WorldWideScience

Sample records for bimped biological mechanisms

  1. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  2. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  3. The role of tourism and exchange rate on economic growth:Evidence from the BIMP-EAGA countries

    OpenAIRE

    Hanafiah Harvey; Fumitaka Furuoka; Qaiser Munir

    2013-01-01

    Developing economies as well as developed economies recognized appropriate tourism policies will be an important factor in promoting economic growth. BIMP-EAGA (Brunei-Indonesia-Malaysia-Philippines East ASEAN Growth Area) was conceived with the objective to speed up economic development among the four countries and one of which is focused on tourism. Focusing on annual data, this paper utilized the bounds testing approach to cointegration and error-correction modeling to evaluate if tourism ...

  4. Epigenetics: Biology's Quantum Mechanics.

    Science.gov (United States)

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  5. Epigenetics: Biology's Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2011-04-01

    Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  6. Bis(imino)pyridine (BIMP) Fe(II) catalyses one-pot green condensation of resorcinol, malononitrile, aromatic aldehydes and cyclohexanone

    Indian Academy of Sciences (India)

    Saman Damavandi; Reza Sandaroos

    2012-03-01

    A novel, efficient and green approach for the synthesis of pyranopyridine derivatives through one-pot, four-component reaction of resorcinol, malononitrile, aromatic aldehydes and cyclohexanone using bis(imino)pyridine (BIMP) Fe(II) catalyst under solvent-free and ultrasonic irradiation is described.

  7. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  8. Mechanical Instabilities of Biological Tubes

    CERN Document Server

    Hannezo, Edouard; Prost, Jacques; 10.1103/PhysRevLett.109.018101

    2012-01-01

    We study theoretically the shapes of biological tubes affected by various pathologies. When epithelial cells grow at an uncontrolled rate, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated : varicose, enlarged, sinusoidal or sausage-like, all of which are found in pathologies of tracheal, renal tubes or arteries. The final shape depends crucially on the mechanical parameters of the tissues : Young modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation.

  9. Mechanics of biological polymer composites

    Science.gov (United States)

    Lomakin, Joseph

    2009-12-01

    displayed a darker coloration and significantly increased n of 0.0470.004, suggesting both cuticles to be less cross-linked, a finding consistent with reduced beta-alanine metabolism. Suppression of the tanning enzyme laccase2 (TcLac2) resulted in a pale cuticle with an n of 0.043+/-0.005, implicating laccases in the formation of both pigments and cross-links during sclerotization. Cuticular cross-linking was increased and n decreased with decreased expression of structural proteins, CP10 and CP20. This work establishes n as an important novel parameter for confirming metabolic pathways within load bearing tissues and for understanding structure function relationships within biological polymer composites. Additionally, Tribolium castaneum elytral indentation modulus (800+/-200 MPa) was determined by nanoindentation and a 4nm regular hexagonal pattern on the dorsal side of elytra investigated via scanning, transmission and atomic microscopy. Based on studied biological materials, the combination of rigid macromolecules immersed in a ductile matrix was found to be significant in achieving exceptional mechanical performance. Inspired by this biological design principle, the synthesis, properties and structure of Poly(ethylene glycol) diacrylate/agarose semi-interpenetrating network hydrogels were explored. The resulting novel composite materials were 9x stiffer than agarose and 5x tougher than PEGDA alone and showed good biocompatibility, suggesting promise as a scaffold material for tissue engineering constructs for cartilage regeneration.

  10. The concept of mechanism in biology.

    Science.gov (United States)

    Nicholson, Daniel J

    2012-03-01

    The concept of mechanism in biology has three distinct meanings. It may refer to a philosophical thesis about the nature of life and biology ('mechanicism'), to the internal workings of a machine-like structure ('machine mechanism'), or to the causal explanation of a particular phenomenon ('causal mechanism'). In this paper I trace the conceptual evolution of 'mechanism' in the history of biology, and I examine how the three meanings of this term have come to be featured in the philosophy of biology, situating the new 'mechanismic program' in this context. I argue that the leading advocates of the mechanismic program (i.e., Craver, Darden, Bechtel, etc.) inadvertently conflate the different senses of 'mechanism'. Specifically, they all inappropriately endow causal mechanisms with the ontic status of machine mechanisms, and this invariably results in problematic accounts of the role played by mechanism-talk in scientific practice. I suggest that for effective analyses of the concept of mechanism, causal mechanisms need to be distinguished from machine mechanisms, and the new mechanismic program in the philosophy of biology needs to be demarcated from the traditional concerns of mechanistic biology.

  11. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  12. Biological mechanisms, one molecule at a time

    OpenAIRE

    Tinoco, Ignacio; Gonzalez, Ruben L.

    2011-01-01

    The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these tw...

  13. Molecular Mechanism of Biological Proton Transport

    Energy Technology Data Exchange (ETDEWEB)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  14. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  15. The mechanics of soft biological composites.

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thao D. (Sandia National Laboratories, Livermore, CA); Grazier, John Mark; Boyce, Brad Lee; Jones, Reese E. (Sandia National Laboratories, Livermore, CA)

    2007-10-01

    Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue in the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.

  16. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  17. Multiscale mechanical modeling of soft biological tissues

    Science.gov (United States)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  18. [From the mechanical complexity in biology].

    Science.gov (United States)

    Uribe, Libia Herrero

    2008-03-01

    From the mechanical complexity in biology. Through history, each century has brought new discoveries and beliefs that have resulted in different perspectives to study life organisms. In this essay, 1 define three periods: in the first, organisms were studied in the context of their environment, in the second, on the basis of physical and chemical laws, and on the third, systemically. My analysis starts with primitive humans, continues to Aristoteles and Newton, Lamarck and Darwin, the DNA doble helix discovery, and the beginnings of reduccionism in science. I propose that life is paradigmatical, that it obeys physical and chemical laws but cannot be explained by them I review the systemic theory, autopoiesis, discipative structures and non- linear dynamics. 1 propose that the deterministic, lineal and quantitative paradigm of nature are not the only way to study nature and invite the reader to explore the complexity paradigm. PMID:18624253

  19. [From the mechanical complexity in biology].

    Science.gov (United States)

    Uribe, Libia Herrero

    2008-03-01

    From the mechanical complexity in biology. Through history, each century has brought new discoveries and beliefs that have resulted in different perspectives to study life organisms. In this essay, 1 define three periods: in the first, organisms were studied in the context of their environment, in the second, on the basis of physical and chemical laws, and on the third, systemically. My analysis starts with primitive humans, continues to Aristoteles and Newton, Lamarck and Darwin, the DNA doble helix discovery, and the beginnings of reduccionism in science. I propose that life is paradigmatical, that it obeys physical and chemical laws but cannot be explained by them I review the systemic theory, autopoiesis, discipative structures and non- linear dynamics. 1 propose that the deterministic, lineal and quantitative paradigm of nature are not the only way to study nature and invite the reader to explore the complexity paradigm.

  20. Biological Mechanism of Silver Nanoparticle Toxicity

    Science.gov (United States)

    Armstrong, Najealicka Nicole

    Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities above that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, these investigations were attempted to monitor the effects of AgNPs at a non-lethal concentration on wild type Drosophila melanogaster by exposing them to nanoparticles throughout their development. All adult flies raised in AgNP doped food indicated that of not more than 50 mg/L had no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised after AgNP feeding. The determination of the amount of free ionic silver (Ag+) indicated that the observed biological effects had resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, were decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Furthermore, copper supplementation restored the loss of AgNP induced demelanization, and the reduction of functional Ctr1 in Ctr1 heterozygous mutants caused the flies to be resistant to demelanization. Consequently, these studies proposed a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explained the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, these investigations demonstrated that Drosophila, an established genetic model system, can be well utilized for further

  1. Research Progression on Biological Mechanism of Post-stroke Depression

    Institute of Scientific and Technical Information of China (English)

    Lin Facai; Huang Dehong

    2014-01-01

    The biological mechanism of post-stroke depression (PSD) is still unclear. However, there are two hypothesises including primary endogenous mechanism and reactive mechanism. This study mainly reviewed the biological mechanism of PSD from the aspects of neuroanatomy, neurotransmitter, neuroendocrinology, inlfammatory response, neurtrophin and neuropeptide.

  2. Biological robustness: paradigms, mechanisms, and systems principles.

    Science.gov (United States)

    Whitacre, James Michael

    2012-01-01

    Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior. PMID:22593762

  3. Biological Robustness: Paradigms, Mechanisms, and Systems Principles

    Directory of Open Access Journals (Sweden)

    James Michael Whitacre

    2012-05-01

    Full Text Available Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g. mutational, environmental are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior.

  4. Discriminative topological features reveal biological network mechanisms

    Directory of Open Access Journals (Sweden)

    Levovitz Chaya

    2004-11-01

    Full Text Available Abstract Background Recent genomic and bioinformatic advances have motivated the development of numerous network models intending to describe graphs of biological, technological, and sociological origin. In most cases the success of a model has been evaluated by how well it reproduces a few key features of the real-world data, such as degree distributions, mean geodesic lengths, and clustering coefficients. Often pairs of models can reproduce these features with indistinguishable fidelity despite being generated by vastly different mechanisms. In such cases, these few target features are insufficient to distinguish which of the different models best describes real world networks of interest; moreover, it is not clear a priori that any of the presently-existing algorithms for network generation offers a predictive description of the networks inspiring them. Results We present a method to assess systematically which of a set of proposed network generation algorithms gives the most accurate description of a given biological network. To derive discriminative classifiers, we construct a mapping from the set of all graphs to a high-dimensional (in principle infinite-dimensional "word space". This map defines an input space for classification schemes which allow us to state unambiguously which models are most descriptive of a given network of interest. Our training sets include networks generated from 17 models either drawn from the literature or introduced in this work. We show that different duplication-mutation schemes best describe the E. coli genetic network, the S. cerevisiae protein interaction network, and the C. elegans neuronal network, out of a set of network models including a linear preferential attachment model and a small-world model. Conclusions Our method is a first step towards systematizing network models and assessing their predictability, and we anticipate its usefulness for a number of communities.

  5. Shear strength characteristics of mechanically biologically treated (MBT) waste

    OpenAIRE

    Fernando, V.I. Sudarshana C.K.

    2011-01-01

    Mechanical biological treatment (MBT) is the generic name for a group of processes which have been used to reduce the biodegradable content of municipal solid waste (MSW) in order to aid compliance with the Landfill Directive. As a result of mechanical biological treatment, MSW is converted to a material which has different properties to its parent material, including changes to its mechanical properties. The aims of this research were to identify: • The shear strength characteristics...

  6. Bionics: Biological insight into mechanical design

    OpenAIRE

    Dickinson, Michael H

    1999-01-01

    When pressed with an engineering problem, humans often draw guidance and inspiration from the natural world (1). Through the process of evolution, organisms have experimented with form and function for at least 3 billion years before the first human manipulations of stone, bone, and antler. Although we cannot know for sure the extent to which biological models inspired our early ancestors, more recent examples of biomimetic designs are well documented. For example, birds and bats played a cen...

  7. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld;

    2016-01-01

    toxins, drugs, and other xenobiotics. In this review, we summarize these influx and efflux mechanisms in normal developing and adult brain, as well as indicating their likely involvement in a wide range of neuropathologies. There have been extensive attempts to overcome the barrier mechanisms...... that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound......, but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor...

  8. Modeling the mechanisms of biological GTP hydrolysis

    DEFF Research Database (Denmark)

    Carvalho, Alexandra T.P.; Szeler, Klaudia; Vavitsas, Konstantinos;

    2015-01-01

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond ...

  9. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld;

    2016-01-01

    cells, and tanycytes (specialized glial cells) in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners...... structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC) transporters, that provide an important component of the barrier functions by either preventing entry of or expelling numerous molecules including......Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain's internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses...

  10. Auxin Biology: Applications and the Mechanisms Behind

    OpenAIRE

    Skůpa, P. (Petr); Opatrný, Z.; Petrášek, J. (Jan)

    2014-01-01

    This chapter describes the state of the contemporary knowledge of auxin action reflected in its applications in agriculture and biotechnology. We summarise the current understanding of the mechanism of action for endogenous and major synthetic auxins highlighting their morphogenic character that modulates numerous aspects of plant development. Various auxins and auxin-like compounds are used in techniques of plant vegetative propagation, in vitro culture and regeneration, and they play also a...

  11. Catalytic mechanisms by biological systems : Special issue introduction

    NARCIS (Netherlands)

    Fraaije, Marco W; Scrutton, Nigel S

    2013-01-01

    Research on enzyme mechanisms is advancing knowledge of the chemistry and biochemistry of catalytic mechanisms by biological systems. The structural-dynamical properties of enzymes are of key importance. Advanced methodological approaches and new insights into enzyme functioning, and new emerging ap

  12. CRISPR-Cas: biology, mechanisms and relevance.

    Science.gov (United States)

    Hille, Frank; Charpentier, Emmanuelle

    2016-11-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes-termed spacers-into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent.This article is part of the themed issue 'The new bacteriology'.

  13. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.)

  14. Editorial:Mechanics of biological and bio-inspired materials%Editorial: Mechanics of biological and bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Baohua Jia

    2012-01-01

    The field of mechanics of biological and bio-inspired materials underwent an exciting development over the past several years,which made it stand at the cutting edge of both engineering mechanics and biomechanics.As an intriguing interdisciplinary research field,it aims at elucidating the fundamental principles in nature's design of strong,multi-functional and smart Materials by focusing on the assembly,deformation,stability and failure of the materials.These principles should have wide applications in not only material sciences and mechanical engineering but also biomedical engineering.For instance,the knowledge in Mechanical principles of biological materials is very helpful for addressing some major challenges in material sciences and engineering.They also have the potential to provide quantitative understanding about how forces and deformation affect human being's health,diseases and treatment at tissue,cellular and molecular levels.This special subject on "mechanics of biological and bio-inspired materials" collects a few studies on recent development by leading scientists in this field.The biological materials or systems in these studies include cell,cytoskeleton (e.g.,microtubulus,intermediate filaments),lipid molecules and composite system of lipid and nanoparticle,tissue,and biological attachment systems,etc.

  15. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  16. Tennis Forehand Stroke Action of Biological Mechanics Analysis

    OpenAIRE

    Feng Li; Lu Liu

    2013-01-01

    Forehand technique is the basic tennis technology, the highest utilization rate technology, but also the most lethal technology and one of the magic weapons of a tennis match. Grasp the qualitative and quantitative methods combined, the combination of video, movie, analytical and computer technology, combining the principles of the movement mechanics and mathematical statistics. Based on the biological mechanics principle and according to the latest research results of the element analysis an...

  17. Structure and mechanics of interfaces in biological materials

    Science.gov (United States)

    Barthelat, Francois; Yin, Zhen; Buehler, Markus J.

    2016-04-01

    Hard biological materials — for example, seashells, bone or wood — fulfil critical structural functions and display unique and attractive combinations of stiffness, strength and toughness, owing to their intricate architectures, which are organized over several length scales. The size, shape and arrangement of the ‘building blocks’ of which these materials are made are essential for defining their properties and their exceptional performance, but there is growing evidence that their deformation and toughness are also largely governed by the interfaces that join these building blocks. These interfaces channel nonlinear deformations and deflect cracks into configurations in which propagation is more difficult. In this Review, we discuss comparatively the composition, structure and mechanics of a set of representative biological interfaces in nacre, bone and wood, and show that these interfaces possess unusual mechanical characteristics, which can encourage the development of advanced bioinspired composites. Finally, we highlight recent examples of synthetic materials inspired from the mechanics and architecture of natural interfaces.

  18. Research of the Mechanism of Enhancing Biological Treatment by Chitosan

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; QIN Bing; CHEN Dong-hui

    2006-01-01

    Chitosan of different molecular weight (M. W. ) was added into SBR bioreactor to treat domestic wastewater. From comparison of treatment efficiency, sludge activity, sludge structure etc., we revealed the mechanism that chitosan enhanced the biological treatment function of activated sludge. The results proved that, chitosan is certain to restrain the reaction of activated sludge, but it do improve the structure of sludge fiocs and increase the treatment efficiency of activated sludge. The bigger the M. W. of chitosan is, the better the efficiency of enhancing biological treatment can be.

  19. On the mechanics of growing thin biological membranes.

    Science.gov (United States)

    Rausch, Manuel K; Kuhl, Ellen

    2014-02-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression. PMID:24563551

  20. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management

    OpenAIRE

    Yanyong Deng; Benjamin Misselwitz; Ning Dai; Mark Fox

    2015-01-01

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motilit...

  1. Lactose intolerance in adults: biological mechanism and dietary management

    OpenAIRE

    Deng, Yanyong; Misselwitz, Benjamin; Dai, Ning; Fox, Mark

    2015-01-01

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motilit...

  2. Biological Jumping Mechanism Analysis and Modeling for Frog Robot

    Institute of Scientific and Technical Information of China (English)

    Meng Wang; Xi-zhe Zang; Ji-zhuang Fan; Jie Zhao

    2008-01-01

    This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-off phase, aerial phase and landing phase. We find the similar trajectories of hindlimb joints during jump, the important effect of foot during take-off and the role of forelimb in supporting the body. Based on the observation, the frog jump is simplified and a mechanical model is put forward. The robot leg is represented by a 4-bar spring/linkage mechanism model, which has three Degrees of Freedom (DOF) at hip joint and one DOF (passive) at tarsometatarsal joint on the foot. The shoulder and elbow joints each has one DOF for the balancing function of arm.The ground reaction force of the model is analyzed and compared with that of frog during take-off. The results show that the model has the same advantages of low likelihood of premature lift-off and high efficiency as the frog. Analysis results and the model can be employed to develop and control a robot capable of mimicking the jumping behavior of flog.

  3. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  4. Mutant p53: multiple mechanisms define biologic activity in cancer

    Directory of Open Access Journals (Sweden)

    Michael Paul Kim

    2015-11-01

    Full Text Available The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of p53 alterations involve missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may acquire novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in multiple model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 are reviewed and their limitations discussed.

  5. Direct landfill disposal versus Mechanical Biological Treatment (MBT

    Directory of Open Access Journals (Sweden)

    Kulhawik Katarzyna

    2016-09-01

    Full Text Available After the implementation of a new waste management system, in which recycling is the most dominating process, landfill disposal still appears to be the most popular method of waste management in Poland, in which waste undergoes gradual decomposition and the influence of climate conditions, for example, air and atmospheric fallout, leads to the production of leachate and biogas emissions, which contribute to continual threats to the natural environment and humans. The above-mentioned threats can be limited by applying suitable techniques of waste treatment before its disposal. A technology that is oriented to these aims is a mechanical biological treatment (MBT before disposal.

  6. Quantum selfish gene (biological evolution in terms of quantum mechanics)

    OpenAIRE

    Ozhigov, Yuri I.

    2013-01-01

    I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase ...

  7. Tennis Forehand Stroke Action of Biological Mechanics Analysis

    Directory of Open Access Journals (Sweden)

    Feng Li

    2013-05-01

    Full Text Available Forehand technique is the basic tennis technology, the highest utilization rate technology, but also the most lethal technology and one of the magic weapons of a tennis match. Grasp the qualitative and quantitative methods combined, the combination of video, movie, analytical and computer technology, combining the principles of the movement mechanics and mathematical statistics. Based on the biological mechanics principle and according to the latest research results of the element analysis and logic analysis, analysis of forehand stroke technical movement, which make us more subtle and correct understand forehand technique and eventually be able to provide a scientific theoretical guidance and practical reference for tennis teaching and training and make a small contribution to perfect tennis skills and innovation.

  8. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management.

    Science.gov (United States)

    Deng, Yanyong; Misselwitz, Benjamin; Dai, Ning; Fox, Mark

    2015-09-01

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This is present in at least half of patients with irritable bowel syndrome (IBS) and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance. PMID:26393648

  9. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management.

    Science.gov (United States)

    Deng, Yanyong; Misselwitz, Benjamin; Dai, Ning; Fox, Mark

    2015-09-18

    Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This is present in at least half of patients with irritable bowel syndrome (IBS) and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  10. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management

    Directory of Open Access Journals (Sweden)

    Yanyong Deng

    2015-09-01

    Full Text Available Lactose intolerance related to primary or secondary lactase deficiency is characterized by abdominal pain and distension, borborygmi, flatus, and diarrhea induced by lactose in dairy products. The biological mechanism and lactose malabsorption is established and several investigations are available, including genetic, endoscopic and physiological tests. Lactose intolerance depends not only on the expression of lactase but also on the dose of lactose, intestinal flora, gastrointestinal motility, small intestinal bacterial overgrowth and sensitivity of the gastrointestinal tract to the generation of gas and other fermentation products of lactose digestion. Treatment of lactose intolerance can include lactose-reduced diet and enzyme replacement. This is effective if symptoms are only related to dairy products; however, lactose intolerance can be part of a wider intolerance to variably absorbed, fermentable oligo-, di-, monosaccharides and polyols (FODMAPs. This is present in at least half of patients with irritable bowel syndrome (IBS and this group requires not only restriction of lactose intake but also a low FODMAP diet to improve gastrointestinal complaints. The long-term effects of a dairy-free, low FODMAPs diet on nutritional health and the fecal microbiome are not well defined. This review summarizes recent advances in our understanding of the genetic basis, biological mechanism, diagnosis and dietary management of lactose intolerance.

  11. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  12. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials.

    Science.gov (United States)

    Gonen-Wadmany, Maya; Goldshmid, Revital; Seliktar, Dror

    2011-09-01

    Protein PEGylation has been successfully applied in pharmaceuticals and more recently in biomaterials development for making bioactive and structurally versatile hydrogels. Despite many advantages in this regard, PEGylation of proteins is also known to alter biological activity and modify biophysical characteristics in ways that may be detrimental to cells. The aim of this study was to evaluate the relative loss of biological compatibility associated with PEGylating a fibrinogen precursor into a hydrogel scaffold, in comparison to thrombin cross-linked fibrin hydrogels. Specifically, we investigated the consequences of conjugating fibrinogen with linear polyethtylene glycol (PEG) polymer chains (10 kDa) on the ability to cultivate neonatal human foreskin fibroblasts (HFFs) in 3-D. For this purpose, thrombin cross-linked fibrin (TCL-Fib) and PEGylated fibrinogen (PEG-Fib) gels were prepared with HFFs and cultured for up to seven days. The benchmark biological compatibility test was based on a combined assessment of cellular morphology, proliferation, actin expression, and matrix metalloproteinase (MMP) expression in the 3-D culture systems. The results showed correlations between modulus and proteolytic biodegradation in both materials, but no correlation between the mechanical properties and the ability of HFFs to remodel the microenvironment. A slight reduction of actin, MMPs, and spindled morphology of the cells in the PEG-Fib hydrogels indicated that the PEGylation process altered the biological compatibility of the fibrin. Nevertheless, the overall benchmark performance of the two materials demonstrated that PEGylated fibrinogen hydrogels still retains much to the inherent biofunctionality of the fibrin precursor when used as a scaffold for 3-D cell cultivation. PMID:21669457

  13. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  14. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Science.gov (United States)

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  15. Investigation into the non-biological outputs of mechanical-biological treatment facilities.

    Science.gov (United States)

    Cook, Ed; Wagland, Stuart; Coulon, Frédéric

    2015-12-01

    Mechanical-biological and biological-mechanical treatment (MBT/BMT) are effective methods for reducing biogenic additions to landfill, producing fuel products and recovering recyclate from residual waste. However, large amounts of contamination in the non-biological outputs reduce their market value. The aim of this study was therefore to identify the principal drivers and barriers to the marketability of ferrous metals (MBTFe) and heavy inert rejects (MBTr) recovered from four UK MBT/BMT plants. The plants were either using biodrying or anaerobic digestion (AD-MBT) for biological processing. Samples were collected at the different recovery stage processes and characterised for elemental composition and particle size distribution. Results showed that processes at the two biodrying plants produced MBTFe with 10% less contamination by non-target materials than the two AD-MBT plants. Further to this, approximately 10% of the MBTFe fraction sampled at all four facilities comprised non-target material which had become entrapped in the folds of metal food containers. A possible cause is waste comminution in the cutting gap of the low-speed high-torque cutting mills. Upgrading MBTFe outputs could save the UK MBT/BMT industry up to £ 4.4 million per annum which equates to £ 230,000 per annum for an average sized facility (i.e. capacity 108,000 tpa). Glass content in the MBTr samples ranged between 44% and 62%, however all plants showed approximately 85% combined content of glass, bricks, stones and ceramics. The biodegradable content in the MBTr samples indicated that only minimal upgrade would be required to achieve the Landfill Directive requirements for inert waste. Again valorisation of MBTr could save the UK MBT/BMT industry up to £ 1.9 million pa which equates to £ 160,000 per annum for an average sized facility. PMID:26394679

  16. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Science.gov (United States)

    de Graaf, Albert A.; Freidig, Andreas P.; De Roos, Baukje; Jamshidi, Neema; Heinemann, Matthias; Rullmann, Johan A.C.; Hall, Kevin D.; Adiels, Martin; van Ommen, Ben

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales. PMID:19956660

  17. Nutritional systems biology modeling: from molecular mechanisms to physiology.

    Directory of Open Access Journals (Sweden)

    Albert A de Graaf

    2009-11-01

    Full Text Available The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a "middle-out" strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from "-omics" signatures are identified as key elements of a successful systems biology modeling approach in nutrition research--one that integrates physiological mechanisms and data at multiple space and time scales.

  18. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  19. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    CERN Document Server

    Kononova, Olga; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2015-01-01

    We present a new theory for modeling forced indentation spectral lineshapes of biological particles, which considers non-linear Hertzian deformation due to an indenter-particle physical contact and bending deformations of curved beams modeling the particle structure. The bending of beams beyond the critical point triggers the particle dynamic transition to the collapsed state, an extreme event leading to the catastrophic force drop as observed in the force (F)-deformation (X) spectra. The theory interprets fine features of the spectra: the slope of the FX curves and the position of force-peak signal, in terms of mechanical characteristics --- the Young's moduli for Hertzian and bending deformations E_H and E_b, and the probability distribution of the maximum strength with the strength of the strongest beam F_b^* and the beams' failure rate m. The theory is applied to successfully characterize the $FX$ curves for spherical virus particles --- CCMV, TrV, and AdV.

  20. Quantum information and the problem of mechanisms of biological evolution.

    Science.gov (United States)

    Melkikh, Alexey V

    2014-01-01

    One of the most important conditions for replication in early evolution is the de facto elimination of the conformational degrees of freedom of the replicators, the mechanisms of which remain unclear. In addition, realistic evolutionary timescales can be established based only on partially directed evolution, further complicating this issue. A division of the various evolutionary theories into two classes has been proposed based on the presence or absence of a priori information about the evolving system. A priori information plays a key role in solving problems in evolution. Here, a model of partially directed evolution, based on the learning automata theory, which includes a priori information about the fitness space, is proposed. A potential repository of such prior information is the states of biologically important molecules. Thus, the need for extended evolutionary synthesis is discussed. Experiments to test the hypothesis of partially directed evolution are proposed.

  1. Biology and Mechanics of Blood Flows Part II: Mechanics and Medical Aspects

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part II of this two-volume sequence, Mechanics and Medical Aspects, refers to the extraction of input data at the macroscopic scale for modeling the cardiovascular system, and complements Part I, which focuses on nanoscopic and microscopic components and processes. This volume contains chapters on anatomy, physiology, continuum mechanics, as well as pathological changes in the vasculature walls including the heart and their treatments. Methods of numerical simulations are given and illustrated in particular by application to wall diseases. This authoritative book will appeal to any biologist, chemist, physicist, or applied mathematician interested in the functioning of the cardiovascular system.

  2. Green house gas emissions from composting and mechanical biological treatment.

    Science.gov (United States)

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.

  3. Physicochemical Mechanisms of Synergistic Biological Action of Combinations of Aromatic Heterocyclic Compounds

    Directory of Open Access Journals (Sweden)

    Maxim P. Evstigneev

    2013-01-01

    Full Text Available The mechanisms of synergistic biological effects observed in the simultaneous use of aromatic heterocyclic compounds in combination are reviewed, and the specific biological role of heteroassociation of aromatic molecules is discussed.

  4. Quantum selfish gene (biological evolution in terms of quantum mechanics)

    CERN Document Server

    Ozhigov, Yuri I

    2014-01-01

    I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase is the sum of "aspirations" to change the classical states of meta- genes. Each individual life thus becomes one of possible outcomes of the virtual quantum measurement of this function. The evolution of genomes is described by the unitary operator in the space of psi-functions or by Kossovsky-Lindblad equation in the case of open biosystems. This operator contains all the information about specific conditions under which individuals are, and how "aspirations" of their meta- genes may be implemented at the biochemical lev...

  5. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology

    Institute of Scientific and Technical Information of China (English)

    Sarah C Shuck; Emily A Short; John J Turchi

    2008-01-01

    Repair of bulky DNA adducts by the nucleotide excision repair (NER) pathway is one of the more versatile DNA repair pathways for the removal of DNA lesions. There are two subsets of the NER pathway, global genomic-NER (GG-NER) and transcription-coupled NER (TC-NER), which differ only in the step involving recognition of the DNA lesion. Following recognition of the damage, the sub-pathways then converge for the incision/excision steps and subsequent gap filling and ligation steps. This review will focus on the GGR sub-pathway of NER while the TCR sub-pathway will be covered in another article in this issue. The ability of the NER pathway to repair a wide array of adducts stems, in part, from the mechanisms involved in the initial recognition step of the damaged DNA and results in NER impacting an equally wide array of human physiological responses and events. In this review, the impact of NER on carcinogenesis, neurological function, sensitivity to environmental factors and sensitivity to cancer therapeutics will be discussed. The knowledge generated in our understanding of the NER pathway over the past 40 years has resulted from advances in the fields of animal model systems, mammalian genetics and in vitro biochemistry, as well as from reconstitution studies and structural analyses of the proteins and enzymes that participate in this pathway. Each of these avenues of research has contributed significantly to our understanding of how the NER pathway works and how alterations in NER activity, both positive and negative, influence human biology.

  6. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  7. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    OpenAIRE

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we rev...

  8. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  9. Duplication: a Mechanism Producing Disassortative Mixing Networks in Biology

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Zeng-Rong; WANG Jia-Zeng

    2007-01-01

    Assortative/disassortative mixing is an important topological property of a network. A network is called assortative mixing if the nodes in the network tend to connect to their connectivity peers, or disassortative mixing if nodes with low degrees are more likely to connect with high-degree nodes. We have known that biological networks such as protein-protein interaction networks (PPI), gene regulatory networks, and metabolic networks tend to be disassortative. On the other hand, in biological evolution, duplication and divergence are two fundamental processes. In order to make the relationship between the property of disassortative mixing and the two basic biological principles clear and to study the cause of the disassortative mixing property in biological networks, we present a random duplication model and an anti-preference duplication model. Our results show that disassortative mixing networks can be obtained by both kinds of models from uncorrelated initial networks.Moreover, with the growth of the network size, the disassortative mixing property becomes more obvious.

  10. Nutritional systems biology modeling: from molecular mechanisms to physiology.

    OpenAIRE

    de Graaf, Albert A.; Freidig, Andreas P.; Baukje De Roos; Neema Jamshidi; Matthias Heinemann; Rullmann, Johan A.C.; Hall, Kevin D.; Martin Adiels; Ben van Ommen

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the co...

  11. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    OpenAIRE

    de Graaf, A A; Freidig, A.P.; Roos, B.; Jamshidi, N.; M. Heinemann; Rullmann, J.A.C.; Hall, K. D.; Adiels, M.; Ommen, B. van

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the co...

  12. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    OpenAIRE

    de Graaf, Albert A.; Freidig, Andreas P.; de Roos, Baukje; Jamshidi, Neema; Heinemann, Matthias; Rullmann, Johan A.C.; Hall, Kevin D.; Adiels, Martin; van Ommen, Ben; Bourne, Philip E.

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today’s important nutritional research questions poses a challenge for modeling to become truly integrative in the co...

  13. Nanotwin-governed toughening mechanism in hierarchically structured biological materials

    Science.gov (United States)

    Shin, Yoon Ah; Yin, Sheng; Li, Xiaoyan; Lee, Subin; Moon, Sungmin; Jeong, Jiwon; Kwon, Minhyug; Yoo, Seung Jo; Kim, Young-Min; Zhang, Teng; Gao, Huajian; Oh, Sang Ho

    2016-02-01

    As a natural biocomposite, Strombus gigas, commonly known as the giant pink queen conch shell, exhibits outstanding mechanical properties, especially a high fracture toughness. It is known that the basic building block of conch shell contains a high density of growth twins with average thickness of several nanometres, but their effects on the mechanical properties of the shell remain mysterious. Here we reveal a toughening mechanism governed by nanoscale twins in the conch shell. A combination of in situ fracture experiments inside a transmission electron microscope, large-scale atomistic simulations and finite element modelling show that the twin boundaries can effectively block crack propagation by inducing phase transformation and delocalization of deformation around the crack tip. This mechanism leads to an increase in fracture energy of the basic building block by one order of magnitude, and contributes significantly to that of the overall structure via structural hierarchy.

  14. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.

  15. Biological evaluation of mechanical circulatory support systems in calves

    NARCIS (Netherlands)

    Rakhorst, G; VanDerMeer, J; Kik, C; Mihaylov, D; Havlik, P; Trinkl, J; Monties, [No Value

    1996-01-01

    Data from animal experiments with mechanical circulatory support systems (MCSS) performed in Groningen and Marseille over the past years were used to obtain normal values of hematological, coagulation, rheological and blood chemistry parameters in calves. These parameters were divided between two gr

  16. Changes of color coordinates of biological tissue with superficial skin damage due to mechanical trauma

    Science.gov (United States)

    Pteruk, Vail; Mokanyuk, Olexander; Kvaternuk, Olena; Yakenina, Lesya; Kotyra, Andrzej; Romaniuk, Ryszard S.; Dussembayeva, Shynar

    2015-12-01

    Change of color coordinates of normal and pathological biological tissues is based on calculated spectral diffuse reflection. The proposed color coordinates of normal and pathological biological tissues of skin provided using standard light sources, allowing accurately diagnose skin damage due to mechanical trauma with a blunt object for forensic problems.

  17. On Mechanical Transitions in Biologically Motivated Soft Matter Systems

    Science.gov (United States)

    Fogle, Craig

    The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.

  18. Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing.

    Science.gov (United States)

    Buganza Tepole, A; Kuhl, E

    2016-01-01

    Wound healing is a synchronized cascade of chemical, biological, and mechanical phenomena, which act in concert to restore the damaged tissue. An imbalance between these events can induce painful scarring. Despite intense efforts to decipher the mechanisms of wound healing, the role of mechanics remains poorly understood. Here, we establish a computational systems biology model to identify the chemical, biological, and mechanical mechanisms of scar formation. First, we introduce the generic problem of coupled chemo-bio-mechanics. Then, we introduce the model problem of wound healing in terms of a particular chemical signal, inflammation, a particular biological cell type, fibroblasts, and a particular mechanical model, isotropic hyperelasticity. We explore the cross-talk between chemical, biological, and mechanical signals and show that all three fields have a significant impact on scar formation. Our model is the first step toward rigorous multiscale, multifield modeling in wound healing. Our formulation has the potential to improve effective wound management and optimize treatment on an individualized patient-specific basis.

  19. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone.

    Science.gov (United States)

    Augat, Peter; Simon, Ulrich; Liedert, Astrid; Claes, Lutz

    2005-03-01

    Fracture repair, which aims at regaining the functional competence of a bone, is a complex and multifactorial process. For the success of fracture repair biology and mechanics are of immense importance. The biological and mechanical environments must be compatible with the processes of cell and tissue proliferation and differentiation. The biological environment is characterized by the vascular supply and by many biochemical components, the biochemical milieu. A good vascular supply is a prerequisite for the initiation of the fracture repair process. The biochemical milieu involves complex interactions among local and systemic regulatory factors such as growth factors or cytokines. The mechanical environment is determined by the local stress and strain within the fracture. However, the local stress and strain is not accessible, and the mechanical environment, therefore, is described by global mechanical factors, e.g., gap size or interfragmentary movement. The relationship between local stress and strain and the global mechanical factors can be obtained by numerical models (Finite Element Model). Moreover, there is considerable interaction between biological factors and mechanical factors, creating a biomechanical environment for the fracture healing process. The biomechanical environment is characterized by osteoblasts and osteocytes that sense the mechanical signal and express biological markers, which effect the repair process. This review will focus on the effects of biomechanical factors on fracture repair as well as the effects of age and osteoporosis.

  20. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    Science.gov (United States)

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed. PMID:24984512

  1. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Science.gov (United States)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  2. Mechanisms of sound seattering by biological targets and their aggregates

    Directory of Open Access Journals (Sweden)

    Natalia Gorska

    2006-03-01

    Full Text Available Natalia Gorska's thesis is based on a set of 9 papers published in scientific journals (Gorska & Klusek 1998, Gorska 2000, Gorska & Chu 2001a, b, Gorska & Ona 2003a, b and conference proceedings (Gorska & Klusek 1994, Gorska 1999, Gorska & Chu 2000, which broadly summarise her integrated research achievements in underwater acoustics from 1994 to 2003. She is the sole author of two of the articles (Gorska 1999, 2000, and is the first co-author, taking a leading part, in the others (Gorska & Klusek 1994, 1998, Gorska & Chu 2000, Gorska & Chu 200la, b, Gorska & Ona 2003a, b.     Her research objective was to work out the theoretical background to certain problems of sound scattering by biological targets - single individuals and aggregated layers of fish and zooplankton - in relation to environmental conditions in the sea. In the study she focused on acoustical extinction and backscattering, including the phenomenon of echo interference. In conjunction wit h the co-authors of papers Gorska & Ona 2003a, b, Gorska & Chu 2001a, b and Gorska & Chu 2000, she was able to apply and verify her theoretical results empirically.

  3. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    Science.gov (United States)

    Li, Xu; Xiakun, Chu; Zhiqiang, Yan; Xiliang, Zheng; Kun, Zhang; Feng, Zhang; Han, Yan; Wei, Wu; Jin, Wang

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. Project supported by the Natural Science Foundation of China (Grant Nos. 21190040, 11174105, 91225114, 91430217, and 11305176) and Jilin Province Youth Foundation, China (Grant No. 20150520082JH).

  4. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    Science.gov (United States)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  5. Von Neumann's growth model: Statistical mechanics and biological applications

    Science.gov (United States)

    De Martino, A.; Marinari, E.; Romualdi, A.

    2012-09-01

    We review recent work on the statistical mechanics of Von Neumann's growth model and discuss its application to cellular metabolic networks. In this context, we present a detailed analysis of the physiological scenario underlying optimality à la Von Neumann in the metabolism of the bacterium E. coli, showing that optimal solutions are characterized by a considerable microscopic flexibility accompanied by a robust emergent picture for the key physiological functions. This suggests that the ideas behind optimal economic growth in Von Neumann's model can be helpful in uncovering functional organization principles of cell energetics.

  6. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth. PMID:25842126

  7. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    Science.gov (United States)

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era.

  8. Cell Biological Mechanisms of Multidrug Resistance in Tumors

    Science.gov (United States)

    Simon, Sanford M.; Schindler, Melvin

    1994-04-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  9. Mechanical evolution of the rotating biological contactor into the 21st century.

    OpenAIRE

    Mba, David

    2003-01-01

    This paper presents a review on the evolution of the mechanical design of rotating biological contactors (RBCs) within the UK. The findings documented have been taken from the biggest mechanical survey on RBCs ever undertaken worldwide and focuses on 300 operational units. The paper looks at the main components of the RBC and discusses the evolution of each member. Mechanical deficiencies associated with each design are briefly presented, giving an insight into reasons for i...

  10. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  11. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

    OpenAIRE

    Carlos José Alvarez-Gallego; Luis Alberto Fdez-Güelfo; María de los Angeles Romero Aguilar; Luis Isidoro Romero García

    2015-01-01

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matt...

  12. Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: A review

    CERN Document Server

    Trenchard, Hugh

    2016-01-01

    Energy saving mechanisms are ubiquitous in nature. Aerodynamic and hydrodynamic drafting, vortice uplift, Bernoulli suction, thermoregulatory coupling, path following, physical hooks, synchronization, and cooperation are only some of the better-known examples. While drafting mechanisms also appear in non-biological systems such as sedimentation and particle vortices, the broad spectrum of these mechanisms appears more diversely in biological systems including bacteria, spermatozoa, various aquatic species, birds, land animals, semi-fluid dwellers like turtle hatchlings, as well as human systems. We present the thermodynamic framework for energy saving mechanisms, and we review evidence in favor of the variation range hypothesis. This hypothesis posits that, as an evolutionary process, the variation range between strongest and weakest group members converges on the equivalent energy saving quantity that is generated by the energy saving mechanism. We also review self-organized structures that emerge due to ene...

  13. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  14. The radical-pair mechanism as a paradigm for the emerging science of quantum biology

    CERN Document Server

    Kominis, I K

    2015-01-01

    The radical-pair mechanism was introduced in the 1960's to explain anomalously large EPR and NMR signals in chemical reactions of organic molecules. It has evolved to the cornerstone of spin chemistry, the study of the effect electron and nuclear spins have on chemical reactions, with the avian magnetic compass mechanism and the photosynthetic reaction center dynamics being prominent biophysical manifestations of such effects. In recent years the radical-pair mechanism was shown to be an ideal biological system where the conceptual tools of quantum information science can be fruitfully applied. We will here review recent work making the case that the radical-pair mechanism is indeed a major driving force of the emerging field of quantum biology.

  15. Characterization of compost-like outputs from mechanical biological treatment of municipal solid waste.

    Science.gov (United States)

    Donovan, Sally M; Bateson, Thomas; Gronow, Jan R; Voulvoulis, Nikolaos

    2010-06-01

    Throughout the world, most municipal solid waste consists of biodegradable components. The most abundant biological component is cellulose, followed by hemicellulose and lignin. Recycling of these components is important for the carbon cycle. In an attempt to reduce the environmental impacts of biodegradable wastes, mechanical biological treatments (MBTs) are being used as a waste management process in many countries. MBT plants attempt to mechanically separate the biodegradable and nonbiodegradable components. The nonbiodegradable components are then sent for reprocessing or landfilled, whereas the biodegradable components are reduced in biological content through composting or anaerobic digestion, leaving a compost-like output (CLO). The further use of these partially degraded residues is uncertain, and in many cases it is likely that they will be landfilled. The implications of this for the future of landfill management are causing some concern because there is little evidence that the long-term emissions tail will be reduced. In this study, the CLOs from four different biological treatment processes were characterized for physical contamination through visual inspection and for biological content using a sequential digestion analysis. The results indicate that the composition of the incoming waste, dependent on the way the waste was collected/segregated, was the factor that influenced biological content most, with length of treatment process the second most important. PMID:20564995

  16. Moisture sorption, biological durability, and mechanical performance of WPC containing modified wood and polylactates

    Directory of Open Access Journals (Sweden)

    B. Kristoffer Segerholm

    2012-11-01

    Full Text Available Biological durability is an important feature for wood-plastic composites (WPC intended for outdoor applications. One route to achieving WPC products with increased biological durability is to use wood preservative agents in the formulation of the WPC. Another option could be to use a chemically modified wood component that already exhibits increased resistance to biological degradation. There is also a need to use biobased thermoplastics made from renewable resources, which would decrease the dependency on petrochemically-produced thermoplastics in the future. The objective of this study was to examine moisture sorption properties, biological durability, and mechanical performance of injection-molded WPC samples based on acetylated or thermally modified wood components and a polylactate matrix. The biological durability was evaluated in a terrestrial microcosm (TMC test according to ENV 807, followed by mechanical evaluation in a center point bending test. The moisture sorption properties were investigated via both water soaking and exposure in a high-humidity climate. Low or negligible mass losses were observed in the TMC test for all WPC samples. However, the mechanical evaluation after exposure in the TMC test showed 35-40% losses in both strength and stiffness for the WPC containing an unmodified wood component.

  17. Resource Letter TTSM-1: Teaching thermodynamics and statistical mechanics in introductory physics, chemistry, and biology

    OpenAIRE

    Dreyfus, Benjamin W.; Geller, Benjamin D.; Meltzer, David E.; Sawtelle, Vashti

    2014-01-01

    This Resource Letter draws on discipline-based education research from physics, chemistry, and biology to collect literature on the teaching of thermodynamics and statistical mechanics in the three disciplines. While the overlap among the disciplinary literatures is limited at present, we hope this Resource Letter will spark more interdisciplinary interaction.

  18. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Science.gov (United States)

    Betskii, O. V.

    1994-01-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  19. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Betskii, O.V.

    1994-07-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  20. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  1. Thermo-electrical equivalents for simulating the electro-mechanical behavior of biological tissue.

    Science.gov (United States)

    Cinelli, I; Duffy, M; McHugh, P E

    2015-01-01

    Equivalence is one of most popular techniques to simulate the behavior of systems governed by the same type of differential equation. In this case, a thermo-electrical equivalence is considered as a method for modelling the inter-dependence of electrical and mechanical phenomena in biological tissue. We seek to assess this approach for multi-scale models (from micro-structure to tissue scale) of biological media, such as nerve cells and cardiac tissue, in which the electrical charge distribution is modelled as a heat distribution in an equivalent thermal system. This procedure allows for the reduction in problem complexity and it facilitates the coupling of electrical and mechanical phenomena in an efficient and practical way. Although the findings of this analysis are mainly addressed towards the electro-mechanics of tissue within the biomedical domain, the same approach could be used in other studies in which a coupled finite element analysis is required. PMID:26737163

  2. Shell and membrane theories in mechanics and biology from macro- to nanoscale structures

    CERN Document Server

    Mikhasev, Gennadi

    2015-01-01

    This book presents the latest results related to shells  characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.

  3. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.

  4. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. PMID:27214690

  5. Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: A review.

    Science.gov (United States)

    Trenchard, Hugh; Perc, Matjaž

    2016-09-01

    Energy saving mechanisms are ubiquitous in nature. Aerodynamic and hydrodynamic drafting, vortice uplift, Bernoulli suction, thermoregulatory coupling, path following, physical hooks, synchronization, and cooperation are only some of the better-known examples. While drafting mechanisms also appear in non-biological systems such as sedimentation and particle vortices, the broad spectrum of these mechanisms appears more diversely in biological systems that include bacteria, spermatozoa, various aquatic species, birds, land animals, semi-fluid dwellers like turtle hatchlings, as well as human systems. We present the thermodynamic framework for energy saving mechanisms, and we review evidence in favor of the variation range hypothesis. This hypothesis posits that, as an evolutionary process, the variation range between strongest and weakest group members converges on the equivalent energy saving quantity that is generated by the energy saving mechanism. We also review self-organized structures that emerge due to energy saving mechanisms, including convective processes that can be observed in many systems over both short and long time scales, as well as high collective output processes in which a form of collective position locking occurs. PMID:27288936

  6. Piezo-actuated parallel mechanism for biological cell release at high speed.

    Science.gov (United States)

    Avci, Ebubekir; Hattori, Takayuki; Kamiyama, Kazuto; Kojima, Masaru; Horade, Mitsuhiro; Mae, Yasushi; Arai, Tatsuo

    2015-10-01

    In this paper, a dynamic releasing approach is proposed for high-speed biological cell manipulation. A compact parallel mechanism for grasping and releasing microobjects is used to generate controllable vibration to overcome the strong adhesion forces between the end effector and the manipulated object. To reach the required acceleration of the end effector, which is necessary for the detachment of the target object by overcoming adhesion forces, vibration in the end effector is generated by applying sinusoidal voltage to the PZT actuator of the parallel mechanism. For the necessary acceleration, we focus on the possible range of the frequency of the PZT-actuator-induced vibration, while minimizing the amplitude of the vibration (14 nm) to achieve precise positioning. The effect of the air and liquid environments on the required vibration frequency for successful release is investigated. For the first time, release results of microbeads and biological cells are compared. Release of the biological cells with 100 % success rate suggests that the proposed active release method is an appropriate solution for adhered biological cells during the release task.

  7. Mechanical-biological waste conditioning with controlled venting - the Meisenheim mechanical-biological waste conditioning plant; Mechanisch-biologische Restabfallbehandlung nach dem Kaminzugverfahren - MBRA Meisenheim

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O. [Abfallwirtschaftsbetrieb Landkreis Bad Kreuznach, Bad Kreuznach (Germany)

    1998-12-31

    The decision of the rural district of Bad Kreuznach to propose creating facilities for mechanical-biological waste conditioning at the new northern Meisenheim landfill was consistent and correct. It will ensure that the material deposited at this new, state-of-the-art landfill is organically `lean` and can be deposited with a high density. Preliminary sifting of the material prior to depositing safeguards that no improper components are inadvertently included. Three years of operation warrant the statement that waste components that cannot be appropriately biologically conditioned should be eliminated prior to rotting. (orig.) [Deutsch] Die Entscheidung des Landkreises Bad Kreuznach, der neu eingerichteten Norddeponie Meisenheim eine MBRA vorzuschlaten, war auf jeden Fall konsequent und richtig. Es ist damit sicher gestellt, dass in diesem neuen nach dem Stand der Technik eingerichteten Deponiebereich von Anfang an ein Material eingelagert wird, das `organisch abgemagert` ist und mit hoher Einbaudichte eingebaut werden kann. Die Sichtung des gesamten Deponie-Inputs in der Vorsortierhalle gibt ein Stueck Sicherheit, dass keine nicht zugelassenen Stoffe verdeckt dem Ablagerungsbereich der Deponie zugefuehrt werden. Nach mehr als 3 Jahren Betriebszeit kann festgestellt werden, dass biologisch nicht sinnvoll behandelbare Abfallbestandteile vor dem Rotteprozess abgetrennt werden sollten. (orig.)

  8. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C.A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  9. Uncovering disease mechanisms through network biology in the era of next generation sequencing.

    OpenAIRE

    Janet Piñero; Ariel Berenstein; Abel Gonzalez-Perez; Ariel Chernomoretz; Furlong, Laura I.

    2016-01-01

    Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants ...

  10. Biologic Mechanisms of Oral Cancer Pain and Implications for Clinical Therapy

    OpenAIRE

    Viet, C.T.; SCHMIDT, B.L.

    2012-01-01

    Cancer pain is an ever-present public health concern. With innovations in treatment, cancer patients are surviving longer, but uncontrollable pain creates a poor quality of life for these patients. Oral cancer is unique in that it causes intense pain at the primary site and significantly impairs speech, swallowing, and masticatory functions. We propose that oral cancer pain has underlying biologic mechanisms that are generated within the cancer microenvironment. A comprehensive understanding ...

  11. Mechanisms of biological control of Fusarium root and stem rot of greenhouse cucumber by Gliocladium catenulatum

    OpenAIRE

    Chatterton, Syama Gauri Dasi

    2010-01-01

    Gliocladium catenulatum strain J1446 (formulated as Prestop WP, Verdera Oy) is a biological control agent of Fusarium root and stem rot caused by Fusarium oxysporum f. sp. radicis-cucumerinum on greenhouse cucumber plants. The mechanisms involved in biocontrol efficacy are currently unknown. Following transformation of G. catenulatum with the ß-glucuronidase (uidA) gene, blue-stained mycelia could be seen growing on the surface and within epidermal and cortical cells of roots, stems and shoot...

  12. Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity

    OpenAIRE

    Epel, Elissa S.; Lithgow, Gordon J.

    2014-01-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress (“hormetic stress”). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses (“toxic stress”) and shorten lifespan. One key question is whether the str...

  13. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    OpenAIRE

    D. Weichgrebe; S. Maerker; T. Böning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic...

  14. Teaching Fluid Mechanics for Undergraduate Students in Applied Industrial Biology: from Theory to Atypical Experiments

    CERN Document Server

    Absi, Rafik; Dufour, Florence; Huet, Denis; Bennacer, Rachid; Absi, Tahar

    2011-01-01

    EBI is a further education establishment which provides education in applied industrial biology at level of MSc engineering degree. Fluid mechanics at EBI was considered by students as difficult who seemed somewhat unmotivated. In order to motivate them, we applied a new play-based pedagogy. Students were asked to draw inspiration from everyday life situations to find applications of fluid mechanics and to do experiments to verify and validate some theoretical results obtained in course. In this paper, we present an innovative teaching/learning pedagogy which includes the concept of learning through play and its implications in fluid mechanics for engineering. Examples of atypical experiments in fluid mechanics made by students are presented. Based on teaching evaluation by students, it is possible to know how students feel the course. The effectiveness of this approach to motivate students is presented through an analysis of students' teaching assessment. Learning through play proved a great success in fluid...

  15. A stable biologically motivated learning mechanism for visual feature extraction to handle facial categorization.

    Directory of Open Access Journals (Sweden)

    Karim Rajaei

    Full Text Available The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the synaptic stability versus plasticity dilemma, we apply the Adaptive Resonance Theory (ART for extracting informative intermediate level visual features during the learning process, which also makes this model stable against the destruction of previously learned information while learning new information. Such a mechanism has been suggested to be embedded within known laminar microcircuits of the cerebral cortex. To reveal the strength of the proposed visual feature learning mechanism, we show that when we use this mechanism in the training process of a well-known biologically motivated object recognition model (the HMAX model, it performs better than the HMAX model in face/non-face classification tasks. Furthermore, we demonstrate that our proposed mechanism is capable of following similar trends in performance as humans in a psychophysical experiment using a face versus non-face rapid categorization task.

  16. Behavior of selected organic pollutants in municipal waste during the mechanical-biological progress of composting

    International Nuclear Information System (INIS)

    Municipal waste was investigated during the mechanical-biological process of composting. Waste from Burgenland is treated mechanically and biologically to reduce organic matter in the material and to keep gas building potential low before deposition. Samples were taken and analyzed during a period of 80 days. The parameters: temperature, dry-weight, glow loss, ammonium, nitrate and phenolic substances were measured to follow the composting process. It was found that the process was almost finished after a period of 40 days in which the material was breathed intensively. The content of polycyclic aromatic hydrocarbons and polychlorinated phenols decreased slightly. It was not clear whether this was due to microbiological activity or blowing-out effects. Polychlorinated biphenyls were found to be stable during composting. The concentrations were considered as high. Hepta- and octachlorinated dibenzodioxines were formed during the first 10 days. The increase of octachlorinated dibenzodioxin was threefold. Other dioxines and furanes remained unchanged. Finally it was found out that mechanical-biological waste treatment is insufficient in order to reduce organic pollutants effectively. (author)

  17. Mass balance to assess the efficiency of a mechanical-biological treatment

    International Nuclear Information System (INIS)

    Using mechanical-biological treatment of residual municipal solid waste, it is possible to significantly lower landfill volume and gas and leachate emissions. Moreover, the landfill characteristics are improved. The performance of the Mende (France) mechanical-biological treatment plant is assessed via mass balances coupled with manual sorting according to the MODECOMTM methodology and biochemical methane potential after 90 days of incubation. The site includes mechanical sorting operations, a rotary sequential bioreactor, controlled aerobic stabilisation corridors, maturation platforms, and a sanitary landfill site for waste disposal in separated cells. Results showed that several steps could be improved: after a first sieving step, about 12% of the potentially biodegradable matter is landfilled directly without any treatment; mechanical disintegration of papers and cardboards in the rotary sequential bioreactor is insufficient and leads to a high proportion of papers and cardboards being landfilled without further treatment. Two fine fractions go through stabilisation and maturation steps. At the end of the maturation step, about 54% of the potentially biodegradable matter is degraded. The biochemical methane potential after 90 days of incubation is reduced by 81% for one of the two fine fractions and reduced by 88% for the other one. Considering the whole plant, there is a reduction of nearly 20% DM of the entering residual municipal solid waste

  18. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications.

  19. Biological effects of neutrons, mechanisms and applications; Effets biologiques des neutrons: mecanismes et applications

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Ph. [CEA/Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire (IPSN), 92 (France)

    1999-12-01

    The interest to study the ionizing radiations effects on the biological structures concern not only the fundamental comprehension of the mechanisms leading to the radiation damage but also much more pragmatic problems such as the accidental overexposure or radiotherapy treatment. Among these fundamental or applied studies, the neutrons effects take an important part, because of their particular mode of indirect ionization effect and their applications, as well civil as military ones. The purpose of this review is to point out some specific biological effects of neutrons and to describe biological methods to measure them. It clearly appears that neutrons biological effects are more deleterious than those caused by the radiations of lower TEL(X- and {gamma}-rays) taken as reference, for all the measurement levels used, genes mutations, chromosome aberrations, cellular survival or carcinogenesis. This difference is probably related to the density of the energy deposit in the vital cell targets, and to the absence of significant variations related to oxygenation, dose rate or dose fractionation. Such toxic effects, when considered in the course of a criticality accident, can paradoxically become an advantage in the follow-up of therapeutic treatment. (author)

  20. Life Cycle Assessment of mechanical biological pre-treatment of Municipal Solid Waste: a case study.

    Science.gov (United States)

    Beylot, Antoine; Vaxelaire, Stéphane; Zdanevitch, Isabelle; Auvinet, Nicolas; Villeneuve, Jacques

    2015-05-01

    The environmental performance of mechanical biological pre-treatment (MBT) of Municipal Solid Waste is quantified using Life Cycle Assessment (LCA), considering one of the 57 French plants currently in operation as a case study. The inventory is mostly based on plant-specific data, extrapolated from on-site measurements regarding mechanical and biological operations (including anaerobic digestion and composting of digestate). The combined treatment of 46,929 tonnes of residual Municipal Solid Waste and 12,158 tonnes of source-sorted biowaste (as treated in 2010 at the plant) generates 24,550 tonnes CO2-eq as an impact on climate change, 69,943kg SO2-eq on terrestrial acidification and 19,929kg NMVOC-eq on photochemical oxidant formation, in a life-cycle perspective. On the contrary MBT induces environmental benefits in terms of fossil resource depletion, human toxicity (carcinogenic) and ecotoxicity. The results firstly highlight the relatively large contribution of some pollutants, such as CH4, emitted at the plant and yet sometimes neglected in the LCA of waste MBT. Moreover this study identifies 4 plant-specific operation conditions which drive the environmental impact potentials induced by MBT: the conditions of degradation of the fermentable fraction, the collection of gaseous flows emitted from biological operations, the abatement of collected pollutants and NOx emissions from biogas combustion. Finally the results underline the relatively large influence of the operations downstream the plant (in particular residuals incineration) on the environmental performance of waste MBT.

  1. Mechanism Interpretation of the Biological Brain Cooling and Its Inspiration on Bionic Engineering

    Institute of Scientific and Technical Information of China (English)

    Xu Xue; Jing Liu

    2011-01-01

    The brain is one of the most important organs in a biological body which can only work in a relatively stable temperature range. However, many environmental factors in biosphere would cause cerebral temperature fluctuations. To sustain and regulate the brain temperature, many mechanisms of biological brain cooling have been evolved, including Selective Brain Cooling (SBC), cooling through surface water evaporation, respiration, behavior response and using special anatomical appendages. This article is dedicated to present a summarization and systematic interpretation on brain cooling strategies developed in animals by classifying and comparatively analyzing each typical biological brain cooling mechanism from the perspective of bio-heat transfer. Meanwhile, inspirations from such cooling in nature were proposed for developing advanced bionic engineering technologies especially with two focuses on therapeutic hypothermia and computer chip cooling areas. It is expected that many innovations can be achieved along this way to find out new cooling methodologies for a wide variety of industrial applications which will be highly efficient, energy saving, flexible or even intelligent.

  2. Life Cycle Assessment of mechanical biological pre-treatment of Municipal Solid Waste: a case study.

    Science.gov (United States)

    Beylot, Antoine; Vaxelaire, Stéphane; Zdanevitch, Isabelle; Auvinet, Nicolas; Villeneuve, Jacques

    2015-05-01

    The environmental performance of mechanical biological pre-treatment (MBT) of Municipal Solid Waste is quantified using Life Cycle Assessment (LCA), considering one of the 57 French plants currently in operation as a case study. The inventory is mostly based on plant-specific data, extrapolated from on-site measurements regarding mechanical and biological operations (including anaerobic digestion and composting of digestate). The combined treatment of 46,929 tonnes of residual Municipal Solid Waste and 12,158 tonnes of source-sorted biowaste (as treated in 2010 at the plant) generates 24,550 tonnes CO2-eq as an impact on climate change, 69,943kg SO2-eq on terrestrial acidification and 19,929kg NMVOC-eq on photochemical oxidant formation, in a life-cycle perspective. On the contrary MBT induces environmental benefits in terms of fossil resource depletion, human toxicity (carcinogenic) and ecotoxicity. The results firstly highlight the relatively large contribution of some pollutants, such as CH4, emitted at the plant and yet sometimes neglected in the LCA of waste MBT. Moreover this study identifies 4 plant-specific operation conditions which drive the environmental impact potentials induced by MBT: the conditions of degradation of the fermentable fraction, the collection of gaseous flows emitted from biological operations, the abatement of collected pollutants and NOx emissions from biogas combustion. Finally the results underline the relatively large influence of the operations downstream the plant (in particular residuals incineration) on the environmental performance of waste MBT. PMID:25708404

  3. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase.

    Science.gov (United States)

    Wongnate, Thanyaporn; Sliwa, Dariusz; Ginovska, Bojana; Smith, Dayle; Wolf, Matthew W; Lehnert, Nicolai; Raugei, Simone; Ragsdale, Stephen W

    2016-05-20

    Methyl-coenzyme M reductase, the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the biological production of more than 1 billion tons of methane per year. The mechanism of methane synthesis is thought to involve either methyl-nickel(III) or methyl radical/Ni(II)-thiolate intermediates. We employed transient kinetic, spectroscopic, and computational approaches to study the reaction between the active Ni(I) enzyme and substrates. Consistent with the methyl radical-based mechanism, there was no evidence for a methyl-Ni(III) species; furthermore, magnetic circular dichroism spectroscopy identified the Ni(II)-thiolate intermediate. Temperature-dependent transient kinetics also closely matched density functional theory predictions of the methyl radical mechanism. Identifying the key intermediate in methanogenesis provides fundamental insights to develop better catalysts for producing and activating an important fuel and potent greenhouse gas. PMID:27199421

  4. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.

    Science.gov (United States)

    Roberts, Thomas J; Azizi, Emanuel

    2011-02-01

    The muscles that power vertebrate locomotion are associated with springy tissues, both within muscle and in connective tissue elements such as tendons. These springs share in common the same simple action: they stretch and store elastic strain energy when force is applied to them and recoil to release energy when force decays. Although this elastic action is simple, it serves a diverse set of functions, including metabolic energy conservation, amplification of muscle power output, attenuation of muscle power input, and rapid mechanical feedback that may aid in stability. In recent years, our understanding of the mechanisms and importance of biological springs in locomotion has advanced significantly, and it has been demonstrated that elastic mechanisms are essential for the effective function of the muscle motors that power movement. Here, we review some recent advances in our understanding of elastic mechanisms, with an emphasis on two proposed organizing principles. First, we review the evidence that the various functions of biological springs allow the locomotor system to operate beyond the bounds of intrinsic muscle properties, including metabolic and mechanical characteristics, as well as motor control processes. Second, we propose that an energy-based framework is useful for interpreting the diverse functions of series-elastic springs. In this framework, the direction and timing of the flow of energy between the body, the elastic element and the contracting muscle determine the function served by the elastic mechanism (e.g. energy conservation vs power amplification). We also review recent work demonstrating that structures such as tendons remodel more actively and behave more dynamically than previously assumed.

  5. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    Science.gov (United States)

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes.

  6. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design.

    Science.gov (United States)

    Prodanov, Dimiter; Delbeke, Jean

    2016-01-01

    Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it. PMID:26903786

  7. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  8. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning.

  9. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Directory of Open Access Journals (Sweden)

    Justin John Finnerty

    Full Text Available Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  10. Floral biology and reproductive mechanisms of the Ocimum canum Sims (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Cláudio Lúcio Fernandes Amaral

    2008-06-01

    Full Text Available The Ocimum genus (Lamiaceae presents essential oils used in the pharmaceutical, perfume, cosmetics and culinary industries. The aim of this paper was to study the fl oral biology and breeding mechanisms of Ocimum canum Sims. in relation to improved plant breeding. Ocimum canum has inflorescences with white, protandrous and hermaphoditic flowers. The osmophores are located at the anthers and stigma. Anthesis occurs between 10:30 and 11:30 a.m. The main fl oral visitors were bees of the Apis and Augochloropsis genuses. Ocimum canum presents a breeding system with a predominance of outcrossing that possibly demonstrates the wide reproductive flexibility of this species.

  11. DTAF dye concentrations commonly used to measure microscale deformations in biological tissues alter tissue mechanics.

    Directory of Open Access Journals (Sweden)

    Spencer E Szczesny

    Full Text Available Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 µg/ml may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of this fluorescent dye in future experiments and for interpreting the results of previous work. Incremental strain testing demonstrated that high DTAF concentrations (≥100 µg/ml increase the quasi-static modulus and yield strength of rat tail tendon fascicles while reducing their viscoelastic behavior. Subsequent multiscale testing and modeling suggests that these effects are due to a stiffening of the collagen fibrils and strengthening of the interfibrillar matrix. Despite these changes in tissue behavior, the fundamental deformation mechanisms underlying fascicle mechanics appear to remain intact, which suggests that conclusions from previous multiscale investigations of strain transfer are still valid. The effects of lower DTAF concentrations (≤10 µg/ml on tendon mechanics were substantially smaller and potentially negligible; nevertheless, no concentration was found that did not at least slightly alter the tissue behavior. Therefore, future studies should either reduce DTAF concentrations as much as possible or use other dyes/techniques for measuring microscale deformations.

  12. Effects of added ZnTCP on mechanical and biological properties of apatite cement

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, K.; Suzuki, K. [Okayama Univ. Dental School (Japan). Dept. of Biomaterials; Miyamoto, Y.; Toh, T.; Yuasa, T.; Nagayama, M. [Tokushima Univ. (Japan). First Dept. of Oral and Maxillofacial Surgery; Ito, A. [National Inst. for Advanced Interdisciplinary Research, MITT, Ibaragi (Japan)

    2001-07-01

    Effects of added Zn doped {beta}-tricalcium phosphate (ZnTCP) on mechanical and biological properties of apatite cement (AC) was studied. Powder X-ray diffractometer revealed that ZnTCP shows no reactivity with AC. The mechanical strength of AC decreased increasing amounts of added ZnTCP. We observed no effect on the setting time of AC when the amount of ZnTCP was 10% or less. Proliferation of the osteoblastic cells was significantly increased on the surface of AC containing 5% ZnTCP when compared with that containing no ZnTCP. In contrast, proliferation of the cells decreased on the surface of AC containing 10% ZnTCP when compared with that free from ZnTCP; indicating cytotoxity. We concluded therefore, that addition of ZnTCP to AC might be useful to enhance the osteoconductivity of AC when release of Zn{sup 2+} can be carefully regulated. (orig.)

  13. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research.

    Science.gov (United States)

    Leon, Benjamin M; Maddox, Thomas M

    2015-10-10

    The incidence of diabetes mellitus (DM) continues to rise and has quickly become one of the most prevalent and costly chronic diseases worldwide. A close link exists between DM and cardiovascular disease (CVD), which is the most prevalent cause of morbidity and mortality in diabetic patients. Cardiovascular (CV) risk factors such as obesity, hypertension and dyslipidemia are common in patients with DM, placing them at increased risk for cardiac events. In addition, many studies have found biological mechanisms associated with DM that independently increase the risk of CVD in diabetic patients. Therefore, targeting CV risk factors in patients with DM is critical to minimize the long-term CV complications of the disease. This paper summarizes the relationship between diabetes and CVD, examines possible mechanisms of disease progression, discusses current treatment recommendations, and outlines future research directions. PMID:26468341

  14. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research

    Institute of Scientific and Technical Information of China (English)

    Benjamin; M; Leon; Thomas; M; Maddox

    2015-01-01

    The incidence of diabetes mellitus(DM) continues to rise and has quickly become one of the most prevalent and costly chronic diseases worldwide. A close link exists between DM and cardiovascular disease(CVD), which is the most prevalent cause of morbidity and mortality in diabetic patients. Cardiovascular(CV) risk factors such as obesity, hypertension and dyslipidemia are common in patients with DM, placing them at increased risk for cardiac events. In addition, many studies have found biological mechanisms associated with DM that independently increase the risk of CVD in diabetic patients. Therefore, targeting CV risk factors in patients with DM is critical to minimize the long-term CV complications of the disease. This paper summarizes the relationship between diabetes and CVD, examines possible mechanisms of disease progression, discusses current treatment recommendations, and outlines future research directions.

  15. Investigations on mechanical biological treatment of waste in South America: Towards more sustainable MSW management strategies

    International Nuclear Information System (INIS)

    This work presents an analysis on the suitability of mechanical biological treatment of municipal solid waste in South America, based on two previous experimental investigations carried out in two different countries. The first experiment was performed for determining the mass and volume reduction of MSW in the province of Concepcion (Chile). The implemented bench-scale process consisted of a manual classification and separation stage, followed by an in-vessel biological degradation process. The second experiment consisted of a full-scale experiment performed in the city of Estrela (Brazil), where the existing municipal waste management facility was adapted to enhance the materials sorting and separation. Expressed in wet weight composition, 85.5% of the material input in the first experiment was separated for biological degradation. After 27 days of processing, 60% of the initial mass was reduced through degradation and water evaporation. The final fraction destined for landfilling equals 59% of the total input mass, corresponding to about 50% of the initial volume. In the second experiment, the fraction destined to landfill reaches 46.6% of the total input waste mass, whilst also significantly reducing the total volume to be disposed. These results, and the possible recovery of material streams suitable for recycling or for preparing solid recovered fuels, are the main advantages of the studied process

  16. A few nascent methods for measuring mechanical properties of the biological cell.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos (Purdue University, West Lafayette, IN); Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a

  17. New insight into the molecular mechanisms of the biological effects of DNA minor groove binders.

    Directory of Open Access Journals (Sweden)

    Xinbo Zhang

    Full Text Available BACKGROUND: Bisbenzimides, or Hoechst 33258 (H258, and its derivative Hoechst 33342 (H342 are archetypal molecules for designing minor groove binders, and widely used as tools for staining DNA and analyzing side population cells. They are supravital DNA minor groove binders with AT selectivity. H342 and H258 share similar biological effects based on the similarity of their chemical structures, but also have their unique biological effects. For example, H342, but not H258, is a potent apoptotic inducer and both H342 and H258 can induce transgene overexpression in in vitro studies. However, the molecular mechanisms by which Hoechst dyes induce apoptosis and enhance transgene overexpression are unclear. METHODOLOGY/PRINCIPAL FINDINGS: To determine the molecular mechanisms underlying different biological effects between H342 and H258, microarray technique coupled with bioinformatics analyses and multiple other techniques has been utilized to detect differential global gene expression profiles, Hoechst dye-specific gene expression signatures, and changes in cell morphology and levels of apoptosis-associated proteins in malignant mesothelioma cells. H342-induced apoptosis occurs in a dose-dependent fashion and is associated with morphological changes, caspase-3 activation, cytochrome c mitochondrial translocation, and cleavage of apoptosis-associated proteins. The antagonistic effect of H258 on H342-induced apoptosis indicates a pharmacokinetic basis for the two dyes' different biological effects. Differential global gene expression profiles induced by H258 and H342 are accompanied by unique gene expression signatures determined by DNA microarray and bioinformatics software, indicating a genetic basis for their different biological effects. CONCLUSIONS/SIGNIFICANCE: A unique gene expression signature associated with H342-induced apoptosis provides a new avenue to predict and classify the therapeutic class of minor groove binders in the drug

  18. Organic fraction of municipal solid waste from mechanical selection: biological stabilization and recovery options.

    Science.gov (United States)

    Cesaro, Alessandra; Russo, Lara; Farina, Anna; Belgiorno, Vincenzo

    2016-01-01

    Although current trends address towards prevention strategies, the organic fraction of municipal solid waste is greatly produced, especially in high-income contexts. Its recovery-oriented collection is a common practice, but a relevant portion of the biodegradable waste is not source selected. Mechanical and biological treatments (MBT) are the most common option to sort and stabilize the biodegradable matter ending in residual waste stream. Following the changes of the framework around waste management, this paper aimed at analyzing the quality of the mechanically selected organic waste produced in MBT plants, in order to discuss its recovery options. The material performance was obtained by its composition as well as by its main chemical and physical parameters; biological stability was also assessed by both aerobic and anaerobic methods. On this basis, the effectiveness of an aerobic biostabilization process was assessed at pilot scale. After 21 days of treatment, results proved that the biomass had reached an acceptable biostabilization level, with a potential Dynamic Respirometric Index (DRIP) value lower than the limit required for its use as daily or final landfill cover material. However, the final stabilization level was seen to be influenced by scaling factors and the 21 days of treatment turned to be not so adequate when applied in the existing full-scale facility.

  19. Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms.

    Science.gov (United States)

    Masella, R; Santangelo, C; D'Archivio, M; Li Volti, G; Giovannini, C; Galvano, F

    2012-01-01

    Epidemiological evidence has shown that a high dietary intake of vegetables and fruit rich in polyphenols is associated with a reduction of cancer incidence and mortality from coronary heart disease. The healthy effects associated with polyphenol consumption have made the study of the mechanisms of action a matter of great importance. In particular, the hydroxybenzoic acid protocatechuic acid (PCA) has been eliciting a growing interest for several reasons. Firstly, PCA is one of the main metabolites of complex polyphenols such as anthocyanins and procyanidins that are normally found at high concentrations in vegetables and fruit, and are absorbed by animals and humans. Since the daily intake of anthocyanins has been estimated to be much higher than that of other polyphenols, the nutritional value of PCA is increasingly recognized. Secondly, a growing body of evidence supports the concept that PCA can exert a variety of biological effects by acting on different molecular targets. It has been shown that PCA possesses antioxidant, anti-inflammatory as well as antihyperglycemic and neuroprotective activities. Furthermore, PCA seems to have chemopreventive potential because it inhibits the in vitro chemical carcinogenesis and exerts pro-apoptotic and anti-proliferative effects in different tissues. This review is aimed at providing an up-dated and comprehensive report on PCA giving a special emphasis on its biological activities and the molecular mechanisms of action most likely responsible for a beneficial role in human disease prevention. PMID:22519395

  20. Organic fraction of municipal solid waste from mechanical selection: biological stabilization and recovery options.

    Science.gov (United States)

    Cesaro, Alessandra; Russo, Lara; Farina, Anna; Belgiorno, Vincenzo

    2016-01-01

    Although current trends address towards prevention strategies, the organic fraction of municipal solid waste is greatly produced, especially in high-income contexts. Its recovery-oriented collection is a common practice, but a relevant portion of the biodegradable waste is not source selected. Mechanical and biological treatments (MBT) are the most common option to sort and stabilize the biodegradable matter ending in residual waste stream. Following the changes of the framework around waste management, this paper aimed at analyzing the quality of the mechanically selected organic waste produced in MBT plants, in order to discuss its recovery options. The material performance was obtained by its composition as well as by its main chemical and physical parameters; biological stability was also assessed by both aerobic and anaerobic methods. On this basis, the effectiveness of an aerobic biostabilization process was assessed at pilot scale. After 21 days of treatment, results proved that the biomass had reached an acceptable biostabilization level, with a potential Dynamic Respirometric Index (DRIP) value lower than the limit required for its use as daily or final landfill cover material. However, the final stabilization level was seen to be influenced by scaling factors and the 21 days of treatment turned to be not so adequate when applied in the existing full-scale facility. PMID:26377969

  1. A transcriptomics-based biological framework for studying mechanisms of endocrine disruption in small fish species.

    Science.gov (United States)

    Wang, Rong-Lin; Bencic, David; Villeneuve, Daniel L; Ankley, Gerald T; Lazorchak, Jim; Edwards, Stephen

    2010-07-01

    This study sought to construct a transcriptomics-based framework of signal transduction pathways, transcriptional regulatory networks, and the hypothalamic-pituitary gonadal (HPG) axis in zebrafish (Danio rerio) to facilitate formulation of specific, testable hypotheses regarding the mechanisms of endocrine disruption in fish. For the analyses involved, we used data from a total of more than 300 microarrays representing 58 conditions, which encompassed 4 tissue types from zebrafish of both genders exposed for 1 of 3 durations to 10 different test chemicals (17alpha-ethynyl estradiol, fadrozole, 17beta-trenbolone, fipronil, prochloraz, flutamide, muscimol, ketoconazole, trilostane, and vinclozolin). Differentially expressed genes were identified by one class t-tests for each condition, and those with false discovery rates of less than 40% and treatment/control ratios > or =1.3-fold were mapped to orthologous human, mouse, and rat pathways by Ingenuity Pathway Analysis to look for overrepresentation of known biological pathways. To complement the analysis of known biological pathways, the genes regulated by approximately 1800 transcription factors were inferred using the ARACNE mutual information-based algorithm. The resulting gene sets for all transcriptional factors, along with a group of compiled HPG-axis genes and approximately 130 publicly available biological pathways, were analyzed for their responses to the 58 treatment conditions by Gene Set Enrichment Analysis (GSEA) and its variant, Extended-GSEA. The biological pathways and transcription factors associated with multiple distinct treatments showed substantial interactions among the HPG-axis, TGF-beta, p53, and several of their cross-talking partners. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell cycle, and apoptosis.

  2. Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass.

    Science.gov (United States)

    Shah, Asma Tufail; Batool, Madeeha; Chaudhry, Aqif Anwar; Iqbal, Farasat; Javaid, Ayesha; Zahid, Saba; Ilyas, Kanwal; Bin Qasim, Saad; Khan, Ather Farooq; Khan, Abdul Samad; Ur Rehman, Ihtesham

    2016-08-01

    In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications. PMID:27068802

  3. [Study on action mechanism of Danhong injection based on computational system biology approach].

    Science.gov (United States)

    Lv, Yan-ni; Wei, Xiao-hua; Xiao, Pin

    2015-02-01

    Danhong injection is a compound preparation of traditional Chinese medicine Salvia miltiorrhiza and Carthamus tinctorius, and has been widely applied in treating coronary heart diseases and ischemic encephalopathy in clinic. Despite the complexity of its chemical compounds and the diversity of targets, especially in system biology, there have not a report for its action mechanism as a whole regulatory biological network. In this study, protein data of S. miltiorrhiza and C. tinctorius were searched in TCMGeneDIT database and agilent literature search (ALS) system to establish the multi-component protein network of S. miltiorrhiza, C. tinctorius and Danhong injection. Besides, the protein interaction network was built based on the protein-protein interaction in Genecards, BIND, BioGRID, IntAct, MINT and other databases. According to the findings, 10 compounds of S. miltiorrhiza and 14 compounds of C. tinctorius were correlated with proteins. The 24 common compounds had interactions with 81 proteins, and formed a protein interaction network with 60 none-isolated nodes. The Cluster ONE module was applied to make an enrichment analysis on the protein interaction network and extract one sub-network with significant difference P <0.05. The sub-network contains 23 key proteins, which involved five signaling pathways, namely Nod-like receptor signaling pathway, epithelial cell signaling in helicobacter pylori infection, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and neurotrophin signaling pathway through KEGG signaling pathway mapping. In this study, the computational system biology approach was adopted to preliminarily explain the molecular mechanism of main compounds of Danhong injection in preventing and treating diseases and provide reference for systematic studies on traditional Chinese medicine compounds. PMID:26084184

  4. In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical-biological treated waste.

    Science.gov (United States)

    Barrena, Raquel; d'Imporzano, Giuliana; Ponsá, Sergio; Gea, Teresa; Artola, Adriana; Vázquez, Felícitas; Sánchez, Antoni; Adani, Fabrizio

    2009-03-15

    The biological stability determines the extent to which readily biodegradable organic matter has decomposed. In this work, a massive estimation of indices suitable for the measurement of biological stability of the organic matter content in solid waste samples has been carried out. Samples from different stages in a mechanical-biological treatment (MBT) plant treating municipal solid wastes (MSW) were selected as examples of different stages of organic matter stability in waste biological treatment. Aerobic indices based on respiration techniques properly reflected the process of organic matter biodegradation. Static and dynamic respirometry showed similar values in terms of aerobic biological activity (expressed as oxygen uptake rate, OUR), whereas cumulative oxygen consumption was a reliable method to express the biological stability of organic matter in solid samples. Methods based on OUR and cumulative oxygen consumption were positively correlated. Anaerobic methods based on biogas production (BP) tests also reflected well the degree of biological stability, although significant differences were found in solid and liquid BP assays. A significant correlation was found between cumulative oxygen consumption and ultimate biogas production. The results obtained in this study can be a basis for the quantitative measurement of the efficiency in the stabilization of organic matter in waste treatment plants, including MBT plants, anaerobic digestion of MSW and composting plants. PMID:18606494

  5. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  6. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.

    Science.gov (United States)

    Xu, Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao, Weixin; Yoo, James J; Atala, Anthony

    2013-03-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin-collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  7. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Science.gov (United States)

    Marini, Francesca; Cianferotti, Luisella; Brandi, Maria Luisa

    2016-01-01

    Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2), the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs). Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine’s principles. PMID:27529237

  8. The consequence of biologic graft processing on blood interface biocompatibility and mechanics.

    Science.gov (United States)

    Van de Walle, Aurore B; Uzarski, Joseph S; McFetridge, Peter S

    2015-09-01

    Processing ex vivo derived tissues to reduce immunogenicity is an effective approach to create biologically complex materials for vascular reconstruction. Due to the sensitivity of small diameter vascular grafts to occlusive events, the effect of graft processing on critical parameters for graft patency, such as peripheral cell adhesion and wall mechanics, requires detailed analysis. Isolated human umbilical vein sections were used as model allogenic vascular scaffolds that were processed with either: 1. sodium dodecyl sulfate (SDS), 2. ethanol/acetone (EtAc), or 3. glutaraldehyde (Glu). Changes in material mechanics were assessed via uniaxial tensile testing. Peripheral cell adhesion to the opaque grafting material was evaluated using an innovative flow chamber that allows direct observation of the blood-graft interface under physiological shear conditions. All treatments modified the grafts tensile strain and stiffness properties, with physiological modulus values decreasing from Glu 240±12 kPa to SDS 210±6 kPa and EtAc 140±3 kPa, Papplied to the umbilical vein scaffold were shown to modify structural mechanics and cell adhesion properties, with the EtAc treatment reducing thrombotic events relative to SDS treated samples. This approach allows time and cost effective prescreening of clinically relevant grafting materials to assess initial cell reactivity.

  9. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films.

    Science.gov (United States)

    Aryaei, Ashkan; Jayatissa, Ahalapitiya H; Jayasuriya, Ambalangodage C

    2014-08-01

    In this article, different concentrations of multiwalled carbon nanotube (MWCNT) were homogeneously dispersed throughout the chitosan (CS) matrix. A simple solvent-cast method was used to fabricate chitosan films with 0.1, 0.5, and 1% of MWCNT with the average diameter around 30 nm. The CS/MWCNT films were characterized for structural, viscous and mechanical properties with optical microscopy, wide-angle X-ray diffraction, Raman spectroscopy, tensile test machine, and microindentation testing machine. Murine osteoblasts were used to examine the cell viability and attachment of the nanocomposite films at two time points. In comparison to the pure chitosan film, the mechanical properties, including the tensile modulus and strength of the films, were greatly improved by increasing the percentage of MWCNT. Furthermore, adding MWCNT up to 1% increased the viscosity of the chitosan solution by 15%. However, adding MWCNT decreased the samples ductility and transparency. In biological point of view, no toxic effect on osteoblasts was observed in the presence of different percentages of MWCNT at day 3 and day 7. This investigation suggested MWCNT could be a promising candidate for improving chitosan mechanical properties without inducing remarkable cytotoxicity on bone cells. PMID:24108584

  10. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    Science.gov (United States)

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L. PMID:25776916

  11. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  12. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    Science.gov (United States)

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-02-09

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  13. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  14. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    Science.gov (United States)

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-01-01

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process. PMID:25671816

  15. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    Science.gov (United States)

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  16. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    Science.gov (United States)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment. PMID:23850761

  17. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    Science.gov (United States)

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue. PMID:9806616

  18. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

    Directory of Open Access Journals (Sweden)

    Carlos José Alvarez-Gallego

    2015-02-01

    Full Text Available The organic fraction of municipal solid waste (OFMSW usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC, soluble chemical oxygen demand (sCOD, total volatile fatty acids (TVFA and acidogenic substrate as carbon (ASC. The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160–180–200 °C, 3.5–5.0–6.5 bar and 2–3–4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  19. Untangling nociceptive, neuropathic and neuroplastic mechanisms underlying the biological domain of back pain.

    Science.gov (United States)

    Hush, Julia M; Stanton, Tasha R; Siddall, Philip; Marcuzzi, Anna; Attal, Nadine

    2013-05-01

    SUMMARY Current clinical practice guidelines advocate a model of diagnostic triage for back pain, underpinned by the biopsychosocial paradigm. However, limitations of this clinical model have become apparent: it can be difficult to classify patients into the diagnostic triage categories; patients with 'nonspecific back pain' are clearly not a homogenous group; and mean effects of treatments based on this approach are small. In this article, it is proposed that the biological domain of the biopsychosocial model needs to be reconceptualized using a neurobiological mechanism-based approach. Recent evidence about nociceptive and neuropathic contributors to back pain is outlined in the context of maladaptive neuroplastic changes of the somatosensory system. Implications for clinical practice and research are discussed.

  20. Mechanisms of interaction and biological effects of extremely-low-frequency electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-07-01

    Evidence is mounting, that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers. The implications of these findings for promotion of tumor growth by ELF fields are also reviewed.

  1. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  2. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-01-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials...... for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different...... scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT...

  3. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Idil Uysal; Feride Severcana; Aysen Tezcanera; Zafer Evisa

    2014-01-01

    Hydroxyapatite (HA) co-doped with Zn2+ and F- ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F- ions incorporation into HA structure. Co-doping of Zn2 + and F- ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F- addition into HA significantly improved its density. Microhardness was increased with Zn2 + addition and further increase was detected with F- co-doping. Zn2+ and F- co-doped samples had higher fracture toughness than pure HA. Zn2+incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol%F- addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  4. Racism, society, and disease: an exploration of the social and biological mechanisms of differential mortality.

    Science.gov (United States)

    Cooper, R; Steinhauer, M; Miller, W; David, R; Schatzkin, A

    1981-01-01

    Racial differentials in mortality provide important insight into the nature of mass disease in capitalist society. Not only are the differentials sizable in magnitude, they are consistent for multiple causes of death and appear to evolve in response to social development. The relationships among social factors and the biological and physical agents of disease can be identified through racial contrasts and a pattern of causation which applies to both the minority and majority populations described. Furthermore, the impact of exploitation as the primary disease-mediating factor under capitalist social relations can be estimated. This paper attempts to combine an analysis of bio-medical mechanisms with Marxist social theory in a comprehensive framework for the study of the social origins of racial differentials. PMID:7298254

  5. Biodrying for mechanical-biological treatment of wastes: a review of process science and engineering.

    Science.gov (United States)

    Velis, C A; Longhurst, P J; Drew, G H; Smith, R; Pollard, S J T

    2009-06-01

    Biodrying is a variation of aerobic decomposition, used within mechanical-biological treatment (MBT) plants to dry and partially stabilise residual municipal waste. Biodrying MBT plants can produce a high quality solid recovered fuel (SRF), high in biomass content. Here, process objectives, operating principles, reactor designs, parameters for process monitoring and control, and their effect on biodried output quality are critically examined. Within the biodrying reactors, waste is dried by air convection, the necessary heat provided by exothermic decomposition of the readily decomposable waste fraction. Biodrying is distinct from composting in attempting to dry and preserve most of biomass content of the waste matrix, rather than fully stabilise it. Commercial process cycles are completed within 7-15 days, with mostly H(2)O((g)) and CO(2) loses of ca. 25-30% w/w, leading to moisture contents of MBT process operators, regulators and end-users of SRF. PMID:19216072

  6. In situ activity recovery of aging biofilm in biological aerated filter: Surfactants treatment and mechanisms study.

    Science.gov (United States)

    Yu, Qisheng; Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju

    2016-11-01

    In situ activity recovery of aging biofilm in the biological aerated filter (BAF) is an important but underappreciated problem. Lab-scaled BAFs were established in this study and three kinds of surfactants containing sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and rhamnolipid were employed. Multiple indicators including effluent qualities, dissolved organic matters, biofilm physiology and morphology characteristics were investigated to explore the mechanisms. Results showed that removal rates of effluent COD in test groups significantly recovered to the level before aging. Compared with the control, effluent in SDBS and rhamnolipid-treated groups obtained more protein-like and humic-like substances, respectively. Furthermore, great live cell ratio, smooth surface and low adhesion force of biofilm were observed after rhamnolipid treatment, which was in consistent with good effluent qualities in the same group. This is the first report of applying rhamnolipid for in situ activity recovery of aging biofilm in bioreactors. PMID:27513646

  7. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Directory of Open Access Journals (Sweden)

    D. Weichgrebe

    2008-03-01

    Full Text Available Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  8. Geomagnetic polarity reversals as a mechanism for the punctuated equilibrium model of biological evolution

    International Nuclear Information System (INIS)

    In contrast to what is predicted by classical Darwinian theory (phyletic gradualism), the fossil record typically displays a pattern of relatively sudden, dramatic changes as detailed by Eldregde and Gould's model of punctuated equilibrium. Evolutionary biologists have been at a loss to explain the ultimate source of the new mutations that drive evolution. One hypothesis holds that the abrupt speciation seen in the punctuated equilibrium model is secondary to an increased mutation rate resulting from periodically increased levels of ionizing radiation on the Earth's surface. Sporadic geomagnetic pole reversals, occurring every few million years on the average, are accompanied by alterations in the strength of the Earth's magnetic field and magnetosphere. This diminution may allow charged cosmic radiation to bombard Earth with less attenuation, thereby resulting in increased mutation rates. This episodic fluctuation in the magnetosphere is an attractive mechanism for the observed fossil record. Selected periods and epochs of geologic history for which data was available were reviewed for both geomagnetic pole reversal history and fossil record. Anomalies in either were scrutinized in greater depth and correlations were made. A 35 million year span (118-83 Ma) was identified during the Early/Middle Cretaceous period that was devoid of geomagnetic polarity reversals(the Cretaceous normal superchron). Examination of the fossil record (including several invertebrate and vertebrate taxons) during the Cretaceous normal superchron does not reveal any significant gap or slowing of speciation. Although increased terrestrial radiation exposure due to a diminution of the Earth's magnetosphere caused by a reversal of geomagnetic polarity is an attractive explanation for the mechanism of punctuated equilibrium, our investigation suggests that such polarity reversals cannot fully provide the driving force behind biological evolution. Further research is required to determine if

  9. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India); Santhosh, L.G., E-mail: lgsanthu2006@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India)

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  10. A mechanism for biologically-induced iodine emissions from sea-ice

    Directory of Open Access Journals (Sweden)

    A. Saiz-Lopez

    2015-04-01

    Full Text Available Ground- and satellite-based measurements have reported high concentrations of iodine monoxide (IO in coastal Antarctica. The sources of such a large iodine burden in the coastal Antarctic atmosphere remain unknown. We propose a mechanism for iodine release from sea-ice based on the premise that micro-algae are the primary source of iodine emissions in this environment. The emissions are triggered by the biological production of iodide (I− and hypoiodous acid (HOI from micro-algae (contained within and underneath sea-ice and their diffusion through sea-ice brine channels, to accumulate in the quasi-liquid layer (QLL on the surface of sea-ice. Prior to reaching the QLL, the diffusion timescale of iodine within sea-ice is depth-dependent. The QLL is also a vital component of the proposed mechanism as it enhances the chemical kinetics of iodine-related reactions, which allows for the efficient release of iodine to the polar boundary layer. We suggest iodine is released to the atmosphere via 3 possible pathways: (1 emitted from the QLL and then transported throughout snow atop sea-ice, to be released to the atmosphere, (2 released directly from the QLL to the atmosphere in regions of sea-ice that are not covered with snowpack; or (3 emitted to the atmosphere directly through fractures in the sea-ice pack. To investigate the proposed biology-ice-atmosphere coupling at coastal Antarctica we use a multiphase model that incorporates the transport of iodine species, via diffusion, at variable depths, within brine channels of sea-ice. Model simulations were conducted to interpret observations of elevated springtime IO in the coastal Antarctic, around the Weddell Sea. The results show that the levels of inorganic iodine (i.e., I2, IBr, ICl released from sea-ice through this mechanism could account for the observed IO concentrations during this timeframe. The model results also indicate that iodine may trigger the catalytic release of bromine from sea

  11. Approaching magnetic field effects in biology using the radical pair mechanism

    Science.gov (United States)

    Canfield, Jeffrey Michael

    1997-11-01

    The overall goal of this thesis has been to explain any of the reported magnetic field effects in biology (magnetic orientation of many species and/or health effects, such as cancer, due to man-made electromagnetic fields) using the radical pair mechanism, a quantum mechanical mechanism known for over 20 years that lets singlet-to-triplet yields (which can be related to reaction rates) of radical pair reactions depend on applied magnetic fields. This goal seems reasonable considering the known roles of many biological free radicals in cancer, disease, aging, development, and cellular signaling, the constant reminders in the media to take anti-oxidant vitamins to protect against certain deleterious free radicals, and the success of the radical pair mechanism in explaining magnetic field effects in photosynthetic reaction centers. To approach the above goal, this thesis develops several methods (using perturbation theory and other techniques in the Schrodinger and Liouville formalisms) for calculating singlet-to-triplet yields in combinations of steady and oscillating fields (some of these algorithms are more versatile or efficient while others give more insight, and all serve as cross-checks on each other) and uses these tools to explore and explain a number of interesting phenomena such as yields sensitive to the magnitude and orientation of earth-strength (0.5 G) steady fields as well as the magnitude, orientation, and frequency of very weak (7 mG or less) oscillating fields. In particular, this thesis examines such effects in several coenzyme B12 systems, systems long studied by EPR (Electron Paramagnetic Resonance, the chief method for determining the spin Hamiltonians, spin relaxation rates, and other parameters needed for calculations) in which organometallic cobalt-carbon bonds are often cleaved homolytically to form radical pairs. Among the B12-dependent enzymes are ribonucleotide reductase (which converts RNA to DNA nucleotides), methyl malonyl CoA mutase

  12. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues.

    Science.gov (United States)

    Hosseini, Sayyed Mohsen; Wilson, Wouter; Ito, Keita; van Donkelaar, Corrinus C

    2014-06-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted. However, slow viscoelastic phenomena related to fluid flow or collagen viscoelasticity are initiated during these first preconditioning loading cycles and may persist during the actual data collection. When these data are subsequently used for fitting of material properties, the viscoelastic phenomena that occurred during the initial cycles are not accounted for. The aim of the present study is to explore whether the above phenomena are significant for articular cartilage, by evaluating the effect of such time-dependent phenomena by means of computational modeling. Results show that under indentation, collagen viscoelasticity dominates the time-dependent behavior. Under UC, fluid-dependent effects are more important. Interestingly, viscoelastic and poroelastic effects may act in opposite directions and may cancel each other out in a stress-strain curve. Therefore, equilibrium may be apparent in a stress-strain relationship, even though internally the tissue is not in equilibrium. Also, the time-dependent effects of viscoelasticity and poroelasticity may reinforce each other, resulting in a sustained effect that lasts longer than suggested by their individual effects. Finally, the results illustrate that data collected from a mechanical test may depend on the preconditioning protocol. In conclusion, preconditioning influences the mechanical response of articular cartilage significantly and therefore cannot be neglected when determining the mechanical properties. To determine the full viscoelastic and poroelastic properties of articular cartilage requires fitting to both preconditioning and post-preconditioned loading cycles. PMID:23864393

  13. Systems Biology - A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine

    OpenAIRE

    Soojin Lee

    2015-01-01

    Objectives: Systems biology is a novel subject in the field of life science that aims at a systems’ level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. Methods: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network a...

  14. Evidence for protonic communication at the speed of sound: An alternate mechanism for specific biological signaling

    CERN Document Server

    Fichtl, Bernhard; Schneider, Matthias F

    2015-01-01

    Local changes in pH are known to significantly alter the state and activity of proteins and in particular enzymes. pH variations induced by pulses propagating along soft interfaces (e.g. the lipid bilayer) would therefore constitute an important pillar towards a new physical mechanism of biochemical regulation and biological signaling. Here we investigate the pH-induced physical perturbation of a lipid interface and the physiochemical nature of the subsequent acoustic propagation. Pulses are stimulated by local acidification of a lipid monolayer and propagate, in analogy to sound, at velocities controlled by the two-dimensional compressibility of the interface. With transient local pH changes of 0.6 units directly observed at the interface and velocities up to 1.4 m/s this represents hitherto the fastest protonic communication observed. Furthermore simultaneously propagating mechanical and electrical changes in the lipid interface up to 8 mN/m and 100 mV are detected, exposing the thermodynamic nature of thes...

  15. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  16. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Tien, Lee W; Trimmer, Barry; Hudson, Samuel M; Kaplan, David L

    2010-10-01

    A route toward mechanically robust, rapidly actuating, and biologically functionalized polymeric actuators using macroporous soft materials is described. The materials were prepared by combining silk protein and a synthetic polymer (poly(N-isopropylacrylamide) (PNIAPPm)) to form interpenetrating network materials and macroporous structures by freeze-drying, with hundreds of micrometer diameter pores and exploiting the features of both polymers related to dynamic materials and structures. The chemically cross-linked PNIPAAm networks provided stimuli-responsive features, while the silk interpenetrating network formed by inducing protein β-sheet crystallinity in situ for physical cross-links provided material robustness, improved expansion force, and enzymatic degradability. The macroporous hybrid hydrogels showed enhanced thermal-responsive properties in comparison to pure PNIPAAm hydrogels, nonporous silk/PNIPAAm hybrid hydrogels, and previously reported macroporous PNIPAAm hydrogels. These new systems reach near equilibrium sizes in shrunken/swollen states in less than 1 min, with the structural features providing improved actuation rates and stable oscillatory properties due to the macroporous transport and the mechanically robust silk network. Confocal images of the hydrated hydrogels around the lower critical solution temperature (LCST) revealed macropores that could be used to track changes in the real time morphology upon thermal stimulus. The material system transformed from a macroporous to a nonporous structure upon enzymatic degradation. To extend the utility of the system, an affinity platform for a switchable or tunable system was developed by immobilizing biotin and avidin on the macropore surfaces.

  17. A mechanism for biologically-induced iodine emissions from sea-ice

    Science.gov (United States)

    Boxe, C.

    2015-12-01

    Ground- and satellite-based measurements reported high concentrations of iodine monoxide (IO) in coastal Antarctica. The sources of such a large iodine burden in the coastal Antarctic atmosphere remain unknown. We propose a mechanism for iodine release from sea-ice based on the premise that micro-algae are the primary source of iodine emissions in this environment. The emissions are triggered by the biological production of iodide (I-) and hypoiodous acid (HOI) from micro-algae (contained within and underneath sea-ice) and their diffusion through sea-ice brine channels, to accumulate in a thin brine layer (BL) on the surface of sea-ice. Prior to reaching the BL, the diffusion timescale of iodine within sea-ice is depth-dependent. The BL is also a vital component of the proposed mechanism as it enhances the chemical kinetics of iodine-related reactions, which allows for the efficient release of iodine to the polar boundary layer. We suggest iodine is released to the atmosphere via 3 possible pathways: (1) emitted from the BL and then transported throughout snow atop sea-ice, to be released to the atmosphere; (2) released directly from the BL to the atmosphere in regions of sea-ice that are not covered with snowpack; or (3) emitted to the atmosphere directly through fractures in the sea-ice pack. To investigate the proposed biology-ice-atmosphere coupling at coastal Antarctica we use a multiphase model that incorporates the transport of iodine species, via diffusion, at variable depths, within brine channels of sea-ice. Model simulations were conducted to interpret observations of elevated springtime IO in the coastal Antarctic, around the Weddell Sea. While a lack of experimental and observational data adds uncertainty to the model predictions, nevertheless the results show that the levels of inorganic iodine (i.e., I2, IBr, ICl) released from sea-ice through this mechanism could account for the observed IO concentrations during this timeframe. The model results

  18. Beller Lectureship Talk: Active response of biological cells to mechanical stress

    Science.gov (United States)

    Safran, Samuel

    2009-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.

  19. Exploring the MACH Model's Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms.

    Science.gov (United States)

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students' written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students' metacognition about their understanding of biological mechanisms. PMID:27252295

  20. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earth’s crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complex—heterogeneous assemblages of mineral grains, pores, and fractures—and visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of

  1. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  2. Mechanical-biological waste treatment and the associated occupational hygiene in Finland

    International Nuclear Information System (INIS)

    A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxins and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment

  3. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Directory of Open Access Journals (Sweden)

    Steven C Bagley

    2016-04-01

    Full Text Available Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford, and compared to a large database of published disease-associated genetic variants (VARIMED; data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  4. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Science.gov (United States)

    Bagley, Steven C; Sirota, Marina; Chen, Richard; Butte, Atul J; Altman, Russ B

    2016-04-01

    Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford), and compared to a large database of published disease-associated genetic variants (VARIMED); data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups. PMID:27115429

  5. Epigenetic Mechanisms Shape the Biological Response to Trauma and Risk for PTSD: A Critical Review

    Directory of Open Access Journals (Sweden)

    Morgan Heinzelmann

    2013-01-01

    Full Text Available Posttraumatic stress disorder (PTSD develops in approximately one-quarter of trauma-exposed individuals, leading us and others to question the mechanisms underlying this heterogeneous response to trauma. We suggest that the reasons for the heterogeneity relate to a complex interaction between genes and the environment, shaping each individual’s recovery trajectory based on both historical and trauma-specific variables. Epigenetic modifications provide a unique opportunity to elucidate how preexisting risk factors may contribute to PTSD risk through changes in the methylation of DNA. Preexisting risks for PTSD, including depression, stress, and trauma, result in differential DNA methylation of endocrine genes, which may then result in a different biological responses to trauma and subsequently a greater risk for PTSD onset. Although these relationships are complex and currently inadequately described, we provide a critical review of recent studies to examine how differences in genetic and proteomic biomarkers shape an individual’s vulnerability to PTSD development, thereby contributing to a heterogeneous response to trauma.

  6. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions.

    Science.gov (United States)

    Cheng, Guyue; Sa, Wei; Cao, Chen; Guo, Liangliang; Hao, Haihong; Liu, Zhenli; Wang, Xu; Yuan, Zonghui

    2016-01-01

    Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas, and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.

  7. Quinoxaline 1, 4-di-N-oxides: Biological activities and mechanisms of actions

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-03-01

    Full Text Available Quinoxaline 1, 4-di-N-oxides (QdNOs have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.

  8. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis.

    Science.gov (United States)

    Borow, Kenneth M; Nelson, John R; Mason, R Preston

    2015-09-01

    Residual cardiovascular (CV) risk remains in dyslipidemic patients despite intensive statin therapy, underscoring the need for additional intervention. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, is incorporated into membrane phospholipids and atherosclerotic plaques and exerts beneficial effects on the pathophysiologic cascade from onset of plaque formation through rupture. Specific salutary actions have been reported relating to endothelial function, oxidative stress, foam cell formation, inflammation, plaque formation/progression, platelet aggregation, thrombus formation, and plaque rupture. EPA also improves atherogenic dyslipidemia characterized by reduction of triglycerides without raising low-density lipoprotein cholesterol. Other beneficial effects of EPA include vasodilation, resulting in blood pressure reductions, as well as improved membrane fluidity. EPA's effects are at least additive to those of statins when given as adjunctive therapy. In this review, we present data supporting the biologic plausibility of EPA as an anti-atherosclerotic agent with potential clinical benefit for prevention of CV events, as well as its cellular effects and molecular mechanisms of action. REDUCE-IT is an ongoing, randomized, controlled study evaluating whether the high-purity ethyl ester of EPA (icosapent ethyl) at 4 g/day combined with statin therapy is superior to statin therapy alone for reducing CV events in high-risk patients with mixed dyslipidemia. The results from this study are expected to clarify the role of EPA as adjunctive therapy to a statin for reduction of residual CV risk.

  9. Physical Activity and Gastrointestinal Cancers: Primary and Tertiary Preventive Effects and Possible Biological Mechanisms

    Directory of Open Access Journals (Sweden)

    Karen Steindorf

    2015-07-01

    Full Text Available Gastrointestinal cancers account for 37% of all cancer deaths worldwide, underlining the need to further investigate modifiable factors for gastrointestinal cancer risk and prognosis. This review summarizes the corresponding evidence for physical activity (PA, including, briefly, possible biological mechanisms. Despite high public health relevance, there is still a scarcity of studies, especially for tertiary prevention. Besides the convincing evidence of beneficial effects of PA on colon cancer risk, clear risk reduction for gastroesophageal cancer was identified, as well as weak indications for pancreatic cancer. Inverse associations were observed for liver cancer, yet based on few studies. Only for rectal cancer, PA appeared to be not associated with cancer risk. With regard to cancer-specific mortality of the general population, published data were rare but indicated suggestive evidence of protective effects for colon and liver cancer, and to a lesser extent for rectal and gastroesophageal cancer. Studies in cancer patients on cancer-specific and total mortality were published for colorectal cancer only, providing good evidence of inverse associations with post-diagnosis PA. Overall, evidence of associations of PA with gastrointestinal cancer risk and progression is promising but still limited. However, the already available knowledge further underlines the importance of PA to combat cancer.

  10. Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae). Floral variation: a consequence of natural hybridization?

    Science.gov (United States)

    Pansarin, E R; Amaral, M C E

    2008-03-01

    The phenology, flower morphology, pollination mechanism and reproductive biology of Epidendrum secundum were studied in a semi-deciduous forest at the Serra do Japi (SJ), and in the Atlantic rain forest of Picinguaba, both natural reserves in the State of São Paulo, southeastern Brazil. E. secundum flowers all year round, with a flowering peak between September and January. This species is either a lithophytic or terrestrial herb in the SJ, whereas, in Picinguaba, it grows mainly in disturbed areas along roadsides. E. secundum is pollinated by several species of diurnal Lepidoptera at both study sites. In Picinguaba, where E. secundum is sympatric with E. fulgens and both share the same pollinators, pollen transference between these two species was recorded. E. secundum is self-compatible but pollinator-dependent. It is inter-compatible with E. fulgens, producing fertile seeds. In contrast to the population of the SJ, in the Picinguaba region, floral morphology is quite variable among plants and some individuals present flowers with characteristics in-between both sympatric species, suggesting that natural hybridization occasionally occurs. The anthropogenic perturbation is probably the cause of the occurrence of E. secundum in the Picinguaba region, enabling its contact with E. fulgens. PMID:18304195

  11. Modelling of biogas extraction at an Italian landfill accepting mechanically and biologically treated municipal solid waste.

    Science.gov (United States)

    Calabrò, Paolo S; Orsi, Sirio; Gentili, Emiliano; Carlo, Meoni

    2011-12-01

    This paper presents the results of the modelling of the biogas extraction in a full-scale Italian landfill by the USEPA LandGEM model and the Andreottola-Cossu approach. The landfill chosen for this research ('Il Fossetto' plant, Monsummano Terme, Italy) had accepted mixed municipal raw waste for about 15 years. In the year 2003 a mechanical biological treatment (MBT) was implemented and starting from the end of the year 2006, the recirculation in the landfill of the concentrated leachate coming from the internal membrane leachate treatment plant was put into practice. The USEPA LandGEM model and the Andreottola-Cossu approach were chosen since they require only input data routinely acquired during landfill management (waste amount and composition) and allow a simplified calibration, therefore they are potentially useful for practical purposes such as landfill gas management. The results given by the models are compared with measured data and analysed in order to verify the impact of MBT on biogas production; moreover, the possible effects of the recirculation of the concentrated leachate are discussed. The results clearly show how both models can adequately fit measured data even after MBT implementation. Model performance was significantly reduced for the period after the beginning of recirculation of concentrated leachate when the probable inhibition of methane production, due to the competition between methanogens and sulfate-reducing bacteria, significantly influenced the biogas production and composition. PMID:21930528

  12. Modelling the behaviour of mechanical biological treatment outputs in landfills using the GasSim model.

    Science.gov (United States)

    Donovan, S M; Bateson, T; Gronow, J R; Voulvoulis, N

    2010-03-15

    The pretreatment of the biodegradable components of municipal solid waste (MSW) has been suggested as a method of reducing landfill gas emissions. Mechanical biological treatment (MBT) is the technology being developed to provide this reduction in biodegradability, either as an alternative to source segregated collection or for dealing with residual MSW which still contains high levels of biodegradable waste. The compost like outputs (CLOs) from MBT plants can be applied to land as a soil conditioner; treated to produce a solid recovered fuel (SRF) or landfilled. In this study the impact that landfilling of these CLOs will have on gaseous emissions is investigated. It is important that the gas production behaviour of landfilled waste is well understood, especially in European member states where the mitigation of gaseous emissions is a legal requirement. Results of an experiment carried out to characterise the biodegradable components of pretreated biowastes have been used with the GasSim model to predict the long term emissions behaviour of landfills accepting these wastes, in varying quantities. The landfill directive also enforces the mitigation of potential methane emissions from landfills, and the ability of landfill operators to capture gaseous emissions from low emitting landfills of the future is discussed, as well as new techniques that could be used for the mitigation of methane generation. PMID:20092874

  13. Diagnosis and optimization of the composting process in full-scale mechanical-biological treatment plants.

    Science.gov (United States)

    Baptista, Marco; Antunes, Fernando; Silveira, Ana

    2011-06-01

    The aims of this study were (i) to evaluate the performance of the composting process operation in full-scale mechanical-biological treatment (MBT) plants, (ii) to estimate their performance under optimized conditions and (iii) to propose specific guidelines on how to improve the efficiency of the composting process. To fulfil these objectives, a first-order kinetic model was used. This model was calibrated with experimental data to account for the limitations imposed by less-than-optimal environmental conditions during operation of the composting process. Data treatment and simulation showed that two of the three MBT plants studied were poorly operated. Optimization of process management with measures of simple practical implementation was estimated to be highly significant in these poorly managed plants, increasing performance by 103% in MBT1 and 53% in MBT2. In MBT3, the potential for optimization was estimated at 17%. Similar results were obtained from the analysis of other published data, suggesting that poor process management in MBT composting is widespread. These findings highlight the importance of having programmes for monitoring and optimizing process performance in full-scale composting systems. The procedures developed here are simple to apply and can routinely be implemented in full-scale plants. PMID:21216924

  14. Composting kinetics in full-scale mechanical-biological treatment plants.

    Science.gov (United States)

    Baptista, Marco; Antunes, Fernando; Gonçalves, Manuel Souteiro; Morvan, Bernard; Silveira, Ana

    2010-10-01

    This study focuses on the investigation of the kinetics of municipal solid waste composting in three full-scale mechanical-biological treatment (MBT) plants. The aims were to test a kinetic model based on volatile solids (VS) content change for describing the composting process in MBT plants, and to identify the model parameters that affected the estimation of the reaction rate constant most. To achieve this, VS content and several environmental conditions, namely temperature, moisture content, oxygen concentration and total bulk density were monitored throughout the composting process. Experimental data was fitted with a first-order kinetic model, and a rate constant (k) characteristic of composting under optimum environmental conditions was obtained. The kinetic model satisfactorily described the experimental data for the three MBT plants. k values ranged from 0.043+/-0.002 d(-1) to 0.082+/-0.011 d(-1). Sensitivity analysis showed that the model parameters that most affected the estimation of k were the initial biodegradable volatile solids content, the maximum temperature for biodegradation and the optimum moisture content. In conclusion, we show for the first time that full-scale MBT plants can be successfully modelled with a composting kinetic model. PMID:20493677

  15. Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.

    Science.gov (United States)

    Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B

    2015-01-01

    Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions.

  16. A Possible Mechanism of Biological Memories in terms of Quantum Fluids

    CERN Document Server

    Kobayashi, T

    2003-01-01

    A mechanism of memories, especially biological memories, is studied in terms of quantum fluids. Two-dimensional flows in central potentials $V_a(rho)=-a^2g_arho^{2(a-1)}$ ($anot=0$ and $rho=sqrt{x^2+y^2}$) have zero-energy eigenstates that degenerate infinitely for all $a$. It is shown that stable standing waves constructed from the zero-energy flows are confined in various types of polygons which can be the minimum units of memory systems. Vortex patterns awoken in the units by stimuli correspond to the memories of the stimuli. This memory system is not a system for preserving memories as usual but that for awaking memories. The system has interesting properties; (i) the absolute economy as for the energy consumption, (ii) the infinite variety for a huge number of memories, (iii) the perfect recovery of the system from any disturbances by stimuli, and (iv) the large flexibility in the construction of the system. A process for thinking is also proposed in terms of this memory system.

  17. Molecular Mechanisms Used by Tumors to Escape Immune Recognition: Immunogenetherapy and the Cell Biology of Major Histocompatibility Complex Class I

    OpenAIRE

    Restifo, Nicholas P; Kawakami, Yutaka; Marincola, Franco; Shamamian, Peter; Taggarse, Akash; ESQUIVEL, FERNANDO; Rosenberg, Steven A.

    1993-01-01

    In this article, we explore the hypothesis that tumor cells can escape recognition by CD8+ T cells via deficiencies in antigen processing and presentation. Aspects of the molecular and cellular biology of major histocompatibility complex class I are reviewed. Evidence for histology-specific molecular mechanisms in the antigen-processing and -presentation deficiencies observed in some human and murine tumors is presented. Mechanisms identified include down-regulation of antigen processing, los...

  18. Relationships of the internodal distance of biological tissue with its sound velocity and attenuation at high frequency in doublet mechanics

    Institute of Scientific and Technical Information of China (English)

    程凯旋; 吴融融; 刘晓宙; 刘杰惠; 龚秀芬; 吴君汝

    2015-01-01

    In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (>10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases.

  19. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint...

  20. Formation of the vertical heterogeneity in the Lake Shira ecosystem: the biological mechanisms and the mathematical model

    NARCIS (Netherlands)

    Degermendzhy, A.G.; Belolipetsky, V.M.; Zotina, T.A.; Gulati, R.D.

    2002-01-01

    Data on the seasonal changes in vertical heterogeneity of the physical-chemical and biological parameters of the thermally stratified Shira Lake ecosystem (Khakasia, Siberia) in 1996–2000 have been analyzed. The interaction mechanisms involving: (1) The plankton populations in aerobic and anaerobic

  1. Space radiation-induced bystander effect: kinetics of biologic responses, mechanisms, and significance of secondary radiations

    International Nuclear Information System (INIS)

    Widespread evidence indicates that exposure of cell cultures to a particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) 151 keV/μm), 600 MeV/u silicon ions (LET 50 keV/μm) or 290 MeV/u carbon ions (LET 13 keV/μm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u a particles (LET 109 keV/μm). Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only 1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in

  2. The Biological “Invariant of Motion” vs. “Struggle for Life”? On the Possible Quantum Mechanical Origin and Evolution of Semiotic Controls in Biology

    Directory of Open Access Journals (Sweden)

    András Balázs

    2013-10-01

    Full Text Available A novel, alternative and deeper view to the “selfish gene” paradigm is presented, describable as the “selfish code” frame. Introducing it, we put forth a quantum mechanical algorithm as a new description of the intracellular protein synthetizing machinery. The successive steps of the algorithm are, tentatively, semiotic constraints of the well-known quantum mechanical molecular “internal measurement” type. It is proposed that this molecular algorithm mediates a quantum mechanical time reversed dynamics with a primordial special version of this latter molecular measurement type (“mixed measurement” as its origin. It is furthermore suggested that this intracellular regressive algorithmical dynamics is a component of biological “motion”, the other, strongly coupled component being the macroscopic phenotypic motion. The biological “invariant of motion” of this hierarchically coupled overall generalized dynamics is suggested to be the evolutionally converged invariant genetic code vocabulary. It forms, possibly, the underlying internal “driving force” of evolution, as being “struggle for life”.

  3. The permeability and transport mechanism of graphene quantum dots (GQDs) across the biological barrier

    Science.gov (United States)

    Wang, Xin-Yi; Lei, Rong; Huang, Hong-Duang; Wang, Na; Yuan, Lan; Xiao, Ru-Yue; Bai, Li-Dan; Li, Xue; Li, Li-Mei; Yang, Xiao-Da

    2015-01-01

    As an emerging nanomaterial, graphene quantum dots (GQDs) have shown enormous potential in theranostic applications. However, many aspects of the biological properties of GQDs require further clarification. In the present work, we prepared two sizes of GQDs and for the first time investigated their membrane permeabilities, one of the key factors of all biomedical applications, and transport mechanisms on a Madin Darby Canine Kidney (MDCK) cell monolayer. The experimental results revealed that under ~300 mg L-1, GQDs were innoxious to MDCK and did not affect the morphology and integrity of the cell monolayer. The Papp values were determined to be 1-3 × 10-6 cm s-1 for the 12 nm GQDs and 0.5-1.5 × 10-5 cm s-1 for the 3 nm GQDs, indicating that the 3 nm GQDs are well-transported species while the 12 nm GQDs have a moderate membrane permeability. The transport and uptake of GQDs by MDCK cells were both time and concentration-dependent. Moreover, the incubation of cells with GQDs enhanced the formation of lipid rafts, while inhibition of lipid rafts with methyl-β-cyclodextrin almost eliminated the membrane transport of GQDs. Overall, the experimental results suggested that GQDs cross the MDCK cell monolayer mainly through a lipid raft-mediated transcytosis. The present work has indicated that GQDs are a novel, low-toxic, highly-efficient general carrier for drugs and/or diagnostic agents in biomedical applications.As an emerging nanomaterial, graphene quantum dots (GQDs) have shown enormous potential in theranostic applications. However, many aspects of the biological properties of GQDs require further clarification. In the present work, we prepared two sizes of GQDs and for the first time investigated their membrane permeabilities, one of the key factors of all biomedical applications, and transport mechanisms on a Madin Darby Canine Kidney (MDCK) cell monolayer. The experimental results revealed that under ~300 mg L-1, GQDs were innoxious to MDCK and did not affect

  4. Clinical indications and biological mechanisms of splenic irradiation in autoimmune diseases

    International Nuclear Information System (INIS)

    Background: Splenic irradiation (SI) is a fairly unknown treatment modality in autoimmune disorders like autoimmune thrombocytopenia (AIT) or autoimmune hemolytic anemia (AIHA), which may provide an effective, low toxic and cost-effective treatment for selected patients. Patients, Materials and Methods: This article reviews the limited experiences on splenic irradiation in autoimmune thrombocytopenia by analyzing the current studies including 71 patients and some preliminary reports on splenic irradiation in autoimmune hemolytic anemia. Results: In autoimmune thrombocytopenia between 40 and 90% of all patients responded, but most of them relapsed within 4 to 6 months after splenic irradiation. Between 10 and 20% of all patients had a sustained response. The efficacy of splenic irradiation in HIV-associated cases of thrombocytopenia is probably lower than in other forms of autoimmune thrombocytopenia, but especially in this group immunosuppressive drug treatment of autoimmune thrombocytopenia exposes some problems. In autoimmune hemolytic anemia there are some case reports about efficacy of splenic irradiation. Toxicity of splenic irradiation in both diseases was very moderate. Conclusions: For HIV patients, for elderly patients or patients at high risk for complications following splenectomy splenic irradiation might be a treatment option. Splenic irradiation as preoperative treatment in patients not responding to or not suitable for immunosuppressive drugs prior to splenectomy may be a promising new application of splenic irradiation to reduce adverse effects of splenectomy in thrombocytopenic patients. A further analysis of the biological mechanisms underlying splenic irradiation may help to improve patient selection, to optimize dose concepts and treatment schedules and will improve understanding of radiotherapy as an immunomodulatory treatment modality. (orig.)

  5. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW).

    Science.gov (United States)

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin; Anderson, Bruce; Cheng, Shuiping

    2016-05-15

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg · L(-1)). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (ΦPS II) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. PMID:26897579

  6. Induced Resistance as a Mechanism of Biological Control by Lysobacter enzymogenes Strain C3.

    Science.gov (United States)

    Kilic-Ekici, Ozlem; Yuen, Gary Y

    2003-09-01

    ABSTRACT Induced resistance was found to be a mechanism for biological control of leaf spot, caused by Bipolaris sorokiniana, in tall fescue (Festuca arundinacea) using the bacterium Lysobacter enzymogenes strain C3. Resistance elicited by C3 suppressed germination of B. sorokiniana conidia on the phylloplane in addition to reducing the severity of leaf spot. The pathogen-inhibitory effect could be separated from antibiosis by using heat-inactivated cells of C3 that retained no antifungal activity. Application of live or heat-killed cells to tall fescue leaves resulted only in localized resistance confined to the treated leaf, whereas treatment of roots resulted in systemic resistance expressed in the foliage. The effects of foliar and root applications of C3 were long lasting, as evidenced by suppression of conidial germination and leaf spot development even when pathogen inoculation was delayed 15 days after bacterial treatment. When C3 population levels and germination of pathogen conidia was examined on leaf segments, germination percentage was reduced on all segments from C3-treated leaves compared with segments from non-treated leaves, but no dose-response relationship typical of antagonism was found. Induced resistance by C3 was not host or pathogen specific; foliar application of heat-killed C3 cells controlled B. sorokiniana on wheat and also was effective in reducing the severity of brown patch, caused by Rhizoctonia solani, on tall fescue. Treatments of tall fescue foliage or roots with C3 resulted in significantly elevated peroxidase activity compared with the control.

  7. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste.

    Science.gov (United States)

    Clemens, J; Cuhls, C

    2003-06-01

    The mechanical and biological waste treatment (MBT) is an increasingly important technology for the treatment of municipal solid waste (MSW) before landfilling. This process includes composting of the material with intensive aeration in order to minimize the organic fraction that may induce methane and leachate emissions after landfilling. The exhaust air is treated by biofilters to remove odorous and volatile organic compounds. The emission of direct and indirect greenhouse gases, namely methane (CH4), carbon dioxide (CO2), ammonia (NH3), nitric (NO) and nitrous oxide (N2O) was studied in four existing treatment plants. All gases except NO were emitted from the composting material. The emission factors were 12 to 185 kg ton(-1) substrate for CO2, 6-12 x 10(3) g ton(-1) substrate for CH4, 1.44 to 378 g ton(-1) substrate for N2O and 18-1150 g ton(-1) for NH3. In general, emission factors increased with increasing treatment time. The biofilters had no net effect on CH4, but removed 13-89% of the NH3. For CO2 the biofilters were a small, for N2O a major and for NO the exclusive source. Approximately 26% of the NH3-N that was removed in the biofilter was transformed into N2O when NH3 was the exclusive nitrogen source. Assuming that all municipal waste was treated by MBT, the emissions would account for 0.3 to 5% of the N2O and for 0.1 to 3% of the CH4 emissions in Germany, respectively. Optimising aeration and removing NH3 before the exhaust gas enters the biofilter could lead to reduced greenhouse gas emissions. PMID:12868530

  8. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore.

    Science.gov (United States)

    Sivakumar Babu, G L; Lakshmikanthan, P; Santhosh, L G

    2015-05-01

    Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3kN/m(3) to 10.3kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. PMID:25746176

  9. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk.

    Science.gov (United States)

    Costa, Pedro M; Fadeel, Bengt

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global 'omics' approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials.

  10. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk.

    Science.gov (United States)

    Costa, Pedro M; Fadeel, Bengt

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global 'omics' approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. PMID:26721310

  11. Photobiomodulation on senescence

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.

  12. Biological mechanisms driving the seasonal changes in the internal loading of phosphorus in shallow lakes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment,leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was

  13. Implementation of mechanism of action biology-driven early drug development for children with cancer.

    Science.gov (United States)

    Pearson, Andrew D J; Herold, Ralf; Rousseau, Raphaël; Copland, Chris; Bradley-Garelik, Brigid; Binner, Debbie; Capdeville, Renaud; Caron, Hubert; Carleer, Jacqueline; Chesler, Louis; Geoerger, Birgit; Kearns, Pamela; Marshall, Lynley V; Pfister, Stefan M; Schleiermacher, Gudrun; Skolnik, Jeffrey; Spadoni, Cesare; Sterba, Jaroslav; van den Berg, Hendrick; Uttenreuther-Fischer, Martina; Witt, Olaf; Norga, Koen; Vassal, Gilles

    2016-07-01

    An urgent need remains for new paediatric oncology drugs to cure children who die from cancer and to reduce drug-related sequelae in survivors. In 2007, the European Paediatric Regulation came into law requiring industry to create paediatric drug (all types of medicinal products) development programmes alongside those for adults. Unfortunately, paediatric drug development is still largely centred on adult conditions and not a mechanism of action (MoA)-based model, even though this would be more logical for childhood tumours as these have much fewer non-synonymous coding mutations than adult malignancies. Recent large-scale sequencing by International Genome Consortium and Paediatric Cancer Genome Project has further shown that the genetic and epigenetic repertoire of driver mutations in specific childhood malignancies differs from more common adult-type malignancies. To bring about much needed change, a Paediatric Platform, ACCELERATE, was proposed in 2013 by the Cancer Drug Development Forum, Innovative Therapies for Children with Cancer, the European Network for Cancer Research in Children and Adolescents and the European Society for Paediatric Oncology. The Platform, comprising multiple stakeholders in paediatric oncology, has three working groups, one with responsibility for promoting and developing high-quality MoA-informed paediatric drug development programmes, including specific measures for adolescents. Key is the establishment of a freely accessible aggregated database of paediatric biological tumour drug targets to be aligned with an aggregated pipeline of drugs. This will enable prioritisation and conduct of early phase clinical paediatric trials to evaluate these drugs against promising therapeutic targets and to generate clinical paediatric efficacy and safety data in an accelerated time frame. Through this work, the Platform seeks to ensure that potentially effective drugs, where the MoA is known and thought to be relevant to paediatric

  14. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    International Nuclear Information System (INIS)

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJprimary/100 MJinputwaste. • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinputwaste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system

  15. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  16. A contribution to the understanding of micro-pollutant sorption mechanisms in wastewater biological processes: case of the tributyltin.

    Science.gov (United States)

    Bancon-Montigny, Chrystelle; Delalonde, Michèle; Rondet, Eric; Vachoud, Laurent; Grosmaire, Lidwine; Delarbre, Jean-Louis; Wisniewski, Christelle

    2012-01-01

    Micro-pollutant fluxes distribution throughout the physical separation and biological units of wastewater treatment plants (WWTPs) are very dependent ofsorption phenomena. The understanding and the control of the sorption stage is thus essential for the optimization of micro-pollutant removal in WWTPs, and particularly in biological treatments where these mechanisms influence the bioavailability towards micro-organisms. If the influence of the micro-pollutant physicochemical characteristics (e.g. Kow, pKa) on their ability to sorb on biological media (i.e. sludge) has been demonstrated, it appears that some other parameters, like the biosorbent characteristics, have to been taken into account. The aim of this study is thus to correlate the capacities of sorption of an environmentally relevant substance (tributyltin), with a thorough characterization of different types of sludge. The characterization of three biological media (raw, sonicated and flocculated activated sludges) is proposed according to various characterization parameters related to biochemical composition, aggregate size, rheological behaviour etc. The results show first that, whatever the sludge characteristics may be, the sorption mechanisms are very rapid and that an equilibrium state is reached after a few minutes. The influence of the sludge characteristics, notably the floc size and the chemical oxygen demand partition between solid and colloidal fraction, on sorption efficiency is demonstrated. A Langmuir modelling allows giving the maximum sorption capacity, as well as the binding energy for the three studied sludges, according to their physicochemical characteristics. PMID:23393963

  17. Radiation-induced cardiac damage in early left breast cancer patients: Risk factors, biological mechanisms, radiobiology, and dosimetric constraints

    International Nuclear Information System (INIS)

    Today there is general awareness of the potential damage to the heart in left-sided (more than in right-sided) breast cancer radiotherapy (RT). Historical changes in tumor and heart doses are presented here along with the impact of different RT techniques and volumes. Individual and pharmacological risk factors are also examined with respect to radiation damage. The biological mechanisms of harm are only partially understood, such as the radiobiology of heart damage due to the presence of various radiosensitive structures and their topographic heterogeneity. Furthermore, individual variability may expose patients to higher or lower risks of late cardiac damage or death. Damage mechanisms and radiobiological characteristics in heart irradiation are presented in relation to dosimetric and biological parameters.

  18. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  19. Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes

    OpenAIRE

    Chou Jeff W; Bushel Pierre R

    2009-01-01

    Abstract Background Hepatotoxicity is a form of liver injury caused by exposure to stressors. Genomic-based approaches have been used to detect changes in transcription in response to hepatotoxicants. However, there are no straightforward ways of using co-expressed genes anchored to a phenotype or constrained by the experimental design for discerning mechanisms of a biological response. Results Through the analysis of a gene expression dataset containing 318 liver samples from rats exposed to...

  20. Modelling of the kinetics of municipal solid waste composting in full-scale mechanical-biological treatment plants

    OpenAIRE

    Baptista, Marco Henrique de Carvalho

    2009-01-01

    This work focused on the study of the kinetics of municipal solid waste composting in four full-scale mechanical-biological treatment (MBT) plants. We investigated how well the existent plants in Portugal were being operated, and estimated their performance at optimum operation. To achieve this, volatile solids (VS) content and several environmental conditions, namely temperature (T), moisture content (MC), oxygen concentration ([O2]), and free air space (FAS), were monitored throughout th...

  1. Production and quality assurance of solid recovered fuels using Mechanical- Biological Treatment (MBT) of waste: a comprehensive assessment

    OpenAIRE

    Velis, C.A.; Longhurst, Philip J.; Drew, Gillian H; Smith, Richard; Pollard, Simon J. T.

    2010-01-01

    The move from disposal-led waste management to resource management demands an ability to map flows of the properties of waste. Here, we provide a comprehensive review of how mechanical-biological treatment (MBT) plants, and the unit processes that comprise them, perform in relation to management of material flows, while transforming inputs into output fractions. Focus is placed on the properties relating to the quality of MBT-derived fuels. Quality management initiatives for...

  2. The Adverse Effects of Smoking on Health Outcomes in Bipolar Disorder: A Review and Synthesis of Biological Mechanisms.

    Science.gov (United States)

    Slyepchenko, A; Brunoni, A R; McIntyre, R S; Quevedo, J; Carvalho, A F

    2016-01-01

    Several biological systems are implicated in the neuroprogression of bipolar disorder including but not limited to cytokine levels, oxidative stress markers, monoamine levels, tryptophan catabolite and glutamate-mediated excitotoxicity, microglial activation as well as structural and functional changes. The high rate of smoking behaviour in individuals with bipolar disorder provides the impetus for exploring shared and discrete pathogenetic mechanisms. In addition to contributing to increased mortality, smoking activates several neurobiological effector systems implicated in the progression of bipolar disorder. Here, a narrative review provides evidence and putative mechanisms of comorbid effects of BD, cigarette use, and nicotine dependence, and discusses the clinical implications of these interactions. PMID:26812916

  3. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues.

  4. Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste.

    Science.gov (United States)

    Bayard, R; Morais, J de Araújo; Ducom, G; Achour, F; Rouez, M; Gourdon, R

    2010-03-15

    An assessment of the French municipal solid waste (MSW) mechanical-biological treatment (MBT) unit of Mende was performed in terms of mass reduction, biogas emissions reduction and biostability of the biologically treated waste. The MBT unit consists of mechanical sorting operations, an aerobic rotating bioreactor, forced-aeration process in open-air tunnels (stabilization), ripening platforms and a sanitary landfill site for waste disposal in separated cells. On the overall plant, results showed a dry matter reduction of 18.9% and an oxidative organic matter reduction of 39.0%. A 46.2% biogas production decrease could also be observed. Concerning the biotreatment steps, high reductions were observed: 88.1% decrease of biogas potential and 57.7% decrease of oxidative organic matter content. Nevertheless, the usually considered stabilization indices (biogas potential, respirometric index) remained higher than recommended by the German or Austrian regulation for landfilling. Mass balance performed on each step of the treatment line showed that several stages needed improvement (especially mechanical sorting operations) as several waste fractions containing potentially biodegradable matter were landfilled with very few or no biological treatment. PMID:19913357

  5. Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Bayard, R., E-mail: remy.bayard@insa-lyon.fr [Universite de Lyon, INSA-Lyon, Laboratoire de Genie Civil et d' Ingenierie Environnementale LGCIE, 20 avenue Albert Einstein, F-69621 Villeurbanne (France); Araujo Morais, J. de; Ducom, G.; Achour, F.; Rouez, M.; Gourdon, R. [Universite de Lyon, INSA-Lyon, Laboratoire de Genie Civil et d' Ingenierie Environnementale LGCIE, 20 avenue Albert Einstein, F-69621 Villeurbanne (France)

    2010-03-15

    An assessment of the French municipal solid waste (MSW) mechanical-biological treatment (MBT) unit of Mende was performed in terms of mass reduction, biogas emissions reduction and biostability of the biologically treated waste. The MBT unit consists of mechanical sorting operations, an aerobic rotating bioreactor, forced-aeration process in open-air tunnels (stabilization), ripening platforms and a sanitary landfill site for waste disposal in separated cells. On the overall plant, results showed a dry matter reduction of 18.9% and an oxidative organic matter reduction of 39.0%. A 46.2% biogas production decrease could also be observed. Concerning the biotreatment steps, high reductions were observed: 88.1% decrease of biogas potential and 57.7% decrease of oxidative organic matter content. Nevertheless, the usually considered stabilization indices (biogas potential, respirometric index) remained higher than recommended by the German or Austrian regulation for landfilling. Mass balance performed on each step of the treatment line showed that several stages needed improvement (especially mechanical sorting operations) as several waste fractions containing potentially biodegradable matter were landfilled with very few or no biological treatment.

  6. Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste

    International Nuclear Information System (INIS)

    An assessment of the French municipal solid waste (MSW) mechanical-biological treatment (MBT) unit of Mende was performed in terms of mass reduction, biogas emissions reduction and biostability of the biologically treated waste. The MBT unit consists of mechanical sorting operations, an aerobic rotating bioreactor, forced-aeration process in open-air tunnels (stabilization), ripening platforms and a sanitary landfill site for waste disposal in separated cells. On the overall plant, results showed a dry matter reduction of 18.9% and an oxidative organic matter reduction of 39.0%. A 46.2% biogas production decrease could also be observed. Concerning the biotreatment steps, high reductions were observed: 88.1% decrease of biogas potential and 57.7% decrease of oxidative organic matter content. Nevertheless, the usually considered stabilization indices (biogas potential, respirometric index) remained higher than recommended by the German or Austrian regulation for landfilling. Mass balance performed on each step of the treatment line showed that several stages needed improvement (especially mechanical sorting operations) as several waste fractions containing potentially biodegradable matter were landfilled with very few or no biological treatment.

  7. Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill.

    Science.gov (United States)

    Salati, Silvia; Scaglia, Barbara; di Gregorio, Alessandra; Carrera, Alberto; Adani, Fabrizio

    2013-08-01

    The aim of this paper was to study the evolution of DOM during 1 year of observation in simulated landfill, of aerobically treated vs. untreated organic fraction of MSW. Results obtained indicated that aerobic treatment of organic fraction of MSW permitted getting good biological stability so that, successive incubation under anaerobic condition in landfill allowed biological process to continue getting a strong reduction of soluble organic matter (DOM) that showed, also, an aromatic character. Incubation of untreated waste gave similar trend, but in this case DOM decreasing was only apparent as inhibition of biological process in landfill did not allow replacing degraded/leached DOM with new material coming from hydrolysis of fresh OM. PMID:23743423

  8. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  9. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation.

    Science.gov (United States)

    Sharma, Deepika; Kanneganti, Thirumala-Devi

    2016-06-20

    Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome.

  10. Clinical indications and biological mechanisms of splenic irradiation in autoimmune diseases

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, M.; Becker, G. [Tuebingen Univ. (Germany). Abt. fuer Strahlenonkologie; Einsele, H.; Bamberg, M. [Tuebingen Univ. (Germany). Abt. fuer Innere Medizin 2

    2001-02-01

    Background: Splenic irradiation (SI) is a fairly unknown treatment modality in autoimmune disorders like autoimmune thrombocytopenia (AIT) or autoimmune hemolytic anemia (AIHA), which may provide an effective, low toxic and cost-effective treatment for selected patients. Patients, Materials and Methods: This article reviews the limited experiences on splenic irradiation in autoimmune thrombocytopenia by analyzing the current studies including 71 patients and some preliminary reports on splenic irradiation in autoimmune hemolytic anemia. Results: In autoimmune thrombocytopenia between 40 and 90% of all patients responded, but most of them relapsed within 4 to 6 months after splenic irradiation. Between 10 and 20% of all patients had a sustained response. The efficacy of splenic irradiation in HIV-associated cases of thrombocytopenia is probably lower than in other forms of autoimmune thrombocytopenia, but especially in this group immunosuppressive drug treatment of autoimmune thrombocytopenia exposes some problems. In autoimmune hemolytic anemia there are some case reports about efficacy of splenic irradiation. Toxicity of splenic irradiation in both diseases was very moderate. Conclusions: For HIV patients, for elderly patients or patients at high risk for complications following splenectomy splenic irradiation might be a treatment option. Splenic irradiation as preoperative treatment in patients not responding to or not suitable for immunosuppressive drugs prior to splenectomy may be a promising new application of splenic irradiation to reduce adverse effects of splenectomy in thrombocytopenic patients. A further analysis of the biological mechanisms underlying splenic irradiation may help to improve patient selection, to optimize dose concepts and treatment schedules and will improve understanding of radiotherapy as an immunomodulatory treatment modality. (orig.) [German] Hintergrund: Die Bestrahlung der Milz zur Behandlung von haematologischen

  11. An Inquiry-Infused Introductory Biology Laboratory That Integrates Mendel's Pea Phenotypes with Molecular Mechanisms

    Science.gov (United States)

    Kudish, Philip; Schlag, Erin; Kaplinsky, Nicholas J.

    2015-01-01

    We developed a multi-week laboratory in which college-level introductory biology students investigate Mendel's stem length phenotype in peas. Students collect, analyze and interpret convergent evidence from molecular and physiological techniques. In weeks 1 and 2, students treat control and experimental plants with Gibberellic Acid (GA) to…

  12. Stabilization of organic matter and nitrogen immobilization during mechanical-biological treatment and landfilling of residual municipal solid waste

    International Nuclear Information System (INIS)

    Synthesis of humic substances and nitrogen immobilization during mechanical-biological treatment of waste and the behavior of biologically stabilized waste under anaerobic landfill conditions were investigated. Samples were taken from a large-scale treatment plant. Anaerobic conditions were simulated in lab scale test cells. Humic substances were analyzed photometrically and gravimetrically. The nitrogen immobilization was investigated by sequential leaching tests and by analyzing the non acid hydrolyzable nitrogen. Humic acids were mainly synthesized during the beginning of the intensive rotting phase. Later on in the process no significant changes occurred. The humic acid content rose up to 6,8 % DS org. It correlated well with the stability parameters respiration activity and accumulated gas production. In the coarse of the treatment the nitrogen load emitted during the consecutive leaching tests dropped from 50 % down to less than 20 % total nitrogen. The non acid hydrolyzable nitrogen rose from 17 up to 42 % Kjeldahl nitrogen content. Nevertheless the mechanical-biological treatment is not significantly shortening the aftercare period of a landfill concerning liquid nitrogen emissions. The reduced nitrogen emission potential is released more slowly. When reactive waste material was exposed to anaerobic conditions, humic and fulvic acids were synthesized up to the point when intensive gas production started and then were remineralized. Stabilized waste materials after treatment of various intensity behaved differently under anaerobic conditions. Steady and decreasing humic acid contents were observed. (author)

  13. Structure property relationship of biological nano composites studies by combination of in-situ synchrotron scattering and mechanical tests

    International Nuclear Information System (INIS)

    Biological materials represent hierarchical nano fibre composites with complicated morphology and architecture varying on the nm level. The mechanical response of those materials is influenced by many parameters like chemical composition and crystal structure of constituents, preferred orientation, internal morphology with specific sizes of features etc. In-situ wide-angle x-ray scattering (WAXS) combined with mechanical tests provide a unique means to evaluate structural changes in biological materials at specific stages of tensile experiments. In this way it is possible to identify distinct architectural/compositional elements responsible for specific mechanical characteristics of the biological materials. In this thesis, structure-property relationship is analyzed using in-situ WAXS in the tissues of Picea abies, coir fibre, bacterial cellulose and cellulose II based composites. The experiments were performed at the beamline ID01 of European synchrotron radiation facility in Grenoble, France. The tissues were strained in a tensile stage, while the structural changes were monitored using WAXS. Complex straining procedures were applied including cyclic straining. One of the main goals was to understand the stiffness recovery and strain hardening effects in the tissues. The results demonstrate that, in all cellulosics, the orientation of the cellulose crystallites is only the function of the external strain while the stiffness depends on the specific stage of the tensile experiment. Whenever the strain is increased, the tissues exhibit stiffness equal or larger than the initial one. The recovery of the mechanical function is attributed to the molecular mechanistic effects operating between the crystalline domains of the cellulose. (author)

  14. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri

    Directory of Open Access Journals (Sweden)

    Hiroshi Tamura

    2009-04-01

    Full Text Available Chitosan with a molecular weight (MW of 104 Da and 13% degree of acetylation (DA was extracted from the mycelia of the fungus Gongronella butleri USDB 0201 grown in solid substrate fermentation and used to prepare scaffolds by the freeze-drying method. The mechanical and biological properties of the fungal chitosan scaffolds were evaluated and compared with those of scaffolds prepared using chitosans obtained from shrimp and crab shells and squid bone plates (MW 105-106 Da and DA 10-20%. Under scanning electron microscopy, it was observed that all scaffolds had average pore sizes of approximately 60-90 mm in diameter. Elongated pores were observed in shrimp chitosan scaffolds and polygonal pores were found in crab, squid and fungal chitosan scaffolds. The physico-chemical properties of the chitosans had an effect on the formation of pores in the scaffolds, that consequently influenced the mechanical and biological properties of the scaffolds. Fungal chitosan scaffolds showed excellent mechanical, water absorption and lysozyme degradation properties, whereas shrimp chitosan scaffolds (MW 106Da and DA 12% exhibited the lowest water absorption properties and lysozyme degradation rate. In the evaluation of biocompatibility of chitosan scaffolds, the ability of fibroblast NIH/3T3 cells to attach on all chitosan scaffolds was similar, but the proliferation of cells with polygonal morphology was faster on crab, squid and fungal chitosan scaffolds than on shrimp chitosan scaffolds. Therefore fungal chitosan scaffold, which has excellent mechanical and biological properties, is the most suitable scaffold to use as a template for tissue regeneration.

  15. Thermal and nonThermal Mechanisms of Biological Interaction of Microwaves

    CERN Document Server

    Williams, J M

    2001-01-01

    Research in the past on the biological effects of microwaves often has been based on faulty assumptions. The major flaw has been the premise that microwaves only produce thermal effects in tissue. This premise easily may be proven physically incorrect. Furthermore, assuming only thermal effects leads one to an optimist's error of quantification in which calories are counted instead of joules. Past investigations have been misled both by these assumptions and by stereotyped experiments using only narrow band radiation sources. Recent studies show that wide band microwaves bring out biological effects which are unrelated to those caused by heat flow. A review by Kenneth Foster provides a basis for criticism and improved understanding. PACS: 87.10 87.22 87.50 87.54

  16. Contraction dynamics of biological muscles : mechanical and thermodynamical prediction, and experimental verification

    OpenAIRE

    Häufle, Daniel F. B.

    2013-01-01

    Biological movement generation is a dynamical process involving not only biomechanical structures, e.g., muscles, bones, ligaments, etc. but also metabolic energy processing, physiological sensing, and neuronal control. In this thesis, a physics approach to study these complex interactions is presented. It builds upon the results of physiological experiments with isolated animal muscles over the course of which their distinct dynamic properties have been described in great detail. Derived fro...

  17. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering

    OpenAIRE

    Velis, C.A.; Longhurst, Philip J.; Drew, Gillian H; Smith, Richard; Pollard, Simon J. T.

    2009-01-01

    Biodrying is a variation of aerobic decomposition, used within mechanical–biological treatment (MBT) plants to dry and partially stabilise residual municipal waste. Biodrying MBT plants can produce a high quality solid recovered fuel (SRF), high in biomass content. Here, process objectives, operating principles, reactor designs, parameters for process monitoring and control, and their effect on biodried output quality are critically examined. Within the biodrying reactors, w...

  18. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions

    OpenAIRE

    Cheng, Guyue; Sa, Wei; Cao, Chen; Guo, Liangliang; Hao, Haihong; Liu, Zhenli; Wang, Xu; Yuan, Zonghui

    2016-01-01

    Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and ba...

  19. Sex Differences in the Development of Brain Mechanisms for Processing Biological Motion

    OpenAIRE

    Anderson, L.C.; Bolling, D. Z.; Schelinski, S.; Coffman, M.C.; Pelphrey, K.A.; Kaiser, M.D.

    2013-01-01

    Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perce...

  20. Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments

    Science.gov (United States)

    de Mattos, Bruno Rafael Ramos; Garcia, Maellin Pereira Gracindo; Nogueira, Julia Bier; Paiatto, Lisiery Negrini; Albuquerque, Cassia Galdino; Souza, Caique Lopes; Fernandes, Luís Gustavo Romani; Tamashiro, Wirla Maria da Silva Cunha; Simioni, Patricia Ucelli

    2015-01-01

    Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the intestinal tract associated with an imbalance of the intestinal microbiota. Crohn's disease (CD) and ulcerative colitis (UC) are the most widely known types of IBD and have been the focus of attention due to their increasing incidence. Recent studies have pointed out genes associated with IBD susceptibility that, together with environment factors, may contribute to the outcome of the disease. In ulcerative colitis, there are several therapies available, depending on the stage of the disease. Aminosalicylates, corticosteroids, and cyclosporine are used to treat mild, moderate, and severe disease, respectively. In Crohn's disease, drug choices are dependent on both location and behavior of the disease. Nowadays, advances in treatments for IBD have included biological therapies, based mainly on monoclonal antibodies or fusion proteins, such as anti-TNF drugs. Notwithstanding the high cost involved, these biological therapies show a high index of remission, enabling a significant reduction in cases of surgery and hospitalization. Furthermore, migration inhibitors and new cytokine blockers are also a promising alternative for treating patients with IBD. In this review, an analysis of literature data on biological treatments for IBD is approached, with the main focus on therapies based on emerging recombinant biomolecules. PMID:26339135

  1. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, A. G. [Universidade Tecnologica Federal do Parana, Departamento Academico de Fisica (Brazil); Barison, A. [Universidade Federal do Parana, Departamento de Quimica (Brazil); Oliveira, V. S. [Universidade Federal do Parana, Departamento de Fisica (Brazil); Foti, L.; Krieger, M. A. [Fundacao Oswaldo Cruz, Instituto de Biologia Molecular do Parana (Brazil); Dhalia, R.; Viana, I. F. T. [Fundacao Oswaldo Cruz, Centro de Pesquisas Aggeu Magalhaes (Brazil); Schreiner, W. H., E-mail: wido@fisica.ufpr.br [Universidade Federal do Parana, Departamento de Fisica (Brazil)

    2012-09-15

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV-Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the {mu}M range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation-reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V{sub 2}O{sub 5} form.

  2. Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments

    Directory of Open Access Journals (Sweden)

    Bruno Rafael Ramos de Mattos

    2015-01-01

    Full Text Available Inflammatory bowel diseases (IBD are characterized by chronic inflammation of the intestinal tract associated with an imbalance of the intestinal microbiota. Crohn’s disease (CD and ulcerative colitis (UC are the most widely known types of IBD and have been the focus of attention due to their increasing incidence. Recent studies have pointed out genes associated with IBD susceptibility that, together with environment factors, may contribute to the outcome of the disease. In ulcerative colitis, there are several therapies available, depending on the stage of the disease. Aminosalicylates, corticosteroids, and cyclosporine are used to treat mild, moderate, and severe disease, respectively. In Crohn’s disease, drug choices are dependent on both location and behavior of the disease. Nowadays, advances in treatments for IBD have included biological therapies, based mainly on monoclonal antibodies or fusion proteins, such as anti-TNF drugs. Notwithstanding the high cost involved, these biological therapies show a high index of remission, enabling a significant reduction in cases of surgery and hospitalization. Furthermore, migration inhibitors and new cytokine blockers are also a promising alternative for treating patients with IBD. In this review, an analysis of literature data on biological treatments for IBD is approached, with the main focus on therapies based on emerging recombinant biomolecules.

  3. The interface of mechanical loading and biological variables as they pertain to the development of tendinosis.

    Science.gov (United States)

    Thornton, G M; Hart, D A

    2011-06-01

    Different tendons are designed to withstand different mechanical loads in their individual environments. Variable physiologic loading ranges and correspondingly different injury thresholds lead to tendon heterogeneity. Also, tendon heterogeneity is evident when examining how different tendons regulate their response to changes in mechanical loading (over- and under-loading). The response of tendons to changes in mechanical loading plays an important role in the induction and progression of tendinosis which is tendon degeneration without inflammation. Tendon overuse injury is likely related to abnormal mechanical loading that deviates from normal mechanical loading in magnitude, frequency, duration and/or direction. Mechanical loading that results in tendon overuse injury can initiate a repair process but, after failed initial repair, non-resolving chronic attempted repair appears to lead to a "smoldering" fibrogenesis. Contributions of regulatory components, including minor components in the "nerve-mast cell-myofibroblast axis", are key features in the development and progression of tendinosis. Hormonal and genetic factors may also influence risk for tendinosis. Further understanding of how tendinosis induction is related to mechanical use/overuse, how tendinosis progression is related to abnormal regulation of attempted repair, and how induction and/or progression are modulated by other risk factors may lead to interventions that mitigate risk and enhance functional repair. PMID:21625046

  4. THE MECHANISM OF INTERACTION OF EXTERNAL ELECTROMAGNETIC FIELDS ON THE PROCESSES THAT STIMULATE THE ACTIVITY OF BIOLOGICAL OBJECTS

    Directory of Open Access Journals (Sweden)

    Kurzin N. N.

    2015-04-01

    Full Text Available For explaining the regulatory mechanisms of biological the methods of classical biology, chemistry and physics are clearly inadequate, since the structure and function of these mechanisms are determined by the motion of the electron clouds in conjugated molecules. This "movement" can lead eventually to a complex organization called life only if they are subject to certain static laws and, therefore, may eventually be known in all the complexity of their relationships. Biological objects, resulting in the evolution of the environment, are like a part of that environment. Information stored in the seed, based in its deployment on energy and material resources of the environment. Moreover, in the process of development body derives more information from the environment. Nature has the extreme complexity and diversity. Examples include a huge variety of organisms, the complexity of atomic processes, the structure of the solar system and the stellar galaxies. There are four types of different interactions with the help of which we describe all physical phenomena. Today, it seems to us that all the various manifestations of the nature of elementary particles are reduced to the action between them of these four kinds of forces. The most famous of these are the gravitational Zion and electromagnetic forces, which are directly manifested in the world around us. Gravity allows us to stay on the Earth and allows planets to stay in their orbits. Electromagnetic interactions of electrons inside atoms and molecules cause all known chemical and physical properties of ordinary solids, liquids and gases and, in addition, are the basis of all of the processes occurring in living organisms. Research in the field of magneto proved that the biological systems are selectively susceptible to the action of electromagnetic fields as a function of their intensity, exposure time and frequency

  5. Repair mechanisms inducible to the DNA in I.M.M.S. biological systems

    International Nuclear Information System (INIS)

    Given the characteristics of the MMS and the relative antecedents to the repair mechanisms in eucariontes are sought to determine the effect of the MMS on the genetic material and their repair in Drosophila melanogaster. (Author)

  6. Mechanical-biological waste treatment and anaerobic processes. 59. information meeting, Neuwied, October 1999; Mechanisch-biologische Restabfallbehandlung und Anaerobverfahren. 59. Informationsgespraech in Neuwied im Oktober 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O.; Euler, H.; Leonhardt, H.W. [comps.

    1999-10-01

    This proceedings volume discusses the specifications for and cost of mechanical-biological waste treatment, the optimisation of economic efficiency and pollutant emissons, the combination of mechanical-biological and thermal waste treatment processes, the value of mechanical-biological waste treatment, waste management concepts, process engineering and practical experience, and the eco-balance of the process. [German] Themen dieses Proceedingsbandes sind: Anforderungen und Kosten der mechanisch-biologischen Abfallbehandlung; Optimierung der Wirtschaftlichkeit und Emissionssituation; Kombination von mechanisch-biologischer und thermischer Muellbehandlung; Bewertung der mechanisch-biologischen Abfallbehandlung, Abfallwirtschaftskonzepte, Verfahrenstechnik und Betriebserfahrungen; Oekobilanz. (SR)

  7. Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes

    Directory of Open Access Journals (Sweden)

    Chou Jeff W

    2009-06-01

    Full Text Available Abstract Background Hepatotoxicity is a form of liver injury caused by exposure to stressors. Genomic-based approaches have been used to detect changes in transcription in response to hepatotoxicants. However, there are no straightforward ways of using co-expressed genes anchored to a phenotype or constrained by the experimental design for discerning mechanisms of a biological response. Results Through the analysis of a gene expression dataset containing 318 liver samples from rats exposed to hepatotoxicants and leveraging alanine aminotransferase (ALT, a serum enzyme indicative of liver injury as the phenotypic marker, we identified biological processes and molecular pathways that may be associated with mechanisms of hepatotoxicity. Our analysis used an approach called Coherent Co-expression Biclustering (cc-Biclustering for clustering a subset of genes through a coherent (consistency measure within each group of samples representing a subset of experimental conditions. Supervised biclustering identified 87 genes co-expressed and correlated with ALT in all the samples exposed to the chemicals. None of the over-represented pathways related to liver injury. However, biclusters with subsets of samples exposed to one of the 7 hepatotoxicants, but not to a non-toxic isomer, contained co-expressed genes that represented pathways related to a stress response. Unsupervised biclustering of the data resulted in 1 four to five times more genes within the bicluster containing all the samples exposed to the chemicals, 2 biclusters with co-expression of genes that discerned 1,4 dichlorobenzene (a non-toxic isomer at low and mid doses from the other chemicals, pathways and biological processes that underlie liver injury and 3 a bicluster with genes up-regulated in an early response to toxic exposure. Conclusion We obtained clusters of co-expressed genes that over-represented biological processes and molecular pathways related to hepatotoxicity in the rat. The

  8. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    Science.gov (United States)

    Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  9. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    Institute of Scientific and Technical Information of China (English)

    YUAN Wu-Jie; LUO Xiao-Shu; JIANG Pin-Qun

    2007-01-01

    In this paper,we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism.Then we study excitement properties of the model under alternating current (AC) stimulation.The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli,such as refractory period and the brain neural excitement response induced by different intensities of nolse and coupling.The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  10. COD FRACTIONS IN THE PROCESS OF MECHANICAL-BIOLOGICAL TREATMENT SEWAGE

    Directory of Open Access Journals (Sweden)

    Joanna Smyk

    2015-11-01

    Full Text Available The aim of the research was to determine the COD fraction thereof in sewage and their changes in the effluent after further treatment processes. The study was conducted in a sewage treatment plant in Bialystok (RLM> 100000. In sewage the highest concentrations occurred in the suspension of the organic fractions slowly biodegradable XS (303.7 mg O2/l and dissolved organic compounds readily biodegradable SS (263 mg O2/l. The lower amounts were irreducible fractions dissolved in sewage and suspended SI (56 mg O2/l and XI (101.2 mg O2/l. Almost 80% of the total COD fractions were biodegradable (SS + XS. In the treated wastewater soluble fraction SI-biodegradable (56 mg O2/l occurred in the highest concentration. The flow of wastewater by components of sewage treatment plant resulted the complete removal of biologically degradable fraction of dissolved SS. More than 94.5% of the total COD in waste water purified fractions were biologically decomposable (SI + XI. Moreover, based on the analysis of studies the following soil removal was found: BOD5 – 99.4%, COD – 92.9%, total nitrogen – 93.4%, total phosphorus – 92%. After waste water treatment, ammonia nitrogen was completely removed while the nitrate concentration increased to 4.6 mg N/dm3.

  11. Ultrasound Attenuation in Biological Tissue Predicted by the Modified Doublet Mechanics Model

    Institute of Scientific and Technical Information of China (English)

    JIANG Xin; LIU Xiao-Zhou; WU Jun-Ru

    2009-01-01

    Experimental results have shown that in the megahertz frequency range the relationship between the acoustic attenuation coefficient in soft tissues and frequency is nearly linear. The classical continuum mechanics (CCM),which assumes that the material is uniform and continuous, fails to explain this relationship particularly in the high megahertz range. Doublet mechanics (DM) is a new elastic theory which takes the discrete nature of material into account. The current DM theory however does not consider the loss. We revise the doublet mechanics (DM)theory by including the loss term, and calculate the attenuation of a soft tissue as a function of frequency using the modified the DM theory (MDM). The MDM can now well explain the nearly linear relationship between the acoustic attenuation coefficient in soft tissues and frequency.

  12. Mechanical integrity and adhesion of thin films for applications in electronics packaging and cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jin; Wan Kaitak; Chian Kermsin

    2003-01-22

    A new theoretical model was developed for a pull-off adhesion test using an axisymmetric flat punch and a rectangular flat punch adhered to a thin polymer film interface. An elastic solution was derived to portray the mechanical integrity of the thin film. A mechanical energy release rate was calculated numerically. As the punch was pulled away from the adhered film, the film deformed under mixed bending and stretching. Both stiffness and thickness of the film were allowed to vary. The derived solid-film 'pull-off' events sharply contrast with the abrupt pull-off in solid-solid adhesion as predicted by the classical JKR theory.

  13. Mimic-biology research on self-recovering mechanism of cavity-type crack

    Institute of Scientific and Technical Information of China (English)

    袁朝龙; 钟约先; 马庆贤; 曹起骧

    2002-01-01

    Modeling method was used to research the recovering law of inner cavity-type cracks during the processes of high-temperature plastic deformation. It was found that the self-recovering of cavity-type fault was similar to the self-healing of wound of skin and fracture. The self-recovering process of cavity-type fault was investigated according to the rule of self-healing of wound in human body. The recrystallization mechanism of self-recovering of cavity-type fault was discovered. A new method is presented to study the self-recovering mechanism of cavity-type cracks.

  14. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    Science.gov (United States)

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential

  15. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    Science.gov (United States)

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation.

  16. Biogenesis and Mechanism of Action of Small Non-Coding RNAs: Insights from the Point of View of Structural Biology

    Science.gov (United States)

    Costa, Marina C.; Leitão, Ana Lúcia; Enguita, Francisco J.

    2012-01-01

    Non-coding RNAs are dominant in the genomic output of the higher organisms being not simply occasional transcripts with idiosyncratic functions, but constituting an extensive regulatory network. Among all the species of non-coding RNAs, small non-coding RNAs (miRNAs, siRNAs and piRNAs) have been shown to be in the core of the regulatory machinery of all the genomic output in eukaryotic cells. Small non-coding RNAs are produced by several pathways containing specialized enzymes that process RNA transcripts. The mechanism of action of these molecules is also ensured by a group of effector proteins that are commonly engaged within high molecular weight protein-RNA complexes. In the last decade, the contribution of structural biology has been essential to the dissection of the molecular mechanisms involved in the biosynthesis and function of small non-coding RNAs. PMID:22949860

  17. Biological and Ecological Mechanisms Supporting Marine Self-Governance: the Seri Callo de Hacha Fishery in Mexico

    Directory of Open Access Journals (Sweden)

    Xavier Basurto

    2008-12-01

    Full Text Available My goal was to describe how biological and ecological factors give shape to fishing practices that can contribute to the successful self-governance of a small-scale fishing system in the Gulf of California, Mexico. The analysis was based on a comparison of the main ecological and biological indicators that fishers claim to use to govern their day-to-day decision making about fishing and data collected in situ. I found that certain indicators allow fishers to learn about differences and characteristics of the resource system and its units. Fishers use such information to guide their day-to-day fishing decisions. More importantly, these decisions appear unable to shape the reproductive viability of the fishery because no indicators were correlated to the reproductive cycle of the target species. As a result, the fishing practices constitute a number of mechanisms that might provide short-term buffering capacity against perturbations or stress factors that otherwise would threaten the overall sustainability and self-governance of the system. The particular biological circumstances that shape the harvesting practices might also act as a precursor of self-governance because they provide fishers with enough incentives to meet the costs of organizing the necessary rule structure that underlies a successful self-governance system.

  18. A Journey with Elie Metchnikoff: From Innate Cell Mechanisms in Infectious Diseases to Quantum Biology

    Science.gov (United States)

    Merien, Fabrice

    2016-01-01

    Many reviews of Elie Metchnikoff’s work have been published, all unanimously acknowledging the significant contributions of his cellular theory to the fields of immunology and infectious diseases. In 1883, he published a key paper describing phagocytic cells in frogs. His descriptions were not just about phagocytes involved in host defense, he also described how these specialized cells eliminated degenerating or dying cells of the host. This perspective focuses on key concepts developed by Metchnikoff by presenting relevant excerpts of his 1883 paper and matching these concepts with challenges of modern immunology. A new approach to macrophage polarization is included to introduce some creative thinking about the exciting emerging area of quantum biology. PMID:27379227

  19. Stochastic dynamics of magnetic nanoparticles and a mechanism of biological orientation in the geomagnetic field

    CERN Document Server

    Binhi, V N

    2004-01-01

    The rotations of microscopic magnetic particles, magnetosomes, embedded into the cytoskeleton are considered. A great number of magnetosomes are shown to possess two stable equilibrium positions, between which there occur transitions under the influence of thermal disturbances. The random rotations attain the value of order of radian. The rate of the transitions and the probability of magnetosomes to stay in the different states depend on magnetic field direction with respect to an averaged magnetosome's orientation. This effect explains the ability of migrant birds to faultless orientation in long-term passages in the absence of the direct visibility of optical reference points. The sensitivity to deviation from an `ideal' orientation is estimated to be 1-2 degrees. Possible participation of magnetosomes in biological effects caused by microwave electromagnetic fields is discussed.

  20. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    Science.gov (United States)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  1. Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

    Energy Technology Data Exchange (ETDEWEB)

    Ekworomadu, MarCia T.; Poor, Catherine B.; Owens, Cedric P.; Balderas, Miriam A.; Fabian, Marian; Olson, John S.; Murphy, Frank; Balkabasi, Erol; Honsa, Erin S.; He, Chuan; Goulding, Celia W.; Maresso, Anthony W. (Baylor); (UCI); (Cornell); (Rice); (UC)

    2014-10-02

    To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3{sub 10}-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3{sub 10}-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with

  2. The radioinduced membranes injuries as biological dose indicators: mechanisms of studies and practical applications

    International Nuclear Information System (INIS)

    After an accidental overexposure, the assessment of the received dose in biological dosimetry is performed by a method based on the effects of irradiation on the DNA molecule. But this technique shows some limitations; therefore we tried to find new bio-sensors of radiation exposure. We have pointed out that membrane is a critical target of ionising radiation after an in vitro and in vivo overexposure. In vitro, these modifications were involved in the radio-induced apoptotic pathway. The measure of membrane fluidity allowed us to obtain an overall view of cellular membrane. Moreover, in vivo, by changing the lipid nutritional status of animals, our results displayed the important role played by membrane lipid composition in radio-induced membrane alterations. Besides, membrane effects were adjusted by the extracellular physiological control, and in particular by the damages on membrane fatty acid pattern. Finally, we have tested the use of membrane fluidity index as a bio-sensor of radiation exposure on in vivo models and blood samples from medical total body irradiated patients. The results achieved on animal models suggested that the membrane fluidity index was a bio-sensor of radiation exposure. Nevertheless, the observations realised on patients highlight that the effect of the first dose fraction of the radiotherapy treatment had some difficulties to be noticed. Indeed, the combined treatment: chemotherapy and radiotherapy disturbed the membrane fluidity index measures. To conclude, whereas this parameter was not a bio-sensor of irradiation exposure usable in biological dosimetry, it may allow us to assess the radio-induced damages and their cellular but also tissue impacts. (author)

  3. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins.

    Science.gov (United States)

    Gremski, Luiza Helena; Trevisan-Silva, Dilza; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Meissner, Gabriel Otto; Wille, Ana Carolina Martins; Vuitika, Larissa; Dias-Lopes, Camila; Ullah, Anwar; de Moraes, Fábio Rogério; Chávez-Olórtegui, Carlos; Barbaro, Katia Cristina; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2014-06-01

    The Loxosceles genus spiders (the brown spiders) are encountered in all the continents, and the clinical manifestations following spider bites include skin necrosis with gravitational lesion spreading and occasional systemic manifestations, such as intravascular hemolysis, thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of toxins especially enriched in three molecular families: the phospholipases D, astacin-like metalloproteases and Inhibitor Cystine Knot (ICK) peptides. Other toxins with low level of expression also present in the venom include the serine proteases, serine protease inhibitors, hyaluronidases, allergen factors and translationally controlled tumor protein (TCTP). The mechanisms by which the Loxosceles venoms act and exert their noxious effects are not fully understood. Except for the brown spider venom phospholipase D, which causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological activities of the other venom toxins remain unclear. The objective of the present review is to provide insights into the brown spider venoms and loxoscelism based on recent results. These insights include the biology of brown spiders, the clinical features of loxoscelism and the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this review includes a description of the novel toxins revealed by molecular biology and proteomics techniques, the data regarding three-dimensional toxin structures, and the mechanism of action of these molecules. Finally, the biotechnological applications of the venom components, especially for those toxins reported as recombinant molecules, and the challenges for future study are discussed.

  4. Interrogating the Role of Receptor-Mediated Mechanisms: Biological Fate of Peptide-Functionalized Radiolabeled Gold Nanoparticles in Tumor Mice.

    Science.gov (United States)

    Silva, Francisco; Zambre, Ajit; Campello, Maria Paula Cabral; Gano, Lurdes; Santos, Isabel; Ferraria, Ana Maria; Ferreira, Maria João; Singh, Amolak; Upendran, Anandhi; Paulo, António; Kannan, Raghuraman

    2016-04-20

    To get a better insight on the transport mechanism of peptide-conjugated nanoparticles to tumors, we performed in vivo biological studies of bombesin (BBN) peptide functionalized gold nanoparticles (AuNPs) in human prostate tumor bearing mice. Initially, we sought to compare AuNPs with thiol derivatives of acyclic and macrocyclic chelators of DTPA and DOTA types. The DTPA derivatives were unable to provide a stable coordination of (67)Ga, and therefore, the functionalization with the BBN analogues was pursued for the DOTA-containing AuNPs. The DOTA-coated AuNPs were functionalized with BBN[7-14] using a unidentate cysteine group or a bidentate thioctic group to attach the peptide. AuNPs functionalized with thioctic-BBN displayed the highest in vitro cellular internalization (≈ 25%, 15 min) in gastrin releasing peptide (GRP) receptor expressing cancer cells. However, these results fail to translate to in vivo tumor uptake. Biodistribution studies following intravenous (IV) and intraperitoneal (IP) administration of nanoconjugates in tumor bearing mice indicated that the presence of BBN influences to some degree the biological profile of the nanoconstructs. For IV administration, the receptor-mediated pathway appears to be outweighed by the EPR effect. By contrast, in IP administration, it is reasoned that the GRPr-mediated mechanism plays a role in pancreas uptake. PMID:27003101

  5. Impact of mechanical mowing and chemical treatment on phytosociological, pedochemical and biological parameters in roadside soils and vegetation.

    Science.gov (United States)

    Pellegrini, Elisa; Falcone, Lino; Loppi, Stefano; Lorenzini, Giacomo; Nali, Cristina

    2016-03-01

    Many chemical and non-chemical strategies have been applied to control weeds in agricultural and industrial areas. Knowledge regarding the effects of these methods on roadside vegetation is still poor. A 2-year field experiment was performed along a road located near Livorno (Tuscany, central Italy). Eight plots/strips were identified, of which four were subjected to periodical mechanical mowing and the remaining four were treated with a chemical herbicide based on glyphosate (the producer's recommended rates were used for the selective control of broad-leaved weeds). Our results clearly showed that roadside soil and vegetation are a significant reservoir of anthropogenic activities which have a strong negative effect on several phytosociological, pedochemical and biological parameters. Compared with conventional mechanical mowing, chemical treatment induced (i) a significant increase in organic matter in the upper plot layers (+18%), and (ii) a marked reduction in weed height throughout the entire period of the experiment. Irrespectively of the kind of treatment, no significance differences were detected in terms of (i) biological quality of soil (the abundance and diversity of arthropod communities did not change), and (ii) plant elemental content (bulk concentrations of analysed trace elements had a good fit within ranges of occurrence in the "reference plant"). The glyphosate partially controlled broad-leaved weeds and this moderate efficacy is dependent upon the season/time of application. In conclusion, the rational and sustainable use of chemical herbicides may be a useful tool for the management of roadside vegetation. PMID:26573685

  6. Application of various statistical methods to evaluate thermo-analytical data of mechanically-biologically treated municipal solid waste

    International Nuclear Information System (INIS)

    Resource recovery and stabilization of waste organic matter before landfilling are crucial issues in waste management. These requirements are closely related to efficient separation of recyclables and well operated biological processes. Adequate analytical methods are a prerequisite to verify the realization of these purposes. A large data pool of mechanically-biologically treated (MBT) municipal solid waste originating from different Austrian treatment plants was investigated using simultaneous thermal analysis that comprises thermogravimetry/mass spectrometry (TG/MS) and differential scanning calorimetry (DSC). Biodegradation of MBT-waste is paralleled by decreasing enthalpies. Referring to organic matter enthalpy increases with progressing stabilization. Evaluation of thermal data was supported by multivariate data analysis. The efficiency of the biological pretreatment of municipal solid waste (MSW) compared to untreated MSW in landfills was verified by principal component analysis (PCA) of heat flow (DSC) profiles. Divergent input materials were identified by means of heat flow profiles and discriminant analysis (PLS-DA). Prediction models for the calorific value and the TOC (total organic carbon) based on DSC-profiles and partial least squares regression (PLS-R) resulted in a good correlation (R2 = 0.94 in both cases). The root mean square errors of crossvalidation were 413 J g-1 and 1.5% referring to dry matter, respectively. Respiration activity (RA4) was reflected by thermal analyses. The correlation was based on mass spectra of volatile combustion products and DSC-profiles. The correlation resulted in a coefficient of determination (R2) of 0.87 and 0.82 respectively. Thermal analysis in association with multivariate statistical methods has proven to be a reliable method to verify efficient separation of the plastic fraction, stabilization by biological treatment and waste material composition.

  7. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  8. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  9. Metallic Nanoislands on Graphene as Highly Sensitive Transducers of Mechanical, Biological, and Optical Signals.

    Science.gov (United States)

    Zaretski, Aliaksandr V; Root, Samuel E; Savchenko, Alex; Molokanova, Elena; Printz, Adam D; Jibril, Liban; Arya, Gaurav; Mercola, Mark; Lipomi, Darren J

    2016-02-10

    This article describes an effect based on the wetting transparency of graphene; the morphology of a metallic film (≤20 nm) when deposited on graphene by evaporation depends strongly on the identity of the substrate supporting the graphene. This control permits the formation of a range of geometries, such as tightly packed nanospheres, nanocrystals, and island-like formations with controllable gaps down to 3 nm. These graphene-supported structures can be transferred to any surface and function as ultrasensitive mechanical signal transducers with high sensitivity and range (at least 4 orders of magnitude of strain) for applications in structural health monitoring, electronic skin, measurement of the contractions of cardiomyocytes, and substrates for surface-enhanced Raman scattering (SERS, including on the tips of optical fibers). These composite films can thus be treated as a platform technology for multimodal sensing. Moreover, they are low profile, mechanically robust, semitransparent and have the potential for reproducible manufacturing over large areas. PMID:26765039

  10. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films

    OpenAIRE

    Aryaei, Ashkan; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2013-01-01

    In this paper, different concentrations of multi-walled carbon nanotube (MWCNT) were homogeneously dispersed throughout the chitosan (CS) matrix. A simple solvent-cast method was used to fabricate chitosan films with 0.1, 0.5, and 1% of MWCNT with the average diameter around 30 nm. The CS/MWCNT films were characterized for structural, viscous and mechanical properties with optical microscopy, wide-angle X-ray diffraction, Raman spectroscopy, tensile test machine, and microindentation testing ...

  11. Biology of lithium response in bipolar disorder : genetic mechanisms and telomeres

    OpenAIRE

    Martinsson, Lina

    2016-01-01

    Background: Bipolar disorder is a common, chronic and severe mental illness, causing suffering and large costs. Lithium treatment is the golden standard and works in 2/3 of patients, of which 50% are called lithium responders. There is strong evidence that both bipolar disorder and the degree of lithium response are highly heritable, although many mechanisms are unknown. Short telomere length has been found in both somatic and psychiatric disorders, but little is known about te...

  12. A new technique to improve the mechanical and biological performance of ultra high molecular weight polyethylene using a nylon coating.

    Science.gov (United States)

    Firouzi, Dariush; Youssef, Aya; Amer, Momen; Srouji, Rami; Amleh, Asma; Foucher, Daniel A; Bougherara, Habiba

    2014-04-01

    A new patent pending technique is proposed in this study to improve the mechanical and biological performance of ultra high molecular weight polyethylene (UHMWPE), i.e., to uniformly coat nylon onto the UHMWPE fiber (Firouzi et al., 2012). Mechanical tests were performed on neat and new nylon coated UHMWPE fibers to examine the tensile strength and creep resistance of the samples at different temperatures. Cytotoxicity and osteolysis induced by wear debris of the materials were investigated using (MTT) assay, and RT-PCR for tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) osteolysis markers. Mechanical test results showed substantial improvement in maximum creep time, maximum breaking force, and toughness values of Nylon 6,6 and Nylon 6,12 coated UHMWPE fibers between average 15% and 60% at 25, 50, and 70°C. Furthermore, cytotoxicity studies have demonstrated significant improvement in cell viability using the nylon coated UHMWPE over the neat one (72.4% vs 54.8%) for 48h and (80.7 vs 5%) for 72h (PUHMWPE fiber were significantly higher than those induced by the Nylon 6,6 coated UHMWPE (2.5 fold increase for TNFα at 48h, and three fold increase for IL-6 at 72h (PUHMWPE coated with nylon could be used as a novel material in clinical applications with lower cytotoxicity, less wear debris-induced osteolysis, and superior mechanical properties compared to neat UHMWPE.

  13. Differential function of lip residues in the mechanism and biology of an anthrax hemophore.

    Directory of Open Access Journals (Sweden)

    MarCia T Ekworomadu

    Full Text Available To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3(10-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3(10-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction

  14. Omega-3 Fatty Acids and Depression: Scientific Evidence and Biological Mechanisms

    Directory of Open Access Journals (Sweden)

    Giuseppe Grosso

    2014-01-01

    Full Text Available The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries’ diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.

  15. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2014-01-01

    In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.

  16. Evolutionary malignant resistance of cells to damaging factors as common biological defence mechanism in neoplastic development. Review of conception.

    Science.gov (United States)

    Monceviciute-Eringiene, E

    2000-09-01

    Cells have some inborn resistance to harmful factors, which could be called physiological or natural resistance. The mechanisms of multixenobiotic resistance (MXR) and multidrug resistance (MDR) have common features in the formation of acquired resistance in microorganisms, carcinogenesis, tumour metastases and chemotherapy or irradiation. ATP-dependent membrane P-glycoprotein, as an MDR efflux pump, glutathione S-transferases and other products of evolutionary resistance-related genes arised for exportation and detoxification of cytotoxic xenobiotics and drugs are transmitted from bacteria to man. On the one hand, this evolutionary MXR as a common biological defence mechanism is a "driving" power to conserve homeostasis of cells, tissues and organs. On the other hand, mutation, selection and simplification of properties are the causes of functional and morphological changes in tumour cells which regress to a more primitive mode of existence (atavism) for adaptation to survival. In the present work are presented data on the forms of E. coli resistant to antibiotics and of sarcoma 45 resistant to alkylic preparations. They may be helpful in revealing the causes of resistance and acquired accelerated growth of cells. The development of tumours as fibromas 14-15 years following injection of a vital dye trypan blue into human skin supports our conception that neoplastic growth is a particular case of the evolutionary resistance of cells adapted to the damaging factors. So, tumour cells adopting the enhancement mechanisms of general biological persistent resistance, i. e. undergoing repeated cycles of malignancy enhancement, adapt themselves to survive under the changed unfavourable conditions. PMID:11144527

  17. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Directory of Open Access Journals (Sweden)

    Pauline Renoud

    Full Text Available Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  18. Body fatness as a cause of cancer: epidemiologic clues to biologic mechanisms.

    Science.gov (United States)

    Byers, Tim; Sedjo, Rebecca L

    2015-06-01

    Carrying excess body fat is a leading cause of cancer. Epidemiologic evidence gives strong clues about the mechanisms that link excess adiposity to risk for several cancer sites. For postmenopausal breast cancer and endometrial cancer, the hyper-estrogenic state that is induced by excess body fatness is the likely cause. For esophageal cancer and gallbladder cancer, chronic local inflammation induced by acid reflux and gallstones is the likely cause, and for liver cancer, local inflammation induced by hepatic fatty infiltration is the likely cause. However, for several other cancers known to be associated with excess adiposity, including cancers of the colon, pancreas, ovary, kidney, and prostate, specific causes are not known. Possible candidates include elevated systemic or local tissue inflammation induced by adiposity and effects of the elevated levels of leptin, insulin, IGFs, and depressed immune function that are seen with excess adiposity. There is growing evidence that intentional weight loss not only reduces circulating levels of cancer-associated factors but that it also reduces cancer incidence and recurrence. Better research is needed to understand the mechanisms that link excess body fat to cancer risk as well as to understand the amount of weight loss needed for substantial cancer risk reduction. Finally, as we develop better understanding of the mediators of the effects of excess body fatness on cancer risk, we should identify pharmacologic interventions that target those mediators so that they can be used to complement weight loss in order to reduce cancer risk. PMID:25870250

  19. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Science.gov (United States)

    Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte

    2012-01-01

    Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation. PMID:22859940

  20. Biological effects of mechanically and chemically dispersed oil on the Icelandic scallop (Chlamys islandica).

    Science.gov (United States)

    Frantzen, Marianne; Regoli, Francesco; Ambrose, William G; Nahrgang, Jasmine; Geraudie, Perrine; Benedetti, Maura; Locke, William L; Camus, Lionel

    2016-05-01

    This study aimed to simulate conditions in which dispersant (Dasic NS) might be used to combat an oil spill in coastal sub-Arctic water of limited depth and water exchange in order to produce input data for Net Environmental Benefit Analysis (NEBA) of Arctic and sub-Arctic coastal areas. Concentration dependent differences in acute responses and long-term effects of a 48h acute exposure to dispersed oil, with and without the application of a chemical dispersant, were assessed on the Arctic filter feeding bivalve Chlamys islandica. Icelandic scallops were exposed for 48h to a range of spiked concentrations of mechanically and chemically dispersed oil. Short-term effects were assessed in terms of lysosomal membrane stability, superoxide dismutase, catalase, gluthatione S-transferases, glutathione peroxidases, glutathione reductase, glutathione, total oxyradical scavenging capacity, lipid peroxidation and peroxisomal proliferation. Post-exposure survival, growth and reproductive investment were followed for 2 months to evaluate any long-term consequence. Generally, similar effects were observed in scallops exposed to mechanically and chemically dispersed oil. Limited short-term effects were observed after 48h, suggesting that a different timing would be required for measuring the possible onset of such effects. There was a concentration dependent increase in cumulative post-exposure mortality, but long-term effects on gonadosomatic index, somatic growth/condition factor did not differ among treatments. PMID:26809079

  1. Preparing for and implementing the UN secretary-general's mechanism on alleged use investigation for biological weapons

    International Nuclear Information System (INIS)

    The United Nations Global Counter-Terrorism Strategy was adopted by the UN General Assembly in September 2006. Preventing and responding to attacks using WMD were identified amongst the key areas of activities covered by the strategy. The Secretary-General's mechanism to carry out prompt investigations in response to allegations brought to his attention concerning the possible use of chemical and bacteriological (biological) and toxin weapons was developed in the late 1980s. Triggered by a request from any member State, the Secretary-General is authorized to launch an investigation including dispatching a fact-finding team to the site of the alleged incident(s) and to report to all UN Member States. This is to ascertain in an objective and scientific manner facts of alleged violations of the 1925 Geneva Protocol, which bans the use of chemical and biological weapons. Member States encouraged the Secretary-General in September 2006 to update the roster of experts and laboratories, as well as the technical guidelines and procedures, available to him for the timely and efficient investigation of alleged use. The roster of experts and laboratories and the guidelines and procedures constitute the key elements of the special mechanism available to the Secretary-General for investigation of reports by Member States of alleged use of chemical, biological and toxin weapons. The Office for Disarmament Affairs has been working with Member States since March 2007 to update the roster of experts and laboratories and the technical appendices of the guidelines and procedures so that they fully correspond with the rapid and substantial developments that have occurred in the biological area since the 1980s and also to take into account the fact that an Organization for the Prohibition of Chemical Weapons (OPCW) has since been established. Currently, the roster of experts and laboratories has been updated and includes experts from more than 50 countries. The information available in

  2. A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations.

    Science.gov (United States)

    Gips, Bart; van der Eerden, Jan P J M; Jensen, Ole

    2016-08-01

    The visual system receives a wealth of sensory information of which only little is relevant for behaviour. We present a mechanism in which alpha oscillations serve to prioritize different components of visual information. By way of simulated neuronal networks, we show that inhibitory modulation in the alpha range (~ 10 Hz) can serve to temporally segment the visual information to prevent information overload. Coupled excitatory and inhibitory neurons generate a gamma rhythm in which information is segmented and sorted according to excitability in each alpha cycle. Further details are coded by distributed neuronal firing patterns within each gamma cycle. The network model produces coupling between alpha phase and gamma (40-100 Hz) amplitude in the simulated local field potential similar to that observed experimentally in human and animal recordings.

  3. Agents, assemblers, and ANTS: scheduling assembly with market and biological software mechanisms

    Science.gov (United States)

    Toth-Fejel, Tihamer T.

    2000-06-01

    Nanoscale assemblers will need robust, scalable, flexible, and well-understood mechanisms such as software agents to control them. This paper discusses assemblers and agents, and proposes a taxonomy of their possible interaction. Molecular assembly is seen as a special case of general assembly, subject to many of the same issues, such as the advantages of convergent assembly, and the problem of scheduling. This paper discusses the contract net architecture of ANTS, an agent-based scheduling application under development. It also describes an algorithm for least commitment scheduling, which uses probabilistic committed capacity profiles of resources over time, along with realistic costs, to provide an abstract search space over which the agents can wander to quickly find optimal solutions.

  4. An update on molecular biology and drug resistance mechanisms of multiple myeloma.

    Science.gov (United States)

    Mutlu, Pelin; Kiraz, Yağmur; Gündüz, Ufuk; Baran, Yusuf

    2015-12-01

    Multiple myeloma (MM), a neoplasm of plasma cells, is the second most common hematological malignancy. Incidance rates increase after age 40. MM is most commonly seen in men and African-American population. There are several factors to this, such as obesity, environmental factors, family history, genetic factors and monoclonal gammopathies of undetermined significance (MGUS) that have been implicated as potentially etiologic. Development of MM involves a series of complex molecular events, including chromosomal abnormalities, oncogene activation and growth factor dysregulation. Chemotherapy is the most commonly used treatment strategy in MM. However, MM is a difficult disease to treat because of its marked resistance to chemotherapy. MM has been shown to be commonly multidrug resistance (MDR)-negative at diagnosis and associated with a high incidence of MDR expression at relapse. This review deals with the molecular aspects of MM, drug resistance mechanisms during treatment and also possible new applications for overcoming drug resistance. PMID:26235594

  5. Mechanical properties of lipid bilayers and regulation of mechanosensitive function: from biological to biomimetic channels.

    Science.gov (United States)

    Balleza, Daniel

    2012-01-01

    Material properties of lipid bilayers, including thickness, intrinsic curvature and compressibility regulate the function of mechanosensitive (MS) channels. This regulation is dependent on phospholipid composition, lateral packing and organization within the membrane. Therefore, a more complete framework to understand the functioning of MS channels requires insights into bilayer structure, thermodynamics and phospholipid structure, as well as lipid-protein interactions. Phospholipids and MS channels interact with each other mainly through electrostatic forces and hydrophobic matching, which are also crucial for antimicrobial peptides. They are excellent models for studying the formation and stabilization of membrane pores. Importantly, they perform equivalent responses as MS channels: (1) tilting in response to tension and (2) dissipation of osmotic gradients. Lessons learned from pore forming peptides could enrich our knowledge of mechanisms of action and evolution of these channels. Here, the current state of the art is presented and general principles of membrane regulation of mechanosensitive function are discussed. PMID:22790280

  6. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Qian Qin; Young Xu; Tao He; Chunlin Qin; Jianming Xu

    2012-01-01

    This article reviews the molecular structure,expression pattern,physiological function,pathological roles and molecular mechanisms of Twist1 in development,genetic disease and cancer.Twist1 is a basic helix-loop-helix domaincontaining transcription factor.It forms homo- or hetero-dimers in order to bind the Nde1 E-box element and activate or repress its target genes.During development,Twistl is essential for mesoderm specification and differentiation.Heterozygous loss-of-function mutations of the human Twist1 gene cause several diseases including the SaethreChotzen syndrome.The Twist1-null mouse embryos die with unclosed cranial neural tubes and defective head mesenchyme,somites and limb buds.Twist1 is expressed in breast,liver,prostate,gastric and other types of cancers,and its expression is usually associated with invasive and metastatic cancer phenotypes.In cancer cells,Twistl is upregulated by multiple factors including SRC-1,STAT3,MSX2,HIF-1α,integrin-linked kinase and NF-κB.Twist1 significantly enhances epithelial-mesenchymal transition (EMT) and cancer cell migration and invasion,hence promoting cancer metastasis.Twistl promotes EMT in part by directly repressing E-cadherin expression by recruiting the nucleosome remodeling and deacetylase complex for gene repression and by upregulating Bmil,AKT2,YB-1,etc.Emerging evidence also suggests that Twist1 plays a role in expansion and chemotherapeutic resistance of cancer stem cells.Further understanding of the mechanisms by which Twist1 promotes metastasis and identification of Twist1 functional modulators may hold promise for developing new strategies to inhibit EMT and cancer metastasis.

  7. Biologically and mechanically driven design of an RGD-mimetic macroporous foam for adipose tissue engineering applications.

    Science.gov (United States)

    Rossi, Eleonora; Gerges, Irini; Tocchio, Alessandro; Tamplenizza, Margherita; Aprile, Paola; Recordati, Camilla; Martello, Federico; Martin, Ivan; Milani, Paolo; Lenardi, Cristina

    2016-10-01

    Despite clinical treatments for adipose tissue defects, in particular breast tissue reconstruction, have certain grades of efficacy, many drawbacks are still affecting the long-term survival of new formed fat tissue. To overcome this problem, in the last decades, several scaffolding materials have been investigated in the field of adipose tissue engineering. However, a strategy able to recapitulate a suitable environment for adipose tissue reconstruction and maintenance is still missing. To address this need, we adopted a biologically and mechanically driven design to fabricate an RGD-mimetic poly(amidoamine) oligomer macroporous foam (OPAAF) for adipose tissue reconstruction. The scaffold was designed to fulfil three fundamental criteria: capability to induce cell adhesion and proliferation, support of in vivo vascularization and match of native tissue mechanical properties. Poly(amidoamine) oligomers were formed into soft scaffolds with hierarchical porosity through a combined free radical polymerization and foaming reaction. OPAAF is characterized by a high water uptake capacity, progressive degradation kinetics and ideal mechanical properties for adipose tissue reconstruction. OPAAF's ability to support cell adhesion, proliferation and adipogenesis was assessed in vitro using epithelial, fibroblast and endothelial cells (MDCK, 3T3L1 and HUVEC respectively). In addition, in vivo subcutaneous implantation in murine model highlighted OPAAF potential to support both adipogenesis and vessels infiltration. Overall, the reported results support the use of OPAAF as a scaffold for engineered adipose tissue construct. PMID:27428768

  8. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    Science.gov (United States)

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  9. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    Science.gov (United States)

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  10. A bioconjugate approach toward squalamine mimics: Insight into the mechanism of biological action.

    Science.gov (United States)

    Chen, Wen-Hua; Shao, Xue-Bin; Moellering, Robert; Wennersten, Christine; Regen, Steven L

    2006-01-01

    A short and efficient synthesis has been devised for a family of squalamine mimics, based on the use of cholic acid, deoxycholic acid, lithocholic acid, putrescine, and spermine as starting materials. Those mimics that contain two facially amphiphilic sterol-spermidine conjugates show strong antibacterial activity against a broad spectrum of Gram-positive bacteria; their corresponding activities against a broad spectrum of Gram-negative bacteria are relatively moderate. Larger mimics, containing four such sterol-spermidine conjugates, exhibit very weak activities. Reversal of the pendent spermidine moiety and a putrescine linkage on the A- and D-rings had little consequence on the antibacterial activity for the most active of the squalamine mimics, which contained two sterol-polyamine units; similar results were obtained with squalamine mimics made from only one sterol unit. Detailed structure-activity measurements, in combination with kinetic studies carried out using liposomes as model membranes, support a mechanism of action involving noncovalent dimers as ion transporting species, most probably via the formation of pores or channels. PMID:17105239

  11. The biological mechanisms and behavioral functions of opsin-based light detection by the skin

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    2016-08-01

    Full Text Available Light detection not only forms the basis of vision (via visual retinal photoreceptors, but can also occur in other parts of the body, including many non-rod/non-cone ocular cells, the pineal complex, the deep brain, and the skin. Indeed, many of the photopigments (an opsin linked to a light-sensitive 11-cis retinal chromophore that mediate color vision in the eyes of vertebrates are also present in the skin of animals such as reptiles, amphibians, crustaceans and fishes (with related photoreceptive molecules present in cephalopods, providing a localized mechanism for light detection across the surface of the body. This form of non-visual photosensitivity may be particularly important for animals that can change their coloration by altering the dispersion of pigments within the chromatophores (pigment containing cells of the skin. Thus, skin coloration may be directly color matched or tuned to both the luminance and spectral properties of the local background environment, thereby facilitating behavioral functions such as camouflage, thermoregulation, and social signaling. This review examines the diversity and sensitivity of opsin-based photopigments present in the skin and considers their putative functional roles in mediating animal behavior. Furthermore, it discusses the potential underlying biochemical and molecular pathways that link shifts in environmental light to both photopigment expression and chromatophore photoresponses. Although photoreception that occurs independently of image formation remains poorly understood, this review highlights the important role of non-visual light detection in facilitating the multiple functions of animal coloration.

  12. Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention

    Science.gov (United States)

    Eggler, Aimee L.; Savinov, Sergey N.

    2016-01-01

    Plants are an incredibly rich source of compounds that activate the Nrf2 transcription factor, leading to upregulation of a battery of cytoprotective genes. This perspective surveys established and proposed molecular mechanisms of Nrf2 activation by phytochemicals with a special emphasis on a common chemical property of Nrf2 activators: the ability as “soft” electrophiles to modify cellular thiols, either directly or as oxidized biotransformants. In addition, the role of reactive oxygen/nitrogen species as secondary messengers in Nrf2 activation is discussed. While the uniquely reactive C151 of Keap1, an Nrf2 repressor protein, is highlighted as a key target of cytoprotective phytochemicals, also reviewed are other stress-responsive proteins, including kinases, which play non-redundant roles in the activation of Nrf2 by plant-derived agents. Finally, the perspective presents two key factors accounting for the enhanced therapeutic windows of effective phytochemical activators of the Keap1–Nrf2 axis: enhanced selectivity toward sensor cysteines and reversibility of addition to thiolate molecules. PMID:26855455

  13. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2010-06-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  14. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  15. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    Science.gov (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.

  16. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  17. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Michael J.; Leak, David J.; Spanu, Pietro D.; Murphy, Richard J. [Division of Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ (United Kingdom); Porter Alliance, Imperial College London, London SW7 2AZ (United Kingdom)

    2010-08-15

    A current barrier to the large-scale production of lignocellulosic biofuels is the cost associated with the energy and chemical inputs required for feedstock pretreatment and hydrolysis. The use of controlled partial biological degradation to replace elements of the current pretreatment technologies would offer tangible energy and cost benefits to the whole biofuel process. It has been known for some time from studies of wood decay that, in the early stages of growth in wood, brown rot fungi utilise a mechanism that causes rapid and extensive depolymerisation of the carbohydrate polymers of the wood cell wall. The brown rot hyphae act as delivery vectors to the plant cell wall for what is thought to be a combination of a localised acid pretreatment and a hydroxyl radical based depolymerisation of the cell wall carbohydrate polymers. It is this quality that we have exploited in the present work to enhance the saccharification potential of softwood forest residues for biofuel production. Here we show that after restricted exposure of pine sapwood to brown rot fungi, glucose yields following enzymatic saccharification are significantly increased. Our results demonstrate the potential of using brown rot fungi as a biological pretreatment for biofuel production. (author)

  18. Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and in vitro biological response.

    Science.gov (United States)

    Hadjicharalambous, Chrystalleni; Buyakov, Ales; Buyakova, Svetlana; Kulkov, Sergey; Chatzinikolaidou, Maria

    2015-04-23

    Zirconia (ZrO2) and alumina (Al2O3) based ceramics are widely used for load-bearing applications in bone repair due to their excellent mechanical properties and biocompatibility. They are often regarded as bioinert since no direct bone-material interface is created unless a porous structure intercedes, leading to better bone bonding. In this regard, investigating interactions between cells and porous ceramics is of great interest. In the present study, we report on the successful fabrication of sintered alumina A-61, zirconia Z-50 and zirconia/alumina composite ZA-60 ceramics with medium porosities of 61, 50 and 60%, respectively, indicating a bimodal pore size distribution and good interconnectivity. They exhibit elastic moduli of 3-10 GPa and compressive strength values of 60-240 MPa, similar to those of human cortical bone.We performed in vitro cell-material investigations comparing the adhesion, proliferation and differentiation of mouse pre-osteoblasts MC3T3-E1 on the three porous materials. While all three ceramics demonstrate a strong cell attachment, better cell spreading is observed on zirconia-containing substrates. Significantly higher cell growth was quantified on the latter ceramics, revealing an increased alkaline phosphatase activity, higher collagen production and increased calcium biomineralization compared to A-61. Hence, these porous zirconia-containing ceramics elicit superior biological responses over porous alumina of similar porosity, promoting enhanced biological interaction, with potential use as non-degradable bone grafts or as implant coatings.

  19. 生物除磷的机理及工艺%Mechanism and Processes of Biological Phosphorus Removal

    Institute of Scientific and Technical Information of China (English)

    欧阳子民

    2011-01-01

    水体富营养化是世界性难题,其中磷是主要限制因子。生物除磷工艺具有结构简单、污泥产量少、运行费用较低、便于操作和磷的回收等优点。在介绍PAO和DPB除磷原理的基础上,综述国内外生物除磷的研究进展,并介绍应用较多的除磷工艺,以供污水防治参考。%The phosphorus is the limited nutrient in eutrophication of the waterbody,which is a significant worldwide problem. The process of biological removal of phosphorus in waterbody is structure simple, sludge production less,low-cost,convenient in operation and reelaimation. Based on the introduction of the mechanism of PAO and DPB ,the updated progresses and processes in biological removal of phosphorus in waterbody were summarized in this paper, so as to provide references for the control of waste water.

  20. Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW

    Science.gov (United States)

    Sironi, Selena; Capelli, Laura; Céntola, Paolo; Del Rosso, Renato; Il Grande, Massimiliano

    In this study, the results of odour concentration measurements sampled from the principal odour sources of 40 dimensionally different and representative Italian waste mechanical and biological treatment (MBT) plants are presented. Experimental data are then used to estimate the odour emission factors (OEFs) relevant to single-process steps. An OEF is a representative value that relates the quantity of odour released to the atmosphere to a specific activity index, which may be for example the waste treatment capacity, the gross weight production, the site surface or a time unit. In this study, the OEFs were calculated as a function of the plant capacity, and expressed in ou E t -1, because of the existence of a proportionality between plant capacity and odour emissions. The results show that the major odour source of a waste MBT plant is represented by the aerobic biological treatment (with an OEF equal to 1.40×10 8 ou E t -1). In general, the OEFs calculated according to this approach represent a model for a rough prediction of odour emissions independently from the specific characteristics of the different plants.

  1. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies. PMID:25938277

  2. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  3. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.

    Science.gov (United States)

    Caparrós, C; Guillem-Martí, J; Molmeneu, M; Punset, M; Calero, J A; Gil, F J

    2014-11-01

    The generation of titanium foams is a promising strategy for modifying the mechanical properties of intervertebral reinforcements. Thus, the aim of this study was to compare the in vitro biological response of Ti6Al4V alloys with different pore sizes for use in intervertebral implants in terms of the adhesion, proliferation, and differentiation of pre-osteoblastic cells. We studied the production of Ti6Al4V foams by powder metallurgy and the biological responses to Ti6Al4V foams were assessed in terms of different pore interconnectivities and elastic moduli. The Ti6Al4V foams obtained had similar porosities of approximately 34%, but different pore sizes (66 µm for fine Ti6Al4V and 147 µm for coarse Ti6Al4V) due to the sizes of the microsphere used. The Ti6Al4V foams had a slightly higher Young׳s modulus compared with cancellous bone. The dynamic mechanical properties of the Ti6Al4V foams were slightly low, but these materials can satisfy the requirements for intervertebral prosthesis applications. The cultured cells colonized both sizes of microspheres near the pore spaces, where they occupied almost the entire area of the microspheres when the final cell culture time was reached. No statistical differences in cell proliferation were observed; however, the cells filled the pores on fine Ti6Al4V foams but they only colonized the superficial microspheres, whereas the cells did not fill the pores on coarse Ti6Al4V foams but they were distributed throughout most of the material. In addition, the microspheres with wide pores (coarse Ti6Al4V) stimulated higher osteoblast differentiation, as demonstrated by the Alcaline Phosphatase (ALP) activity. Our in vitro results suggest that foams with wide pore facilitate internal cell colonization and stimulate osteoblast differentiation.

  4. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, M., E-mail: m.bahrami@ma.iut.ac.ir; Fathi, M.H.; Ahmadian, M.

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co–Cr–Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co–Cr–Mo alloy to bioactive type by adding 10, 15, and 20 wt.% HA which have lower modulus elasticity and higher microhardness. - Graphical abstract: The present investigation has been based on the production of composite materials based on Co–Cr–Mo alloy with different amounts of hydroxyapatite nanobioceramic powder using the powder metallurgy route. Mechanical and biological properties of the composites were investigated. A significant increase in microhardness and decrease in modulus elasticity of the sintered composites were observed. - Highlights: • Co-base alloy/hydroxyapatite composites were prepared by powder metallurgy. • Composite microhardness is improved in comparison with Co-base alloy. • Modulus elasticity decrease by about 53–63% in comparison with Co-base alloy. • Apatite nucleus is formed on the surface of composites after soaking test. • Bioinert Co–Cr–Mo alloy is successfully converted to a bioactive type.

  5. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite

    International Nuclear Information System (INIS)

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co–Cr–Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co–Cr–Mo alloy to bioactive type by adding 10, 15, and 20 wt.% HA which have lower modulus elasticity and higher microhardness. - Graphical abstract: The present investigation has been based on the production of composite materials based on Co–Cr–Mo alloy with different amounts of hydroxyapatite nanobioceramic powder using the powder metallurgy route. Mechanical and biological properties of the composites were investigated. A significant increase in microhardness and decrease in modulus elasticity of the sintered composites were observed. - Highlights: • Co-base alloy/hydroxyapatite composites were prepared by powder metallurgy. • Composite microhardness is improved in comparison with Co-base alloy. • Modulus elasticity decrease by about 53–63% in comparison with Co-base alloy. • Apatite nucleus is formed on the surface of composites after soaking test. • Bioinert Co–Cr–Mo alloy is successfully converted to a bioactive type

  6. Integrated Surface and Mechanical Characterization of Freestanding Biological and Other Nano-Structures Using Atomic Force Microscopy

    Science.gov (United States)

    Wang, Xin

    This dissertation is focused on surface and mechanical characterization of freestanding biological and other nano-structures using atomic force microscopy including two parts: cell mechanics and nano-structure mechanics. The main purpose of this work is to investigate how the nano- / micro-scale mechanical properties affect macro-scale function. In cancer cells, efficacy of drug delivery is oftentimes declined due to the thick dendritic network of oligosaccharide mucin chains on the cell surface. AFM is used to measure the force needed to pierce the mucin layer to reach the cell surface. A pool of ovarian, pancreatic, lung, colorectal and breast cancer cells are characterized. The studies offer additional support for the development of clinical and pharmaceutical approaches to combat mucin over-expression in tumors during cancer chemotherapy. Macroscopic adhesion-aggregation and subsequent transportation of microorganisms in porous medium are closely related to the microscopic deformation and adhesion mechanical properties. The classical Tabor's parameter is modified. Multiple bacterial strains are characterized in terms of aggregates size, aggregation index and transportation kinetics. AFM is employed to obtain the microscopic coupled adhesion-deformation properties. The strong correlation between Tabor's parameter and aggregation-deposition-transportation suggests the AFM characterization is capable of making reliable predication of macroscopic behavior. A novel "nano-cheese-cutter" is fabricated on tipless AFM cantilever to measure elastic modulus and interfacial adhesion of a 1-D freestanding nano-structure. A single electrospun fiber is attached to the free end of AFM cantilever, while another fiber is similarly prepared on a mica substrate in an orthogonal direction. An external load is applied to deform the two fibers into complementary V-shapes. This work is extended to investigate the interfacial adhesion energy between dissimilar materials. SWCNT thin

  7. Adsorption of apolipoprotein A-I to biological membranes. A statistical mechanical model

    Science.gov (United States)

    Gross, Eitan

    2012-07-01

    Apolipoprotein A-I (apo A-I), the main protein component of high-density lipoprotein (HDL), reduces the risk for atherosclerosis by removing cholesterol from the membrane of foam cells. Experiments with model membrane systems have indicated, however, that membrane cholesterol reduces apo A-I binding to the membrane. Foam cells resolve this discrepancy electrostatically by co-inserting negatively charged phospholipids in their membrane. Here we present a statistical mechanical model to account for the effect of cholesterol. Our model is based on the Haugen and May model which takes into account the dipolar nature of the zwitterionic phospholipid head group in the membrane, in which the positive end of the zwitterionic dipole moment can move randomly on a hemispherical surface with a radius equal to the arm of the dipole moment and with the negative end fixed at the hydrocarbon layer. Adsorption of a positively charged apo A-I macroion to the surface of the membrane modifies the electric field within the head group region and induces lateral demixing of phospholipid molecules in the membrane. Results from numerical integration of model equations show that i) as a result of the strong charge-dipole electrostatic coupling, the positive end of the dipoles tilts away from the adsorbed macroion in a cooperative manner; and ii) cholesterol reduces macroion adsorption to the membrane by reducing the surface area of the membrane and restricting the dipoles range of rotation. Model predictions for the change in free energy of adsorption to zwitterionic membrane are in good agreement with previously reported experimental data with liposomes. The model can assist in designing new mimetic peptides.

  8. [Mechanisms underlying physiological functions of food factors via non-specific interactions with biological proteins].

    Science.gov (United States)

    Murakami, Akira

    2015-01-01

      We previously reported that zerumbone, a sesquiterpene found in Zingiber zerumbet SMITH, showed notable cancer preventive effects in various organs of experimental rodents. This agent up-regulated nuclear factor-E2-related factor (Nrf2)-dependent expressions of anti-oxidative and xenobiotics-metabolizing enzymes, leading to an increased self-defense capacity. On the other hand, zerumbone markedly suppressed the expression of cyclooxygenase-2, an inducible pro-inflammatory enzyme, by disrupting mRNA stabilizing processes. Binding experiments using a biotin derivative of zerumbone demonstrated that Keap1, an Nrf2 repressive protein, is one of its major binding proteins that promotes their dissociation for inducing Nrf2 transactivation. We then generated a specific antibody against zerumbone-modified proteins and found that zerumbone modified numerous cellular proteins in a non-specific manner, with global distribution of the modified proteins seen not only in cytoplasm but also the nucleus. Based on those observations, zerumbone was speculated to cause proteo-stress, a notion supported by previous findings that it increased the C-terminus of Hsc70 interacting protein-dependent protein ubiquitination and also promoted aggresome formation. Interestingly, zerumbone counteracted proteo-stress and heat stress via up-regulation of the protein quality control systems (PQCs), e.g., heat shock proteins (HSPs), ubiquitin-proteasome, and autophagy. Meanwhile, several phytochemicals, including ursolic acid and curcumin, were identified as marked HSP70 inducers, whereas most nutrients tested were scarcely active. Recent studies have revealed that PQCs play important roles in the prevention of many lifestyle related diseases, such as cancer, thus non-specific binding of phytochemicals to cellular proteins may be a novel and unique mechanism underlying their physiological activities.

  9. Strain rate hardening: a hidden but critical mechanism for biological composites?

    Science.gov (United States)

    Chintapalli, Ravi Kiran; Breton, Stephanie; Dastjerdi, Ahmad Khayer; Barthelat, Francois

    2014-12-01

    Natural materials such as nacre, bone, collagen and spider silk boast unusual combinations of stiffness, strength and toughness. Behind this performance is a staggered microstructure, which consists of stiff and elongated inclusions embedded in a softer and more deformable matrix. The micromechanics of deformation and failure associated with this microstructure are now well understood at the "unit cell" level, the smallest representative volume for this type of material. However, these mechanisms only translate to high performance if they propagate throughout large volumes, an important condition which is often overlooked. Here we present, for the first time, a model which captures the conditions for either spreading of deformations or localization, which determines whether a staggered composite is brittle or deformable at the macroscale. The macroscopic failure strain for the material was calculated as function of the viscoplastic properties of the interfaces and the severity of the defect. As expected, larger strains at failure can be achieved when smaller defects are present within the material, or with more strain hardening at the interface. The model also shows that strain rate hardening is a powerful source of large deformations for the material as well, a result we confirmed and validated with tensile experiments on glass-polydimethylsiloxane (PDMS) nacre-like staggered composites. An important implication is that natural materials, largely made of rate-dependent materials, could rely on strain rate hardening to tolerate initial defects and damage to maintain their functionality. Strain rate hardening could also be harnessed and optimized in bio-inspired composites in order to maximize their overall performance. PMID:25174668

  10. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: Emerging translational approaches that bridge biology and behavior: Introduction to the Special Issue

    OpenAIRE

    Feldstein Ewing, Sarah W.; Chung, Tammy

    2013-01-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical ...

  11. Integrating cell biology, image analysis, and computational mechanical modeling to analyze the contributions of cellulose and xyloglucan to stomatal function.

    Science.gov (United States)

    Rui, Yue; Yi, Hojae; Kandemir, Baris; Wang, James Z; Puri, Virendra M; Anderson, Charles T

    2016-06-01

    Cell walls are likely to be essential determinants of the amazing strength and flexibility of the guard cells that surround each stomatal pore in plants, but surprisingly little is known about cell wall composition, organization, and dynamics in guard cells. Recent analyses of cell wall organization and stomatal function in the guard cells of Arabidopsis thaliana mutants with defects in cellulose and xyloglucan have allowed for the development of new hypotheses about the relative contributions of these components to guard cell function. Advanced image analysis methods can allow for the automated detection of key structures, such as microtubules (MTs) and Cellulose Synthesis Complexes (CSCs), in guard cells, to help determine their contributions to stomatal function. A major challenge in the mechanical modeling of dynamic biological structures, such as guard cell walls, is to connect nanoscale features (e.g., wall polymers and their molecular interactions) with cell-scale mechanics; this challenge can be addressed by applying multiscale computational modeling that spans multiple spatial scales and physical attributes for cell walls.

  12. Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms.

    Science.gov (United States)

    Wörgötter, Florentin; Porr, Bernd

    2005-02-01

    In this review, we compare methods for temporal sequence learning (TSL) across the disciplines machine-control, classical conditioning, neuronal models for TSL as well as spike-timing-dependent plasticity (STDP). This review introduces the most influential models and focuses on two questions: To what degree are reward-based (e.g., TD learning) and correlation-based (Hebbian) learning related? and How do the different models correspond to possibly underlying biological mechanisms of synaptic plasticity? We first compare the different models in an open-loop condition, where behavioral feedback does not alter the learning. Here we observe that reward-based and correlation-based learning are indeed very similar. Machine control is then used to introduce the problem of closed-loop control (e.g., actor-critic architectures). Here the problem of evaluative (rewards) versus nonevaluative (correlations) feedback from the environment will be discussed, showing that both learning approaches are fundamentally different in the closed-loop condition. In trying to answer the second question, we compare neuronal versions of the different learning architectures to the anatomy of the involved brain structures (basal-ganglia, thalamus, and cortex) and the molecular biophysics of glutamatergic and dopaminergic synapses. Finally, we discuss the different algorithms used to model STDP and compare them to reward-based learning rules. Certain similarities are found in spite of the strongly different timescales. Here we focus on the biophysics of the different calcium-release mechanisms known to be involved in STDP. PMID:15720770

  13. Mineral and Protein-Bound Water and Latching Action Control Mechanical Behavior at Protein-Mineral Interfaces in Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Pijush Ghosh

    2008-01-01

    Full Text Available The nacre structure consists of laminated interlocked mineral platelets separated by nanoscale organic layers. Here, the role of close proximity of mineral to the proteins on mechanical behavior of the protein is investigated through steered molecular dynamics simulations. Our simulations indicate that energy required for unfolding protein in the proximity of mineral aragonite is several times higher than that for isolated protein in the absence of the mineral. Here, we present details of specific mechanisms which result in higher energy for protein unfolding in the proximity of mineral. At the early stage of pulling, peaks in the load-displacement (LD plot at mineral proximity are quantitatively correlated to the interaction energy between atoms involved in the latching phenomenon of amino acid side chain to aragonite surface. Water plays an important role during mineral and protein interaction and water molecules closer to the mineral surface are highly oriented and remain rigidly attached as the protein strand is pulled. Also, the high magnitude of load for a given displacement originates from attractive interactions between the protein, protein-bound water, and mineral. This study provides an insight into mineral-protein interactions that are predominant in biological nanocomposites and also provides guidelines towards design of biomimetic nanocomposites.

  14. Explosive pollination mechanism in Periandra mediterranea (Vell. Taub. (Fabaceae in the Guaribas Biological Reserve, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Andressa Cavalcante Meireles

    2015-12-01

    Full Text Available Periandra mediterranea (Vell. Taub. has papilionaceous flowers with a complex pollination mechanism. This study examined pollination and reproduction in P. mediterranea from November 2009 to October 2011 at the Guaribas Biological Reserve, Paraíba, Brazil. The petals are modified in a keel that protects the stamens and stigma; two wings surround the keel, and a standard that serves as landing platform for floral visitors. Periandra mediterranea exhibits an explosive type pollination mechanism in which the bee species Xylocopa frontalis, Acanthopus excellens and Epicharis sp., land on the standard and, due to body weight, expose the reproductive organs in the wing-keel complex. As a result, the reproductive organs of the flower come into contact with the dorsal region of the bee body, depositing pollen (i.e., nototríbic pollination. Reproductive assays showed 20% fruiting in spontaneous auto-pollination, 33% in manual auto-pollination, 33% in manual cross-pollination, and 100% in the control group, with no reproductive success while in apomixis. These results demonstrate self-compatibility in this species, however it depends on pollinators to ensure reproductive success.

  15. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants.

    Science.gov (United States)

    Gioannis, G De; Muntoni, A; Cappai, G; Milia, S

    2009-03-01

    Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy. PMID:18954969

  16. Mechanical and biological complication rates of the modified lateral-screw-retained implant prosthesis in the posterior region: an alternative to the conventional Implant prosthetic system

    Science.gov (United States)

    2016-01-01

    PURPOSE The modified lateral-screw-retained implant prosthesis (LSP) is designed to combine the advantages of screw- and cement-retained implant prostheses. This retrospective study evaluated the mechanical and biological complication rates of implant-supported single crowns (ISSCs) inserted with the modified LSP in the posterior region, and determined how these complication rates are affected by clinical factors. MATERIALS AND METHODS Mechanical complications (i.e., lateral screw loosening [LSL], abutment screw loosening, lateral screw fracture, and ceramic fracture) and biological complications (i.e., peri-implant mucositis [PM] and peri-implantitis) were identified from the patients' treatment records, clinical photographs, periapical radiographs, panoramic radiographs, and clinical indices. The correlations between complication rates and the following clinical factors were determined: gender, age, position in the jaw, placement location, functional duration, clinical crown-to-implant length ratio, crown height space, and the use of a submerged or nonsubmerged placement procedure. RESULTS Mechanical and biological complications were present in 25 of 73 ISSCs with the modified LSP. LSL (n=11) and PM (n=11) were the most common complications. The incidence of mechanical complications was significantly related to gender (P=.018). The other clinical factors were not significantly associated with mechanical and biological complication rates. CONCLUSION Within the limitations of this study, the incidence of mechanical and biological complications in the posterior region was similar for both modified LSP and conventional implant prosthetic systems. In addition, the modified LSP is amenable to maintenance care, which facilitates the prevention and treatment of mechanical and biological complications. PMID:27141260

  17. The Sarin-like Organophosphorus Agent bis (isopropyl methyl)phosphonate Induces Apoptotic Cell Death and COX-2 Expression in SK-N-SH Cells.

    Science.gov (United States)

    Arima, Yosuke; Yoshimoto, Kanji; Namera, Akira; Makita, Ryosuke; Murata, Kazuhiro; Nagao, Masataka

    2016-03-01

    Organophosphorus compounds, such as sarin, are highly toxic nerve agents that inhibit acetylcholinesterase (AChE), but not cholinesterase, via multiple mechanisms. Recent studies have shown that organophosphorus compounds increase cyclooxygenase-2 (COX-2) expression and induce neurotoxicity. In this study, we examined the toxicity of the sarin-like organophosphorus agent bis(isopropyl methyl)phosphonate (BIMP) and the effects of BIMP on COX-2 expression in SK-N-SH human neuroblastoma cells. Exposure to BIMP changed cell morphology and induced caspase-dependent apoptotic cell death accompanied by cleavage of caspase 3, caspase 9, and poly (ADP-ribose) polymerase (PARP). It also increased COX-2 expression, while pretreatment with a COX inhibitor, ibuprofen, decreased BIMP-dependent cell death and COX-2 expression in SK-N-SH cells. Thus, our findings suggest that BIMP induces apoptotic cell death and upregulates COX-2 expression. PMID:27348899

  18. Cell biological mechanism for triggering of ABA accumula-tion under water stress in Vicia faba leaves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves of Vicia faba. Mannitol at 890 mmol· kg-1 osmotic concentration induced an increase of more than 5 times in ABA concentra-tion in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentra-tion in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol·kg-1 concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumulation. Neither Ca2+-che- lating agent EGTA nor Ca2+ channel activator A23187 nor the two cytoskeleton inhibitors, colchicine and cyto-chalasin B, had any effect on water stress-induced ABA accumulation. Interestingly water stress-induced ABA accumulation was effectively inhibited by a non-plasmalemma-perme- able sulfhy-dryl-modifier PCMBS (p-chloromercuriphenyl-sulfonic acid), suggesting that plasmalemma pro-tein(s) may be involved in the triggering of water stress-induced ABA accumulation, and the protein may contain sulfhydryl group at its function domain.

  19. Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture.

    Directory of Open Access Journals (Sweden)

    Cornelis P L Paul

    Full Text Available Low-back pain (LBP is a common medical complaint and associated with high societal costs. Degeneration of the intervertebral disc (IVD is assumed to be an important causal factor of LBP. IVDs are continuously mechanically loaded and both positive and negative effects have been attributed to different loading conditions.In order to study mechanical loading effects, degeneration-associated processes and/or potential regenerative therapies in IVDs, it is imperative to maintain the IVDs' structural integrity. While in vivo models provide comprehensive insight in IVD biology, an accompanying organ culture model can focus on a single factor, such as loading and may serve as a prescreening model to reduce life animal testing. In the current study we examined the feasibility of organ culture of caprine lumbar discs, with the hypothesis that a simulated-physiological load will optimally preserve IVD properties.Lumbar caprine IVDs (n = 175 were cultured in a bioreactor up to 21 days either without load, low dynamic load (LDL, or with simulated-physiological load (SPL. IVD stiffness was calculated from measurements of IVD loading and displacement. IVD nucleus, inner- and outer annulus were assessed for cell viability, cell density and gene expression. The extracellular matrix (ECM was analyzed for water, glycosaminoglycan and total collagen content.IVD biomechanical properties did not change significantly with loading conditions. With SPL, cell viability, cell density and gene expression were preserved up to 21 days. Both unloaded and LDL resulted in decreased cell viability, cell density and significant changes in gene expression, yet no differences in ECM content were observed in any group.In conclusion, simulated-physiological loading preserved the native properties of caprine IVDs during a 21-day culture period. The characterization of caprine IVD response to culture in the LDCS under SPL conditions paves the way for controlled analysis of degeneration

  20. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    Energy Technology Data Exchange (ETDEWEB)

    Bond, P.L.; Keller, J.; Blackall, L.L. [Univ. of Queensland, Brisbane (Australia)

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  1. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism.

    Science.gov (United States)

    Li, Chunlu; Chen, Nan; Zhao, Yanan; Li, Rui; Feng, Chuanping

    2016-11-01

    In this study, an effective defluoridation adsorbent was developed by depositing polypyrrole (PPy) on granular peanut shell biological carbon (BC) via in situ chemical oxidative polymerization. The variables of defluoridation process (i.e., adsorbent dosage, fluoride solution pH, and anionic interference) were tested. The mechanism was determined by isotherm and kinetic studies, Brunauer-Emmett-Teller (BET) method, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and automatic titration. The PPy-grafted BC (PPy/BC) composite performed commendably from pH 2.0 to 10.0, and exhibited high selectivity for fluoride in the presence of several co-existing anions. The experimental data were described well by a Langmuir isotherm curve, and the maximum adsorption capacity was 17.15 mg g(-1). Kinetic studies illustrated the adsorption process was accomplished via surface adsorption as well as by intraparticle diffusion. In addition, mesoporous diffusion was the rate-controlling step in intraparticle diffusion process. BET and SEM analysis revealed the sponge-like polymer adhered to the BC and plugged the pores. XPS, FTIR, and SEM confirmed that fluoride removal was accomplished via the replacement of doped ionizable chloride ions (Cl(-)) coupled with positively charged nitrogen (N(+)), computation of XPS data enabled the formulation of a three-layer-deep hypothesis for PPy. PMID:27521642

  2. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  3. Upgrading of a mechanical biological treatment plant with a solid anaerobic digestion batch: a real case study.

    Science.gov (United States)

    Di Maria, Francesco

    2012-10-01

    The energetic and treatment efficiency analysis of an existing mechanical biological treatment (MBT) plant shows that more than 60% of the 25 kWh consumed per each tonne of non-differentiated waste (NDW) treated is due to the electric fans. About 7.5 kWh per tonne of NDW is used for supplying the process air for stabilizing the waste organic fraction (WOF). Exploitation of the solid anaerobic digestion batch (SADB) for processing the WOF before it enters the aerobic section of the MBT leads to the production of biogas and, when subsequently fed to a gas engine, electric power at a magnitude of about 150 kWh per tonne of WOF, resulting in an energy surplus of about 48 kWh per tonne of NDW treated by the MBT facility. The SADB can also reduce the organic load rate at which the aerobic section operates up to 40%, leading to further positive effects on the whole MBT process. PMID:22751849

  4. Behaviour at landfills of waste having undergone mechanic-biological and thermal conditioning; Deponieverhalten mechanisch-biologisch und thermisch behandelten Restabfalls

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.; Dach, J.; Jager, J. [Institut WAR, Darmstadt (Germany). FG Abfalltechnik

    1998-12-31

    The work studies, in landfill test reactors, water, gas and heat transport as well as gas and leachate formation in waste having undergone mechanical-biological and thermal conditioning. (orig.) [Deutsch] Es wurde der Wasser-, Gas- und Waermetransport, sowie die Gasbildung- und Sickerwasserbelastung mechanisch-biologisch und thermisch vorbehandelter Abfaelle in Deponieversuchsreaktoren untersucht. (orig.)

  5. The molecular biological mechanism of mitochondrial diseases%线粒体病的分子生物学机制

    Institute of Scientific and Technical Information of China (English)

    刘誉; 韦建鸽; 吴彬彬; 兰菲菲

    2011-01-01

    线粒体病是一种少见的能量代谢病,病情复杂多样,从单一组织损伤或无明显临床症状到多系统发病乃致患者早期死亡,在临床上容易误诊或漏诊,甚至延误治疗.由于线粒体的结构与功能受核基闪组(nDNA)与线粒体基冈组(mtDNA)双重调控,其中大多数线粒体酶、结构蛋白和各种蛋白因子由nDNA编码,因而多数原发性线粒体病是nDNA突变所致,符合孟德尔遗传定律,少数则由于mtDNA缺陷造成,属于母系遗传,两种DNA突变所引起的分子病理机制和临床表型特征有所不同.本文综述线粒体病的遗传模式、分类、分子生物学特点及其分子机制的研究进展.%Mitochondrial diseases are a group of rare disorders due to defects of energy metabolism in mitochondria.The clinical phenotype of mitochondrial diseases ranges from a single structural defect in tissues or no symptoms to multisystemic lesions or even death in early ages.Therefore, this type of diseases are often clinically misdiagnosed or even delayed for treatment.Biologically, structure and function of mitochondria are under the dual control of the mitochondrial genome (mtDNA) and the nuclear genome (nDNA).Due to the fact that most of the enzymes and protein factors of mitochondria are encoded by nDNA, primary mitochondrial diseases are mainly caused by mutations in the nuclear genome and thus are of Mendelian inherited disorders, while others caused by mutations in mtDNA are maternally inherited.The molecular pathogenesis and clinical phenotype vary with mutations in nDNA or mtDNA.This review describes the inheritance, classification and molecular biological mechanisms of mitochondrial diseases.

  6. A computational functional genomics based self-limiting self-concentration mechanism of cell specialization as a biological role of jumping genes.

    Science.gov (United States)

    Lötsch, Jörn; Ultsch, Alfred

    2016-01-01

    Specialization is ubiquitous in biological systems and its manifold mechanisms are active research topics. Although clearly adaptive, the way in which specialization of cells is realized remains incompletely understood as it requires the reshaping of a cell's genome to favor particular biological processes in the competition on a cell's functional capacity. Here, a self-specialization mechanism is identified as a possible biological role of jumping genes, in particular LINE-1 retrotransposition. The mechanism is self-limiting and consistent with its evolutionary preservation despite its likely gene-breaking effects. The scenario we studied was the need for a cell to process a longer exposition to an extraordinary situation, for example continuous exposure to the nociceptive input or the intake of addictive drugs. Both situations may evolve toward chronification. The mechanism involves competition within a gene set in which a subset of genes cooperating in particular biological processes. The subset carries a piece of information, consisting of the LINE-1 sequence, about the destruction of their functional competitor genes which are not involved in that process. During gene transcription, an active copy of LINE-1 is co-transcribed. At a certain low probability, a subsequently transcribed and thus actually exposed gene can be rendered nonfunctional by LINE-1 retrotransposition in a relevant gene part. As retrotransposition needs time it is unlikely that LINE-1 retrotranspose into its own carrier gene. This reshapes the cell genome toward self-specializing of those biological processes that are carried out with a high number of LINE-1 containing genes. Self-termination of the mechanism is achieved by allowing LINE-1 to also occasionally jump into the coding region of itself, thus destroying the information about competitor destruction by successively decreasing the number of LINE-1 until the mechanism ceases. Employing a computational functional genomics approach, we

  7. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys.

    Science.gov (United States)

    Lifeng, Zhao; Yan, Hong; Dayun, Yang; Xiaoying, Lü; Tingfei, Xi; Deyuan, Zhang; Ying, Hong; Jinfeng, Yuan

    2011-04-01

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field. PMID:21441653

  8. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lifeng; Hong Yan; Yang Dayun; Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 (China); Xi Tingfei [Shenzhen Research Institute, Peking University, Shenzhen, 518055 (China); Deyuan, Zhang [R and D Center of Lifetech Scientific (Shenzhen) Co., Ltd, Shenzhen, 518057 (China); Hong Ying [Department of Gynecology and Obstetrics, Nanjing Drum-Tower Hospital, Nanjing, 210096 (China); Yuan Jinfeng, E-mail: luxy@seu.edu.cn [Department of Gynecology and Obstetrics, Xuanwu Hospital, Nanjing, 210096 (China)

    2011-04-15

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field.

  9. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials.

    Science.gov (United States)

    Khanal, Dipesh; Dillon, Eoghan; Hau, Herman; Fu, Dong; Ramzan, Iqbal; Chrzanowski, Wojciech

    2015-12-01

    Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's. PMID:26518012

  10. Fabrication mechanism of nanostructured HA/TNTs biomedical coatings: an improvement in nanomechanical and in vitro biological responses.

    Science.gov (United States)

    Ahmadi, Shahab; Riahi, Zohreh; Eslami, Aylar; Sadrnezhaad, S K

    2016-10-01

    In this paper, a mechanism for fabrication of nanostructured hydroxyapatite coating on TiO2 nanotubes is presented. Also, the physical, biological, and nanomechanical properties of the anodized Ti6Al4V alloy consisting TiO2 nanotubes, electrodeposited hydroxyapatite, and the hydroxyapatite/TiO2 nanotubes double layer coating on Ti6Al4V alloy implants are compared. Mean cell viability of the samples being 84.63 % for uncoated plate, 91.53 % for electrodeposited hydroxyapatite, and 94.98 % for hydroxyapatite/TiO2 nanotubes coated sample were in the acceptable range. Merely anodized prototype had the highest biocompatibility of 110 % with respect to the control sample. Bonding strength of hydroxyapatite deposit to the substrate increased from 12 ± 2 MPa to 25.4 ± 2 MPa using intermediate TiO2 nanotubes layer. Hardness and elastic modulus of the anodized surface were 956 MPa and 64.7 GPa, respectively. The corresponding values for hydroxyapatite deposit were approximately measured 44.3 MPa and 0.66 GPa, respectively, while the average obtained values for hardness (159.3 MPa) and elastic modulus (2.25 GPa) of the hydroxyapatite/TiO2 nanotubes double coating improved more than 30 % of the pure hydroxyapatite deposit. Friction coefficient (ξ) of the anodized surface was 0.32 ± 0.02. The calculated friction coefficient enhanced from 0.65 ± 0.04 for sole hydroxyapatite layer to the 0.46 ± 0.02 for hydroxyapatite/TiO2 nanotubes due to presence of nanotubular TiO2 intermediate layer. PMID:27582070

  11. Fabrication mechanism of nanostructured HA/TNTs biomedical coatings: an improvement in nanomechanical and in vitro biological responses.

    Science.gov (United States)

    Ahmadi, Shahab; Riahi, Zohreh; Eslami, Aylar; Sadrnezhaad, S K

    2016-10-01

    In this paper, a mechanism for fabrication of nanostructured hydroxyapatite coating on TiO2 nanotubes is presented. Also, the physical, biological, and nanomechanical properties of the anodized Ti6Al4V alloy consisting TiO2 nanotubes, electrodeposited hydroxyapatite, and the hydroxyapatite/TiO2 nanotubes double layer coating on Ti6Al4V alloy implants are compared. Mean cell viability of the samples being 84.63 % for uncoated plate, 91.53 % for electrodeposited hydroxyapatite, and 94.98 % for hydroxyapatite/TiO2 nanotubes coated sample were in the acceptable range. Merely anodized prototype had the highest biocompatibility of 110 % with respect to the control sample. Bonding strength of hydroxyapatite deposit to the substrate increased from 12 ± 2 MPa to 25.4 ± 2 MPa using intermediate TiO2 nanotubes layer. Hardness and elastic modulus of the anodized surface were 956 MPa and 64.7 GPa, respectively. The corresponding values for hydroxyapatite deposit were approximately measured 44.3 MPa and 0.66 GPa, respectively, while the average obtained values for hardness (159.3 MPa) and elastic modulus (2.25 GPa) of the hydroxyapatite/TiO2 nanotubes double coating improved more than 30 % of the pure hydroxyapatite deposit. Friction coefficient (ξ) of the anodized surface was 0.32 ± 0.02. The calculated friction coefficient enhanced from 0.65 ± 0.04 for sole hydroxyapatite layer to the 0.46 ± 0.02 for hydroxyapatite/TiO2 nanotubes due to presence of nanotubular TiO2 intermediate layer.

  12. Synthesis, uptake mechanism characterization and biological evaluation of {sup 18}F labeled fluoroalkyl phenylalanine analogs as potential PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Wang Limin [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Qu Wenchao; Lieberman, Brian P.; Ploessl, Karl [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2011-01-15

    Introduction: Amino acids based tracers represent a promising class of tumor metabolic imaging agents with successful clinical applications. Two new phenylalanine derivatives, p-(2-[{sup 18}F]fluoroethyl)-L-phenylalanine (FEP, [{sup 18}F]2) and p-(3-[{sup 18}F]fluoropropyl)-L-phenylalanine (FPP, [{sup 18}F]3) were synthesized and evaluated in comparison to clinically utilized O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine (FET, [{sup 18}F]1). Methods: FEP ([{sup 18}F]2) and FPP ([{sup 18}F]3) were successfully synthesized by a rapid and efficient two-step nucleophilic fluorination of tosylate precursors and deprotection reaction. In vitro cell uptake studies were carried out in 9L glioma cells. In vivo studies, 9L tumor xenografts were implanted in Fisher 344 rats. Results: FEP ([{sup 18}F]2) and FPP ([{sup 18}F]3) could be efficiently labeled within 90 min with good enantiomeric purity (>95%), good yield (11-37%) and high specific activity (21-69 GBq/{mu}mol). Cell uptake studies showed FEP had higher uptake than FPP as well as reference ligand FET ([{sup 18}F]1). Uptake mechanism studies suggested that FEP is a selective substrate for system L and prefers its subtype LAT1. In vivo biodistribution studies demonstrated FEP had specific accumulation in tumor cells and tumor to background ratio reached 1.45 at 60 min. Small animal positron emission tomography (PET) imaging studies showed FEP was comparable to FET for imaging rats bearing 9L tumor model. FEP had high uptake in 9L tumor compared to surrounding tissue and was quickly excreted through urinary tract. Conclusion: Biological evaluations indicate that FEP ([{sup 18}F]2) is a potential useful tracer for tumor imaging with PET.

  13. A multicomponent bioactive tissue-engineered blood vessel: Fabrication, mechanical evaluation and biological evaluation with physiological-relevant conditions

    Science.gov (United States)

    Bonani, Walter

    The high long-term failure rate of synthetic vascular grafts in the replacement of small vessels is known to be associated with the lack of physiological signals to vascular cells causing adverse hemodynamic, inflammatory or coagulatory events. Current studies focus on developing engineered vascular devices with ability of directing cell activity in vitro and in vivo for tissue regeneration. It is also known that controlled molecule release from scaffolds can dramatically increase the scaffold ability of directing cell activities in vitro and in vivo for tissue regeneration. To address the mechanical and biological problems associated with graft materials, we demonstrated a degradable polyester-fibroin composite tubular scaffolds which shows well-integrated nanofibrous structure, endothelial-conducive surface and anisotropic mechanical property, suitable as engineered vascular constructs. Tissue regeneration needs not only functional biomolecules providing signaling cues to cells and guide tissue remodeling, but also an adequate modality of molecule delivery. In fact, healthy tissue formation requires specific signals at well-defined place and time. To develop scaffolds with multi-modal presentation of biomolecules, we patterned electrospun nanofibers over the thickness of the 3-dimensional scaffolds by programming the deposition of interpenetrating networks of degradable polymers poly(a-caprolactone) and poly(lactide-co-glycolide) acid in tailored proportion. Fluorescent model molecules, drug and growth factors were embedded in the polymeric fibers with different techniques and release profiles were obtained and discussed. Fabrication process resulted in precise gradient patterns of materials and functional biomolecules throughout the thickness of the scaffold. These graded materials showed programmable spatio-temporal control over the release. Molecule release profiles on each side of the scaffolds were used to determine the separation efficiency of molecule

  14. Energy production from mechanical biological treatment and Composting plants exploiting solid anaerobic digestion batch: An Italian case study

    International Nuclear Information System (INIS)

    Highlights: ► This work quantifies the Italian Composting and MBT facilities upgradable by SADB. ► The bioCH4 from SADB of source and mechanical selected OFMSW is of 220–360 Nl/kg VS. ► The upgrading investment cost is 30% higher for Composting than for MBT. ► Electricity costs are 0.11–0.28 €/kW h, not influenced by differentiate collection. ► Electrical energy costs are constant for SADB treating more than 30 ktons/year. - Abstract: The energetic potential of the organic fraction of municipal solid waste processed in both existing Composting plants and Mechanical Biological Treatment (MBT) plants, can be successfully exploited by retrofitting these plants with the solid anaerobic digestion batch process. On the basis of the analysis performed in this study, about 50 MBT plants and 35 Composting plants were found to be suitable for retrofitting with Solid Anaerobic Digestion Batch (SADB) facilities. Currently the organic fraction of Municipal Solid Waste (OFMSW) arising from the MBT facilities is about 1,100,000 tons/year, whereas that arising from differentiated collection and treated in Composting plants is about 850,000 tons/year. The SADB performances were analyzed by the aid of an experimental apparatus and the main results, in agreement with literature data, show that the biogas yield ranged from 400 to 650 Nl/kg of Volatile Solids (VS), with a methane content ranging from 55% to 60% v/v. This can lead to the production of about 500 GW h of renewable energy per year, giving a CO2 reduction of about 270,000 tons/year. From the economic point of view, the analysis shows that the mean cost of a kW h of electrical energy produced by upgrading MBT and Composting facilities with the SADB, ranges from 0.11 and 0.28 €/kW h, depending on the plant size and the amount of waste treated.

  15. Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: odor assessment and photochemical reactivity.

    Science.gov (United States)

    Fang, Jingjing; Zhang, Hua; Yang, Na; Shao, Liming; He, Pinjing

    2013-11-01

    The concentrations and chromatographic profiles of gaseous pollutants emitted from a municipal solid waste (MSW) biological treatment plant were investigated to identify the major odor substances and atmospheric photochemical reactive species (PRS). Four methods were used to measure different gaseous pollutants in this study, including colorimetric tubes, gas chromatography with mass spectrometry/flame ionization detection/pulsed flame photometric detection (GC-MS/FID/PFPD) preceded by cold trap concentration, GC-FID preceded by solid-phase microextraction (SPME), and high-performance liquid chromatography (HPLC) after derivation by 2,4-dinitrophenylhydrazine (DNPH). Seventy-five gaseous compounds belonging to nine groups (nitrogen compounds, sulfur compounds, alkanes, alkenes, aromatics, terpenes, alcohols, carbonyls, and volatile fatty acids [VFAs]) were identified. In the pre-biotreatment facility, the total concentration of the gaseous pollutants reached the maximum value on day 7 (317 ppm). During the post-biotreatment process, the total concentration of gaseous pollutants decreased from 331 ppm at the beginning to 162 ppm in the end. The group with the greatest decrease was carbonyls, from 64 to 7.4 ppm, followed by alcohols, from 40 to 4.5 ppm, which were both oxygenated compounds. The proportion of aromatics was notably high in the pre-mechanical treatment facility, accounting for 50.6% of the total, revealing the xenobiotic compounds disseminated by stirring and agitating the waste in the initial stage. The proportions of nitrogen compounds were lower in the pre- and post-mechanical treatment facilities (1.5% and 6.9%) than in the pre- and post-biotreatment facilities (11.9% and 13:8%), suggesting that their generation was closely associated with waste degradation. The major odor compounds in the facilities were acetic acid, butyric acid, valeric acid, isovaleric acid, and dimethyl sulfide. The major PRS in the facilities were aromatics, acetaldehyde

  16. Gap junctional intercellular communication as a biological "Rosetta stone" in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy.

    Science.gov (United States)

    Trosko, James E

    2007-08-01

    In spite of the early speculation by Loewenstein that one of the critical distinguishing phenotypes of cancers from normal cells was the dysfunction of gap junctional intercellular communication (GJIC), this hypothesis has not captured the attention of most birth defects and cancer researchers. Moreover, even with later demonstrations that factors that influence normal development and carcinogenesis by modulating GJIC, such as chemical teratogens and tumor-promoting chemicals, inflammatory factors, hormones and growth factors, antisense connexin genes, knockout mouse models, human inherited mutated connexin genes, si-connexin RNA, chemopreventive and chemotherapeutic chemicals, it is rare that one sees any reference to these studies by the mainstream investigators in these fields. Based on the assumption that the evolutionarily conserved connexin genes found in metazoans are needed for normal development and the maintenance of health and T. Dobzhansky's statement "Nothing in biology makes sense except in the light of evolution," a short review of the roles of endogenous and exogenous modulators of GJIC will be made in the context of the multistage, multimechanism process of carcinogenesis, the stem cell theory of carcinogenesis, the discovery and characterization of normal adult stem "cancer stem" cells and the observation that two distinct classes of GJIC-deficient cancer cells are known. The implications of these observations to a "systems biological" view of the role of gap junctions and the nutritional prevention and treatment of several chronic diseases and cancer will be discussed.

  17. Simulating Biological and Non-Biological Motion

    Science.gov (United States)

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  18. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  19. Performance of a low cost MBT prior to landfilling: study of the biological treatment of size reduced MSW without mechanical sorting.

    Science.gov (United States)

    Lornage, R; Redon, E; Lagier, T; Hébé, I; Carré, J

    2007-01-01

    In France, the interest in Mechanical Biological Treatment (MBT) prior to landfilling is actually growing. In the absence of acceptance criteria for the waste to be landfilled, an alternative to the intensive, high-technology MBT can only find its place in the French context if it shows substantial benefits from an environmental, economic or operational point of view. This paper presents an experiment of low-cost MBT of size reduced MSW without material splitting. The performance of an experimental, pilot-scale mechanical and biological treatment process has been studied on 37.5 Mg of raw municipal solid waste. The mechanical process has been kept simple with only coarse shredding and no material recovery. The biological treatment, which was a low-cost forced aeration process, was monitored for 25 weeks. The biogas production potential of the waste was reduced by 90% to 19 NL kgDM(-1). The initial AT4 index of 82.9 mg O2 gDM(-1) decreased to 16.0 mg O2 gDM(-1). After 25 weeks of aerobic treatment, the dry mass loss reached 37%, while the mass of waste going to landfill was reduced by 28%. The average performances of the process were explained by the biological process itself, which was not optimal, and also by the characteristics of the input waste. The high particle size of the treated waste and the high content of slowly biodegradable matter (such as paper and cardboard) may both be significant drawbacks for the biological stabilisation of waste. PMID:17207988

  20. The sarin-like organophosphorus agent bis(isopropyl methyl)phosphonate induces ER stress in human astrocytoma cells.

    Science.gov (United States)

    Arima, Yosuke; Shiraishi, Hiroaki; Saito, Atsushi; Yoshimoto, Kanji; Namera, Akira; Makita, Ryosuke; Murata, Kazuhiro; Imaizumi, Kazunori; Nagao, Masataka

    2016-01-01

    Organophosphorus (OP) compounds such as sarin are toxic agents that irreversibly inhibit the enzyme acetylcholinesterase. A recent study showed that OP compounds also have multiple toxicity mechanisms, and another suggested that endoplasmic reticulum (ER) dysfunction contributes to OP toxicity. However, the signaling pathway and mechanisms involved are poorly understood. We examined whether the sarin-like OP agent bis(isopropyl methyl)phosphonate (BIMP), which exhibits toxicity similar to that of sarin, induced ER stress in human astrocytoma CCF-STTG1 cells. Our results demonstrate that BIMP exposure reduced cell viability. Moreover, it induced changes in mitochondrial membrane potential and increased cleavage of caspase 3. Treatment with BIMP increased the mRNA levels of the ER stress marker genes binding immunoglobulin protein (BiP) and the transcription factor C/EBP homologous protein (CHOP). Furthermore, BIMP increased the protein expressions and phosphorylation of BiP, CHOP, and protein kinase RNA-like ER kinase and the phosphorylation of eukaryotic translation initiation factor 2. Compared to BIMP treatment alone, pretreatment with the CHOP siRNA, siCHOP, decreased BIMP-dependent CHOP expression and improved CCF-STTG1 cell viability. Our findings suggest that BIMP induced mitochondrial dysfunction and apoptotic cell death event mediated by ER stress in CCF-STTG1 cells and that treatment targeted at managing ER stress has the potential to attenuate the toxicity of OP nerve agents. PMID:27665771

  1. Emissions from mechanical and biological waste treatment - parameters, metrology and assessment; Emissionen bei der mechanisch-biologischen Abfallbehandlung-Parameter, Messtechnik und Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Doedens, H.; Cuhls, C. [Hannover Univ. (Germany). Institut fuer Siedlungswasserwirtschaft und Abfalltechnik

    1999-07-01

    This paper deals with the following topics: emissions from mechanical and biological waste treatment and their past assessment on the basis of the Clean Air Technical Code of 1986; draft of an ordinance for the execution of the German Federal Emission Control Law, submitted on 18/02/1998 (Ordinance Concerning Notifiable Plants - BImSchV); plants subject to licensing; assessment of measurements on large-scale mechanical and biological waste treatment plants on the basis of previous regulations, the Clean Air Technical Code and the BImSchV draft. [German] Themen des Artikels sind: Emissionen der MBA und deren bisherige Bewertung nach der TA Luft '86. Entwurf einer Verordnung zur Durchfuehrung des BImSchG vom 18.02.1998 (Verordnung ueber anzeigebeduerftige Anlagen-BImSchV). Genehmigungsbeduerftige Anlagen. Messverfahren zum Gesamtkohlenstoff. Bewertung von Messungen an grosstechnischen MBA anhand bisheriger Regelungen, basierend auf der TA Luft und dem BImSchV-Entwurf. (orig.)

  2. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  3. Mechanical-biological waste treatment with thermal processing of partial fractions; Mechanisch-biologische Restabfallbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Technologies for mechanical-biological treatment of waste in the Land of Hessen were compared including thermal processes like combustion and gasification. The new and more rigid limiting values specified in the Technical Guide for Municipal Waste Treatment (Technische Anleitung Siedlungsabfall - TASI) get a special mention. [Deutsch] Verschiedene Technologien der mechanisch-biologischen Restabfallbehandlung im Raum Hessen wurden unter Einbezug thermischer Verfahren (Verbrennung, Vergasung) miteinander verglichen. Dabei wurden besonders auf die verschaerften Grenzwerte der Technischen Anleitung Siedlungsabfall (TASI) eingegangen. (ABI)

  4. Viscosity and not biological mechanisms often controls the effects of temperature on ciliary activity and swimming velocity of small aquatic organisms

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Riisgård, H. U.

    2009-01-01

    A number of studies have shown that temperature-dependent viscosity of the ambient water controls or strongly affects bio-mechanical activity such as beat frequency of water-pumping cilia in mussels and ascidians, swimming velocity of sperm cells, ciliates and small (micro- and meso-scale) aquatic...... is used to assess to what extent the response is purely physical/mechanical or biological. We argue that a power-law dependence of bio-mechanical activity (a) on kinematic viscosity (ν), i.e. a ~ ν^−m, should be applied to available data. Based on a general close matching of the response data to power...... organisms using cilia or small appendages for propulsion. Here we summarize results from the literature and from own studies on bio-mechanical activities in response to changing temperature or manipulated viscosity at constant temperature, both having the same change in kinematic viscosity. The survey...

  5. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects

    Directory of Open Access Journals (Sweden)

    Dong J

    2013-03-01

    Full Text Available Jingjing Dong,1,* Geng Cui,2,* Long Bi,1,* Jie Li,3 Wei Lei11Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China; 2Institute of Orthopedics, General Hospital of PLA, Beijing, People’s Republic of China; 3Institute of Gynecology and Obstetrics, General Hospital of PLA, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L ratios (g/mL of 1:1, 3:1, and 5:1 (g/mL, and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC–FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05. The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation

  6. Biological activity and mechanical stability of sol-gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber.

    Science.gov (United States)

    Pannier, Angela; Mkandawire, Martin; Soltmann, Ulrich; Pompe, Wolfgang; Böttcher, Horst

    2012-02-01

    Biofilters with long lifetime and high storage stability are very important for bioremediation processes to ensure the readiness at the occurrence of sudden contaminations. By using the freeze-gelation technique, living cells can be immobilized within a mechanically and chemically stable ceramic-like matrix. Due to a freeze-drying step, the embedded microorganisms are converted into a preserved form. In that way, they can be stored under dry conditions, which comply better with storage, transport, and handling requirements. Thus, in contrast to other immobilization techniques, there is no need for storage in liquid or under humid atmosphere. The biological activity, mechanical strength, and the structure of the biologically active ceramic-like composites (biocers) produced by freeze gelation have been investigated by using the phenol-degrading bacteria Rhodococcus ruber as model organism. Samples of freeze-gelation biocers have been investigated after defined storage periods, demonstrating nearly unchanged mechanical strength of the immobilization matrix as well as good storage stability of the activity of the immobilized cells over several months of storage at 4 °C. Repeated-batch tests demonstrated further that the freeze-gelation biocers can be repeatedly used over a period of more than 12 months without losing its bioactivity. Thus, these results show that freeze-gelation biocers have high potential of being scaled up from laboratory test systems to applications in real environment because of their long bioactivity as well as mechanical stability.

  7. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  8. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  9. Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems

    OpenAIRE

    ClaudiaAngelini; ValerioCosta

    2014-01-01

    The availability of omic data produced from international consortia, as well as from worldwide laboratories, is offering the possibility both to answer long-standing questions in biomedicine/molecular biology and to formulate novel hypotheses to test. However, the impact of such data is not fully exploited due to a limited availability of multi-omic data integration tools and methods. In this paper, we discuss the interplay between gene expression and epigenetic markers/transcription factors....

  10. Utilization and Mechanism of Trichoderma in Biological Control%木霉菌在生物防治上的应用及拮抗机制

    Institute of Scientific and Technical Information of China (English)

    王芊

    2001-01-01

    简述了拮抗木霉菌在生物防治上的应用前景。许多木霉种群如哈茨木霉、绿色木霉、钩状木霉、长枝木霉等都是植物病原真菌的拮抗菌。木霉菌的作用机制多种多样,包括产生抗生素、重寄生作用、溶菌作用、竞争作用等。%The prospect of antifungal Trichoderma in the utilization of biological control was analysed. Many Kinds of Trichoderma can be used as a method of biological control against plant pathogens. such as T.harzianum, T.viride, T.hamatum and so on. The antifungal mechanism of Trichoderma is varied, including antibiotic, dissolve hypha, parasitism and competition.

  11. Combining mechanical-biological residual waste treatment plants with the carbonisation-combustion process; Kombination MBA mit dem Schwel-Brenn-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Diekmann, J.; Wiehn, G. [Siemens AG Unternehmensbereich KWU, Erlangen (Germany). Bereich Energieerzeugung

    1998-09-01

    The disposal market for household waste is strongly influenced by the legal framework governing it. A further factor that makes it difficult for the authorities responsible for disposal to decide on residual waste disposal by means of thermal or mechanical-biological treatment plants is the downward pressure on disposal prices from inexpensive, underused landfills. This makes it all the more important for a future-oriented waste management to develop a both economically and ecologically optimised waste disposal concept. In this situation there is much in favour of adopting a concept consisting of a combination of mechanical, mechanical-biological, and thermal treatment which takes due account of waste disposal concepts at the regional and supraregional scale. [Deutsch] Der Entsorgungsmarkt fuer Siedlungsabfaelle wird stark durch die Entwicklung der rechtlichen Rahmenbedingungen beeinflusst. Hinzu kommt, dass der Entscheidungsprozess der oeffentlichen Entsorgungstraeger zur Restabfallentsorgung mittels thermischer oder mechanisch-biologischer Anlagen durch den Druck auf die Entsorgungspreise aufgrund der kostenguenstigen, nicht ausgelasteten Deponien erschwert wird. Umso mehr muss das Ziel einer zukunftsorientierten Abfallwirtschaft sein, unter oekonomischen und oekologischen Gesichtspunkten ein optimiertes Abfallkonzept aufzubauen. Hier kann es sehr hilfreich sein, sich eines Konzeptes, bestehend aus der Kombination von mechanischer, mechanisch-biologischer und thermischer Behandlung unter Beruecksichtigung des regionalen und ueberregionalen Abfallkonzeptes zu bedienen. (orig./SR)

  12. Influence assessment of a lab-scale ripening process on the quality of mechanically-biologically treated MSW for possible recovery.

    Science.gov (United States)

    Di Lonardo, Maria Chiara; Binner, Erwin; Lombardi, Francesco

    2015-09-01

    In this study, the influence of an additional ripening process on the quality of mechanically-biologically treated MSW was evaluated in the prospective of recovering the end material, rather than landfilling. The biostabilised waste (BSW) coming from one of the MBT plants of Rome was therefore subjected to a ripening process in slightly aerated lab test cells. An in-depth investigation on the biological reactivity was performed by means of different types of tests (aerobic and anaerobic biological tests, as well as FT-IR spectroscopy method). A physical-chemical characterisation of waste samples progressively taken during the ripening phase was carried out, as well. In addition, the ripened BSW quality was assessed by comparing the characteristics of a compost sampled at the composting plant of Rome which treat source segregated organic wastes. Results showed that the additional ripening process allowed to obtain a better quality of the biostabilised waste, by achieving a much higher biological stability compared to BSW as-received and similar to that of the tested compost. An important finding was the lower heavy metals (Co, Cr, Cu, Ni, Pb and Zn) release in water phase at the end of the ripening compared to the as-received BSW, showing that metals were mainly bound to solid organic matter. As a result, the ripened waste, though not usable in agriculture as found for the compost sample, proved anyhow to be potentially suitable for land reclamation purposes, such as in landfills as cover material or mixed with degraded and contaminated soil for organic matter and nutrients supply and for metals recovery, respectively. In conclusion the study highlights the need to extend and optimise the biological treatment in the MBT facilities and opens the possibility to recover the output waste instead of landfilling. PMID:26074212

  13. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    International Nuclear Information System (INIS)

    Highlights: ► Smart sensors are needed for detection of chemical and biological threat agents. ► Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. ► Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. ► Functionalized GNPs support multiple analytical methods for sensing threat agents. ► Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and

  14. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyayula, Venkata K.K., E-mail: Upadhyayula.Venkata@epa.gov [Oak Ridge Institute of Science and Education (ORISE), MC-100-44, PO Box 117, Oak Ridge, TN 37831 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Smart sensors are needed for detection of chemical and biological threat agents. Black-Right-Pointing-Pointer Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. Black-Right-Pointing-Pointer Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. Black-Right-Pointing-Pointer Functionalized GNPs support multiple analytical methods for sensing threat agents. Black-Right-Pointing-Pointer Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad

  15. The mechanism of the action of ionizing radiation on the occurence of local changes in cell biological structures under space flight conditions

    Science.gov (United States)

    Dmitrievskiy, I.; Nechitailo, G.; Yurov, S.; Kuznetsov, A.

    In space flights the biological objects are exposed to fields of different nature. Of all space flight factors we concentrated our attention on ionizing radiations the action of which was studied in experiments with bacteriophage T4B and with biological structures of the eye. In experiments with bacteriophages their viability and the mutagenic effect under the action of andronic radiation were studied. The effects of local action an phage particles expressed as an induction of deletions and a decrease in viability rate were revealed. We also present the biophysical mechanisms of occurrence of flashes in the eyes of cosmonauts during space flights. The well known hypotheses (Pazio G.G. et al., 1970; Charman W.N. et al, 1971) are based on the occurrence of Cherenkov radiation when a charged particle passes through the eye vitreous body and on a direct action of ionizing particles on the retina. A microdosimetric model was developed (Dmitrievskiy et al., 1982) to calculate the probability of a flash mechanisms. The calculate probability by the mechanism of direct action turned out to coincide with the experimental one and to be 3-4 orders of magnitude less by the mechanism of Cherenkov radiation. However, the experiments on an accelerator (Arodzero et al., 1987) showed that the contributions of the two mechanisms are roughly equal. This disagreement was eliminated due to taking into consideration the polarization of Cherenkov radiation and a highly efficient action of polarized light (established by us earlier) which is 103 - 104 times greater in the region of low intensities than the action of polarized light (Dmitrievskiy I.M., 1985). One more paradox- an increase of two orders of magnitude of visual acuity in cosmonauts watching in some cases terrestrial objects with the naked eye.

  16. Cell biology perspectives in phage biology.

    Science.gov (United States)

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  17. Field models and numerical dosimetry inside an extremely-low-frequency electromagnetic bioreactor: the theoretical link between the electromagnetically induced mechanical forces and the biological mechanisms of the cell tensegrity.

    Science.gov (United States)

    Mognaschi, Maria Evelina; Di Barba, Paolo; Magenes, Giovanni; Lenzi, Andrea; Naro, Fabio; Fassina, Lorenzo

    2014-01-01

    We have implemented field models and performed a detailed numerical dosimetry inside our extremely-low-frequency electromagnetic bioreactor which has been successfully used in in vitro Biotechnology and Tissue Engineering researches. The numerical dosimetry permitted to map the magnetic induction field (maximum module equal to about 3.3 mT) and to discuss its biological effects in terms of induced electric currents and induced mechanical forces (compression and traction). So, in the frame of the tensegrity-mechanotransduction theory of Ingber, the study of these electromagnetically induced mechanical forces could be, in our opinion, a powerful tool to understand some effects of the electromagnetic stimulation whose mechanisms remain still elusive. PMID:25202652

  18. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  19. Effects of silica addition on the chemical, mechanical and biological properties of a new α-Tricalcium Phosphate/Tricalcium Silicate Cement

    Directory of Open Access Journals (Sweden)

    Loreley Morejón-Alonso

    2011-12-01

    Full Text Available The addition of tricalcium silicate (C3S to apatite cements results in an increase of bioactivity and improvement in the mechanical properties. However, adding large amounts raises the local pH at early stages, which retards the precipitation of hydroxyapatite and produces a loss of mechanical strength. The introduction of Pozzolanic materials in cement pastes could be an effective way to reduces basicity and enhance their mechanical resistance; thus, the effect of adding silica on the chemical, mechanical and biological properties of α-tricalcium phosphate/C3S cement was studied. Adding silica produces a reduction in the early pH and a decrease in setting times; nevertheless, the presence of more calcium silicate hydrate (C-S-H delays the growth of hydroxyapatite crystals and consequently, reduces early compressive strength. The new formulations show a good bioactivity, but higher cytotoxicity than traditional cements and additions higher than 2.5% of SiO2 cause a lack of mechanical strength and an elevated degradability.

  20. The Mechanisms and Quantification of the Selective Permeability in Transport Across Biological Barriers : the Example of Kyotorphin

    NARCIS (Netherlands)

    Serrano, Isa D.; Freire, Joao M.; Carvalho, Miguel V.; Neves, Mafalda; Melo, Manuel N.; Castanho, Miguel A. R. B.

    2014-01-01

    This paper addresses the mechanisms behind selective endothelial permeability and their regulations. The singular properties of each of the seven blood-tissues barriers. Then, it further revisits the physical, quantitative meaning of permeability, and the way it should be measured based on sound phy

  1. Seasonal and interannual variability of physical and biological dynamics at the shelfbreak front of the Middle Atlantic Bight: nutrient supply mechanisms

    Directory of Open Access Journals (Sweden)

    R. He

    2011-10-01

    Full Text Available A high-resolution, 3-dimensional coupled biophysical model is used to simulate ocean circulation and ecosystem variations at the shelfbreak front of the Middle Atlantic Bight (MAB. Favorable comparisons between satellite observations and model hindcast solutions from January 2004 to November 2007 indicate the model has intrinsic skills in resolving fundamental physical and biological dynamics at the MAB shelfbreak. Seasonal and interannual variability of ocean physical and biological states and their driving mechanisms are further analyzed. The domain-wide upper water column nutrient content is found to peak in late winter-early spring. Phytoplankton spring bloom starts 1–2 months later, followed by zooplankton bloom in early summer. Our analysis shows the variability of shelfbreak nutrient supply is controlled by local mixing that deepens the mixed layer and injects deep ocean nutrients into the upper water column and alongshore nutrient transport by the shelfbreak jet and associated currents. Nutrient vertical advection associated with the shelfbreak bottom boundary layer convergence is another significant contributor. Spring mean nutrient budget diagnostics along the Nantucket transect are compared between nutrient rich 2004 and nutrient poor 2007. Physical advection and diffusion play the major role in determining strong interannual variations in shelfbreak nutrient content. The biological (source minus sink term is very similar between these two years.

  2. Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations.

    Science.gov (United States)

    Zhao, Xin; Olsen, Irwin; Li, Haoying; Gellynck, Kris; Buxton, Paul G; Knowles, Jonathan C; Salih, Vehid; Young, Anne M

    2010-03-01

    A poly(propylene glycol-co-lactide) dimethacrylate adhesive with monocalcium phosphate monohydrate (MCPM)/beta-tricalcium phosphate (beta-TCP) fillers in various levels has been investigated. Water sorption by the photo-polymerized materials catalyzed varying filler conversion to dicalcium phosphate (DCP). Polymer modulus was found to be enhanced upon raising total calcium phosphate content. With greater DCP levels, faster release of phosphate and calcium ions and improved buffering of polymer degradation products were observed. This could reduce the likelihood of pH-catalyzed bulk degradation and localized acid production and thereby may prevent adverse biological responses. Bone-like MG-63 cells were found to attach, spread and have normal morphology on both the polymer and composite surfaces. Moreover, composites implanted into chick embryo femurs became closely apposed to the host tissue and did not appear to induce adverse immunological reaction. The above results suggest that the new composite materials hold promise as clinical effective bone adhesives.

  3. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  4. Effects on DNA Damage and/or Repair Processes as Biological Mechanisms Linking Psychological Stress to Cancer Risk

    OpenAIRE

    Jenkins, Frank J; Van Houten, Bennett; Bovbjerg, Dana H

    2014-01-01

    Considerable research effort in the past several decades has focused on the impact of psychological stress, and stress hormones, on cancer progression. Numerous studies have reported that stress hormone treatment or in vivo stress exposure can enhance the growth of tumor cell lines in vitro, as well as tumors in animal models, and have begun to explore molecular mechanisms. Comparatively little research has focused on the impact of psychological stress and stress hormones on cancer initiation...

  5. Biological mechanisms in respiratory and limb muscle dysfunction in chronic respiratory conditions : influence of disease severity and body composition

    OpenAIRE

    Puig Vilanova, Ester, 1987-

    2014-01-01

    Skeletal muscle dysfunction and wasting are major comorbidities of chronic obstructive pulmonary disease (COPD) and lung cancer (LC). Despite that the lower limb muscles are usually more severely affected, the respiratory muscles may also experience structural and functional abnormalities in COPD. Muscle dysfunction negatively impacts on the patients’ quality of life by impairing their exercise tolerance even of daily life activities. Several molecular mechanisms are involved in the etiology ...

  6. Effect and mechanism of RUNX3 gene on biological characteristics of human esophageal squamous cell carcinoma (ESCC).

    Science.gov (United States)

    Chen, Huaxia; Wang, Zhou; Wang, Shuai; Zhang, Zhiping; Shi, Shanshan

    2015-01-01

    The aim of this study was to investigate the role of RUNX3 in esophageal squamous cell carcinoma (ESCC) cells biological behavior and the relationship between the expression of RUNX3 and MMP-9, TIMP-1, ICAM-1. RUNX3 levels in 90 esophageal squamous cell carcinoma specimens using immunohistochemical staining to examine the correlation between RUNX3 expression and clinical stage of ESCC. Furthermore, the role of RUNX3 in ESCC progression was evaluated in vitro by siRNA-mediated knockdown of RUNX3 or lentivirus-mediated over-expression of RUNX3 in ESCC cell lines. The expression and activities of MMP-9, TIMP-1, and ICAM-1 were analyzed. We found decreased expression of RUNX3 in ESCC tissue to be significantly related to T stage of tumor (p cells resulted in promoting cell growth, migration, and invasion. Additionally, MMP-9 and ICAM-1 were upregulated in RUNX3-knockdown cells. Notably, RUNX3 over-expression in Kyse150 cells could significantly decrease MMP-9 and ICAM-1. Tumorigenesis in vivo was significantly determined. The study indicates that low expression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells migration, invasion, and tumorigenesis, which may be caused by RUNX3's interaction with MMP-9 and ICAM-1; RUNX3 may be a potential therapeutic target for ESCC.

  7. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system?

    Science.gov (United States)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld; Dziegielewska, Katarzyna M

    2016-01-01

    Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain's internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells) in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC) transporters, that

  8. The mechanisms and quantification of the selective permeability in transport across biological barriers: the example of kyotorphin.

    Science.gov (United States)

    Serrano, Isa D; Freire, Joao M; Carvalho, Miguel V; Neves, Mafalda; Melo, Manuel N; Castanho, Miguel A R B

    2014-02-01

    This paper addresses the mechanisms behind selective endothelial permeability and their regulations. The singular properties of each of the seven blood-tissues barriers. Then, it further revisits the physical, quantitative meaning of permeability, and the way it should be measured based on sound physical chemistry reasoning and methodologies. Despite the relevance of permeability studies one often comes across inaccurate determinations, mostly from oversimplified data analyses. To worsen matters, the exact meaning of permeability is being lost along with this loss of accuracy. The importance of proper permeability calculation is illustrated with a family of derivatives of kyotorphin, an analgesic dipeptide. PMID:24456269

  9. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex

    OpenAIRE

    Hagemeier, Christoph H.; Kr̈er, Markus; Thauer, Rudolf K.; Warkentin, Eberhard; Ermler, Ulrich

    2006-01-01

    Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the CO bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-Å crystal structure of this complex organized as a (MtaBC)2 hete...

  10. Biological and artificial cognition: what can we learn about mechanisms by modelling physical cognition problems using artificial intelligence planning techniques?

    Science.gov (United States)

    Chappell, Jackie; Hawes, Nick

    2012-01-01

    Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended. PMID:22927571

  11. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  12. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    International Nuclear Information System (INIS)

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  13. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems.

    Science.gov (United States)

    Ballesteros, Daniel; Walters, Christina

    2011-11-01

    Slow movement of molecules in glassy matrices controls the kinetics of chemical and physical reactions in dry seeds. Variation in physiological activity among seeds suggests that there are differences in mobility among seed glasses. Testing this hypothesis is difficult because few tools are available to measure molecular mobility within dry seeds. Here, motional properties within dry pea cotyledons were assessed using dynamic mechanical analysis. The technique detected several molecular relaxations between -80 and +80°C and gave a more detailed description of water content-temperature effects on molecular motion than previously understood from studies of glass formation in seeds at glass transition (Tg). Diffusive movement is delimited by the α relaxation, which appears to be analogous to Tg. β and γ relaxations were also detected at temperatures lower than α relaxations, clearly demonstrating intramolecular motion within the glassy matrix of the pea cotyledon. Glass transitions, or the mechanical counterpart α relaxation, appear to be less relevant to seed aging during dry storage than previously thought. On the other hand, β relaxation occurs at temperature and moisture conditions typically used for seed storage and has established importance for physical aging of synthetic polymer glasses. Our data show that the nature and extent of molecular motion varies considerably with moisture and temperature, and that the hydrated conditions used for accelerated aging experiments and ultra-dry conditions sometimes recommended for seed storage give greater molecular mobility than more standard seed storage practices. We believe characterization of molecular mobility is critical for evaluating how dry seeds respond to the environment and persist through time. PMID:21831210

  14. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.

    Science.gov (United States)

    Appelman, Taly P; Mizrahi, Joseph; Elisseeff, Jennifer H; Seliktar, Dror

    2011-02-01

    Primary bovine chondrocytes and PEG-based hydrogels were used to investigate the effects of scaffold composition and architecture on the cellular response to large dynamic compressive strain stimulation. Proteins and proteoglycans were conjugated to functionalized poly(ethylene glycol) (PEG) and immobilized in PEG hydrogels to create bio-synthetic scaffolds. Second passage articular chondrocytes were encapsulated into four different scaffold compositions: PEG-Proteoglycan (PP), PEG-Fibrinogen (PF), PEG-Albumin (PA), and PEG only and subjected to 15% dynamic compressive strain at 1-Hz frequency. Cellular response was evaluated in terms of cell number, glycosaminoglycans (GAGs), collagen type II and collagen type I accumulation in the constructs following 24h and 28 days of stimulated and static culture. Stimulation of the constructs resulted in an increase in the cell number in all scaffolds, with no statistical difference measured among them. Dynamic stimulation of PP, PF, PA and PEG constructs resulted in a respective increase in the GAGs by 33%, 53.4%, 240.5%, and 284.5%, compared to their static controls. The permissive PEG and PA scaffolds showed a significantly larger relative increase in the GAGs in comparison to the other scaffolds tested. Collagen type II content in the PF, PA and PEG constructs increased by 78%, 1266% and 896% respectively, compared to their static controls. Permissive constructs showed a significantly larger relative increase and final absolute values of GAGs and type II collagen, compared to the PF constructs. Immunostaining for collagen type I, an indicator for chondrocyte de-differentiation, indicated that stimulation inhibited its production. Correlation maps between scaffold properties highlighted the major differences between permissive and instructive scaffolds. These results support the hypothesis that both compressive strain and scaffold bioactivity have an important effect on the chondrocyte metabolic response to mechanical

  15. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex.

    Science.gov (United States)

    Hagemeier, Christoph H; Krer, Markus; Thauer, Rudolf K; Warkentin, Eberhard; Ermler, Ulrich

    2006-12-12

    Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the C O bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-A crystal structure of this complex organized as a (MtaBC)(2) heterotetramer. MtaB folds as a TIM barrel and contains a novel zinc-binding motif. Zinc(II) lies at the bottom of a funnel formed at the C-terminal beta-barrel end and ligates to two cysteinyl sulfurs (Cys-220 and Cys-269) and one carboxylate oxygen (Glu-164). MtaC is structurally related to the cobalamin-binding domain of methionine synthase. Its corrinoid cofactor at the top of the Rossmann domain reaches deeply into the funnel of MtaB, defining a region between zinc(II) and the corrinoid cobalt that must be the binding site for methanol. The active site geometry supports a S(N)2 reaction mechanism, in which the C O bond in methanol is activated by the strong electrophile zinc(II) and cleaved because of an attack of the supernucleophile cob(I)amide. The environment of zinc(II) is characterized by an acidic cluster that increases the charge density on the zinc(II), polarizes methanol, and disfavors deprotonation of the methanol hydroxyl group. Implications of the MtaBC structure for the second step of the reaction, in which the methyl group is transferred to coenzyme M, are discussed. PMID:17142327

  16. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    Science.gov (United States)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  17. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties.

    Science.gov (United States)

    Dehaghani, Majid Taghian; Ahmadian, Mehdi

    2016-04-01

    Porous nano-composites were successfully prepared on addition of 58S bioactive glass to Co-base alloy with porosities of 37.2-58.8% by the combination of milling, space-holder and powder metallurgy techniques. The results of X-ray diffraction analysis showed that induced strain during milling of the Co-base alloy powder and also isothermal heat treatment during sintering process led to HCP↔FCC phase transformation which affected mechanical properties of the samples during compression test. Field emission scanning electron microscopy images showed that despite the remaining 58S powder in nanometer size in the composite, there were micro-particles due to sintering at high temperature which led to two different apatite morphologies after immersion in simulated body fluid. Calculated elastic modulus and 0.2% proof strength from stress-strain curves of compression tests were in the range of 2.2-8.3GPa and 34-198MPa, respectively. In particular, the mechanical properties of sample with 37.2% were found to be similar to those of human cortical bone. Apatite formation which was identified by scanning electron microscopy (SEM), pH meter and Fourier-transform infrared spectroscopy (FTIR) analysis showed that it could successfully convert bioinert Co-base alloy to bioactive type by adding 58S bioglass nano-particles. SEM images of cell cultured on the porous nano-composite with 37.2% porosity showed that cells properly grew on the surface and inside the micro and macro-pores. PMID:26874088

  18. A bioreactor test system to mimic the biological and mechanical environment of oral soft tissues and to evaluate substitutes for connective tissue grafts.

    Science.gov (United States)

    Mathes, Stephanie H; Wohlwend, Lorenz; Uebersax, Lorenz; von Mentlen, Roger; Thoma, Daniel S; Jung, Ronald E; Görlach, Christoph; Graf-Hausner, Ursula

    2010-12-15

    Gingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity. In order to pre-evaluate a collagen sponge intended to serve as a substitute for autogenous connective tissue grafts (CTGs), a dynamic bioreactor system was developed. Pressure and shear forces can be applied in this bioreactor in addition to a constant medium perfusion to cell-material constructs. Three-dimensional volume changes and stiffness of the matrices were analyzed. In addition, cell responses such as cell vitality and extracellular matrix (ECM) production were investigated. The number of metabolic active cells constantly increased under fully dynamic culture conditions. The sponges remained elastic even after mechanical forces were applied for 14 days. Analysis of collagen type I and fibronectin revealed a statistically significant accumulation of these ECM molecules (P tissue remodeling processes, was observed under dynamic conditions only. The results indicate that the tested in vitro cell culture system was able to mimic both the biological and mechanical environments of the clinical situation in a healing wound.

  19. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  20. The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Hossein; Solati-Hashjin, Mehran [Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P. O. Box: 15875-4413, Tehran (Iran, Islamic Republic of); Tahriri, Mohammadreza, E-mail: m-tahriri@aut.ac.ir [Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P. O. Box: 15875-4413, Tehran (Iran, Islamic Republic of)

    2009-05-05

    In this study, several fluorine-substituted hydroxyapatite ceramics with the general chemical formula Ca{sub 5}(PO{sub 4}){sub 3}(OH){sub 1-x}F{sub x} (0 {<=} x {<=} 1), where x = 0.0 (hydroxyapatite; HA), x = 0.68 (fluorhydroxyapatite; FHA) and x = 0.97 (fluorapatite; FA) were prepared. The powders were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR), X-ray diffraction (XRD), F-selective electrode, atomic absorption spectroscopy (AAS) and EDTA titration analyses. The powders were uniaxially pressed and were formed as a disc shape. Subsequently, sinterability and thermal stability of synthesized powders were compared together. Also the effect simultaneously of fluoride content and temperature were examined on the lattice parameters and crystallites size of the obtained powders. Mechanical properties including hardness, elastic modulus and fracture toughness were measured using indentation. The in vitro dissolution studies of the samples were carried out at osteoclastic resorption conditions. Finally, the biocompatibility and cytotoxicity of the samples were carried out using osteoblast-like cells and L929 cell line, respectively. The obtained results showed that the thermal stability substantially is increased with increase incorporated fluoride into HA structure. Also it was found that the fluoride reduced the lattice parameters and crystallites size of HA. Finally, the in vitro dissolution studies results suggest that the fluoride substitutions in HA offer the ability to prepare HAs with different degrees of solubility.

  1. Moving from Capstones towards Cornerstones: Successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Nathan eKopp

    2015-10-01

    Full Text Available The substantial progress in the last few years towards uncovering genetic causes and risk factors for autism spectrum disorders (ASD has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein-protein interaction networks, Gene Ontologies annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare-variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with autism spectrum disorders could provide the cornerstones needed to build towards broadly applicable therapeutic approaches.

  2. Investigations concerning the mechanism of action of brown-coal coke particles in aerobic biological waste water treatment

    International Nuclear Information System (INIS)

    At the start of this work experience with the use of brown coal coke in the activated sludge process was lacking entirely. It therefore was necessary to carry through preliminary experiments in order to practically test the effect of Grown-coal coke. In two technical-scale experiments and a pilot test, very good results were obtained with the application of brown-coal coke to activated sludge. These, and previously published results, permitted to evolve moodel concepts of the mechanism of action of coal, especially brown coal coke, in activated sludge. According to these concepts the coal particles act as buffers and a temporary adsorbent of oxygen and waste water constituents. This in turn stimulates the colonization of the surface with microorganisms. In order to corroborate these model concepts, the - adsorption and desorption of solved oxygen to coal in a watery medium and - the effect of coal over a longer period of time were investigated. The results in essence confirm the model concepts. (UWa)

  3. Approach to the classical radiation biology. Ionizing radiation effects and repair mechanism of DNA double strand breaks

    International Nuclear Information System (INIS)

    Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and believed to be the recovery of sublethal damage (SLD). It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism of this recovery, we analyzed the knockout mutants KU70-/-, RAD54-/-, and KU70-/-/ RAD54-/- of the chicken B-cell line, DT40. Rad54 participates in the homologous recombinational (HR) repair of DNA double-strand breaks (DSB), while Ku proteins are involved in non-homologous end-joining (NHEJ). Split-dose recovery was observed in the parent DT40 and KU70-/- cells. Moreover the split-dose survival enhancement had all of the characteristics of SLD recovery that had been demonstrated earlier: e.g., the reappearance of the shoulder of the survival curve with dose fractionation; repair at 25degC; and inhibition by the antibiotic actinomycin D. These results strongly suggest that SLD recovery is due to DSB repair via or mediated by HR, and that these breaks constitute SLD. The tonicity-sensitive potentially lethal damage (PLD) recovery was also found only in DT40 and KU70 -/- cells. Delayed-plating PLD recovery may be controlled by NHEJ repair that works through the cell cycle. These results lead to the conclusion that the repair of DSBs could explain the classical operational recovery phenomena. We have also investigated RBE/LET using those mutants. (author)

  4. Baseline levels of bioaerosols and volatile organic compounds around a municipal waste incinerator prior to the construction of a mechanical-biological treatment plant.

    Science.gov (United States)

    Vilavert, Lolita; Nadal, Martí; Inza, Isabel; Figueras, María J; Domingo, José L

    2009-09-01

    New waste management programs are currently aimed at developing alternative treatment technologies such as mechanical-biological treatment (MBT) and composting plants. However, there is still a high uncertainty concerning the chemical and microbiological risks for human health, not only for workers of these facilities, but also for the population living in the neighborhood. A new MBT plant is planned to be constructed adjacently to a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain). In order to evaluate its potential impact and to differentiate the impacts of MSWI from those of the MBT when the latter is operative, a pre-operational survey was initiated by determining the concentrations of 20 volatile organic compounds (VOCs) and bioaerosols (total bacteria, gram-negative bacteria, fungi and Aspergillus fumigatus) in airborne samples around the MSWI. The results indicated that the current concentrations of bioaerosols (ranges: 382-3882, 18-790, 44-926, and urban and industrial zones. With the exception of total bacteria, no correlations were observed between the environmental concentrations of biological agents and the direction/distance from the facility. However, total bacteria presented significantly higher levels downwind. Moreover, a non-significant increase of VOCs was detected in sites closer to the incinerator, which means that the MSWI could have a very minor impact on the surrounding environment. PMID:19346120

  5. Reduction in pathogen populations at grapevine wound sites is associated with the mechanism underlying the biological control of crown gall by rhizobium vitis strain ARK-1.

    Science.gov (United States)

    Kawaguchi, Akira

    2014-09-17

    A nonpathogenic strain of Rhizobium (=Agrobacterium) vitis, ARK-1, limited the development of grapevine crown gall. A co-inoculation with ARK-1 and the tumorigenic strain VAT07-1 at a 1:1 cell ratio resulted in a higher population of ARK-1 than VAT07-1 in shoots without tumors, but a significantly lower population of ARK-1 than VAT07-1 in grapevine shoots with tumors. ARK-1 began to significantly suppress the VAT07-1 population 2 d after the inoculation. This result indicated that ARK-1 reduced the pathogen population at the wound site through biological control. Although ARK-1 produced a zone of inhibition against other tumorigenic Rhizobium spp. in in vitro assays, antibiosis depended on the culture medium. ARK-1 did not inhibit the growth of tumorigenic R. radiobacter strain AtC1 in the antibiosis assay, but suppressed the AtC1-induced formation of tumors on grapevine shoots, suggesting that antibiosis by ARK-1 may not be the main mechanism responsible for biological control.

  6. Implementing ‘Mutually Supportive’ Access and Benefit Sharing Mechanisms Under the Plant Treaty, Convention on Biological Diversity, and Nagoya Protocol

    Directory of Open Access Journals (Sweden)

    Michael Halewood et. al.

    2013-06-01

    Full Text Available The International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA and the Convention on Biological Diversity (CBD commit their member states to implement very different access and benefit-sharing systems: one system, under the ITPGRFA, is designed to encourage international pooling and sharing of genetic diversity; the other system, under the CBD, is designed to maximise each country’s sovereign control over their genetic resources. Progress in domestic implementation of both systems has been relatively slow. One factor contributing to delays is that policy makers in many countries are uncertain about how to address the interface between these two access and benefit-sharing systems. Based on research and policy development experiences in several countries, the authors first identify the issues national policy-makers need to address, and the steps they need to follow, to implement the multilateral system of access and benefit sharing under the ITPGRFA. Second, the authors analyse the points of intersection, at the national level, between the ITPGRFA’s multilateral system and access and benefit-sharing, and mechanisms developed (or being developed pursuant to the Convention on Biological Diversity and its recently adopted Nagoya Protocol. Third, the authors analyse factors that are contributing to the lack of coordination, in many countries, between the national public environment and agriculture agencies that have mandates to lead national implementation of these international agreements.

  7. The biogenic content of process streams from mechanical-biological treatment plants producing solid recovered fuel. Do the manual sorting and selective dissolution determination methods correlate?

    Science.gov (United States)

    Séverin, Mélanie; Velis, Costas A; Longhurst, Phil J; Pollard, Simon J T

    2010-07-01

    The carbon emissions trading market has created a need for standard methods for the determination of biogenic content (chi(B)) in solid recovered fuels (SRF). We compare the manual sorting (MSM) and selective dissolution methods (SDM), as amended by recent research, for a range of process streams from a mechanical-biological treatment (MBT) plant. The two methods provide statistically different biogenic content values, as expressed on a dry mass basis, uncorrected for ash content. However, they correlate well (r(2)>0.9) and the relative difference between them was <5% for chi(B) between 21% (w)/w(d) and 72% (w)/w(d) (uncorrected for ash content). This range includes the average SRF biogenic content of ca. 68% (w)/w(d). Methodological improvements are discussed in light of recent studies. The repeatability of the SDM is characterised by relative standard deviations on triplicates of <2.5% for the studied population. PMID:20116991

  8. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    Science.gov (United States)

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics.

  9. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    Science.gov (United States)

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. PMID:26566174

  10. Approach to the classical radiation biology. Ionizing radiation effects and repair mechanism of DNA double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, Hiroshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2000-09-01

    Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and believed to be the recovery of sublethal damage (SLD). It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism of this recovery, we analyzed the knockout mutants KU70{sup -/-}, RAD54{sup -/-}, and KU70{sup -/-}/ RAD54{sup -/-} of the chicken B-cell line, DT40. Rad54 participates in the homologous recombinational (HR) repair of DNA double-strand breaks (DSB), while Ku proteins are involved in non-homologous end-joining (NHEJ). Split-dose recovery was observed in the parent DT40 and KU70{sup -/-} cells. Moreover the split-dose survival enhancement had all of the characteristics of SLD recovery that had been demonstrated earlier: e.g., the reappearance of the shoulder of the survival curve with dose fractionation; repair at 25degC; and inhibition by the antibiotic actinomycin D. These results strongly suggest that SLD recovery is due to DSB repair via or mediated by HR, and that these breaks constitute SLD. The tonicity-sensitive potentially lethal damage (PLD) recovery was also found only in DT40 and KU70 {sup -/-} cells. Delayed-plating PLD recovery may be controlled by NHEJ repair that works through the cell cycle. These results lead to the conclusion that the repair of DSBs could explain the classical operational recovery phenomena. We have also investigated RBE/LET using those mutants. (author)

  11. Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications.

    Science.gov (United States)

    Sandhiya, L; Kolandaivel, P; Senthilkumar, K

    2014-04-01

    The nitration of tyrosine by atmospheric oxidants, O3 and NO2, is an important cause for the spread of allergenic diseases. In the present study, the mechanism and pathways for the reaction of tyrosine with the atmospheric oxidants O3 and NO2 are studied using DFT-M06-2X, B3LYP, and B3LYP-D methods with the 6-311+G(d,p) basis set. The energy barrier for the initial oxidation reactions is also calculated at the CCSD(T)/6-31+G(d,p) level of theory. The reaction is studied in gas, aqueous, and lipid media. The initial oxidation of tyrosine by O3 proceeds by H atom abstraction and addition reactions and leads to the formation of six different intermediates. The subsequent nitration reaction is studied for all the intermediates, and the results show that the nitration affects both the side chain and the aromatic ring of tyrosine. The rate constant of the favorable oxidation and nitration reaction is calculated using variational transition state theory over the temperature range of 278-350 K. The spectral properties of the oxidation and nitration products are calculated at the TD-M06-2X/6-311+G(d,p) level of theory. The fate of the tyrosine radical intermediate is studied by its reaction with glutathione antioxidant. This study provides an enhanced understanding of the oxidation and nitration of tyrosine by O3 and NO2 in the context of improving the air quality and reducing the allergic diseases.

  12. Formation of reactive nitrogen species at biologic heme centers: a potential mechanism of nitric oxide-dependent toxicity.

    Science.gov (United States)

    Casella, Luigi; Monzani, Enrico; Roncone, Raffaella; Nicolis, Stefania; Sala, Alberto; De Riso, Antonio

    2002-01-01

    The peroxidase-catalyzed nitration of tyrosine derivatives by nitrite and hydrogen peroxide has been studied in detail using the enzymes lactoperoxidase (LPO) from bovine milk and horseradish peroxidase (HRP). The results indicate the existence of two competing pathways, in which the nitrating species is either nitrogen dioxide or peroxynitrite. The first pathway involves one-electron oxidation of nitrite by the classical peroxidase intermediates compound I and compound II, whereas in the second pathway peroxynitrite is generated by reaction between enzyme-bound nitrite and hydrogen peroxide. The two mechanisms can be simultaneously operative, and their relative importance depends on the reagent concentrations. With HRP the peroxynitrite pathway contributes significantly only at relatively high nitrite concentrations, but for LPO this represents the main pathway even at relatively low (pathophysiological) nitrite concentrations and explains the high efficiency of the enzyme in the nitration. Myoglobin and hemoglobin are also active in the nitration of phenolic compounds, albeit with lower efficiency compared with peroxidases. In the case of myoglobin, endogenous nitration of the protein has been shown to occur in the absence of substrate. The main nitration site is the heme, but a small fraction of nitrated Tyr146 residue has been identified upon proteolytic digestion and high-performance liquid chromatography/mass spectrometry analysis of the peptide fragments. Preliminary investigation of the nitration of tryptophan derivatives by the peroxidase/nitrite/hydrogen peroxide systems shows that a complex pattern of isomeric nitration products is produced, and this pattern varies with nitrite concentration. Comparative experiments using chemical nitrating agents indicate that at low nitrite concentrations, the enzymatic nitration produces a regioisomeric mixture of nitrotryptophanyl derivatives resembling that obtained using nitrogen dioxide, whereas at high nitrite

  13. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs.

  14. A Biological Perspective of The Hypomagnetic Field:From Definition Towards Mechanism%亚磁场及其生物响应机制

    Institute of Scientific and Technical Information of China (English)

    莫炜川; 刘缨; 赫荣乔

    2012-01-01

    根据亚磁生物学的研究历史和空间亚磁环境的实际情况,本文定义磁感应强度总量在“0<|B|≤5μT”区间内的静态弱磁场为亚磁场.亚磁场能对生命活动的多个方面,特别是中枢神经系统产生负面影响.随着月球与火星航天计划的开展,航天员将长期暴露于亚磁空间中.这可能对宇航员的身心健康带来潜在的危害.亚磁场生物学效应及其机制的研究,将为相关载人航天的空间防护提供理论基础,已成为空间生物科学以及航天医学等相关领域的新热点.%Here, we review the progresses of researches on the biological effects of the hypomagnetic field (HMF) and propose that a magnetic field with magnetic induction of "0< |B|≤ 5 μT" is defined as a hypomagnetic field (HMF). Interplanetary space is a natural hypomagnetic field. The astronauts, enabled by space sciences thriving in the recent decades, are spending longer time in the hypomagnetic outer space, e.g. landing on the moon and heading to mars. The effects of HMF on many aspects of biological processes, especially the adverse impacts on the functions of the central nervous system, remind us that the astronauts would suffer from potential risks due to the HMF exposure. Unfolding the mechanism of the biological responses to the HMF is the fundament for developing the counteractions of the adverse space environmental factors, and has recently become a hot topic in the field of space life sciences. Refining the concept of HMF and standardizing the HMF simulation systems for biological experiments will benefit the comparability of the HMF effects as described, and improve our understanding of how HMF influences homeostasis, cell signaling pathways and cognitive behaviors, and to what extent HMF contribute to such disturbances.

  15. Biological evaluation of mechanically deboned chicken meat protein hydrolysate Avaliação biológica do hidrolisado de proteína da carne de galinha desossada mecanicamente

    OpenAIRE

    Daniele Misturini Rossi; Simone Hickmann Flôres; Janaína Guimarães Venzke; Marco Antonio Záchia Ayub

    2009-01-01

    OBJECTIVE: The objective of this study was to evaluate the biological properties of a protein hydrolysate obtained by enzymatic hydrolysis of mechanically deboned chicken meat. METHODS: Mechanically deboned chicken meat was hydrolysed using Alcalase 2.4 L FG and then dried in a spray-drier. Three groups (n=6) of male Wistar rats received diets containing casein, mechanically deboned chicken meat protein hydrolysate and a protein-free diet. The rats were randomly assigned to individual cages w...

  16. 心理弹性的心理社会及生物学机制%The Psychosocial and Biological Mechanism of Resilience

    Institute of Scientific and Technical Information of China (English)

    李丽; 谢光荣

    2012-01-01

    Resilience refers to a dynamic process encompassing coping successfully and positive adaptation within acute stress, trauma or more chronic forms of adversity. The studies of resilient mechanism mainly focus on psycho -social and biological field. In this paper, we explore the mechanism in the role of individual, family, social, Neurobiology and molecular genetics factors of resilience. Finally, the future research trends in the relevant areas were discussed.%心理弹性是个体在经历急性压力、创伤或者更多不同形式的慢性压力时成功应对、积极适应的动态过程,对心理弹性机制的研究有心理社会及生物学两种研究取向.探索了心理弹性的个人、家庭、社会环境、神经生物、分子遗传学因素以及它们的作用机制过程,并对今后的研究进行了展望.

  17. Effect of different biological activity collagen scaffolds on growth ability of human dental pulp cells and investigation of its possible molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Yu-Hong Zou

    2015-01-01

    Objective:To study the effect of different biological activity collagen scaffolds on growth ability of human dental pulp cells and its possible molecular mechanisms.Methods:Human dental pulp cells were isolated and cultured, seeded on collagen scaffold (COL), collagen-bioactive glass scaffolds (COL-BG) and collagen-bioactive glass-PCL scaffolds (COL-BG-PCL). Then growth ability of the cells and expression of related genes were detected.Results:hDPSCs absorbance value, migration rate as well as ALP content in supernatant of COL-BG-PCL group were all higher than those of COL group and COL-BG group; Oct4A, NICD, HMGB1, SDF1, DSPP and DMP-1 contents of COL-BG-PCL group were all higher than those of COL group and COL-BG group.Conclusion:COL-BG-PCL composites contribute to proliferation, migration and differentiation of hDPSCs; the possible molecular mechanisms are increasing Oct4A, NICD, HMGB1, SDF1, DSPP and DMP-1 expression.

  18. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.

    Science.gov (United States)

    Di Lonardo, Maria Chiara; Franzese, Maurizio; Costa, Giulia; Gavasci, Renato; Lombardi, Francesco

    2016-01-01

    This work assessed the quality in terms of solid recovered fuel (SRF) definitions of the dry light flow (until now indicated as refuse derived fuel, RDF), heavy rejects and stabilisation rejects, produced by two mechanical biological treatment plants of Rome (Italy). SRF classification and specifications were evaluated first on the basis of RDF historical characterisation methods and data and then applying the sampling and analytical methods laid down by the recently issued SRF standards. The results showed that the dry light flow presented a worst SRF class in terms of net calorific value applying the new methods compared to that obtained from RDF historical data (4 instead of 3). This lead to incompliance with end of waste criteria established by Italian legislation for SRF use as co-fuel in cement kilns and power plants. Furthermore, the metal contents of the dry light flow obtained applying SRF current methods proved to be considerably higher (although still meeting SRF specifications) compared to those resulting from historical data retrieved with RDF standard methods. These differences were not related to a decrease in the quality of the dry light flow produced in the mechanical-biological treatment plants but rather to the different sampling procedures set by the former RDF and current SRF standards. In particular, the shredding of the sample before quartering established by the latter methods ensures that also the finest waste fractions, characterised by higher moisture and metal contents, are included in the sample to be analysed, therefore affecting the composition and net calorific value of the waste. As for the reject flows, on the basis of their SRF classification and specification parameters, it was found that combined with the dry light flow they may present similar if not the same class codes as the latter alone, thus indicating that these material flows could be also treated in combustion plants instead of landfilled. In conclusion, the

  19. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.

    Science.gov (United States)

    Di Lonardo, Maria Chiara; Franzese, Maurizio; Costa, Giulia; Gavasci, Renato; Lombardi, Francesco

    2016-01-01

    This work assessed the quality in terms of solid recovered fuel (SRF) definitions of the dry light flow (until now indicated as refuse derived fuel, RDF), heavy rejects and stabilisation rejects, produced by two mechanical biological treatment plants of Rome (Italy). SRF classification and specifications were evaluated first on the basis of RDF historical characterisation methods and data and then applying the sampling and analytical methods laid down by the recently issued SRF standards. The results showed that the dry light flow presented a worst SRF class in terms of net calorific value applying the new methods compared to that obtained from RDF historical data (4 instead of 3). This lead to incompliance with end of waste criteria established by Italian legislation for SRF use as co-fuel in cement kilns and power plants. Furthermore, the metal contents of the dry light flow obtained applying SRF current methods proved to be considerably higher (although still meeting SRF specifications) compared to those resulting from historical data retrieved with RDF standard methods. These differences were not related to a decrease in the quality of the dry light flow produced in the mechanical-biological treatment plants but rather to the different sampling procedures set by the former RDF and current SRF standards. In particular, the shredding of the sample before quartering established by the latter methods ensures that also the finest waste fractions, characterised by higher moisture and metal contents, are included in the sample to be analysed, therefore affecting the composition and net calorific value of the waste. As for the reject flows, on the basis of their SRF classification and specification parameters, it was found that combined with the dry light flow they may present similar if not the same class codes as the latter alone, thus indicating that these material flows could be also treated in combustion plants instead of landfilled. In conclusion, the

  20. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.

    Directory of Open Access Journals (Sweden)

    Leonardo Abdala Elias

    2014-11-01

    Full Text Available Several models have been employed to study human postural control during upright quiet stance. Most have adopted an inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the physiological mechanisms of important elements associated with the control of human posture. This paper studies neuromuscular mechanisms behind upright stance control by means of a biologically based large-scale neuromusculoskeletal (NMS model. It encompasses: i conductance-based spinal neuron models (motor neurons and interneurons; ii muscle proprioceptor models (spindle and Golgi tendon organ providing sensory afferent feedback; iii Hill-type muscle models of the leg plantar and dorsiflexors; and iv an inverted pendulum model for the body biomechanics during upright stance. The motor neuron pools are driven by stochastic spike trains. Simulation results showed that the neuromechanical outputs generated by the NMS model resemble experimental data from subjects standing on a stable surface. Interesting findings were that: i an intermittent pattern of muscle activation emerged from this posture control model for two of the leg muscles (Medial and Lateral Gastrocnemius; and ii the Soleus muscle was mostly activated in a continuous manner. These results suggest that the spinal cord anatomy and neurophysiology (e.g., motor unit types, synaptic connectivities, ordered recruitment, along with the modulation of afferent activity, may account for the mixture of intermittent and continuous control that has been a subject of debate in recent studies on postural control. Another finding was the occurrence of the so-called "paradoxical" behaviour of muscle fibre lengths as a function of postural sway. The simulations confirmed previous conjectures that reciprocal inhibition is possibly contributing to this effect, but

  1. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.

    Science.gov (United States)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications.

  2. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  3. Reduced Flavin: NMR investigation of N(5-H exchange mechanism, estimation of ionisation constants and assessment of properties as biological catalyst

    Directory of Open Access Journals (Sweden)

    Rüterjans Heinz

    2005-11-01

    Full Text Available Abstract Background The flavin in its FMN and FAD forms is a versatile cofactor that is involved in catalysis of most disparate types of biological reactions. These include redox reactions such as dehydrogenations, activation of dioxygen, electron transfer, bioluminescence, blue light reception, photobiochemistry (as in photolyases, redox signaling etc. Recently, hitherto unrecognized types of biological reactions have been uncovered that do not involve redox shuffles, and might involve the reduced form of the flavin as a catalyst. The present work addresses properties of reduced flavin relevant in this context. Results N(5-H exchange reactions of the flavin reduced form and its pH dependence were studied using the 15N-NMR-signals of 15N-enriched, reduced flavin in the pH range from 5 to 12. The chemical shifts of the N(3 and N(5 resonances are not affected to a relevant extent in this pH range. This contrasts with the multiplicity of the N(5-resonance, which strongly depends on pH. It is a doublet between pH 8.45 and 10.25 that coalesces into a singlet at lower and higher pH values. From the line width of the 15N(5 signal the pH-dependent rate of hydrogen exchange was deduced. The multiplicity of the 15N(5 signal and the proton exchange rates are little dependent on the buffer system used. Conclusion The exchange rates allow an estimation of the pKa value of N(5-H deprotonation in reduced flavin to be ≥ 20. This value imposes specific constraints for mechanisms of flavoprotein catalysis based on this process. On the other hand the pK ≈ 4 for N(5-H protonation (to form N(5+-H2 would be consistent with a role of N(5-H as a base.

  4. Baseline levels of bioaerosols and volatile organic compounds around a municipal waste incinerator prior to the construction of a mechanical-biological treatment plant

    International Nuclear Information System (INIS)

    New waste management programs are currently aimed at developing alternative treatment technologies such as mechanical-biological treatment (MBT) and composting plants. However, there is still a high uncertainty concerning the chemical and microbiological risks for human health, not only for workers of these facilities, but also for the population living in the neighborhood. A new MBT plant is planned to be constructed adjacently to a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain). In order to evaluate its potential impact and to differentiate the impacts of MSWI from those of the MBT when the latter is operative, a pre-operational survey was initiated by determining the concentrations of 20 volatile organic compounds (VOCs) and bioaerosols (total bacteria, Gram-negative bacteria, fungi and Aspergillus fumigatus) in airborne samples around the MSWI. The results indicated that the current concentrations of bioaerosols (ranges: 382-3882, 18-790, 44-926, and 3 for fungi at 25 deg. C, fungi at 37 deg. C, total bacteria, and Gram-negative bacteria, respectively) and VOCs (ranging from 0.9 to 121.2 μg/m3) are very low in comparison to reported levels in indoor and outdoor air in composting and MBT plants, as well in urban and industrial zones. With the exception of total bacteria, no correlations were observed between the environmental concentrations of biological agents and the direction/distance from the facility. However, total bacteria presented significantly higher levels downwind. Moreover, a non-significant increase of VOCs was detected in sites closer to the incinerator, which means that the MSWI could have a very minor impact on the surrounding environment.

  5. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  6. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.

    Science.gov (United States)

    Bahl, Sumit; Shreyas, P; Trishul, M A; Suwas, Satyam; Chatterjee, Kaushik

    2015-05-01

    Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

  7. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    Directory of Open Access Journals (Sweden)

    Dong-Ae KIM

    2015-08-01

    Full Text Available AbstractSome weaknesses of conventional glass ionomer cement (GIC as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol% of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05 and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  8. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery.

    Science.gov (United States)

    Di Maria, Francesco; Sordi, Alessio; Micale, Caterina

    2013-11-01

    The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R(2)), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year(-1)) was evaluated. k ranged from 0.436 to 0.308year(-1) and the bio-methane potential from 37 to 12Nm(3)/tonne, respectively, for the MSOF with 0 and 16weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90kWh per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4weeks showed rather negligible variation in the global impact of system emissions. PMID:23910244

  9. 铁强化微生物除磷的效能及机理%Efficiency and mechanism of ferric salt enhanced biological phosphorus removal

    Institute of Scientific and Technical Information of China (English)

    孙翠平; 周维芝; 赵海霞

    2015-01-01

    An efficient phosphorus (P)removal bacterium strain was screened from deep-sea bacteria,and phosphorus removal efficiency and mechanism by iron enhanced biological treatment were studied in the high salinity synthetic wastewater.The effects of molar ratio Fe(III)/P,initial pH on phosphorus removal and kinetics of iron enhanced bio-logical phosphorus removal were investigated by batch tests,and the surface morphology of bacteria was studied by SEM-EDS (scanning electron microscopy-energy dispersive X-ray spectroscopy).Results showed that the phosphorus removal efficiency of iron enhanced biological treatment was high and stable at more than 95% compared to those of in-dependent iron and biological treatment.Removal efficiency of phosphorus reached the maximum of 98.5% with molar ratio of Fe(III)and P being 1,which increased 30% than that of the biological treatment,whereas the maximum phos-phorus removal was 90% with molar ratio of Fe(III)and P ranging from 2 to 3 by independent iron treatment.Phos-phorus removal was mainly ascribed to bacterial growth and aided by iron,and pH was kept stable at about 7.2 when molar ratio of Fe(III)and P being not more than 1.Phosphorus removal was mainly by chemical precipitation with mo-lar ratio of Fe(III)and P being more than 1 because that the pH reduced to 5.5 or even lower by Fe(III)hydrolysis and significantly influenced bacterial growth.Phosphorus removal was kept at above 95% at pH of 6 ~9 with molar ratio of Fe(III)and P being 1.The dynamic pseudo-first-order model could fit the biological phosphorus removal process well, and the pseudo-second-order model could well describe the iron enhanced biological phosphorus removal without phos-phorus releasing for a long time.Except the uptake of part of the phosphorus by bacterial growth and bio-sorption by ex-tracellular polymeric substance,the hydroxyl phosphate iron complex compound and iron phosphorus precipitation in-duced by bacterium also contributed to the phosphorus

  10. Efficiency and mechanism of ferric salt enhanced biological phosphorus removal%铁强化微生物除磷的效能及机理

    Institute of Scientific and Technical Information of China (English)

    孙翠平; 周维芝; 赵海霞

    2015-01-01

    从深海菌中筛选出一株高效除磷菌,并研究了铁强化此除磷菌在高盐合成废水中的除磷效能及机理。通过批次试验研究了铁磷物质的量比、初始 pH 值对除磷效率的影响以及铁强化生物除磷的动力学,并利用扫描电镜和能谱分析对微生物表面形貌进行了研究。结果表明,与单独铁盐和生物除磷相比,铁强化微生物除磷效率更高效且稳定在95%以上。当 n(Fe(III))∶n(P)=1∶1时,铁强化微生物除磷的最大效率达98.50%,相比单纯生物除磷提高30%,而单独铁盐除磷 n(Fe(III))∶n(P)=2∶1~3∶1时,除磷率仅90%;当 n(Fe(III))∶n(P)≤1∶1时,铁强化微生物除磷以微生物除磷为主,铁盐辅助,处理后水 pH 中性且稳定;当物质的量比 n(Fe(III))∶n(P)>1∶1时,由于Fe(III)水解造成 pH 降低至5.50以下,微生物生长受抑,磷的去除主要靠化学沉淀。废水初始 pH 在6.0~9.0范围内,铁强化生物除磷去除率均在95%以上。准一级动力学模型能够很好地模拟生物除磷过程;准二级动力学模型能够很好地模拟铁强化生物除磷,且较长时间内无磷释放现象。铁强化生物除磷的机理包括:(1)细菌生长除磷以及胞外聚合物对磷的吸附;(2)在混合液中形成了羟基磷酸铁络合物;(3)在细菌表面形成了由细菌诱导的铁磷微沉淀。%An efficient phosphorus (P)removal bacterium strain was screened from deep-sea bacteria,and phosphorus removal efficiency and mechanism by iron enhanced biological treatment were studied in the high salinity synthetic wastewater.The effects of molar ratio Fe(III)/P,initial pH on phosphorus removal and kinetics of iron enhanced bio-logical phosphorus removal were investigated by batch tests,and the surface morphology of bacteria was studied by SEM-EDS (scanning electron microscopy

  11. The physiology mechanisms on drought tolerance and adaptation of biological soil crust moss Bryum argenteum and Didymodon vinealis in Tenger Desert

    Science.gov (United States)

    Zhao, X.; Shi, Y.; Chen, C.; Jia, R.; Li, X.

    2012-04-01

    Bryum argenteum Hedw. and Didymodon vinealis Brid are two dominant moss species in the restored vegetation area in Tenger Desert, which sampled from biological soil crusts and where is an extreme drought regions. We found that they resorted to different osmotic adjustment strategies to mitigate osmotic stress. Under the gradual drought stress, both Bryum argenteum and Didymodon vinealis accumulated K+ and soluble sugar such as sucrose and trehalose. Their glycine betaine contents both decreased, while their proline content had no significant change. With enhanced drought stress, Bryum argenteum's Na+ content was low and decreased significantly, whereas Didymodon vinealis's Na+ content increased sharply and reached to a high level. We found the different of the mechanism of between active oxygen scavenging on Enzymatic and non - enzymatic system in two species moss of Bryum argenteum Hedw and Didymodon vinealis Brid under extreme drought stress. The result showed that two species of Moss of SOD activity gradually enhanced, and they have the material basis for effectively eliminates in vivo of Superoxide free radical. POD in Didymodon nigrescen and CAT in Bryum argeneum are major resistance o oxidative stress effects. The content of GSH rise with the stress also enhanced. The mechanism of finding Bryum argenteum Hedw and Didymodon vinealis Brid tolerance of dehydration ability were focus on different direction, but they are all given positive response to stress and enhance resistance. We investigated the responses of signal transduction substances to gradual drought stress in Didymodon vinealis and Bryum argenteum. The results suggested that: under gradual drought stress, the activities of TP H+-ATPase and PM H+-ATPase of Didymodon vinealis and Bryum argenteum both increased, resulting in their increase of K+ contents and turgor pressures, and triggered biosynthesis of signal transduction substances. ABA had no obvious effect in signal transduction of Bryum argenteum

  12. Emission model for landfills with mechanically-biologically pretreated waste, with the emphasis on modelling the gas balance; Emissionsprognosemodell fuer Deponien mit mechanisch-biologisch vorbehandelten Abfaellen - Schwerpunkt: Modellierung des Gashaushaltes

    Energy Technology Data Exchange (ETDEWEB)

    Danhamer, H.

    2001-07-01

    The objective of this work was to determine influence factors on processes going on in landfills with mechanically-biologically pretreated waste (MBP-landfills) in order to predict emissions. For this purpose a computer based model has been developed. The model allows to simulate the gas, water and heat balance as well as settlement processes and was called DESIM2005 (version MB). It is based on theoretical modeling approaches as well as data from lab and reactor experiments. The main focus of model application was to determine factors influencing the gas phase and the emissions of landfill gas and methane during operation and aftercare of MBP-landfills. By performing simulations the effects of changing parameters for the processes gas transport and biological degradation as well as the effects of different qualities in waste pretreatment and of varying landfill operation techniques were investigated. Possibilities for increasing the environmental sustainability of landfills containing mechanically-biologically pretreated waste were shown. (orig.)

  13. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  14. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  15. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  16. Alterations in glucocorticoid negative feedback following maternal Pb, prenatal stress and the combination: A potential biological unifying mechanism for their corresponding disease profiles

    International Nuclear Information System (INIS)

    Combined exposures to maternal lead (Pb) and prenatal stress (PS) can act synergistically to enhance behavioral and neurochemical toxicity in offspring. Maternal Pb itself causes permanent dysfunction of the body's major stress system, the hypothalamic pituitary adrenal (HPA) axis. The current study sought to determine the potential involvement of altered negative glucocorticoid feedback as a mechanistic basis of the effects in rats of maternal Pb (0, 50 or 150 ppm in drinking water beginning 2 mo prior to breeding), prenatal stress (PS; restraint on gestational days 16-17) and combined maternal Pb + PS in 8 mo old male and female offspring. Corticosterone changes were measured over 24 h following an i.p. injection stress containing vehicle or 100 or 300 μg/kg (females) or 100 or 150 μg/kg (males) dexamethasone (DEX). Both Pb and PS prolonged the time course of corticosterone reduction following vehicle injection stress. Pb effects were non-monotonic, with a greater impact at 50 vs. 150 ppm, particularly in males, where further enhancement occurred with PS. In accord with these findings, the efficacy of DEX in suppressing corticosterone was reduced by Pb and Pb + PS in both genders, with Pb efficacy enhanced by PS in females, over the first 6 h post-administration. A marked prolongation of DEX effects was found in males. Thus, Pb, PS and Pb + PS, sometimes additively, produced hypercortisolism in both genders, followed by hypocortisolism in males, consistent with HPA axis dysfunction. These findings may provide a plausible unifying biological mechanism for the reported links between Pb exposure and stress-associated diseases and disorders mediated via the HPA axis, including obesity, hypertension, diabetes, anxiety, schizophrenia and depression. They also suggest broadening of Pb screening programs to pregnant women in high stress environments

  17. Pollutant balances and emission reduction in mechanical-biological treatment of waste; Schadstoffbilanzierung und Emissionsminderung bei der mechanisch-biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Cuhls, C.

    2001-07-01

    To balance the emissions of mechanical biological pretreatment (MBP) of municipal solid waste (MSW) and evaluate emission control systems four different plants were investigated. The applied technologies comprised aerobe processes with a rotting duration of 4 days to 16 weeks and one process with integrated (partial current) fermentation. The emissions of main organic substances (81 single compounds and NMVOC) were evaluated depending on either mass or environmental relevance or both. Additionally, total organic carbon (TOC), total nitrogen (TN), methane (CH{sub 4}) and ammonia (NH{sub 3}) were measured. At present the combination of a simple scrubber and biofilter is the state-of-the-art technology used for waste air purification. By using this combination the concentrations of pure gas (just odour) comply with the common regulations. However, the achieved efficiencies for non methane volatile organic compounds (NMVOC) are behind the expectations. In this combination of a simple scrubber and biofilter a NMVOC removal of only 50% is realistic. The main organic emission source is biogenic. That means they are formed by metabolic processes and emitted as intermediate compounds. (orig.) [German] Zur Emissionsbilanzierung wurden vier unterschiedliche mechanisch-biologische Abfallbehandlungsanlagen (MBA) untersucht. Die realisierten Verfahrenstechniken beinhalteten Aerobverfahren mit Rottezeiten zwischen 6 Tagen und 16 Wochen sowie eine zweistufige Anlage mit integrierter Teilstromvergaerung. Die Emissionsmessungen umfassten die wichtigsten 81 organischen Stoffe nach den Kriterien Mengen- und/oder Umweltrelevanz. Ergaenzt wurden die Messungen um die Summenparameter Ges.-C, Ges.-N, CH{sub 4} und NH{sub 3}. Die erforderlichen Emissionskonzentrationen nach TA Luft werden eingehalten. Ausschlaggebend hierfuer ist die Kombination aus Luftbefeuchter und Biofilter, die derzeit den Stand der Technik darstellt. Die erzielten Wirkungsgrade fuer NMVOC (Non Methane Volatile Organic

  18. Biological mechanisms of disease and death in Moscow: rationale and design of the survey on Stress Aging and Health in Russia (SAHR

    Directory of Open Access Journals (Sweden)

    Deev Alexander

    2009-08-01

    naturalistic conditions without restrictions on normal daily activities. It provides information about heart functioning, including heart rate variability and ischemic and arrhythmic events. Re-examination of the study subjects will be conducted in 2009–2011 and will focus on health, functional status, economic conditions, behaviors, and attitudes towards aging. The subjects are also followed up for mortality and non-fatal health events. Discussion The SAHR will produce a valuable set of established and novel biomarkers combined with self-reported data for the international research community and will provide important insights into factors and biological mechanisms of mortality and health losses in Russia.

  19. 溶酶体贮积症的分子生物学机制%The molecular biological mechanism of lysosomal storage disorders

    Institute of Scientific and Technical Information of China (English)

    刘誉; 吴彬彬; 伍小华; 朱晓杨; 刘敏

    2013-01-01

    Lysosomal storage disorders (LSD)are a group of inherited metabolic diseases,which are caused by abnormal accumulation of metabolites in lysosomes due to deficiency of lysosomal proteins such as enzymes,activating proteins,transporters,or lysosomal protein processing enzymes.There are more than 50 known lysosomal storage diseases,while the clinical presentations may vary from no symptoms to multiple organ failure or even death in early ages.The pathological changes are usually multi-systemic, resulting in a diversity of clinical phenotypes.Therefore,lysosomal storage diseases are often misdiag-nosed for others.This paper reviews the current advances in studies of lysosomal storage diseases with the focus on classification,clinical presentations,and the molecular biological mechanisms of Pompes dis-ease,sialidosis and mucopolysaccharidosis.%溶酶体贮积症(LSD)是一类遗传性代谢病,由于溶酶体内的酶、激活蛋白、转运蛋白或溶酶体蛋白加工校正酶的缺乏,引起溶酶体功能缺陷,代谢物不能被有效地消化和转运,在溶酶体中过度贮积所导致的疾病。溶酶体贮积症有50多种,临床表现从无明显症状到多器官衰竭甚至早年夭折,病变呈多系统性,表型呈多样性,因而容易被误诊或漏诊。本文综述近年来对溶酶体贮积症的研究进展、溶酶体贮积症的分类及其临床表型特征,并对糖原贮积病Ⅱ型、唾液酸贮积症、粘多糖贮积病的分子生物学机制进行了探讨。

  20. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  1. Using the activated sludge model 2d (ASM2d) to understand and predict the phosphorus accumulating organisms mechanism in enhanced biological phosphorus removal in relation to disintegrated sludge as a carbon source

    OpenAIRE

    Boontian, Nittaya

    2012-01-01

    Carbon sources are considered as one of the most important factors in the performance of enhanced biological phosphorus removal (EBPR). Disintegrated sludge (DS) can act as carbon source to increase the efficiency of EBPR. This research explores the influence of DS upon phosphorus removal efficiency using mathematical simulation modeling. Activated Sludge Model No. 2d (ASM2d) is one of the most useful of activated sludge (AS) models. This is because ASM2d can express the integrated mechanisms...

  2. A Systems Biology-Based Approach to Uncovering the Molecular Mechanisms Underlying the Effects of Dragon's Blood Tablet in Colitis, Involving the Integration of Chemical Analysis, ADME Prediction, and Network Pharmacology

    OpenAIRE

    Haiyu Xu; Yanqiong Zhang; Yun Lei; Xiumei Gao; Huaqiang Zhai; Na Lin; Shihuan Tang; Rixin Liang; Yan Ma; Defeng Li; Yi Zhang; Guangrong Zhu; Hongjun Yang; Luqi Huang

    2014-01-01

    Traditional Chinese medicine (TCM) is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB) tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME), and network pharmacology. Firstly, a rapid, reliable, and accurate ult...

  3. Ursinia nana (Anthemideae, Asteraceae), an adventive from South Africa which is becoming naturalized in the NE Iberian Peninsula. Observations about its reproductive biology and fruit dispersal mechanisms

    OpenAIRE

    Molero Briones, J.

    2009-01-01

    The presence of Ursinia nana, an Anthemideae of South-African origin which has been introduced into the NE Iberian Peninsula, is reported for the first time in Europe. The data offered cover its precise location, morphology, chromosome number, ecology and a population census, as well as its life cycle, floral structure, reproductive biology and fruit dispersal mechanisms. Of special note are the clear predominance of autogamy (geitonogamy) over xenogamy as a reproductive sy...

  4. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  5. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  6. Synthetic Biology for Therapeutic Applications

    OpenAIRE

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2014-01-01

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug d...

  7. Thermodynamics of Biological Processes

    Science.gov (United States)

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  8. An integrated global chemomics and system biology approach to analyze the mechanisms of the traditional Chinese medicinal preparation Eriobotrya japonica – Fritillaria usuriensis dropping pills for pulmonary diseases

    OpenAIRE

    Tao, Jin; Hou, Yuanyuan; Ma, Xiaoyao; Dan LIU; Tong, Yongling; Zhou, Hong; Gao, Jie; Bai, Gang

    2016-01-01

    Background Traditional Chinese medicine (TCM) herbal formulae provide valuable therapeutic strategies. However, the active ingredients and mechanisms of action remain unclear for most of these formulae. Therefore, the identification of complex mechanisms is a major challenge in TCM research. Methods This study used a network pharmacology approach to clarify the anti-inflammatory and cough suppressing mechanisms of the Chinese medicinal preparation Eriobotrya japonica – Fritillaria usuriensis ...

  9. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  10. Comparison of the Efficiency of Biological Transmission of Anaplasma marginale (Rickettsiales: Anaplasmataceae) by Dermacentor andersoni Stiles (Acari: Ixodidae) with Mechanical Transmission by the Horse Fly, Tabanus fuscicos

    Science.gov (United States)

    Mechanical transmission of Anaplasma marginale by horse flies (Tabanidae) is thought to be epidemiologically significant in some areas of the US. We compared the relative efficiencies of mechanical transmission of Anaplasma marginale by the horse fly, Tabanus fuscicostatus Hine during acute infectio...

  11. Inferring Biological Mechanisms by Data-Based Mathematical Modelling: Compartment-Specific Gene Activation during Sporulation in Bacillus subtilis as a Test Case

    Directory of Open Access Journals (Sweden)

    Dagmar Iber

    2011-01-01

    Full Text Available Biological functionality arises from the complex interactions of simple components. Emerging behaviour is difficult to recognize with verbal models alone, and mathematical approaches are important. Even few interacting components can give rise to a wide range of different responses, that is, sustained, transient, oscillatory, switch-like responses, depending on the values of the model parameters. A quantitative comparison of model predictions and experiments is therefore important to distinguish between competing hypotheses and to judge whether a certain regulatory behaviour is at all possible and plausible given the observed type and strengths of interactions and the speed of reactions. Here I will review a detailed model for the transcription factor , a regulator of cell differentiation during sporulation in Bacillus subtilis. I will focus in particular on the type of conclusions that can be drawn from detailed, carefully validated models of biological signaling networks. For most systems, such detailed experimental information is currently not available, but accumulating biochemical data through technical advances are likely to enable the detailed modelling of an increasing number of pathways. A major challenge will be the linking of such detailed models and their integration into a multiscale framework to enable their analysis in a larger biological context.

  12. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  13. Repair mechanisms inducible to the DNA in I.M.M.S. biological systems; Mecanismos de reparacion inducible del ADN en sistemas biologicos I.M.M.S

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, J.; Arceo, C.; Cortinas, C.; Rosa, M.E. De la; Olvera, O.; Cruces, M.; Pimentel, E

    1990-03-15

    Given the characteristics of the MMS and the relative antecedents to the repair mechanisms in eucariontes are sought to determine the effect of the MMS on the genetic material and their repair in Drosophila melanogaster. (Author)

  14. Chemical production of excited states in biology: mechanism, regulation and function. Renewal proposal and tri-annual summary report, July 1, 1974--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H H

    1977-01-01

    Progress is reported on studies of molecular mechanisms involved in bioluminescent reactions in fireflies, in purified calcium-activated photoproteins from marine microorganisms, and in marine dinoflagellates. The role of luciferase binding protein mechanisms in photon-stimulated bioluminescence is discussed. The use of chemiluminescence as an assay technique for nicotine in tobacco smoke and carcinogenic hydrocarbons in environmental samples is proposed and the requirements for such an assay system are reviewed.

  15. Mechanisms and biological importance of photon-induced bystander responses. Do they have an impact on low-dose radiation responses

    International Nuclear Information System (INIS)

    Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced by-stander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. (author)

  16. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  17. The silicon problem in TNV regenerators. Deposit formation in the ceramic heat stores of mechanical and biological waste treatment systems; Siliziumproblematik in TNV-Regeneratoren. Auch bei MBA-Anlagen kommt es zu Ablagerungen in den keramischen Waermespeichermassen

    Energy Technology Data Exchange (ETDEWEB)

    Carlowitz, O. [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany); Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Institut fuer Umweltwissenschaften; Neese, O. [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany); Reindorf, T. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Institut fuer Umweltwissenschaften

    2006-03-15

    About two years ago, plants for mechanical and biological treatment of waste were equipped with thermal post-combustion systems in order to ensure compliance with the limiting values of the 30. BImSchV. In these plants, a phenomenon was observed which was also found in other applications, e.g. deposition of silicon dioxide in the ceramic heat storage masses, resulting from off-gases of the digestion process which may contain oxidable Si compounds. The depositions and the standstill times required for cleaning must be accepted as there is as yet no other way to solve the problem. (orig.)

  18. Modeling and simulation of three dimensional manipulations of biological micro/nanoparticles by applying cylindrical contact mechanics models by means of AFM

    Energy Technology Data Exchange (ETDEWEB)

    Korayem, M. H., E-mail: hkorayem@iust.ac.ir [Iran University of Science and Technology, Robotic Research Laboratory, School of Mechanical Engineering, Center of Excellence in Experimental Solid Mechanics and Dynamics (Iran, Islamic Republic of); Saraee, M. B. [Islamic Azad University, Department of Mechanical and Aerospace Engineering, Science and Research Branch (Iran, Islamic Republic of); Mahmoodi, Z.; Dehghani, S. [Iran University of Science and Technology, Robotic Research Laboratory, School of Mechanical Engineering, Center of Excellence in Experimental Solid Mechanics and Dynamics (Iran, Islamic Republic of)

    2015-11-15

    This paper has attempted to investigate the effective forces in 3D manipulation of biological micro/nano particles. Most of the recent researches have only examined 2D spherical geometries but in this paper, the cylindrical geometries, which are much closer to the real geometries, were considered. For achieving a more accurate modeling, manipulation dynamics was also considered to be three dimensional which have been done for the first time. Because of the sensibility to the amount of endurable applied forces, manipulation process of biological micro/nano particles has some restrictions. Therefore, applied forces exerted on the particles in all different directions were simulated in order to restrict all those possible damages cause by operator of the AFM. Those data from simulated forces will bring a more accurate and sensible understanding for the operator to operate. For the validation of results, the proposed model was compared with the model presented for manipulation of gold nanoparticle and then, by reducing the effective parameters in the 3D manipulation, the results were compared with those obtained for the 2D cylindrical model and with the experimental results of spherical nanoparticle in the 2D manipulation.

  19. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    Science.gov (United States)

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-01-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers. PMID:27363513

  20. Modeling and simulation of three dimensional manipulations of biological micro/nanoparticles by applying cylindrical contact mechanics models by means of AFM

    International Nuclear Information System (INIS)

    This paper has attempted to investigate the effective forces in 3D manipulation of biological micro/nano particles. Most of the recent researches have only examined 2D spherical geometries but in this paper, the cylindrical geometries, which are much closer to the real geometries, were considered. For achieving a more accurate modeling, manipulation dynamics was also considered to be three dimensional which have been done for the first time. Because of the sensibility to the amount of endurable applied forces, manipulation process of biological micro/nano particles has some restrictions. Therefore, applied forces exerted on the particles in all different directions were simulated in order to restrict all those possible damages cause by operator of the AFM. Those data from simulated forces will bring a more accurate and sensible understanding for the operator to operate. For the validation of results, the proposed model was compared with the model presented for manipulation of gold nanoparticle and then, by reducing the effective parameters in the 3D manipulation, the results were compared with those obtained for the 2D cylindrical model and with the experimental results of spherical nanoparticle in the 2D manipulation

  1. Vibrations, Quanta and Biology

    CERN Document Server

    Huelga, S F

    2013-01-01

    Quantum biology is an emerging field of research that concerns itself with the experimental and theoretical exploration of non-trivial quantum phenomena in biological systems. In this tutorial overview we aim to bring out fundamental assumptions and questions in the field, identify basic design principles and develop a key underlying theme -- the dynamics of quantum dynamical networks in the presence of an environment and the fruitful interplay that the two may enter. At the hand of three biological phenomena whose understanding is held to require quantum mechanical processes, namely excitation and charge transfer in photosynthetic complexes, magneto-reception in birds and the olfactory sense, we demonstrate that this underlying theme encompasses them all, thus suggesting its wider relevance as an archetypical framework for quantum biology.

  2. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the public health risks related to mechanically separated meat (MSM) derived from poultry and swine

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    The purpose of this assessment was to identify public health risks linked to mechanically separated meat (MSM) types from pork and poultry and compare them with fresh meat, minced meat and meat preparations (non-MSM); and to select, rank and suggest objective measurement methods and values...

  3. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  4. Processing of liquid effluents of mechanical-biological waste treatment plants according to the limiting values set in Appendix 23 of the German Waste Water Ordinance; Aufbereitung von MBA-Abwasser entsprechend den Grenzwerten des Anhang 23 der Abwasserverordnung

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, F. [INNOWA, Heuweiler (Germany); Schalk, P. [WEHRLE Umwelt GmbH, Energie und Umwelttechnik, Emmendingen (Germany)

    2004-07-01

    Liquid effluents of mechanical-biological waste treatment plants are similar to landfill leachates and must be purified. In Germany, this is specified in Appendix 23 of the Waste Water ordinance. More than 100 leachate purification plants are available in Europe, and established technologies should be transferred to mechanical-biological waste treatment. (orig.) [German] Die mechanisch-biologische Abfallbehandlung hat sich in Europa als ein Konzept zur Aufbereitung von Siedlungsabfaellen etabliert. Aus dem biologischen Abbau und der Entwaesserung entsteht ein vergleichsweise komplexes, hochbelastetes Abwasser, das einer Reinigung zu unterziehen ist. In seiner Zusammensetzung ist MBA-Abwasser mit bestimmten Deponiesickerwaessern vergleichbar. In Deutschland wurde fuer Abwasser aus MBA-Anlagen der Anhang 23 in der Abwasserverordnung erlassen. Deren Grenzwerte sind nahezu identisch mit den Einleitparametern aus der Reinigung von Deponiesickerwasser. Auf dem Gebiet der Deponiesickerwasserreinigung wurden bisher weit ueber 100 Anlagen in Europa errichtet. Durch den gemeinsamen Ursprung sowie der Vergleichbarkeit von gewissen Deponiesickerwaessern und Abwaessern aus MBA-Anlagen ist es naheliegend, bewaehrte Verfahren aus der Sickerwasserreinigung in Abfallbehandlungsanlagen zu transferieren. (orig.)

  5. 生物制剂治疗银屑病的机制及应用进展%The Mechanism of Biological Agent for Psoriasis and Its Application Progress

    Institute of Scientific and Technical Information of China (English)

    沈芳(综述); 谢韶琼(审校)

    2015-01-01

    银屑病是一种免疫性疾病,大量研究证实 T细胞在其发生、发展中起重要作用。近年来,传统药物治疗银屑病的疗效不高、不良反应大,而生物制剂表现出显著的疗效和较好的安全性。靶向性生物制剂能阻断T细胞活化及其相关细胞因子的产生,在治疗中、重度银屑病方面疗效显著。近年来国外应用生物制剂治疗银屑病的报道屡见不鲜,国内虽有使用,但甚少。该文对多种银屑病生物制剂的作用机制、临床疗效和国内病例报道进行了综述。%Psoriasis is an autoimmune disease,and numerous studies have confirmed that T cell plays an important role in its occurrence.The efficacy of the traditional medicine for treating psoriasis is not high ,and it has some adverse reactions.Biological agent showed significant effect and good safety in the treatment of psoriasis in recent years.Targeted biologics can block the activation of T cell and related cytokines,which have shown good to excellent clinical outcomes for psoriasis.In recent years,the application of biological agents to treat psoriasis has been frequently reported abroad.Although there are also being used in China,but little. Here reviews the mechanism,clinical efficacy and domestic case reports of biological agents for psoriasis.

  6. New insights into the catalytic mechanism of vitamin K epoxide reductase (VKORC1) - The catalytic properties of the major mutations of rVKORC1 explain the biological cost associated to mutations.

    Science.gov (United States)

    Matagrin, Benjamin; Hodroge, Ahmed; Montagut-Romans, Adrien; Andru, Julie; Fourel, Isabelle; Besse, Stéphane; Benoit, Etienne; Lattard, Virginie

    2013-01-01

    The systematic use of antivitamin K anticoagulants (AVK) as rodenticides caused the selection of rats resistant to AVKs. The resistance is mainly associated to genetic polymorphisms in the Vkorc1 gene encoding the VKORC1 enzyme responsible for the reduction of vitamin K 2,3-epoxide to vitamin K. Five major mutations, which are responsible for AVK resistance, have been described. Possible explanations for the biological cost of these mutations have been suggested. This biological cost might be linked to an increase in the vitamin K requirements. To analyze the possible involvement of VKORC1 in this biological cost, rVKORC1 and its major mutants were expressed in Pichia pastoris as membrane-bound proteins and their catalytic properties were determined for vitamin K and 3-OH-vitamin K production. In this report, we showed that mutations at Leu-120 and Tyr-139 dramatically affect the vitamin K epoxide reductase activity. Moreover, this study allowed the detection of an additional production of 3-hydroxyvitamin K for all the mutants in position 139. This result suggests the involvement of Tyr-139 residue in the second half-step of the catalytic mechanism corresponding to the dehydration of vitamin K epoxide. As a consequence, the biological cost observed in Y139C and Y139S resistant rat strains is at least partially explained by the catalytic properties of the mutated VKORC1 involving a loss of vitamin K from the vitamin K cycle through the formation of 3-hydroxyvitamin K and a very low catalytic efficiency of the VKOR activity.

  7. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review.

    Science.gov (United States)

    Kirmanidou, Yvoni; Sidira, Margarita; Drosou, Maria-Eleni; Bennani, Vincent; Bakopoulou, Athina; Tsouknidas, Alexander; Michailidis, Nikolaos; Michalakis, Konstantinos

    2016-01-01

    Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world. PMID:26885506

  8. Mechano-chemical energy transduction in biological systems. The effect of mechanical stimulation on the polymerization of actin: a kinetic study.

    Science.gov (United States)

    Ferri, A; Grazi, E

    1982-01-01

    Mechanical stimulation (forced circulation in narrow tubing) accelerates as much as 10-fold the rate of polymerization of actin. The increase in the rate is proportional to the intensity of the stimulation for flow rates between 0 and 3 cm/s. This supports the hypothesis that a statistical factor (the orientation of the flowing particles) is influenced by the flow. Comparison of the kinetics of the polymerization of resting and of mechanically stimulated actin solutions shows that both the nucleation and the elongation steps are accelerated. It is thus concluded that flow orients not only the oligomeric structures but also the actin monomers. The elongation reaction, also in the flow-stimulated samples, occurs always by the addition of ATP--G-actin (or ATP-containing oligomers) and not by the fusion of ADP-containing oligomeric structures. PMID:7138502

  9. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review

    Science.gov (United States)

    Kirmanidou, Yvoni; Sidira, Margarita; Drosou, Maria-Eleni; Bennani, Vincent; Bakopoulou, Athina; Tsouknidas, Alexander; Michailidis, Nikolaos; Michalakis, Konstantinos

    2016-01-01

    Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world. PMID:26885506

  10. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review

    Directory of Open Access Journals (Sweden)

    Yvoni Kirmanidou

    2016-01-01

    Full Text Available Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.

  11. A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration.

    Science.gov (United States)

    Huang, Lin; Lv, Qi; Liu, Fenfen; Shi, Tieliu; Wen, Chengping

    2015-01-01

    Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas. PMID:26560501

  12. Interaction of ribosomal protein L22 with casein kinase 2α: a novel mechanism for understanding the biology of non-small cell lung cancer.

    Science.gov (United States)

    Yang, Mingxia; Sun, Haibo; He, Ji; Wang, Hong; Yu, Xiaowei; Ma, Lei; Zhu, Changliang

    2014-07-01

    Dysfunction of ribosomal proteins (RPs) may play an important role in molecular tumorigenesis, such as lung cancer, acting in extraribosomal functions. Many protein-protein interaction studies and genetic screens have confirmed the extraribosomal capacity of RPs. As reported, ribosomal protein L22 (RPL22) dysfunction could increase cancer risk. In the present study, we examined RPL22-protein complexes in lung cancer cells. Tandem affinity purification (TAP) was used to screen the RPL22-protein complexes, and GST pull-down experiments and confocal microscopy were used to assess the protein-protein interaction. The experiment of kinase assay was used to study the function of the RPL22-protein complexes. The results showed that several differentially expressed proteins were isolated and identified by LC-MS/MS, which revealed that one of the protein complexes included casein kinase 2α (CK2α). RPL22 and CK2α interact in vitro. RPL22 also inhibited CK2α substrate phosphorylation in vitro. This is the first report of the RPL22-CK2α relationship in lung cancer. Dysregulated CK2 may impact cell proliferation and apoptosis, key features of cancer cell biology. Our results indicate that RPL22 may be a candidate anticancer agent due to its CK2α-binding and -inhibitory functions in human lung cancer. PMID:24840952

  13. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2016-03-01

    Full Text Available Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain’s internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC

  14. 植物DNA甲基化变异对生物和非生物胁迫的响应机制%DNA Methylation Variation of Biological and Abiotic Stress Response Mechanism in Plant

    Institute of Scientific and Technical Information of China (English)

    王晓凤; 曾凡锁; 詹亚光

    2011-01-01

    高等植物具有复杂的机制使其对环境的变化做出响应,这种机制是通过长期进化建立起来的.它们能够对出现的生物和非生物胁迫产生响应.在分子水平上,植物对各种胁迫的响应是受多基因表达变化调控的,包括植物激素水杨酸、脱落酸等信号途径在整合、协调植物胁迫过程中起关键作用.近年来的研究表明,在植物响应胁迫这一过程中还进行着表观遗传调控这一进程.我们简要综述了生物胁迫和非生物胁迫对表观遗传的影响以及胁迫印记的产生,并讨论了植物响应胁迫的表观遗传调控机制.%Plants have complex mechanisms to respond to environmental changes, such a mechanism is established through long-term evolution. They can response to biological and abiotic stress. At the molecular level, plants of various stress response are regulated by multiple gene expression, including the plant hormone salicylic acid, ABA signaling pathways in the integration, coordination of plant stress play a key role in the process. Recent studies showed that plant responses to stress are also engaged in the process of epigenetic regulation in this process. In this paper we reviewed the biological stress and abiotic stress on the impact of epigenetic imprint stress generation,and discussed the plant response to stress epigenetic mechanisms.

  15. Chemical and Biological Kinetics

    Science.gov (United States)

    Emanuel', N. M.

    1981-10-01

    Examples of the application of the methods and ideas of chemical kinetics in various branches of chemistry and biology are considered and the results of studies on the kinetics and mechanisms of autoxidation and inhibited and catalysed oxidation of organic substances in the liquid phase are surveyed. Problems of the kinetics of the ageing of polymers and the principles of their stabilisation are discussed and certain trends in biological kinetics (kinetics of tumour growth, kinetic criteria of the effectiveness of chemotherapy, problems of gerontology, etc.) are considered. The bibliography includes 281 references.

  16. System biology analysis of long-term effect and mechanism of Bufei Yishen on COPD revealed by system pharmacology and 3-omics profiling

    Science.gov (United States)

    Li, Jiansheng; Zhao, Peng; Yang, Liping; Li, Ya; Tian, Yange; Li, Suyun

    2016-01-01

    System pharmacology identified 195 potential targets of Bufei Yishen formula (BYF), and BYF was proven to have a short-term therapeutic effect on chronic obstructive pulmonary disease (COPD) rats previously. However, the long-term effect and mechanism of BYF on COPD is still unclear. Herein, we explored its long-term effect and underlying mechanism at system level. We administered BYF to COPD rats from week 9 to 20, and found that BYF could prevent COPD by inhibiting the inflammatory cytokines expression, protease-antiprotease imbalance and collagen deposition on week 32. Then, using transcriptomics, proteomics and metabolomics analysis, we identified significant regulated genes, proteins and metabolites in lung tissues of COPD and BYF-treated rats, which could be mainly attributed to oxidoreductase-antioxidant activity, focal adhesion, tight junction or lipid metabolism. Finally, based on the comprehensive analysis of system pharmacology target, transcript, protein and metabolite data sets, we found a number of genes, proteins, metabolites regulated in BYF-treated rats and the target proteins of BYF were involved in lipid metabolism, inflammatory response, oxidative stress and focal adhension. In conclusion, BYF exerts long-term therapeutic action on COPD probably through modulating the lipid metabolism, oxidative stress, cell junction and inflammatory response pathways at system level. PMID:27146975

  17. Airborne microbial emissions and immissions on aerogic mechanical-biological waste treatment plants; Luftgetragene mikrobielle Emissionen und Immissionen an aeroben mechanisch-biologischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Luft, C.

    2002-07-01

    During biological waste treatment it is important to consider the hygienic situation. One has to take care that citizens in the neighborhood and especially the work force complain about impairments caused by microbial immissions. Therefore it is important to evaluate microbial emissions and immissions of composting plants. This dissertation looked upon this topic. Microbial and endotoxin emissions of different biological waste treatment plants were measured with diverse sampling methods. The research was done on enclosed and open variants of plants. Measurements were taken from different composting techniques and also from a plant treating the rest fraction of household waste. Depending on the technique researched different concentrations of airborne microbes could be found. The size of the plant and degree of enclosure as well as the material input all affect the amount of airborne microbial emissions. At a small open composting plant (6 500 Mg/a) only low microbial concentrations could be found at the workplace, while at the totally enclosed plant (12 000 Mg/a) high concentrations of airborne microorganisms could be observed at the workplace. Seasonal differences in microbial concentrations could not be seen when considering the agitation of outdoor piles consisting of separated household waste. In contrast, measured concentrations of endotoxins at another composting plant showed seasonal differences. Using simulations based on the models of TA-Luft and VDI 3783 it could be calculated that emissions from enclosed plants with 12 000 Mg/a input and a biofilter have a minimal influence on the neighborhood of the composting plant. (orig.) [German] Beim Umgang mit biologischen Abfaellen spielt die hygienische Situation eine wichtige Rolle. Besonders im Bereich des Arbeitsschutzes, aber auch im Hinblick auf die in der Naehe von Abfallbehandlungsanlagen wohnenden Personen, ist Sorge zu tragen, dass es nicht zu gesundheitlichen Beeintraechtigungen durch Keimimmissionen

  18. The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels.

    Science.gov (United States)

    Ibrahim, Samir; Kang, Qian K; Ramamurthi, Anand

    2010-08-01

    In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1 x 10(6) Da) and HA-o mixtures (HA-o: 0.75-10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA-o was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild subcutaneous inflammatory response in vivo and VCAM-1 expression by endothelial cells (ECs) cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA-o and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromise their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA-o and more biocompatible HMW HA on synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable, and

  19. Influence of fluoride additions on biological and mechanical properties of Na2O–CaO–SiO2–P2O5 glass–ceramics

    International Nuclear Information System (INIS)

    Two series of Na2O–CaO–SiO2–P2O5 glass–ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol–gel method. The glass–ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass–ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass–ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass–ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass–ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass–ceramic surface, indicating that the glass–ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass–ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass–ceramics are safe to serve as implants. - Highlights: • The variations of additions account for the differences in internal structure. • The intensity ratio of Si-O-NBO/Si-O (s,sym) of G-NH4HF2 is higher than that of G-CaF2. • The bioactivity of G-NH4HF2 is better than that of G-CaF2. • The

  20. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  1. Influence of fluoride additions on biological and mechanical properties of Na2O-CaO-SiO2-P2O5 glass-ceramics.

    Science.gov (United States)

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2014-02-01

    Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants.

  2. A COLLABORATIVE METHOD BASED ON BIOLOGICAL IMMUNE MECHANISM FOR WIRELESS SENSOR AND ACTUATOR NETWORK%基于生物免疫机制的无线传感执行网络协同方法

    Institute of Scientific and Technical Information of China (English)

    成国营; 王艳

    2016-01-01

    Taking the wireless sensor and actuator networks as the object,the biological immune mechanism as the reference,and the energy efficiency and efficient task collaboration as the purpose,in this paper we first build the analogy model of the wireless sensor and actuator networks problem in contrast with biological immune mechanism,then further present the biological immune mechanism-based adaptive sensor-actuator routing collaboration algorithm for the collaborations of sensor-actuator and actuator-actuator problems respectively,as well as give the implementation process of the algorithm.Finally the effectiveness and advantage of the proposed method are validated through simulation.Simulation results show that to employ the collaboration method proposed can optimise the information transmission path in WSAN,and can reduce networks energy cost as well,besides,the energy equilibrium index is improved too.%以无线传感执行网络为对象,借鉴生物免疫机制,以能量高效、任务高效协作为目标,首先建立无线传感执行网络协同问题与生物免疫机制的类比模型,进而分别针对传感器—执行器协同及执行器—执行器协同问题,提出基于生物免疫机制的传感器—执行器自适应路由协同算法,及执行器—执行器任务协同算法,并给出算法执行流程。最后,通过仿真验证了方法的有效性与优越性。仿真结果表明,采用所提出的协同方法,不但优化了WSAN信息传递路径,而且降低了网络能耗,同时改善了能量均衡指标。

  3. Differential superiority of heavy charged-particle irradiation to x-rays: Studies on biological effectivenes and side effect mechanisms in multicellular tumor and normal tissue models

    Directory of Open Access Journals (Sweden)

    Stefan eWalenta

    2016-02-01

    Full Text Available This review is focused on the radiobiology of carbon ions compared to x-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review deals with radiation-induced cell migration and mucositis.Multicellular spheroids (MCS from V79 hamster cells were irradiated with x-rays or carbon ions under ambient or restricted oxygen supply conditions. Oxygen enhancement ratios (OER were 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. A relative biological effectiveness (RBE of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M, and a dose-dependent massive induction of apoptosis. Clinically relevant doses (3 Gy of x-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in 1 integrin expression. Unlike with particles, the photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor (EGFR and AKT-ERK1/2 pathway. Comparing the gene toxicity of x-rays with that of particles using the gamma-H2AX technique in organotypic cultures of the oral mucosa, the superior effectiveness of heavy ions was confirmed by a two-fold higher number of foci per nucleus. Pro-inflammatory signs, however, were similar for both treatment modalities, e. g., the activation of NFkappaB, and the release of IL

  4. 利用简易MBT技术处理成都市生活垃圾实验研究%Study on Treatment of Municipal Solid Wastes Adopting Mechanical-biological Technology in Chengdu

    Institute of Scientific and Technical Information of China (English)

    汪雯; 杨智

    2013-01-01

    成都市生活垃圾产生量日益增加,现有的处理设施越来越难以满足垃圾处理与资源利用的要求.MBT技术是实现垃圾无害化、减量化、资源化的一种垃圾综合处理技术,通过实验对成都垃圾填埋场的垃圾进行MBT处理,比较各个环节前后垃圾质量、含水率、挥发性有机质和生物稳定性等变化,可以看出MBT技术对成都市生活垃圾具有良好的处理效果.经过MBT处理,垃圾的物质干重、含水率和挥发性有机质含量均有显著下降,垃圾的生物稳定性明显增强.%In Chengdu, the municipal solid wastes production becomes more and more, but the capacity of present treatment facilities is inadequate to meet the requirements of refuse disposal and resources reuse. Mechanical-biological treatment (MBT) is a Comprehensive treatment technology to realize harmlessness, reduction and recycling. By means of experiment, the refuses from the landfill of Chengdu were treated using MBT. Comparison of the changes of quality, moisture content, volatile organic matter and biological stability of the refuses before and after every step in the experiment showed good treatment effects. Through MBT treatment, the dry weight, moisture content and volatile organic matter content of the wastes decreased significantly and the biological stability increased apparently.

  5. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  6. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  7. Biology Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  8. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis.

    Science.gov (United States)

    Sadhukhan, Jhuma; Ng, Kok Siew; Martinez-Hernandez, Elias

    2016-09-01

    This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%).

  9. Crystalline guanine adducts of natural and synthetic trioxacarcins suggest a common biological mechanism and reveal a basis for the instability of trioxacarcin A.

    Science.gov (United States)

    Pröpper, Kevin; Dittrich, Birger; Smaltz, Daniel J; Magauer, Thomas; Myers, Andrew G

    2014-09-15

    X-ray crystallographic characterization of products derived from natural and fully synthetic trioxacarcins, molecules with potent antiproliferative effects, illuminates aspects of their reactivity and mechanism of action. Incubation of the fully synthetic trioxacarcin analog 3, which lacks one of the carbohydrate residues present in the natural product trioxacarcin A (1) as well as oxygenation at C2 and C4 yet retains potent antiproliferative effects, with the self-complimentary duplex oligonucleotide d(AACCGGTT) led to production of a crystalline covalent guanine adduct (6). Adduct 6 is closely analogous to gutingimycin (2), the previously reported guanine adduct derived from incubation of natural trioxacarcin A (1) with duplex DNA, suggesting that 3 and 1 likely share a common basis of cytotoxicity. In addition, we isolated a novel, dark-red crystalline guanine adduct (7) from incubation of trioxacarcin A itself with the self-complimentary duplex oligonucleotide d(CGTATACG). Crystallographic analysis suggests that 7 is an anthraquinone derivative, which we propose arises by a sequence of guanosine alkylation within duplex DNA, depurination, base-catalyzed elimination of the trioxacarcinose A carbohydrate residue, and oxidative rearrangement to form an anthraquinone. We believe that this heretofore unrecognized chemical instability of natural trioxacarcins may explain why trioxacarcin analogs lacking C4 oxygenation exhibit superior chemical stabilities yet, as evidenced by structure 3, retain a capacity to form lesions with duplex DNA. PMID:25176186

  10. Biological Significance and the Related Molecular Mechanism of Ets1 mRNA Expression in Lung Cancer by Tissue Microarray (TMA)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the expressions and molecular mechanism of Ets-1 mRNA, and TGFβ1 and c-Met proteins in the pathogenesis, progression of lung cancer by tissue microarray (TMA) method. Methods: The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were detected in 89 primary lung cancers, 12 lung cancer with lymph-node metastasis and 12 precancerous lesions by FISH(fluorescence in situ hybridization) and immunohistochemical method, and 10 normal lung tissues were used as controls. Results: The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were significantly higher in 89 primary lung cancer than in the control group (P<0.05). The expressions of Ets-1 mRNA, and TGFβ1 and c-Met proteins were related to lymph node metastasis and clinical stages. There was a positive correlation between the Ets-1 mRNA expression and TGFβ1 and c-Met proteins (P<0.05). Conclusion: Ets-1 mRNA, TGFβ1 and c-Met proteins may be related to the pathogenesis, progression and malignant behavior of lung cancer. They may play an important role in prognosis assessment of lung cancer.

  11. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties

    Science.gov (United States)

    Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.

    2015-10-01

    Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.

  12. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis.

    Science.gov (United States)

    Sadhukhan, Jhuma; Ng, Kok Siew; Martinez-Hernandez, Elias

    2016-09-01

    This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%). PMID:27085988

  13. Biological materials: (Part A): Temperature-responsive polymers and drug delivery, and, (Part B): Polymer modification of fish scale and their nano-mechanical properties

    Science.gov (United States)

    Xiang, Xu

    This research has three parts. Two parts deal with novel nanoparticle assemblies for drug delivery, and are described in Part A, while the third part looks at properties of fish scales, an abundant and little-used waste resource, that can be modified to have value in medical and other areas. Part A describes fundamental research into the affects of block sequence of amphiphilic block copolymers prepared from on a new and versatile class of monomers, oligo(ethylene glycol) methyl ether acrylate (OEGA) and the more hydrophobic di(ethylene glycol) methyl ether methacrylate (DEGMA). Polymers from these monomers are biologically safe and give polymers with thermoresponsive properties that can be manipulated over a broader temperature range than the more researched N-isopropylacrylamide polymers. Using RAFT polymerization and different Chain Transfer Agents (CTAs) amphiphilic block copolymers were prepared to study the effect of block sequence (hydrophilic OEGA and more hydrophobic DEGMA) on their thermo-responsive properties. Pairing hydrophilic chain ends to a hydrophobic DEGMA block and hydrophobic chain ends to hydrophilic blocks ("mis-matched polarity") significantly affected thermoresponsive properties for linear and star diblock copolymers, but little affected symmetric triblock copolymers. Specifically matching polarity in diblock copolymers yielded nanoparticles with higher cloud points (CP), narrow temperature ranges for coil collapse above CP, and smaller hydrodynamic diameter than mis-matched polarity. Using this knowledge two linear OEGA/DEGMA diblock copolymers were prepared with thiol end groups and assembled into hybrid nanoparticles with a gold nanoparticle core (GNP-polymer hybrids). This design was made using the hypothesis that a hybrid polymer drug carrier with a high CP (50-60 °C) and a diblock structure could be designed with low levels of drug release below 37 °C (body temperature) allowing the drug carrier to reach a target (tumor) site with

  14. Invariant facial feature extraction method with biologically-like mechanism%一种仿生的人脸不变特征提取方法

    Institute of Scientific and Technical Information of China (English)

    杜兴; 龚卫国; 张睿

    2011-01-01

    A biologically-like invariant facial feature extraction method is proposed to improve the face recognition rate obtained using the methods based on subspace algorithms. A hierarchical network with two layers, which is constructed according to the information processing procedure in the primary visual cortex ( V1 ) , is put forward to extract invariant feature from the face image. The first layer of the network, which simulates the function of the V1 simple cells, leams and obtains a group of V1-simple-cell-like filters using sparse coding method, and employs these filters to extract a set of illumination insensitive features from the face image. The second layer, which simulates the function of the V1 complex cells, merges the output of the first layer in neighborhood of positions and scales using local maximum operation, so as to obtain the facial feature robust to illumination, expression, slight pose change and local facial detail variations. The obtained invariant features are used to replace original face image as the input of a subspace algorithm, and the performance of face recognition is improved. Experiments on the FERET and ORL face databases show that compared with directly applying subspace algorithms to the image, using the proposed method can increase the recognition rate by 4.95% ~ 20.35%.%为了提高基于子空间算法的人脸识别的识别率,提出一种仿生的人脸不变特征提取方法.通过模拟初级视皮层(V1)的信息处理机制,构建一个二层结构的分层网络提取人脸图像的不变特征.网络的第1层模拟Vl简单细胞的功能,通过稀疏编码方法学习获得一组类似Vl简单细胞的滤波器,利用该组滤波器提取图像的光照不变特征;第2层模拟V1复杂细胞的功能,通过局部极大值运算对第1层的输出在空间和尺度邻域内进行合并,得到对光照、表情、轻微姿态变化和面部局部细节变化具有鲁棒性的人脸不变特征.以此不变特征

  15. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models.

    Science.gov (United States)

    Walenta, Stefan; Mueller-Klieser, Wolfgang

    2016-01-01

    This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, (12)C(+6) in the plateau region, and (12)C(+6) in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during (12)C(+6) irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral

  16. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models.

    Science.gov (United States)

    Walenta, Stefan; Mueller-Klieser, Wolfgang

    2016-01-01

    This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, (12)C(+6) in the plateau region, and (12)C(+6) in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during (12)C(+6) irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral

  17. The Lueneburg model - experience from a one-year operating period of the mechanic-biological waste pre-treatment plant; Modell Lueneburg - Erfahrungen aus einem Jahr Betrieb der MBV-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Tegtmeyer, E. [Gesellschaft fuer Abfallwirtschaft Lueneburg mbH, Bardowick (Germany)

    1997-12-31

    The Lueneburg plant is one of three demonstration plants for mechanic-biological pre-treatment of residual waste which receive considerable grants from the state of Niedersachsen. Whereas the other two plants, the one at Bassum (district of Diepholz) and the one at Wiefels (district of Friesland), are currently under construction, the Lueneburg plant has been officially inaugurated already in December 1995 and has since been in operation. (orig./SR) [Deutsch] Die Lueneburger Anlage ist eine von drei Demonstrationsanlagen zur mechanisch-biologischen Vorbehandlung von Restabfaellen, die durch das Land Niedersachsen in erheblichem Umfang anteilig gefoerdert werden. Waehrend die beiden anderen Anlagen in Bassum (Landkreis Diepholz) und Wiefels (Landkreis Friesland) sich zur Zeit in der Errichtungsphase befinden, ist die MBV-Anlage Lueneburg bereits im Dezember 1995 offiziell eingeweiht worden und verfuegt damit mittlerweile ueber eine etwa einjaehrige Betriebserfahrung. (orig./SR)

  18. Time is running out. From 2005, a lack of capacity is expected in systems for mechanical-biological treatment of waste; Planung unter Zeitdruck. Ab 2005 drohen auch bei MBA-Anlagen Unterkapazitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Hennings H.; Fischer, K. [Stuttgart Univ. (Germany) Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft; Oesterle, E. [Fichtner Consulting and IT, Stuttgart (Germany)

    2003-03-01

    According to German law, waste treatment prior to dumping is required from 2005. The waste volumes to be processed in incinerators and plants for mechanical-biological treatment of waste are still under discussion. Time is another problem as design, licensing, tendering and construction will take at least three years, so plans should already be in the pipeline today. [German] Ab 2005 ist eine Behandlung von Restabfall vor der Deponierung zwingend vorgeschrieben. Welche Mengen dabei auf MVA und MBA zu verteilen sind, wird noch diskutiert. Unabhaengig davon existiert jedoch auch ein zeitliches Problem. Die Konzeption, Genehmigung, Ausschreibung und der Bau einer Anlage dauert mindestens drei Jahre. Die Planung sollte also schon begonnen haben. (orig.)

  19. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF2 or MgO for implants functionalization.

    Science.gov (United States)

    Mihailescu, Natalia; Stan, G E; Duta, L; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M; Luculescu, C; Oktar, F N; Mihailescu, I N

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF2 (2wt.%) or MgO (5wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ=248nm, τFWHM≤25ns) excimer laser source was used. The deposited structures were characterized from a physical-chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. PMID:26652442

  20. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  1. Cytoskeletal Mechanics

    Science.gov (United States)

    Mofrad, Mohammad R. K.; Kamm, Roger D.

    2011-08-01

    1. Introduction and the biological basis for cell mechanics Mohammad R. K. Mofrad and Roger Kamm; 2. Experimental measurements of intracellular mechanics Paul Janmey and Christoph Schmidt; 3. The cytoskeleton as a soft glassy material Jeffrey Fredberg and Ben Fabry; 4. Continuum elastic or viscoelastic models for the cell Mohammad R. K. Mofrad, Helene Karcher and Roger Kamm; 5. Multiphasic models of cell mechanics Farshid Guuilak, Mansoor A. Haider, Lori A. Setton, Tod A. Laursen and Frank P. T. Baaijens; 6. Models of cytoskeletal mechanics based on tensegrity Dimitrije Stamenovic; 7. Cells, gels and mechanics Gerald H. Pollack; 8. Polymer-based models of cytoskeletal networks F. C. MacKintosh; 9. Cell dynamics and the actin cytoskeleton James L. McGrath and C. Forbes Dewey, Jr; 10. Active cellular motion: continuum theories and models Marc Herant and Micah Dembo; 11. Summary Mohammad R. K. Mofrad and Roger Kamm.

  2. International 7{sup th} ASA waste days. Mechanical-biological waste treatment - performance of MBT. Proceedings; Internationale 7. ASA-Abfalltage. Mechanisch-Biologische Restabfallbehandlung - Leistungsfaehigkeit der MBA. Tagungsunterlagen

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Josef; Rohring, Daniel (comps.)

    2008-07-01

    Within the International 7th ASA Waste Days at 13th to 15th February, 2008, at the Congress Center Hanover (Federal Republic of Germany), the following lectures were held: (1) Climate change and resource protection (M. Stock); (2) Legal requirements for immission protection of thermal and biological waste treatment (U. Lahl); (3) MBT and requirements in Europe incl. the Integrated Pollution prevention and Control IPPC Guideline (B. Zambrzycki); (4) MBT in Italy - A case study for a successful introduction (A. Confalonieri); (5) MBT with dry digestion - Example of Pohlsche Heide aus Bassum (B. Schulte); (6) MBT with dry digestion - Example of MBT Hanover (B. Vielhaber, C. Nuelle); (7) MBT with percolation - Example of Kahlenberg (G. Person, M. Schreiber, G. Gibis); (8) MBT with tunnel and table windrows decomposition process - Example Havelland; (9) MBT with tunnel and table windrows decomposition process - Example Linkenbach (S. Kraus, T. Sterk); (10) MBS Mechanical Biological Stabilisation Process - Example Osnabrueck (C. Niehaves); (11) Complete Eco-efficient Material and Energetic Recovery of Dried Municipal Solid Wastes (M. Monzel); (12) MPS Mechanical Physical Stabilisation Process - Example Berlin (D. Michalski, A. Wendt, U. Buell); (13) Secondary Fuels - Pretreatment, Specialities, Requirements, Current Sales and Markets (S. Flamme); (14) Corrosion in Biological Waste Treatment Plants (K. Fricke, T. Thiel, T. Bahr, R. Wallmann); (15) Problems at the Operation of Plants with the RTO Exhaust Gas Treatment in the Frame of MBT Processes (O. Carlowitz, O. Neese); (16) Problems and Solutions with the Analysis and Emission Measuring According to AbfABIV and 30. BImSchV (K. Ketelsen); (17) Securing of a High Plant Availability by Self-Supporting Cleansing, Maintenance and Care Programmes - Example of MBT Plant Croebern (J. Burchert); (18) Fire Control - Conceptions, Safety Measures, Cause of Fires - Example of MBT Ennigerloh and MBT Vorketzin (M. Pahlenkemper, B

  3. Biological and mechanical evaluation of the small-diameter tissue-engineered blood vessels matrix%小口径组织工程血管基质材料的生物学和力学评价

    Institute of Scientific and Technical Information of China (English)

    谭菊; 曾文; 周静婷; 李刚; 张晓彦; 朱楚洪

    2014-01-01

    Objective To develop a small-diameter tissue-engineered blood vessels which possesses normal blood vessels physiological structure, good biocompatibility, and mechanical properties. And it was evaluated by mechanical and biological of national standard of medi-cal transfusion material. Methods The bio-derived material were regarded as the ground substance, and it was evaluated by mechanical and biological of national standard after composite modification. Results The axial and radial tensile stress of the blood vessel was 23. 14 N and 36. 79 N respectively, and it was greater than the standard 7. 5N. The tensile rate of the axial and radial was 95. 19% and 80. 24% respec-tively, which were higher than the standard value 20%. The suture strength of the blood vessel was 13. 71 N, which was conform to the me-chanical requirement. Mainly used blood vessels or its extracts to detect the pH of the blood vessels is in the scope of control deionized water pH (7. 5 ± 1. 5);the hemolysis rate was 1. 3972% which was less than 5%;the whole blood coagulation time was 50% longer than the con-trol level, and there was no stimulation after intradermal injection. Conclusion With bio-derived material as the ground substance and com-positely modified, this kind od blood vessels is conform to the mechanical and biological of national standard, and it has the potential of clini-cal application which could play an important role in the replacement therapy of small-diameter vascular xenografts.%目的:研制一种具备正常血管的生理结构和良好的生物相容性,而且具有血管力学特性的小口径组织工程血管基质材料,并按医用输血材料的力学及生物学国家标准评价。方法以去细胞生物衍生材料作为基质,按照国家标准对其进行力学和生物学评价。结果血管的轴向、径向拉伸应力分别为23.14 N和36.79 N,均大于标准规定的7.5 N;拉伸率分别为95.19%和80.24%,大于标准规定的20%

  4. Lung Stem cell biology

    OpenAIRE

    Ardhanareeswaran, Karthikeyan; Mirotsou, Maria

    2013-01-01

    Over the past few years new insights have been added to the study of stem cells in the adult lung. The exploration of the endogenous lung progenitors as well as the study of exogenously delivered stem cell populations holds promise for advancing our understanding of the biology of lung repair mechanisms. Moreover, it opens new possibilities for the use of stem cell therapy for the development of regenerative medicine approaches for the treatment of lung disease. Here, we discuss the main type...

  5. Biological Monitoring of Blood Naphthalene Levels as a Marker of Occupational Exposure to PAHs among Auto-Mechanics and Spray Painters in Rawalpindi

    Directory of Open Access Journals (Sweden)

    Cheema Iqbal U

    2011-06-01

    Full Text Available Abstract Background Routine exposure to chemical contaminants in workplace is a cause for concern over potential health risks to workers. In Pakistan, reports on occupational exposure and related health risks are almost non-existent, which reflects the scarce availability of survey data and criteria for determining whether an unsafe exposure has occurred. The current study was designed to evaluate blood naphthalene (NAPH levels as an indicator of exposure to polycyclic aromatic hydrocarbons (PAHs among automobile workshop mechanics (MCs and car-spray painters (PNs. We further determined the relationship between blood NAPH levels and personal behavioural, job related parameters and various environmental factors that may further be associated with elevated risks of occupational exposures to PAHs. Methods Sixty blood samples (n = 20 for each group i.e. MC, PN and control group were collected to compare their blood NAPH levels among exposed (MCs and PNs and un-exposed (control groups. Samples were analyzed using high pressure liquid chromatography (HPLC. Data regarding demographic aspects of the subjects and their socioeconomic features were collected using a questionnaire. Subjects were also asked to report environmental hygiene conditions of their occupational environment. Results We identified automobile work areas as potential sites for PAHs exposure, which was reflected by higher blood NAPH levels among MCs. Blood NAPH levels ranged from 53.7 to 1980.6 μgL-1 and 54.1 to 892.9 μgL-1 among MCs and PNs respectively. Comparison within each group showed that smoking enhanced exposure risks several fold and both active and passive smoking were among personal parameters that were significantly correlated with log-transformed blood NAPH levels. For exposed groups, work hours and work experience were job related parameters that showed strong associations with the increase in blood NAPH levels. Poor workplace hygiene and ventilation were recognized as

  6. Evaluation of combustion experiments conducted during the research and development project ``Mechanical-biological waste conditioning in combination with thermal processing of partial waste fractions``; Auswertung der Verbrennungsversuche zum Forschungs- und Entwicklungsvorhaben ``mechanisch-biologische Restmuellbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen``

    Energy Technology Data Exchange (ETDEWEB)

    Jager, J.; Lohf, A.; Herr, C. [Institut WAR, Darmstadt (Germany)

    1998-12-31

    The technical code on municipal waste makes specific demands on waste to be deposited at landfills which can only be met if mechanical-biological conditioning of waste as well as thermal processing of partial waste fractions are continued also in the future. But waste that has undergone mechanical or mechanical-biological conditioning presents different combustion properties from those of unconditioned waste. In this second stage of the research project, the thermal processability of waste having undergone mechanical or mechanical-biological conditioning was studied. Together with the results from the first project stage, where the throughput represented exclusively mechanically conditioned material, the results of the latter measuring campaigns comprehensively demonstrate possibilities for the thermal processing of partial waste fractions having undergone biological-mechanical conditioning, and inform on changes in plant performance. (orig.) [Deutsch] Um die in der TA-Siedlungsabfall an den abzulagernden Restmuell gestellten Deponieeingangsbedingungen zu erfuellen, muss neben einer mechanisch-biologischen Aufbereitung bei Teilfraktionen auch weiterhin eine thermische Behandlung eingeplant werden. Die Verbrennungseigenschaften von mechanisch oder mechanisch-biologisch vorbehandeltem Restmuell weichen allerdings von denen von unbehandeltem Restmuell ab. In dieser zweiten Projektphase des Forschungsvorhabens wurde eine Untersuchung bezueglich der thermischen Behandelbarkeit von mechanisch und auch biologisch vorbehandeltem Muell durchgefuehrt. Die Ergebnisse der Messkampagnen bilden zusammen mit den Ergebnissen der ersten Projektphase, in der ausschliesslich mechanisch vorbehandeltes Material durchgesetzt wurde, eine umfassende Darstellung ueber Moeglichkeiten und veraenderte Anlagenverhalten bei der thermischen Behandlung von Teilfraktionen aus der biologisch-mechanisch Vorbehandlung. (orig.)

  7. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  8. Crusts: biological

    Science.gov (United States)

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  9. Biological programming

    OpenAIRE

    Ramsden, Jeremy J.; Bándi, Gergely

    2010-01-01

    Biology offers a tremendous set of concepts that are potentially very powerfully usable for the software engineer, but they have been barely exploited hitherto. In this position paper we propose a fresh attempt to create the building blocks of a programming technology that could be as successful as life. A key guiding principle is to develop and make use of unambiguous definitions of the essential features of life.

  10. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  11. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  12. Causal and Teleological Explanations in Biology

    Science.gov (United States)

    Yip, Cheng-Wai

    2009-01-01

    A causal explanation in biology focuses on the mechanism by which a biological process is brought about, whereas a teleological explanation considers the end result, in the context of the survival of the organism, as a reason for certain biological processes or structures. There is a tendency among students to offer a teleological explanation…

  13. Review of Systems Biology Approach to Study on Developmental Toxicity Mechanism of Environmental Pollutants%环境污染物发育毒性机制研究的系统生物学方法进展

    Institute of Scientific and Technical Information of China (English)

    徐挺; 赵静; 胡霞林; 尹大强

    2011-01-01

    基因调控网络(gene regulatory network,GRN)是用于研究基因调控的一种新兴的系统生物学方法,尤其适合描述生物体早期发育的调控系统和机制.由于它能体现出调控过程的网络特性和动态关系,从整体的角度全面审视环境扰动所造成的真实影响,因此有望在内分泌干扰物等环境污染物的发育毒性机制研究中发挥重要作用,解决多年来一直困扰相关研究的种种难题.针对基因调控网络的结构、研究方法、应用成果和案例进行综述,并对将这一方法应用于污染物发育毒性机制研究的前景做出展望.%Gene regulatory network (GRN) was a novel systematical biology approach for the study on gene regulation mechanism, especially helpful in describing the early development of animal body. Because GRNs can present the networks and dynamics of regulatory processing and the true impacts from the environmental perturbation, they were expected to play a key role in studying developmental toxicity mechanisms of environmental pollutants including endocrine disrupting chemicals with resolving many problems which existed for a long time. The structures, methodologies, current application cases of GRNs are rewiewed. The application of GRNs into mechanism researches of developmental toxicity of pollutants is previewed in this paper.

  14. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship.

  15. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  16. Flocculation-nanofiltration treatment of biologically treated leachate and process mechanism%垃圾渗滤液生化出水絮凝-纳滤处理及过程机理

    Institute of Scientific and Technical Information of China (English)

    晏云鹏; 全学军; 葛淑萍; 罗丹; 邱发成; 徐飞

    2015-01-01

    垃圾焚烧发电厂渗滤液是一种含高浓度腐殖酸类物质和高盐含量的复杂有机废水,传统生化处理后仍难达标排放。本工作围绕垃圾渗滤液生化出水的特性,开展了Ca(OH)2絮凝、臭氧氧化预处理与NF处理相结合的处理工艺,并对处理过程的机理进行了探讨。研究表明,渗滤液生化出水经过Ca(OH)2絮凝处理,可以有效地去除其中的杂环类化合物。生化出水经8 g·L−1的Ca(OH)2絮凝处理后,比MBR出水产水通量提高达8.2%。对Ca(OH)2絮凝出水进行臭氧氧化处理,虽然降低了它的COD,但并未进一步提高其NF膜通量,其主要原因可能是臭氧氧化生成的硅氧烷类物质造成了膜的污染;与RO处理垃圾渗滤液生化出水相比较,NF膜无法分离废水中的酮类、胺和酰胺类、杂环类化合物,使得NF产水的COD处在100~160 mg·L−1。NF平均膜通量的增大可导致产水COD略有上升;垃圾渗滤液生化出水及其预处理水在NF处理过程中,都没有表现出严重的膜污染。%The leachate from incineration plant treating municipal solid waste (MSW) is a kind of wastewater, whose composition is very complicated and highly polluted, and after conventional biological treatment they can still not be directly discharged. According to characteristics of the biologically treated leachate, a combined process was proposed in which the biologically treated leachate was flocculated firstly by Ca(OH)2, and then the flocculated leachate was oxidized by ozone, and finally the ozonated leachate was filtered by NF membrane, and process mechanism was also explored. The experimental results indicated that Ca(OH)2 flocculation can effectively remove a large fraction of organic pollutants like heterocyclic compounds and improve the NF membrane flux. The permeate flux of flocculated effluent at the dosage of 8 g·L−1 Ca(OH)2 is increased by 8.2%compared with that of MBR effluent. The COD

  17. Biological couplings: Function, characteristics and implementation mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Through rigorous natural selection, biological organisms have evolved exceptional functions highly adaptable to their living environments. Biological organisms can achieve a variety of biological functions efficiently by using the synergic actions of two or more different parts of the body, or the coupling effects of multiple factors, and demonstrate optimal adaptations to the living environment. In this paper, the function, characteristics and types of biological couplings are analyzed, the implementation mechanism and mode of biological coupling functions are revealed from the bionic viewpoint. Finally, the technological prospects of the bionic implementation of biological coupling function are predicted.

  18. 毫米波的生物效应及医学实验和临床应用%Biological mechanism, clinical application and medical experiment of millimeter waves

    Institute of Scientific and Technical Information of China (English)

    罗庆禄

    2013-01-01

    BACKGROUND:Mil imeter wave has been applied in clinic for about 20 years, while the mechanisms and clinical curative effect are stil undefined and lacked of evidence based medicine. OBJECTIVE:To review the clinical application and mechanism of mil imeter wave in various diseases in the past 10 years. METHODS:A computer-based online search was performed in the CNKI database, China Standard database and Science Direct database from January1998 to December 2012 with the key words of“mil imeter wave, biological mechanisms, experimental studies, clinical application”put in the title and abstract. The articles related to the biological effect of mil imeter wave were included, and final y, 68 articles were included for review. RESULTS AND CONCLUSION:When the mil imeter wave used in the human body, it can only go through the skin, but its energy can resonance with some molecules in the tissues and provide the treatment effects. Mil imeter wave therapy has a good affinity for aqueous tissue, which can improve the metabolism and blood circulation of partial tissues, and can enhance the metabolic and pathological product absorption and excretory, thus can eliminate inflammatory, al eviate swel and relieve pain. Mil imeter wave filed has comprehensive.%背景:毫米波在中国临床应用已有近20年经验,但其具体机制以及临床疗效仍缺乏循证医学依据。目的:通过对国内外近10余年来毫米波在临床各类病症的应用及其机制研究进行综述。  方法:应用计算机检索1998年1月至2012年12月CNKI、中国标准全文数据库和Science Direct 数据库,在标题和中以“毫米波;生物学机制;实验研究;临床应用”或“mil imeter wave, biological mechanisms, experimental studies, clinical application”为检索词进行检索。纳入与毫米波的生物效应密切相关文献,最终选择64篇文章进行分析。  结果与结论:①毫米波疗法用于人体时,虽其穿透

  19. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  20. Mechanical and biological properties of human hard tissue replacement implants%人体硬组织替代材料的力学及生物学性能研究

    Institute of Scientific and Technical Information of China (English)

    高素霞; 孟和

    2005-01-01

    feature and biological properties of human hard tissue replacement implants for the indication of the direction in its development.STUDY SOURCES: Time of the search was from January 1998 to July 2004. Search range: 30 types of periodicals from CNKI digital library (Chinese Periodical Full Text database) and Science Direct digital library. Search words were hard tissue replacement implants, artificial bone,artificial root of tooth, bioceramic, and biological coat, etc. Search methods included electronic search and manual search, etc.STUDY SELECTION: Totally 200 corresponding literatures on human hard tissue replacement implants were selected for analysing and summarizing.DATA EXTRACTION: To summarize the corresponding information in the obtained research articles regarding hard tissue replacement implant.DATA SYNTHESIS: To comparatively analyze the mechanical and biological properties of each hard tissue replacement implant as well as their effects in practical application. The existing hard tissue replacement implants including metal materials, macromolecular materials, ceramics and their composite materials have been widely applied in clinics; however, their mechanical and biological properties have not been perfectly combined.CONCLUSION: It is always a key point(key point in researches) in biomedical material academia to find a replacement implant, of which the mechanical and biological properties perfectly suitable for the human hard tissues. The new generation of hard tissue replacement implants established by the application of biomimetic process, nano-technology, composite materisls and tissue engineering could hopefully satisfy the increasingly elevated demand of human beings.