approaches.

  20. The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease

    Directory of Open Access Journals (Sweden)

    Sophie R. Robinson

    2015-07-01

    Full Text Available DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3' to 5' degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the function of DIS3 at the organismal level. Mutant phenotypes in S. pombe, S. cerevisiae and Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and microtubule assembly. DIS3 has also recently been implicated in antibody diversification of mouse B-cells. This article aims to review current knowledge of the structure, mechanisms and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis.

  1. The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Hossein; Solati-Hashjin, Mehran [Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P. O. Box: 15875-4413, Tehran (Iran, Islamic Republic of); Tahriri, Mohammadreza, E-mail: m-tahriri@aut.ac.ir [Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P. O. Box: 15875-4413, Tehran (Iran, Islamic Republic of)

    2009-05-05

    In this study, several fluorine-substituted hydroxyapatite ceramics with the general chemical formula Ca{sub 5}(PO{sub 4}){sub 3}(OH){sub 1-x}F{sub x} (0 {<=} x {<=} 1), where x = 0.0 (hydroxyapatite; HA), x = 0.68 (fluorhydroxyapatite; FHA) and x = 0.97 (fluorapatite; FA) were prepared. The powders were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR), X-ray diffraction (XRD), F-selective electrode, atomic absorption spectroscopy (AAS) and EDTA titration analyses. The powders were uniaxially pressed and were formed as a disc shape. Subsequently, sinterability and thermal stability of synthesized powders were compared together. Also the effect simultaneously of fluoride content and temperature were examined on the lattice parameters and crystallites size of the obtained powders. Mechanical properties including hardness, elastic modulus and fracture toughness were measured using indentation. The in vitro dissolution studies of the samples were carried out at osteoclastic resorption conditions. Finally, the biocompatibility and cytotoxicity of the samples were carried out using osteoblast-like cells and L929 cell line, respectively. The obtained results showed that the thermal stability substantially is increased with increase incorporated fluoride into HA structure. Also it was found that the fluoride reduced the lattice parameters and crystallites size of HA. Finally, the in vitro dissolution studies results suggest that the fluoride substitutions in HA offer the ability to prepare HAs with different degrees of solubility.

  2. Complex metabolic network of 1,3-propanediol transport mechanisms and its system identification via biological robustness.

    Science.gov (United States)

    Guo, Yanjie; Feng, Enmin; Wang, Lei; Xiu, Zhilong

    2014-04-01

    The bioconversion of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate metabolic network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. Since there are some uncertain factors in the fermentation, especially the transport mechanisms of 1,3-PD across cell membrane, the metabolic network contains multiple possible metabolic systems. Considering the genetic regulation of dha regulon and inhibition of 3-hydroxypropionaldehyde to the growth of cells, we establish a 14-dimensional nonlinear hybrid dynamical system aiming to determine the most possible metabolic system and the corresponding optimal parameter. The existence, uniqueness and continuity of solutions are discussed. Taking the robustness index of the intracellular substances together as a performance index, a system identification model is proposed, in which 1,395 continuous variables and 90 discrete variables are involved. The identification problem is decomposed into two subproblems and a parallel particle swarm optimization procedure is constructed to solve them. Numerical results show that it is most possible that 1,3-PD passes the cell membrane by active transport coupled with passive diffusion.

  3. Systems biology provides new insights into the molecular mechanisms that control the fate of embryonic stem cells.

    Science.gov (United States)

    Mallanna, Sunil K; Rizzino, Angie

    2012-01-01

    During the last 5 years there has been enormous progress in developing a deeper understanding of the molecular mechanisms that control the self-renewal and pluripotency of embryonic stem cells (ESC). Early progress resulted from studying individual transcription factors and signaling pathways. Unexpectedly, these studies demonstrated that small changes in the levels of master regulators, such as Oct4 and Sox2, promote the differentiation of ESC. More recently, impressive progress has been made using technologies that provide a global view of the signaling pathways and the gene regulatory networks that control the fate of ESC. This review provides an overview of the progress made using several different high-throughput technologies and focuses on proteomic studies, which provide the first glimpse of the protein-protein interaction networks used by ESC. The latter studies indicate that transcription factors required for the self-renewal of ESC are part of a large, highly integrated protein-protein interaction landscape, which helps explain why the levels of master regulators need to be regulated precisely in ESC.

  4. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    Science.gov (United States)

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics.

  5. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  6. Approach to the classical radiation biology. Ionizing radiation effects and repair mechanism of DNA double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, Hiroshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2000-09-01

    Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and believed to be the recovery of sublethal damage (SLD). It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism of this recovery, we analyzed the knockout mutants KU70{sup -/-}, RAD54{sup -/-}, and KU70{sup -/-}/ RAD54{sup -/-} of the chicken B-cell line, DT40. Rad54 participates in the homologous recombinational (HR) repair of DNA double-strand breaks (DSB), while Ku proteins are involved in non-homologous end-joining (NHEJ). Split-dose recovery was observed in the parent DT40 and KU70{sup -/-} cells. Moreover the split-dose survival enhancement had all of the characteristics of SLD recovery that had been demonstrated earlier: e.g., the reappearance of the shoulder of the survival curve with dose fractionation; repair at 25degC; and inhibition by the antibiotic actinomycin D. These results strongly suggest that SLD recovery is due to DSB repair via or mediated by HR, and that these breaks constitute SLD. The tonicity-sensitive potentially lethal damage (PLD) recovery was also found only in DT40 and KU70 {sup -/-} cells. Delayed-plating PLD recovery may be controlled by NHEJ repair that works through the cell cycle. These results lead to the conclusion that the repair of DSBs could explain the classical operational recovery phenomena. We have also investigated RBE/LET using those mutants. (author)

  7. Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications.

    Science.gov (United States)

    Sandhiya, L; Kolandaivel, P; Senthilkumar, K

    2014-04-01

    The nitration of tyrosine by atmospheric oxidants, O3 and NO2, is an important cause for the spread of allergenic diseases. In the present study, the mechanism and pathways for the reaction of tyrosine with the atmospheric oxidants O3 and NO2 are studied using DFT-M06-2X, B3LYP, and B3LYP-D methods with the 6-311+G(d,p) basis set. The energy barrier for the initial oxidation reactions is also calculated at the CCSD(T)/6-31+G(d,p) level of theory. The reaction is studied in gas, aqueous, and lipid media. The initial oxidation of tyrosine by O3 proceeds by H atom abstraction and addition reactions and leads to the formation of six different intermediates. The subsequent nitration reaction is studied for all the intermediates, and the results show that the nitration affects both the side chain and the aromatic ring of tyrosine. The rate constant of the favorable oxidation and nitration reaction is calculated using variational transition state theory over the temperature range of 278-350 K. The spectral properties of the oxidation and nitration products are calculated at the TD-M06-2X/6-311+G(d,p) level of theory. The fate of the tyrosine radical intermediate is studied by its reaction with glutathione antioxidant. This study provides an enhanced understanding of the oxidation and nitration of tyrosine by O3 and NO2 in the context of improving the air quality and reducing the allergic diseases.

  8. A Biological Perspective of The Hypomagnetic Field:From Definition Towards Mechanism%亚磁场及其生物响应机制

    Institute of Scientific and Technical Information of China (English)

    莫炜川; 刘缨; 赫荣乔

    2012-01-01

    根据亚磁生物学的研究历史和空间亚磁环境的实际情况,本文定义磁感应强度总量在“0<|B|≤5μT”区间内的静态弱磁场为亚磁场.亚磁场能对生命活动的多个方面,特别是中枢神经系统产生负面影响.随着月球与火星航天计划的开展,航天员将长期暴露于亚磁空间中.这可能对宇航员的身心健康带来潜在的危害.亚磁场生物学效应及其机制的研究,将为相关载人航天的空间防护提供理论基础,已成为空间生物科学以及航天医学等相关领域的新热点.%Here, we review the progresses of researches on the biological effects of the hypomagnetic field (HMF) and propose that a magnetic field with magnetic induction of "0< |B|≤ 5 μT" is defined as a hypomagnetic field (HMF). Interplanetary space is a natural hypomagnetic field. The astronauts, enabled by space sciences thriving in the recent decades, are spending longer time in the hypomagnetic outer space, e.g. landing on the moon and heading to mars. The effects of HMF on many aspects of biological processes, especially the adverse impacts on the functions of the central nervous system, remind us that the astronauts would suffer from potential risks due to the HMF exposure. Unfolding the mechanism of the biological responses to the HMF is the fundament for developing the counteractions of the adverse space environmental factors, and has recently become a hot topic in the field of space life sciences. Refining the concept of HMF and standardizing the HMF simulation systems for biological experiments will benefit the comparability of the HMF effects as described, and improve our understanding of how HMF influences homeostasis, cell signaling pathways and cognitive behaviors, and to what extent HMF contribute to such disturbances.

  9. Effect of different biological activity collagen scaffolds on growth ability of human dental pulp cells and investigation of its possible molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Yu-Hong Zou

    2015-01-01

    Objective:To study the effect of different biological activity collagen scaffolds on growth ability of human dental pulp cells and its possible molecular mechanisms.Methods:Human dental pulp cells were isolated and cultured, seeded on collagen scaffold (COL), collagen-bioactive glass scaffolds (COL-BG) and collagen-bioactive glass-PCL scaffolds (COL-BG-PCL). Then growth ability of the cells and expression of related genes were detected.Results:hDPSCs absorbance value, migration rate as well as ALP content in supernatant of COL-BG-PCL group were all higher than those of COL group and COL-BG group; Oct4A, NICD, HMGB1, SDF1, DSPP and DMP-1 contents of COL-BG-PCL group were all higher than those of COL group and COL-BG group.Conclusion:COL-BG-PCL composites contribute to proliferation, migration and differentiation of hDPSCs; the possible molecular mechanisms are increasing Oct4A, NICD, HMGB1, SDF1, DSPP and DMP-1 expression.

  10. 心理弹性的心理社会及生物学机制%The Psychosocial and Biological Mechanism of Resilience

    Institute of Scientific and Technical Information of China (English)

    李丽; 谢光荣

    2012-01-01

    Resilience refers to a dynamic process encompassing coping successfully and positive adaptation within acute stress, trauma or more chronic forms of adversity. The studies of resilient mechanism mainly focus on psycho -social and biological field. In this paper, we explore the mechanism in the role of individual, family, social, Neurobiology and molecular genetics factors of resilience. Finally, the future research trends in the relevant areas were discussed.%心理弹性是个体在经历急性压力、创伤或者更多不同形式的慢性压力时成功应对、积极适应的动态过程,对心理弹性机制的研究有心理社会及生物学两种研究取向.探索了心理弹性的个人、家庭、社会环境、神经生物、分子遗传学因素以及它们的作用机制过程,并对今后的研究进行了展望.

  11. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.

    Science.gov (United States)

    Di Lonardo, Maria Chiara; Franzese, Maurizio; Costa, Giulia; Gavasci, Renato; Lombardi, Francesco

    2016-01-01

    This work assessed the quality in terms of solid recovered fuel (SRF) definitions of the dry light flow (until now indicated as refuse derived fuel, RDF), heavy rejects and stabilisation rejects, produced by two mechanical biological treatment plants of Rome (Italy). SRF classification and specifications were evaluated first on the basis of RDF historical characterisation methods and data and then applying the sampling and analytical methods laid down by the recently issued SRF standards. The results showed that the dry light flow presented a worst SRF class in terms of net calorific value applying the new methods compared to that obtained from RDF historical data (4 instead of 3). This lead to incompliance with end of waste criteria established by Italian legislation for SRF use as co-fuel in cement kilns and power plants. Furthermore, the metal contents of the dry light flow obtained applying SRF current methods proved to be considerably higher (although still meeting SRF specifications) compared to those resulting from historical data retrieved with RDF standard methods. These differences were not related to a decrease in the quality of the dry light flow produced in the mechanical-biological treatment plants but rather to the different sampling procedures set by the former RDF and current SRF standards. In particular, the shredding of the sample before quartering established by the latter methods ensures that also the finest waste fractions, characterised by higher moisture and metal contents, are included in the sample to be analysed, therefore affecting the composition and net calorific value of the waste. As for the reject flows, on the basis of their SRF classification and specification parameters, it was found that combined with the dry light flow they may present similar if not the same class codes as the latter alone, thus indicating that these material flows could be also treated in combustion plants instead of landfilled. In conclusion, the

  12. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    Science.gov (United States)

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms.

  13. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.

    Directory of Open Access Journals (Sweden)

    Leonardo Abdala Elias

    2014-11-01

    Full Text Available Several models have been employed to study human postural control during upright quiet stance. Most have adopted an inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the physiological mechanisms of important elements associated with the control of human posture. This paper studies neuromuscular mechanisms behind upright stance control by means of a biologically based large-scale neuromusculoskeletal (NMS model. It encompasses: i conductance-based spinal neuron models (motor neurons and interneurons; ii muscle proprioceptor models (spindle and Golgi tendon organ providing sensory afferent feedback; iii Hill-type muscle models of the leg plantar and dorsiflexors; and iv an inverted pendulum model for the body biomechanics during upright stance. The motor neuron pools are driven by stochastic spike trains. Simulation results showed that the neuromechanical outputs generated by the NMS model resemble experimental data from subjects standing on a stable surface. Interesting findings were that: i an intermittent pattern of muscle activation emerged from this posture control model for two of the leg muscles (Medial and Lateral Gastrocnemius; and ii the Soleus muscle was mostly activated in a continuous manner. These results suggest that the spinal cord anatomy and neurophysiology (e.g., motor unit types, synaptic connectivities, ordered recruitment, along with the modulation of afferent activity, may account for the mixture of intermittent and continuous control that has been a subject of debate in recent studies on postural control. Another finding was the occurrence of the so-called "paradoxical" behaviour of muscle fibre lengths as a function of postural sway. The simulations confirmed previous conjectures that reciprocal inhibition is possibly contributing to this effect, but

  14. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.

    Science.gov (United States)

    Elias, Leonardo Abdala; Watanabe, Renato Naville; Kohn, André Fabio

    2014-11-01

    Several models have been employed to study human postural control during upright quiet stance. Most have adopted an inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the physiological mechanisms of important elements associated with the control of human posture. This paper studies neuromuscular mechanisms behind upright stance control by means of a biologically based large-scale neuromusculoskeletal (NMS) model. It encompasses: i) conductance-based spinal neuron models (motor neurons and interneurons); ii) muscle proprioceptor models (spindle and Golgi tendon organ) providing sensory afferent feedback; iii) Hill-type muscle models of the leg plantar and dorsiflexors; and iv) an inverted pendulum model for the body biomechanics during upright stance. The motor neuron pools are driven by stochastic spike trains. Simulation results showed that the neuromechanical outputs generated by the NMS model resemble experimental data from subjects standing on a stable surface. Interesting findings were that: i) an intermittent pattern of muscle activation emerged from this posture control model for two of the leg muscles (Medial and Lateral Gastrocnemius); and ii) the Soleus muscle was mostly activated in a continuous manner. These results suggest that the spinal cord anatomy and neurophysiology (e.g., motor unit types, synaptic connectivities, ordered recruitment), along with the modulation of afferent activity, may account for the mixture of intermittent and continuous control that has been a subject of debate in recent studies on postural control. Another finding was the occurrence of the so-called "paradoxical" behaviour of muscle fibre lengths as a function of postural sway. The simulations confirmed previous conjectures that reciprocal inhibition is possibly contributing to this effect, but on the

  15. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.

    Science.gov (United States)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications.

  16. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  17. 植物提取物的生物学功能及其作用机理%Biological Functions of Plant Extracts and Its Mechanisms

    Institute of Scientific and Technical Information of China (English)

    甘利平; 杨维仁; 张崇玉; 张桂国

    2015-01-01

    Plant extracts are a kind of plant-derived active materials, which exert one or multiple biological functions such as growth promotion, antioxidant, antivirus, and immunological enhancement etc, when ap-plied into animal feeding. Based on the diversity of chemical structure, plant extracts exhibited multifarious act-ing mechanisms referring to the modulation of antioxidant enzymes, sterilization of pathogenic bacteria, media-tion of signaling pathways, defaunation, and inhibition of the methanobacteria proliferation, etc. This paper summarized the biological functions and its mechanisms of plant extracts, as well as the actual application effects in practice so as to provide a reference for further study in this field.%植物提取物是指一类来源于植物的,具有一种或多种生物学功能的活性物质,添加在饲料中能起到促生长、抗氧化、抗病毒、免疫增强等多种功能,且在畜产品中无残留,动物体内不易产生病原菌的抗药性. 由于植物提取物种类的多样性,其生物学活性的作用机制也不尽相同,这其中包括对体内抗氧化酶在转录和翻译水平的调控、病原菌表面受体结合与穿透融和、介导免疫细胞信号通路、去瘤胃原虫作用、减少甲烷菌的增殖等多个方面. 本文综述了当前对植物提取物的种类、生物学功能及作用机理的研究,为今后在此领域开展更深入的研究提供参考.

  18. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    Science.gov (United States)

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  19. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    Directory of Open Access Journals (Sweden)

    Dong-Ae KIM

    2015-08-01

    Full Text Available AbstractSome weaknesses of conventional glass ionomer cement (GIC as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol% of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05 and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  20. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification

    Science.gov (United States)

    Bahl, Sumit; Shreyas, P.; Trishul, M. A.; Suwas, Satyam; Chatterjee, Kaushik

    2015-04-01

    Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

  1. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.

    Science.gov (United States)

    Bahl, Sumit; Shreyas, P; Trishul, M A; Suwas, Satyam; Chatterjee, Kaushik

    2015-05-07

    Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

  2. Efficiency and mechanism of ferric salt enhanced biological phosphorus removal%铁强化微生物除磷的效能及机理

    Institute of Scientific and Technical Information of China (English)

    孙翠平; 周维芝; 赵海霞

    2015-01-01

    从深海菌中筛选出一株高效除磷菌,并研究了铁强化此除磷菌在高盐合成废水中的除磷效能及机理。通过批次试验研究了铁磷物质的量比、初始 pH 值对除磷效率的影响以及铁强化生物除磷的动力学,并利用扫描电镜和能谱分析对微生物表面形貌进行了研究。结果表明,与单独铁盐和生物除磷相比,铁强化微生物除磷效率更高效且稳定在95%以上。当 n(Fe(III))∶n(P)=1∶1时,铁强化微生物除磷的最大效率达98.50%,相比单纯生物除磷提高30%,而单独铁盐除磷 n(Fe(III))∶n(P)=2∶1~3∶1时,除磷率仅90%;当 n(Fe(III))∶n(P)≤1∶1时,铁强化微生物除磷以微生物除磷为主,铁盐辅助,处理后水 pH 中性且稳定;当物质的量比 n(Fe(III))∶n(P)>1∶1时,由于Fe(III)水解造成 pH 降低至5.50以下,微生物生长受抑,磷的去除主要靠化学沉淀。废水初始 pH 在6.0~9.0范围内,铁强化生物除磷去除率均在95%以上。准一级动力学模型能够很好地模拟生物除磷过程;准二级动力学模型能够很好地模拟铁强化生物除磷,且较长时间内无磷释放现象。铁强化生物除磷的机理包括:(1)细菌生长除磷以及胞外聚合物对磷的吸附;(2)在混合液中形成了羟基磷酸铁络合物;(3)在细菌表面形成了由细菌诱导的铁磷微沉淀。%An efficient phosphorus (P)removal bacterium strain was screened from deep-sea bacteria,and phosphorus removal efficiency and mechanism by iron enhanced biological treatment were studied in the high salinity synthetic wastewater.The effects of molar ratio Fe(III)/P,initial pH on phosphorus removal and kinetics of iron enhanced bio-logical phosphorus removal were investigated by batch tests,and the surface morphology of bacteria was studied by SEM-EDS (scanning electron microscopy

  3. Structure-based design, synthesis, molecular docking, and biological activities of 2-(3-benzoylphenyl propanoic acid derivatives as dual mechanism drugs

    Directory of Open Access Journals (Sweden)

    Musa A Ahmed

    2012-01-01

    Full Text Available Purpose: 2-(3-benzoyl phenylpropanohydroxamic acid (2 and 2-{3-[(hydroxyimino(phenylmethyl]phenyl}propanoic acid (3 were synthesized from non-steroidal anti-inflammatory drug, ketoprofen as dual-mechanism drugs. Materials and Methods: Structures of the synthesized compounds were established by IR, 1 H NMR, and mass spectroscopy. Both compounds were screened for their anti-inflammatory activity in rat paw edema model and in vitro antitumor activity against 60 human tumor cell lines. Flexible ligand docking studies were performed with different matrix metalloproteinases and cyclooxygenases to gain an insight into the structural preferences for their inhibition. Results: Compound (2 proved out to be more potent than ketoprofen in rat paw edema model. Both compounds showed moderate anticancer activity ranging from 1% to 23% inhibition of growth in 38 cell lines of 8 tumor subpanels at 10 μM concentration in a single dose experiment. Hydroxamic acid analogue was found to be more potent than ketoximic analogue in terms of its antitumor activity. Conclusion: Analysis of docking results together with experimental findings provide a good explanation for the biological activities associated with synthesized compounds which may be fruitful in designing dual-target-directed drugs that may inhibit cyclooxygenases and MMPs for the treatment of cancer.

  4. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics.

    Science.gov (United States)

    Banerjee, Shashwat S; Tarafder, Solaiman; Davies, Neal M; Bandyopadhyay, Amit; Bose, Susmita

    2010-10-01

    The objective of this study was to evaluate the influence of MgO and SrO doping on the mechanical and biological properties of beta-tricalcium phosphate (beta-TCP). beta-TCP was doped with two different binary compositions, 0.25 and 1.0wt.% SrO along with 1.0wt.% MgO. MgO and SrO doping increased the beta phase stability at a sintering temperature of 1250 degrees C and marginally decreased the compressive strength of beta-TCP. An in vitro cell-material interaction study, using human fetal osteoblast cells (hFOB), indicated that doped beta-TCP was non-toxic, and MgO/SrO dopants improved cell attachment and growth. beta-TCP implants doped with 1.0wt.% MgO and 1.0wt.% SrO showed good in vivo biocompatibility when tested in male Sprague-Dawley rats for 16 weeks. Histomorphology analysis indicated that MgO/SrO-doped beta-TCP promoted more osteogenesis than pure beta-TCP. In vivo osteocalcin and type I collagen assay also revealed faster bone formation in rats with doped beta-TCP implant compared to rats with pure beta-TCP implant. Low Ca(2+) concentration in the urine of rats with doped beta-TCP implant confirmed slower degradation of MgO/SrO-doped beta-TCP than pure beta-TCP.

  5. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms.

    Science.gov (United States)

    Hermann, M; Jaconi, M E; Dahlgren, C; Waldvogel, F A; Stendahl, O; Lew, D P

    1990-09-01

    The activation patterns of surface adherent neutrophils are modulated via interaction of extracellular matrix proteins with neutrophil integrins. To evaluate neutrophil bactericidal activity, Staphylococcus aureus adherent to biological surfaces were incubated with neutrophils and serum, and the survival of surface bacteria was determined. When compared to albumin-coated surfaces, the bactericidal activity of neutrophils adherent to purified human extracellular matrix was markedly enhanced (mean survival: 34.2% +/- 9.0% of albumin, P less than 0.0001) despite similar efficient ingestion of extracellular bacteria. Enhancement of killing was observed when surfaces were coated with purified constituents of extracellular matrix, i.e., fibronectin, fibrinogen, laminin, vitronectin, or type IV collagen. In addition to matrix proteins, the tetrapeptide RGDS (the sequence recognized by integrins) crosslinked to surface bound albumin was also active (survival: 74.5% +/- 5.5% of albumin, P less than 0.02), and fibronectin-increased killing was inhibited by soluble RGDS. Chemiluminescence measurements and experiments with CGD neutrophils revealed that both oxygen-dependent and -independent bactericidal mechanisms are involved. In conclusion, matrix proteins enhance intracellular bactericidal activity of adherent neutrophils, presumably by integrin recognition of RGDS-containing ligands. These results indicate a role for extracellular matrix proteins in the enhancement of the host defense against pyogenic infections.

  6. All biology is computational biology

    Science.gov (United States)

    2017-01-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science. PMID:28278152

  7. A hypothetical mathematical construct explaining the mechanism of biological amplification in an experimental model utilizing picoTesla (PT) electromagnetic fields.

    Science.gov (United States)

    Saxena, Anjali; Jacobson, Jerry; Yamanashi, William; Scherlag, Benjamin; Lamberth, John; Saxena, Brij

    2003-06-01

    biomolecular resonant responses which are integrated over time and account for the connection between the phonon field and photons. Jacobson Resonance does supply an initial physical mechanism, as equivalencies in energy to that of Zeeman Resonance (i.e., zero-order magnetic resonance) and cyclotron resonance may be derived from the DeBroglie wave particle equation. For the first time, we view the introduction of Relativity Theory to biology in the expression, mc(2)=BvLq, where m is the mass of a particle in the 'box' or 'string' (molecule in a biosystem), c is the velocity of electromagnetic field in space, independent of its inertial frame of reference, B is the magnetic flux density,v is the velocity of the carrier or 'string' (a one or two dimensional 'box') in which the particle exists, L is its dimension (length) and q represents a unit charge q=1C, by defining electromotive force as energy per unit charge. Equivalencies suggest that qvBL is one of the fundamental expressions of energy of a charged wave-particle in magnetic fields, just as Zeeman and cyclotron resonance energy expressions, gbetaB and qhB/2pim, and is applicable to all charged particles (molecules in biological systems). There may exist spontaneous, independent and incessant interactions of magnetic vector B and particles in biosystems which exert Lorentz forces. Lorentz forces may be transmitted from EM field to gravitational field as a gravity wave which return to the phonon field as microgravitational fluctuations to therein produce quantum vibrational states that increase quanta of thermal energies integrated over time. This may account for the differential of 10(12) between photonic energy of ELF waves and the Boltzman energy kT. Recent data from in vivo controlled studies are included as empirical support for the various hypotheses presented.

  8. Emission model for landfills with mechanically-biologically pretreated waste, with the emphasis on modelling the gas balance; Emissionsprognosemodell fuer Deponien mit mechanisch-biologisch vorbehandelten Abfaellen - Schwerpunkt: Modellierung des Gashaushaltes

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.

    2001-07-01

    The objective of this work was to determine influence factors on processes going on in landfills with mechanically-biologically pretreated waste (MBP-landfills) in order to predict emissions. For this purpose a computer based model has been developed. The model allows to simulate the gas, water and heat balance as well as settlement processes and was called DESIM2005 (version MB). It is based on theoretical modeling approaches as well as data from lab and reactor experiments. The main focus of model application was to determine factors influencing the gas phase and the emissions of landfill gas and methane during operation and aftercare of MBP-landfills. By performing simulations the effects of changing parameters for the processes gas transport and biological degradation as well as the effects of different qualities in waste pretreatment and of varying landfill operation techniques were investigated. Possibilities for increasing the environmental sustainability of landfills containing mechanically-biologically pretreated waste were shown. (orig.)

  9. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  10. Mechanical-biological waste treatment (MBT). Actual state of affairs and perspective in Germany; Stand und Perspektiven der Mechanisch-Biologischen Abfallbehandlung (MBA) in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Thomas; Balhar, Michael [ASA e.V. im Hause der AWG Kreis Warendorf mbH des Kreises Warendorf, Ennigerloh (Germany)

    2009-04-15

    In total about 25% of the municipal solid wastes are pretreated in Germany by means of the MBT technology. This technology is based on a material specific waste treatment. This means that the partly differing properties are decisive considering the selection and adjustment of treatment steps for residual wastes. A large part of today's residual wastes which still remain after collection of wastes are subject to material recycling and therefore must be disposed of, represent a very inhomogeneous mixture from most different materials with very different material properties. Some of these wastes are mineral wastes and thus inert, i.e. not able to react. Others consist of dry materials like plastics, textiles, paper or compounds, which altogether have an energy content higher-than-average. Other types contain higher portions of organics which are biodegradable under certain conditions and possibly produce a usable gas. Here the principle of material specific waste treatment begins. Material specific waste treatment segregates waste mixtures into the different fractions. The first treatment step is the mechanical preparation where the waste mixtures are released from impurities and harmful substances, classified in different particle streams, comminuted and prepared for the following treatment steps. Used for this purposes are e.g. sorting excavators, shredders, screening and mixing equipment, ballistic separators for the heavy and light fraction as well as separators for ferrous and non ferrous metals. In most of the cases an aerobic treatment by means one of the various decomposition processes is part of the subsequent biological treatment steps. Ranging from open decomposition processes on landfill areas up to completely encapsulated systems with exhaust air treatment. To some extent anaerobic digestion steps are integrated, producing - after exclusion of air - usable biogas. (orig.)

  11. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.

    Science.gov (United States)

    Matsuoka, Yu; Shimizu, Kazuyuki

    2013-10-20

    It is quite important to understand the basic principle embedded in the main metabolism for the interpretation of the fermentation data. For this, it may be useful to understand the regulation mechanism based on systems biology approach. In the present study, we considered the perturbation analysis together with computer simulation based on the models which include the effects of global regulators on the pathway activation for the main metabolism of Escherichia coli. Main focus is the acetate overflow metabolism and the co-fermentation of multiple carbon sources. The perturbation analysis was first made to understand the nature of the feed-forward loop formed by the activation of Pyk by FDP (F1,6BP), and the feed-back loop formed by the inhibition of Pfk by PEP in the glycolysis. Those together with the effect of transcription factor Cra caused by FDP level affected the glycolysis activity. The PTS (phosphotransferase system) acts as the feed-back system by repressing the glucose uptake rate for the increase in the glucose uptake rate. It was also shown that the increased PTS flux (or glucose consumption rate) causes PEP/PYR ratio to be decreased, and EIIA-P, Cya, cAMP-Crp decreased, where cAMP-Crp in turn repressed TCA cycle and more acetate is formed. This was further verified by the detailed computer simulation. In the case of multiple carbon sources such as glucose and xylose, it was shown that the sequential utilization of carbon sources was observed for wild type, while the co-consumption of multiple carbon sources with slow consumption rates were observed for the ptsG mutant by computer simulation, and this was verified by experiments. Moreover, the effect of a specific gene knockout such as Δpyk on the metabolic characteristics was also investigated based on the computer simulation.

  12. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF{sub 2} or MgO for implants functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Natalia [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Stan, G.E. [National Institute of Materials Physics, Magurele RO-077125 (Romania); Duta, L. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Chifiriuc, Mariana Carmen [Department of Microbiology, Faculty of Biology, Bucharest RO-060101 (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, 85 Mihai Bravu Avenue, Bucharest RO-030304 (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Advance Nanomaterials Research Laboratory, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania)

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF{sub 2} (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ{sub FWHM} ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF{sub 2} and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  13. Engineering Nanoscale Biological Molecular Motors

    OpenAIRE

    Korosec, Chapin; Forde, Nancy R.

    2017-01-01

    Understanding the operation of biological molecular motors, nanoscale machines that transduce electrochemical energy into mechanical work, is enhanced by bottom-up strategies to synthesize novel motors.

  14. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  15. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  16. A Systems Biology-Based Approach to Uncovering the Molecular Mechanisms Underlying the Effects of Dragon's Blood Tablet in Colitis, Involving the Integration of Chemical Analysis, ADME Prediction, and Network Pharmacology

    OpenAIRE

    Haiyu Xu; Yanqiong Zhang; Yun Lei; Xiumei Gao; Huaqiang Zhai; Na Lin; Shihuan Tang; Rixin Liang; Yan Ma; Defeng Li; Yi Zhang; Guangrong Zhu; Hongjun Yang; Luqi Huang

    2014-01-01

    Traditional Chinese medicine (TCM) is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB) tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME), and network pharmacology. Firstly, a rapid, reliable, and accurate ult...

  17. The effect of a combined biological and thermo-mechanical pretreatment of wheat straw on energy yields in coupled ethanol and methane generation.

    Science.gov (United States)

    Theuretzbacher, Franz; Blomqvist, Johanna; Lizasoain, Javier; Klietz, Lena; Potthast, Antje; Horn, Svein Jarle; Nilsen, Paal J; Gronauer, Andreas; Passoth, Volkmar; Bauer, Alexander

    2015-10-01

    Ethanol and biogas are energy carriers that could contribute to a future energy system independent of fossil fuels. Straw is a favorable bioenergy substrate as it does not compete with food or feed production. As straw is very resistant to microbial degradation, it requires a pretreatment to insure efficient conversion to ethanol and/or methane. This study investigates the effect of combining biological pretreatment and steam explosion on ethanol and methane yields in order to improve the coupled generation process. Results show that the temperature of the steam explosion pretreatment has a particularly strong effect on possible ethanol yields, whereas combination with the biological pretreatment showed no difference in overall energy yield. The highest overall energy output was found to be 10.86 MJ kg VS(-1) using a combined biological and steam explosion pretreatment at a temperature of 200°C.

  18. Thermodynamics of Biological Processes

    Science.gov (United States)

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  19. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    example of biological design. We investigated the architecture of A. simplex and found that an advanced hierarchical biomineralized structure acts as the interface between soft musculature and a stiff substrate, thus securing underwater attachment. In bone, the mechanical properties of the material......, and the nanoscale response of bone in compression. Lastly, a framework for the investigation of biological design principles has been developed. The framework combines parametric modeling, multi-material 3D-printing, and direct mechanical testing to efficiently screen large parameter spaces of biological design. We......Materials formed by organisms, also known as biological materials, exhibit outstanding structural properties. The range of materials formed in nature is remarkable and their functions include support, protection, motion, sensing, storage, and maintenance of physiological homeostasis. These complex...

  20. [Biological weapons].

    Science.gov (United States)

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage.

  1. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  2. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  3. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms.

    OpenAIRE

    Hermann, M.; Jaconi, M E; Dahlgren, C; Waldvogel, F A; Stendahl, O; Lew, D P

    1990-01-01

    The activation patterns of surface adherent neutrophils are modulated via interaction of extracellular matrix proteins with neutrophil integrins. To evaluate neutrophil bactericidal activity, Staphylococcus aureus adherent to biological surfaces were incubated with neutrophils and serum, and the survival of surface bacteria was determined. When compared to albumin-coated surfaces, the bactericidal activity of neutrophils adherent to purified human extracellular matrix was markedly enhanced (m...

  4. Comparative Study on Interaction of Form and Motion Processing Streams by Applying Two Different Classifiers in Mechanism for Recognition of Biological Movement

    Directory of Open Access Journals (Sweden)

    Bardia Yousefi

    2014-01-01

    Full Text Available Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility.

  5. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  6. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  7. Repair mechanisms inducible to the DNA in I.M.M.S. biological systems; Mecanismos de reparacion inducible del ADN en sistemas biologicos I.M.M.S

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, J.; Arceo, C.; Cortinas, C.; Rosa, M.E. De la; Olvera, O.; Cruces, M.; Pimentel, E

    1990-03-15

    Given the characteristics of the MMS and the relative antecedents to the repair mechanisms in eucariontes are sought to determine the effect of the MMS on the genetic material and their repair in Drosophila melanogaster. (Author)

  8. Chemical production of excited states in biology: mechanism, regulation and function. Renewal proposal and tri-annual summary report, July 1, 1974--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H H

    1977-01-01

    Progress is reported on studies of molecular mechanisms involved in bioluminescent reactions in fireflies, in purified calcium-activated photoproteins from marine microorganisms, and in marine dinoflagellates. The role of luciferase binding protein mechanisms in photon-stimulated bioluminescence is discussed. The use of chemiluminescence as an assay technique for nicotine in tobacco smoke and carcinogenic hydrocarbons in environmental samples is proposed and the requirements for such an assay system are reviewed.

  9. Vibrations, Quanta and Biology

    CERN Document Server

    Huelga, S F

    2013-01-01

    Quantum biology is an emerging field of research that concerns itself with the experimental and theoretical exploration of non-trivial quantum phenomena in biological systems. In this tutorial overview we aim to bring out fundamental assumptions and questions in the field, identify basic design principles and develop a key underlying theme -- the dynamics of quantum dynamical networks in the presence of an environment and the fruitful interplay that the two may enter. At the hand of three biological phenomena whose understanding is held to require quantum mechanical processes, namely excitation and charge transfer in photosynthetic complexes, magneto-reception in birds and the olfactory sense, we demonstrate that this underlying theme encompasses them all, thus suggesting its wider relevance as an archetypical framework for quantum biology.

  10. Biological therapy and dentistry

    Science.gov (United States)

    Radfar, Lida; Ahmadabadi, Roshanak E; Masood, Farah; Scofield, R Hal

    2016-01-01

    In recent years, a new class of drugs has revolutionized the treatment of autoimmune, allergic, infectious and many more diseases. These drugs are classified into three groups, cytokines, monoclonal antibodies and fusion proteins. Biological drugs have less side effects compared to conventional drugs, and may target special damaged cells, but not all the cells. There may be side effects such as infection, hypersensitivity, hematological disorders, cancer, hepatotoxicity and neurological disorders, but there is not enough evidence or long term studies of the mechanism of action and side effects of these drugs. Patients on biological therapy may need some special consideration in dentistry. This paper is a review regarding the classification, mechanism of action and side effects of these drugs, and dental consideration for patients on biological therapy. PMID:26372436

  11. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    Science.gov (United States)

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-07-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.

  12. Modeling and simulation of three dimensional manipulations of biological micro/nanoparticles by applying cylindrical contact mechanics models by means of AFM

    Energy Technology Data Exchange (ETDEWEB)

    Korayem, M. H., E-mail: hkorayem@iust.ac.ir [Iran University of Science and Technology, Robotic Research Laboratory, School of Mechanical Engineering, Center of Excellence in Experimental Solid Mechanics and Dynamics (Iran, Islamic Republic of); Saraee, M. B. [Islamic Azad University, Department of Mechanical and Aerospace Engineering, Science and Research Branch (Iran, Islamic Republic of); Mahmoodi, Z.; Dehghani, S. [Iran University of Science and Technology, Robotic Research Laboratory, School of Mechanical Engineering, Center of Excellence in Experimental Solid Mechanics and Dynamics (Iran, Islamic Republic of)

    2015-11-15

    This paper has attempted to investigate the effective forces in 3D manipulation of biological micro/nano particles. Most of the recent researches have only examined 2D spherical geometries but in this paper, the cylindrical geometries, which are much closer to the real geometries, were considered. For achieving a more accurate modeling, manipulation dynamics was also considered to be three dimensional which have been done for the first time. Because of the sensibility to the amount of endurable applied forces, manipulation process of biological micro/nano particles has some restrictions. Therefore, applied forces exerted on the particles in all different directions were simulated in order to restrict all those possible damages cause by operator of the AFM. Those data from simulated forces will bring a more accurate and sensible understanding for the operator to operate. For the validation of results, the proposed model was compared with the model presented for manipulation of gold nanoparticle and then, by reducing the effective parameters in the 3D manipulation, the results were compared with those obtained for the 2D cylindrical model and with the experimental results of spherical nanoparticle in the 2D manipulation.

  13. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    Science.gov (United States)

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  14. Biological Oceanography

    Science.gov (United States)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  15. Foldit Biology

    Science.gov (United States)

    2015-07-31

    Report 8/1/2013-7/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Foldit Biology NOOO 14-13-C-0221 Sb. GRANT NUMBER N/A Sc. PROGRAM ELEMENT...Include area code) Unclassified Unclassified Unclassified (206) 616-2660 Zoran Popović Foldit Biology (Task 1, 2, 3, 4) Final Report...Period Covered by the Report August 1, 2013 – July 31, 2015 Date of Report: July 31, 2015 Project Title: Foldit Biology Contract Number: N00014-13

  16. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  17. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the public health risks related to mechanically separated meat (MSM) derived from poultry and swine

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    The purpose of this assessment was to identify public health risks linked to mechanically separated meat (MSM) types from pork and poultry and compare them with fresh meat, minced meat and meat preparations (non-MSM); and to select, rank and suggest objective measurement methods and values...

  18. Viscosity and not biological mechanisms often controls the effects of temperature on ciliary activity and swimming velocity of small aquatic organisms

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Riisgård, H. U.

    2009-01-01

    A number of studies have shown that temperature-dependent viscosity of the ambient water controls or strongly affects bio-mechanical activity such as beat frequency of water-pumping cilia in mussels and ascidians, swimming velocity of sperm cells, ciliates and small (micro- and meso-scale) aquatic...

  19. 电场治疗肿瘤的生物学机制研究进展%Progress in biological mechanism of electric fields for tumor treating

    Institute of Scientific and Technical Information of China (English)

    周晶

    2009-01-01

    Electric fields have special biological effects for its heating and non-heating effects. Heating effects are about the technology of radio frequency and microwave thermotherapy while non-heating effects are alternating electric field and pulsed electric field. These electric fields have significant effects for tumor treating.%电场因其热效应和非热效应而产生特殊的生物学效应,热效应主要指电场射频热疗和微波热疗技术,非热效应主要指交变电场和脉冲电场,这几种形式的电场在肿瘤治疗中发挥着重要的作用.

  20. New insights into the catalytic mechanism of vitamin K epoxide reductase (VKORC1) - The catalytic properties of the major mutations of rVKORC1 explain the biological cost associated to mutations.

    Science.gov (United States)

    Matagrin, Benjamin; Hodroge, Ahmed; Montagut-Romans, Adrien; Andru, Julie; Fourel, Isabelle; Besse, Stéphane; Benoit, Etienne; Lattard, Virginie

    2013-01-01

    The systematic use of antivitamin K anticoagulants (AVK) as rodenticides caused the selection of rats resistant to AVKs. The resistance is mainly associated to genetic polymorphisms in the Vkorc1 gene encoding the VKORC1 enzyme responsible for the reduction of vitamin K 2,3-epoxide to vitamin K. Five major mutations, which are responsible for AVK resistance, have been described. Possible explanations for the biological cost of these mutations have been suggested. This biological cost might be linked to an increase in the vitamin K requirements. To analyze the possible involvement of VKORC1 in this biological cost, rVKORC1 and its major mutants were expressed in Pichia pastoris as membrane-bound proteins and their catalytic properties were determined for vitamin K and 3-OH-vitamin K production. In this report, we showed that mutations at Leu-120 and Tyr-139 dramatically affect the vitamin K epoxide reductase activity. Moreover, this study allowed the detection of an additional production of 3-hydroxyvitamin K for all the mutants in position 139. This result suggests the involvement of Tyr-139 residue in the second half-step of the catalytic mechanism corresponding to the dehydration of vitamin K epoxide. As a consequence, the biological cost observed in Y139C and Y139S resistant rat strains is at least partially explained by the catalytic properties of the mutated VKORC1 involving a loss of vitamin K from the vitamin K cycle through the formation of 3-hydroxyvitamin K and a very low catalytic efficiency of the VKOR activity.

  1. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review

    Directory of Open Access Journals (Sweden)

    Yvoni Kirmanidou

    2016-01-01

    Full Text Available Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.

  2. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review.

    Science.gov (United States)

    Kirmanidou, Yvoni; Sidira, Margarita; Drosou, Maria-Eleni; Bennani, Vincent; Bakopoulou, Athina; Tsouknidas, Alexander; Michailidis, Nikolaos; Michalakis, Konstantinos

    2016-01-01

    Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.

  3. Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO-CaO-SiO2 system.

    Science.gov (United States)

    Chen, Xianchun; Ou, Jun; Wei, Yan; Huang, Zhongbing; Kang, Yunqing; Yin, Guangfu

    2010-05-01

    The aim of this research was to investigate the effect of the chemical composition on the mechanical properties, bioactivity, and cytocompatibility in vitro of bioceramics in the MgO-CaO-SiO(2) system. Three single-phase ceramics (merwinite, akermanite and monticellite ceramics) with different MgO contents were fabricated. The mechanical properties were tested by an electronic universal machine, while the bioactivity in vitro of the ceramics was detected by investigating the bone-like apatite-formation ability in simulated body fluid (SBF), and the cytocompatibility was evaluated through osteoblast proliferation and adhesion assay. The results showed that their mechanical properties were improved from merwinite to akermanite and monticellite ceramics with the increase of MgO contents, whereas the apatite-formation ability in SBF and cell proliferation decreased. Furthermore, osteoblasts could adhere, spread and proliferate on these ceramic wafers. Finally, the elongated appearance and minor filopodia of cells on merwinite ceramic were more obvious than the other two ceramics.

  4. A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration.

    Science.gov (United States)

    Huang, Lin; Lv, Qi; Liu, Fenfen; Shi, Tieliu; Wen, Chengping

    2015-11-12

    Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas.

  5. Cooperative manganese (II) activation of 3-phosphoglycerate mutase of Bacillus megaterium: a biological pH-sensing mechanism in bacterial spore formation and germination.

    Science.gov (United States)

    Kuhn, N J; Setlow, B; Setlow, P; Cammack, R; Williams, R

    1995-06-20

    The conversion of 3-P-glycerate mutase of Bacillus megaterium from a catalytically inactive to an active form was markedly more effective with buffered Mn2+ than with just added Mn2+. The previously reported stimulation by threonine disappeared when buffered Mn2+ was used. Activation of mutase showed a sigmoid dependence on Mn2+ concentration when buffered with tetramethylenediamine tetraacetate. The curve obeyed Hill kinetics with a coefficient of 2.1 +/- 0.1. At 0.5 microM free Mn2+, buffered with trimethylenediamine tetraacetate, activation of mutase increased about 73-fold over the pH range 6.6 to 7.4. Plotted against [OH-], the activation showed a strongly sigmoid response with Hill coefficient of 3.5 +/- 0.1. When mutase activated at pH 6.4 and 0.5 microM free Mn2+ in the presence of substrate was transferred to a similar medium at pH 7.4, the rate of product accumulation increased 360-fold within a few minutes. The pH sensitivity conferred upon mutase by low [Mn2+] may account for its large activity decrease during sporulation, and later increase during spore germination, when spore pH, respectively, declines and rises by about 1 unit. These changes result in the accumulation, and later reutilization, of 3-P-glycerate reserves in the spore. Such a pH-sensing function of Mn2+ may have wider biological uses.

  6. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2016-03-01

    Full Text Available Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain’s internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC

  7. 植物DNA甲基化变异对生物和非生物胁迫的响应机制%DNA Methylation Variation of Biological and Abiotic Stress Response Mechanism in Plant

    Institute of Scientific and Technical Information of China (English)

    王晓凤; 曾凡锁; 詹亚光

    2011-01-01

    高等植物具有复杂的机制使其对环境的变化做出响应,这种机制是通过长期进化建立起来的.它们能够对出现的生物和非生物胁迫产生响应.在分子水平上,植物对各种胁迫的响应是受多基因表达变化调控的,包括植物激素水杨酸、脱落酸等信号途径在整合、协调植物胁迫过程中起关键作用.近年来的研究表明,在植物响应胁迫这一过程中还进行着表观遗传调控这一进程.我们简要综述了生物胁迫和非生物胁迫对表观遗传的影响以及胁迫印记的产生,并讨论了植物响应胁迫的表观遗传调控机制.%Plants have complex mechanisms to respond to environmental changes, such a mechanism is established through long-term evolution. They can response to biological and abiotic stress. At the molecular level, plants of various stress response are regulated by multiple gene expression, including the plant hormone salicylic acid, ABA signaling pathways in the integration, coordination of plant stress play a key role in the process. Recent studies showed that plant responses to stress are also engaged in the process of epigenetic regulation in this process. In this paper we reviewed the biological stress and abiotic stress on the impact of epigenetic imprint stress generation,and discussed the plant response to stress epigenetic mechanisms.

  8. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  9. Mechanisms and biology of B-cell leukemia/lymphoma 2/adenovirus E1B interacting protein 3 and Nip-like protein X.

    Science.gov (United States)

    Zhang, Ji; Ney, Paul A

    2011-05-15

    B-cell leukemia/lymphoma 2 (BCL-2)/adenovirus E1B interacting protein 3 (BNIP3) and Nip-like protein X (NIX) are atypical BCL-2 homology domain 3-only proteins involved in cell death, autophagy, and programmed mitochondrial clearance. BNIP3 and NIX cause cell death by targeting mitochondria, directly through BCL-2-associated X protein- or BCL-2-antagonist/killer-dependent mechanisms, or indirectly through an effect on calcium stores in the endoplasmic reticulum. BNIP3 and NIX also induce autophagy through an effect on mitochondrial reactive oxygen species production, or by releasing Beclin 1 from inhibitory interactions with antiapoptotic BCL-2 family proteins. BNIP3 downregulates mitochondrial mass in hypoxic cells, whereas NIX is required for mitochondrial elimination during erythroid development. BNIP3 and NIX have an emerging role in human health. Cell death mediated by BNIP3 and NIX is implicated in heart disease and ischemic injury. Cancer progression is linked to loss of the prodeath function of BNIP3, but also to induction of its prosurvival activity. Finally, BNIP3 and NIX are implicated in mitochondrial quality control, which is important in aging and degenerative disease. Elucidation of the mechanisms by which BNIP3 and NIX regulate cell death, autophagy, and mitochondrial clearance may lead to treatments for these conditions.

  10. System biology analysis of long-term effect and mechanism of Bufei Yishen on COPD revealed by system pharmacology and 3-omics profiling

    Science.gov (United States)

    Li, Jiansheng; Zhao, Peng; Yang, Liping; Li, Ya; Tian, Yange; Li, Suyun

    2016-01-01

    System pharmacology identified 195 potential targets of Bufei Yishen formula (BYF), and BYF was proven to have a short-term therapeutic effect on chronic obstructive pulmonary disease (COPD) rats previously. However, the long-term effect and mechanism of BYF on COPD is still unclear. Herein, we explored its long-term effect and underlying mechanism at system level. We administered BYF to COPD rats from week 9 to 20, and found that BYF could prevent COPD by inhibiting the inflammatory cytokines expression, protease-antiprotease imbalance and collagen deposition on week 32. Then, using transcriptomics, proteomics and metabolomics analysis, we identified significant regulated genes, proteins and metabolites in lung tissues of COPD and BYF-treated rats, which could be mainly attributed to oxidoreductase-antioxidant activity, focal adhesion, tight junction or lipid metabolism. Finally, based on the comprehensive analysis of system pharmacology target, transcript, protein and metabolite data sets, we found a number of genes, proteins, metabolites regulated in BYF-treated rats and the target proteins of BYF were involved in lipid metabolism, inflammatory response, oxidative stress and focal adhension. In conclusion, BYF exerts long-term therapeutic action on COPD probably through modulating the lipid metabolism, oxidative stress, cell junction and inflammatory response pathways at system level. PMID:27146975

  11. Airborne microbial emissions and immissions on aerogic mechanical-biological waste treatment plants; Luftgetragene mikrobielle Emissionen und Immissionen an aeroben mechanisch-biologischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Luft, C.

    2002-07-01

    During biological waste treatment it is important to consider the hygienic situation. One has to take care that citizens in the neighborhood and especially the work force complain about impairments caused by microbial immissions. Therefore it is important to evaluate microbial emissions and immissions of composting plants. This dissertation looked upon this topic. Microbial and endotoxin emissions of different biological waste treatment plants were measured with diverse sampling methods. The research was done on enclosed and open variants of plants. Measurements were taken from different composting techniques and also from a plant treating the rest fraction of household waste. Depending on the technique researched different concentrations of airborne microbes could be found. The size of the plant and degree of enclosure as well as the material input all affect the amount of airborne microbial emissions. At a small open composting plant (6 500 Mg/a) only low microbial concentrations could be found at the workplace, while at the totally enclosed plant (12 000 Mg/a) high concentrations of airborne microorganisms could be observed at the workplace. Seasonal differences in microbial concentrations could not be seen when considering the agitation of outdoor piles consisting of separated household waste. In contrast, measured concentrations of endotoxins at another composting plant showed seasonal differences. Using simulations based on the models of TA-Luft and VDI 3783 it could be calculated that emissions from enclosed plants with 12 000 Mg/a input and a biofilter have a minimal influence on the neighborhood of the composting plant. (orig.) [German] Beim Umgang mit biologischen Abfaellen spielt die hygienische Situation eine wichtige Rolle. Besonders im Bereich des Arbeitsschutzes, aber auch im Hinblick auf die in der Naehe von Abfallbehandlungsanlagen wohnenden Personen, ist Sorge zu tragen, dass es nicht zu gesundheitlichen Beeintraechtigungen durch Keimimmissionen

  12. Synthetic biology for therapeutic applications.

    Science.gov (United States)

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2015-02-02

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

  13. A COLLABORATIVE METHOD BASED ON BIOLOGICAL IMMUNE MECHANISM FOR WIRELESS SENSOR AND ACTUATOR NETWORK%基于生物免疫机制的无线传感执行网络协同方法

    Institute of Scientific and Technical Information of China (English)

    成国营; 王艳

    2016-01-01

    Taking the wireless sensor and actuator networks as the object,the biological immune mechanism as the reference,and the energy efficiency and efficient task collaboration as the purpose,in this paper we first build the analogy model of the wireless sensor and actuator networks problem in contrast with biological immune mechanism,then further present the biological immune mechanism-based adaptive sensor-actuator routing collaboration algorithm for the collaborations of sensor-actuator and actuator-actuator problems respectively,as well as give the implementation process of the algorithm.Finally the effectiveness and advantage of the proposed method are validated through simulation.Simulation results show that to employ the collaboration method proposed can optimise the information transmission path in WSAN,and can reduce networks energy cost as well,besides,the energy equilibrium index is improved too.%以无线传感执行网络为对象,借鉴生物免疫机制,以能量高效、任务高效协作为目标,首先建立无线传感执行网络协同问题与生物免疫机制的类比模型,进而分别针对传感器—执行器协同及执行器—执行器协同问题,提出基于生物免疫机制的传感器—执行器自适应路由协同算法,及执行器—执行器任务协同算法,并给出算法执行流程。最后,通过仿真验证了方法的有效性与优越性。仿真结果表明,采用所提出的协同方法,不但优化了WSAN信息传递路径,而且降低了网络能耗,同时改善了能量均衡指标。

  14. Study on the mechanical and biological property of PMMA bone cement modified with ultra fine glass fibers and nano-hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    WU Qisheng; CHENG Futao; WEI Wuji

    2007-01-01

    In this study,polymethylmethacrylate(PMMA)bone cement (BC) was modified with ultra-fine glass fibers (UFGF)and nano-hydroxapatite(nano-HAP) synthesized by hydrothermal method.The results show that when the contents of both UFGF and nano-HAP powders are about 5%,the ultimate tensile strength(UTS),ultimate impact toughness (UIT),tensile strain(TS),and elastic modulus(EM)have been promoted a lot.The interface bond was improved by silicane treatment.Pre-grinding mixture of PMMA,UFGF,and nano-HAP can largely improve the mechanical property of PMMA.The PMMA modified with UFGF and HAP has better bioactivity than that modified with pure UFGF when they share the same content.Nano-HAP powder and modified PMMA were characterized by X-ray diffractometry (XRD),scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FTIR).

  15. Influence of fluoride additions on biological and mechanical properties of Na2O-CaO-SiO2-P2O5 glass-ceramics.

    Science.gov (United States)

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2014-02-01

    Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants.

  16. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  17. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  18. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  19. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  20. Biology Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  1. Differential superiority of heavy charged-particle irradiation to x-rays: Studies on biological effectivenes and side effect mechanisms in multicellular tumor and normal tissue models

    Directory of Open Access Journals (Sweden)

    Stefan eWalenta

    2016-02-01

    Full Text Available This review is focused on the radiobiology of carbon ions compared to x-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review deals with radiation-induced cell migration and mucositis.Multicellular spheroids (MCS from V79 hamster cells were irradiated with x-rays or carbon ions under ambient or restricted oxygen supply conditions. Oxygen enhancement ratios (OER were 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. A relative biological effectiveness (RBE of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M, and a dose-dependent massive induction of apoptosis. Clinically relevant doses (3 Gy of x-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in 1 integrin expression. Unlike with particles, the photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor (EGFR and AKT-ERK1/2 pathway. Comparing the gene toxicity of x-rays with that of particles using the gamma-H2AX technique in organotypic cultures of the oral mucosa, the superior effectiveness of heavy ions was confirmed by a two-fold higher number of foci per nucleus. Pro-inflammatory signs, however, were similar for both treatment modalities, e. g., the activation of NFkappaB, and the release of IL

  2. 红耳滑龟入侵的现状、适应机制及防治%Status,Adaptive Mechanism and Biological Control of the Invasion of Trachemys Scripta Elegans

    Institute of Scientific and Technical Information of China (English)

    孙燕燕; 宋环飞; 张艳茹

    2015-01-01

    外来生物入侵是当今世界范围内一个十分严峻的问题,每年由外来生物入侵造成的经济损失高达数千亿美元,如何防治外来生物入侵已成为生态学家迫切需要解决的问题。本文以红耳滑龟(Trachemys scripta e le g ans )为例,描述其生物学特性及入侵对土著龟和生态系统造成的危害,概述其成为生态入侵种的适应机制研究进展,并结合国内外应对红耳滑龟入侵的防治现状,阐述防治其入侵的可行办法。%Biological invasion by alien species is one of the most serious public problems in this world ,resulting in economic losses that run to hundred billions of dollars per year .How to control biological invasion has become an important challenge for ecologists .This review paper summarizes the biological characteristics of Trachemys scripta elegans ,its impacts on native turtles and ecosystems ,and the research advances in the adaptive mechanism and biological control of the species .By comparing the measures taken at home and abroad ,it proposes several more feasible methods that can be used .

  3. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.

    Science.gov (United States)

    Grabarse, W; Mahlert, F; Duin, E C; Goubeaud, M; Shima, S; Thauer, R K; Lamzin, V; Ermler, U

    2001-05-25

    Methyl-coenzyme M reductase (MCR) catalyzes the final reaction of the energy conserving pathway of methanogenic archaea in which methylcoenzyme M and coenzyme B are converted to methane and the heterodisulfide CoM-S-S-CoB. It operates under strictly anaerobic conditions and contains the nickel porphinoid F430 which is present in the nickel (I) oxidation state in the active enzyme. The known crystal structures of the inactive nickel (II) enzyme in complex with coenzyme M and coenzyme B (MCR-ox1-silent) and in complex with the heterodisulfide CoM-S-S-CoB (MCR-silent) were now refined at 1.16 A and 1.8 A resolution, respectively. The atomic resolution structure of MCR-ox1-silent describes the exact geometry of the cofactor F430, of the active site residues and of the modified amino acid residues. Moreover, the observation of 18 Mg2+ and 9 Na+ ions at the protein surface of the 300 kDa enzyme specifies typical constituents of binding sites for either ion. The MCR-silent and MCR-ox1-silent structures differed in the occupancy of bound water molecules near the active site indicating that a water chain is involved in the replenishment of the active site with water molecules. The structure of the novel enzyme state MCR-red1-silent at 1.8 A resolution revealed an active site only partially occupied by coenzyme M and coenzyme B. Increased flexibility and distinct alternate conformations were observed near the active site and the substrate channel. The electron density of the MCR-red1-silent state aerobically co-crystallized with coenzyme M displayed a fully occupied coenzyme M-binding site with no alternate conformations. Therefore, the structure was very similar to the MCR-ox1-silent state. As a consequence, the binding of coenzyme M induced specific conformational changes that postulate a molecular mechanism by which the enzyme ensures that methylcoenzyme M enters the substrate channel prior to coenzyme B as required by the active-site geometry. The three different

  4. The Lueneburg model - experience from a one-year operating period of the mechanic-biological waste pre-treatment plant; Modell Lueneburg - Erfahrungen aus einem Jahr Betrieb der MBV-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Tegtmeyer, E. [Gesellschaft fuer Abfallwirtschaft Lueneburg mbH, Bardowick (Germany)

    1997-12-31

    The Lueneburg plant is one of three demonstration plants for mechanic-biological pre-treatment of residual waste which receive considerable grants from the state of Niedersachsen. Whereas the other two plants, the one at Bassum (district of Diepholz) and the one at Wiefels (district of Friesland), are currently under construction, the Lueneburg plant has been officially inaugurated already in December 1995 and has since been in operation. (orig./SR) [Deutsch] Die Lueneburger Anlage ist eine von drei Demonstrationsanlagen zur mechanisch-biologischen Vorbehandlung von Restabfaellen, die durch das Land Niedersachsen in erheblichem Umfang anteilig gefoerdert werden. Waehrend die beiden anderen Anlagen in Bassum (Landkreis Diepholz) und Wiefels (Landkreis Friesland) sich zur Zeit in der Errichtungsphase befinden, ist die MBV-Anlage Lueneburg bereits im Dezember 1995 offiziell eingeweiht worden und verfuegt damit mittlerweile ueber eine etwa einjaehrige Betriebserfahrung. (orig./SR)

  5. Time is running out. From 2005, a lack of capacity is expected in systems for mechanical-biological treatment of waste; Planung unter Zeitdruck. Ab 2005 drohen auch bei MBA-Anlagen Unterkapazitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Hennings H.; Fischer, K. [Stuttgart Univ. (Germany) Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft; Oesterle, E. [Fichtner Consulting and IT, Stuttgart (Germany)

    2003-03-01

    According to German law, waste treatment prior to dumping is required from 2005. The waste volumes to be processed in incinerators and plants for mechanical-biological treatment of waste are still under discussion. Time is another problem as design, licensing, tendering and construction will take at least three years, so plans should already be in the pipeline today. [German] Ab 2005 ist eine Behandlung von Restabfall vor der Deponierung zwingend vorgeschrieben. Welche Mengen dabei auf MVA und MBA zu verteilen sind, wird noch diskutiert. Unabhaengig davon existiert jedoch auch ein zeitliches Problem. Die Konzeption, Genehmigung, Ausschreibung und der Bau einer Anlage dauert mindestens drei Jahre. Die Planung sollte also schon begonnen haben. (orig.)

  6. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  7. Design, synthesis, biological evaluation and preliminary mechanism study of novel benzothiazole derivatives bearing indole-based moiety as potent antitumor agents.

    Science.gov (United States)

    Ma, Junjie; Bao, Guanglong; Wang, Limei; Li, Wanting; Xu, Boxuan; Du, Baoquan; Lv, Jie; Zhai, Xin; Gong, Ping

    2015-01-01

    Through a structure-based molecular hybridization approach, a series of novel benzothiazole derivatives bearing indole-based moiety were designed, synthesized and screened for in vitro antitumor activity against four cancer cell lines (HT29, H460, A549 and MDA-MB-231). Most of them showed moderate to excellent activity against all the tested cell lines. Among them, compounds 20a-w with substituted benzyl-1H-indole moiety showed better selectivity against HT29 cancer cell line than other compounds. Compound 20d exhibited excellent antitumor activity with IC50 values of 0.024, 0.29, 0.84 and 0.88 μM against HT29, H460, A549 and MDA-MB-231, respectively. Further mechanism studies indicated that the marked pharmacological activity of compound 20d might be ascribed to activation of procaspase-3 (apoptosis-inducing) and cell cycle arrest, which had emerged as a lead for further structural modifications. Furthermore, 3D-QSAR model (training set: q(2) = 0.850, r(2) = 0.987, test set: r(2) = 0.811) was built to provide a comprehensive guide for further structural modification and optimization.

  8. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis.

    Science.gov (United States)

    Sadhukhan, Jhuma; Ng, Kok Siew; Martinez-Hernandez, Elias

    2016-09-01

    This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%).

  9. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties

    Science.gov (United States)

    Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.

    2015-10-01

    Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.

  10. The dynamic limits of hop height: Biological actuator capabilities and mechanical requirements of task produce incongruity between one- and two-legged performance.

    Science.gov (United States)

    Gutmann, Anne K; Bertram, John Ea

    2016-03-01

    The maximum hop height attainable for a given hop frequency falls well below the theoretical limit dictated by gravity, h = g/8f(2). However, maximum hop height is proportional to 1/f(2), suggesting that ground reaction force and, hence, force production capabilities of the leg muscles limit human hopping performance. Curiously, during one-legged hopping, subjects were able to produce substantially more than 50% the ground reaction force produced during two-legged maximum height hopping-66% on average and as much as 90% the total force produced during two-legged hopping. This implies that two legs together should be able to produce an average of 1.32 times and as much as 1.8 times the force actually measured during two-legged maximum height hopping. Why were our subjects unable to access this extra force capacity when hopping on two legs? Here, we show that this apparent bilateral deficit and other features of maximum height hopping can be explained by the interaction of the mechanical requirements of hopping with the force-velocity and force-length relationships that dictate the force production capacity of the leg muscles. Identifying the factors that limit performance in hopping provides an opportunity to understand how functional limits are determined in more complex activities such as running and jumping.

  11. Biological Significance and the Related Molecular Mechanism of Ets1 mRNA Expression in Lung Cancer by Tissue Microarray (TMA)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the expressions and molecular mechanism of Ets-1 mRNA, and TGFβ1 and c-Met proteins in the pathogenesis, progression of lung cancer by tissue microarray (TMA) method. Methods: The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were detected in 89 primary lung cancers, 12 lung cancer with lymph-node metastasis and 12 precancerous lesions by FISH(fluorescence in situ hybridization) and immunohistochemical method, and 10 normal lung tissues were used as controls. Results: The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were significantly higher in 89 primary lung cancer than in the control group (P<0.05). The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were related to lymph node metastasis and clinical stages. There was a positive correlation between the Ets-1 mRNA expression and TGFβ1 and c-Met proteins (P<0.05). Conclusion: Ets-1 mRNA, TGFβ1 and c-Met proteins may be related to the pathogenesis, progression and malignant behavior of lung cancer. They may play an important role in prognosis assessment of lung cancer.

  12. Biological materials: (Part A): Temperature-responsive polymers and drug delivery, and, (Part B): Polymer modification of fish scale and their nano-mechanical properties

    Science.gov (United States)

    Xiang, Xu

    This research has three parts. Two parts deal with novel nanoparticle assemblies for drug delivery, and are described in Part A, while the third part looks at properties of fish scales, an abundant and little-used waste resource, that can be modified to have value in medical and other areas. Part A describes fundamental research into the affects of block sequence of amphiphilic block copolymers prepared from on a new and versatile class of monomers, oligo(ethylene glycol) methyl ether acrylate (OEGA) and the more hydrophobic di(ethylene glycol) methyl ether methacrylate (DEGMA). Polymers from these monomers are biologically safe and give polymers with thermoresponsive properties that can be manipulated over a broader temperature range than the more researched N-isopropylacrylamide polymers. Using RAFT polymerization and different Chain Transfer Agents (CTAs) amphiphilic block copolymers were prepared to study the effect of block sequence (hydrophilic OEGA and more hydrophobic DEGMA) on their thermo-responsive properties. Pairing hydrophilic chain ends to a hydrophobic DEGMA block and hydrophobic chain ends to hydrophilic blocks ("mis-matched polarity") significantly affected thermoresponsive properties for linear and star diblock copolymers, but little affected symmetric triblock copolymers. Specifically matching polarity in diblock copolymers yielded nanoparticles with higher cloud points (CP), narrow temperature ranges for coil collapse above CP, and smaller hydrodynamic diameter than mis-matched polarity. Using this knowledge two linear OEGA/DEGMA diblock copolymers were prepared with thiol end groups and assembled into hybrid nanoparticles with a gold nanoparticle core (GNP-polymer hybrids). This design was made using the hypothesis that a hybrid polymer drug carrier with a high CP (50-60 °C) and a diblock structure could be designed with low levels of drug release below 37 °C (body temperature) allowing the drug carrier to reach a target (tumor) site with

  13. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models.

    Science.gov (United States)

    Walenta, Stefan; Mueller-Klieser, Wolfgang

    2016-01-01

    This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, (12)C(+6) in the plateau region, and (12)C(+6) in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during (12)C(+6) irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral

  14. Nanoindentation of biological composites

    Science.gov (United States)

    Dickinson, M.

    2009-08-01

    This investigation studied the effect of storage conditions on the mechanical properties as measured by nanoindentation of mineralised tissue samples. The three storage solutions were Hanks balanced salt solution, phosphate buffered saline and deionised water and all had a significant effect on the surface properties, namely hardness and modulus of enamel, dentin and bone tested. The effect was significant with a greater than 70% reduction in surface mechanical properties after 8 days immersion in the solutions. This study highlights the importance of testing biological tissues immediately after extraction, and the possible structural and chemistry changes that may occur by artificially storing the tissues.

  15. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  16. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  17. Biological and mechanical evaluation of the small-diameter tissue-engineered blood vessels matrix%小口径组织工程血管基质材料的生物学和力学评价

    Institute of Scientific and Technical Information of China (English)

    谭菊; 曾文; 周静婷; 李刚; 张晓彦; 朱楚洪

    2014-01-01

    Objective To develop a small-diameter tissue-engineered blood vessels which possesses normal blood vessels physiological structure, good biocompatibility, and mechanical properties. And it was evaluated by mechanical and biological of national standard of medi-cal transfusion material. Methods The bio-derived material were regarded as the ground substance, and it was evaluated by mechanical and biological of national standard after composite modification. Results The axial and radial tensile stress of the blood vessel was 23. 14 N and 36. 79 N respectively, and it was greater than the standard 7. 5N. The tensile rate of the axial and radial was 95. 19% and 80. 24% respec-tively, which were higher than the standard value 20%. The suture strength of the blood vessel was 13. 71 N, which was conform to the me-chanical requirement. Mainly used blood vessels or its extracts to detect the pH of the blood vessels is in the scope of control deionized water pH (7. 5 ± 1. 5);the hemolysis rate was 1. 3972% which was less than 5%;the whole blood coagulation time was 50% longer than the con-trol level, and there was no stimulation after intradermal injection. Conclusion With bio-derived material as the ground substance and com-positely modified, this kind od blood vessels is conform to the mechanical and biological of national standard, and it has the potential of clini-cal application which could play an important role in the replacement therapy of small-diameter vascular xenografts.%目的:研制一种具备正常血管的生理结构和良好的生物相容性,而且具有血管力学特性的小口径组织工程血管基质材料,并按医用输血材料的力学及生物学国家标准评价。方法以去细胞生物衍生材料作为基质,按照国家标准对其进行力学和生物学评价。结果血管的轴向、径向拉伸应力分别为23.14 N和36.79 N,均大于标准规定的7.5 N;拉伸率分别为95.19%和80.24%,大于标准规定的20%

  18. Biological Monitoring of Blood Naphthalene Levels as a Marker of Occupational Exposure to PAHs among Auto-Mechanics and Spray Painters in Rawalpindi

    Directory of Open Access Journals (Sweden)

    Cheema Iqbal U

    2011-06-01

    Full Text Available Abstract Background Routine exposure to chemical contaminants in workplace is a cause for concern over potential health risks to workers. In Pakistan, reports on occupational exposure and related health risks are almost non-existent, which reflects the scarce availability of survey data and criteria for determining whether an unsafe exposure has occurred. The current study was designed to evaluate blood naphthalene (NAPH levels as an indicator of exposure to polycyclic aromatic hydrocarbons (PAHs among automobile workshop mechanics (MCs and car-spray painters (PNs. We further determined the relationship between blood NAPH levels and personal behavioural, job related parameters and various environmental factors that may further be associated with elevated risks of occupational exposures to PAHs. Methods Sixty blood samples (n = 20 for each group i.e. MC, PN and control group were collected to compare their blood NAPH levels among exposed (MCs and PNs and un-exposed (control groups. Samples were analyzed using high pressure liquid chromatography (HPLC. Data regarding demographic aspects of the subjects and their socioeconomic features were collected using a questionnaire. Subjects were also asked to report environmental hygiene conditions of their occupational environment. Results We identified automobile work areas as potential sites for PAHs exposure, which was reflected by higher blood NAPH levels among MCs. Blood NAPH levels ranged from 53.7 to 1980.6 μgL-1 and 54.1 to 892.9 μgL-1 among MCs and PNs respectively. Comparison within each group showed that smoking enhanced exposure risks several fold and both active and passive smoking were among personal parameters that were significantly correlated with log-transformed blood NAPH levels. For exposed groups, work hours and work experience were job related parameters that showed strong associations with the increase in blood NAPH levels. Poor workplace hygiene and ventilation were recognized as

  19. Evaluation of combustion experiments conducted during the research and development project ``Mechanical-biological waste conditioning in combination with thermal processing of partial waste fractions``; Auswertung der Verbrennungsversuche zum Forschungs- und Entwicklungsvorhaben ``mechanisch-biologische Restmuellbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen``

    Energy Technology Data Exchange (ETDEWEB)

    Jager, J.; Lohf, A.; Herr, C. [Institut WAR, Darmstadt (Germany)

    1998-12-31

    The technical code on municipal waste makes specific demands on waste to be deposited at landfills which can only be met if mechanical-biological conditioning of waste as well as thermal processing of partial waste fractions are continued also in the future. But waste that has undergone mechanical or mechanical-biological conditioning presents different combustion properties from those of unconditioned waste. In this second stage of the research project, the thermal processability of waste having undergone mechanical or mechanical-biological conditioning was studied. Together with the results from the first project stage, where the throughput represented exclusively mechanically conditioned material, the results of the latter measuring campaigns comprehensively demonstrate possibilities for the thermal processing of partial waste fractions having undergone biological-mechanical conditioning, and inform on changes in plant performance. (orig.) [Deutsch] Um die in der TA-Siedlungsabfall an den abzulagernden Restmuell gestellten Deponieeingangsbedingungen zu erfuellen, muss neben einer mechanisch-biologischen Aufbereitung bei Teilfraktionen auch weiterhin eine thermische Behandlung eingeplant werden. Die Verbrennungseigenschaften von mechanisch oder mechanisch-biologisch vorbehandeltem Restmuell weichen allerdings von denen von unbehandeltem Restmuell ab. In dieser zweiten Projektphase des Forschungsvorhabens wurde eine Untersuchung bezueglich der thermischen Behandelbarkeit von mechanisch und auch biologisch vorbehandeltem Muell durchgefuehrt. Die Ergebnisse der Messkampagnen bilden zusammen mit den Ergebnissen der ersten Projektphase, in der ausschliesslich mechanisch vorbehandeltes Material durchgesetzt wurde, eine umfassende Darstellung ueber Moeglichkeiten und veraenderte Anlagenverhalten bei der thermischen Behandlung von Teilfraktionen aus der biologisch-mechanisch Vorbehandlung. (orig.)

  20. Causal and Teleological Explanations in Biology

    Science.gov (United States)

    Yip, Cheng-Wai

    2009-01-01

    A causal explanation in biology focuses on the mechanism by which a biological process is brought about, whereas a teleological explanation considers the end result, in the context of the survival of the organism, as a reason for certain biological processes or structures. There is a tendency among students to offer a teleological explanation…

  1. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship.

  2. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  3. Biological couplings: Function, characteristics and implementation mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Through rigorous natural selection, biological organisms have evolved exceptional functions highly adaptable to their living environments. Biological organisms can achieve a variety of biological functions efficiently by using the synergic actions of two or more different parts of the body, or the coupling effects of multiple factors, and demonstrate optimal adaptations to the living environment. In this paper, the function, characteristics and types of biological couplings are analyzed, the implementation mechanism and mode of biological coupling functions are revealed from the bionic viewpoint. Finally, the technological prospects of the bionic implementation of biological coupling function are predicted.

  4. Review of Systems Biology Approach to Study on Developmental Toxicity Mechanism of Environmental Pollutants%环境污染物发育毒性机制研究的系统生物学方法进展

    Institute of Scientific and Technical Information of China (English)

    徐挺; 赵静; 胡霞林; 尹大强

    2011-01-01

    基因调控网络(gene regulatory network,GRN)是用于研究基因调控的一种新兴的系统生物学方法,尤其适合描述生物体早期发育的调控系统和机制.由于它能体现出调控过程的网络特性和动态关系,从整体的角度全面审视环境扰动所造成的真实影响,因此有望在内分泌干扰物等环境污染物的发育毒性机制研究中发挥重要作用,解决多年来一直困扰相关研究的种种难题.针对基因调控网络的结构、研究方法、应用成果和案例进行综述,并对将这一方法应用于污染物发育毒性机制研究的前景做出展望.%Gene regulatory network (GRN) was a novel systematical biology approach for the study on gene regulation mechanism, especially helpful in describing the early development of animal body. Because GRNs can present the networks and dynamics of regulatory processing and the true impacts from the environmental perturbation, they were expected to play a key role in studying developmental toxicity mechanisms of environmental pollutants including endocrine disrupting chemicals with resolving many problems which existed for a long time. The structures, methodologies, current application cases of GRNs are rewiewed. The application of GRNs into mechanism researches of developmental toxicity of pollutants is previewed in this paper.

  5. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  6. Structure of the LINGO-1-anti-LINGO-1 Li81 antibody complex provides insights into the biology of LINGO-1 and the mechanism of action of the antibody therapy.

    Science.gov (United States)

    Pepinsky, R Blake; Arndt, Joseph W; Quan, Chao; Gao, Yan; Quintero-Monzon, Omar; Lee, Xinhua; Mi, Sha

    2014-07-01

    Multiple sclerosis (MS) is an autoimmune-inflammatory disease of the central nervous system (CNS) with prominent demyelination and axonal injury. While most MS therapies target the immunologic response, there is a large unmet need for treatments that can promote CNS repair. LINGO-1 (leucine-rich repeat and Ig-containing Nogo receptor interacting protein-1) is a membrane protein selectively expressed in the CNS that suppresses myelination, preventing the repair of damaged axons. We are investigating LINGO-1 antagonist antibodies that lead to remyelination as a new paradigm for treatment of individuals with MS. The anti-LINGO-1 Li81 antibody,BIIB033, is currently in clinical trials and is the first MS treatment targeting CNS repair. Here, to elucidate the mechanism of action of the antibody, we solved the crystal structure of the LINGO-1-Li81 Fab complex and used biochemical and functional studies to investigate structure-function relationships. Li81 binds to the convex surface of the leucine-rich repeat domain of LINGO-1 within repeats 4-8. Fab binding blocks contact points used in the oligomerization of LINGO-1 and produces a stable complex containing two copies each of LINGO-1 and Fab that results from a rearrangement of contacts stabilizing the quaternary structure of LINGO-1. The formation of the LINGO-1-Li81 Fab complex masks functional epitopes within the Ig domain of LINGO-1 that are important for its biologic activity in oligodendrocyte differentiation. These studies provide new insights into the structure and biology of LINGO-1 and how Li81 monoclonal antibody can block its function.

  7. Biological heart valves.

    Science.gov (United States)

    Ciubotaru, Anatol; Cebotari, Serghei; Tudorache, Igor; Beckmann, Erik; Hilfiker, Andres; Haverich, Axel

    2013-10-01

    Cardiac valvular pathologies are often caused by rheumatic fever in young adults, atherosclerosis in elderly patients, or by congenital malformation of the heart in children, in effect affecting almost all population ages. Almost 300,000 heart valve operations are performed worldwide annually. Tissue valve prostheses have certain advantages over mechanical valves such as biocompatibility, more physiological hemodynamics, and no need for life-long systemic anticoagulation. However, the major disadvantage of biological valves is related to their durability. Nevertheless, during the last decade, the number of patients undergoing biological, rather than mechanical, valve replacement has increased from half to more than three-quarters for biological implants. Continuous improvement in valve fabrication includes development of new models and shapes, novel methods of tissue treatment, and preservation and implantation techniques. These efforts are focused not only on the improvement of morbidity and mortality of the patients but also on the improvement of their quality of life. Heart valve tissue engineering aims to provide durable, "autologous" valve prostheses. These valves demonstrate adaptive growth, which may avoid the need of repeated operations in growing patients.

  8. Mechanical properties of viruses.

    Science.gov (United States)

    de Pablo, Pedro J; Mateu, Mauricio G

    2013-01-01

    Structural biology techniques have greatly contributed to unveil the relationships between structure, properties and functions of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical properties and functions of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of physical properties of viruses. Growing evidence indicate that viruses are subjected to internal and external forces, and that they may have adapted to withstand and even use those forces. This chapter describes what is known on the mechanical properties of virus particles, their structural determinants, and possible biological implications, of which several examples are provided.

  9. 毫米波的生物效应及医学实验和临床应用%Biological mechanism, clinical application and medical experiment of millimeter waves

    Institute of Scientific and Technical Information of China (English)

    罗庆禄

    2013-01-01

    BACKGROUND:Mil imeter wave has been applied in clinic for about 20 years, while the mechanisms and clinical curative effect are stil undefined and lacked of evidence based medicine. OBJECTIVE:To review the clinical application and mechanism of mil imeter wave in various diseases in the past 10 years. METHODS:A computer-based online search was performed in the CNKI database, China Standard database and Science Direct database from January1998 to December 2012 with the key words of“mil imeter wave, biological mechanisms, experimental studies, clinical application”put in the title and abstract. The articles related to the biological effect of mil imeter wave were included, and final y, 68 articles were included for review. RESULTS AND CONCLUSION:When the mil imeter wave used in the human body, it can only go through the skin, but its energy can resonance with some molecules in the tissues and provide the treatment effects. Mil imeter wave therapy has a good affinity for aqueous tissue, which can improve the metabolism and blood circulation of partial tissues, and can enhance the metabolic and pathological product absorption and excretory, thus can eliminate inflammatory, al eviate swel and relieve pain. Mil imeter wave filed has comprehensive.%背景:毫米波在中国临床应用已有近20年经验,但其具体机制以及临床疗效仍缺乏循证医学依据。目的:通过对国内外近10余年来毫米波在临床各类病症的应用及其机制研究进行综述。  方法:应用计算机检索1998年1月至2012年12月CNKI、中国标准全文数据库和Science Direct 数据库,在标题和中以“毫米波;生物学机制;实验研究;临床应用”或“mil imeter wave, biological mechanisms, experimental studies, clinical application”为检索词进行检索。纳入与毫米波的生物效应密切相关文献,最终选择64篇文章进行分析。  结果与结论:①毫米波疗法用于人体时,虽其穿透

  10. Mechanical and biological properties of human hard tissue replacement implants%人体硬组织替代材料的力学及生物学性能研究

    Institute of Scientific and Technical Information of China (English)

    高素霞; 孟和

    2005-01-01

    feature and biological properties of human hard tissue replacement implants for the indication of the direction in its development.STUDY SOURCES: Time of the search was from January 1998 to July 2004. Search range: 30 types of periodicals from CNKI digital library (Chinese Periodical Full Text database) and Science Direct digital library. Search words were hard tissue replacement implants, artificial bone,artificial root of tooth, bioceramic, and biological coat, etc. Search methods included electronic search and manual search, etc.STUDY SELECTION: Totally 200 corresponding literatures on human hard tissue replacement implants were selected for analysing and summarizing.DATA EXTRACTION: To summarize the corresponding information in the obtained research articles regarding hard tissue replacement implant.DATA SYNTHESIS: To comparatively analyze the mechanical and biological properties of each hard tissue replacement implant as well as their effects in practical application. The existing hard tissue replacement implants including metal materials, macromolecular materials, ceramics and their composite materials have been widely applied in clinics; however, their mechanical and biological properties have not been perfectly combined.CONCLUSION: It is always a key point(key point in researches) in biomedical material academia to find a replacement implant, of which the mechanical and biological properties perfectly suitable for the human hard tissues. The new generation of hard tissue replacement implants established by the application of biomimetic process, nano-technology, composite materisls and tissue engineering could hopefully satisfy the increasingly elevated demand of human beings.

  11. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld;

    2016-01-01

    that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound...

  12. Quantum physics meets biology

    CERN Document Server

    Arndt, Markus; Vedral, Vlatko

    2009-01-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolat...

  13. Quantum physics meets biology.

    Science.gov (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  14. Structural Biology Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  15. The X-ray Crystal Structure of the Phage Tail Terminator Protein Reveals the Biologically Relevant Hexameric Rang Structure and Demonstrates a Conserved mechanism of Tail Termination among Divrse Long Tailed Phages

    Energy Technology Data Exchange (ETDEWEB)

    Pell, L.; Liu, A; Edmonds, L; Donaldson, L; Howell, L; Davidson, A

    2009-01-01

    The tail terminator protein (TrP) plays an essential role in phage tail assembly by capping the rapidly polymerizing tail once it has reached its requisite length and serving as the interaction surface for phage heads. Here, we present the 2.7-A crystal structure of a hexameric ring of gpU, the TrP of phage ?. Using sequence alignment analysis and site-directed mutagenesis, we have shown that this multimeric structure is biologically relevant and we have delineated its functional surfaces. Comparison of the hexameric crystal structure with the solution structure of gpU that we previously solved using NMR spectroscopy shows large structural changes occurring upon multimerization and suggests a mechanism that allows gpU to remain monomeric at high concentrations on its own, yet polymerize readily upon contact with an assembled tail tube. The gpU hexamer displays several flexible loops that play key roles in head and tail binding, implying a role for disorder-to-order transitions in controlling assembly as has been observed with other ? morphogenetic proteins. Finally, we have found that the hexameric structure of gpU is very similar to the structure of a putative TrP from a contractile phage tail even though it displays no detectable sequence similarity. This finding coupled with further bioinformatic investigations has led us to conclude that the TrPs of non-contractile-tailed phages, such as ?, are evolutionarily related to those of contractile-tailed phages, such as P2 and Mu, and that all long-tailed phages may utilize a conserved mechanism for tail termination.

  16. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling...... which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between...... quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment...

  17. Ursinia nana (Anthemideae, Asteraceae, an adventive from South Africa which is becoming naturalized in the NE Iberian Peninsula. Observations about its reproductive biology and fruit dispersal mechanisms

    Directory of Open Access Journals (Sweden)

    Molero Briones, J.

    2009-12-01

    Full Text Available The presence of Ursinia nana, an Anthemideae of South-African origin which has been introduced into the NE Iberian Peninsula, is reported for the first time in Europe. The data offered cover its precise location, morphology, chromosome number, ecology and a population census, as well as its life cycle, floral structure, reproductive biology and fruit dispersal mechanisms. Of special note are the clear predominance of autogamy (geitonogamy over xenogamy as a reproductive system and the large number of fruits produced with high and immediate germinative capacity. These characteristics permit rapid colonization by the introduced species, which can become invasive. However, fruit predation by the ant Messor barbarus points to a natural mechanism that helps regulate population growth and makes biological control possible. Finally its possibilities of expansion in the colonized area and of naturalization in the NE Iberian Peninsula are assessed.

    [es] Se indica por primera vez para el continente europeo la presencia de Ursinia nana, una Anthemideae de origen sudafricano introducida en el NE de la Península Ibérica. Además de su localización precisa, morfología, número cromosómico, ecología y de un censo de sus poblaciones, se ofrecen datos sobre el ciclo vital, estructura floral, biología reproductiva y dispersión de los frutos. Son remarcables el claro dominio de la autogamia (geitonogamia sobre la xenogamia como sistema reproductivo y la alta producción de frutos con elevada e inmediata capacidad germinativa, características que permiten una colonización rápida de esta especie introducida que pudiera devenir invasora. No obstante la predación de sus frutos por la hormiga Messor barbarus evidencian un mecanismo natural que interviene en la regulación del crecimiento de sus poblaciones, lo que puede permitir su control biológico. Finalmente se analizan las posibilidades de expansión en el

  18. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  19. Research progress of biological mechanism and related injuries of seatbelt%安全带的生物学机制及相关损伤的研究进展

    Institute of Scientific and Technical Information of China (English)

    张冰; 瞿海龙

    2012-01-01

    Seatbelt use can reduce the injuries in traffic collision by preventing the passengers from hitting the interior parts of the vehicle or being ejected from the car. Author aims to review the development of biological mechanism of seatbelt. Seatbelt-related injuries may occur on spinal cord, chest, abdominal, lung, heart, major vessels and pelvic, and the proper use of seatbelt can reduce these injuries.%使用安全带能够减轻交通碰撞中的损伤,这一作用是通过防止乘客撞上车内部件或被抛出车外来实现的,作者旨在回顾安全带的发展及其生物学机制;安全带相关损伤包括脊髓、胸部、腹部、肺脏、心脏、大血管及骨盆损伤,正确使用安全带能够减轻这些损伤.

  20. Melanocortin-4 Receptor:Biological Characteristics, Mechanism and Influence Factors%黑皮质素受体-4:生物学特征、作用机理和影响因素

    Institute of Scientific and Technical Information of China (English)

    张鑫; 李方方; 朱宇旌; 郑丽莉; 张勇

    2015-01-01

    黑皮质素受体4(MC4R)是G-蛋白耦联受体(GPCR),是下丘脑分泌的一种肽类物质,在调控动物采食量中起着重要的作用。 MC4R与阿黑皮质素原( POMC)分泌的α-促黑素(α-MSH)结合,激活下丘脑MC4R神经元的表达,从而抑制采食量。本文综述了MC4R的生物学特征及其在动物采食量调控中的作用机理,并阐述了影响MC4R活性的因素。%The melanocortin-4 receptor ( MC4R) is a typical G protein-coupled receptor ( GPCR) which pres-ents in the hypothalamus as a peptide, and plays an important role in feed intake regulation. It combines withα-melanocyte-stimulating hormone (α-MSH) which is secreted from pro-opiomelanocortin ( POMC) and acti-vates the expression of MC4R neuron to depress the feed intake of animals. The biological characteristics of MC4R and its mechanism in feed intake regulation were reviewed in the article.

  1. 纳米氧化锌的毒性作用及机制研究进展%Research progress on biological toxicity of zinc oxide nanoparticle and its mechanism

    Institute of Scientific and Technical Information of China (English)

    杨霞; 江米足

    2014-01-01

    Zinc oxide nanoparticle ( nano-ZnO) has a size between 1 and 100 nm. Nano-ZnO has some special effects , such as small size effect , surface effect , quantum size effect , which makes it different from the ordinary ZnO , and is widely used in rubber industry , food processing , cosmetics and pharmaceutical fields .It has been reported that nano-ZnO has toxic effects in vitro and in vivo, but the mechanism of toxicity is still unclear.Therefore, it is important to evaluate the safety nano-ZnO by studying its biological toxic effects and related mechanisms . In this paper , we summarize the characterization , ingestion pathway , metabolism, systematic toxicity of nano-ZnO and its mechanisms , which may provide us with new strategy for the toxic research of nano-ZnO.%纳米氧化锌是粒径在1~100 nm之间的一种氧化锌颗粒,它具有一些特殊的效应,例如小尺寸效应、表面效应、量子尺寸效应等,这些效应使其呈现出不同于普通氧化锌的优良性能,而被广泛用于橡胶工业、食品加工业、化妆品及医药领域。已有研究报道,纳米氧化锌在细胞水平及动物体内均具有一定的毒性作用,但毒性机制尚不清楚。因此,研究纳米氧化锌的生物毒性作用及机制有助于评估纳米氧化锌的生物安全性。本文综述了纳米氧化锌的表征、摄入途径、体内代谢、各系统毒性及机制,旨在为纳米氧化锌的毒性研究提供新思路。

  2. Biological evaluation of mechanically deboned chicken meat protein hydrolysate Avaliação biológica do hidrolisado de proteína da carne de galinha desossada mecanicamente

    Directory of Open Access Journals (Sweden)

    Daniele Misturini Rossi

    2009-12-01

    Full Text Available OBJECTIVE: The objective of this study was to evaluate the biological properties of a protein hydrolysate obtained by enzymatic hydrolysis of mechanically deboned chicken meat. METHODS: Mechanically deboned chicken meat was hydrolysed using Alcalase 2.4 L FG and then dried in a spray-drier. Three groups (n=6 of male Wistar rats received diets containing casein, mechanically deboned chicken meat protein hydrolysate and a protein-free diet. The rats were randomly assigned to individual cages with controlled temperature (22ºC for 12 days. RESULTS: The mechanically deboned chicken meat diet resulted in a good net protein utilization (3.74 and high true digestibility (96%. The amino acid composition of the hydrolysate was relatively well balanced, but the concentrations of methionine and cystine were low, making them the limiting amino acids. The proximate chemical composition of the hydrolysate showed protein content to be as high as 62%. CONCLUSION: The results obtained in this work suggest that mechanically deboned chicken meat hydrolysate can be used as a protein enhancer in food preparations such as enteral formulations, and as an edible protein enhancer in general applications.OBJETIVO: O objetivo do estudo foi avaliar a qualidade biológica da proteína hidrolisada obtida a partir da carne mecanicamente separada de frango. MÉTODOS: A carne mecanicamente separada de frango foi hidrolisada com a enzima Alcalase 2,4 L FG e o hidrolisado obtido foi submetido a secagem em atomizador. Foram utilizados três grupos (n=6 de ratos machos Wistar os quais receberam dietas contendo caseína, proteína hidrolisada de carne mecanicamente separada de frango ou uma dieta com proteína livre. Os animais foram distribuídos aleatoriamente em gaiolas individuais, com temperatura controlada (22ºC, por um período de 12 dias. RESULTADOS: A dieta utilizando carne mecanicamente separada de frango resultou em elevada utilização líquida de proteína (3,74 e

  3. Aging and computational systems biology.

    Science.gov (United States)

    Mooney, Kathleen M; Morgan, Amy E; Mc Auley, Mark T

    2016-01-01

    Aging research is undergoing a paradigm shift, which has led to new and innovative methods of exploring this complex phenomenon. The systems biology approach endeavors to understand biological systems in a holistic manner, by taking account of intrinsic interactions, while also attempting to account for the impact of external inputs, such as diet. A key technique employed in systems biology is computational modeling, which involves mathematically describing and simulating the dynamics of biological systems. Although a large number of computational models have been developed in recent years, these models have focused on various discrete components of the aging process, and to date no model has succeeded in completely representing the full scope of aging. Combining existing models or developing new models may help to address this need and in so doing could help achieve an improved understanding of the intrinsic mechanisms which underpin aging.

  4. Biology and pathogenesis of Acanthamoeba

    OpenAIRE

    Siddiqui Ruqaiyyah; Khan Naveed

    2012-01-01

    Abstract Acanthamoeba is a free-living protist pathogen, capable of causing a blinding keratitis and fatal granulomatous encephalitis. The factors that contribute to Acanthamoeba infections include parasite biology, genetic diversity, environmental spread and host susceptibility, and are highlighted together with potential therapeutic and preventative measures. The use of Acanthamoeba in the study of cellular differentiation mechanisms, motility and phagocytosis, bacterial pathogenesis and ev...

  5. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J.M.; Chavanne, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E. [Hasylab at Desy, Hamburg (Germany)] [and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  6. 基于运动生物力学的女子沙滩排球服压力舒适性研究%Comfortableness of female beach volleyball clothes based on movement biological mechanic

    Institute of Scientific and Technical Information of China (English)

    徐军; 陶开山; 张莉; 肖红; 张峰

    2009-01-01

    为了提高人体的运动舒适性,测量了常规女子沙滩排球服装的压力分布,研究了沙滩排球运动生物力学.结合款式和面料,根据各部位不同压力,设计了新款女子沙滩排球服装.采用基于Lahview虚拟仪器技术的压力测量系统进行人体着装实验,分析了改进后服装的压力舒适性.穿着改进后的服装时,人体各测量部位压力大小顺序为肩部<背部<腋下<腹部<胸部<臀部<胯部.新款女子沙滩排球服的压力舒适性有了很大的提高,各部位压力均符合人体生理要求.%In order to enhance the movement comfortableness, the pressure distribution of the conventional clothes was analysed. This article studied the movement biology mechanics of beach volleyball, and designed a new kind of female beach volleyball clothes with different pressure. The LabVIEW clothing pressure survey system was used to take out the dressing test and the pressure comfortableness of improved clothes was analyzed. When wearing the improved clothing, the pressure of each spots, ranked in descending order are as follow: shoulder, back, armpit, abdomen, chest, hip, quaddati. And the pressure of each spots meet the human body physiology requirement.

  7. Comparative study of aortic valve replacement with biological valve and mechanical valve%主动脉瓣置换生物瓣与机械瓣的对比研究

    Institute of Scientific and Technical Information of China (English)

    熊志鹏; 李明亮; 王云

    2016-01-01

    目的:研究主动脉瓣置换术中置换生物瓣与机械瓣对患者术后早期心功能恢复的影响。方法回顾性分析我科2010年至2015年行主动脉瓣置换机械瓣及生物瓣各30例患者,分别于术前和术后早期(10 d内)检测两组患者升主动脉内径、左心室舒张末内径、左心室射血分数、主动脉跨瓣压差筹心功能指标。结果患者的升主动脉内径、左心室舒张末内径、左心室射血分数及主动脉跨瓣压差术前与术后差值(差值=术前指标值-术后指标值)在机械瓣组与生物瓣组的差异无统计学意义( P>0.05);两组患者在升主动脉内径、左心室舒张末内径、主动脉跨瓣压差方面,术后早期均较术前有所减少,与术前相比,差异有统计学意义( P<0.05),但在左心室射血分数上,术后早期较术前相比,差异无统计学意义( P>0.05)。结论主动脉瓣置换术中,置换机械瓣膜还是生物瓣膜对术后早期心功能的变化在升主动脉内径、左心室舒张末内径、左室射血分数、主动脉跨瓣压差方面的影响无明显差异;不论置换机械瓣还是生物瓣在患者术后早期(10 d内)升主动脉内径、左心室舒张末内径、主动脉跨瓣压差方面均较术前减少,而在左心室射血分数上术后较术前无明显差异。%Objective To study the effect of biological valve and mechanical valve replacement on early cardiac function after aortic valve replacement in patients with aortic valve replacement. Methods Thirty cases of patients under aortic valve replacement with mechanical valve or biological valve from 2010 to 2015 were retrospectively analyzed. The ascending aortic diameter, left ventricular end-diastolic diameter, left ventricular ejection fraction, aortic valve transmittal pressure of patients in two the groups were respectively detected before and after the operation (in 10 days). Results There have

  8. Functional quantum biology in photosynthesis and magnetoreception

    CERN Document Server

    Lambert, Neill; Cheng, Yuan-Chung; Li, Che-Ming; Chen, Guang-Yin; Nori, Franco

    2012-01-01

    Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.

  9. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  10. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  11. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  12. Network systems biology for targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Zhou

    2012-01-01

    The era of targeted cancer therapies has arrived.However,due to the complexity of biological systems,the current progress is far from enough.From biological network modeling to structural/dynamic network analysis,network systems biology provides unique insight into the potential mechanisms underlying the growth and progression of cancer cells.It has also introduced great changes into the research paradigm of cancer-associated drug discovery and drug resistance.

  13. Osteocyte biology and space flight.

    Science.gov (United States)

    Pajevic, Paola Divieti; Spatz, Jordan M; Garr, Jenna; Adamson, Chris; Misener, Lowell

    2013-01-01

    The last decade has seen an impressive expansion of our understanding of the role of osteocytes in skeletal homeostasis. These amazing cells, deeply embedded into the mineralized matrix, are the key regulators of bone homeostasis and skeletal mechano sensation and transduction. They are the cells that can sense the mechanical forces applied to the bone and then translate these forces into biological responses. They are also ideally positioned to detect and respond to hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts through the production and secretion of molecules such as Sclerostin and RANKL. How osteocytes perceive mechanical forces and translate them into biological responses in still an open question. Novel "in vitro" models as well the opportunity to study these cells under microgravity condition, will allow a closer look at the molecular and cellular mechanisms of mechano transduction. This article highlights novel investigations on osteocytes and discusses their significance in our understanding of skeletal mechano transduction.

  14. Biological warfare agents.

    Science.gov (United States)

    Pohanka, Miroslav; Kuca, Kamil

    2010-01-01

    Biological warfare agents are a group of pathogens and toxins of biological origin that can be potentially misused for military or criminal purposes. The present review attempts to summarize necessary knowledge about biological warfare agents. The historical aspects, examples of applications of these agents such as anthrax letters, biological weapons impact, a summary of biological warfare agents and epidemiology of infections are described. The last section tries to estimate future trends in research on biological warfare agents.

  15. Music biology: all this useful beauty.

    Science.gov (United States)

    Clark, Camilla N; Downey, Laura E; Warren, Jason D

    2014-03-17

    Some healthy people fail to derive pleasure from music despite otherwise preserved perceptual and reward responses. Such 'musical anhedonia' implies the existence of music-specific brain reward mechanisms, which could provide a substrate for music to acquire biological value.

  16. Nuevos enfoques para mejorar las propiedades mecánicas y biológicas de substitutos óseos basados en calcio (New Approaches for Improving Mechanical and Biological Properties of Calcium-Based Bone Substitutes

    Directory of Open Access Journals (Sweden)

    Arias Fernández, José Ignacio.

    2007-12-01

    substitutes, the use of calcareous natural structures such as superficially phosphated corals, the generation of diverse cements based on alpha and beta tricalcium phosphate alone or mixed with natural organic or synthetic compounds, have been tested. One of the forms of calcium phosphate most commonly used is hydroxyapatite (HA, which mixed with diverse organic and inorganic compounds has been developed to improve the resistance to tension, compression and flexion forces. Future challenges are therefore to achieve compounds that not only allow and enhance bone regeneration process, but also give the necessary mechanical support while that process is taking place. In the present article, the main chemical, physical and biological properties of calcium-based bone substitutes are reviewed, and some new approaches to be considered for improving their efficiency, are proposed.

  17. Synthetic biology and personalized medicine.

    Science.gov (United States)

    Jain, K K

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task.

  18. Artful interfaces within biological materials

    Directory of Open Access Journals (Sweden)

    John W.C. Dunlop

    2011-03-01

    Full Text Available Biological materials have a wide range of mechanical properties matching their biological function. This is achieved via complex structural hierarchies, spanning many length scales, arising from the assembly of different sized building blocks during growth. The interfaces between these building blocks can increase resistance to fracture, join materials of different character, make them deform more easily and provide motility. While they represent only a tiny fraction of the overall volume, interfaces are essential for the integrity and function of the overall tissue. Understanding their construction principles, often based on specialized molecular assemblies, may change our current thinking about composite materials.

  19. Study on The Mechanism of Effects of Lomefloxacin on Biological Properties of Bloom Syndrome Helicase%洛美沙星对Bloom综合征解旋酶生物学特性影响的机理研究

    Institute of Scientific and Technical Information of China (English)

    骆衡; 陈祥; 丁玫; 杨齐心; 许厚强

    2011-01-01

    Bloom syndrome helicase (BLM), an important member of RecQ family of DNA helicases, participates in cell metabolism including DNA repair, recombination, transcription, telomere maintenance, and plays key roles in maintaining chromosome stability. The mutation of BLM helicase may lead to Bloom syndrome. Bloom syndrome is a rare autosomal recessive genetic disorder characterized by genomic instability and the early development of many types of cancer. Lomefloxacin (LMX) may treat many diseases by inhibiting many enzymes in cells and interfering DNA metabolism through binding DNA, but the specific mechanism of action remains unclear. This study was conducted to determine the effects of LMX on DNA-binding activity, helicase activity, and ATPase activity of BLM642 ~1290 helicase by fluorescence polarized technology and free phosphorus assay technology; and the parameters of binding between LMX and helicase were studied by fluorescence and ultraviolet absorption spectroscopy, included binding constants, number of binding sites, the type of acting force, and binding distance. The results indicated that the reaction between the helicase and LMX was occurred spontaneously, there was one binding site between two molecules, the helicase and LMX might compound BLM-LMX complexes caused by electrostatic force and hydrophobic interaction force; moreover, the intrinsic fluorescence of the helicase was static quenched by LMX as a result of non-radioactive energy transfer. In this process, the helicase and ATPase activities were inhibited and DNA-binding activity of the helicase was promoted by LMX. The mechanism of effects of LMX on biological properties of BLM helicase may be included as below: LMX could inhibit the ATPase activity by allosteric mechanism and stabilize the conformation of the enzyme in low helicase activity state, destroy the coupling of ATP hydrolysis to unwinding, and inhibit the unwinding dsDNA by blocking helicase translocation. The reason that LMX could

  20. Biological hydrogen photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Y. [Univ. of Miami, FL (United States)

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  1. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.

  2. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  3. Peroxiredoxin Ⅱ基因在Hep3B细胞中的生物学功能和作用机制%The biological function of peroxiredoxin Ⅱ on Hep3B cells and its underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    岳海英; 岳惠芬; 李瑗; 刘银坤; 代智; 郭坤; 孙瑞霞; 曹骥; 崔杰峰; 苏建家; 杨春; 欧超

    2008-01-01

    目的 探讨peroxiredoxin Ⅱ (Prx Ⅱ)基因在肝癌发生发展中的作用及其机制.方法 化学合成两对针对Prx Ⅱ基因的小干扰RNA,即Prx Ⅱ-1和Prx Ⅱ-2,分别用脂质体LipofectamineTM 2000介导转入人肝癌细胞系Hep3B.通过实时荧光定量PCR和Western blot检测确定Prx Ⅱ在转染细胞中mRNA和蛋白表达水平受到明显抑制后,对Prx Ⅱ基因沉默的Hep3B细胞分别进行细胞生长、细胞凋亡、细胞集落形成等检测,观察Prx Ⅱ对Hep3B细胞生物学功能的影响;通过二氯荧光素双乙酸和硫代巴比妥酸试验,检测细胞内过氧化代谢产物活性氧类和丙二醛的水平,探讨Prx Ⅱ的作用机制.结果 与阴性对照组和空白对照组相比,Prx Ⅱ基因沉默的Hep3B细胞生长受到抑制,生长抑制率在转染96h后达40%以上;细胞凋亡增加;细胞形成集落的能力降低,Prx Ⅱ-1组和PrxⅡ-2组的细胞集落形成数分别为42.0±2.8和40.5±0.7,明显低于阴性对照组和空白对照组的121.5±2.1和130.0±1.4 (P<0.05).Prx Ⅱ基因沉默的Hep3B细胞内活性氧和丙二醛水平明显增加(P<0.05).结论 Prx Ⅱ具有促进Hep3B细胞生长的生物学功能,其机制可能与通过抗氧化作用形成有利于肿瘤细胞生长的微环境有关.%Objective To study the biological function and its possible underlying mechanism of peroxiredoxin Ⅱ (PrxⅡ) in liver cancer cell line Hep3B. Methods Two pairs of double-stranded small interfering RNA (siRNA) targeted on PrxⅡ gene were transfected into Hep3B cells using LipofectamineTM 2000. After confirming the inhibited effects of these siRNAs through Quant SYBR Green polymerase chain reaction and Western blot, the biological characters of Hep3B cell were analyzed by flow cytometry analysis, MTT and colony formation assays. Furthermore, dichlorodihydrofluorescein diacetate (DCFH-DA) and thiobarbituric acid (TBA) assays, for measuring the products of oxidative reaction, such as the reactive

  4. Vitalism in naive biological thinking.

    Science.gov (United States)

    Morris, S C; Taplin, J E; Gelman, S A

    2000-09-01

    Vitalism is the belief that internal bodily organs have agency and that they transmit or exchange a vital force or energy. Three experiments investigated the use of vitalistic explanations for biological phenomena by 5- and 10-year-old English-speaking children and adults, focusing on 2 components: the notion that bodily organs have intentions and the notion that some life force or energy is transmitted. The original Japanese finding of vitalistic thinking was replicated in Experiment 1 with English-speaking 5-year-olds. Experiment 2 indicated that the more active component of vitalism for these children is a belief in the transfer of energy during biological processes, and Experiment 3 suggested an additional, albeit lesser, role for organ intentionality. A belief in vital energy may serve a causal placeholder function within a naive theory of biology until a more precisely formulated mechanism is known.

  5. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; Elebeoba E. May; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  6. Cell mechanics: a dialogue

    Science.gov (United States)

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K.; Sun, Sean X.

    2017-03-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.

  7. Biologic therapy of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Damjanov Nemanja

    2009-01-01

    Full Text Available Rheumatoid arthritis (RA and juvenile idiopathic/rheumatoid arthritis (JIA are chronic, inflammatory, systemic, auto-immune diseases characterized by chronic arthritis leading to progressive joint erosions. The individual functional and social impact of rheumatoid arthritis is of great importance. Disability and joint damage occur rapidly and early in the course of the disease. The remarkably improved outcomes have been achieved initiating biologic therapy with close monitoring of disease progression. Biologic agents are drugs, usually proteins, which can influence chronic immune dysregulation resulting in chronic arthritis. According to the mechanism of action these drugs include: 1 anti-TNF drugs (etanercept, infiximab, adalimumab; 2 IL-1 blocking drugs (anakinra; 3 IL-6 blocking drugs (tocilizumab; 4 agents blocking selective co-stimulation modulation (abatacept; 5 CD 20 blocking drugs (rituximab. Biologics targeting TNF-alpha with methotrexate have revolutionized the treatment of RA, producing significant improvement in clinical, radiographic, and functional outcomes not seen previously. The new concept of rheumatoid arthritis treatment defines early diagnosis, early aggressive therapy with optimal doses of disease modifying antirheumatic drugs (DMARDs and, if no improvement has been achieved during six months, early introduction of biologic drugs. The three-year experience of biologic therapy in Serbia has shown a positive effect on disease outcome.

  8. Biological rhythms and vector insects

    Directory of Open Access Journals (Sweden)

    Mirian David Marques

    2013-01-01

    Full Text Available The adjustment of all species, animals and plants, to the Earth’s cyclic environments is ensured by their temporal organisation. The relationships between parasites, vectors and hosts rely greatly upon the synchronisation of their biological rhythms, especially circadian rhythms. In this short note, parasitic infections by Protozoa and by microfilariae have been chosen as examples of the dependence of successful transmission mechanisms on temporal components.

  9. 生物保鲜剂对鱼类腐败菌抑菌效果比较及抑菌机理研究%Comparative Antibacterial Effects and Mechanisms of Biological Preservatives against Fish Spoilage Organisms

    Institute of Scientific and Technical Information of China (English)

    蒋慧亮; 李学英; 杨宪时; 迟海

    2012-01-01

    通过分析抑菌圈直径和最低抑制量,研究葡萄柚种子提取物、葡萄籽提取物、柠檬提取物、百里酚和茶多酚5种生物保鲜剂对假单胞菌和腐败希瓦氏菌的抑菌效果进行比较。结果表明:百里酚、茶多酚和葡萄籽提取物表现出较好的抑菌效果,其中百里酚对两种菌都有很好的抑菌效果,尤其是对腐败希瓦氏菌抑菌效果显著。茶多酚对两种菌的抑菌效果相当,而葡萄籽提取物则对假单胞菌的抑菌效果更好,总体上百里酚的抑菌效果较好。通过测定菌液电导率、可溶性糖含量和蛋白质含量,分析百里酚对假单胞菌和腐败希瓦氏菌的抑菌机理。结果表明:百里酚处理组的菌液电导率、可溶性糖含量和蛋白质含量均比对照组大,百里酚的抑菌机理可能是:增大细胞膜通透性,破坏细胞膜外膜完整性,破坏磷脂双层。%The antibacterial effects of five biological preservatives including grapefruit seed extract,grape seed extract,lemon extract,thymol and tea polyphenols against Pseudomonas spp.and Shewanella putrefacien as specific spoilage organisms(SSOs) in fish were comparatively investigated by measuring inhibitory circle diameter and minimum inhibitory concentration(MIC).The results showed that thymol,tea polyphenols and grape seed extract had strong antibacterial effect.Meanwhile,thymol revealed extremely strong antibacterial effects against both spoilage organisms,especially Shewanella putrefacien.Tea polyphenols had similar antibacterial effects against both spoilage organisms,while grape seed extract had better antibacterial activity against Pseudomonas spp.than Shewanella putrefacien.Overall,thymol had the best antibacterial activity against both spoilage organisms.Thymol treatment group had high levels of electric conductivity,soluble sugar concentration and protein concentration when compared with control group.Hence,we concluded that the antibacterial mechanism

  10. Molecular Biology and Prevention of Endometrial Cancer

    Science.gov (United States)

    2009-07-01

    of the oral contraceptive pill (OCP). Project 1: Objectives completed and data previously submitted with 2004 report. Data published this past year...molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC...not been altered appreciably. Despite the known protective effect of oral contraceptives , little has been learned regarding the underlying mechanism

  11. Photobiomodulation on tumor cells in vitro and tumor tissue in vivo

    Science.gov (United States)

    Rong, Dong-Liang; Liu, Timon Cheng-Yi; Jin, Hua

    2006-01-01

    Background and Objective: There are many kinds of photobiomodulation (PBM) on tumor cells whereas PBM induced oncogenic transformation has not been found. These will be discussed in view of the anti-cancer efficacy of PBM. Study Design/Materials and Methods: The biological information model of PBM (BIMP) will be used to study PBM on tumor cells. Results: The PBM on tumor cells includes cell proliferation, cell cycle modulation, cell adhesion, cell differentiation and so on. The PBM on small tumor tissue in vivo may include the inhibition or promotion of tumor growth. The PBM can be designed to play an important role in anti-cancer treatments in terms of BIMP. Conclusions and discussion: PBM on tumor cells may develop into a novel anti-cancer therapeutic approach.

  12. Resetting Biological Clocks

    Science.gov (United States)

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  13. Biology is simple.

    Science.gov (United States)

    Newman, Tim

    2015-12-30

    This paper explores the potential for simplicity to reveal new biological understanding. Borrowing selectively from physics thinking, and contrasting with Crick's reductionist philosophy, the author argues that greater emphasis on simplicity is necessary to advance biology and its applications.

  14. Biology of Blood

    Science.gov (United States)

    ... here for the Professional Version Home Blood Disorders Biology of Blood Overview of Blood Resources In This ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  15. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic