WorldWideScience

Sample records for bimorph cantilever-actuated peristaltic

  1. Type Inference for Bimorphic Recursion

    CERN Document Server

    Tatsuta, Makoto; 10.4204/EPTCS.54.8

    2011-01-01

    This paper proposes bimorphic recursion, which is restricted polymorphic recursion such that every recursive call in the body of a function definition has the same type. Bimorphic recursion allows us to assign two different types to a recursively defined function: one is for its recursive calls and the other is for its calls outside its definition. Bimorphic recursion in this paper can be nested. This paper shows bimorphic recursion has principal types and decidable type inference. Hence bimorphic recursion gives us flexible typing for recursion with decidable type inference. This paper also shows that its typability becomes undecidable because of nesting of recursions when one removes the instantiation property from the bimorphic recursion.

  2. Thermal vertical bimorph actuators and their applications

    CERN Document Server

    Sehr, H J

    2002-01-01

    In this thesis, a novel concept for lateral actuators based on vertical bimorphs is presented. Vertical bimorphs consist of silicon beams side-coated with aluminium, which bend when heated due to the different thermal expansion coefficients of the two materials causing a displacement in the wafer plane. The heating of the actuator is provided by an electrical current through the silicon beam. The simplest implementation of a vertical bimorph actuator is a clamped-clamped beam. To obtain higher deflections, a meander shaped actuator has been designed. By combining four meander actuators, a two-dimensional positioning stage has been realised. The meander actuator has also been applied for normally closed and normally open micro-relays. Analytical calculations and ANSYS simulations have been carried out to predict the physical behaviour of the bimorph devices, including temperature distribution, static deflection, vertical stiffness, thermal time constant and lateral resonances. For both the clamped-clamped beam...

  3. Peristaltic ion source

    International Nuclear Information System (INIS)

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they've produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results

  4. Multi-path peristaltic pump

    Science.gov (United States)

    Chandler, Joseph A. (Inventor)

    1986-01-01

    The instant invention is directed to a peristaltic pump for critical laboratory or hospital applications requiring precise flow rates over an extended period of time. Within the cylindrical barrel pump housing is a single-piece, molded, elastometric, cylindrical liner with a multiplicity of flattened helical channels created therein from one end of the liner to the other. Three cylindrical rollers rotate about the center axis of the pump around the inside surface of the liner selectively compressing the liner, and hence the helical channels between the rollers and the barrel housing, creating a pumping action by forcing trapped fluid in the helical channels axially from one end of the liner to the opposite end. The novelty of the invention appears to lie in the provision of the special liner with multiple helical channels as the pumping chamber, rather than the standard single elastomeric tubing which is squeezed repeatedly by rollers to move the liquid through a typical peristaltic pump. Large, repeated deflections on the standard tubing causes a permanent set in the tubing, thus either changing the flow rate, or requiring a new section of tubing to be positioned in the pump head. Further, this configuration minimizes the amount of outflow pulsation which is characteristic of a typical single tubing peristaltic pump.

  5. Performance analysis of piezoelectric bimorph generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,the theoretical model and simulation of the performance of a piezoelectric (PZT)bimorph generator is introduced.The generator consists of two piezoelectric plates bonded on a substrate metal plate.For an effective electromechanical coupling coefficient (EECC) and the generated energy,the analytical formulae are established with the thickness ratio and the Young's modulus ratio as variables.After giving correlative material parameters,the EECC and generated energy can be computed.The results show that there is a optimal thickness ratio for a piezoelectric bimorph generator to achieve the maximum EECC and electrical energy.The EECC and generated energy decrease with an increase of the Young's modulus ratio.In addition,the influence of mechanical source on electrical energy generation and power output is also considered.

  6. TRAVELING MACHINE DRIVEN BY PIEZOELECTRIC BIMORPH

    Institute of Scientific and Technical Information of China (English)

    HUA Shunming; CHENG Guangming; FAN Zunqiang; YANG Zhigang; SUZUKI Katsiyoshi

    2007-01-01

    A rectangular bimorph will vibrate in bending mode under alternating current (AC) electric field. If two opposite tips along longitudinal direction are both clamped, the maximum magnitude of bending displacement occurs on the short center line. Using bimorph type vibrators forementioned as actuators, an invention of simple traveling machine based on stick-slip principle is presented. The machine can not only move along both x and y direction within horizontal working plane, furthermore, excellent bearing ability and agile response as well as stable step are also proved. In addition, the machine can work on stepping mode and scanning mode at the same time, hence the contradiction between long stroke and high precise positioning is solved. Therefore, it meets the needs of micro/nanometer precise positioning under long stroke and is desired to be used as carrying stage for micro-assembling system and locomotive mechanism for miniature robot system.

  7. Design and fabrication of aspherical bimorph PZT optics

    CERN Document Server

    Tseng, T C; Yeh, Z C; Perng, S Y; Wang, D J; Kuan, C K; Chen, J R; Chen, C T

    2001-01-01

    Bimorph piezoelectric optics with a third-order-polynomial surface is designed and a prototype is fabricated as active optics. Two pairs of silicon (Si) and lead zirconate titanate (PZT) piezoelectric ceramic are bonded as Si-PZT-PZT-Si together with a multi-electrode or thin film resistor coating used as the control electrode between Si and PZT and metallic films as grounding between the interface of PZT ceramics. A linear voltage is applied to the bimorph PZT optics by probing the control electrodes from a two-channel controllable power supplier. In doing so, the optics surface can achieve a desired third-order-polynomial surface. Reducing hysteresis and creep in bimorph PZT X-ray optics is the only feasible way by inserting an appropriate capacitor in series with bimorph PZT optics to significantly reduce both effects.

  8. Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors

    OpenAIRE

    Warren, Clinton Gregory

    2010-01-01

    Thermal infrared detectors based on MEMS bimorph beams have the potential to exceed the performance of current uncooled thermal infrared cameras both in terms of sensitivity and cost. These cameras are part of a rapidly growing industry are used for a vast array of applications such as military and civilian night vision, industrial monitoring, and medical imaging. Many researchers have explored the use of metal-ceramic MEMS bimorphs for this application even though it has long been acknowle...

  9. Development of a Micro-Gripper Using Piezoelectric Bimorphs

    Directory of Open Access Journals (Sweden)

    Nur Azah Hamzaid

    2013-05-01

    Full Text Available Piezoelectric bimorphs have been used as a micro-gripper in many applications, but the system might be complex and the response performance might not have been fully characterized. In this study the dynamic characteristics of bending piezoelectric bimorphs actuators were theoretically and experimentally investigated for micro-gripping applications in terms of deflection along the length, transient response, and frequency response with varying driving voltages and driving signals. In addition, the implementation of a parallel micro-gripper using bending piezoelectric bimorphs was presented. Both fingers were actuated separately to perform mini object handling. The bending piezoelectric bimorphs were fixed as cantilevers and individually driven using a high voltage amplifier and the bimorph deflection was measured using a non contact proximity sensor attached at the tip of one finger. The micro-gripper could perform precise micro-manipulation tasks and could handle objects down to 50 µm in size. This eliminates the need for external actuator extension of the microgripper as the grasping action was achieved directly with the piezoelectric bimorph, thus minimizing the weight and the complexity of the micro-gripper.

  10. Development of a high performance peristaltic micropump

    Science.gov (United States)

    Pham, My; Goo, Nam Seo

    2008-03-01

    In this study, a high performance peristaltic micropump has been developed and investigated. The micropump has three cylinder chambers which are connected through micro-channels for high pumping pressure performance. A circular-shaped mini LIPCA has been designed and manufactured for actuating diaphragm. In this LIPCA, a 0.1mm thickness PZT ceramic is used as an active layer. As a result, the actuator has shown to produce large out of plane deflection and consumed low power. During the design process, a coupled field analysis was conducted to predict the actuating behavior of a diaphragm and pumping performance. MEMS technique was used to fabricate the peristaltic micropump. Pumping performance of the present micropump was investigated both numerically and experimentally. The present peristaltic micropump was shown to have higher performance than the same kind of micropump developed else where.

  11. Surface micromachined electrostatically actuated micro peristaltic pump

    OpenAIRE

    Xie, Jun; Shih, Jason; Lin, Qiao; Yang, Bozhi; Tai, Yu-Chong

    2004-01-01

    An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min^–1 and a...

  12. Piezoelectric Energy Harvesting Using PZT Bimorphs and Multilayered Stacks

    Science.gov (United States)

    Panda, Prasanta Kumar; Sahoo, Benudhar; Chandraiah, M.; Raghavan, Sreekumari; Manoj, Bindu; Ramakrishna, J.; Kiran, P.

    2015-11-01

    Piezoelectric materials have a unique ability to interchange electrical and mechanical energy. This property allows the absorption of mechanical energy such as ambient vibration and its transformation into electrical energy. The electrical energy generated can be used to power low-power electronic devices. In the present study, energy harvesting by lead zirconate titanate (PZT) multilayer (ML) stacks and bimorphs is presented. The devices were fabricated by a tape casting technique and were poled at 2 kV/mm for 30 min immersed in a silicone oil bath maintained at 60°C. The energy harvesting characteristics of the fabricated devices were measured in a suitably assembled test setup. The output voltage obtained from the PZT bimorphs and ML stacks was 450 mV and 125 mV, respectively. The higher output voltage from the bimorph is due to its low capacitance.

  13. Bimorph based Active Joints for Nanometre scale Actuation

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.; Krijnen, G.J.M.

    2007-01-01

    In this work the modelling of a micro bimorph cantilever which is composed of a Silicon Nitride cantilever beam coated on top with a thin Chromium layer is described. The structure functions as a vertical electrostatic actuator for nanometre displacements with stress induced upward curvature in the

  14. Linear peristaltic pump based on electromagnetic actuators

    Directory of Open Access Journals (Sweden)

    Maddoui Lotfi

    2014-01-01

    Full Text Available In this paper a study and design of a linear peristaltic pump are presented. A set of electromagnetic (solenoid actuators is used as the active tools to drag the liquid by crushing an elastic tube. The pump consists of six serially-connected electromagnetic actuators controlled via an electronic board. This may be considered as a simulated peristalsis action of intestines. The dynamic performances of the pump are investigated analytically and experimentally.

  15. A parallel leaf spring structure driven by piezoelectric bimorph actuators

    Science.gov (United States)

    Seki, Hiroya; Gohda, Tomio; Shimokohbe, Akira

    A parallel leaf spring structure driven by piezoelectric bimorph actuator is modelled using a Rayleigh-Ritz formulation and model truncation is done for feedback controller design. Using a strain gauge sensor, a precise positioning of the end point mass is realized. The position of the strain gauge sensor is found to be an important factor in achieving a stable response with an estimator based feedback control system. Also excitation of higher structural modes, which becomes an obstacle to a wide servo bandwidth actuator, is discussed. Using multi electrodes arranged on the bimorph actuator and appropriately tuning the voltage ratio applied to them, pole-zero cancellation of the higher modes is experimentally demonstrated.

  16. Peristaltic pumps work in nano scales

    OpenAIRE

    Farahpour, Farnoush; Ejtehadi, Mohammad Reza

    2013-01-01

    A design for a pump is suggested which is based on well-known peristaltic pumps. In order to simply describe the operation of the proposed pump, an innovative interpretation of low Reynolds number swimmers is presented and thereafter a similar theoretical model would be suggested to quantify the behavior of the pumps. A coarse-grained molecular dynamic simulation is used to examine the theoretical predictions and measure the efficiency of the pump in nano scales. It is shown that this pump wi...

  17. Peristaltic Transport through Eccentric Cylinders: Mathematical Model

    Directory of Open Access Journals (Sweden)

    Kh. S. Mekheimer

    2013-01-01

    Full Text Available This paper discusses the effect of peristaltic transport on the fluid flow in the gap between two eccentric tubes (eccentric-annulus flows. The inner tube is uniform, rigid, while the outer tube has a sinusoidal wave traveling down its wall. The flow analysis has been developed for low Reynolds number and long wave length approximation. The velocity and the pressure gradient have been obtained in terms of the dimensionless flow rate Q¯, time t, azimuthal coordinate θ and eccentricity parameter ϵ (the parameter that controls of the eccentricity of the inner tube position. The results show that there is a significant deference between eccentric and concentric annulus flows.

  18. Electromechanical properties of nanotube PVA composite actuator bimorphs

    Science.gov (United States)

    Bartholome, Christèle; Derré, Alain; Roubeau, Olivier; Zakri, Cécile; Poulin, Philippe

    2008-08-01

    Oxidized multiwalled carbon nanotube (oxidized-MWNT)/polyvinyl alcohol (PVA) composite sheets have been prepared for electromechanical actuator applications. MWNT have been oxidized by nitric acid treatments. They were then dispersed in water and mixed with various amounts of PVA of high molecular weight (198 000 g mol-1). The composite sheets were then obtained through a membrane filtration process. The composition of the systems has been optimized to combine suitable mechanical and electrical properties. Thermogravimetric analysis, mechanical tensile tests and conductivity measurements show that the best compromise of mechanical and electrical properties was obtained for a PVA weight fraction of about 30 wt%. In addition, one face of the sheets was coated with gold to increase the conductivity of the sheets and promote uniform actuation. Pseudo-bimorph devices have been realized by subsequently coating the composite sheets with an inert layer of PVA. The devices have been tested electromechanically in a liquid electrolyte (tetrabutylammonium/tetrafluoroborate (TBA/TFB) in acetonitrile) at constant frequency and different applied voltages, from 2 to 10 V. Measurements of the bimorph deflections were used to determine the stress generated by the nanotube-PVA sheets. The results show that the stress generated increases with increasing amplitude of the applied voltage and can reach 1.8 MPa. This value compares well with and even exceeds the stress generated by recently obtained bimorphs made of gold nanoparticles.

  19. Electromechanical properties of nanotube-PVA composite actuator bimorphs

    Energy Technology Data Exchange (ETDEWEB)

    Bartholome, Christele; Derre, Alain; Roubeau, Olivier; Zakri, Cecile; Poulin, Philippe [Centre de Recherche Paul Pascal-CNRS, Avenue Schweitzer 33600 Pessac (France)], E-mail: bartholo@crpp-bordeaux.cnrs.fr, E-mail: derre@crpp-bordeaux.cnrs.fr, E-mail: roubeau@crpp-bordeaux.cnrs.fr, E-mail: zakri@crpp-bordeaux.cnrs.fr, E-mail: poulin@crpp-bordeaux.cnrs.fr

    2008-08-13

    Oxidized multiwalled carbon nanotube (oxidized-MWNT)/polyvinyl alcohol (PVA) composite sheets have been prepared for electromechanical actuator applications. MWNT have been oxidized by nitric acid treatments. They were then dispersed in water and mixed with various amounts of PVA of high molecular weight (198 000 g mol{sup -1}). The composite sheets were then obtained through a membrane filtration process. The composition of the systems has been optimized to combine suitable mechanical and electrical properties. Thermogravimetric analysis, mechanical tensile tests and conductivity measurements show that the best compromise of mechanical and electrical properties was obtained for a PVA weight fraction of about 30 wt%. In addition, one face of the sheets was coated with gold to increase the conductivity of the sheets and promote uniform actuation. Pseudo-bimorph devices have been realized by subsequently coating the composite sheets with an inert layer of PVA. The devices have been tested electromechanically in a liquid electrolyte (tetrabutylammonium/tetrafluoroborate (TBA/TFB) in acetonitrile) at constant frequency and different applied voltages, from 2 to 10 V. Measurements of the bimorph deflections were used to determine the stress generated by the nanotube-PVA sheets. The results show that the stress generated increases with increasing amplitude of the applied voltage and can reach 1.8 MPa. This value compares well with and even exceeds the stress generated by recently obtained bimorphs made of gold nanoparticles.

  20. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian;

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...

  1. A linear peristaltic MRF/foam actuator

    Science.gov (United States)

    Larsen, J. J.; Jenkins, C. H.; Korde, U. A.

    2007-04-01

    , peristaltic pumps in industry are common for a variety of material handling applications, particularly involving the movement of sterile fluids (for example, blood). The peristaltic pump is usually circular in configuration, relying on external rollers to move fluid within a tube. Some linear configuration pumps have been proposed and developed, however they are complicated than their circular counterparts. In the remaining part of the present work, we discuss the development of a linear peristaltic actuator based upon the deformation of MRF/foam. The actuator consists of an open-cell polymer foam substrate infused with MRF. To one side of the foam substrate resides a translating magnet, such that a magnetic field can be propagated down its length. The linear peristaltic action is generated as the transversely propagating field shapes the MRF/foam substrate in a corresponding way. Experimental results are discussed, an outline of on-going theoretical modeling is presented, and conclusions are provided.

  2. Bimorph micro heat engines based on carbon nanotube freestanding films

    Science.gov (United States)

    Ikuno, Takashi; Fukano, Tatsuo; Higuchi, Kazuo; Takeda, Yasuhiko

    2015-11-01

    We have found that lightweight bimorph strips consisting of multiwalled carbon nanotube freestanding films (MWNT-FSFs) and Ni thin films exhibit a continuous bending-stretching motion on a hot plate even below the temperature of 100 °C in an environment at room temperature. In fact, the Ni/MWNT-FSFs exhibited this motion at a temperature difference of as small as 5 °C. The requirements of this motion have been qualitatively elucidated by a simulation based on a relaxation time approximation.

  3. Swimming and peristaltic pumping between two plane parallel walls

    International Nuclear Information System (INIS)

    Swimming at low Reynolds number in a fluid confined between two plane walls is studied for an infinite plane sheet located midway between the walls and distorted with a transverse propagating wave. It is shown that the flow pattern is closely related to that for peristaltic pumping. The hydrodynamic interaction between two flexible sheets swimming parallel in infinite space is related to the problem of peristaltic pumping in a planar channel with two wavy walls.

  4. Electromechanical analysis of tapered piezoelectric bimorph at high electric field

    Science.gov (United States)

    Chattaraj, Nilanjan; Ganguli, Ranjan

    2015-04-01

    Piezoelectric bimorph laminar actuator of tapered width exhibits better performance for out-of-plane deflection compared to the rectangular surface area, while consuming equal surface area. This paper contains electromechanical analysis and modeling of a tapered width piezoelectric bimorph laminar actuator at high electric field in static state. The analysis is based on the second order constitutive equations of piezoelectric material, assuming small strain and large electric field to capture its behavior at high electric field. Analytical expressions are developed for block force, output strain energy, output energy density, input electrical energy, capacitance and energy efficiency at high electric field. The analytical expressions show that for fixed length, thickness, and surface area of the actuator, how the block force and output strain energy gets improved in a tapered surface actuator compared to a rectangular surface. Constant thickness, constant length and constant surface area of the actuator ensure constant mass, and constant electrical capacitance. We consider high electric field in both series and parallel electrical connection for the analysis. Part of the analytical results is validated with the experimental results, which are reported in earlier literature.

  5. Design of a bimorph piezoelectric energy harvester for railway monitoring

    International Nuclear Information System (INIS)

    Wireless sensor network is one of prospective methods for railway monitoring due to the long term operation and low maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree of freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from 2.06 m/s2 base excitation compared to stand alone piezoelectric energy harvester without tip mass

  6. Enhanced Magnetoelectric Coupling in Layered Structure of Piezoelectric Bimorph and Metallic Alloy

    Science.gov (United States)

    Petrov, V. M.; Bichurin, M. I.; Lavrentyeva, K. V.; Leontiev, V. S.

    2016-08-01

    We have investigated the enhanced magnetoelectric (ME) coupling in a layered structure of piezoelectric bimorph and magnetostrictive metallic alloy. The observed ME coefficient in the piezoelectric bimorph-based structure was found to be two times higher than in the traditional piezoelectric/magnetostrictive bilayer. The observed enhancement in ME coupling strength is related to equal signs of induced voltage in both lead zirconate titanate layers with opposite poling directions due to the flexural deformations. The piezoelectric bimorph-based structure has promising potential for sensor and technological applications.

  7. Development and characterization of thermopneumatic peristaltic micropumps

    International Nuclear Information System (INIS)

    In this paper, the development and characterization of thermopneumatic peristaltic micropumps are presented. Micropumps with three different designs are fabricated using soft lithography techniques. The equivalent circuit models of a thermopneumatic actuation cell are formulated. The analytical solutions for predicting the device transient behavior are also derived. The dynamical responses of the diaphragms are measured using an interferometer, and are in good agreement with the modeled results. Tiny drive circuits, which require only 5 V, are implemented for driving the pumps. The dimension of an integrated 3-chamber micropump system, which consists of a pump and a drive circuit, is 16 mm × 18 mm × 5.5 mm. The optimal operating conditions, such as actuation sequences, operating frequencies and duty ratios, are obtained. The maximum flow rate occurs at a driving frequency of 1.5 Hz with a duty ratio of 40% using a three-phase actuation sequence. A simplified pseudo thermo-fluid-structure-interaction (pT-FSI) model is also proposed to estimate the pumping characteristic. The model gives reasonable results under low operation frequency. Under zero backpressure, the maximum flow rates for the 3, 5 and 7-chamber devices are very close, whereas the devices with larger numbers of pumping chambers exhibit better pumping performance under higher backpressure

  8. Development and characterization of thermopneumatic peristaltic micropumps

    Science.gov (United States)

    Yang, Yao-Joe; Liao, Hsin-Hung

    2009-02-01

    In this paper, the development and characterization of thermopneumatic peristaltic micropumps are presented. Micropumps with three different designs are fabricated using soft lithography techniques. The equivalent circuit models of a thermopneumatic actuation cell are formulated. The analytical solutions for predicting the device transient behavior are also derived. The dynamical responses of the diaphragms are measured using an interferometer, and are in good agreement with the modeled results. Tiny drive circuits, which require only 5 V, are implemented for driving the pumps. The dimension of an integrated 3-chamber micropump system, which consists of a pump and a drive circuit, is 16 mm × 18 mm × 5.5 mm. The optimal operating conditions, such as actuation sequences, operating frequencies and duty ratios, are obtained. The maximum flow rate occurs at a driving frequency of 1.5 Hz with a duty ratio of 40% using a three-phase actuation sequence. A simplified pseudo thermo-fluid-structure-interaction (pT-FSI) model is also proposed to estimate the pumping characteristic. The model gives reasonable results under low operation frequency. Under zero backpressure, the maximum flow rates for the 3, 5 and 7-chamber devices are very close, whereas the devices with larger numbers of pumping chambers exhibit better pumping performance under higher backpressure.

  9. Optofluidic modulator based on peristaltic nematogen microflows

    Science.gov (United States)

    Cuennet, J. G.; Vasdekis, A. E.; de Sio, L.; Psaltis, D.

    2011-04-01

    Nematogens rotate by the application of external fields, thereby enabling optical modulation. This principle has had a profound impact on our daily lives through the plethora of liquid-crystal displays in use around us. However, the wider use of nematic liquid crystals, particularly in microdisplays and information processing, has been hampered by their slow response times. In nematogens, rotational and translational molecular motions are coupled, so flow is inevitably linked with optical modulation. This linkage motivated us to fuse microfluidics with anisotropic liquids and introduce an optofluidic modulator that exhibits a submillisecond (250 µs) symmetric response and can operate at frequencies up to 1 kHz. The modulator is based on peristaltic nematogen microflows realized in polydimethylsiloxane microfluidics. The latter simultaneously permits peristalsis by means of elastomeric deformation, nematogen alignment and rapid prototyping through cast-moulding. Together with large-scale, vertical integration and piezoelectric nanotechnologies, this optofluidic paradigm can enable high-density and three-dimensional architectures of fast modulators.

  10. A vacuum-driven peristaltic micropump with valved actuation chambers

    International Nuclear Information System (INIS)

    This paper presents a simple peristaltic micropump design incorporated with valved actuation chambers and propelled by a pulsed vacuum source. The vacuum-driven peristaltic micropump offers high pumping rates, low backflow, appreciable tolerance to air bubbles, and minimal destruction to fluid contents. The pumping device, fabricated by laser micromachining and plasma bonding of three polydimethylsiloxane (PDMS) layers, includes a pneumatic network, actuation membranes, and microfluidic channels. As the key to peristaltic motion, the sequential deflection of the elastic membranes is achieved by periodic pressure waveforms (negative) traveling through the pneumatic network, provided by a vacuum source regulated by an electromagnetic valve. This configuration eliminates the complicated control logic typically required in peristaltic motion. Importantly, the valved actuation chambers substantially reduce backflow and improve the pumping rates. In addition, the pneumatic network with negative pressure provides a means to effectively remove air bubbles present in the microflow through the gas-permeable PDMS membrane, which can be highly desired in handling complex fluidic samples. Experimental characterization of the micropump performance has been conducted by controlling the resistance of the pneumatic network, the number of normally closed valves, the vacuum pressure, and the frequency of pressure pulses. A maximal flow rate of 600 µL min−1 has been optimized at the pulsed vacuum frequency of 30 Hz with a vacuum pressure of 50 kPa, which is comparable to that of compressed air-actuated peristaltic micropumps

  11. Dielectric elastomer peristaltic pump module with finite deformation

    Science.gov (United States)

    Mao, Guoyong; Huang, Xiaoqiang; Liu, Junjie; Li, Tiefeng; Qu, Shaoxing; Yang, Wei

    2015-07-01

    Inspired by various peristaltic structures existing in nature, several bionic peristaltic actuators have been developed. In this study, we propose a novel dielectric elastomer peristaltic pump consisting of short tubular modules, with the saline solution as the electrodes. We investigate the performance of this soft pump module under hydraulic pressure and voltage via experiments and an analytical model based on nonlinear field theory. It is observed that the individual pump module undergoes finite deformation and may experience electromechanical instability during operations. The driving pressure and displaced volume of the peristaltic pump module can be modulated by applied voltage. The efficiency of the pump module is enhanced by alternating current voltage, which can suppress the electromechanical pull-in instability. An analytical model is developed within the framework of the nonlinear field theory, and its predictive capacity is checked by experimental observations. The effects of the prestretch, aspect ratio, and voltage on the performance of the pump modules are characterized by the analytical model. This work can guide the designs of soft active peristaltic pumps in the field of artificial organs and industrial conveying systems.

  12. An exceptional bimorph effect and a low quality factor from carbon nanotube-polymer composites

    International Nuclear Information System (INIS)

    Microcantilever actuators made from carbon nanotube polymer are driven at very low pull-in voltages and the thermal bimorph effect reaches 325 μm at 26-110 deg. C, much greater than the values for existing devices

  13. Bimorph actuators in thick SiO2 for photonic alignment

    Science.gov (United States)

    Wu, Kai; Peters, Tjitte-Jelte; Tichem, Marcel; Postma, Ferry; Prak, Albert; Wörhoff, Kerstin; Leinse, Arne

    2016-03-01

    This paper proposes and tests a design of electro-thermal bimorph actuators for alignment of flexible photonic waveguides fabricated in 16 µm thick SiO2. The actuators are for use in a novel alignment concept for multi-port photonic integrated circuits (PICs), in which the fine alignment is taken care of by positioning of suspended, mechanically flexible waveguide beams on one or more of the PICs. The design parameters of the bimorph actuator allow to tune both the initial relative position of the waveguide end-facets, and the motion range of the actuators. Bimorph actuators have been fabricated and characterized. The maximum out-of-plane deflection of the bimorph actuator (with 720 μm-long poly-Si) can reach 18:5 μm with 126:42mW, sufficient for the proposed application.

  14. Analytical Modelling of a Plucked Piezoelectric Bimorph for Energy Harvesting

    CERN Document Server

    Pozzi, Michele

    2012-01-01

    Energy harvesting (EH) is a multidisciplinary research area, involving physics, materials science and engineering, with the objective of providing renewable sources of sufficient power to operate targeted low-power applications. Piezoelectric transducers are often used for vibrational, inertial and direct movement EH. One problem is that, due to the stiffness of the most common material (PZT) and typically useful sizes, intrinsic resonant frequencies are normally high, whereas the available power is often concentrated at low frequencies. The aim of the plucking technique of frequency up-conversion, also known as "pizzicato" excitation, is to bridge this frequency gap. In this paper, the technique is modelled analytically. The analytical model is developed starting from the Euler-Bernoulli beam equations modified for piezoelectric coupling. A system of differential equations and associated initial conditions are derived which describe the free vibration of a piezoelectric bimorph in the last part of the plucki...

  15. Postprandial transduodenal bolus transport is regulated by complex peristaltic sequence

    Institute of Scientific and Technical Information of China (English)

    Huan Nam Nguyen; Ron Winograd; Gerson Ricardo Souza Domingues; Frank Lammert

    2006-01-01

    AIM: To study the relationship between the patterns of postprandial peristalsis and transduodenal bolus transport in healthy subjects.METHODS: Synchronous recording of chyme transport and peristaltic activity was performed during the fasting state and after administration of a test meal using a special catheter device with cascade configuration of impedance electrodes and solid-state pressure transducers. The catheter was placed into the duodenum,where the first channel was located in the first part of the duodenum and the last channel at the duodenojejunal junction. After identification of previously defined chyme transport patterns the associated peristaltic patterns were analyzed.RESULTS: The interdigestive phase 3 complex was reliably recorded with both techniques. Of 497 analyzed impedance bolus transport events, 110 (22%) were short-spanned propulsive, 307 (62%) long-spanned propulsive, 70 (14%)complex propulsive, and 10 (2%) retrograde transport.Short-spanned chyme transports were predominantly associated with stationary or propagated contractions propagated over short distance. Long-spanned and complex chyme transports were predominantly associated with propulsive peristaltic patterns, which were frequently complex and comprised multiple contractions. Propagated double wave contraction, propagated contraction with a clustered contraction, and propagated cluster of contractions have been identified to be an integralted part of a peristaltic sequence in human duodenum.CONCLUSION: Combined impedancometry andmanometry improves the analysis of the peristaltic patterns that are associated with postprandial transduodenal chyme transport. Postprandial transduodenal bolus transport is regulated by propulsive peristaltic patterns, which are frequently complex but well organized. This finding should be taken into consideration in the analysis of intestinal motility studies.

  16. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; F.M.Abbasi; Awatif A.Hendi

    2011-01-01

    An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold. Perturbation solution is discussed and a comparative study between the cases of constant and variable viscosities is presented and analyzed.%@@ An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold.Perturbation solution is discussed and a comparative stuity between the cases of constant and variable viscosities is presented and analyzed.

  17. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    International Nuclear Information System (INIS)

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts

  18. Peristaltic pump-based low range pressure sensor calibration system

    Science.gov (United States)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  19. Peristaltic pump-based low range pressure sensor calibration system

    International Nuclear Information System (INIS)

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory

  20. Long Wavelength Peristaltic Transport of Non-Newton Fluids

    OpenAIRE

    Devanathan, R; Parvathamma, S.

    1980-01-01

    Solutions are obtained for the stream function and the pressure field for the flow of non-Newtonian fluids in a tube by long peristaltic waves of arbitrary shape. The axial velocity profiles and stress distributions on the wall are discussed for particular waves of some practical interest. The effect of non- Newtonian character of the fluid is examined.

  1. Electroosmosis-modulated peristaltic transport in microfluidic channels

    Science.gov (United States)

    Bandopadhyay, Aditya; Tripathi, Dharmendra; Chakraborty, Suman

    2016-05-01

    We analyze the peristaltic motion of aqueous electrolytes altered by means of applied electric fields. Handling electrolytes in typical peristaltic channel material such as polyvinyl chloride and Teflon leads to the generation of a net surface charge on the channel walls, which attracts counter-ions and repels co-ions from the aqueous solution, thus leading to the formation of an electrical double layer—a region of net charges near the wall. We analyze the spatial distribution of pressure and wall shear stress for a continuous wave train and single pulse peristaltic wave in the presence of an electrical (electroosmotic) body force, which acts on the net charges in the electrical double layer. We then analyze the effect of the electroosmotic body force on the particle reflux as elucidated through the net displacement of neutrally buoyant particles in the flow as the peristaltic waves progress. The impact of combined electroosmosis and peristalsis on trapping of a fluid volume (e.g., bolus) inside the travelling wave is also discussed. The present analysis goes beyond the traditional analysis, which neglects the possibility of coupling the net pumping of fluids due to peristalsis and allows us to derive general expressions for the pressure drop and flow rate in order to set up a general framework for incorporating flow control and actuation by simultaneous peristalsis and application of electric fields to aqueous solutions. It is envisaged that the results presented here may act as a model for the design of lab-on-a-chip devices.

  2. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. PMID:26628178

  3. Peristaltic pump-based low range pressure sensor calibration system

    Energy Technology Data Exchange (ETDEWEB)

    Vinayakumar, K. B. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 5600012 (India); Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012 (India); Naveen Kumar, G.; Rajanna, K., E-mail: kraj@isu.iisc.ernet.in, E-mail: krajanna2011@gmail.com [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 5600012 (India); Nayak, M. M. [Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 5600012 (India); Dinesh, N. S. [Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012 (India)

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  4. A Numerical Investigation of Peristaltic Waves in Circular Tubes

    Science.gov (United States)

    Xiao, Q.; Damodaran, M.

    Peristaltic pumping is a process of fluid transport arising from the progressive waves, which travel along the walls of a flexible channel. It is a primary physiological transport mechanism that is inherent in many tubular organs of the human body such as the ureter, the gastro-intestinal tract, the urethra, and so on. Many studies exist in literature with the aim of understanding the characteristics of peristaltic flow under the assumption of low Reynolds number and infinitely long wavelength in a two-dimensional channel. However, peristaltic pumping is also the mechanism used in other industrial applications such as the blood pump for which the Reynolds number has a moderately high value. As studies concerning moderate to high Reynolds number flow in the circular tube are rare in literature, in the present study, the peristaltic flow of an incompressible fluid is numerically simulated using the finite volume method for solving the incompressible Navier-Stokes equations in primitive variable formulation by means of an infinite train of sinusoidal waves traveling along the wall of an axi-symmetric tube. The computational model presented in this work covers a wider range of Reynolds number (0.01-100), wave amplitude (0-0.8), and wavelength (0.01-0.4) than the those attempted in previous studies reported in literature and some new results pertaining to the distribution of velocity, pressure, wall shear stress for different peristaltic flow conditions characterizing flow at moderately higher Reynolds number have been obtained. The effect of the wave amplitude, wavelength, and Reynolds number on the "flow trapping" mechanism induced by peristalsis has also been investigated here for higher ranges of values of the parameters characterizing peristalsis.

  5. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    International Nuclear Information System (INIS)

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an applied force of 150 N is 18150 pC (PZT/PA) and 2310 pC (PZT/PDMS), respectively. Electric force microscopy (EFM) is used to study the structural characterization and piezoelectric properties of the materials realized. A clear inverse piezoelectric effect was observed when the bimorphs were subjected to an electric field stepped up through 2, 6 and 10 V, indicating the net polarization direction of the different ferroelectric domains. The as-developed bimorphs have the basic structure of a sensor and actuator, and, since they do not use any bonding agent for bonding, they can provide a valuable alternative to the present bimorphs where bonding processes are required for their realization that can limit their application at high temperature. (paper)

  6. FABRICATION OF PIEZOELECTRIC BIMORPH USING LEAD ZIRCONATE TITANATE THIN FILM DEPOSITED BY HYDROTHERMAL METHOD

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to describe the characteristics of piezoelectric bimorph, properties of lead zirconate titanate (LZT) film are studied by X-ray diffraction (XRD) and scanning eletron microscope (SEM). The ratio of PbTiO3/PbZrO3 in LZT is 53/47, which is around morphotropic phase boundary (MPB). LZT film is composed of cubic particles with the average size of 5 μm. Density of thin film is figured out through the datum measured in experiments. The displacement model used to analyze the driving ability of bimorph is set up, and the effect of elastic intermediate layer is taken into account. Piezoelectric coefficient of LZT film is worked out by using the displacement model. Experiments of driving ability show that deformation of bimorph free end does not increase with times of crystal growth processes and the maximum deformation is obtained after two times crystal growth processes. Finally, the ferroelectric property of the bimorph is investigated and coercive voltage of the bimorph is obtained.

  7. Pneumatically Actuated Miniature Peristaltic Vacuum Pumps

    Science.gov (United States)

    Feldman, Sabrina; Feldman, Jason; Svehla, Danielle

    2003-01-01

    Pneumatically actuated miniature peristaltic vacuum pumps have been proposed for incorporation into advanced miniature versions of scientific instruments that depend on vacuum for proper operation. These pumps are expected to be capable of reaching vacuum-side pressures in the torr to millitorr range (from .133 down to .0.13 Pa). Vacuum pumps that operate in this range are often denoted roughing pumps. In comparison with previously available roughing pumps, these pumps are expected to be an order of magnitude less massive and less power-hungry. In addition, they would be extremely robust, and would operate with little or no maintenance and without need for oil or other lubricants. Portable mass spectrometers are typical examples of instruments that could incorporate the proposed pumps. In addition, the proposed pumps could be used as roughing pumps in general laboratory applications in which low pumping rates could be tolerated. The proposed pumps could be designed and fabricated in conventionally machined and micromachined versions. A typical micromachined version (see figure) would include a rigid glass, metal, or plastic substrate and two layers of silicone rubber. The bottom silicone layer would contain shallow pump channels covered by silicone arches that could be pushed down pneumatically to block the channels. The bottom silicone layer would be covered with a thin layer of material with very low gas permeability, and would be bonded to the substrate everywhere except in the channel areas. The top silicone layer would be attached to the bottom silicone layer and would contain pneumatic- actuation channels that would lie crosswise to the pump channels. This version is said to be micromachined because the two silicone layers containing the channels would be fabricated by casting silicone rubber on micromachined silicon molds. The pneumatic-actuation channels would be alternately connected to a compressed gas and (depending on pump design) either to atmospheric

  8. Fabrication of integrated bimorphs with self aligned tips for optical switching in 2-d photonic crystal waveguides

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.; Kauppinen, L.J.; Dijkstra, M.; Boer, de M.J.; Berenschot, E.; Ridder, de R.M.; Krijnen, G.J.M.

    2010-01-01

    This paper presents the fabrication technology for a novel class of photonic devices. This technology integrates silicon 2-D photonic crystal (PhC) waveguides and electrostatically actuated bimorph cantilevers with tips that are self-aligned relative to the holes of the PhC. The bimorph cantilevers

  9. Out-of-plane platforms with bi-directional thermal bimorph actuation for transducer applications

    KAUST Repository

    Conchouso, David

    2015-04-01

    This paper reports on the Buckled Cantilever Platform (BCP) that allows the manipulation of the out of plane structures through the adjustment of the pitch angle using thermal bimorph micro-Actuators. Due to the micro-fabrication process used, the bimorph actuators can be designed to move in both: Counter Clockwise (CCW) and Clockwise (CW) directions with a resolution of up to 110 μm/V, with smallest step in the range of nanometers. Thermal and electrical characterization of the thermal bimorph actuators showed low influence in the platforms temperature and low power consumption (< 35μW) mainly due to the natural isolation of the structure. Tip displacements larger than 500μm were achieved. The precise angle adjustment achieved through these mechanisms makes them optimal for a range of different MEMS applications, like optical benches and low frequency sweeping sensors and antennas. © 2015 IEEE.

  10. Determination of maximum power transfer conditions of bimorph piezoelectric energy harvesters

    KAUST Repository

    Ahmad, Mahmoud Al

    2012-07-23

    In this paper, a method to find the maximum power transfer conditions in bimorph piezoelectric-based harvesters is proposed. Explicitly, we derive a closed form expression that relates the load resistance to the mechanical parameters describing the bimorph based on the electromechanical, single degree of freedom, analogy. Further, by taking into account the intrinsic capacitance of the piezoelectric harvester, a more descriptive expression of the resonant frequency in piezoelectric bimorphs was derived. In interest of impartiality, we apply the proposed philosophy on previously published experimental results and compare it with other reported hypotheses. It was found that the proposed method was able to predict the actual optimum load resistance more accurately than other methods reported in the literature. © 2012 American Institute of Physics.

  11. Competition between the Thermal Gradient and the Bimorph Effect in Locally Heated MEMS Actuators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mølhave, Kristian; Kristensen, Anders

    2009-01-01

    We have investigated the influence of thermal gradient effects in inhomogeneously heated MEMS/NEMS. The actuation perturbations caused by thermal gradients have been studied through static optothermal actuation experiments of a bi-material polymer based cantilever and supported by finite element...... modeling. As a result, bidirectional bending has been experimentally observed and interpreted as the competition between bimorph and thermal gradient effects. The competition has illustrated the importance of including the thermal gradient effect in the behavior analysis of bimorph driven MEMS/NEMS devices....

  12. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian;

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage of...... bimorph vibration energy harvesters is that strain energy is not lost in mechanical support materials since only Pb(ZrxTi1-x)O3 (PZT) is strained; as a result, the effective system coupling coefficient is increased, and thus a potential for significantly higher output power is released. In addition, when...

  13. Magnetic cantilever actuator with sharpened magnetic thin film ellipses

    Science.gov (United States)

    Huang, Chen-Yu; Ger, Tzong-Rong; Lai, Mei-Feng; Chen, We-Yun; Huang, Hao-Ting; Chen, Jiann-Yeu; Wang, Pei-Jen; Wei, Zung-Hang

    2015-05-01

    A SiO2 cantilever covered by elliptical magnetic thin films was designed as an actuator. Under magnetic field, the elliptical magnetic film with sharp ends would exhibit single-domain structures and generate torque to push or pull the two arms of the cantilever. The cantilever could then stretch or compress and the displacement could be controlled by adjusting the magnitude and direction of the external magnetic field. The combination between micromagnetism of patterned films and actuator was successfully demonstrated. The magnetic actuator can be applied for future application in the biological field and would be valuable for microelectromechanical systems (MEMS).

  14. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    Science.gov (United States)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  15. PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems

    International Nuclear Information System (INIS)

    A thermopnuematic peristaltic micropump for controlling micro litters of fluid was designed and fabricated from multi-stack PDMS structure on glass substrate. Pump structure consists of inlet and outlet, microchannel, three thermopneumatic actuation chambers, and three heaters. In microchannel, fluid is controlled and pumped by peristaltic motion of actuation diaphragm. Actuation diaphragm can bend up and down by exploiting air expansion that is induced by increasing heater temperature. The micropump characteristics were measured as a function of applied voltage and frequency. The flow rate was determined by periodically recording the motion of fluid at Nanoport output and computing flow volume from height difference between consecutive records. From the experiment, an optimum flow rate of 0.82 μl/min is obtained under 14 V three-phase input voltages at 0.033 Hz operating frequency

  16. Effects of Magnetic Field and an Endoscope on Peristaltic Motion

    Directory of Open Access Journals (Sweden)

    V. P. Rathod

    2011-01-01

    Full Text Available The Problem of peristaltic transport of a magnetic fluid with variable viscosity through the gap between coaxial tubes where the outer tube is nonuniform with sinusoidal wave traveling down its wall and the inner tube is rigid. The relation between the pressure gradient and friction force on the inner and outer tubes is obtained in terms of magnetic and viscosity parameter. The numerical solutions of pressure gradient, outer friction and inner friction force, and flow rate are shown graphically.

  17. Peristaltic particle transport using the Lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.

    2009-01-01

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  18. Augmentation of peristaltic microflows through electro-osmotic mechanisms

    International Nuclear Information System (INIS)

    The present work aims to theoretically establish that the employment of an axial electric field can substantially augment the rate of microfluidic transport occurring in peristaltic microtubes. For theoretical analysis, shape evolution of the tube is taken to be arbitrary, except for the fact that the characteristic wavelength is assumed to be significantly greater than the average radius of cross section. First, expressions for the velocity profile within the tube are derived and are subsequently utilized to obtain variations in the net flow rate across the same, as a function of the pertinent system parameters. Subsequently, the modes of interaction between the electro-osmotic and peristaltic mechanisms are established through the variations in the time-averaged flow rates for zero pressure rise and the pressure rise for zero time-averaged flow rates, as expressed in terms of the occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. From the simulation predictions, it is suggested that a judicious combination of peristalsis and an axial electrokinetic body force can drastically enhance the time-averaged flow rate, provided that the occlusion number is relatively small

  19. Unifying synchronous tree-adjoining grammars and tree transducers via bimorphisms.

    OpenAIRE

    Shieber, Stuart

    2006-01-01

    We place synchronous tree-adjoining grammars and tree transducers in the single overarching framework of bimorphisms, continuing the unification of synchronous grammars and tree transducers initiated by Shieber (2004). Along the way, we present a new definition of the tree-adjoining grammar derivation relation based on a novel direct inter-reduction of TAG and monadic macro tree transducers.

  20. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian;

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric...

  1. Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads

    DEFF Research Database (Denmark)

    Donoso, Alberto; Sigmund, Ole

    2009-01-01

    The paper considers optimal design problems in the context of active damping. More specifically, we are interested in controlling the tip-deflection of a cantilever beam subjected to static and time-harmonic loading on its free extreme. First, the thickness profile of a piezoelectric bimorph...

  2. Thermal stability test and analysis of a 20-actuator bimorph deformable mirror

    Institute of Scientific and Technical Information of China (English)

    Ning Yu; Zhou Hong; Yu Hao; Rao Chang-Hui; Jiang Wen-Han

    2009-01-01

    One of the important characteristic of adaptive mirrors is the thermal stability of surface flatness. In this paper, the thermal stability from 13℃ to 25℃ of a 20-actuator bimorph deformable mirror is tested by a Shack-Hartmann wavefront sensor. Experimental results show that, the surface P-V of bimorph increases nearly linearly with ambient temperature. The ratio is 0.11 μm/℃ and the major component of surface displacement is defocused, compared with which, astigmatism, coma and spherical aberration contribute very small. Besides, a finite element model is built up to analyse the influence of thickness, thermal expansion coefficient and Young's modulus of materials on thermal stability. Calculated results show that bimorph has the best thermal stability when the materials have the same thermal expansion coefficient. And when the thickness ratio of glass to PZT is 3 and Young's modulus ratio is approximately 0.4, the surface instability behaviour of the bimorph manifests itself most severely.

  3. Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation

    International Nuclear Information System (INIS)

    The modern drive towards mobility and wireless devices is motivating intensive research in energy harvesting technologies. To reduce the battery burden on people, we propose the adoption of a frequency up-conversion strategy for a new piezoelectric wearable energy harvester. Frequency up-conversion increases efficiency because the piezoelectric devices are permitted to vibrate at resonance even if the input excitation occurs at much lower frequency. Mechanical plucking-based frequency up-conversion is obtained by deflecting the piezoelectric bimorph via a plectrum, then rapidly releasing it so that it can vibrate unhindered; during the following oscillatory cycles, part of the mechanical energy is converted into electrical energy. In order to guide the design of such a harvester, we have modelled with finite element methods the response and power generation of a piezoelectric bimorph while it is plucked. The model permits the analysis of the effects of the speed of deflection as well as the prediction of the energy produced and its dependence on the electrical load. An experimental rig has been set up to observe the response of the bimorph in the harvester. A PZT-5H bimorph was used for the experiments. Measurements of tip velocity, voltage output and energy dissipated across a resistor are reported. Comparisons of the experimental results with the model predictions are very successful and prove the validity of the model

  4. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.; Hansen, K.; Guizzetti, M.; Birkelund, Karen; Thomsen, E. V.; Hansen, Ole

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material. It pr...

  5. Analysis of resonance frequency and pull-in voltages of curled micro-bimorph cantilevers

    NARCIS (Netherlands)

    Abdulla, S.M.C.; Yagubizade, H.; Krijnen, G.J.M.

    2012-01-01

    A systematic study is presented on the modelling, fabrication and measurements of curled micro-bimorph cantilevers, which are composed of a dielectric beam with a metal electrode layer coated on top. The device, having stress-induced upward curvature in the electrical off-state, functions as a verti

  6. A finger-like hardness tester based on the contact electromechanical impedance of a piezoelectric bimorph cantilever

    Science.gov (United States)

    Fu, Ji; Li, Faxin

    2015-10-01

    We proposed a finger-like hardness tester based on the electromechanical impedance of a piezoelectric bimorph cantilever. A Vickers indenter was fabricated to the free end of the bimorph to contact the sample. The contact force was monitored by a strain gauge and the contact area was obtained by tracking the bimorph's resonance frequency. The bimorph-sample contact system was modeled by the electromechanical equivalent circuit method. Verification experiments on standard hardness samples were conducted and the measured hardness values agreed well with those given by a conventional Vickers hardness tester. Further hardness measurement on a gear wheel showed that the proposed hardness tester is very adaptive and can be used for inner surface testing or in situ testing, where other hardness testers may not be applicable. The proposed hardness tester can be regarded as an improved ultrasonic hardness tester.

  7. Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph

    Science.gov (United States)

    Cao, Yongqing

    With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For

  8. In vivo organ specific drug delivery with implantable peristaltic pumps.

    Science.gov (United States)

    Speed, Joshua S; Hyndman, Kelly A

    2016-01-01

    Classic methods for delivery of agents to specific organs are technically challenging and causes superfluous stress. The current study describes a method using programmable, implantable peristaltic pumps to chronically deliver drugs in vivo, while allowing animals to remain undisturbed for accurate physiological measurements. In this study, two protocols were used to demonstrate accurate drug delivery to the renal medulla. First, the vasopressin receptor-2 agonist, dDAVP, was delivered to the renal medulla resulting in a significant increase in water retention, urine osmolality and aquaporin-2 expression and phosphorylation. Second, in a separate group of rats, the histone deacetylase (HDAC) inhibitor, MS275, was delivered to the renal medulla. HDAC inhibition resulted in a significant increase in histone H3-acetylation, the hallmark for histone deacetylase inhibition. However, this was confined to the medulla, as the histone H3-acetylation was similar in the cortex of vehicle and MS275 infused rats, suggesting targeted drug delivery without systemic spillover. Thus, implantable, peristaltic pumps provide a number of benefits compared to externalized chronic catheters and confer specific delivery to target organs. PMID:27185292

  9. Comment on 'Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation'

    International Nuclear Information System (INIS)

    In a recent paper, Ajitsaria et al (2007 Smart Mater. Struct. 16 447–54) presented a mathematical formulation for the modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Their motivation was the recent increasing trend in using the piezoelectric effect to harvest electrical energy from ambient vibrations. This comment addresses the modeling errors and numerous undefined and missing terms in the mentioned work. (comment)

  10. "Equivalent" material properties for designing ionic polymer metal composite actuators by equivalent bimorph beam theory

    OpenAIRE

    Çilingir, Halime Didem; Cilingir, Halime Didem

    2008-01-01

    This thesis addresses the Ionic Polymer Metal Composite (IPMC) actuators and two “equivalent” materials parameters for their design and performance assessments: electromechanical coupling coefficient and elastic modulus. The “equivalent” parameters not being material constants are derived from equivalent bimorph beam model. The Nafion membrane based IPMC actuator strips of several thicknesses are manufactured by electrochemical platinization method. The effect of the thickness and operating ...

  11. A low frequency piezoelectric power harvester using a spiral-shaped bimorph

    Institute of Scientific and Technical Information of China (English)

    HU Yuantai; HU Hongping; YANG Jiashi

    2006-01-01

    We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources.A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size.It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.

  12. COUPLED ANALYSIS FOR THE HARVESTING STRUCTURE AND THE MODULATING CIRCUIT IN A PIEZOELECTRIC BIMORPH ENERGY HARVESTER

    Institute of Scientific and Technical Information of China (English)

    Yuantai Hu; Ting Hu; Qing Jiang

    2007-01-01

    The authors analyze a piezoelectric energy harvester as an electro-mechanically coupled system. The energy harvester consists of a piezoelectric bimorph with a concentrated mass attached at one end, called the harvesting structure, an electric circuit for energy storage,and a rectifier that converts the AC output of the harvesting structure into a DC input for the storage circuit. The piezoelectric bimorph is assumed to be driven into flexural vibration by an ambient acoustic source to convert the mechanical energies into electric energies. The analysis indicates that the performance of this harvester, measured by the power density, is characterized by three important non-dimensional parameters, I.e., the non-dimensional inductance of the storage circuit, the non-dimensional aspect ratio (length/thickness) and the non-dimensional end mass of the harvesting structure. The numerical results show that: (1) the power density can be optimized by varying the non-dimensional inductance for each fixed non-dimensional aspect ratio with a fixed non-dimensional end mass; and (2) for a fixed non-dimensional inductance, the power density is maximized if the non-dimensional aspect ratio and the non-dimensional end mass are so chosen that the harvesting structure, consisting of both the piezoelectric bimorph and the end mass attached, resonates at the frequency of the ambient acoustic source.

  13. Peristaltic Transport of a Couple Stress Fluid : Some Physiological Applications

    CERN Document Server

    Maiti, S

    2010-01-01

    The present paper deals with a theoretical investigation of the peristaltic transport of a couple stress fluid in a porous channel. The study is motivated towards the physiological flow of blood in the micro-circulatory system, by taking account of the particle size effect. The velocity, pressure gradient, stream function and frictional force of blood are investigated, when the Reynolds number is small and the wavelength is large, by using appropriate analytical and numerical methods. Effects of different physical parameters reflecting porosity, Darcy number, couple stress parameter as well as amplitude ratio on velocity profiles, pumping action and frictional force, streamlines pattern and trapping of blood are studied with particular emphasis. The computational results are presented in graphical form. The results are found to be in good agreement with those of Shapiro et. al \\cite{r25} that was carried out for a non-porous channel in the absence of couple stress effect. The present study puts forward an imp...

  14. Development of Stepper motor based Two DOF Robotic Arm Transferring Liquid using Peristaltic Pump

    OpenAIRE

    Padma Thiagarajan; Sudha Ramasamy; Karthikesh.R; Manikandan.P

    2013-01-01

    The aim of this work is to transfer liquid contents from one micro cell to another using two stepper motors and a peristaltic pump. There are two objectives here. One is to develop a low cost roboticarm using stepper motors. The second objective is the control and calibration of the peristaltic pump. All parts are controlled and operated by their respective microcontrollers. Fulfillment of both the objectives leads to an integrated system to transfer liquids from one cell to another. The end ...

  15. Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion

    OpenAIRE

    Lin, Qiao; Yang, Bozhi; Xie, Jun; Tai, Yu-Chong

    2007-01-01

    This paper presents lumped-parameter simulation of dynamic characteristics of peristaltic micropumps. The pump consists of three pumping cells connected in series, each of which is equipped with a compliant diaphragm that is electrostatically actuated in a peristaltic sequence to mobilize the fluid. Diaphragm motion in each pumping cell is first represented by an effective spring subjected to hydrodynamic and electrostatic forces. These cell representations are then used to construct a system...

  16. Peristaltic Flow of Phan-Thien-Tanner Fluid in an Asymmetric Channel with Porous Medium

    OpenAIRE

    Kuppalapalle Vajravelu; S.Sreenadh; Lakshminarayana, P; G. Sucharitha; Rashidi, M. M.

    2016-01-01

    This paper deals with peristaltic transport of Phan-Thien-Tanner fluid in an asymmetric channel induced by sinusoidal peristaltic waves traveling down the flexible walls of the channel. The flow is investigated in a wave frame of reference moving with the velocity of the waveby using the long wavelength and low Reynolds number approximations.The nonlinear governing equations are solved employing a perturbation method by choosing as the perturbation parameter. The expressions for velocity, s...

  17. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites.

    Science.gov (United States)

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-01-01

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data. PMID:26907290

  18. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites

    Science.gov (United States)

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-01-01

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data. PMID:26907290

  19. Largest in the world bimorph deformable mirror for high-power laser beam correction

    Science.gov (United States)

    Kudryashov, Alexis; Samarkin, Vadim; Aleksandrov, Alex; Borsoni, Giles; Jitsuno, Takahisa; Romanov, Pavel; Sheldakova, Julia

    2016-03-01

    The deformable mirror with the size of 410x468 mm controlled by the bimorph piezoceramic plates and multilayer piezoceramic stacks was developed. The results of the measurements of the response functions of all the actuators and of the surface shape of the deformable mirror are presented in this paper. The study of the mirror with a Fizeau interferometer and a Shack-Hartmann wavefront sensor has shown that it was possible to improve the flatness of the surface down to a residual roughness of 0.033 μm (RMS). The possibility of correction of the aberrations in high power lasers was numerically demonstrated.

  20. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.;

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material. It...... provides mechanical support but it also reduces the power output. Our device replaces the support with another layer of the piezoelectric material, and with the absence of an inactive mechanical support all of the stresses induced by the vibrations will be harvested by the active piezoelectric elements....

  1. Electrothermally-Actuated Micromirrors with Bimorph Actuators—Bending-Type and Torsion-Type

    Directory of Open Access Journals (Sweden)

    Cheng-Hua Tsai

    2015-06-01

    Full Text Available Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA. A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  2. A peristaltic micropump using traveling waves on a polymer membrane

    International Nuclear Information System (INIS)

    We demonstrate a peristaltic micropump that utilizes traveling waves on polymer membranes to transport liquids. This micropump requires no valves and, more importantly, the traveling waves can be generated by a single actuator. These features enable the design of simple, compact devices. This micropump has a hydraulic displacement amplification mechanism (HDAM) that encapsulates an incompressible fluid with flexible polymer membranes made of polydimethyl siloxane. A microchannel is attached to the top side of the HDAM. We used a cantilever-type piezoelectric actuator to oscillate the flexible membrane at the bottom of the HDAM, while the top-side membrane drives the liquid in the channel. This format enables rectangular parallelepiped micropumps as compact as 36 mm long, 10 mm wide and several millimeters high, depending on the channel height. Experiments using the fabricated micropumps equipped with microchannels of various heights revealed that the flow rate was dependent on the ratio of the amplitude of the traveling waves to the height of the fluidic channel. The manufactured micropump could successfully generate a maximum flow rate of 1.5 ml min−1 at 180 mW. (paper)

  3. Peristaltic motion of third grade fluid in curved channel

    Institute of Scientific and Technical Information of China (English)

    S.HINA; M.MUSTAFA; T.HAYAT; F.E.ALSAADI

    2014-01-01

    Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.

  4. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    International Nuclear Information System (INIS)

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical support materials since only Pb(ZrxTi1-x)O3 (PZT) is strained; as a result, the effective system coupling coefficient is increased, and thus a potential for significantly higher output power is released. In addition, when the two layers are connected in series, the output voltage is increased, and as a result the relative power loss in the necessary rectifying circuit is reduced. We describe an improved process scheme for the energy harvester, which resulted in a robust fabrication process with a record high fabrication yield of 98%. The robust fabrication process allowed a high pressure treatment of the screen printed PZT thick films prior to sintering. The high pressure treatment improved the PZT thick film performance and increased the harvester power output to 37.1 μW at 1 g root mean square acceleration. We also characterize the harvester performance when only one of the PZT layers is used while the other is left open or short circuit. (paper)

  5. Beam cleanup of a 532-nm pulsed solid-state laser using a bimorph mirror

    Institute of Scientific and Technical Information of China (English)

    Xiang Lei; Bing Xu; Ping Yang; Lizhi Dong; Wenjin Liu; Hu Yan

    2012-01-01

    A successful beam cleanup of a 5-mJ/200-μs pulsed solid-state laser system operating at 532-nm wavelength is demonstrated. In this beam cleanup system, a wave-front sensor-less adaptive optics (AO) system is set up with a 20-element bimorph mirror (BM), a high-voltage amplifier, a charge-coupled device camera, and a control software implementing the stochastic parallel gradient descent (SPGD) algorithm. The brightness of the laser focal spot is improved because the wave-front distortions have been compensated. The performance of this system is presented and the experimental results are analyzed.%A successful beam cleanup of a 5-mJ/200-μs pulsed solid-state laser system operating at 532-nm wavelength is demonstrated.In this beam cleanup system,a wave-front sensor-less adaptive optics (AO) system is set up with a 20-element bimorph mirror (BM),a high-voltage amplifier,a charge-coupled device camera,and a control software implementing the stochastic parallel gradient descent (SPGD) algorithm.The brightness of the laser focal spot is improved because the wave-front distortions have been compensated.The performance of this system is presented and the experimental results are analyzed.

  6. An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem

    International Nuclear Information System (INIS)

    Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution

  7. Distributed and lumped element models for a bimorph-actuated micromirror

    International Nuclear Information System (INIS)

    A procedure to model electrothermally actuated devices is developed and demonstrated using a 1D scanning micromirror. The micromirror is actuated by thermal bimorphs and an embedded platinum (Pt) resistor is used for generating Joule heating. Electrothermal, thermal and thermomechanical models are developed and integrated to generate a compact electrothermomechanical model. The electrothermal model relates the thermal power generated in the device to the applied voltage. The thermomechanical model evaluates the mirror rotation angle. The thermal model is developed by drawing analogy between heat flow in the device and current flow through an electrical transmission line. It provides the temperature of the embedded heater and the bimorph actuators. The heat loss coefficient to the surrounding atmosphere is obtained from finite element (FE) simulations. The distributed thermal resistances are represented by an equivalent circuit model with a few elements. A simplification of the circuit model is proposed when small length scales are involved. Rotation angle per unit power input predicted by the circuit model has an error of less than 8% compared to experimental results.

  8. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  9. An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem

    Science.gov (United States)

    Milazzo, A.; Orlando, C.; Alaimo, A.

    2009-08-01

    Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution.

  10. Out-of-Plane Translational PZT Bimorph Actuator with Archimedes’ Spiral Actuating Tethers

    Science.gov (United States)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol

    2015-12-01

    The design, finite element analysis (FEA), and experimental characterization of a MEMS out-of-plane (vertical) translational lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Two types of bimorph actuators with different electrode patterns (with spiral tethers half actuated or fully actuated) are designed and fabricated. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Finite element analysis (FEA) was used to analyze and predict the displacements of both types of actuators. The deflections of both fully- actuated and half-actuated devices were measured experimentally to validate the design. At an applied voltage of 110V, the out-of-plane deflections of the actuators with half-actuated and fully-actuated tethers were measured at about 17 μm and 29 μm respectively, in good agreement with FEA predictions of 17.1 μm and 25.8 μm. The corresponding blocking forces are predicted as 10 mN and 17 mN by FEA.

  11. Experimental analysis of time-phase-shift flow sensing based on a piezoelectric peristaltic micropump

    Science.gov (United States)

    Huang, Pao-Cheng; Wang, Min-Haw; Chen, Ming-Kun; Jang, Ling-Sheng

    2016-05-01

    Flow rate sensing is a critical issue for piezoelectric-based micropump systems. This paper describes experimental analysis of flow rate sensing in a peristaltic micropump system. Sensing can be integrated with such a pump using piezoelectric actuators based on the time-phase-shift (TPS) method. To do this, an evaluation-window is added on the falling edge of the driving pulse to help detect the flow velocity without affecting the flow rate. We fabricate a prototype piezoelectric peristaltic micropump with three chambers and three piezoelectric actuators. The middle actuator works not only as an actuator for driving fluid but also as a transducer for sensing flow rate. An evaluation-window is performed to ascertain the relationship between the flow rate and the phase shift of output-signal responses from the transducer. The experimental results show that the evaluation-window response of flow rates in a piezoelectric peristaltic micropump has rates of from 5.56‒33.36 μl s-1. The results are extended to propose a practical flow rate sensor, the design of which can be realized easily in the piezoelectric peristaltic micropump system for sensorless responses that can detect flow rate without any sensors or circuits. The proposed TPS method is real-time, integrated, fast, efficient, and suitable for flow rate detection in piezoelectric peristaltic micropumps.

  12. Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting

    Science.gov (United States)

    Wang, Hongjin; Meng, Qingfeng

    2013-03-01

    Power harvesting techniques that convert vibration energy into electrical energy through piezoelectric transducers show strong potential for powering smart wireless sensor devices in applications of structural health monitoring. This paper presents an analytical model of the dynamic behavior of an electromechanical piezoelectric bimorph cantilever harvester connected with an AC-DC circuit based on the Euler-Bernoulli beam theory and Hamiltonian theorem. A new cantilevered piezoelectric bimorph structure is proposed in which the plug-type connection between support layer and tip-mass ensures that the gravity center of the tip-mass is collinear with the gravity center of the beam so that the brittle fracture of piezoelectric layers can also be avoided while vibrating with large amplitude. The tip-mass is equated by the inertial force and inertial moment acting at the end of the piezoelectric bimorph beam based on D'Alembert's principle. An AC-DC converting circuit soldered with the piezoelectric elements is also taken into account. A completely new analytic expression of the global behavior of the electromechanical piezoelectric bimorph harvesting system with AC-DC circuit under input base transverse excitation is derived. Moreover, an experimental energy harvester is fabricated and the theoretical analysis and experimental results of the piezoelectric harvester under the input base transverse displacement excitation are validated by using measurements of the absolute tip displacement, electric voltage response, electric current response and electric power harvesting.

  13. Resonance-type bimorph-based high-speed atomic force microscopy: real-time imaging and distortion correction

    International Nuclear Information System (INIS)

    Resonance-type bimorph-based high-speed atomic force microscopy (HSAFM) capable of operating in the sample-scan and tip-scan modes is presented in this paper. The working principle of the high-speed scanner, the experimental setup, and the data collection system are described in detail. The main characteristic of the high-speed scanner is the use of a piezoelectric bimorph, where one of the piezoelectric layers is used to drive the bimorph beam to scan at a high speed and the other monitors the bimorph vibration. Image distortions due to the phase-lag and sinusoidal scanning are analyzed and simulated. The correction methods for the compensation of the phase-lag and nonlinear movement are proposed based on data shift and nonlinear mapping relations, respectively. The HSAFM imaging at the maximum rate of ∼30 frames per second is demonstrated with our data collection and correction program. The image distortions caused by the phase-lag and sinusoidal scanning are effectively eliminated in real-time. This work would provide useful methods for the development of HSAFM and applications in the observation of dynamic processes at nanoscale. (paper)

  14. Portable Valve-less Peristaltic Micro-pump Design and Fabrication

    CERN Document Server

    Yang, H; Hu, C -C

    2008-01-01

    This paper is to describe a design and fabrication method for a valve-less peristaltic micro-pump. The valve-less peristaltic micro-pump with three membrane chambers in a serial is actuated by three piezoelectric (PZT) actuators. With the fluidic flow design, liquid in the flow channel is pumped to a constant flow speed ranged from 0.4 to 0.48 mm/s. In term of the maximum flow rate of the micro-pump is about 365 mircoliters/min, when the applied voltage is 24V and frequency 50 Hz. Photolithography process was used to fabricate the micro-pump mold. PDMS molding and PDMS bonding method were used to fabricate the micro-channel and actuator chambers. A portable drive controller was designed to control three PZT actuators in a proper sequence to drive the chamber membrane. Then, all parts were integrated into the portable valve-less peristaltic micro-pump system.

  15. Peristaltic Pumping of Blood in micro-vessels of Non-uniform Cross-section

    CERN Document Server

    Misra, J C

    2010-01-01

    The paper is devoted to a study of the peristaltic motion of blood in the micro-circulatory system. The vessel is considered of non-uniform cross-section. The progressive peristaltic waves are taken to be of sinusoidal nature. The Reynolds number is considered to be small. Blood is considered to be a Herschel-Bulkley fluid. Of particular concern here is to investigate the effects of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, streamline pattern and wall shear stress. Basing upon the study, extensive numerical calculations has been made. The study reveals that peristaltic pumping as well as velocity and wall shear stress are appreciably affected due to the non-uniform geometry of blood vessels. They are also highly sensitive to the magnitude of the amplitude of the amplitude ratio and the value of the fluid index.

  16. Peristaltic transport of Carreau-Yasuda fluid in a curved channel with slip effects.

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The wide occurrence of peristaltic pumping should not be surprising at all since it results physiologically from neuro-muscular properties of any tubular smooth muscle. Of special concern here is to predict the rheological effects on the peristaltic motion in a curved channel. Attention is focused to develop and simulate a nonlinear mathematical model for Carreau-Yasuda fluid. The progressive wave front of peristaltic flow is taken sinusoidal (expansion/contraction type. The governing problem is challenge since it has nonlinear differential equation and nonlinear boundary conditions even in the long wavelength and low Reynolds number regime. Numerical solutions for various flow quantities of interest are presented. Comparison for different flow situations is also made. Results of physical quantities are interpreted with particular emphasis to rheological characteristics.

  17. Portable Valve-less Peristaltic Micro-pump Design and Fabrication

    OpenAIRE

    Yang, H.; Tsai, T.-H.; Hu, C.-C.

    2008-01-01

    This paper is to describe a design and fabrication method for a valve-less peristaltic micro-pump. The valve-less peristaltic micro-pump with three membrane chambers in a serial is actuated by three piezoelectric (PZT) actuators. With the fluidic flow design, liquid in the flow channel is pumped to a constant flow speed ranged from 0.4 to 0.48 mm/s. In term of the maximum flow rate of the micro-pump is about 365 mircoliters/min, when the applied voltage is 24V and frequency 50 Hz. Photolithog...

  18. Analysis of Entropy Generation in the Flow of Peristaltic Nanofluids in Channels With Compliant Walls

    Directory of Open Access Journals (Sweden)

    Munawwar Ali Abbas

    2016-03-01

    Full Text Available Entropy generation during peristaltic flow of nanofluids in a non-uniform two dimensional channel with compliant walls has been studied. The mathematical modelling of the governing flow problem is obtained under the approximation of long wavelength and zero Reynolds number (creeping flow regime. The resulting non-linear partial differential equations are solved with the help of a perturbation method. The analytic and numerical results of different parameters are demonstrated mathematically and graphically. The present analysis provides a theoretical model to estimate the characteristics of several Newtonian and non-Newtonian fluid flows, such as peristaltic transport of blood.

  19. Flow Rate Driven by Peristaltic Movement in Plasmodial Tube of Physarum Polycephalum

    Science.gov (United States)

    Yamada, Hiroyasu; Nakagaki, Toshiyuki

    2008-07-01

    We report a theoretical analysis of protoplasmic streaming driven by peristaltic movement in an elastic tube of an amoeba-like organism. The Plasmodium of Physarum polycephalum, a true slime mold, is a large amoeboid organism that adopts a sheet-like form with a tubular network. The network extends throughout the Plasmodium and enables the transport and circulation of chemical signals and nutrients. This tubular flow is driven by periodically propagating waves of active contraction of the tube cortex, a process known as peristaltic movement. We derive the relationship between the phase velocity of the contraction wave and the flow rate, and we discuss the physiological implications of this relationship.

  20. The self-generated peristaltic motion of cascaded pneumatic actuators for micro pumps

    International Nuclear Information System (INIS)

    This paper presents a new actuation mechanism for the self-generated peristaltic motion of cascaded actuators and its application to micro pumps. The operational method is based on the fluidic circuit of an elastic tube. The elastic tube is modeled as a ladder network consisting of fluidic resistances in series and fluidic capacitances in parallel like multi-stage low-pass filters in an electrical circuit. All segments of the lumped model of the elastic tube have different dynamic characteristics because their time constants are different. In other words, all segments should be deformed sequentially like peristaltic motion. This phenomenon has good potential to cause peristaltic motion of the cascaded actuators in response to the application of single-phase pneumatic signals. Analogues between the electrical and fluidic circuits were applied to a pneumatic micro pump with a micro fluidic channel and three pneumatic actuators connecting a unique micro channel for supplying the compressed air. The polymeric micro pumps were fabricated with soft lithography using only polyimethylsiloxsane. The proposed working principle was verified through simulation of the static deformation of the cascaded actuator diaphragms and the actuator, as well as tested experimentally. The dual operational modes of the proposed device (i.e., rubber-seal valve and peristaltic pumping mode) were also verified and successfully demonstrated in a liquid pumping test of the single and double pumps

  1. Development of Stepper motor based Two DOF Robotic Arm Transferring Liquid using Peristaltic Pump

    Directory of Open Access Journals (Sweden)

    Padma Thiagarajan

    2013-02-01

    Full Text Available The aim of this work is to transfer liquid contents from one micro cell to another using two stepper motors and a peristaltic pump. There are two objectives here. One is to develop a low cost roboticarm using stepper motors. The second objective is the control and calibration of the peristaltic pump. All parts are controlled and operated by their respective microcontrollers. Fulfillment of both the objectives leads to an integrated system to transfer liquids from one cell to another. The end effecter of the robotic arm is connected to the peristaltic pump. The pump has two pipes connected to it. Through one pipe it takes in the liquid and through the other pipe it delivers the liquid into the second cell. After transferring one sample of liquid, the arm moves to a cleaning module where the end effecter is cleaned to avoid cross contamination. The robotic arm is built using stepper motors and controlled using Atmega32 microcontroller whereas the peristaltic pump is controlled and calibrated using 8051 microcontroller. The pumping is done with the help of DC motors. As a result, the working of the robotic arm and theperistaltic pump is verified experimentally.

  2. The self-generated peristaltic motion of cascaded pneumatic actuators for micro pumps

    Science.gov (United States)

    Jeong, Ok Chan; Konishi, Satoshi

    2008-08-01

    This paper presents a new actuation mechanism for the self-generated peristaltic motion of cascaded actuators and its application to micro pumps. The operational method is based on the fluidic circuit of an elastic tube. The elastic tube is modeled as a ladder network consisting of fluidic resistances in series and fluidic capacitances in parallel like multi-stage low-pass filters in an electrical circuit. All segments of the lumped model of the elastic tube have different dynamic characteristics because their time constants are different. In other words, all segments should be deformed sequentially like peristaltic motion. This phenomenon has good potential to cause peristaltic motion of the cascaded actuators in response to the application of single-phase pneumatic signals. Analogues between the electrical and fluidic circuits were applied to a pneumatic micro pump with a micro fluidic channel and three pneumatic actuators connecting a unique micro channel for supplying the compressed air. The polymeric micro pumps were fabricated with soft lithography using only polyimethylsiloxsane. The proposed working principle was verified through simulation of the static deformation of the cascaded actuator diaphragms and the actuator, as well as tested experimentally. The dual operational modes of the proposed device (i.e., rubber-seal valve and peristaltic pumping mode) were also verified and successfully demonstrated in a liquid pumping test of the single and double pumps.

  3. A mathematical model for the peristaltic flow of chyme movement in small intestine.

    Science.gov (United States)

    Tripathi, Dharmendra

    2011-10-01

    A mathematical model based on viscoelastic fluid (fractional Oldroyd-B model) flow is considered for the peristaltic flow of chyme in small intestine, which is assumed to be in the form of an inclined cylindrical tube. The peristaltic flow of chyme is modeled more realistically by assuming that the peristaltic rush wave is a sinusoidal wave, which propagates along the tube. The governing equations are simplified by making the assumptions of long wavelength and low Reynolds number. Analytical approximate solutions of problem are obtained by using homotopy analysis method and convergence of the obtained series solution is properly checked. For the realistic values of the emerging parameters such as fractional parameters, relaxation time, retardation time, Reynolds number, Froude number and inclination of tube, the numerical results for the pressure difference and the frictional force across one wavelength are computed and discussed the roles played by these parameters during the peristaltic flow. On the basis of this study, it is found that the first fractional parameter, relaxation time and Froude number resist the movement of chyme, while, the second fractional parameter, retardation time, Reynolds number and inclination of tube favour the movement of chyme through the small intestine during pumping. It is further revealed that size of trapped bolus reduces with increasing the amplitude ratio whereas it is unaltered with other parameters. PMID:21802431

  4. Peristaltic flow of a Maxwell fluid in a channel with compliant walls

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Nasir [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan)], E-mail: nasirali_qau@yahoo.com; Hayat, Tasawar [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Asghar, Saleem [Department of Mathematical Sciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2009-01-15

    This paper describes the peristaltic motion of a non-Newtonian fluid in a channel having compliant boundaries. Constitutive equations for a Maxwell fluid have been used. Perturbation method has been used for the analytic solution. The influence of pertinent parameters is analyzed. Comparison of the present analysis of Maxwell fluid is made with the existing results of viscous fluid.

  5. Slip and heat transfer effects on peristaltic motion of a Carreau fluid in an asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics; Saleem, Najma [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Hendi, Awatif A. [Dept. of Physics, Riyadh (Saudi Arabia). Faculty of Science

    2010-12-15

    An analysis has been carried out for peristaltic flow and heat transfer of a Carreau fluid in an asymmetric channel with slip effect. The governing problem is solved under long wavelength approximation. The variations of pertinent dimensionless parameters on temperature are discussed. Pumping and trapping phenomena are studied. (orig.)

  6. Slip effects on the magnetohydrodynamic peristaltic flow of a maxwell fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quiad-I-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics; Hina, Sadia [Quiad-I-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Hendi, Awatif A. [Dept. of Physics, Riyadh (Saudi Arabia). Faculty of Science

    2010-12-15

    The influence of slip on the magnetohydrodynamic (MHD) peristaltic flow in a planar channel with compliant walls is examined. An incompressible Maxwell fluid saturates the porous medium. An established solution is valid for small wave number. The mathematical expression of the stream function is presented. Several interesting flow parameters are sketched and examined. (orig.)

  7. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    International Nuclear Information System (INIS)

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated

  8. Mechano-optical switching in a mems integrated photonic crystal slab waveguide

    NARCIS (Netherlands)

    Abdulla, S.M.C.; Kauppinen, L.J.; Dijkstra, M.A.; Berenschot, J.W.; Boer, de M.J.; Ridder, de R.M.; Krijnen, G.J.M.

    2011-01-01

    A photonic crystal slab waveguide (PhC-WG) with an integrated MEMS bimorph cantilever actuator has been successfully fabricated using deep UV lithography and surface micromaching techniques. The cantilever is equipped with tips that are self-aligned with respect to the holes of the PhC-WG such that

  9. Impulse excitation of piezoelectric bimorphs for energy harvesting: a dimensionless model

    International Nuclear Information System (INIS)

    Energy harvesting (EH) is a multidisciplinary research area, involving physics, materials science and engineering, with the objective of providing renewable sources of power sufficient to operate targeted low-power applications. Piezoelectric transducers are often used for inertial vibrational as well as direct excitation EH. However, due to the stiffness of the most common material (PZT), compact and light-weight harvesters have high resonant frequencies, making them inefficient at extracting low-frequency power from the environment. The technique of frequency up-conversion, in the form of either plucking or impulse excitation, aims to bridge this frequency gap. In this paper, the technique is modelled analytically with focus on impulse excitation via impact or shock. An analytical model is developed in a standard way starting from the Euler–Bernoulli beam equations adapted to a piezoelectric bimorph. A set of dimensionless variables and parameters is defined and a system of differential equations derived. Here the system is solved numerically for a wide range of the two group parameters present, covering piezoelectric coupling strength between PVDF and PMN-PT. One major result is that the strength of the coupling strongly affects the timescale of the process, but has only a minor effect on the total energy converted. The model can be readily adapted to different excitation profiles. (paper)

  10. Impulse excitation of piezoelectric bimorphs for energy harvesting: a dimensionless model

    Science.gov (United States)

    Pozzi, Michele

    2014-04-01

    Energy harvesting (EH) is a multidisciplinary research area, involving physics, materials science and engineering, with the objective of providing renewable sources of power sufficient to operate targeted low-power applications. Piezoelectric transducers are often used for inertial vibrational as well as direct excitation EH. However, due to the stiffness of the most common material (PZT), compact and light-weight harvesters have high resonant frequencies, making them inefficient at extracting low-frequency power from the environment. The technique of frequency up-conversion, in the form of either plucking or impulse excitation, aims to bridge this frequency gap. In this paper, the technique is modelled analytically with focus on impulse excitation via impact or shock. An analytical model is developed in a standard way starting from the Euler-Bernoulli beam equations adapted to a piezoelectric bimorph. A set of dimensionless variables and parameters is defined and a system of differential equations derived. Here the system is solved numerically for a wide range of the two group parameters present, covering piezoelectric coupling strength between PVDF and PMN-PT. One major result is that the strength of the coupling strongly affects the timescale of the process, but has only a minor effect on the total energy converted. The model can be readily adapted to different excitation profiles.

  11. Peristaltic Pumping of Blood Through Small Vessels of Varying Cross-Section

    Science.gov (United States)

    Misra, J. C.; Maiti, S.

    2012-11-01

    The paper is devoted to a study of the peristaltic motion of blood in the micro-circulatory system. The vessel is considered to be of varying cross-section. The progressive peristaltic waves are taken to be of sinusoidal nature. Blood is considered to be a Herschel-Bulkley fluid. Of particular concern here is to investigate the effects of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, streamline pattern and wall shear stress. On the basis of the derived analytical expression, extensive numerical calculations have been made. The study reveals that velocity of blood and wall shear stress are appreciably affected due to the non-uniform geometry of blood vessels. They are also highly sensitive to the magnitude of the amplitude ratio and the value of the fluid index.

  12. Magnetic Field and Gravity Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2014-01-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.

  13. Design and dynamic characterization of "single-stroke" peristaltic PDMS micropumps.

    Science.gov (United States)

    Lai, Hoyin; Folch, Albert

    2011-01-21

    In this paper, we present a monolithic PDMS micropump that generates peristaltic flow using a single control channel that actuates a group of different-sized microvalves. An elastomeric microvalve design with a raised seat, which improves bonding reliability, is incorporated into the micropump. Pump performance is evaluated based on several design parameters--size, number, and connection of successive microvalves along with control channel pressure at various operating frequencies. Flow rates ranging 0-5.87 µL min(-1) were observed. The micropump design demonstrated here represents a substantial reduction in the number of/real estate taken up by the control lines that are required to run a peristaltic pump, hence it should become a widespread tool for parallel fluid processing in high-throughput microfluidics. PMID:20957288

  14. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots

    International Nuclear Information System (INIS)

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress. (paper)

  15. Micromachining of a bimorph Pb(Zr,Ti)O3 (PZT) cantilever using a micro-electromechanical systems (MEMS) process for energy harvesting application.

    Science.gov (United States)

    Kim, Moonkeun; Hwang, Beomseok; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho

    2012-07-01

    We designed and fabricated a bimorph Pb(Zr,Ti)O3 (PZT) cantilever with an integrated Si proof mass to obtain a low resonant frequency for an energy harvesting application. The cantilevers were fabricated on the micro-electromechanical systems (MEMS) scale. A mode of piezoelectric conversions were d31 and d33 mode in cantilever vibration Therefore, we designed and fabricated a single cantilever with d31 unimorph, d31 bimorph, d33 unimorph, and d33 bimorph modes. Finally, we fabricated a device with beam dimensions of about 5,400 microm x 480 microm x 14 microm (< +/- 5%), and an integrated Si proof mass with dimensions of about 1,481 microm x 988 microm x 450 microm (< +/- 5%). In order to measure the d31 and d33 modes, we fabricated top and bottom electrodes. The distance between the top electrodes was 50 microm and the resonant frequency was 89.4 Hz. The average powers of the d31 unimorph, d31 bimorph, d33 unimorph, and d33 bimorph modes were 3.90, 9.60, 21.42, and 22.47 nW at 0.8 g (g = 9.8 m/s2) and optimal resistance, respectively. PMID:22966699

  16. Development of a peristaltic micropump for bio-medical applications based on mini LIPCA

    OpenAIRE

    Pham, My; Nguyen, Thanh Tung; Goo, Nam Seo

    2008-01-01

    This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from polydimethylsiloxane (PDMS) material. The first layer has a rectangular channel and two valve seals. Three rectangular mini lightweight piezo-composite actuators are integrated in the second layer, and used as actuation parts. Two layers are bonded, and covered by two polymethyl methacrylate (PMMA) plates, which help increase the st...

  17. Peristaltic Creeping Flow of Power Law Physiological Fluids through a Nonuniform Channel with Slip Effect

    OpenAIRE

    M. K. Chaube; Tripathi, D.; O. Anwar Bég; Shashi Sharma; PANDEY, V.S.

    2015-01-01

    A mathematical study on creeping flow of non-Newtonian fluids (power law model) through a nonuniform peristaltic channel, in which amplitude is varying across axial displacement, is presented, with slip effects included. The governing equations are simplified by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function, pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profi...

  18. PERISTALTIC TRASPORTATION WITH EFFECT OF MAGNETIC FIELD IN A FLEXIBLE CHANNEL UNDER AN OSCILATORY FLUX

    OpenAIRE

    Dr.S.Ravi kumar

    2013-01-01

    In this paper we have analyzed the flow of a couple stress fluids in a channel bounded by flexible walls over which a traveling wave of contraction and expansion is imposed resulting in a peristaltic motion. An oscillatory time dependent flow is also imposed on this flow. The non-linear equations governing the flow through magnetic field are solved under long wavelength approximation. The existence of separation in the flow field is discussed for different values of the governing parameters. ...

  19. Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel

    OpenAIRE

    Shit, G. C.; Roy, M.; E. Y. K. Ng

    2010-01-01

    Of concern in this paper is an investigation of peristaltic transport of a physiological fluid in an asymmetric channel under long wave length and low-Reynolds number assumptions. The flow is assumed to be incompressible, viscous, electrically conducting micropolar fluid and the effect of induced magnetic field is taken into account. Exact analytical solutions obtained for the axial velocity, microrotation component, stream line pattern, magnetic force function, axial-induced magnetic field a...

  20. Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field

    Directory of Open Access Journals (Sweden)

    Moustafa Elshahed

    2005-01-01

    Full Text Available The peristaltic transport of Johnson-Segalman fluid by means of an infinite train of sinusoidal waves traveling along the walls of a two-dimensional flexible channel is investigated. The fluid is electrically conducted by a transverse magnetic field. A perturbation solution is obtained for the case in which amplitude ratio is small. Numerical results are reported for various values of the physical parameters of interest.

  1. Non-Newtonian effects in the peristaltic flow of a Maxwell fluid

    OpenAIRE

    Tsiklauri, D.; Beresnev, I.

    2001-01-01

    We analyzed the effect of viscoelasticity on the dynamics of fluids in porous media by studying the flow of a Maxwell fluid in a circular tube, in which the flow is induced by a wave traveling on the tube wall. The present study investigates novelties brought about into the classic peristaltic mechanism by inclusion of non-Newtonian effects that are important, for example, for hydrocarbons. This problem has numerous applications in various branches of science, including stimulation of fluid f...

  2. A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    Tasawar Hayat; Najma Saleem; Awatif A. Hendi

    2011-01-01

    A mathematical model is presented with an interest to examine the peristaltic motion in an asymmetric channel by taking into account the slip, heat and mass transfer. Constitutive relationships for a micropolar fluid are used. The solution procedure for nonlinear analysis is given under long wavelength and low Reynolds number approximations. The effects of sundry parameters entering into the expressions of axial velocity,temperature and concentration are explored. Pumping and trapping phenomena are discussed.

  3. Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion

    Science.gov (United States)

    Lin, Qiao; Yang, Bozhi; Xie, Jun; Tai, Yu-Chong

    2007-02-01

    This paper presents lumped-parameter simulation of dynamic characteristics of peristaltic micropumps. The pump consists of three pumping cells connected in series, each of which is equipped with a compliant diaphragm that is electrostatically actuated in a peristaltic sequence to mobilize the fluid. Diaphragm motion in each pumping cell is first represented by an effective spring subjected to hydrodynamic and electrostatic forces. These cell representations are then used to construct a system-level model for the entire pump, which accounts for both cell- and pump-level interactions of fluid flow and diaphragm vibration. As the model is based on first principles, it can be evaluated directly from the device's geometry, material properties and operating parameters without using any experimentally identified parameters. Applied to an existing pump, the model correctly predicts trends observed in experiments. The model is then used to perform a systematic analysis of the impact of geometry, materials and pump loading on device performance, demonstrating its utility as an efficient tool for peristaltic micropump design.

  4. Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter

    Science.gov (United States)

    Jiménez-Lozano, Joel; Sen, Mihir; Dunn, Patrick F.

    2009-04-01

    Particle motion in an unsteady peristaltic fluid flow is analyzed. The fluid is incompressible and Newtonian in a two-dimensional planar geometry. A perturbation method based on a small ratio of wave height to wavelength is used to obtain a closed-form solution for the fluid velocity field. This analytical solution is used in conjunction with an equation of motion for a small rigid sphere in nonuniform flow taking Stokes drag, virtual mass, Faxén, Basset, and gravity forces into account. Fluid streamlines and velocity profiles are calculated. Theoretical values for pumping rates are compared with available experimental data. An application to ureteral peristaltic flow is considered since fluid flow in the ureter is sometimes accompanied by particles such as stones or bacteriuria. Particle trajectories for parameters that correspond to calcium oxalates for calculosis and Escherichia coli type for bacteria are analyzed. The findings show that retrograde or reflux motion of the particles is possible and bacterial transport can occur in the upper urinary tract when there is a partial occlusion of the wave. Dilute particle mixing is also investigated, and it is found that some of the particles participate in the formation of a recirculating bolus, and some of them are delayed in transit and eventually reach the walls. This can explain the failure of clearing residuals from the upper urinary tract calculi after successful extracorporeal shock wave lithotripsy. The results may also be relevant to the transport of other physiological fluids and industrial applications in which peristaltic pumping is used.

  5. Peristaltic flow in non-uniform vessels of the micro-circulatory system

    CERN Document Server

    Maiti, S

    2013-01-01

    Of concern in the paper is generalized a theoretical study concerning the peristaltic flow of blood in the micro-circulatory system. The vessel is considered to be of non-uniform cross-section and blood to be a non-Newtonian fluid. The progressive wave front of the peristaltic flow is supposed sinusoidal/straight section dominated (SSD) (expansion/contraction type); Reynolds number is considered to be small with reference to the flow of physiological fluids. The non-Newtonian behaviour of blood is illustrated by considering the Herschel-Bulkley fluid model. The objective of the study has been to examine the effect of the effects of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, wall shear stress, streamline pattern and trapping. Considerable quantitative differences between the results obtained for transport in two dimensional channel and an axisymmetric circular tube are noticed. The study shows that peristaltic pumping, flow velocity and wall shea...

  6. Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators.

    Science.gov (United States)

    Jang, Ling-Sheng; Shu, Kuan; Yu, Yung-Chiang; Li, Yuan-Jie; Chen, Chiun-Hsun

    2009-02-01

    Many biomedical applications require the administration of drugs at a precise and preferably programmable rate. The flow rate generated by the peristaltic micropumps used in such applications depends on the actuation sequence. Accordingly, the current study performs an analytical and experimental investigation to determine the correlation between the dynamic response of the diaphragms in the micropump and the actuation sequence. A simple analytical model of a peristaltic micropump is established to analyze the shift in the resonant frequency of the diaphragms caused by the viscous damping effect. The analytical results show that this damping effect increases as the oscillation frequency of the diaphragm increases. A peristaltic micropump with three piezoelectric actuators is fabricated on a silicon substrate and is actuated using 2-, 3-, 4- and 6-phase actuation sequences via a driving system comprising a microprocessor and a phase controller. A series of experiments is conducted using de-ionized water as the working fluid to determine the diaphragm displacement and the flow rates induced by each of the different actuation sequences under phase frequencies ranging from 50 Hz to 1 MHz. The results show that the damping effect of actuation sequences influences diaphragm resonant frequency, which in turn affects the profiles of flow rates. PMID:18821016

  7. Gastrointestinal monitor: automatic titration of jejunal inflow to match peristaltic outflow.

    Science.gov (United States)

    Moss, Gerald; Posada, Jose G

    2007-06-15

    A peristaltic gradient insures that chyme normally removed from the jejunal feeding site continues to be propelled caudad. The trigger for iatrogenic "feeding intolerance" is the inadvertently overwhelming of the jejunum's peristaltic outflow, even momentarily. Even minimum local stasis can stimulate a vagal reflex response. Motility of the sluggish gut further slows, leading to generalized abdominal distention, malaise, immobility, and impaired respiratory mechanics. Vagal vascular reflexes could explain the 1:1000 incidence of bowel necrosis for jejunally fed patients. We developed a clinical regimen that continuously "checks for residual" at the enteral feeding site, monitoring the adequacy of emptying. The jejunal inflow automatically is titrated to match peristaltic outflow if the latter cannot keep up. Intermittent suction aspirates the feeding catheter into a plastic chamber for 30 s. All swallowed air is removed efficiently within the close confines of the jejunal segment, without wasting digestive juices. The degassed aspirate is returned by gravity with the feedings during the second half of the 1-min cycle, unless incipient excess (>or=20 mL) fluid overflows. Only this relatively small volume of potentially excess fluid is discarded, forestalling the local distention. All patients tolerated immediate feeding without discomfort or abdominal distention, including three that had esophageal resection (including vagotomy) for carcinoma. Postoperative full enteral nutrition can be achieved quickly and safely with minimum attention, despite initially marginal gastrointestinal function. PMID:17509263

  8. Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs

    Science.gov (United States)

    Zhao, S.; Erturk, A.

    2013-01-01

    We present electroelastic modeling, analytical and numerical solutions, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. The modeling approach employed herein is based on a distributed-parameter electroelastic formulation to ensure that the effects of higher vibration modes are included, since broadband random vibrations, such as Gaussian white noise, might excite higher vibration modes. The goal is to predict the expected value of the power output and the mean-square shunted vibration response in terms of the given power spectral density (PSD) or time history of the random vibrational input. The analytical method is based on the PSD of random base excitation and distributed-parameter frequency response functions of the coupled voltage output and shunted vibration response. The first of the two numerical solution methods employs the Fourier series representation of the base acceleration history in an ordinary differential equation solver while the second method uses an Euler-Maruyama scheme to directly solve the resulting electroelastic stochastic differential equations. The analytical and numerical simulations are compared with several experiments for a brass-reinforced PZT-5H bimorph under different random excitation levels. The simulations exhibit very good agreement with the experimental measurements for a range of resistive electrical boundary conditions and input PSD levels. It is also shown that lightly damped higher vibration modes can alter the expected power curve under broadband random excitation. Therefore, the distributed-parameter modeling and solutions presented herein can be used as a more accurate alternative to the existing single-degree-of-freedom solutions for broadband random vibration energy harvesting.

  9. DYNAMIC BIMORPH THERMO-PIEZOELECTRIC BENDERS WITH ARBITRARY SUPPORT LOCATION. PART I: APPLICATION TO ENERGY HARVESTING-ANALYTICAL DERIVATIONS

    Directory of Open Access Journals (Sweden)

    Bagdasaryan G. Y.

    2016-03-01

    Full Text Available A comprehensive theoretical analysis of a dynamic thermo-ferro-electric pre-stressed bimorph energy harvester is performed. The analysis also takes into account pyroelectric and thermal expansion effects. The most general analytical expression for the energy conversation coefficients are presented for bi-layer. These coefficients we derive for more general situation when mechanical, electrical, thermal fields are present. We derive coefficients (transformation coefficients for sensing, actuating, and energy harvesting. As a particular case, we derive an analytical expression for the energy harvesting coefficient due to pyroelectric and thermal expansion effects in a rater general situation. This is a function of material properties, location of boundary conditions, vibration frequency, and in plane compressive/tensile follower force. Numerical simulations of the analytical results are presented. Effects of volume fraction, material properties, applied mechanical loads, and boundary conditions on the harvesting coefficients are introduced in the figures. The results for a cantilever and a simply-supported plate-layer are obtained as particular cases. The result for a low frequency (static system is obtained as a particular case by approaching the vibration frequency to zero. It is shown that volume fraction, material properties, plain compressive/tensile follower force, the location of the boundary conditions, and the vibrational frequency of the bimorph strongly influence the strain distribution, and this in effect influences the charge coefficient and the generation of energy. The proposed model can be extended to thermal energy harvesters of piezoelectric-shape memory alloy (SMA composites.

  10. Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field

    International Nuclear Information System (INIS)

    In this paper the effects of induced magnetic field on the peristaltic transport of a Williamson fluid model in an asymmetric channel has been investigated. The problem is simplified by using long wave length and low Reynolds number approximations. The perturbation and numerical solutions have been presented. The expressions for pressure rise, pressure gradient, stream function, magnetic force function, current density distribution have been computed. The results of pertinent parameters have been discussed graphically. The trapping phenomena for different wave forms have been also discussed. - highlights: • The main motivation of this work is that we want to see the behavior of peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. In literature no attempt is taken to discuss the lateral Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. • We do not want to fill the gap in literature after studying this

  11. Fabrication of magnetoresistive actuators using rare-earth (Tb, Sm)-Fe thin films

    Science.gov (United States)

    Honda, T.; Arai, K. I.; Yamaguchi, M.

    1994-11-01

    A new concept is proposed for the microactuation based upon magnetostriction. Magnetostrictive bimorph cantilever actuators and a traveling machine, composed of the magnetostrictive amorphous Tb-Fe and Sm-Fe thin films on a polymide substrate, were fabricated. These actuators moved without power supply cables. The 3-mm-long cantilever actuator exhibited the large deflection above 100 microns in as low a magnetic field as 300 Oe and above 500 microns at resonant frequency in an alternating magnetic field of 300 Oe. Such unique characteristics suggest that magnetostriction is useful as the driving force of the microactuator.

  12. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    OpenAIRE

    Zhaoying Zhou; Kang Wu; Xiongying Ye; Min Du

    2009-01-01

    In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can ...

  13. Peristaltic transport of Conducting Bingham fluid in contact with a Newtonian fluid in a channel

    Directory of Open Access Journals (Sweden)

    M.Arun kumar

    2013-04-01

    Full Text Available Peristaltic pumping by a sinusoidal traveling wave in the walls of a two dimensional channel filled with two immiscible fluids with magnetic effect is investigated. The core region of the channel is occupied by a Bingham fluid where as the peripheral region is occupied by a Newtonian fluid. The flow is examined in a wave frame of reference moving with the velocity of the wave. The expressions for the stream function, the velocity and the pressure rise are obtained. The equation for the interface separating the two fluids is obtained. Numerical results are reported for several of the physical parameters of interest. We observed that the lower values of

  14. Magnetohydrodynamic Peristaltic Flow of a Pseudoplastic Fluid in a Curved Channel

    Science.gov (United States)

    Noreen, Saima; Hayat, Tasawar; Alsaedi, Ahmed

    2013-05-01

    A mathematical model is developed to examine the effects of an induced magnetic field on the peristaltic flow in a curved channel. The non-Newtonian pseudoplastic fluid model is used to depict the combined elastic and viscous properties. The analysis has been carried out in the wave frame of reference, long wavelength and low Reynolds scheme are implemented. A series solution is obtained through perturbation analysis. Results for stream function, pressure gradient, magnetic force function, induced magnetic field, and current density are constructed. The effects of significant parameters on the flow quantities are sketched and discussed.

  15. Influence of convective conditions in radiative peristaltic flow of pseudoplastic nanofluid in a tapered asymmetric channel

    Science.gov (United States)

    Hayat, T.; Iqbal, Rija; Tanveer, Anum; Alsaedi, A.

    2016-06-01

    This paper looks at the influences of magnetohydrodynamics (MHD) and thermal radiation on peristaltic transport of a pseudoplastic nanofluid in a tapered asymmetric channel. The tapered channel walls satisfy convective boundary conditions. The governing equations for the balance of mass, momentum, temperature and volume fraction for pseudoplastic nanofluid are first formulated and then utilized for long wavelength and small Reynolds number considerations. Effects of involved parameters on the flow characteristics have been plotted and examined. It is observed that the heat transfer Biot number shows a dual behavior on the temperature of nanofluid particles whereas the mass transfer Biot number with its increasing values enhances the fluid temperature.

  16. Peristaltic flow in an asymmetric channel with convective boundary conditions and Joule heating

    Institute of Scientific and Technical Information of China (English)

    Abbasi Fahad Munir; Hayat Tasawar; Ahmad Bashir

    2014-01-01

    The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic (MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.

  17. Magnetohydrodynamic peristaltic flow of a hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer

    Institute of Scientific and Technical Information of China (English)

    Sohail Nadeem; Safia Akram

    2011-01-01

    In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical expression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.

  18. Peristaltic transport of a fractional Burgers' fluid with variable viscosity through an inclined tube

    Science.gov (United States)

    Rachid, Hassan

    2015-12-01

    In the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers' model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.

  19. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  20. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary conditions

    Institute of Scientific and Technical Information of China (English)

    H YASMIN; T HAYAT; A ALSAEDI; HH ALSULAMI

    2014-01-01

    This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.

  1. Effect of Slip on Peristaltic Flow of Powell-Eyring Fluid in a Symmetric Channel

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2014-01-01

    Full Text Available Peristaltic flow of non-Newtonian fluid in a symmetric channel with partial slip effect is examined. The non-Newtonian behavior of fluid is characterized by the constitutive equations of Powell-Eyring fluid. The motion is induced by a sinusoidal wave traveling along the flexible walls of channel. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The equations governing the flow are solved by adopting lubrication approach. Series solutions for the stream function and axial pressure gradient are obtained. Impact of slip and other emerging flow parameters is plotted and analyzed graphically.

  2. Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating

    Science.gov (United States)

    Hayat, Tasawar; Shafique, Maryam; Tanveer, Anum; Alsaedi, Ahmed

    2016-01-01

    Mixed convection peristaltic flow of Jeffrey nanofluid in a channel with compliant walls is addressed here. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Whole analysis is performed for velocity, thermal and concentration slip conditions. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating and slip parameters are explored in detail. Clearly temperature is a decreasing function of Hartman number and radiation parameter. PMID:26886919

  3. Influence of thermal and velocity slip on the peristaltic flow of Cu-water nanofluid with magnetic field

    Science.gov (United States)

    Akbar, Noreen Sher

    2016-03-01

    The peristaltic flow of an incompressible viscous fluid containing copper nanoparticles in an asymmetric channel is discussed with thermal and velocity slip effects. The copper nanoparticles for the peristaltic flow water as base fluid is not explored so far. The equations for the purposed fluid model are developed first time in literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been calculated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. The influence of various flow parameters on the flow and heat transfer characteristics is obtained.

  4. Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement

    Science.gov (United States)

    Sher Akbar, Noreen

    2015-03-01

    The influence of magnetic field on peristaltic flow of a Casson fluid model is considered. The model for peristaltic literature is modelled first time. The governing coupled equations are constructed under long wavelength and low Reynold's number approximation. Exact solutions are evaluated for stream function and pressure gradient. The important findings in this study are the variation of the Hartmann number M, Casson fluid parameter ζ and amplitudes a, b, d and ϕ. The velocity field increases due to increase in Hartmann number M near the channel walls while velocity field decreases at the centre of the channel.

  5. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium

    Science.gov (United States)

    Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir

    2016-01-01

    The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland’s approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387

  6. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium.

    Science.gov (United States)

    Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir

    2016-01-01

    The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland's approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387

  7. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    Science.gov (United States)

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-01-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively. PMID:27063987

  8. Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel

    International Nuclear Information System (INIS)

    In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel is studied. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, streamlines, axial velocity and shear stress on the channel walls have been computed numerically. Effects of Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle are very pronounced in the phenomena. Comparison was made with the results obtained in the asymmetric channel and symmetric channel. - Highlights: • The peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel with magnetic field. • Mathematical modeling for long wavelength and low Reynolds number assumptions. • Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress

  9. Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    2012-01-01

    Full Text Available Mathematical model for the peristaltic flow of chyme in small intestine along with inserted endoscope is considered. Here, chyme is treated as Williamson fluid, and the flow is considered between the annular region formed by two concentric tubes (i.e., outer tube as small intestine and inner tube as endoscope. Flow is induced by two sinusoidal peristaltic waves of different wave lengths, traveling down the intestinal wall with the same speed. The governing equations of Williamson fluid in cylindrical coordinates have been modeled. The resulting nonlinear momentum equations are simplified using long wavelength and low Reynolds number approximations. The resulting problem is solved using regular perturbation method in terms of a variant of Weissenberg number We. The numerical solution of the problem is also computed by using shooting method, and comparison of results of both solutions for velocity field is presented. The expressions for axial velocity, frictional force, pressure rise, stream function, and axial pressure gradient are obtained, and the effects of various emerging parameters on the flow characteristics are illustrated graphically. Furthermore, the streamlines pattern is plotted, and it is observed that trapping occurs, and the size of the trapped bolus varies with varying embedded flow parameters.

  10. Slip Effects on Peristaltic Transport of a Particle-Fluid Suspension in a Planar Channel

    Directory of Open Access Journals (Sweden)

    Mohammed H. Kamel

    2015-01-01

    Full Text Available Peristaltic pumping induced by a sinusoidal traveling wave in the walls of a two-dimensional channel filled with a viscous incompressible fluid mixed with rigid spherical particles is investigated theoretically taking the slip effect on the wall into account. A perturbation solution is obtained which satisfies the momentum equations for the case in which amplitude ratio (wave amplitude/channel half width is small. The analysis has been carried out by duly accounting for the nonlinear convective acceleration terms and the slip condition for the fluid part on the wavy wall. The governing equations are developed up to the second order of the amplitude ratio. The zeroth-order terms yield the Poiseuille flow and the first-order terms give the Orr-Sommerfeld equation. The results show that the slip conditions have significant effect within certain range of concentration. The phenomenon of reflux (the mean flow reversal is discussed under slip conditions. It is found that the critical reflux pressure is lower for the particle-fluid suspension than for the particle-free fluid and is affected by slip condition. A motivation of the present analysis has been the hope that such theory of two-phase flow process under slip condition is very useful in understanding the role of peristaltic muscular contraction in transporting biofluid behaving like a particle-fluid mixture. Also the theory is important to the engineering applications of pumping solid-fluid mixture by peristalsis.

  11. Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus

    CERN Document Server

    Misra, J C

    2011-01-01

    Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bolus through the esophagus. The analysis has been carried out by using lubrication theory. The study is particularly suitable for cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes places by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocity, particle trajectory and reflux are investigated for a single wave as well as for a train of periodic per...

  12. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    Science.gov (United States)

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations. PMID:23057236

  13. Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement

    International Nuclear Information System (INIS)

    The influence of magnetic field on peristaltic flow of a Casson fluid model is considered. The model for peristaltic literature is modelled first time. The governing coupled equations are constructed under long wavelength and low Reynold's number approximation. Exact solutions are evaluated for stream function and pressure gradient. The important findings in this study are the variation of the Hartmann number M, Casson fluid parameter ζ and amplitudes a, b, d and ϕ. The velocity field increases due to increase in Hartmann number M near the channel walls while velocity field decreases at the centre of the channel. - Highlights: • The influence of magnetic field on peristaltic flow of a Casson fluid model is considered. • The model for peristaltic literature is modelled first time. • The governing coupled equations are constructed under long wavelength and low Reynold's number approximation. • Exact solutions are evaluated for stream function and pressure gradient. • The velocity field increases due to increase in Hartmann number M near the channel walls while velocity field decreases at the centre of the channel

  14. A Mathematical Model for Peristaltic Transport of Micro-Polar Fluids

    Directory of Open Access Journals (Sweden)

    S. K. Pandey

    2011-01-01

    Full Text Available A mathematical model has been constructed for peristaltic transport of micro-polar fluid in a circular cylindrical tube of finite length by letting sinusoidal waves propagate along the wall that induce contraction and relaxation but not expansion beyond the natural boundary. Axial and radial velocities and micro-rotation components are formulated for micro-polar fluid transportations by applying the method of long wavelength and low Reynolds number approximations in the analysis. Pressure distribution along the tube length is studied to investigate temporal effects. An in-depth study has been done to learn the effects of coupling number and micro-polar parameter. The effects of coupling number and micro-polar parameter are investigated also on mechanical efficiency, reflux and trapping. A significant difference observed is that unlike integral wave-trains propagating along the tube walls that have identical peaks of pressure, non-integral wave-trains have peaks of different sizes.

  15. Development of a peristaltic micropump for bio-medical applications based on mini LIPCA

    CERN Document Server

    Pham, My; Goo, Nam Seo

    2008-01-01

    This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from polydimethylsiloxane (PDMS) material. The first layer has a rectangular channel and two valve seals. Three rectangular mini lightweight piezo-composite actuators are integrated in the second layer, and used as actuation parts. Two layers are bonded, and covered by two polymethyl methacrylate (PMMA) plates, which help increase the stiffness of the micropump. A maximum flow rate of 900 mokroliter per min and a maximum backpressure of 1.8 kPa are recorded when water is used as pump liquid. We measured the power consumption of the micropump. The micropump is found to be a promising candidate for bio-medical application due to its bio-compatibility, portability, bidirectionality, and simple effective design.

  16. Development of a peristaltic gas micropump with a single chamber and multiple electrodes

    International Nuclear Information System (INIS)

    This paper reports on the development of a multi-electrode electrostatically driven peristaltic gas micropump. The micropump consists of a single chamber and a flexible diaphragm with a multi-electrode pattern. The single-chamber design is divided into smaller cells by the electrodes; the characteristic operating frequency of the micropump increases as the number of electrodes increases. The flow rate is also observed to increase to maximum before decreasing for larger numbers of electrodes. Whereas the maximum flow rate of a 4-electrode micropump is about 40 µl min−1 at 14 Hz, the maximum flow rate of the 16-electrode micropump is about 250 µl min−1 at 1400 Hz and that of the 32-electrode micropump is 150 µl min−1 at 4000 Hz. (paper)

  17. Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel

    Directory of Open Access Journals (Sweden)

    N. Ali

    2016-02-01

    Full Text Available The influence of slip and magnetic field on transport characteristics of a bio-fluid are analyzed in a curved channel. The problem is modeled in curvilinear coordinate system under the assumption that the wavelength of the peristaltic wave is larger in magnitude compared to the width of the channel. The resulting nonlinear boundary value problem (BVP is solved using an implicit finite difference technique (FDT. The flow velocity, pressure rise per wavelength and stream function are illustrated through graphs for various values of rheological and geometrical parameters of the problem. The study reveals that a thin boundary layer exists at the channel wall for strong magnetic field. Moreover, small values of Weissenberg number counteract the curvature and make the velocity profile symmetric. It is also observed that pressure rise per wavelength in pumping region increases (decreases by increasing magnetic field, Weissenberg number and curvature of the channel (slip parameter.

  18. A peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls.

    Science.gov (United States)

    Du, Min; Ye, Xiongying; Wu, Kang; Zhou, Zhaoying

    2009-01-01

    In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ∼490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached. PMID:22574035

  19. Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel

    Science.gov (United States)

    Ali, N.; Javid, K.; Sajid, M.

    2016-02-01

    The influence of slip and magnetic field on transport characteristics of a bio-fluid are analyzed in a curved channel. The problem is modeled in curvilinear coordinate system under the assumption that the wavelength of the peristaltic wave is larger in magnitude compared to the width of the channel. The resulting nonlinear boundary value problem (BVP) is solved using an implicit finite difference technique (FDT). The flow velocity, pressure rise per wavelength and stream function are illustrated through graphs for various values of rheological and geometrical parameters of the problem. The study reveals that a thin boundary layer exists at the channel wall for strong magnetic field. Moreover, small values of Weissenberg number counteract the curvature and make the velocity profile symmetric. It is also observed that pressure rise per wavelength in pumping region increases (decreases) by increasing magnetic field, Weissenberg number and curvature of the channel (slip parameter).

  20. Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel

    CERN Document Server

    Shit, G C; Ng, E Y K; 10.1002/cnm.1397

    2010-01-01

    Of concern in this paper is an investigation of peristaltic transport of a physiological fluid in an asymmetric channel under long wave length and low-Reynolds number assumptions. The flow is assumed to be incompressible, viscous, electrically conducting micropolar fluid and the effect of induced magnetic field is taken into account. Exact analytical solutions obtained for the axial velocity, microrotation component, stream line pattern, magnetic force function, axial-induced magnetic field as well as the current density distribution across the channel. The flow phenomena for the pumping characteristics, trapping and reflux are also investigated. The results presented reveal that the velocity decreases with the increase of magnetic field as well as the coupling parameter. Moreover, the trapping fluid can be eliminated by the application of an external magnetic field. Thus, the study bears the promise of important applications in physiological systems.

  1. Convective boundary conditions effect on peristaltic flow of a MHD Jeffery nanofluid

    Science.gov (United States)

    Kothandapani, M.; Prakash, J.

    2016-03-01

    This work is aimed at describing the influences of MHD, chemical reaction, thermal radiation and heat source/sink parameter on peristaltic flow of Jeffery nanofluids in a tapered asymmetric channel along with slip and convective boundary conditions. The governing equations of a nanofluid are first formulated and then simplified under long-wavelength and low-Reynolds number approaches. The equation of nanoparticles temperature and concentration is coupled; hence, homotopy perturbation method has been used to obtain the solutions of temperature and concentration of nanoparticles. Analytical solutions for axial velocity, stream function and pressure gradient have also constructed. Effects of various influential flow parameters have been pointed out through with help of the graphs. Analysis indicates that the temperature of nanofluids decreases for a given increase in heat transfer Biot number and chemical reaction parameter, but it possesses converse behavior in respect of mass transfer Biot number and heat source/sink parameter.

  2. Non-Newtonian effects in the peristaltic flow of a Maxwell fluid

    CERN Document Server

    Tsiklauri, D

    2001-01-01

    We analyzed the effect of viscoelasticity on the dynamics of fluids in porous media by studying the flow of a Maxwell fluid in a circular tube, in which the flow is induced by a wave traveling on the tube wall. The present study investigates novelties brought about into the classic peristaltic mechanism by inclusion of non-Newtonian effects that are important, for example, for hydrocarbons. This problem has numerous applications in various branches of science, including stimulation of fluid flow in porous media under the effect of elastic waves. We have found that in the extreme non-Newtonian regime there is a possibility of a fluid flow in the direction {\\it opposite} to the propagation of the wave traveling on the tube wall.

  3. Development of a Peristaltic Micropump for Bio-Medical Applications Based on Mini LIPCA

    Institute of Scientific and Technical Information of China (English)

    Thanh Tung Nguyen; My Pham; Nam Seo Goo

    2008-01-01

    This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from Polydimethylsiloxane (PDMS) material. The first layer has a rectangular channel and two valve seals. Three rectangular mini lightweight piezo-composite actuators are integrated in the second layer, and used as actuation parts.Two layers are bonded, and covered by two Polymethyl Methacrylate (PMMA) plates, which help increase the stiffness of the micropump.A maximum flow rate of 900 uL·min-1 and a maximum backpressure of 1.8 kPa are recorded when water is used as pump liquid. We measured the power consumption of the micropump. The micropump is found to be a prom- ising candidate for bio-medical application due to its bio-compatibility, portability, bidirectionality, and simple effective design.

  4. Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions.

    Directory of Open Access Journals (Sweden)

    Sadia Hina

    Full Text Available Slip effects on the peristaltic transport of Johnson-Segalman fluid through a curved channel have been addressed. The influence of wall properties is also analyzed. Long wavelength and low Reynolds number assumptions have been utilized in the mathematical formulation of the problem. The equations so formed have been solved numerically by shooting method through computational software Mathematica 8. In addition the analytic solution for small Weissenberg number (elastic parameter is computed through a regular perturbation method. An excellent agreement is noticed between the two solutions. The results indicate an increase in the magnitude of velocity with an intensification in the slip effect. Moreover the size and circulation of the trapped boluses increase with an increase in the slip parameter. Unlike the planar channel, the profiles of axial velocity are not symmetric about the central line of the channel.

  5. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: qau2011@gmail.com [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.

  6. Peristaltic Transport of Prandtl-Eyring Liquid in a Convectively Heated Curved Channel.

    Science.gov (United States)

    Hayat, Tasawar; Bibi, Shahida; Alsaadi, Fuad; Rafiq, Maimona

    2016-01-01

    Here peristaltic activity for flow of a Prandtl-Eyring material is modeled and analyzed for curved geometry. Heat transfer analysis is studied using more generalized convective conditions. The channel walls satisfy complaint walls properties. Viscous dissipation in the thermal equation accounted. Unlike the previous studies is for uniform magnetic field on this topic, the radial applied magnetic field has been utilized in the problems development. Solutions for stream function (ψ), velocity (u), and temperature (θ) for small parameter β have been derived. The salient features of heat transfer coefficient Z and trapping are also discussed for various parameters of interest including magnetic field, curvature, material parameters of fluid, Brinkman, Biot and compliant wall properties. Main observations of present communication have been included in the conclusion section. PMID:27304458

  7. Mixed Convective Peristaltic Flow of Water Based Nanofluids with Joule Heating and Convective Boundary Conditions.

    Science.gov (United States)

    Hayat, Tasawar; Nawaz, Sadaf; Alsaedi, Ahmed; Rafiq, Maimona

    2016-01-01

    Main objective of present study is to analyze the mixed convective peristaltic transport of water based nanofluids using five different nanoparticles i.e. (Al2O3, CuO, Cu, Ag and TiO2). Two thermal conductivity models namely the Maxwell's and Hamilton-Crosser's are used in this study. Hall and Joule heating effects are also given consideration. Convection boundary conditions are employed. Furthermore, viscous dissipation and heat generation/absorption are used to model the energy equation. Problem is simplified by employing lubrication approach. System of equations are solved numerically. Influence of pertinent parameters on the velocity and temperature are discussed. Also the heat transfer rate at the wall is observed for considered five nanofluids using the two phase models via graphs. PMID:27104596

  8. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    International Nuclear Information System (INIS)

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number

  9. Peristaltic Pumping near Post-CME Supra-Arcade Current Sheets

    CERN Document Server

    Scott, Roger B; McKenzie, David E

    2013-01-01

    Measurements of temperature and density near supra-arcade current sheets suggest that plasma on unreconnected field lines may experience some degree of "pre-heating" and "pre-densification" prior to their reconnection. Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of thermal energy across field lines. Here we present a model in which a reconnected flux tube retracts, deforming the surrounding layer of unreconnected field. The deformation creates constrictions that act as peristaltic pumps, driving plasma flow along affected field lines. Under certain circumstances these flows lead to shocks that can extend far out into the unreconnected field, altering the plasma properties in the affected region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as high temperatures near current sheets in eruptive solar flares and wakes seen in the form of ...

  10. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    Directory of Open Access Journals (Sweden)

    Zhaoying Zhou

    2009-04-01

    Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  11. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)

    OpenAIRE

    Seok-Won Kang; Joe Fragala; Debjyoti Banerjee

    2015-01-01

    Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a desig...

  12. Design and fabrication of a screw-driven multi-channel peristaltic pump for portable microfluidic devices

    International Nuclear Information System (INIS)

    A novel peristaltic pump for portable microfluidic devices has been recently designed and fabricated. The operation principle is based on the peristaltic motion of eight elastic pumping channels that are occluded by a screw shaft. The screw shaft rotating inside the pumping channel unit has a spirally arranged projection which deforms and closes down the channels as a normally closed valve. While the shaft rotates, the pinched locations in the channels move either way according to the direction of rotation, squeezing out the fluid inside. It features unlimited and quantitative fluid feeding with a wide range of flow rates for one channel from 3.5 µL min−1 at 3 rpm to 280.2 µL min−1 at 180 rpm. It was demonstrated that pulsation can be drastically reduced by merging two anti-phase channels.

  13. Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field

    International Nuclear Information System (INIS)

    In this study the peristaltic motion of Oldroyd fluid in an asymmetric channel is investigated. Mathematical analysis has been carried out in the presence of an inclined magnetic field. Heat transfer is also taken into account. The physical problem is first modeled and then the analytical solutions of coupled equations are developed by regular perturbation method. Assumptions of long wavelength approximation are used. Effects of inclined magnetic field on the axial velocity and temperature are presented. Physical features of pertinent parameters such as wave number δ, Reynolds number Re, Weissenberg number Wi, Prandtl number Pr and Hartmann number M are also discussed graphically at the end of the paper. - Highlights: • This paper analyses heat transfer and inclined magnetic effects in peristaltic motion of Oldroyd fluid. • An asymmetric channel under long wavelength approximation is considered. • Regular perturbation method is used to find analytical solutions. • Effects of sundry parameters are presented through graphs

  14. Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field

    International Nuclear Information System (INIS)

    In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters. - Highlights: • The main motivation of this work is that we want to see the behavior of nanofluids in peristaltic flows. • In literature few articles are available on this, but no article is available in asymmetric channel on the new fluid model hyperbolic tangent fluid. • So we want to fill the gap in literature studying this

  15. An analytical and numerical study of peristaltic transport of a Johnson—Segalman fluid in an endoscope

    International Nuclear Information System (INIS)

    In the present study, we discuss the peristaltic flow of a Johnson—Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson—Segalman fluid. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Peristaltic Transport of a Physiological Fluid in an Asymmetric Porous Channel in the Presence of an External Magnetic Field

    OpenAIRE

    Misra, J. C.; Maiti, S.; Shit, G. C.

    2010-01-01

    The paper deals with a theoretical investigation of the peristaltic transport of a physiological fluid in a porous asymmetric channel under the action of a magnetic field. The stream function, pressure gradient and axial velocity are studied by using appropriate analytical and numerical techniques. Effects of different physical parameters such as permeability, phase difference, wave amplitude and magnetic parameter on the velocity, pumping characteristics, streamline pattern and trapping are ...

  17. Effect of slip on heat transfer to peristaltic transport in the presence of magnetic field with wall effects

    OpenAIRE

    A. V. Ramana Kumari; G. Radhakrishnamacharya

    2011-01-01

    The effects of slip and elasticity of flexible walls on peristaltic transport of an incompressible viscous fluid in a two dimensional uniform channel, with heat transfer in the presence of magnetic field is investigated. Using long wavelength approximation, a perturbation solution has been obtained in terms of wall slope parameter and closed form expressions are derived for average velocity, temperature and heat transfer. The effects of various pertinent parameters on average velocity and hea...

  18. Simultaneous effects of Hall and convective conditions on peristaltic flow of couple-stress fluid in an inclined asymmetric channel

    Indian Academy of Sciences (India)

    T Hayat; Maryam Iqbal; Humaira Yasmin; Fuad E Alsaadi; Huijun Gao

    2015-07-01

    A mathematical model is developed to analyse the peristaltic flow of couple-stress fluid in an inclined asymmetric channel with convective conditions. Soret and Dufour and Hall effects are taken into account. Analysis has been carried out in a wave frame of reference. Expressions for velocity, pressure gradient, temperature and concentration are constructed. Pumping and trapping phenomena are examined. Impact of sundry parameters on the velocity, temperature and concentration is discussed.

  19. Transient magneto-peristaltic flow of couple stress biofluids: a magneto-hydro-dynamical study on digestive transport phenomena.

    Science.gov (United States)

    Tripathi, Dharmendra; Anwar Bég, O

    2013-11-01

    Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport. PMID:23911695

  20. Peristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscope

    International Nuclear Information System (INIS)

    The influence of an endoscope on peristaltic flow of a Jeffrey fluid through the cylindrical cavity between concentric tubes with variable magnetic field has been investigated. The governing equations of two dimensional fluid have been simplified under the consideration of long wavelength and low Reynolds number approximation. Exact analytical calculations are carried out for the pressure gradient, velocity, pressure rise, friction force on the inner and outer tubes and shear stress. The effect of the non-dimensional wave amplitude, the variable magnetic field, the ratio of relaxation of retardation time, the radius ratio and the non-dimensional volume flow are analyzed theoretically and computed numerically. Comparison was made with the results obtained in the presence and absence of variable magnetic field and an endoscope. The results indicate that the effect of the non-dimensional wave amplitude, variable magnetic field, ratio of relaxation to retardation time, radius ratio and non-dimensional volume flow on peristaltic flow are very pronounced. - Highlights: • The peristaltic flow of a Jeffrey fluid through the cylindrical cavity between concentric tubes with variable magnetic field. • Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. • Closed form expressions for the entered parameters have been computed numerically

  1. A passively tunable mechanism for a dual bimorph energy harvester with variable tip stiffness and axial load

    International Nuclear Information System (INIS)

    This paper presents a novel vibration-based piezoelectric energy harvester capable of passively tuning its resonant frequency to a wide range of frequencies. The device comprises a dual bimorph with a mass at its free end. A novel sliding mechanism, consisting of two oblique springs connected to the tip mass, is proposed to widen the resonance frequency of the device even to very low frequencies. The application of two oblique springs results in an additional stiffness and axial load that are introduced within the system, such that the resonance frequency of the device is now a function of both the stiffness and axial load associated with the spring forces. An operator can manually change the resonance frequency of the harvester just by small adjustments of the sliding mechanism. Further, the device allows one to tune the resonance frequency of the beam to match very low frequencies without the requirement of having a large proof mass. The analytical solution of an axially loaded cantilevered piezoelectric energy harvester with tip stiffness, using Euler–Bernoulli beam assumptions, is presented. A parametric case study is presented to demonstrate the performance of the device. (paper)

  2. Adaptive Q control for Tapping-mode Nano-scanning Using a Piezo-actuated Bimorph Probe

    CERN Document Server

    Gunev, Ihsan; Karaman, Sertac; Basdogan, Cagatay

    2012-01-01

    A new approach, called Adaptive Q-control, for tapping-mode Atomic Force Microscopy (AFM) is introduced and implemented on a home-made AFM set-up utilizing a Laser Doppler Vibrometer (LDV) and a piezo-actuated bimorph probe. In the standard Q-control, the effective Q-factor of the scanning probe is adjusted prior to the scanning depending on the application. However, there is a trade-off in setting the effective Q-factor of an AFM probe. The Q-factor is either increased to reduce the tapping forces or decreased to increase the maximum achievable scan speed. Realizing these two benefits simultaneously using the standard Q-control is not possible. In adaptive Q-control, the Q-factor of the probe is set to an initial value as in standard Q-control, but then modified on the fly during scanning when necessary to achieve this goal. In this paper, we present the basic theory behind the adaptive Q-control, the electronics enabling the on-line modification of the probe's effective Q-factor, and the results of the expe...

  3. Design and experimental characterization of a NiTi-based, high-frequency, centripetal peristaltic actuator

    International Nuclear Information System (INIS)

    Development and experimental testing of a peristaltic device actuated by a single shape-memory NiTi wire are described. The actuator is designed to radially shrink a compliant silicone pipe, and must work on a sustained basis at an actuation frequency that is higher than those typical of NiTi actuators. Four rigid, aluminum-made circular sectors are sitting along the pipe circumference and provide the required NiTi wire housing. The aluminum assembly acts as geometrical amplifier of the wire contraction and as heat sink required to dissipate the thermal energy of the wire during the cooling phase. We present and discuss the full experimental investigation of the actuator performance, measured in terms of its ability to reduce the pipe diameter, at a sustained frequency of 1.5 Hz. Moreover, we investigate how the diameter contraction is affected by various design parameters as well as actuation frequencies up to 4 Hz. We manage to make the NiTi wire work at 3% in strain, cyclically providing the designed pipe wall displacement. The actuator performance is found to decay approximately linearly with actuation frequencies up to 4 Hz. Also, the interface between the wire and the aluminum parts is found to be essential in defining the functional performance of the actuator. (paper)

  4. Motion generation of peristaltic mobile robot with particle swarm optimization algorithm

    Science.gov (United States)

    Homma, Takahiro; Kamamichi, Norihiro

    2015-03-01

    In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.

  5. A Peristaltic Pump Integrated on a 100% Glass Microchip Using Computer Controlled Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Yo Tanaka

    2014-05-01

    Full Text Available Lab-on-a-chip technology is promising for the miniaturization of chemistry, biochemistry, and/or biology researchers looking to exploit the advantages of a microspace. To manipulate fluid on a microchip, on-chip pumps are indispensable. To date, there have been several types of on-chip pumps including pneumatic, electroactive, and magnetically driven. However these pumps introduce polymers, metals, and/or silicon to the microchip, and these materials have several disadvantages, including chemical or physical instability, or an inherent optical detection limit. To overcome/avoid these issues, glass has been one of the most commonly utilized materials for the production of multi-purpose integrated chemical systems. However, glass is very rigid, and it is difficult to incorporate pumps onto glass microchips. This paper reports the use of a very flexible, ultra-thin glass sheet (minimum thickness of a few micrometers to realize a pump installed on an entirely glass-based microchip. The pump is a peristaltic-type, composed of four serial valves sealing a cavity with two penetrate holes using ultra-thin glass sheet. By this pump, an on-chip circulating flow was demonstrated by directly observing fluid flow, visualized via polystyrene tracking particles. The flow rate was proportional to the pumping frequency, with a maximum flow rate of approximately 0.80 μL/min. This on-chip pump could likely be utilized in a wide range of applications which require the stability of a glass microchip.

  6. Hall and ion slip effects on peristaltic flow and heat transfer analysis with Ohmic heating

    Institute of Scientific and Technical Information of China (English)

    S ASGHAR; Q HUSSAIN; T HAYAT; F ALSAADI

    2014-01-01

    The peristaltic transport of a magnetohydrodynamic (MHD) fluid is exam-ined for both symmetric and asymmetric channels. Hall and ion slip effects are taken into account. The heat transfer is analyzed by considering the effects of viscous and Ohmic dissipations. The relevant flow problems are first modeled, and then the closed form solutions are constructed under the assumptions of long wavelength and low Reynolds number. The solutions are analyzed through graphical illustration. It is noted that the velocity increases but the temperature decreases with the increases in the Hall and ion slip parameters. The axial pressure gradient is less in magnitude in the presence of Hall and ion slip currents. The Hall and ion slip effects are to decrease the maximum pres-sure against which peristalsis works as a pump. The free pumping flux decreases with the increases in the Hall and ion slip parameters. The increases in the Hall and ion slip parameters result in an increase in the size of the trapped bolus.

  7. Peristaltic flow of a micropolar fluid through a porous medium in the presence of an external magnetic field

    Science.gov (United States)

    Pandey, S. K.; Chaube, M. K.

    2011-09-01

    This paper presents an analytical study of the MHD flow of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls. Low Reynolds number and long wavelength approximations are applied to solve the non-linear problem in the closed form and expressions for axial velocity, pressure rise per wavelength, mechanical efficiency and stream function are obtained. The impacts of pertinent parameters on the aforementioned quantities are examined by plotting graphs on the basis of computational results. It is found that the pumping improves with Hartman number but degrades with permeability of the porous medium.

  8. Numerical Analysis for Peristaltic Motion of MHD Eyring-Prandtl Fluid in an Inclined Symmetric Cannel with Inclined Magnetic Field

    Directory of Open Access Journals (Sweden)

    Fahad Abbasi

    2016-01-01

    Full Text Available This article addresses the peristaltic transport of Eyring-Prandtl fluid in an inclined asymmetric channel. Heat and mass transfer phenomena along with Soret and Dufour effects is analyzed. Effects of inclined magnetic field and Joule heating are also discussed. Long wavelength approximation is adopted. Numerical computations for flow quantities of interest are analyzed. It is found that the parabolic velocity profile tends to shift from center of the channel towards the channel walls in the case of opposing flow. Velocity and temperature decrease whereas concentration increases by increasing the non-Newtonian parameter. Further the dependence of magnetic field on the angle is quite significant

  9. Analytical Analysis of Peristaltic Flow of a Six Constant Jeffreys Model of Fluid in an Inclined Planar Channel

    Directory of Open Access Journals (Sweden)

    Safia AKRAM

    2013-01-01

    Full Text Available In this paper we have investigated the peristaltic flow of an incompressible six constant Jeffreys model of fluid in an asymmetric channel. The flow is investigated in a wave frame of reference moving with the velocity of the wave. We have modeled the governing equations of a two dimensional six constant Jeffreys model of fluid under long wave length and low Reynolds number approximation. The analytical and numerical solutions of the proposed problem are discussed. The expression for the pressure rise is calculated using numerical integration. The Graphical results are presented to interpret various physical parameters of interest.

  10. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.

    Science.gov (United States)

    Akbar, Noreen Sher; Raza, M; Ellahi, R

    2016-07-01

    The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon. PMID:27208518

  11. Peristaltic Transport of a Physiological Fluid in an Asymmetric Porous Channel in the Presence of an External Magnetic Field

    CERN Document Server

    Misra, J C; Shit, G C; 10.1142/S0219519408002784

    2010-01-01

    The paper deals with a theoretical investigation of the peristaltic transport of a physiological fluid in a porous asymmetric channel under the action of a magnetic field. The stream function, pressure gradient and axial velocity are studied by using appropriate analytical and numerical techniques. Effects of different physical parameters such as permeability, phase difference, wave amplitude and magnetic parameter on the velocity, pumping characteristics, streamline pattern and trapping are investigated with particular emphasis. The computational results are presented in graphical form. The results are found to be in perfect agreement with those of a previous study carried out for a non-porous channel in the absence of a magnetic field.

  12. Mixed convective heat and mass transfer analysis for peristaltic transport in an asymmetric channel with Soret and Dufour effects

    Institute of Scientific and Technical Information of China (English)

    F M Abbasi; A Alsaedi; T Hayat

    2014-01-01

    The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.

  13. Pre-stressed piezoelectric bimorph micro-actuators based on machined 40 µm PZT thick films: batch scale fabrication and integration with MEMS

    International Nuclear Information System (INIS)

    The projected force–displacement capability of piezoelectric ceramic films in the 20–50 µm thickness range suggests that they are well suited to many micro-fluidic and micro-pneumatic applications. Furthermore when they are configured as bending actuators and operated at ∼ 1 V µm−1 they do not necessarily conform to the high-voltage, very low-displacement piezoelectric stereotype. Even so they are rarely found today in commercial micro-electromechanical devices, such as micro-pumps and micro-valves, and the main barriers to making them much more widely available would appear to be processing incompatibilities rather than commercial desirability. In particular, the issues associated with integration of these devices into MEMS at the production level are highly significant and they have perhaps received less attention in the mainstream than they deserve. This paper describes a fabrication route based on ultra-precision ceramic machining and full-wafer bonding for cost-effective batch scale production of thick film PZT bimorph micro-actuators and their integration with MEMS. The resulting actuators are pre-stressed (ceramic in compression) which gives them added performance, they are true bimorphs with bi-directional capability and they exhibit full bulk piezoelectric ceramic properties. The devices are designed to integrate with ancillary systems components using transfer-bonding techniques. The work forms part of the European Framework 6 Project 'Q2M—Quality to Micro'

  14. DYNAMIC BIMORPH THERMO-PIEZOELECTRIC BENDERS WITH ARBITRARY SUPPORT LOCATION. PART II: APPLICATION TO ENERGY HARVESTING-NUMERICAL RESULTS AND DISCUSSIONS

    Directory of Open Access Journals (Sweden)

    Bagdasaryan, Gevorg Y.

    2016-06-01

    Full Text Available A comprehensive theoretical analysis of a dynamic thermo-ferro-electric pre-stressed bimorph energy harvester is performed. The analysis also takes into account pyroelectric and thermal expansion effects. The most general analytical expression for the energy conversation coefficients are presented for bi-layer. These coefficients we derive for more general situation when mechanical, electrical, thermal fields are present. We derive coefficients (transformation coefficients for sensing, actuating, and energy harvesting. As a particular case, we derive an analytical expression for the energy harvesting coefficient due to pyroelectric and thermal expansion effects in a rater general situation. This is a function of material properties, location of boundary conditions, vibration frequency, and in plane compressive/tensile follower force. Numerical simulations of the analytical results are presented. Effects of volume fraction, material properties, applied mechanical loads, and boundary conditions on the harvesting coefficients are introduced in the figures. The results for a cantilever and a simply-supported plate-layer are obtained as particular cases. The result for a low frequency (static system is obtained as a particular case by approaching the vibration frequency to zero. It is shown that volume fraction, material properties, plain compressive/tensile follower force, the location of the boundary conditions, and the vibrational frequency of the bimorph strongly influence the strain distribution, and this in effect influences the charge coefficient and the generation of energy. The proposed model can be extended to thermal energy harvesters of piezoelectric-shape memory alloy (SMA composites.

  15. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Kothandapani, M., E-mail: mkothandapani@gmail.com [Department of Mathematics, University College of Engineering Arni, (A Constituent College of Anna University Chennai), Arni 632326, Tamil Nadu (India); Prakash, J., E-mail: prakashjayavel@yahoo.co.in [Department of Mathematics, Arulmigu Meenakshi Amman College of Engineering, Vadamavandal 604410, Tamil Nadu (India)

    2015-03-15

    Theoretical analyses on the effect of radiation and MHD on the peristaltic flow of a nanofluid through a porous medium in a two dimensional tapered asymmetric channel has been made. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. The transport equation accounts the both Brownian motion and thermophoresis along with the radiation reaction. The problem has been further simplified with the authentic assumptions of long wavelength and small Reynolds number. The analytical expressions obtained for the axial velocity, stream function, temperature field, nanoparticle fraction field and pressure gradient provide satisfactory explanation. Influence of various parameters on the flow characteristics have been discussed with the help of graphical results. The trapping phenomenon has also been discussed in detail. - Highlights: • Combine effect of thermal radiation and MHD on the peristaltic flow of a Newtonian nanofluid are discussed. • This work may be first attempt dealing the study of Newtonian nanofluid flow in the porous tapered asymmetric channel. • The velocity, stream function, temperature field and nanoparticle fraction field provide satisfactory explanation with help of graphs.

  16. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel

    International Nuclear Information System (INIS)

    Theoretical analyses on the effect of radiation and MHD on the peristaltic flow of a nanofluid through a porous medium in a two dimensional tapered asymmetric channel has been made. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. The transport equation accounts the both Brownian motion and thermophoresis along with the radiation reaction. The problem has been further simplified with the authentic assumptions of long wavelength and small Reynolds number. The analytical expressions obtained for the axial velocity, stream function, temperature field, nanoparticle fraction field and pressure gradient provide satisfactory explanation. Influence of various parameters on the flow characteristics have been discussed with the help of graphical results. The trapping phenomenon has also been discussed in detail. - Highlights: • Combine effect of thermal radiation and MHD on the peristaltic flow of a Newtonian nanofluid are discussed. • This work may be first attempt dealing the study of Newtonian nanofluid flow in the porous tapered asymmetric channel. • The velocity, stream function, temperature field and nanoparticle fraction field provide satisfactory explanation with help of graphs

  17. Peristaltic transport of MHD Williamson fluid in an inclined asymmetric channel through porous medium with heat transfer

    Institute of Scientific and Technical Information of China (English)

    K. Ramesh; M. Devakar

    2015-01-01

    The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the corresponding results of the Newtonian fluid model.

  18. Peristaltic hemodynamic flow of couple stress fluid through a porous medium under the influence of magnetic field with slip effect

    Science.gov (United States)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2016-05-01

    In this paper, we discussed the theoretical and computational study of peristaltic hemodynamic flow of couple stress fluids through a porous medium under the influence of magnetic field with wall slip condition. Actually this study is motivated towards the physiological flow of the blood in the micro circulatory system by taking account of the particle size effect. We consider the Reynolds number is small enough and the wave length to diameter ratio is large enough to negate inertial effects. The governing equations for the couple stress fluid flow through porous medium based on stoke constitutive equations and Brinkman model. The exact solutions for axial velocity, pressure gradient, frictional force, stream function and mechanical efficiency are obtained analytically, its behaviour computationally discussed with reference to different physical parameters reflecting couple stress parameter, Hartmann number, permeability parameter, slip parameter as well as amplitude ratio on pumping characteristics and frictional force, stream lines pattern and trapping of peristaltic flow pattern are studied with particular emphasis making use of graphs.

  19. Detection of Crohn's disease: Comparison of CT and MR enterography without anti-peristaltic agents performed on the same day

    International Nuclear Information System (INIS)

    Objective: To directly compare CT enterography (CTE) and MR enterography (MRE) without antiperistaltic agents. Materials/methods: 26 patients referred for CTE underwent CTE immediately followed by MRE without use of an anti-peristaltic agent. Each study was evaluated on a 10 point scale for exam quality, level of diagnostic confidence, and presence of Crohn's disease. Kappa analysis was performed to determine the degree of agreement between the CTE and MRE of each patient. Results: 25 patients completed the MRE. The quality of the CTEs was judged as excellent by both readers (reader 1 = average 9.5/10, reader 2 = average 9.1/10). The quality of the MREs was ranked lower than the CTEs by both readers (reader 1 = average 8.9/10, reader 2 = average 7.2/10), which was statistically significant (p < 0.05). The level of confidence in interpretation was not significantly different between CTE and MRE for reader 1 or 2 (p = 0.3). There was substantial agreement between readers for the presence or absence of Crohn's disease on both CTE (kappa = 0.75) and MRE (kappa = 0.67). Conclusion: MR enterography without anti-peristaltic agents results in high diagnostic confidence and excellent agreement for the presence of Crohn's disease.

  20. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs).

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-01-01

    Bi-layer (Au-Si₃N₄) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current. PMID:26334276

  1. Design and validation of a fuzzy logic controller for a smart projectile fin with a piezoelectric macro-fiber composite bimorph actuator

    International Nuclear Information System (INIS)

    This paper focuses on the design and validation of a fuzzy logic controller for the smart fin of a projectile. The hollow fin is actuated by a cantilevered piezoelectric bimorph that is completely enclosed within it. A linear model of the actuator and fin is identified experimentally by exciting the system using a chirp signal. A procedure for designing a genetic algorithm (GA)-based fuzzy logic controller for the fin is presented. The controller is validated using simulation and experimental testing that is conducted in the subsonic wind tunnel at the University of Nevada, Las Vegas (UNLV). Results show that the proposed controller accomplishes the desired fin angle control under various operating conditions

  2. The Influence of a Micropolar Fluid on Peristaltic Transport in an Annulus: Application of the Clot Model

    Directory of Open Access Journals (Sweden)

    Kh. S. Mekheimer

    2008-01-01

    Full Text Available A serious pathological condition is encountered when some blood constituents deposited on the blood vessels get detached from the wall, join the blood stream again and form a clot. Study of the peristaltic transport of a micropolar fluid in an annular region is investigated under low Reynolds number and long wavelength approximations. We model a small artery as a tube having a sinusoidal wave travelling down its wall and a clot model inside it. Closed form solutions are obtained for the velocity and the microrotation components, as well as the stream function, and they contain new additional parameters, namely, δ, the height of the clot, N, the coupling number and m, the micropolar parameter. The pressure rise and friction force on the inner and the outer tubes have been discussed for various values of the physical parameters of interest.

  3. Numerical analysis for MHD peristaltic transport of Carreau-Yasuda fluid in a curved channel with Hall effects

    Science.gov (United States)

    Abbasi, F. M.; Hayat, T.; Alsaedi, A.

    2015-05-01

    Impact of applied magnetic field on the peristaltic transport of Carreau-Yasuda fluid in a curved conduit is analyzed in this article. Hall effects are also taken into consideration. Lubrication approach is utilized in problem formulation. Resulting nonlinear system is solved numerically. Results for axial velocity, pressure gradient, pressure rise per wavelength and stream function are obtained and studied graphically. Results revealed that for small values of curvature parameter the fluid velocity is not symmetric about the centerline. Also increase in the value of Hall parameter balances the magnetic influence of applied magnetic field by some extent. Further, the Carreau-Yasuda fluid possesses large size of trapped bolus when compared with the Newtonian fluid.

  4. Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University, 45320 Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-05-15

    Impact of applied magnetic field on the peristaltic transport of Carreau–Yasuda fluid in a curved conduit is analyzed in this article. Hall effects are also taken into consideration. Lubrication approach is utilized in problem formulation. Resulting nonlinear system is solved numerically. Results for axial velocity, pressure gradient, pressure rise per wavelength and stream function are obtained and studied graphically. Results revealed that for small values of curvature parameter the fluid velocity is not symmetric about the centerline. Also increase in the value of Hall parameter balances the magnetic influence of applied magnetic field by some extent. Further, the Carreau–Yasuda fluid possesses large size of trapped bolus when compared with the Newtonian fluid.

  5. Effects of magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel

    International Nuclear Information System (INIS)

    The effects of both magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel are studied analytically and numerically. The channel asymmetry is generated by propagation of waves on the channel walls travelling with different amplitudes, phases but with the same speed. The long wavelength and low Reynolds number assumptions are considered in obtaining solution for the flow. The flow is investigated in a wave frame of reference moving with velocity of the wave. Closed form expressions have been obtained for the stream function and the axial velocity component in fixed frame. The effects of phase difference, Knudsen number and magnetic field on the pumping characteristics and velocity field are discussed. Several known results of interest are found to follow as particular cases of the solution of the problem considered

  6. Influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties

    Science.gov (United States)

    Hayat, T.; Rafiq, M.; Ahmad, B.

    2016-07-01

    This article aims to predict the effects of convective condition and particle deposition on peristaltic transport of Jeffrey fluid in a channel. The whole system is in a rotating frame of reference. The walls of channel are taken flexible. The fluid is electrically conducting in the presence of uniform magnetic field. Non-uniform heat source/sink parameter is also considered. Mass transfer with chemical reaction is considered. Relevant equations for the problems under consideration are first modeled and then simplified using lubrication approach. Resulting equations for stream function and temperature are solved exactly whereas mass transfer equation is solved numerically. Impacts of various involved parameters appearing in the solutions are carefully analyzed.

  7. Influence of Magnetic Field on the Peristaltic Flow of a Viscous Fluid through a Finite-Length Cylindrical Tube

    Directory of Open Access Journals (Sweden)

    S. K. Pandey

    2010-01-01

    Full Text Available The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical conductivity (i.e. the Hartmann number on the mechanical efficiency of a peristaltic pump have also been studied. The reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different in the latter cases.

  8. Peristaltic Motion of Non-Newtonian Fluid with Heat and Mass Transfer through a Porous Medium in Channel under Uniform Magnetic Field

    OpenAIRE

    Eldabe, Nabil T. M.; Bothaina M. Agoor; Heba Alame

    2014-01-01

    This paper is devoted to the study of the peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in the channel under the effect of magnetic field. A modified Casson non-Newtonian constitutive model is employed for the transport fluid. A perturbation series’ method of solution of the stream function is discussed. The effects of various parameters of interest such as the magnetic parameter, Casson parameter, and permeability parameter on the velocity, pre...

  9. Influence of magnetic field and heat transfer on peristaltic flow of Jeffrey fluid through a porous medium in an asymmetric channel

    OpenAIRE

    C. Vasudev; U.Rajeswara Rao; M. V. Subba Reddy; G. Prabhakara Rao

    2010-01-01

    In this paper, we studied the effects of heat transfer and magnetic field on the peristaltic flow of a Jeffrey fluid through a porous medium in an asymmetric channel under the assumptions of long wavelength and low Reynolds number. Expressions for the velocity and pressure gradient are obtained analytically. The effects of Hartmann number, Darcy number, phase shift, Jeffrey fluid parameter and upper and lower wave amplitudes on the pumping characteristics and the temperature field are discuss...

  10. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon

    OpenAIRE

    Kendig, Derek M; Hurst, Norman R.; Bradley, Zachary L.; Mahavadi, Sunila; Kuemmerle, John F.; Lyall, Vijay; DeSimone, John; Murthy, Karnam S.; John R Grider

    2014-01-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as mo...

  11. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Seok-Won Kang

    2015-08-01

    Full Text Available Bi-layer (Au-Si3N4 microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  12. Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer

    Science.gov (United States)

    Hayat, T.; Farooq, S.; Alsaedi, A.; Ahmad, B.

    2016-08-01

    The purpose of present investigation is to study the Hall and MHD effects on peristaltic flow of Carreau-Yasuda fluid in a convectively curved configuration. Thermal radiation, Soret and Dufour effects are also accounted. The channel walls comprised the no slip and compliant properties. Constitutive equations for mass, momentum, energy and concentration are first modeled in view of considered assumptions and then simplified under long wavelength and low Reynolds number approximation. Solution of the resulting system of equations is carried out via a regular perturbation technique. Physical behaviors of velocity, temperature, concentration and streamlines are discussed with the help of graphical representation.

  13. Effects of Slip Condition, Variable Viscosity and Inclined Magnetic Field on the Peristaltic Motion of a Non-Newtonian Fluid in an Inclined Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. Afsar Khan

    2016-01-01

    Full Text Available The peristaltic motion of a third order fluid due to asymmetric waves propagating on the sidewalls of a inclined asymmetric channel is discussed. The key features of the problem includes longwavelength and low-Reynolds number assumptions. A mathematical analysis has been carried out to investigate the effect of slip condition, variable viscosity and magnetohydrodynamics (MHD. Followed by the nondimensionalization of the nonlinear governing equations along with the nonlinear boundary conditions, a perturbation analysis is made. For the validity of the approximate solution, a numerical solution is obtained using the iterative collocation technique.

  14. Peristaltic Motion of Non-Newtonian Fluid with Heat and Mass Transfer through a Porous Medium in Channel under Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Nabil T. M. Eldabe

    2014-01-01

    Full Text Available This paper is devoted to the study of the peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in the channel under the effect of magnetic field. A modified Casson non-Newtonian constitutive model is employed for the transport fluid. A perturbation series’ method of solution of the stream function is discussed. The effects of various parameters of interest such as the magnetic parameter, Casson parameter, and permeability parameter on the velocity, pressure rise, temperature, and concentration are discussed and illustrated graphically through a set of figures.

  15. Effects of Heat and Mass Transfer on MHD Peristaltic Flow of a Non-Newtonian Fluid through a Porous Medium between Two Coaxial Cylinders

    Directory of Open Access Journals (Sweden)

    Abeer A. Shaaban

    2013-01-01

    Full Text Available We investigated the influence of heat and mass transfer on the peristaltic flow of magnetohydrodynamic Eyring-Powell fluid under low Reynolds number and long-wavelength approximation. The fluid flows between two infinite cylinders; the inner tube is uniform, rigid, and rest, while the outer flexible tube has a sinusoidal wave traveling down its wall. The governing equations are solved numerically using finite-difference technique. The velocity, temperature, and concentration distribution are obtained. The features of flow characteristics are analyzed by plotting graphs and discussed in detail.

  16. The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope

    International Nuclear Information System (INIS)

    This Letter discusses the influence of heat transfer and magnetic field on the peristaltic flow of Newtonian fluid in a vertical annulus under a zero Reynolds number and long wavelength approximation. The inner tube is uniform, rigid, while the outer tube has a sinusoidal wave traveling down its wall. The flow is investigated in a wave frame of reference moving with velocity of the wave. Numerical calculations are carried out for the pressure rise and frictional forces. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail

  17. Influence of magnetic field and heat transfer on peristaltic flow of Jeffrey fluid through a porous medium in an asymmetric channel

    Directory of Open Access Journals (Sweden)

    C. Vasudev

    2010-12-01

    Full Text Available In this paper, we studied the effects of heat transfer and magnetic field on the peristaltic flow of a Jeffrey fluid through a porous medium in an asymmetric channel under the assumptions of long wavelength and low Reynolds number. Expressions for the velocity and pressure gradient are obtained analytically. The effects of Hartmann number, Darcy number, phase shift, Jeffrey fluid parameter and upper and lower wave amplitudes on the pumping characteristics and the temperature field are discussed through graphs in detail.

  18. 同步辐射中双压电片反射镜的研究现状∗%Present research status of piezo electric bimorph mirrors in synchrotron radiation sources

    Institute of Scientific and Technical Information of China (English)

    张瑶; 汤善治; 李明; 王立超; 高俊祥

    2016-01-01

    The third-generation synchrotron radiation sources are widely used in physics, chemistry, material science, etc. due to their light beams with high brilliance and low emittance. In order to efficiently utilize such light beams for scientific research, reflective mirrors with excellent figure quality are required. The reflective mirrors on the beamlines of synchrotron radiation sources consist of fixed polished shape mirrors and bendable mirrors. Bendable mirrors have been attracting the attention of the synchrotron radiation community because their curvatures can be varied to realize different focusing properties. Classical bendable mirrors are realized by applying mechanical moment at the ends of the mirror substrates. In this paper, we introduce a new concept of bendable mirrors, X-ray adaptive mirrors which are based on the adaptive optics technology and the properties of piezoelectric bimorph systems. X-ray adaptive mirrors exhibit many advantages over the classical bendable mirrors, such as mechanics-free, figure local corrections, and good focusing properties. The piezoelectric bimorph mirrors have been used in astronomy to correct the wavefront distortions introduced by atmospheric turbulence in real time. The piezoelectric bimorph mirror was first introduced into the field of synchrotron radiation by European Synchrotron Radiation Facility (ESRF) in the 1990s for making an X-ray reflective mirror. Compared with astronomy community, synchrotron radiation community is not interested in high-speed wavefront correction, but looking for the ultimate precision of the surface shape of piezoelectric bimorph mirror. In the second part of this paper, the usual structure and working principle are briefly described. Piezoelectric bimorph mirrors are laminated structures consisting of two strips of an active material such as zirconate lead titanate (PZT) and two faceplates of a reflecting material such as silicon. A discrete or continuous control electrode is located

  19. Influence of heat and mass transfer, initial stress and radially varying magnetic field on the peristaltic flow in an annulus with gravity field

    International Nuclear Information System (INIS)

    In this paper, the effects of both initial stress, radially varying and gravity field on the peristaltic flow of an incompressible MHD Newtonian fluid in a vertical annulus have been studied under the assumption of long wavelength and low-Reynolds number. The analytical solution has been derived for the temperature, concentration and velocity. The results for velocity, concentration and temperature obtained in the analytical form have been evaluated numerically and discussed briefly. The effect of the non-dimensional wave amplitude, the coefficient of viscosity, Sort number, Schmidt number, initial stress, gravitational field and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. The expressions for pressure rise, temperature, concentration field, velocity and pressure gradient are sketched for various embedded parameters and interpreted. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of initial stress and gravitational field. - Highlights: • Initial stress, radially varying and gravity field on the peristaltic flow of MHD Newtonian fluid. • The analytical solution for the temperature, concentration and velocity. • Effect of wave amplitude, viscosity, Sort number, Schmidt number, initial stress, gravitational in the wave frame

  20. Influence of heat and mass transfer, initial stress and radially varying magnetic field on the peristaltic flow in an annulus with gravity field

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Mathematics Department, Faculty of Science, Taif University 888 (Saudi Arabia); Mathematics Department, Faculty of Science, Sohag (Egypt); Abo-Dahab, S.M. [Mathematics Department, Faculty of Science, Taif University 888 (Saudi Arabia); Mathematics Department, Faculty of Science, SVU, Qena 83523 (Egypt); El-Shahrany, H.D. [Mathematics Department, Faculty of Science, Taif University 888 (Saudi Arabia)

    2014-08-01

    In this paper, the effects of both initial stress, radially varying and gravity field on the peristaltic flow of an incompressible MHD Newtonian fluid in a vertical annulus have been studied under the assumption of long wavelength and low-Reynolds number. The analytical solution has been derived for the temperature, concentration and velocity. The results for velocity, concentration and temperature obtained in the analytical form have been evaluated numerically and discussed briefly. The effect of the non-dimensional wave amplitude, the coefficient of viscosity, Sort number, Schmidt number, initial stress, gravitational field and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. The expressions for pressure rise, temperature, concentration field, velocity and pressure gradient are sketched for various embedded parameters and interpreted. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of initial stress and gravitational field. - Highlights: • Initial stress, radially varying and gravity field on the peristaltic flow of MHD Newtonian fluid. • The analytical solution for the temperature, concentration and velocity. • Effect of wave amplitude, viscosity, Sort number, Schmidt number, initial stress, gravitational in the wave frame.

  1. Detection of Crohn's disease: Comparison of CT and MR enterography without anti-peristaltic agents performed on the same day

    Energy Technology Data Exchange (ETDEWEB)

    Grand, David J., E-mail: dgrand@lifespan.org [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, 593 Eddy St., Providence, RI 02903 (United States); Beland, Michael D. [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, 593 Eddy St., Providence, RI 02903 (United States); Machan, Jason T. [Department of Orthopaedics and Surgery, Warren Alpert School of Medicine, Brown University, 593 Eddy St., Providence, RI 02903 (United States); Mayo-Smith, William W. [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, 593 Eddy St., Providence, RI 02903 (United States)

    2012-08-15

    Objective: To directly compare CT enterography (CTE) and MR enterography (MRE) without antiperistaltic agents. Materials/methods: 26 patients referred for CTE underwent CTE immediately followed by MRE without use of an anti-peristaltic agent. Each study was evaluated on a 10 point scale for exam quality, level of diagnostic confidence, and presence of Crohn's disease. Kappa analysis was performed to determine the degree of agreement between the CTE and MRE of each patient. Results: 25 patients completed the MRE. The quality of the CTEs was judged as excellent by both readers (reader 1 = average 9.5/10, reader 2 = average 9.1/10). The quality of the MREs was ranked lower than the CTEs by both readers (reader 1 = average 8.9/10, reader 2 = average 7.2/10), which was statistically significant (p < 0.05). The level of confidence in interpretation was not significantly different between CTE and MRE for reader 1 or 2 (p = 0.3). There was substantial agreement between readers for the presence or absence of Crohn's disease on both CTE (kappa = 0.75) and MRE (kappa = 0.67). Conclusion: MR enterography without anti-peristaltic agents results in high diagnostic confidence and excellent agreement for the presence of Crohn's disease.

  2. Influence of heat and mass transfer, initial stress and radially varying magnetic field on the peristaltic flow in an annulus with gravity field

    Science.gov (United States)

    Abd-Alla, A. M.; Abo-Dahab, S. M.; El-Shahrany, H. D.

    2014-08-01

    In this paper, the effects of both initial stress, radially varying and gravity field on the peristaltic flow of an incompressible MHD Newtonian fluid in a vertical annulus have been studied under the assumption of long wavelength and low-Reynolds number. The analytical solution has been derived for the temperature, concentration and velocity. The results for velocity, concentration and temperature obtained in the analytical form have been evaluated numerically and discussed briefly. The effect of the non-dimensional wave amplitude, the coefficient of viscosity, Sort number, Schmidt number, initial stress, gravitational field and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. The expressions for pressure rise, temperature, concentration field, velocity and pressure gradient are sketched for various embedded parameters and interpreted. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of initial stress and gravitational field.

  3. Sewer Cleaning Inspection Robot Based on Peristaltic Walking%蠕动式污水管道清淤机器人

    Institute of Scientific and Technical Information of China (English)

    曹建树; 徐宝东; 鲁军; 刘强; 张义; 黄子茂

    2014-01-01

    采用模块化方法对污水管道清淤机器人中的管道清理单元、推进舱、阀组和控制单元等模块加以组合,并对其进行了总体方案设计,给出了机器人蠕动行走液压油路方案,分析了其蠕动行走过程。介绍了系统上、下位机联合控制方案,同时描述了下位机在控制系统中的功能及其对应程序流程。在此基础上,研制了一台污水管道清淤机器人,并对其进行了实验。结果表明:该机器人在现有方案下能够实现预定的设计目标,管道清理检测质量良好,可降低工人工作强度。%By combining pipe cleaning unit,propulsion module,valves and control with modularization method,the general scheme of a novel sewer cleaning inspection robot was designed. The peristaltic walking program based on hydraulic oil circuit of the ro-bot was given,and its peristaltic walking processes were analyzed. United control scheme of the system between host and lower comput-er was introduced. At the same time,the lower computer function in control system and its corresponding program flow were described. Upon this basis,a sewer cleaning inspection robot was developed and it was verified by testing experiments. The results show that the performances of robot have a good agreement with design aim in the scheme,and inspecting effect is good,which can reduce strength of worker.

  4. Influence of Heat Source, Thermal Radiation and Inclined Magnetic Field on Peristaltic Flow of a Hyperbolic Tangent Nanofluid in a Tapered Asymmetric Channel.

    Science.gov (United States)

    Kothandapani, Munirathinam; Prakash, Jayavel

    2014-10-31

    In the present analytic thinking, we have modeled the governing equations of a two dimensional peristaltic transport of a Hyperbolic tangent nanofluid in the presence of a heat source/sink with the combined effects of thermal radiation and inclined magnetic field in a tapered asymmetric channel. The propagation of waves on the non-uniform walls to have different amplitudes and phase but the same wave speed is produced the tapered asymmetric channel. The equations of dimensionless temperature and nanoparticle concentration are solved analytically under assumptions of long wavelength and low Reynolds number. The governing equations of momentum of a hyperbolic tangent nanofluid for the tapered asymmetric channel have also been solved analytically using the regular perturbation method. The expression for average rise in pressure has been figured using numerical integrations. The effects of various physical parameters entering into the problem are discussed numerically and graphically. The phenomenon of trapping is also investigated. Furthermore, the received results show that the maximum pressure rise gets increased in case of non-Newtonian fluid when equated with Newtonian fluid. PMID:25373110

  5. Effects of rotation and magnetic field on the nonlinear peristaltic flow of a second-order fluid in an asymmetric channel through a porous medium

    International Nuclear Information System (INIS)

    In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena

  6. Comparison of a pulsatile blood pump and a peristaltic roller pump during hemoperfusion treatment in a canine model of paraquat poisoning.

    Science.gov (United States)

    Lee, Jung Chan; Park, Chan Young; Choi, Seong Wook; Kim, Jeong Chul; Lim, Ki Moo; Kim, Kyuseok; Jung, Sung Koo; Kwak, Young Ho; Shin, Sang Do; Jo, Ik Joon; Suh, Gil Joon; Min, Byoung Goo

    2008-07-01

    This study examined the treatment efficacy and the damage to the blood during hemoperfusion for treating paraquat poisoning using two blood pump mechanisms. Paraquat-poisoned animal models were prepared. A conventional hemodialysis machine, AK90, with a peristaltic roller pump and a cardiopulmonary support system, T-PLS, with a pulsatile blood pump were used during the animal experiments. A total of 12 dogs were treated with hemoperfusion using a charcoal column. Six dogs were treated with hemoperfusion and T-PLS, and the other six were treated with AK90. A paraquat dose of 30 mg/kg was administrated by an intravenous injection. Both pumps maintained blood flow rates of 125 mL/min measured by an ultrasonic flowmeter. For anticoagulation, heparin was administrated by an initial bolus (250 IU/kg) and a continuous injection (100 IU/kg/h). During the experiments, T-PLS and AK90 showed a similar toxin removal efficacy. Both devices decreased the plasma paraquat concentration to 10% of the initial dose within 4-h hemoperfusion. The two pumps showed similar hemolysis properties with acceptable levels. Although T-PLS was developed as a cardiopulmonary bypass system, it can also be used as a hemoperfusion treatment device. PMID:18638308

  7. Improvements in the technique of vascular perfusion-fixation employing a fluorocarbon-containing perfusate and a peristaltic pump controlled by pressure feedback

    DEFF Research Database (Denmark)

    Rostgaard, J; Qvortrup, K; Poulsen, Steen Seier

    1993-01-01

    elements. By adding oxygenated fluorocarbon to glutaraldehyde perfusate-fixatives, enough oxygen is made accessible for cellular respiration as well as for the oxygen-consuming chemical reactions of glutaraldehyde with the tissue. Data on anaesthesia, operative manoeuvres, mechanical components of the......A new improved technique for whole-body perfusion-fixation of rats and other small animals is described. The driving force is a peristaltic pump which is feedback regulated by a pressure transducer that monitors the blood-perfusion pressure in the left ventricle of the heart. The primary perfusate-fixative...... is composed of a blood substitute--13.3% oxygenated fluorocarbon FC-75--in 0.05 M cacodylate buffer (pH 7.4) with a 2% glutaraldehyde. The secondary perfusate-fixative is composed of 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.4) with 20 mM CaCl2. A double-barrelled, self-holding cannula is...

  8. Cineradiography of the liquid bolus swallow. A study of the speed ot the bolus and peristaltic wave and of movement of the hyoid bone, larynx, and epiglottis

    International Nuclear Information System (INIS)

    In the evaluation of the dysphagic patient, radiology is crucial as a technique for monitoring morphology and function. In particular, high-speed cineradiography can reveal a variety of pharyngeal dysfunctions. However, in the literature and in practice the difference between normal and abnormal function is not always clear. This monography is based on high-speed cineradiographies of swallowing in 75 non-dysphagic volunteers and in 189 dysphagic patients. The purpose was to study whether differences in bolus volumes, patient position, age and gender had any effects on the following parameters: the speed of the peristaltic wave and apex of the liquid barium bolus, the length of movement and the movement pattern of the hyoid bone and larynx, and epiglottic function. The study disclosed that the speed of the bolus, the anterior-superior movement and net movement of the hyoid bone increased significantly with larger bolus volumes. The position of the individual in relation to gravity significantly influenced the speed of peristalsis. In most of the measured parameters there were no differences between non-dysphagic and dysphagic individuals expect for differences in the intrapersonal variations and in the anterior-superior movement of the hyoid bone. In patients with pharyngeal dysfunction the initial stage of the elevation of the larynx was significantly lower than in patients without dysfunction. The approximation of the thyroid cartilage to the hyoid bone was significantly greater in individuals with normal epiglottic function than in those with epiglottic dysmobility. It is suggested that abnormal speed of peristalsis may be a mild form of dysfunction. Measurements of the aforementioned speed and movements can be done if bolus volume, age and position of the patient, film speed and magnifications factors are known. Hypotheses concerning epiglottic function and central control of swallowing are proposed. (au)

  9. 流变学流体的蠕动传输:食道中食物块的运动模型%Peristaltic Transport of a Rheological Fluid:Model for Movement of Food Bolus Through Esophagus

    Institute of Scientific and Technical Information of China (English)

    J·C·密斯拉; S·麦蒂; 海治

    2012-01-01

    研究食道中蠕动传输的流体力学.对任意的波形和任意的管道长度,建立起流变学流体蠕动传输的数学模型.用粘性流体的Ostwald-de Waele幂定律,描述非Newton流体的流动特性.解析公式化模型,详细且精确地给出食物块在食道中蠕动传输相关的一些重要性质.分析中应用了润滑理论,本研究特别适合于Reynolds数不大的情况.将食道看作环形的管道,通过食道壁周期性的收缩来传输食物块.就单个波和周期性收缩一组波的传播,研究与传输过程有关变量的变化,如压力、流速、食物颗粒轨迹以及流量等.局部压力的变化,对流变指数n有着高度的敏感性.研究结果清晰地表明,食物块在食道中蠕动传输时,Newton流体或流变学流体构成的连续流体,以组合波传播比大间隔单波传播,传输效率要高得多.%Fluid mechanical peristaltic transport through esophagus had been of concern. A mathematical model had been developed with an aim to study the peristaltic transport of a rheo-logical fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid was considered here to depict the non-Newtonian behaviour of the fluid. The model was formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bolus through the esophagus. The analysis had been carried out by using lubrication theory. The study was particularly suitable for cases where the Reynolds number was small. The esophagus was treated as a circular tube through which the transport of food bolus takes places by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocity, particle trajectory and reflux were investigated for a single wave as well as for a train of periodic peristaltic waves. Locally variable pressure was seen to be highly sensitive to the flow index n

  10. A flexoelectric microelectromechanical system on silicon.

    Science.gov (United States)

    Bhaskar, Umesh Kumar; Banerjee, Nirupam; Abdollahi, Amir; Wang, Zhe; Schlom, Darrell G; Rijnders, Guus; Catalan, Gustau

    2016-03-01

    Flexoelectricity allows a dielectric material to polarize in response to a mechanical bending moment and, conversely, to bend in response to an electric field. Compared with piezoelectricity, flexoelectricity is a weak effect of little practical significance in bulk materials. However, the roles can be reversed at the nanoscale. Here, we demonstrate that flexoelectricity is a viable route to lead-free microelectromechanical and nanoelectromechanical systems. Specifically, we have fabricated a silicon-compatible thin-film cantilever actuator with a single flexoelectrically active layer of strontium titanate with a figure of merit (curvature divided by electric field) of 3.33 MV(-1), comparable to that of state-of-the-art piezoelectric bimorph cantilevers. PMID:26571008

  11. 微极流体蠕动泵经由滑移边界管道输送的Stokes流动%Study on Stokes Flow of Micro-Polar Fluids by Peristaltic Pumping Through a Tube With Slip Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    D·特里帕蒂; M·K·乔伯; P·K·古泊塔; 吴承平

    2011-01-01

    The Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of slip boundary condition was studied. The motion of wall was governed by the sinusoidal wave equation. Analytical and numerical solutions for axial velocity, micro-polar vector, stream function, pressure gradient, friction force and mechanical efficiency were obtained by using the lubrication theory. The impacts of emerging parameters such as coupling number, micro-polar parameter and slip parameter on pumping characteristic, friction force and trapping phenomena were depicted graphically. Numerical computation infers that more pressure requires for peristaltic pumping when coupling number is large while opposite behavior is found for micro-polar parameter and the slip parameter. The size of trapped bolus reduces with coupling number and micro-polar parameter whereas it blows up with slip parameter.%计及管道边界条件滑移的影响,研究微极流体蠕动泵,经由圆柱形管道输运的Stokes流动.壁面运动的控制方程为正弦波方程.使用润滑理论,得到了轴向速度、微转动向量、流函数、压力梯度、摩擦力和机械效率的解析数值解.用图形表示出构成参数,如像耦合参数、微极参数和表征蠕流泵特性的滑移参数、摩擦力和俘获现象的影响.数值计算表明,当耦合参数较大时,需要蠕动泵的压力更大,而微极参数和滑移参数正相反.俘获团块的大小随耦合参数和微极参数的减小而缩小,而随滑移参数的增大而缩小.

  12. Application of RAGAZZINI Peristaltic Pump in the Production of New-process Mixiang Baijiu(Liquor)%RAGAZZINI蠕动泵在新工艺米香型白酒生产中的应用

    Institute of Scientific and Technical Information of China (English)

    朱旭平

    2015-01-01

    New-process Mixiang Baijiu(liquor) is the innovative program in Changle Distillery which won the 2nd Prize of Guangdong Light Industry Science and Technology and State Light Industry Science&Technology Excellent Prize. The difference between new-process produc-tion and traditional production were as follows:in the new process (raw materials in liquid&solid separation loose state), water was added di-rectly in cooked raw materials, then caky starter was added for saccharfication and fermentation in the same fermenter;in traditional process (raw materials in gelatinized state), cooked raw materials were saccharified in saccharifying tank at first, then water was added for fermentation in the fermenter. The use of new-process often induced pipe obstruction because the commonly-used pneumatic drive membrane pump drained liquid during the transportation of liquid&solid separation loose raw materials. Changle Distillery used peristaltic pump to settle such prob-lem, which could achieve continuous production and completely solve pipeline blocking from steam machine to fermenter.%新工艺米香型白酒生产线属长乐烧企业的创新项目,该项目获广东轻工科技二等奖、获国家轻工科技优秀奖。新工艺与传统工艺最大的区别在于,前者是将熟化后的原料直接加水、加曲输入发酵罐糖化、发酵同罐进行,后者是先将熟化的原料在糖化槽中糖化后加水再输入发酵罐。前者物料为液固松散分离状态,后者为糊化状态,因此常用的气动隔膜泵输送液固松散分离状态物料时就常常将液体抽走,造成管道阻塞。长乐烧酒业在新工艺生产线上利用蠕动泵实现了将熟化原料加水混合物料轻松输入发酵罐的目标,解决了管道阻塞问题,达到了连续生产目的,彻底改变了蒸饭机至发酵罐间物料自动输送的难题。

  13. Rotary Peristaltic Micro-Pump Based on the Nano-Magnetic Fluid%基于纳米磁性液体的旋转式蠕动微泵

    Institute of Scientific and Technical Information of China (English)

    吴健; 刘同冈; 张亮

    2013-01-01

    A rotary peristaltic micro-pump based on the nano-magnetic fluid was designed,which was composed of an upper substrate,a lower substrate and an elastic film positioned between the two substrates.A micro-channel was machined on each substrate,the magnetic fluid in the upper micro-channel was gathered by a permanent magnet to deform the elastic film in order to push the sample liquid in the lower micro-channel.Both micro-channels were designed with the ring structure to pump the liquid continuously.The operational result indicates that the flow rate and output pressure are the combination result of the positive pressure generated by the gradient magnetic field and the driving force produced by the moving magnetic field.When the rotational speed of the magnetic field is 6 r/min,the maximum output pressure and flow rate of the micro-pump are 1 600 Pa and 1.8 mL/min,respectively.%设计了一种基于纳米磁性液体的旋转式蠕动微泵.泵体由上、下基板和弹性薄膜组成,弹性薄膜位于上、下基板的中间位置.在上、下基板上分别加工出微型管道,上管道中的纳米磁性液体在磁场作用下压迫弹性薄膜变形,从而推动下管道中的液体流动,并且采用环形结构,实现连续泵送的目的.运行结果显示:泵送流量和泵送压力是梯度磁场产生的正压力与移动磁场产生的驱动力共同作用的结果.当磁场旋转速度达到6 r/min时,微泵产生的最大泵送压力达1 600 Pa,此时的流量为1.8 mL/min.

  14. Application of RAGAZZINI Peristaltic Pump in the Production of New-process Mixiang Baijiu(Liquor)%RAGAZZINI蠕动泵在新工艺米香型白酒生产中的应用

    Institute of Scientific and Technical Information of China (English)

    朱旭平

    2015-01-01

    新工艺米香型白酒生产线属长乐烧企业的创新项目,该项目获广东轻工科技二等奖、获国家轻工科技优秀奖。新工艺与传统工艺最大的区别在于,前者是将熟化后的原料直接加水、加曲输入发酵罐糖化、发酵同罐进行,后者是先将熟化的原料在糖化槽中糖化后加水再输入发酵罐。前者物料为液固松散分离状态,后者为糊化状态,因此常用的气动隔膜泵输送液固松散分离状态物料时就常常将液体抽走,造成管道阻塞。长乐烧酒业在新工艺生产线上利用蠕动泵实现了将熟化原料加水混合物料轻松输入发酵罐的目标,解决了管道阻塞问题,达到了连续生产目的,彻底改变了蒸饭机至发酵罐间物料自动输送的难题。%New-process Mixiang Baijiu(liquor) is the innovative program in Changle Distillery which won the 2nd Prize of Guangdong Light Industry Science and Technology and State Light Industry Science&Technology Excellent Prize. The difference between new-process produc-tion and traditional production were as follows:in the new process (raw materials in liquid&solid separation loose state), water was added di-rectly in cooked raw materials, then caky starter was added for saccharfication and fermentation in the same fermenter;in traditional process (raw materials in gelatinized state), cooked raw materials were saccharified in saccharifying tank at first, then water was added for fermentation in the fermenter. The use of new-process often induced pipe obstruction because the commonly-used pneumatic drive membrane pump drained liquid during the transportation of liquid&solid separation loose raw materials. Changle Distillery used peristaltic pump to settle such prob-lem, which could achieve continuous production and completely solve pipeline blocking from steam machine to fermenter.

  15. Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester

    Science.gov (United States)

    Pozzi, Michele

    2016-04-01

    A compact and low-profile energy harvester designed to be worn on the outside of the knee-joint is presented. Frequency up-conversion has been widely adopted in recent times to exploit the high frequency response of piezoelectric transducers within environments where only low frequencies are present. Contactless magnetic plucking is here introduced, in a variable reluctance framework, with the aim of improving the mechanical energy transfer into the transducers, which is sub-optimal with contact plucking. FEA and experiments were used to design an optimal arrangement of ferromagnetic teeth to interact with the magnets fixed to the piezoelectric beams. A prototype was made and extensively tested in a knee-joint simulator controlled with gait data available in the literature. Energy and power produced were measured for walking and running steps. A power management unit was developed using off-the-shelf components, permitting the generation of a stable and regulated supply of 26 mW at 3.3 V during walking. Record levels of rectified (unregulated) electrical power of over 50 and 70 mW per walking and running steps, respectively, were measured.

  16. Single Crystal Bimorph Array Driven Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) Phase I project will research a novel deformable mirror design for NASA adaptive optics telescope applications . The...

  17. Single Crystal Bimorph Array (SCBA) Driven Deformable Mirror (DM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) Phase II project will research a novel deformable mirror design for NASA adaptive optics telescope applications. The...

  18. Analytical solutions to flexural vibration of slender piezoelectric multilayer cantilevers

    International Nuclear Information System (INIS)

    The modeling of vibration of piezoelectric cantilevers has often been based on passive cantilevers of a homogeneous material. Although piezoelectric cantilevers and passive cantilevers share certain characteristics, this method has caused confusion in incorporating the piezoelectric moment into the differential equation of motion. The extended Hamilton’s principle is a fundamental approach to modeling flexural vibration of multilayer piezoelectric cantilevers. Previous works demonstrated derivation of the differential equation of motion using this approach; however, proper analytical solutions were not reported. This was partly due to the fact that the differential equation derived by the extended Hamilton’s principle is a boundary-value problem with nonhomogeneous boundary conditions which cannot be solved by modal analysis. In the present study, an analytical solution to the boundary-value problem was obtained by transforming it into a new problem with homogeneous boundary conditions. After the transformation, modal analysis was used to solve the new boundary-value problem. The analytical solutions for unimorphs and bimorphs were verified with three-dimensional finite element analysis (FEA). Deflection profiles and frequency response functions under voltage, uniform pressure and tip force were compared. Discrepancies between the analytical results and FEA results were within 3.5%. Following model validation, parametric studies were conducted to investigate the effects of thickness of electrodes and piezoelectric layers, and the piezoelectric coupling coefficient d 31 on the performance of piezoelectric cantilever actuators. (paper)

  19. Fabrication of a peristaltic micro pump with novel cascaded actuators

    International Nuclear Information System (INIS)

    This paper presents the fabrication of an all-PDMS (polydimethylsiloxane) micro pump with novel cascaded actuators as dynamic valves. The micro pump consists of three pneumatic actuators in series and a micro fluidic channel connecting two fluidic inlet and outlet ports. The three-layer bonded pump structure is fabricated through a typical moulding process of PDMS and a simple heating process for the PDMS-to-PDMS bonding. The total size of the micro pump is 5 mm × 5 mm. The dynamic valve pattern of the single actuator is observed under various operational conditions of the square-wave input signal for the estimation of its volume stroke. The maximum volume stroke of the pneumatic actuator for liquid is about 85% of the volume of the liquid chamber. Three types of liquid-pumping tests are performed for characterization of the micro pump such as backpressure, frequency and viscous liquids. The flow rate of the de-ionized (DI) water is about 73.9 nl min−1 at zero backpressure. As the hydraulic difference between inlet and outlet ports increases, the flow rate gradually decreases. In the case of the frequency responses, the micro pump has the maximum flow rate of the DI water at 2 Hz. The viscosity-dependent flow rate of the working fluids is also observed

  20. Evaluation of peristaltic micromixers for highly integrated microfluidic systems

    Science.gov (United States)

    Kim, Duckjong; Rho, Hoon Suk; Jambovane, Sachin; Shin, Soojeong; Hong, Jong Wook

    2016-03-01

    Microfluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop. We found that the rectangular mixer is best for the applications of highly integrated microfluidic platforms in terms of the mixing performance and the space utilization. This study provides an improved understanding of the flow behaviors inside micromixers and design guidelines for micromixers that are critical to build higher order fluidic systems for the complicated parallel bio/chemical processes on a chip.

  1. Esophageal contractions in type 3 achalasia esophagus: simultaneous or peristaltic?

    Science.gov (United States)

    Kim, Tae Ho; Patel, Nirali; Ledgerwood-Lee, Melissa; Mittal, Ravinder K

    2016-05-01

    Absence of peristalsis and impaired relaxation of lower esophageal sphincter are the hallmarks of achalasia esophagus. Based on the pressurization patterns, achalasia has been subdivided into three subtypes. The goal of our study was to evaluate the esophageal contraction pattern and bolus clearance in type 3 achalasia esophagus. High-resolution manometry (HRM) recordings of all patients diagnosed with achalasia esophagus in our center between the years 2011 and 2013 were reviewed. Recordings of 36 patients with type 3 achalasia were analyzed for the characteristics of swallow-induced "simultaneous esophageal contraction." The HRM impedance recordings of 14 additional patients with type 3 achalasia were analyzed for bolus clearance from the impedance recording. Finally, the HRM impedance along with intraluminal ultrasound imaging was conducted in six patients to further characterize the simultaneous esophageal contractions. Among 187 achalasia patients, 30 were type 1, 121 type 2, and 36 type 3. A total of 434 swallows evaluated in type 3 achalasia patients revealed that 95% of the swallow-induced contractions met criteria for simultaneous esophageal contraction, based on the onset of contraction. Interestingly, the peak and termination of the majority of simultaneous esophageal contractions were sequential. The HRM impedance revealed that 94% of the "simultaneous contractions" were associated with complete bolus clearance. Ultrasound image analysis revealed that baseline muscle thickness of patients in type 3 achalasia is larger than normal but the pattern of axial shortening is similar to that in normal subjects. The majority of esophageal contractions in type 3 achalasia are not true simultaneous contractions because the peak and termination of contraction are sequential and they are associated with complete bolus clearance. PMID:26950858

  2. Evaluation of peristaltic micromixers for highly integrated microfluidic systems.

    Science.gov (United States)

    Kim, Duckjong; Rho, Hoon Suk; Jambovane, Sachin; Shin, Soojeong; Hong, Jong Wook

    2016-03-01

    Microfluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop. We found that the rectangular mixer is best for the applications of highly integrated microfluidic platforms in terms of the mixing performance and the space utilization. This study provides an improved understanding of the flow behaviors inside micromixers and design guidelines for micromixers that are critical to build higher order fluidic systems for the complicated parallel bio/chemical processes on a chip. PMID:27036809

  3. A peristaltic pump driven 89Zr separation module

    DEFF Research Database (Denmark)

    Siikanen, J.; Peterson, M.; Tran, T.;

    2012-01-01

    To facilitate the separation of 89Zr produced in yttrium foils, an automated separation module was designed and assembled. The module separates more than 85% of produced 89Zr - activity in 3 g foils in less than 90 min. About 10 % remains in the dissolving vial. The quality of the separated 89Zr...

  4. Vibration energy harvesting in railway tunnels with a wireless sensor node application

    Energy Technology Data Exchange (ETDEWEB)

    Wischke, Martin

    2012-07-01

    Vibration harvesting is a promising concept to prolong the lifetime of batterypowered stand-alone systems, or even to enable their energy-autonomy. This thesis focuses on ambient vibrations converted by electromechanical transducers into electricity. The final goal is energy scavenging from train-induced vibrations in railway tunnels. This is achieved via the development of a suitable harvester for this environment and the practical demonstration of a vibrationpowered wireless sensor node (WSN). At the beginning of this thesis, extensive vibration measurements were performed in several traffic tunnels. The obtained unique data set formed the basis for the design and test of several harvesters. The railway sleeper was chosen as usable harvester location. A shock-resistant double-side suspended piezoelectric cantilever was developed. Several cantilevers with different eigenfrequencies are combined in an array, creating a robust harvester with a broad bandwidth. A field test of 7 days in the Loetschbergbasis-tunnel verified that, on average the sufficient energy for powering a virtual wireless sensor node was scavenged. For application in a real WSN, the harvester array was scaled up to 10 cantilevers. The power management for the sensor node was developed concurrently. The central component is a power switch that monitors the energy level in the system's storage capacitor and only triggers the wireless interface when sufficient energy is available. Combined with a train detection circuit, the presented energy-autonomous WSN reliably reports every passing vehicle. In addition to the development of an energy-autonomous fully integrated WSN, this work investigates nonlinear properties of PZT ceramics. Consideration of the elastostriction and the electrostriction enables a more precises prediction of the tip displacement of a piezoelectric cantilever actuator. Further, the elastostriction is exploited to modify the resonance frequency of a bimorph cantilever. Basing

  5. Implementation of an Algorithm for the Locomotion of Quadruped Robot with Bimorph Insect Leg.

    Directory of Open Access Journals (Sweden)

    Gabriel Duarte Gonçalves Pedro

    2015-05-01

    Full Text Available In the last decades the rising of higher processing power computers, together with more sophisticated robot actuators gave an impulse to the field of autonomous robots in robotics. The need to explore dirty, dangerous and difficult terrains is a suitable task for a robot, sparing a human from hazards of the environment. Even though wheeled robots have been used in great scale for explorations, its configuration has the downside of obstacle impediment and depending on the terrain its wheels can get stuck. The legged robot presents more versatility allowing him to surpass such obstacles in some cases. This article presents the continuation of the development of an quadruped robot with biomorphic insect leg.

  6. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian; Hansen, K.; Guizzetti, M.; Birkelund, Karen; Thomsen, Erik Vilain; Hansen, Ole

    2012-01-01

    elements. We show experimental results from two types PZT/PZT harvesting devices, one where the Pb(ZrxTi1−x)O3 (PZT) thick films are high pressure treated during the fabrication and the other where the treatment is omitted. We find that with the high pressure treatment prior to PZT sintering, the films...

  7. Calibration of a curvature sensor/bimorph mirror AO system: interaction matrix measurement on MACAO systems

    Science.gov (United States)

    Oberti, Sylvain; Bonnet, Henri; Fedrigo, Enrico; Ivanescu, Liviu; Kasper, Markus E.; Paufique, Jerome

    2004-10-01

    The accurate calibration of an AO system is fundamental in order to reach the top performance expected from design. To improve this aspect, we propose procedures for calibrating a curvature AO system in view of optimizing performances and robustness, based on the experience accumulated by the ESO AO team through the development of MACAO systems for VLTI and SINFONI. The approach maximizes the quality of the Interaction Matrix (IM) while maintaining the system in its linear regime and minimizing noise and bias on the measurement.

  8. Interdomain region in single-crystal lithium niobate bimorph actuators produced by light annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kubasov, I. V., E-mail: kubasov.ilya@gmail.com; Timshina, M. S.; Kiselev, D. A.; Malinkovich, M. D.; Bykov, A. S.; Parkhomenko, Yu. N. [National University of Science and Technology “MISiS” (Russian Federation)

    2015-09-15

    The interdomain region of a bidomain strucrture formed in 127°-cut lithium niobate single crystals using light annealing has been studied by optical and scanning probe microscopies. A periodic subdomain structure on the 180° macrodomain wall is visualized by piezoresponse force microscopy. The piezoresponse signal (polarization) is shown to be a power-law function of the domain width with an exponent n = 0.53.

  9. MHD peristaltic motion of Johnson-Segalman fluid in a channel with compliant walls

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)], E-mail: t_pensy@hotmail.com; Javed, Maryiam [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Asghar, S. [Department of Mathematical Sciences, COMSATS Institute of Information Technology, H-8, Islamabad (Pakistan)

    2008-07-21

    A mathematical model for magnetohydrodynamic (MHD) flow of a Johnson-Segalman fluid in a channel with compliant walls is analyzed. The flow is engendered due to sinusoidal waves on the channel walls. A series solution is developed for the case in which the amplitude ratio is small. Our computations show that the mean axial velocity of a Johnson-Segalman fluid is smaller than that of a viscous fluid. The variations of various interesting dimensionless parameters are graphed and discussed.

  10. Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; S.Hina; Awatif A.Hendi

    2011-01-01

    @@ The effects of wall properties and heat and mass transfer on the peristalsis in a power-law fluid are investigated.The solutions for the stream function, temperature, concentration and heat transfer coefficient are obtained.The axial velocity, temperature and mass concentration are studied for different emerging parameters.

  11. Peristaltic motion of a Johnson-Segalman fluid in a planar channel

    Directory of Open Access Journals (Sweden)

    Hayat T.

    2003-01-01

    Full Text Available This paper is devoted to the study of the two-dimensional flow of a Johnson-Segalman fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength. Both analytical and numerical solutions are presented. The analysis for the analytical solution is carried out for small Weissenberg numbers. (A Weissenberg number is the ratio of the relaxation time of the fluid to a characteristic time associated with the flow. Analytical solutions have been obtained for the stream function from which the relations of the velocity and the longitudinal pressure gradient have been derived. The expression of the pressure rise over a wavelength has also been determined. Numerical computations are performed and compared to the perturbation analysis. Several limiting situations with their implications can be examined from the presented analysis.

  12. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Sabourin, David; Dufva, Martin;

    2009-01-01

    flow. Both use a monolithic PDMS pumping inlay featuring three-dimensional geometries favourable to pumping applications and 12 wholly integrated circular channels. Flow rates in the sub-µL min-1 to µL min-1 range were obtained. Channel-to-channel flow rate variability was comparable to a commercial...

  13. A handy-motion driven, frequency up-converted hybrid vibration energy harvester using PZT bimorph and nonmagnetic ball

    Science.gov (United States)

    Halim, M. A.; Cho, H. O.; Park, J. Y.

    2014-11-01

    We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm-3 peak power density.

  14. A handy-motion driven, frequency up-converted hybrid vibration energy harvester using PZT bimorph and nonmagnetic ball

    International Nuclear Information System (INIS)

    We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm−3 peak power density

  15. Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2008-11-01

    Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.

  16. Effect of subcutaneous butylscopolamine administration in the reduction of peristaltic artifacts in 1.5-T MR fast abdominal examinations

    International Nuclear Information System (INIS)

    In abdominal MR imaging, ghost artifacts from noncyclic bowel movements can reduce the quality of the images. Although pharmacologic suppression of motion is effective, no study has being conducted to analyze the influence of drug motion suppression on fast breath-hold 1.5-T examinations of the upper abdomen. A prospective, randomized, double-blind trial was conducted in 50 patients. Patients were randomly distributed into two groups: The control group received only an oral solution, whereas the other group received the oral solution plus a subcutaneous injection of 20 mg of butylscopolamine 10 min before the MR examination. Breath-hold T1-weighted gradient-recalled-echo (GRE) MR images were obtained in a 1.5-T superconductive unit. Quantitative image analysis was performed with region-of-interest (ROI) measurements of the signal intensity of the liver and in background air anterior and lateral to the patient. A qualitative analysis of the subjective quality of the T1-weighted images was also done, and the adverse reactions were registered. The groups were homogeneous regarding age, gender, and weight distribution. No significant differences in the signal intensity of the liver and in the incoherent noise measurements were found between the two groups. Gastrointestinal noise showed significant differences between groups, with lower values for the butylscopolamine group compared with the control group. There was also a statistically significant difference in the image quality between groups, and optimal studies were only found in the butylscopolamine group, where most patients had a good-quality evaluation. Regarding adverse events, there were non-significant differences between groups. In conclusion, administration of an antiperistaltic agent to reduce the movements of the gastrointestinal tract diminishes the motion artifacts generated on MR imaging of the abdomen, even at high field strength and with fast imaging sequences. Images of the upper abdomen obtained after pharmacologic suppression of the gastrointestinal movement are of significantly superior quality. (orig.)

  17. Effect of subcutaneous butylscopolamine administration in the reduction of peristaltic artifacts in 1.5-T MR fast abdominal examinations

    Energy Technology Data Exchange (ETDEWEB)

    Dosda, Rosa; Marti-Bonmati, Luis; Molla, Enrique; Arana, Estanislao [Department of Radiology, Clinica Quiron, Avda. Blasco Ibanez, 14, 46017 Valencia (Spain); Ronchera-Oms, Crisanto L. [Pharmacy University College, Fundacion Universitaria San Pablo CEU, Moncada, 46017 Valencia (Spain)

    2003-02-01

    In abdominal MR imaging, ghost artifacts from noncyclic bowel movements can reduce the quality of the images. Although pharmacologic suppression of motion is effective, no study has being conducted to analyze the influence of drug motion suppression on fast breath-hold 1.5-T examinations of the upper abdomen. A prospective, randomized, double-blind trial was conducted in 50 patients. Patients were randomly distributed into two groups: The control group received only an oral solution, whereas the other group received the oral solution plus a subcutaneous injection of 20 mg of butylscopolamine 10 min before the MR examination. Breath-hold T1-weighted gradient-recalled-echo (GRE) MR images were obtained in a 1.5-T superconductive unit. Quantitative image analysis was performed with region-of-interest (ROI) measurements of the signal intensity of the liver and in background air anterior and lateral to the patient. A qualitative analysis of the subjective quality of the T1-weighted images was also done, and the adverse reactions were registered. The groups were homogeneous regarding age, gender, and weight distribution. No significant differences in the signal intensity of the liver and in the incoherent noise measurements were found between the two groups. Gastrointestinal noise showed significant differences between groups, with lower values for the butylscopolamine group compared with the control group. There was also a statistically significant difference in the image quality between groups, and optimal studies were only found in the butylscopolamine group, where most patients had a good-quality evaluation. Regarding adverse events, there were non-significant differences between groups. In conclusion, administration of an antiperistaltic agent to reduce the movements of the gastrointestinal tract diminishes the motion artifacts generated on MR imaging of the abdomen, even at high field strength and with fast imaging sequences. Images of the upper abdomen obtained after pharmacologic suppression of the gastrointestinal movement are of significantly superior quality. (orig.)

  18. Numerical analysis for peristaltic transport of Carreau-Yasuda fluid with variable thermal conductivity and convective conditions

    Institute of Scientific and Technical Information of China (English)

    F M Abbasi; T Hayat; B Ahmad

    2015-01-01

    Peristalsis of Carreau-Yasuda fluid is investigated. Analysis is carried out in the presence of velocity slip and convective boundary conditions. Thermal conductivity of the fluid is taken to be temperature dependent. Lubrication analysis is used in the formulation of the problem. Resulting nonlinear system of equations is solved numerically. Impact of embedded parameters on the quantities of interest is examined through graphs and tables. Comparison of the behavior of the Carreau-Yasuda, Carreau and Newtonian fluid models is presented. Results show that the heat transfer rate at the wall for the Carreau fluid model is large when compared with the Newtonian or the Carreau-Yasuda fluid model. Also the heat transfer rate at the wall decreases with increase in the velocity slip and variable thermal conductivity parameters. Further, an increase in the Biot number reduces the fluid temperature by a considerable amount.

  19. Modeling and optimal design of multilayer thermal cantilever microactuators

    Institute of Scientific and Technical Information of China (English)

    FU JianYu; CHEN DaPeng; YE TianChun; JIAO BinBin; OU Yi

    2009-01-01

    A model of curvature and tip deflection of multilayer thermal cantilever actuators is derived. The sim-plified expression received from the model avoids inverting complex matrices enhances understanding and makes it easier to optimize the structure parameters. Experiment is performed, the modeled andexperimental results demonstrate the validity of the model, and it also indicates that ~oung's module makes great contribution to the deflection; therefore, thin layers cannot be ignored arbitrarily.

  20. Peristaltic flow of a fluid in a porous channel: A study having relevance to flow of bile within ducts in a pathological state

    CERN Document Server

    Maiti, S; 10.1016/j.ijengsci.2011.05.006

    2011-01-01

    The paper deals with a theoretical study of the transport of a fluid in a channel, which takes place by the phenomenon of peristalsis. A mathematical analysis of the said problem has been presented. The analysis involves the application of a suitable perturbation technique. The velocity profile and the critical pressure for the occurrence of reflux are investigated with particular emphasis by using appropriate numerical methods. The effects of various parameters, such as Reynolds number, pressure gradient, porosity parameter, Darcy number, slip parameter, amplitude ratio and wave number on velocity and critical pressure for reflux are investigated in detail. The computed results are compared with a previous analytical work and an experimental investigation reported earlier in existing scientific literatures. The results of the present study are in conformity to both of them. The study has got some relevance to the physiological flow of bile in the common bile duct in a pathological state. It reveals that in t...

  1. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    Science.gov (United States)

    Graf, Neil J; Bowser, Michael T

    2013-10-01

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263

  2. Problems with cryogenic operation of piezoelectric bending elements

    Science.gov (United States)

    Duffield, C. L.; Moreland, John; Fickett, F. R.

    1986-05-01

    Piezoelectric bimorphs constructed from lead titanate-zirconate (PZT) ceramic bonded to a brass sheet have been tested at cryogenic temperatures to determine their suitability for use in a low-temperature micropositioner. Experimental data are presented on bimorph sensitivity (displacement per volt) as a function of the number of temperature cycles. Results indicate that bimorphs of this type cannot be calibrated because of irreversible changes in the bending characteristics that occur while cycling from room temperature to 4 K.

  3. A batch-fabricated laser-micromachined PDMS actuator with stamped carbon grease electrodes

    International Nuclear Information System (INIS)

    In this note, we report on the development of a batch-fabricated laser-micromachined elastomeric cantilever actuator composed of a polydimethylsiloxane (PDMS) bilayer (active/inactive) and soft-lithographically patterned conductive carbon grease electrodes. The described unimorph structure has a low actuation voltage and large out-of-plane displacement. For a 4 mm long, 1 mm wide, and 80 µm thick actuator, an out-of-plane displacement of 1.2 mm and a maximum force of 25 µN were measured using 450 V actuation voltage. (technical note)

  4. Lorentz force actuation of a heated atomic force microscope cantilever

    International Nuclear Information System (INIS)

    We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift. (paper)

  5. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    Science.gov (United States)

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-06-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.

  6. Variable waveband infrared imager

    Science.gov (United States)

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  7. 不对称柔性壁管道内幂律流体蠕动传输的精确解%Exact Solution for Peristaltic Transport of Power-Law Fluid in an Asymmetric Channel With Compliant Walls

    Institute of Scientific and Technical Information of China (English)

    T·哈亚特; M·贾佛德1; 黄绍红

    2010-01-01

    在不对称管道内,研究了壁面柔曲性对非Newton流体蠕动流的影响.流变学性质由幂律流体本构方程表征.在数学表达中,采用了长波和低Reynolds数近似.得到了流函数和速度的精确解.给出了流线图及其俘获现象.对所讨论的流动,陈列了关键参数的显著特征,并最后给出了主要结论.

  8. Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems

    Directory of Open Access Journals (Sweden)

    José Carlos Durán Hernández

    2016-05-01

    Full Text Available This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs based on Piezoelectric Actuators (PEA. Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise positioning applications (e.g., micro-positioning and micro-manipulation, whereas within the Unmanned Aerial Vehicles (UAVs domain, motors are the classical actuators used for rotary or fixed-wing configurations. Therefore, we consider it pertinent to provide essential information regarding the modeling and control of piezoelectric cantilever actuators to accelerate early design and development stages of aerial microrobots based on flapping-wing systems. In addition, the equations describing the aerodynamic behavior of a flapping-wing configuration are presented.

  9. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    Energy Technology Data Exchange (ETDEWEB)

    Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R. [Centre de Développement des Technologies Avancées (CDTA). BP n°17 Baba Hassen, Alger (Algeria)

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  10. Vývoj velkoprůměrové kompozitní adaptivní optiky

    Czech Academy of Sciences Publication Activity Database

    Kmetík, Viliam; Vítovec, Bohumil; Jiran, L.; Němcová, Š.; Zicha, J.; Inneman, A.; Mikuličková, L.; Pavlica, R.

    2014-01-01

    Roč. 59, 11-12 (2014), s. 303-307. ISSN 0447-6441 Institutional support: RVO:61389021 Keywords : Large aperture, adaptive optics * adaptive optics * deformable mirror * bimorph deformable mirror * composite optics Subject RIV: BH - Optics, Masers, Lasers

  11. Figure Control of Lightweight Optical Structures

    Science.gov (United States)

    Main, John A.; Song, Haiping

    2005-01-01

    The goal of this paper is to demonstrate the use of fuzzy logic controllers in modifying the figure of a piezoceramic bimorph mirror. Non-contact electron actuation technology is used to actively control a bimorph mirror comprised two PZT-5H wafers by varying the electron flux and electron voltages. Due to electron blooming generated by the electron flux, it is difficult to develop an accurate control model for the bimorph mirror through theoretical analysis alone. The non-contact shape control system with electron flux blooming can be approximately described with a heuristic model based on experimental data. Two fuzzy logic feedback controllers are developed to control the shape of the bimorph mirror according to heuristic fuzzy inference rules generated from previous experimental results. Validation of the proposed fuzzy logic controllers is also discussed.

  12. Small footprint knife gate microvalves for large flow control

    OpenAIRE

    Braun, Stefan; Haasl, Sjoerd; Sadoon, Samir; Ridgeway, A S; van der Wijngaart, Wouter; Stemme, Göran

    2005-01-01

    This paper introduces the first area-optimized micromachined knife gate microvalve. In comparison to recent microvalves the pressure-flow performance is increased using out-of-plane actuators and an out-of-plane orifice. Three different actuator-gate designs and their fabrication are described. The valve features integrated therinal silicon/aluminum bimorph actuators where the aluminum layer forins the resistive heater as well as the bimorph material. The characterization of the actuators and...

  13. Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking

    Science.gov (United States)

    Kuang, Yang; Yang, Zhihao; Zhu, Meiling

    2016-08-01

    Piezoelectric energy harvesting from human motion is challenging because of the low energy conversion efficiency at a low-frequency excitation. Previous studies by the present authors showed that mechanical plucking of a piezoelectric bimorph cantilever was able to provide frequency up-conversion from a few hertz to the resonance frequency of the cantilever, and that a piezoelectric knee-joint energy harvester (KEH) based on this mechanism was able to generate sufficient energy to power a wireless sensor node. However, the direct contact between the bimorph and the plectra leads to reduced longevity and considerable noise. To address these limitations, this paper introduces a magnetic plucking mechanism to replace the mechanical plucking in the KEH, where primary magnets (PM) actuated by knee-joint motion excite the bimorphs through a secondary magnet (SM) fixed on the bimorphs tip and so achieve frequency up-conversion. The key parameters of the new KEH that affect the energy output of a plucked bimorph were investigated. It was found that the bimorph plucked by a repulsive magnetic force produced a higher energy output than an attractive force. The energy output peaked at 32 PMs and increased with a decreasing gap between PM and SM as well as an increasing rotation speed of the PMs. Based on these investigations, a KEH with high energy output was prototyped, which featured 8 piezoelectric bimorphs plucked by 32 PMs through repulsive magnetic forces. The gap between PM and SM was set to 1.5 mm with a consideration on both the energy output and longevity of the bimorphs. When actuated by knee-joint motion of 0.9 Hz, the KEH produced an average power output of 5.8 mW with a life time >7.3 h (about 3.8 × 105 plucking excitations).

  14. Deployable large aperture optics system for remote sensing applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sumali, Anton Hartono; Martin, Jeffrey W.; Main, John A. (University of Kentucky, Lexington, KY); Macke, Benjamin T.; Massad, Jordan Elias; Chaplya, Pavel Mikhail

    2004-04-01

    This report summarizes research into effects of electron gun control on piezoelectric polyvinylidene fluoride (PVDF) structures. The experimental apparatus specific to the electron gun control of this structure is detailed, and the equipment developed for the remote examination of the bimorph surface profile is outlined. Experiments conducted to determine the optimum electron beam characteristics for control are summarized. Clearer boundaries on the bimorphs control output capabilities were determined, as was the closed loop response. Further controllability analysis of the bimorph is outlined, and the results are examined. In this research, the bimorph response was tested through a matrix of control inputs of varying current, frequency, and amplitude. Experiments also studied the response to electron gun actuation of piezoelectric bimorph thin film covered with multiple spatial regions of control. Parameter ranges that yielded predictable control under certain circumstances were determined. Research has shown that electron gun control can be used to make macrocontrol and nanocontrol adjustments for PVDF structures. The control response and hysteresis are more linear for a small range of energy levels. Current levels needed for optimum control are established, and the generalized controllability of a PVDF bimorph structure is shown.

  15. Deployable large aperture optics system for remote sensing applications

    International Nuclear Information System (INIS)

    This report summarizes research into effects of electron gun control on piezoelectric polyvinylidene fluoride (PVDF) structures. The experimental apparatus specific to the electron gun control of this structure is detailed, and the equipment developed for the remote examination of the bimorph surface profile is outlined. Experiments conducted to determine the optimum electron beam characteristics for control are summarized. Clearer boundaries on the bimorphs control output capabilities were determined, as was the closed loop response. Further controllability analysis of the bimorph is outlined, and the results are examined. In this research, the bimorph response was tested through a matrix of control inputs of varying current, frequency, and amplitude. Experiments also studied the response to electron gun actuation of piezoelectric bimorph thin film covered with multiple spatial regions of control. Parameter ranges that yielded predictable control under certain circumstances were determined. Research has shown that electron gun control can be used to make macrocontrol and nanocontrol adjustments for PVDF structures. The control response and hysteresis are more linear for a small range of energy levels. Current levels needed for optimum control are established, and the generalized controllability of a PVDF bimorph structure is shown

  16. Piezoelectric Bimorphs’ Characteristics as In-Socket Sensors for Transfemoral Amputees

    Directory of Open Access Journals (Sweden)

    Amr M. El-Sayed

    2014-12-01

    Full Text Available Alternative sensory systems for the development of prosthetic knees are being increasingly highlighted nowadays, due to the rapid advancements in the field of lower limb prosthetics. This study presents the use of piezoelectric bimorphs as in-socket sensors for transfemoral amputees. An Instron machine was used in the calibration procedure and the corresponding output data were further analyzed to determine the static and dynamic characteristics of the piezoelectric bimorph. The piezoelectric bimorph showed appropriate static operating range, repeatability, hysteresis, and frequency response for application in lower prosthesis, with a force range of 0–100 N. To further validate this finding, an experiment was conducted with a single transfemoral amputee subject to measure the stump/socket pressure using the piezoelectric bimorph embedded inside the socket. The results showed that a maximum interface pressure of about 27 kPa occurred at the anterior proximal site compared to the anterior distal and posterior sites, consistent with values published in other studies. This paper highlighted the capacity of piezoelectric bimorphs to perform as in-socket sensors for transfemoral amputees. However, further experiments are recommended to be conducted with different amputees with different socket types.

  17. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures

    Science.gov (United States)

    Chandrasekharan, N.; Thompson, L. L.

    2016-04-01

    The limitations posed by batteries have compelled the need to investigate energy harvesting methods to power small electronic devices that require very low operational power. Vibration based energy harvesting methods with piezoelectric transduction in particular has been shown to possess potential towards energy harvesters replacing batteries. Current piezoelectric energy harvesters exhibit considerably lower power to weight ratio or specific power when compared to batteries the harvesters seek to replace. To attain the goal of battery-less self-sustainable device operation the power to weight ratio gap between piezoelectric energy harvesters and batteries need to be bridged. In this paper the potential of integrating lightweight honeycomb structures with existing piezoelectric device configurations (bimorph) towards achieving higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of conventional bimorph with honeycomb structures of the same material results in a significant increase in power to weight ratio of the piezoelectric harvester. At higher driving frequency ranges it is shown that unlike the traditional piezoelectric bimorph with solid continuous substrate, the honeycomb substrate bimorph can preserve optimum global design parameters through manipulation of honeycomb unit cell parameters. Increased operating lifetime and design flexibility of the honeycomb core piezoelectric bimorph is demonstrated as unit cell parameters of the honeycomb structures can be manipulated to alter mass and stiffness properties of the substrate, resulting in unit cell parameter significantly influencing power generation.

  18. Magnetic field sensor using a polymer-based vibrator

    Science.gov (United States)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1–570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T‑1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  19. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  20. A highly aromatic and sulfonated ionomer for high elastic modulus ionic polymer membrane micro-actuators

    International Nuclear Information System (INIS)

    A high modulus, sulfonated ionomer synthesized from 4,6-bis(4-hydroxyphenyl)-N,N-diphenyl-1,3,5-triazin-2-amine and 4,4′-biphenol with bis(4-fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake and consequently generates a high intrinsic strain response, which is >1.1% under 1.6 V while maintaining a high elastic modulus (i.e. 600 MPa for 65 vol% IL uptake). Moreover, such a high modulus of the active ionomer, originating from the highly aromatic backbone and side-chain-free structure, allows for the fabrication of free-standing thin film micro-actuators (down to 5 µm thickness) via the solution cast method and focused-ion-beam milling, which exhibits a much higher bending actuation, i.e. 43 µm tip displacement and 180 kPa blocking stress for a 200 µm long and 5 µm thick cantilever actuator, compared with the ionic actuators based on traditional ionomers such as Nafion, which has a much lower elastic modulus (50 MPa) and actuation strain. (paper)

  1. Biocompatible circuit-breaker chip for thermal management of biomedical microsystems

    International Nuclear Information System (INIS)

    This paper presents a thermoresponsive micro circuit breaker for biomedical applications specifically targeted at electronic intelligent implants. The circuit breaker is micromachined to have a shape-memory-alloy cantilever actuator as a normally closed temperature-sensitive switch to protect the device of interest from overheating, a critical safety feature for smart implants including those that are electrothermally driven with wireless micro heaters. The device is fabricated in a size of 1.5  ×  2.0  ×  0.46 mm3 using biocompatible materials and a chip-based titanium package, exhibiting a nominal cold-state resistance of 14 Ω. The breaker rapidly enters the full open condition when the chip temperature exceeds 63 °C, temporarily breaking the circuit of interest to lower its temperature until chip temperature drops to 51 °C, at which the breaker closes the circuit to allow current to flow through it again, physically limiting the maximum temperature of the circuit. This functionality is tested in combination with a wireless resonant heater powered by radio-frequency electromagnetic radiation, demonstrating self-regulation of heater temperature. The developed circuit-breaker chip operates in a fully passive manner that removes the need for active sensor and circuitry to achieve temperature regulation in a target device, contributing to the miniaturization of biomedical microsystems including electronic smart implants where thermal management is essential. (paper)

  2. Nonlinear analysis of RAINBOW actuator characteristics

    International Nuclear Information System (INIS)

    This paper discusses an investigation into deformations of rectangular RAINBOW actuators, which are classified as a type of laminated actuator. The actuators consist of a piezoelectric active layer and a reduced passive layer formed in an elevated temperature reduction process. An energy-based Rayleigh–Ritz model is used to approximate the thermally induced deformations with 23-term polynomials. Due to large out-of-plane displacements of the RAINBOW actuators after cooling down to room temperature, inclusion of geometric nonlinearities in the kinematic relations is taken into consideration. Actuation characteristics of these actuators caused by a quasi-static electric field applied to the piezoelectric layer are also modeled with the Rayleigh–Ritz approach. Material nonlinearities in the piezoelectric layer are included in the constitutive equation to capture the effects of a strong electric field. Piezoelectrically induced tip deflections of a series of RAINBOW cantilever actuators are calculated and compared with experiment. With the geometrical and material nonlinearities taken into account, numerical simulation reveals the computed tip deflections agree very well with the experimental data. In addition, tip blocking forces representing the load-carrying capability of the RAINBOW actuators are approximately evaluated by equating the magnitude of force-induced displacement to that of the piezoelectrically induced tip deflection. Again, good agreement between numerical results and experiment can be observed in the case of the tip blocking force. This evidently shows that the pertinent nonlinearities have very crucial effects on the responses and performances of the RAINBOW actuators

  3. Multifunctional atomic force microscope cantilevers with Lorentz force actuation and self-heating capability

    International Nuclear Information System (INIS)

    This paper reports the development of microcantilevers capable of self-heating and Lorentz-force actuation, and demonstrates applications to thermal topography imaging. Electrical current passing through a U-shaped cantilever in the presence of a magnetic field induces a Lorentz force on the cantilever free end, resulting in cantilever actuation. This same current flowing through a resistive heater induces a controllable temperature increase. We present cantilevers designed for large actuation forces for a given cantilever temperature increase. We analyze the designs of two new cantilevers, along with a legacy cantilever design. The cantilevers are designed to have a spring constant of about 1.5 N m−1, a resonant frequency near 100 kHz, and self-heating capability with temperature controllable over the range 25–600 °C. Compared to previous reports on self-heating cantilevers, the Lorentz–thermal cantilevers generate up to seven times as much Lorentz force and two times as much oscillation amplitude. When used for thermal topography imaging, the Lorentz–thermal cantilevers can measure topography with a vertical resolution of 0.2 nm. (paper)

  4. Multiscale optimization of saturated poroelastic actuators

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    A multiscale method for optimizing the material micro structure in a macroscopically heterogeneous saturated poroelastic media with respect to macro properties is presented. The method is based on topology optimization using the homogenization technique, here applied to the optimization of a bi......-morph saturated poroelastic actuator....

  5. Modeling and characterization of multilayered d 15 mode piezoelectric energy harvesters in series and parallel connections

    Science.gov (United States)

    Zhu, Y. K.; Yu, Y. G.; Li, L.; Jiang, T.; Wang, X. Y.; Zheng, X. J.

    2016-07-01

    A Timoshenko beam model combined with piezoelectric constitutive equations and an electrical model was proposed to describe the energy harvesting performances of multilayered d 15 mode PZT-51 piezoelectric bimorphs in series and parallel connections. The effect of different clamped conditions was considered for non-piezoelectric and piezoelectric layers in the theoretical model. The frequency dependences of output peak voltage and power at different load resistances and excitation voltages were studied theoretically, and the results were verified by finite element modeling (FEM) simulation and experimental measurements. Results show that the theoretical model considering different clamped conditions for non-piezoelectric and piezoelectric layers could make a reliable prediction for the energy harvesting performances of multilayered d 15 mode piezoelectric bimorphs. The multilayered d 15 mode piezoelectric bimorph in a series connection exhibits a higher output peak voltage and power than that of a parallel connection at a load resistance of 1 MΩ. A criterion for choosing a series or parallel connection for a multilayered d 15 mode piezoelectric bimorph is dependent on the comparison of applied load resistance with the critical resistance of about 55 kΩ. The proposed model may provide some useful guidelines for the design and performance optimization of d 15 mode piezoelectric energy harvesters.

  6. Verification of Beam Models for Ionic Polymer-Metal Composite Actuator

    Institute of Scientific and Technical Information of China (English)

    Ai-hong Ji; Hoon Cheol Park; Quoc Viet Nguyen; Jang Woo Lee; Young Tai Yoo

    2009-01-01

    Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages. A thick IPMC actuator, where Nation-117 membrane was synthesized with polypyrrole/alumina composite tiller, was analyzed to verify the equivalent beam and equivalent bimorph beam models. The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively. The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data. Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator. The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data. It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement, blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.

  7. Optimisation study of micro cantilevers for switching of photonic band gap crystals

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.; Berenschot, E.; Boer, de M.J.; Kauppinen, L.J.; Ridder, de R.M.; Krijnen, G.J.M.

    2009-01-01

    We propose to use electrostatically actuated micro bimorph cantilevers with tips for nanometric perturbations in the evanescent field of various resonators and photonic band gap crystals (PBG) using a self aligning technology. Since in PBG and in other high optical index contrast structures the inte

  8. Integrated self-aligned tips for dispersion tuning in a photonic crystal micro-cavity

    NARCIS (Netherlands)

    Abdulla, S.M.C.; Kauppinen, L.J.; Ridder, de R.M.; Krijnen, G.J.M.

    2011-01-01

    A micro-bimorph cantilever is monolithically integrated with a photonic crystal micro-cavity based device, using surface micro-machining techniques. The integrated cantilever is equipped with self-aligned dielectric tips with respect to the holes of the photonic crystal and on electrostatic actuatio

  9. Optimised Frequency Range of Active Joints for Nanometre Range Stroke

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.; Krijnen, G.J.M.

    2007-01-01

    This paper describes the modelling of a micro bimorph cantilever which is composed of a Silicon Nitride cantilever beam coated on top with a thin Chromium layer. The structure functions as a vertical electrostatic actuator for nanometre displacements with stress induced upward curvature in the off-s

  10. Mechano-optical wavelength tuning in a photonic crystal microcavity with sub-1 V drive voltage

    NARCIS (Netherlands)

    Abdulla, Shahina M.C.; Kauppinen, Lasse J.; Krijnen, Gijs J.M.; Ridder, de R.M.

    2012-01-01

    A micro-bimorph cantilever with self-aligned nano-tips is monolithically integrated with a photonic crystal based device using optical and deep-UV lithography techniques. Upon electrostatic actuation, the dielectric nano-tips perturb the optical field providing electromechano-optical modulation of l

  11. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.

    Science.gov (United States)

    Cen, L; Erturk, A

    2013-03-01

    This paper investigates fish-like aquatic robotics using flexible bimorphs made of macro-fiber composite (MFC) piezoelectric laminates for carangiform locomotion. In addition to noiseless and efficient actuation over a range of frequencies, geometric scalability, and simple design, bimorph propulsors made of MFCs offer a balance between the actuation force and velocity response for performance enhancement in bio-inspired swimming. The experimental component of the presented work focuses on the characterization of an elastically constrained MFC bimorph propulsor for thrust generation in quiescent water as well as the development of a robotic fish prototype combining a microcontroller and a printed-circuit-board amplifier to generate high actuation voltage for untethered locomotion. From the theoretical standpoint, a distributed-parameter electroelastic model including the hydrodynamic effects and actuator dynamics is coupled with the elongated-body theory for predicting the mean thrust in quiescent water. In-air and underwater experiments are performed to verify the incorporation of hydrodynamic effects in the linear actuation regime. For electroelastically nonlinear actuation levels, experimentally obtained underwater vibration response is coupled with the elongated-body theory to predict the thrust output. The measured mean thrust levels in quiescent water (on the order of ∼10 mN) compare favorably with thrust levels of biological fish. An untethered robotic fish prototype that employs a single bimorph fin (caudal fin) for straight swimming and turning motions is developed and tested in free locomotion. A swimming speed of 0.3 body-length/second (7.5 cm s⁻¹ swimming speed for 24.3 cm body length) is achieved at 5 Hz for a non-optimized main body-propulsor bimorph combination under a moderate actuation voltage level. PMID:23348365

  12. Rotational piezoelectric wind energy harvesting using impact-induced resonance

    Science.gov (United States)

    Yang, Ying; Shen, Qinlong; Jin, Jiamei; Wang, Yiping; Qian, Wangjie; Yuan, Dewang

    2014-08-01

    To improve the output power of a rotational piezoelectric wind energy harvester, impact-induced resonance is proposed to enable effective excitation of the piezoelectric cantilevers' vibration modes and obtain optimum deformation, which enhances the mechanical/electrical energy transformation. The impact force is introduced by forming a piezoelectric bimorph cantilever polygon that is fixed at the circumference of the rotating fan's internal surface. Elastic balls are placed inside the polygon. When wind rotates the device, the balls strike the piezoelectric cantilevers, and thus electricity is generated by the piezoelectric effect. The impact point is carefully chosen to use the first bending mode as much as possible, and thus maximize the harvesting efficiency. The design enables each bimorph to be struck in a similar area and every bimorph is struck in that area at different moments. As a result, a relatively stable output frequency can be obtained. The output frequency can also be changed by choosing different bimorph dimensions, which will also make the device simpler and the costs lower. A prototype piezoelectric energy harvester consisting of twelve piezoelectric cantilevers was constructed. The piezoelectric cantilevers were made from phosphor bronze, the lead zirconium titanate (PZT)-based bimorph cantilever had dimensions of 47 mm × 20 mm × 0.5 mm, and the elastic balls were made from steel with a diameter of 10 mm. The optimal DC output power was 613 μW across the 20 kΩ resistor at a rotation speed of 200 r/min with an inscribed circle diameter of 31 mm.

  13. Resonance and antiresonance of symmetric and asymmetric cantilevered piezoelectric flexors.

    Science.gov (United States)

    Smits, J G; Choi, W S; Ballato, A

    1997-01-01

    The resonances of dynamically excited symmetric piezoelectric bimorphs have been determined from the equations of state. Under the effect of sinusoidal stimuli: a moment exerted at the tip M, a force exerted perpendicular to the plane of the bimorph also applied at the tip F, a uniformly applied pressure p, and an electrode voltage V, they respond with a sinusoidal tip rotation alpha, tip deflection delta, volume displacement nu, and electrode charge Q. All of the former are related to all of the latter through a dynamic admittance matrix B. The antiresonance frequency of the capacitance C have been found while also antiresonance in off-diagonal elements have been determined. The latter indicate that at these frequencies the bimorph does not work as an actuator or sensor in the particular domain of the off-diagonal. The mode shape at these antiresonance frequencies has been determined. The antiresonance of b(14) determines that for this frequency the tip has deflection but no rotation, while the antiresonance of b(24 ) indicates that the tip has rotation but no deflection. No antiresonance in the volume displacement is found, indicating that the bimorph is a pressure converter (microphone) at all frequencies. Micromachined piezoelectric heterogeneous bimorphs have been fabricated using the techniques of I.C. fabrication. Their deflections have been measured as a function of frequency and applied voltage, while these have been compared with the theoretical predictions. An anomalously large quadratic deflection has been found, superimposed on the linear piezoelectric behavior. The agreement between the linear part of the experimental deflection and the theory was quite good. PMID:18244123

  14. Stimuli-responsive cylindrical hydrogels mimic intestinal peristalsis to propel a solid object.

    Science.gov (United States)

    Nistor, V; Cannell, J; Gregory, J; Yeghiazarian, L

    2016-04-13

    The emerging field of soft robotics relies on soft, stimuli-responsive materials to enable load transport, manipulation, and mobility in complex unconstrained environments. These materials often need to replicate biological functionality such as muscle contractions and flexibility. Here we demonstrate a soft actuator prototype based on thermosensitive PNIPAAM hydrogels that can transport and manipulate objects. A hollow cylindrical hydrogel was selectively heated and cooled with Peltier devices to yield a traveling wave of shrinking and swelling akin to intestinal peristalsis. A 4 mm diameter bead was placed inside the cylinder and propelled 19.5 mm, equal to distance traveled by the peristaltic wave. We derived conditions that enable peristaltic transport as a function of transporter-cargo design parameters. We conclude that hydrogel-based peristaltic manipulators covering 2 orders of magnitude in stiffness (1-10(2) kPa) could transport cargo spanning 4 orders of magnitude in size (μm-m). PMID:26971454

  15. Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall

    Directory of Open Access Journals (Sweden)

    S. Nadeem

    2015-12-01

    Full Text Available This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.

  16. Instrumental modification intended to save time, and volumes of sample and reagent solutions, in the atomic fluorescence spectrometric determination of mercury.

    Science.gov (United States)

    Pérez-Sirvent, Carmen; Martínez-Sánchez, María J; García-Lorenzo, Mariluz; López-García, Ignacio; Hernández-Córdoba, Manuel

    2007-05-01

    Use of small membrane pumps, instead of peristaltic pumps, to introduce sample and reagent solutions into the spectrometer has several advantages in atomic fluorescence spectrometric determination of mercury. This simple modification results in a substantial saving in the time required for the measurements and so 90% of reagent solution volumes and 95% of sample solution volumes are saved, with a consequent decrease in the volume of waste generated. The sampling frequency is almost tripled, with no deterioration in sensitivity, which is similar to that obtained by use of peristaltic pumps. The relative standard deviation for ten consecutive measurements of a 1 microg L-1 mercury solution was approximately 2%. PMID:17351707

  17. Increasing pumping efficiency in a micro throttle pump by enhancing displacement amplification in an elastomeric substrate

    International Nuclear Information System (INIS)

    Fluid transport is accomplished in a micro throttle pump (MTP) by alternating deformation of a micro channel cast into a polydimethylsiloxane (PDMS) elastomeric substrate. The active deformation is achieved using a bimorph PZT piezoelectric disc actuator bonded to a glass diaphragm. The bimorph PZT deflects the diaphragm as well as alternately pushing and pulling the elastomer layer providing displacement amplification in the PDMS directly surrounding the micro channel. In order to improve pumping rates we have embedded a polymethylmethacrylate (PMMA) ring into the PMDS substrate which increases the magnitude of the displacement amplification achieved. FEM simulation of the elastomeric substrate deformation predicts that the inclusion of the PMMA ring should increase the channel deformation. We experimentally demonstrate that inclusion of a PMMA ring, having a diameter equal to that of the circular node of the PZT/glass/PDMS composite, increases in the throttle resistance ratio by 40% and the maximum pumping rate by 90% compared to an MTP with no ring.

  18. Underwater propulsion of an internally actuated elastic plate

    Science.gov (United States)

    Yeh, Peter; Cen, Lejun; Erturk, Alper; Alexeev, Alexander

    2013-03-01

    Combining experiments and numerical simulations we examine underwater locomotion of an active (internally powered) flexible bimorph composite. We use Macro-Fiber Composite (MFC) piezoelectric laminates that are actuated by a sinusoidally varying voltage generating thrust similar to that of a flapping fin in carangiform motion. In our fully-coupled three dimensional simulations, we model this MFC bimorph fin as a thin, elastic plate that is actuated by a time-varying internal moment producing periodic fin bending and oscillations. The steady state swim velocity and thrust are experimentally measured and compared to the theoretical predictions. Our simulations provide detailed information about the flow structures around the swimming fin and show how they affect the forward motion. The results are useful for designing self-propelling fish-like robots driven by internally powered fins.

  19. Torque for an Inertial Piezoelectric Rotary Motor

    Directory of Open Access Journals (Sweden)

    Jichun Xing

    2013-01-01

    Full Text Available For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor.

  20. Design and experimental evaluation of flextensional-cantilever based piezoelectric transducers for flow energy harvesting

    Science.gov (United States)

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Colonius, Tim

    2016-04-01

    Cantilever type piezoelectric harvesters, such as bimorphs, are typically used for vibration induced energy harvesting. However, a major drawback of a piezoelectric bimorph is its brittle nature in harsh environments, precipitating short life-times as well as output power degradation. The emphasis in this work is to design robust, highly efficient piezoelectric harvesters that are capable of generating electrical power in the milliwatt range. Various harvesters were modeled, designed and prototyped, and the flextensional actuator based harvester, where the metal cantilever is mounted and coupled between two flextensional actuators, was found to be a viable alternative to the cantilever type piezoelectric harvesters. Preliminary tests show that these devices equipped with 5x5x36 mm two piezoelectric PZT stacks can produce greater than 50 mW of power under air flow induced vibrations.

  1. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    Science.gov (United States)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  2. Millipede-inspired locomotion through novel U-shaped piezoelectric motors

    International Nuclear Information System (INIS)

    We report a novel piezoelectric motor that operates at a resonance frequency of 144 Hz, much lower than that of conventional ultrasonic motors, and meets the displacement and gait requirements for designing the locomotion mechanism of a millipede-inspired robot (millibot). The motor structure consists of two piezoelectric bimorphs arranged in a U-shaped configuration. Using the first bending mode for both the piezoelectric bimorphs an elliptical motion was obtained at the tip which led to the successful implementation of millipede inspired locomotion. At an input voltage of 70.7 Vrms, the piezoelectric motor operating at resonance frequency was able to generate torque of 0.03 mN m, mechanical power of 0.84 mW and maximum velocity of 62 rad s−1. Detailed discussion is provided about the principle of operation of the millibot. (technical note)

  3. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  4. Increasing pumping efficiency in a micro throttle pump by enhancing displacement amplification in an elastomeric substrate

    Science.gov (United States)

    Fujiwara, T.; Johnston, I. D.; Tracey, M. C.; Tan, C. K. L.

    2010-06-01

    Fluid transport is accomplished in a micro throttle pump (MTP) by alternating deformation of a micro channel cast into a polydimethylsiloxane (PDMS) elastomeric substrate. The active deformation is achieved using a bimorph PZT piezoelectric disc actuator bonded to a glass diaphragm. The bimorph PZT deflects the diaphragm as well as alternately pushing and pulling the elastomer layer providing displacement amplification in the PDMS directly surrounding the micro channel. In order to improve pumping rates we have embedded a polymethylmethacrylate (PMMA) ring into the PMDS substrate which increases the magnitude of the displacement amplification achieved. FEM simulation of the elastomeric substrate deformation predicts that the inclusion of the PMMA ring should increase the channel deformation. We experimentally demonstrate that inclusion of a PMMA ring, having a diameter equal to that of the circular node of the PZT/glass/PDMS composite, increases in the throttle resistance ratio by 40% and the maximum pumping rate by 90% compared to an MTP with no ring.

  5. Micro scanning probes

    CERN Document Server

    Niblock, T

    2001-01-01

    This thesis covers the design methodology, theory, modelling, fabrication and evaluation of a Micro-Scanning-Probe. The device is a thermally actuated bimorph quadrapod fabricated using Micro Electro Mechanical Systems technology. A quadrapod is a structure with four arms, in this case a planar structure with the four arms forming a cross which is dry etched out of a silicon diaphragm. Each arm has a layer of aluminium deposited on it forming a bimorph. Through heating each arm actuation is achieved in the plane of the quadrapod and the direction normal to it. Fabrication of the device has required the development of bulk micromachining techniques to handle post CMOS fabricated wafers and the patterning of thickly sputtered aluminium in bulk micro machined cavities. CMOS fabrication techniques were used to incorporate diodes onto the quadrapod arms for temperature measurement of the arms. Fine tungsten and silicon tips have also been fabricated to allow tunnelling between the tip and the platform at the centr...

  6. Laser micromachining of sputtered DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.Q. [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2, 1PZ (United Kingdom)]. E-mail: yf229@cam.ac.uk; Luo, J.K. [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2, 1PZ (United Kingdom); Flewitt, A.J. [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2, 1PZ (United Kingdom); Ong, S.E. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Zhang, S. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Milne, W.I. [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2, 1PZ (United Kingdom)

    2006-04-30

    DLC films with different thicknesses (from 100 nm to 1.9 {mu}m) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp{sup 2}/sp{sup 3} ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF{sub 6} plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details.

  7. Laser micromachining of sputtered DLC films

    International Nuclear Information System (INIS)

    DLC films with different thicknesses (from 100 nm to 1.9 μm) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp2/sp3 ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF6 plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details

  8. Tactile Displays with Parallel Mechanism

    OpenAIRE

    Kyung, Ki-Uk; Kwon, Dong-Soo

    2008-01-01

    This chapter deals with tactile displays and their mechanisms. We briefly reviewed research history of mechanical type tactile displays and their parallel arrangement. And this chapter mainly describes two systems including tactile displays. The 5x6 pin arrayed tactile display with parallel arrangement of piezoelectric bimorphs has been described in the section 3. The tactile display has been embedded into a mouse device and the performance of the device has been verified from pattern display...

  9. Actuators based on intrinsic conductive polymers/carbon nanoparticles nanocompositesElectroactive Polymer Actuators and Devices (EAPAD) 2013

    OpenAIRE

    Bocchini, Sergio; Ariano, Paolo; LOMBARDI, MARIANGELA; Accardo, Daisy

    2013-01-01

    New polyaniline (PANi) synthesis was performed starting from non-toxic N-phenil-p-phenylenediamine (aniline dimer) using reverse addition of monomer to oxidizing agent, the synthesis allows to produce highly soluble PANi. Several types of doped PANi were prepared to be used on electromechanical active actuators. Different techniques were used to include carbon nanoparticles such as carbon nanotubes and graphene. Bimorph solid state ionic actuators were prepared with these novel nanocomposites...

  10. Effect of esophageal emptying and saliva on clearance of acid from the esophagus

    International Nuclear Information System (INIS)

    The clearance of acid from the esophagus and esophageal emptying in normal subjects was studied. A 15-ml bolus of 0.1 N hydrochloric acid (pH 1.2) radiolabeled with [/sup 99m/Tc]sulfur colloid was injected into the esophagus, and the subject swallowed every 30 seconds. Concurrent manometry and radionuclide imaging showed nearly complete emptying of acid from the esophagus by an immediate secondary peristaltic sequence, although esophageal pH did not rise until the first swallow 30 seconds later. Esophageal pH then returned to normal by a series of step increases, each associated with a swallow-induced peristaltic sequence. Saliva stimulation by an oral lozenge shortened the time required for acid clearance, whereas aspiration of saliva from the mouth abolished acid clearance. Saliva stimulation or aspiration did not affect the virtually complete emptying of acid volume by the initial peristaltic sequence. It was concluded that esophageal acid clearance normally occurs as a two-step process: (1) Virtually all acid volume is emptied from the esophagus by one or two peristaltic sequences, leaving a minimal residual amount that sustains a low pH, and (2) residual acid is neutralized by swallowed saliva

  11. Gastric pH distribution and mixing of soft and rigid food particles in the stomach using a dual-marker technique

    Science.gov (United States)

    Mixing of a particle-laden material during peristaltic flow in the stomach has not been quantified in vivo. Gastric mixing plays a key role in the overall gastric digestion process; it determines the availability of acid and enzymes to individual solid food particles and controls the length of time ...

  12. Dead Waters: Large amplitude interfacial waves generated by a boat in a stratified fluid

    CERN Document Server

    Vasseur, Romain; Dauxois, Thierry

    2008-01-01

    We present fluid dynamics videos of the motion of a boat on a two-layer or three-layer fluid. Under certain specific conditions, this setup generates large amplitude interfacial waves, while no surface waves are visible. The boat is slowed down leading to a peristaltic effect and sometimes even stopped: this is the so-called dead water phenomenon.

  13. Physiology of heartbeat reversal in adult Drosophila melanogaster (Diptera: Drosophilidae)

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel

    2010-01-01

    Roč. 107, č. 1 (2010), s. 13-31. ISSN 1210-5759 Institutional research plan: CEZ:AV0Z50070508 Keywords : peristaltic heart beat * synchronic heart beat * pulse-light optocardiography Subject RIV: ED - Physiology Impact factor: 0.945, year: 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1504

  14. Functional structural similarity between insect and human hearts: Electrocardiography of insect hearts for screening of new cardioactive drugs

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel; Aulický, R.; Lukáš, J.

    Bristol : IOP Publishing Ltd, 2013, s. 5-12. ISBN 978-989-8565-78-5. [Cardiotechnik 2013: International Congress on Cardiomuscular Technologies. Algarve (PT), 19.09.2013-21.09.2013] Grant ostatní: GA ČR(CZ) QJI310057 Institutional support: RVO:60077344 Keywords : peristaltic myocardial contractions * tubular heart * heart beat reversal Subject RIV: ED - Physiology

  15. [Two steps elution method FI on-line adsorption and preconcentration coupled with FAAS for the determination of trace zinc].

    Science.gov (United States)

    Wang, Zhong-yuan; Zhang, Hong-kang; Fang, Hong-da; Su, Yao-dong; Mittal, Gauri S

    2011-12-01

    A flow injection two steps elution method on-line sorption and preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed for the determination of trace Zn in water samples. The conventional elution procedure was divided into two steps: elution procedure and detection procedure. During the elution procedure, the eluent was pumped into KR by the suction of the peristaltic pump and through PTFE tube instead of peristaltic pump tube. By the new method, the dispersion of the analyte was decreased notably, and high absorbance peak value was achieved. Because the eluent was not through the peristaltic pump tube, the peristaltic pump tube was protected from being eroded. Emptying procedure was added in order to insure the veracity and repeatability of the experiment of every time. With 60 s (sample throughput of 37 x h(-1)) of sampling at a flow rate of 6.0 mL x min(-1), an enhancement factor (EF) of 28 (higher than 9 achieved by conventional elution method) and a detection limit (3sigma) of 0.35 x L(-1) were obtained. The precision (RSD, n=11) was 2.1% at the 20 microg x L(-1) level. When 0.1% phi triethannolamine was used as masking reagent, the recovery rate was from 98.7% to 99.6%. PMID:22295800

  16. Long wavelength flow analysis in a curved channel

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Nasir [Dept. of Mathematics, International Islamic Univ., Islamabad (Pakistan); Sajid, Muhammad [Theoretical Plasma Physics Div., PINSTECH, P.O. Nilore, Islamabad (Pakistan); Hayat, Tasawar [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan)

    2010-03-15

    This study is concerned with the peristaltic flow of a viscous fluid in a curved channel. Mathematically the problem is governed by two partial differential equations. Closed form solutions of the stream function, axial velocity, and pressure gradient are developed under long wavelength and low Reynolds number assumptions. The influence of curvature is analyzed on various flow quantities of interest. (orig.)

  17. Functional obstruction: the renal pelvis rules

    OpenAIRE

    Mendelsohn, Cathy

    2004-01-01

    Failure in the peristaltic mechanism that conducts urine from the kidney to the bladder can lead to hydronephrosis, a common birth defect associated with obstructive nephropathy. New animal models reveal molecular pathways important for peristalsis and point to the central role of the renal pelvis in urine transport.

  18. MR urography (MRU of non-dilated ureter with diuretic administration: Static fluid 2D FSE T2-weighted versus 3D gadolinium T1-weighted GE excretory MR

    Directory of Open Access Journals (Sweden)

    C. Roy

    2014-01-01

    Conclusion: T2-weighted MRU with multiple orientations and diuretic is sufficient to identify the non-dilated ureter. It offers information on ureteral peristaltism. It can be suggested that this sequence is able to detect an initial obstruction before hydronephrosis occurs.

  19. Comparing theory with experimental data in studying the deformation of magnetically smart films deposited on nickel and glass substrates

    Science.gov (United States)

    Wang, Xiaoli; Cao, Jian; Ulmer, M. P.; Graham, M. E.; Vaynman, S.; Savoie, J.; Bellavia, B.

    2012-10-01

    This paper will present the procedure of measuring the deformation of the magnetostrictive bimorph specimens under an applied external magnetic field, and the theoretical and numerical analysis of the deformation. The magnetically smart material (MSM) KelvinAllTM and Terfenol-D is deposited on the nickel or glass substrates. The profiles of thin-film specimens were measured under an external magnetic field with White Light Interferometry. Using the theoretical calculation, the magnetostrictive property was evaluated for the coated Ni sample and glass sample. Employing the numerical approach, the influence of the magnetostrictive film on the deformation of the sample was simulated and compared with experimental results. The coated Ni specimen exhibited larger deformation than the coated glass specimen when the specimen is immersed in a 0.16 T magnetic field. In our experiments, the residual stress calculated in the thin film of the bimorph is acceptable and could be decreased by changing the parameters in the specimen preparation process. The experimental results in this paper was employed as the preliminary step to realize the future application of the magnetostrictive thin film bimorph to the adaptive X-ray mirror, and the theoretical and numerical approach was used to predict the influence of the magnetostrictive film on the larger mirror surface deformation.

  20. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    International Nuclear Information System (INIS)

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV

  1. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    Science.gov (United States)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Wong, Franklin; Kernaghan, Robert

    2011-12-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV.

  2. Piezoelectric energy harvesting in internal fluid flow.

    Science.gov (United States)

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-01-01

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879

  3. The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load

    Science.gov (United States)

    Pozzi, Michele; Aung, Min S. H.; Zhu, Meiling; Jones, Richard K.; Goulermas, John Y.

    2012-07-01

    The reduced power requirements of miniaturized electronics offer the opportunity to create devices which rely on energy harvesters for their power supply. In the case of wearable devices, human-based piezoelectric energy harvesting is particularly difficult due to the mismatch between the low frequency of human activities and the high-frequency requirements of piezoelectric transducers. We propose a piezoelectric energy harvester, to be worn on the knee-joint, that relies on the plucking technique to achieve frequency up-conversion. During a plucking action, a piezoelectric bimorph is deflected by a plectrum; when released due to loss of contact, the bimorph is free to vibrate at its resonant frequency, generating electrical energy with the highest efficiency. A prototype, featuring four PZT-5H bimorphs, was built and is here studied in a knee simulator which reproduces the gait of a human subject. Biomechanical data were collected with a marker-based motion capture system while the subject was carrying a selection of backpack loads. The paper focuses on the energy generation of the harvester and how this is affected by the backpack load. By altering the gait, the backpack load has a measurable effect on performance: at the highest load of 24 kg, a minor reduction in energy generation (7%) was observed and the output power is reduced by 10%. Both are so moderate to be practically unimportant. The average power output of the prototype is 2.06 ± 0.3 mW, which can increase significantly with further optimization.

  4. Perovskite ceramics with high merit factor and their application in IR radiation detection .Resume of Ph.D thesis

    International Nuclear Information System (INIS)

    Ferroelectric materials with perovskite structure are studied in the thesis from the point of view of their pyroelectric properties. Ceramic materials of PZT type, with different chemical compositions are prepared using hot-pressing method. The values of the main electrical parameters are determined. The figure of merit for I.R. detection is computed in different working conditions of the pyroelectric detectors manufactured from the studied materials. A new method is proposed for the enhancement of the pyroelectric coefficient value. It is shown that using pyroelectric bimorph structures, with series connection, it is possible to obtain a considerable improvement (around 30%) of the pyroelectric coefficient and, consequently, of the figure of merit. Also, it is shown that the bimorph properties are strongly influenced by the charge exchange that takes place between the two component phases during heating. The temperature dependence of the pyroelectric current and spontaneous polarization are explained considering the hypothesis of a pyroelectric charge redistribution when the bimorph temperature varies. The behaviour of a pyroelectric ceramic subject to a static electric field was also studied. It was shown that the values of the pyroelectric current and spontaneous polarization are strongly influenced by the value and orientation of the applied field. Finally, the studied materials are used for manufacturing pyroelectric detectors and pyroelectric linear arrays. The pyroelectric detectors were then used to produce non-contact thermometers (heat-spies). (author) 13 figs., 6 tabs., 45 refs

  5. Miniature solid-state gas compressor

    Science.gov (United States)

    Lawless, William N.; Cross, Leslie E.; Steyert, William A.

    1985-01-01

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described.

  6. Deformation Analysis of a Pneumatically-Activated Polydimethylsiloxane (PDMS Membrane and Potential Micro-Pump Applications

    Directory of Open Access Journals (Sweden)

    Chi-Han Chiou

    2015-01-01

    Full Text Available This study presents a double-side diaphragm peristaltic pump for efficient medium transport without the unwanted backflow and the lagging effect of a diaphragm. A theoretical model was derived to predict the important parameter of the micropump, i.e., the motion of the valves at large deformations, for a variety of air pressures. Accordingly, we proposed an easy and robust design to fabricate a Polydimethylsiloxane (PDMS-based micropump. The theoretical model agrees with a numerical model and experimental data for the deformations of the PDMS membrane. Furthermore, variations of the generated flow rate, including pneumatic frequencies, actuated air pressures, and operation modes were evaluated experimentally for the proposed micropumps. In future, the theoretical equation could provide the optimal parameters for the scientists working on the fabrication of the diaphragm peristaltic pump for applications of cell-culture.

  7. A kinematic study of pulsation in the dorsal blood vessel of the blackworm, Lumbriculus variegatus

    Directory of Open Access Journals (Sweden)

    Kameko Halfmann

    2011-01-01

    Full Text Available The aquatic oligochaete Lumbriculus variegatus has a segmented, dorsal blood vessel (DBV that acts as a peristaltic pump to move blood through the animal's closed circulatory system. We conducted a kinematic study using videography and computational modeling as a first step toward understanding the control of DBV pulsation. Results suggested that pulse rates were highest in the posterior segments, while interpulse intervals and intersegmental delays were longest in the midbody segments. Differences in the interpulse interval distributions across regions suggest that some peristaltic waves initiated in the posterior segments do not propagate all the way to the anterior segments. A simple model consisting of a chain of excitable neuromuscular units replicated these kinetics. This model may be useful in future research aimed at understanding the modulatory effect of biogenic amines on peristalsis of the DBV. Moreover, research into the mechanisms of peristalsis of the DBV may lead to insights into disorders of peristalsis in human and veterinary medicine

  8. A mathematical model of motorneuron dynamics in the heartbeat of the leech

    Science.gov (United States)

    Buono, Pietro-Luciano; Palacios, A.

    2004-02-01

    The heartbeat of the medicinal leech is driven by direct contact between two arrays of motorneurons and two lateral blood vessels. At any given time, motorneurons exhibit one of two alternating states so that, on one side of the animal, the heart beats in a rear-to-front fashion (peristaltic), while on the other side the heart beats synchronously. Every 20 heartbeats, approximately, the two sides switch modes. It is known that the heartbeat rhythm is generated through burst of oscillatory activity produced by a central pattern generator (CPG) network of neurons. However, to the best of our knowledge, how the CPG activity is translated into peristaltic and synchronous rhythms in the motorneurons is yet unknown. In this work, we use symmetric systems of differential equations, accompanied with computational simulations, to investigate possible mechanisms for generating the motorneuron activity that characterizes the heartbeat of leeches and in particular the switching scenario.

  9. Study of the Gastric Emptying in Humans: Biomagnetic Assessments

    Science.gov (United States)

    Hernández, E.; Córdova, T.; Huerta-Franco, R.; Sosa, M.; Vargas-Luna, M.

    2006-09-01

    Biomagnetic studies of the gastrointestinal system can be carried out in two ways. Recording the magnetic field produced by the myenteric nervous system or created by any oral contrast mean as magnetic tracers or markers. In the first case, a SQUID magnetometer is demanded while a fluxgate magnetometer is enough in the second case. In this work, a magnetic marker was ingested by 8 healthy volunteers, in three gastric volume conditions, to measure the luminal content volume effect in the gastric emptying and to perform the quantification of the peristaltic frequencies in gastric and duodenum tract segments. The average emptying times for low luminal content, relative to the emptying time when the intake was the highest, were 43.6 ± 15.6 % and 77.3 ± 47.0 %. These results show that the biomagnetic technique is a powerful modality to estimate the effects of the gastric volume in the gastric emptying and a way to record the peristaltic frequencies.

  10. 基于1×2阵列压电悬臂梁的AFM并行扫描%Parallel Scanning of AFM Based on the 1×2 Array Cantilever

    Institute of Scientific and Technical Information of China (English)

    林旭东; 董维杰

    2011-01-01

    分析了阵列悬臂探针并行扫描的工作方式,以非接触磁力模拟样品与悬臂梁间的范德华力,研究了1×2阵列压电悬臂梁的并行扫描和驱动控制方法.每一压电梁均集成了微位移致动器和力传感器,在320 Hz一阶共振频率下振动.实验表明:在0.2~1.0 mm力作用区内,压电梁自由端每接近模拟样品0.1 mm,表征悬臂梁振幅的锁相放大器输出电压减小1.7 mV,但微力传感在扫描的升回程存在迟滞;致动器的控制电压每增加10 V使锁相放大器输出减小约3 mV,表明集成的致动器可调节压电梁与样品间的间距.两压电梁的电荷-位移响应曲线、间距调节灵敏度均不完全一致,讨论了阵列悬臂梁一致性问题和阵列规模大小问题.%The operation way of the parallel scanning using array cantilevers in AFM was analyzed. The non-contact magnetic force was used to imitate van der Waals forces between the sample and the cantilever, and the 1 × 2 array piezoelectric bimorph was taken for example to investigate the parallel scanning and the drive control method. Each piezoelectric bimorph was integrated with both the micrometric displacement actuator and force sensor, and the array bimorph were excited by a vibration exciter at the first resonance of 320 Hz. The charge response to the magnetic force was detected by the charge amplifier and lock-in amplifier. The experimental results show that the lock-in amplifier output decreases 1.7 mV as the bimorph approaches each 0.1 mm to the sample in 0. 2 - 1.0 mm force function range, however the force sensor shows the hysteresis in a round trip. lhe lock-in amplifier output reduces about 3 mV for every 10 V increase in the actuation voltage, which indicates that the distance between the sample and the cantilever can be independently adjusted by each bimorph. It is not ideal that the sensitivity of the charge displacement response curves and the distance adjustment for the two bimorph are

  11. A New Concept of a Drug Delivery System with Improved Precision and Patient Safety Features

    OpenAIRE

    Florian Thoma; Frank Goldschmidtböing; Peter Woias

    2014-01-01

    This paper presents a novel dosing concept for drug delivery based on a peristaltic piezo-electrically actuated micro membrane pump. The design of the silicon micropump itself is straight-forward, using two piezoelectrically actuated membrane valves as inlet and outlet, and a pump chamber with a piezoelectrically actuated pump membrane in-between. To achieve a precise dosing, this micropump is used to fill a metering unit placed at its outlet. In the final design this metering unit will be ma...

  12. Deformation Analysis of a Pneumatically-Activated Polydimethylsiloxane (PDMS) Membrane and Potential Micro-Pump Applications

    OpenAIRE

    Chi-Han Chiou; Tai-Yen Yeh; Jr-Lung Lin

    2015-01-01

    This study presents a double-side diaphragm peristaltic pump for efficient medium transport without the unwanted backflow and the lagging effect of a diaphragm. A theoretical model was derived to predict the important parameter of the micropump, i.e., the motion of the valves at large deformations, for a variety of air pressures. Accordingly, we proposed an easy and robust design to fabricate a Polydimethylsiloxane (PDMS)-based micropump. The theoretical model agrees with a numerical model an...

  13. New deep glass etching technology

    OpenAIRE

    Bu, M.; Melvin, T; Ensell, G; J. S. Wilkinson; Evans, A.G.R.

    2003-01-01

    A new masking technology useful for wet etching of glass, to a depth of more than 300 ?m, is reported; multilayers of metal in combination with thick SPRT220 photoresist, are used. This new method was successfully developed for fabricating a 200 ?m thick diaphragm for a micro peristaltic pump. Various mask materials, which can be patterned by standard photolithography and metal etching processes, were investigated. The main advantage of this newly developed method was the application of hydro...

  14. Collection of islets of Langerhans using an equilibrium method

    OpenAIRE

    Koh, Duk-Su; Moody, Mark; Jo, Junghyo

    2013-01-01

    Here we present a convenient method for easy hand-selection of enzymatically isolated small tissues such as islets. This method using a micropipette tip connected to a peristaltic pump collects islets in the tip continuously. After entering a conical micropipette tip, islets are quickly dragged up by solution flow, and this movement subsequently decreases as the flow rate decreases. The islets are trapped at a specific height when downward gravitation balances upward buoyancy and drag provide...

  15. Evaluation of blood compatibility of plasma deposited heparin-like films and SF6 plasma treated surfaces

    OpenAIRE

    Ivanira Antunes Perrenoud; Elidiane Cipriano Rangel; Rogério Pinto Mota; Steven Frederick Durrant; Nilson Cristino da Cruz

    2010-01-01

    In devices used in open-heart surgery and dialysis, blood must be continuously processed using extracorporeal circuits composed of peristaltic pumps and active components such as specific filters and oxygenators. Several procedures have been employed to avoid blood coagulation induced by contact with the artificial surfaces of such devices. Often heparin, a bioactive protein able to prevent clot formation, is employed. In this work, we have used heparin-containing gas plasmas to evaluate the ...

  16. Effects of cisapride on parameters of oesophageal motility and on the prolonged intraoesophageal pH test in infants with gastro-oesophageal reflux disease.

    OpenAIRE

    Cucchiara, S; Staiano, A.; Boccieri, A; De Stefano, M; Capozzi, C; Manzi, G.; Camerlingo, F; Paone, F M

    1990-01-01

    The effect of cisapride, a new gastrointestinal prokinetic drug, on oesophageal motility and acid reflux was studied in 14 children with gastro-oesophageal reflux disease, receiving either placebo or cisapride 0.15 mg/kg intravenously. Cisapride significantly (p less than 0.01) increased the lower oesophageal sphincter pressure (+124%), the amplitude (+84%) and duration (+24%) of oesophageal peristaltic waves, whereas the placebo treatment did not produce any changes. Subsequently, all 14 chi...

  17. Development of a auto-loading system for radioisotope liquor

    International Nuclear Information System (INIS)

    A loading system with computer distant control for radioisotope liquor is developed. It's arm to avoid close operating to the radioactive in the radioisotope liquor. Microcontroller is used as control center, step motor and peristaltic pump as manipulator in this system. The product process is performed with real-time measurement and control. The system has many function including data storage, data query, printing, operator information management, et al. (authors)

  18. Lactate dehydrogenase activity of rat epididymis and spermatozoa: Effect of constant light

    OpenAIRE

    RH Ponce; CS Carriazo; NT Vermouth

    2009-01-01

    During its passage through the epididymis, the gamete undergoes a process of “maturation” leading to the acquisition of its fertilizing ability. The epididymis displays regional variations in the morphology and metabolic properties of its epithelium which are relevant for the progressive development of mature sperm characteristics. The epididymis has spontaneous peristaltic contractions and receives sympathetic innervation that is modulated by melatonin, a hormone synthesized and ...

  19. Design of an Automated Flow Injection-Chemiluminescence Instrument Incorporating a Miniature Photomultiplier Tube for Monitoring Picomolar Concentrations of Iron in Seawater

    OpenAIRE

    Worsfold, Paul J.; Bowie, Andrew R.; Achterberg, Eric P.; Simon Ussher

    2005-01-01

    A flow-injection (FI)-based instrument under Lab VIEW control for monitoring iron in marine waters is described. The instrument incorporates a miniature, low-power photomultiplier tube (PMT), and a number of microelectric and solenoid actuated valves and peristaltic pumps. The software allows full control of all flow injection components and processing of the data from the PMT. The optimised system is capable of 20 injections per hour, including preconcentration and wash steps. The detection ...

  20. Flexible gastrointestinal motility pressure sensors based on aluminum thin-film strain-gauge arrays

    OpenAIRE

    Silva, Luís Rebelo; Sousa, Paulo J.; L.M. Gonçalves; Minas, Graça

    2015-01-01

    This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively cha...

  1. Multi-column step-gradient chromatography system for automated ion exchange separations

    International Nuclear Information System (INIS)

    A multi-column step-gradient chromatography system has been designed to perform automated sequential separations of radionuclides by ion exchange chromatography. The system consists of a digital programmer with automatic stream selection valve, two peristaltic pumps, ten columns, and a fraction collector. The automation allows complicated separations of radionuclides to be made with minimal analyst attention and allows for increased productivity and reduced cost of analyses. Results are reported for test separations on mixtures of radionuclides by the system

  2. Organ culture of fetal rat small intestine for testing gluten toxicity: a reappraisal.

    OpenAIRE

    Wood, G. M.; Howdle, P. D.; Losowsky, M. S.

    1987-01-01

    Jejunal segments from fetal rats of 18 days gestation were maintained in an organ culture system for up to 72 h. During this period, villi developed within the intestinal lumen and the epithelium changed from stratified to simple columnar. Peristaltic activity was observed during in-vitro culture. Alkaline phosphatase specific activity of the bowel segments fell after 48 hours culture, compared with pre-culture values (P less than 0.05), but that of alpha-glucosidase increased. The addition o...

  3. Sensitive and Real-Time Method for Evaluating Corneal Barrier Considering Tear Flow

    OpenAIRE

    Nakamura, Tadahiro; Teshima, Mugen; Kitahara, Takashi; Sasaki, Hitoshi; Uematsu, Masafumi; Kitaoka, Takashi; Nakashima, Mikiro; Nishida, Koyo; Nakamura, Junzo; Higuchi, Shun

    2010-01-01

    We developed a new electrophysiological method mimicking tear flow to evaluate the epithelial tight junction of rabbit cornea quantitatively. We investigated the effect of tear flow on the corneal damage induced by ophthalmic preservatives using this method. An Ussing chamber system with Ag/AgCl electrodes was used in the electrophysiological experiment. The excised rabbit cornea was mounted in the Ussing chamber and the precorneal solution in the chamber was perfused with a peristaltic pump ...

  4. Successful in vitro expansion and Characterization of Human Enteric Neuronal cells- A step towards Cell based therapies for Hirschsprung’s disease

    OpenAIRE

    Balamurugan M.; Preethy SP; Tholcopiyan L; Thamaraikannan; Srinivasan V; Murugan P; Manjunath S; Srinivasan T; Krishnamohan J; Abraham S

    2010-01-01

    BACKGROUND: The Enteric Nervous system (ENS) is a part of the Peripheral nervous system (PNS) that controls the peristaltic activity of the gut wall which is essential for propulsion of food in the digestive tract. It is composed of a large number of neurons and glial cells, distributed throughout the length of the gut. These ganglion cells develop from the neural crest in the embryo. Failure of complete colonization of the gut by these enteric neural crest cells during early development of l...

  5. Dynamic Theory of Pearling Instability in Cylindrical Vesicles

    OpenAIRE

    Nelson, Philip; Powers, Thomas; Seifert, Udo

    1994-01-01

    We give a simple theory for recent experiments of Bar-Ziv and Moses% Phys. Rev. Lett. {\\bf73} (1994) 1392, in which tubular vesicles are excited using laser tweezers to a ``peristaltic'' state. Considering the hydrodynamics of a bilayer membrane under tension, we reproduce some of the qualitative behavior seen and find a value for the wavelength of the instability in terms of independently measured material parameters, in rough agreement with the experimental values.

  6. A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity.

    Science.gov (United States)

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2015-06-25

    The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristaltic tube. We represent the ovum or the embryo as a spherical vesicle of finite volume - not a massless point particle. The outer membrane of the neutrally buoyant vesicle is discretized by nodes that are joined by a network of springs. The elastic moduli of these springs are chosen large enough so that a spherical shape is maintained. For simplicity, here we choose an axisymmetric tube where the geometry of the two-dimensional cross-section along the tube axis reflects that of the sagittal cross-section of the uterine cavity. Although the tube motion is axisymmetric, the presence of the vesicle within the tube requires a fully three-dimensional model. As was found in Yaniv et al. (2009, 2012) for a 2D closed channel, we find that the flow dynamics in a 3D peristaltic tube are strongly influenced by the closed end and the manner in which the peristaltic wave damps out towards the closure. In addition, we demonstrate that the trajectory of a vesicle of finite volume can greatly differ from the trajectory of a massless fluid particle initially placed at the vesicle׳s centroid. PMID:25817334

  7. A Continuous Flow System for the Measurement of Ambient Nitrogen Oxides [NO + NO2] Using Rhodamine B Hydrazide as a Chemosensor

    OpenAIRE

    Pandurangappa Malingappa; Venkataramanappa Yarradoddappa

    2014-01-01

    A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO2] at parts per billion (ppb) level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH) to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The propose...

  8. Oesophageal food impaction in achalasia treated with Coca-Cola and nifedipine

    OpenAIRE

    Koumi, Andriani; Panos, Marios Zenon

    2010-01-01

    Achalasia is characterised by the loss of peristaltic movement in the distal oesophagus and failure of the lower oesophageal sphincter relaxation, which results in impaired oesophageal emptying. We report a case of a 92-year-old frail woman with a history of achalasia, who presented with acute oesophageal obstruction due to impaction of a large amount of food material. She was treated successfully with nifedipine, in combination with Coca-Cola (original product, not sugar free), so avoiding t...

  9. Magnetohydrodynamic flow of a Carreau fluid in an channel with different wave forms

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics; Saleem, Najma [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Mesloub, Said [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics; Ali, Nasir [International Islamic Univ., Islamabad (Pakistan). Faculty of Basic and Applied Sciences

    2011-03-15

    In this investigation, we discuss the peristaltic motion based on the constitutive equations of a Carreau fluid in a channel. The fluid is electrically conducting in the presence of a uniform applied magnetic field. Four different wave forms are chosen. The fluid behaviour is studied using long wavelength approximation. Detailed analysis is performed for various emerging parameters on pumping and trapping phenomena. The present results reduce favourably with the currently available results of hydrodynamic case when the Hartman number is chosen zero. (orig.)

  10. Flow of MHD Carreau Fluid in a Curved Channel

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    2013-01-01

    Full Text Available Analysis has been made for the curvature effects on the MHD peristaltic flow of an incompressible Carreau fluid in a channel. The flow problem is first reduced in the wave frame of reference and then solved after employing the long wavelength and low Reynolds number approximations. Expressions of stream function, pressure gradient, magnetic force function, induced magnetic field and current density are derived and then examined for various parameters of interest.

  11. Single column sequential extraction of Ra, Nd, Th, Pa and U from a natural sample

    OpenAIRE

    Jeandel, C.; Venchiarutti, C.; Bourquin, M.; Pradoux, C; Lacan, F.; P. van Beek; Riotte, Jean

    2011-01-01

    A new procedure allowing the sequential extraction of Ra, Nd, Th, Pa and U from the same initial natural sample (sea or river waters, particles, sediments, rocks) is proposed. Extraction recoveries were better than 90%. Procedural blanks ranged from 80 pg (for Nd) to below 1 fg, the detection limit of the MC-ICP-MS used (for Pa); all were negligible compared with the amounts of elements currently determined. Based on classical anionic resins attached to a peristaltic pump allowing precise flo...

  12. Slime mould electronic oscillators

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    We construct electronic oscillator from acellular slime mould Physarum polycephalum. The slime mould oscillator is made of two electrodes connected by a protoplasmic tube of the living slime mould. A protoplasmic tube has an average resistance of 3~MOhm. The tube's resistance is changing over time due to peristaltic contractile activity of the tube. The resistance of the protoplasmic tube oscillates with average period of 73~sec and average amplitude of 0.6~MOhm. We present experimental labor...

  13. Bidirectional Propulsion of Devices Along the Gastrointestinal Tract Using Electrostimulation

    OpenAIRE

    Burke, M. P. D.

    2013-01-01

    This thesis describes a method for propelling devices such as video capsule endoscopes in either direction along the small intestines using electrostimulation-induced muscular contractions. When swallowed, passive diagnostic ‘one-shot’ devices rely on sporadic peristaltic movement, possibly missing vital ‘areas of interest’. This bidirectional propulsion method provides active control for that all-important ‘second look’. Design considerations, within the dimensional constraints, required a d...

  14. Analysis and Implementation of Multiple Bionic Motion Patterns for Caterpillar Robot Driven by Sinusoidal Oscillator

    OpenAIRE

    Yanhe Zhu; Xiaolu Wang; Jizhuang Fan; Sajid Iqbal; Dongyang Bie; Jie Zhao

    2014-01-01

    Articulated caterpillar robot has various locomotion patterns—which make it adaptable to different tasks. Generally, the researchers have realized undulatory (transverse wave) and simple rolling locomotion. But many motion patterns are still unexplored. In this paper, peristaltic locomotion and various additional rolling patterns are achieved by employing sinusoidal oscillator with fixed phase difference as the joint controller. The usefulness of the proposed method is verified using simulati...

  15. On the Feasibility of Steering Swallowable Microsystem Capsules Using Computer-Aided Magnetic Levitation

    OpenAIRE

    Wu, Billy; Mintchev, Martin

    2008-01-01

    Swallowable capsule endoscopy is used for non-invasive diagnosis of some gastrointestinal (GI) organs. However, control over the position of the capsule is a major unresolved issue. This study presents a design for steering the capsule based on magnetic levitation. The levitation is stabilized with the aid of a computer-aided feedback control system and diamagnetism. Peristaltic and gravitational forces to be overcome were calculated. A levitation setup was built to analyze the fe...

  16. In Vitro Testing of a Novel Blood Pump Designed for Temporary Extracorporeal Support

    OpenAIRE

    Spurlock, DJ; Ranney, DN; Fracz, E; Mazur,; Bartlett, RH; Haft, JW

    2012-01-01

    Extracorporeal blood pumps are used as temporary ventricular assist devices or for extracorporeal membrane oxygenation. The ideal pump would be intrinsically self-regulating, carry no risk of cavitation or excessive inlet suction, be afterload insensitive, and valveless thus reducing thrombogenicity. Currently used technology, including roller, centrifugal, and pneumatic pulsatile pumps, does not meet these requirements. We studied a non-occlusive peristaltic pump (M-Pump) in two mock circula...

  17. Frequency Behavior of a Quartz Crystal Microbalance (Qcm) in Contact with Selected Solutions

    OpenAIRE

    Z. A. Talib; Z. Baba; Kurosawa, S.; H. A.A. Sidek; A. Kassimb; W. M.M. Yunus

    2006-01-01

    A device was constructed to monitor viscosity of solutions using fundamental frequency of 9 MHz and 10 MHz quartz crystal. Piezoelectric quartz crystals with gold electrodes were mounted by O-ring in between liquid flow cell. Only one side of the crystal was exposed to the solutions which were pumped through silicon tube by a peristaltic pump. The measured frequency shift was observed in order to investigate the interfacial behavior of some selected solution in contact with one surface of Qua...

  18. LabVIEW-based sequential-injection analysis system for the determination of trace metals by square-wave anodic and adsorptive stripping voltammetry on mercury-film electrodes

    OpenAIRE

    Anastasios Economou; Anastasios Voulgaropoulos

    2003-01-01

    The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included format...

  19. Effects of anti-hypertensive drugs on esophageal body contraction

    Institute of Scientific and Technical Information of China (English)

    Koichi; Yoshida; Kenji; Furuta; Kyoichi; Adachi; Shunji; Ohara; Terumi; Morita; Takashi; Tanimura; Shuji; Nakata; Masaharu; Miki; Kenji; Koshino; Yoshikazu; Kinoshita

    2010-01-01

    AIM:To clarify the effects of anti-hypertensive drugs on esophageal contraction and determine their possi-ble relationship with gastro-esophageal reflux disease.METHODS:Thirteen healthy male volunteers were enrolled. Esophageal body peristaltic contractions and lower esophageal sphincter (LES) pressure were measured using high resolution manometry. All subjects were randomly examined on four separate occasions following administrations of nifedipine,losartan,and atenolol,as well as without any drug administ...

  20. The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load

    International Nuclear Information System (INIS)

    The reduced power requirements of miniaturized electronics offer the opportunity to create devices which rely on energy harvesters for their power supply. In the case of wearable devices, human-based piezoelectric energy harvesting is particularly difficult due to the mismatch between the low frequency of human activities and the high-frequency requirements of piezoelectric transducers. We propose a piezoelectric energy harvester, to be worn on the knee-joint, that relies on the plucking technique to achieve frequency up-conversion. During a plucking action, a piezoelectric bimorph is deflected by a plectrum; when released due to loss of contact, the bimorph is free to vibrate at its resonant frequency, generating electrical energy with the highest efficiency. A prototype, featuring four PZT-5H bimorphs, was built and is here studied in a knee simulator which reproduces the gait of a human subject. Biomechanical data were collected with a marker-based motion capture system while the subject was carrying a selection of backpack loads. The paper focuses on the energy generation of the harvester and how this is affected by the backpack load. By altering the gait, the backpack load has a measurable effect on performance: at the highest load of 24 kg, a minor reduction in energy generation (7%) was observed and the output power is reduced by 10%. Both are so moderate to be practically unimportant. The average power output of the prototype is 2.06 ± 0.3 mW, which can increase significantly with further optimization. (paper)

  1. Development of blood extraction system designed by female mosquito's blood sampling mechanism for bio-MEMS

    Science.gov (United States)

    Tsuchiya, Kazuyoshi; Nakanishi, Naoyuki; Nakamachi, Eiji

    2005-02-01

    A compact and wearable wristwatch type Bio-MEMS such as a health monitoring system (HMS) to detect blood sugar level for diabetic patient, was newly developed. The HMS consists of (1) a indentation unit with a microneedle to generate the skin penetration force using a shape memory alloy(SMA) actuator, (2) a pumping unit using a bimorph PZT piezoelectric actuator to extract the blood and (3) a gold (Au) electrode as a biosensor immobilized GOx and attached to the gate electrode of MOSFET to detect the amount of Glucose in extracted blood. GOx was immobilized on a self assembled spacer combined with an Au electrode by the cross-link method using BSA as an additional bonding material. The device can extract blood in a few microliter through a painless microneedle with the negative pressure by deflection of the bimorph PZT piezoelectric actuator produced in the blood chamber, by the similar way the female mosquito extracts human blood with muscle motion to flex or relax. The performances of the liquid sampling ability of the pumping unit through a microneedle (3.8mm length, 100μm internal diameter) using the bimorph PZT piezoelectric microactuator were measured. The blood extraction micro device could extract human blood at the speed of 2μl/min, and it is enough volume to measure a glucose level, compared to the amount of commercial based glucose level monitor. The electrode embedded in the blood extraction device chamber could detect electrons generated by the hydrolysis of hydrogen peroxide produced by the reaction between GOx and glucose in a few microliter extracted blood, using the constant electric current measurement system of the MOSFET type hybrid biosensor. The output voltage for the glucose diluted in the chamber was increased lineally with increase of the glucose concentration.

  2. Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling

    Institute of Scientific and Technical Information of China (English)

    James G Brasseur; Mark A Nicosia; Anupam Pal; Larr S Miller

    2007-01-01

    We summarize from previous works the functions of circular vs. longitudinal muscle in esophageal peristaltic bolus transport using a mix of experimental data, the conservation laws of mechanics and mathematical modeling. Whereas circular muscle tone generates radial closure pressure to create a local peristaltic closure wave, longitudinal muscle tone has two functions, one physiological with mechanical implications, and one purely mechanical. Each of these functions independently reduces the tension of individual circular muscle fibers to maintain closure as a consequence of shortening of longitudinal muscle locally coordinated with increasing circular muscle tone. The physiological function is deduced by combining basic laws of mechanics with concurrent measurements of intraluminal pressure from manometry, and changes in cross sectional muscle area from endoluminal ultrasound from which local longitudinal shortening (LLS) can be accurately obtained. The purely mechanical function of LLS was discovered from mathematical modeling of peristaltic esophageal transport with the axial wall motion generated by LLS. Physiologically, LLS concentrates circular muscle fibers where closure pressure is highest.However, the mechanical function of LLS is to reduce the level of pressure required to maintain closure. The combined physiological and mechanical consequences of LLS are to reduce circular muscle fiber tension and power by as much as 1/10 what would be required for peristalsis without the longitudinal muscle layer, a tremendous benefit that may explain the existence of longitudinal muscle fiber in the gut. We also review what is understood of the role of longitudinal muscle in esophageal emptying, reflux and pathology.

  3. Tunable optical lens array using viscoelastic material and acoustic radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Hatanaka, Megumi [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsutacho, Midoriku, Yokohama 226-8503 (Japan)

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  4. Development of large aperture composite adaptive optics

    Czech Academy of Sciences Publication Activity Database

    Kmetík, Viliam; Vítovec, Bohumil; Jiran, L.; Němcová, Š.; Zicha, J.; Inneman, A.; Mikuličková, L.; Pavlica, R.

    Vol. 9442. Bellingham: SPIE-INT SOC OPTICAL ENGINEERING, 2015 - (Kovačičinová, J.; Vít, T.), 94420L-94420L. (SPIE). ISBN 978-1-62841-557-5. ISSN 0277-786X. [Optics and Measurement Conference 2014 (OaM 2014). Liberec (CZ), 07.10.2014-10.10.2014] R&D Projects: GA TA ČR TA01010878 Institutional support: RVO:61389021 Keywords : Large aperture * adaptive optics * deformable mirror * bimorph deformable mirror * composite optics Subject RIV: BH - Optics, Masers, Lasers http://dx.doi.org/10.1117/12.2175713 .

  5. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature

    International Nuclear Information System (INIS)

    The measurement of low-frequency (10-2-103 Hz) minute magnetic field variations (10-12 Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements

  6. A versatile multi-user polyimide surface micromachinning process for MEMS applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    This paper reports a versatile multi-user micro-fabrication process for MEMS devices, the \\'Polyimide MEMS Multi-User Process\\' (PiMMPs). The reported process uses polyimide as the structural material and three separate metallization layers that can be interconnected depending on the desired application. This process enables for the first time the development of out-of-plane compliant mechanisms that can be designed using six different physical principles for actuation and sensing on a wafer from a single fabrication run. These principles are electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing, thermocouple-based sensing and radio frequency transmission and reception. © 2015 IEEE.

  7. A magnetoelectric composite based signal generator

    Science.gov (United States)

    Fetisov, Y. K.; Serov, V. N.; Fetisov, L. Y.; Makovkin, S. A.; Viehland, D.; Srinivasan, G.

    2016-05-01

    Self-oscillations in an active loop consisting of a wide-band amplifier and a magnetoelectric composite in the feedback circuit have been observed. The composite with a ferroelectric lead zirconate titanate bimorph and ferromagnetic Metglas serves as a resonator that determines the frequency of oscillations and provides the feedback voltage. Under amplitude balance and phase matching conditions, the device generated signals at 2.3 kHz, at the bending resonance frequency of the composite. The oscillations were observed over a specific range of magnetic bias H. The shape of the signal generated is dependent on electrical circuit parameters and magnitude and orientation of H.

  8. Highly sensitive automated setup for measuring surface photovoltage spectra

    Science.gov (United States)

    Germanova, K.; Nikolov, L.; Hardalov, Ch.

    1989-04-01

    We present an automated experimental setup for dc measurement of surface photovoltage (SPV) spectra in wide spectral and/or temperature ranges. A Pt boss, sealed on a bimorphic piezoelement, has been used as a small area vibrating electrode and a programmable digital-to-analog convertor (DAC) as a source of compensation. In addition, a combination of automatic data acquisition and statistical analysis has been applied, thus ensuring reliability and stability of SPV measurements. Moreover, the automated setup provides a high sensitivity and objectivity of SPV investigations.

  9. Tunable optical lens array using viscoelastic material and acoustic radiation force

    International Nuclear Information System (INIS)

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively

  10. Characteristic of TiNi(Cu) shape memory thin film based on micropump

    Science.gov (United States)

    Zhang, Huijun; Qiu, Chengjun

    2009-07-01

    Shape memory thin films offer a unique combination of novel properties and have the potential to become a primary actuating mechanism for micropumps. In this study, a micropump driven by TiNiCu shape memory thin film is designed and fabricated. The micropump is composed of a TiNiCu/Si bimorph driving membrane, a pump chamber and two inlet and outlet check valves. The property of TiNiCu films and driving capacity of TiNiCu/Si bimorph driving membrane are investigated. By using the recoverable force of TiNiCu thin film and biasing force of silicon membrane, the actuation diaphragm realizes reciprocating motion effectively. Experimental results show that the film surface appears a smooth and featureless morphology without any cracks, and the hysteresis width ΔT of TiNiCu film is about 2-3°C, the micropump driving by TiNiCu film has good performance, such as high pumping yield, high working frequency, stable driving capacity, and long fatigue life time.

  11. Research on an inertial piezoelectric actuator for a micro in-pipe robot

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-xin; SUN Bao-yuan

    2006-01-01

    A new kind of inertial piezoelectric actuator for a micro in-pipe robot is proposed and studied. The actuator is composed of a body, corresponding to a mass rod, and four elastic legs. Each leg is a composite piezoelectric bimorph beam, made up of a middle metal element, an upper and lower piezoelectric elements. The mechanism is driven by an asymmetric waveform voltage, such as saw-toothed waveform, and utilizes the dynamic relationship between the maximum static friction force and the inertial force. To study the actuator, firstly, the constituent equation of a composite piezoelectric bimorph under both applied voltage and external force was inferred by thermodynamics. Secondly, the dynamic model of the actuator was established analyzing the relationship between the locomotive states, viz. displacement and velocity, and design parameters, such as piezoelectric strain constant, elastic modulus, length, width and thickness of the piezoelectric element, actuator mass, and driving voltage. At last, the dynamic equation was solved and the theoretical calculation of the inherent frequency was more consistent with the experimental data, which proved the rationality of the model. All these lay a theoretical foundation of the micro actuator parameter optimization and more research on a micro robot.

  12. Fabrication of functionally graded PZT/Pt piezoelectric actuators; PZT/Pt den'atsu actuator no keisha kinoka

    Energy Technology Data Exchange (ETDEWEB)

    Terakubo, N.; Li, J.F.; Ono, M.; Watanabe, R. [Tohoku University, Sendai (Japan)

    2000-11-15

    Piezoelectric materials have received increasing attention in the field of electromechanical system because they can readily transfer an electrical signal to a mechanical movement. Unimorph and bimorph actuators that contain a piezoelectric plate and a metal plate are widely used to generate a larger bending displacement than an extensional-mode transducer. However, degradation may occur at the organic bonding interfaces after long time service. In this work, to develop a functionally graded PZT/Pt piezoelectric actuator, PZT/Pt composites with various composition ratios were prepared and characterized. (1) Dense PZT/Pt composite samples without any chemical reaction between the PZT and Pt phases were obtained by sintering in air at 1,200 degree C for 1 h. (2) The PZT/Pt composites that contained 20vol% Pt or less exhibited dielectric and piezoelectric properties, with piezoelectric constant decreasing with increasing Pt content. (3) FGM PZT/Pt bimorph actuators were designed using Taya's model and successfully fabricated via powder metallurgical routes. (author)

  13. Structure–performance relationships for cantilever-type piezoelectric energy harvesters

    International Nuclear Information System (INIS)

    This study provides comprehensive analysis of the structure–performance relationships in cantilever-type piezoelectric energy harvesters. It provides full understanding of the effect of all the practical global control variables on the harvester performance. The control variables considered for the analysis were material parameters, areal and volumetric dimensions, and configuration of the inactive and active layers. Experimentally, the output power density of the harvester was maximum when the shape of the beam was close to a square for a constant bending stiffness and a fixed beam area. Through analytical modeling of the effective stiffness for the piezoelectric bimorph, the conditions for enhancing the bending stiffness within the same beam volume as that of a conventional bimorph were identified. The harvester configuration with beam aspect ratio of 0.86 utilizing distributed inactive layers exhibited an giant output power of 52.5 mW and power density of 28.5 mW cm−3 at 30 Hz under 6.9 m s−2 excitation. The analysis further indicates that the trend in the output power with varying damping ratio is dissimilar to that of the efficiency. In order to realize best performance, the harvester should be designed with respect to maximizing the magnitude of output power.

  14. Structure–performance relationships for cantilever-type piezoelectric energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kyung-Hoon, E-mail: kh97.cho@samsung.com, E-mail: spriya@vt.edu; Park, Hwi-Yeol; Heo, Jin S. [Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712 (Korea, Republic of); Priya, Shashank, E-mail: kh97.cho@samsung.com, E-mail: spriya@vt.edu [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Virginia 24061 (United States)

    2014-05-28

    This study provides comprehensive analysis of the structure–performance relationships in cantilever-type piezoelectric energy harvesters. It provides full understanding of the effect of all the practical global control variables on the harvester performance. The control variables considered for the analysis were material parameters, areal and volumetric dimensions, and configuration of the inactive and active layers. Experimentally, the output power density of the harvester was maximum when the shape of the beam was close to a square for a constant bending stiffness and a fixed beam area. Through analytical modeling of the effective stiffness for the piezoelectric bimorph, the conditions for enhancing the bending stiffness within the same beam volume as that of a conventional bimorph were identified. The harvester configuration with beam aspect ratio of 0.86 utilizing distributed inactive layers exhibited an giant output power of 52.5 mW and power density of 28.5 mW cm{sup −3} at 30 Hz under 6.9 m s{sup −2} excitation. The analysis further indicates that the trend in the output power with varying damping ratio is dissimilar to that of the efficiency. In order to realize best performance, the harvester should be designed with respect to maximizing the magnitude of output power.

  15. Piezoelectric Energy Harvesting in Internal Fluid Flow

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2015-10-01

    Full Text Available We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  16. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  17. Adaptive optics ophthalmologic systems using dual deformable mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  18. An evaluation of piezoelectric spoilers for missile flight control

    Science.gov (United States)

    August, James A.

    Advances in aerodynamic flight controls can increase performance and lower the cost of guided weapons. Research at The University of Texas at Arlington has focused on using active materials to produce a lightweight, low-cost, missile fin that can be used on subsonic and supersonic weapons. This dissertation describes the design, construction, and testing of one such aerodynamic control device, consisting of a circular arc spoiler integrated with a piezoelectric bimorph actuator. As part of this dissertation, an examination of state-of-the-art active materials technology was conducted to select an actuator material compatible with guided weapon operating conditions. An examination of state-of-the-art aerodynamic "active structures" research was also conducted to identify aerodynamic control schemes suitable for integration with guided weapon control fins. The aerodynamic controls schemes examined include: the all-moving wing, wing twist, discrete flaps, continuous flaps, jet spoilers, and mechanical spoilers. After determining the advantages and disadvantages of each control device the combination of a mechanical spoiler and piezoelectric bimorph was selected for further research. A missile fin model using an integrated piezoelectric circular-arc spoiler was designed, built, and tested in a subsonic wind tunnel at speeds up to 210 ft/s (64 m/s). Aerodynamic quantities presented include CL, CL/CD, and C M as functions of spoiler displacement. Actuator related quantities presented include displacement vs. input voltage, force vs. input voltage, and spoiler bandwidth.

  19. Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion

    International Nuclear Information System (INIS)

    An impact-driven piezoelectric energy harvester from human motion is proposed in this paper. A high-frequency PZT-5A bimorph cantilever beam with attached proof mass at the free end was selected. A frequency up-conversion strategy was realized using impulse force generated by human motion. An aluminum prototype was attached to the leg of a person on a treadmill and measurements taken of the dissipated electric energy across multiple resistances over a range of walking speeds. The outer dimensions of this prototype are 90 mm × 40 mm × 24 mm. It has been shown that the average output voltage generated by the piezoelectric bimorph increases sequentially with a faster walking speed, the power varies with the external resistances and maximum levels occur at the optimal resistance, which is consistent with the simulation result. An open circuit voltage of 2.47 V and maximum average power of 51 μW can be achieved across a 20 kΩ external load resistance and 5 km h−1 walking speed. Experimental results reveal that the impact-driven piezoelectric energy harvesting system mounted on a person’s leg has the potential for driving wearable devices. (paper)

  20. Nonlinear numerical modelling and experimental validation of multilayer piezoelectric vibration energy scavengers

    Science.gov (United States)

    Blažević, D.; Zelenika, S.

    2015-05-01

    Scavenging of low-level ambient vibrations i.e. the conversion of kinetic into electric energy, is proven as effective means of powering low consumption electronic devices such as wireless sensor nodes. Cantilever based scavengers are characterised by several advantages and thus thoroughly investigated; analytical models based on a distributed parameter approach, Euler-Bernoulli beam theory and eigenvalue analysis have thus been developed and experimentally verified. Finite element models (FEM) have also been proposed employing different modelling approaches and commercial software packages with coupled analysis capabilities. An approach of using a FEM analysis of a piezoelectric cantilever bimorph under harmonic excitation is used in this work. Modal, harmonic and linear and nonlinear transient analyses are performed. Different complex dynamic effects are observed and compared to the results obtained by using a distributed parameter model. The influence of two types of finite elements and three mesh densities is also investigated. A complex bimorph cantilever, based on commercially available Midé Technology® Volture energy scavengers, is then considered. These scavengers are characterised by an intricate multilayer structure not investigated so far in literature. An experimental set-up is developed to evaluate the behaviour of the considered class of devices. The results of the modal and the harmonic FEM analyses of the behaviour of the multilayer scavengers are verified experimentally for three different tip masses and 12 different electrical load values. A satisfying agreement between numerical and experimental results is achieved.

  1. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    Science.gov (United States)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  2. Nanofluid transport in a living soft microtube

    International Nuclear Information System (INIS)

    The mechanism of hydrodynamic transport of nanoparticles in living tissues by intrinsic lymphatic pumping remains one of the fundamental questions in the field of nanomedicine. However, despite its importance, direct visualization of the nanofluid transport mechanism has not been achieved. In this article, we report a novel in situ fluorescence bioimaging method for observing real-time microflow patterns of nanofluids confined in a contracting and expanding soft microtube. This method allows for physiological monitoring of spatiotemporally resolved microfluidic behaviour and channel undulation during the peristaltic transport of fluorescent nanoparticle suspensions by lymph vessels embedded in bulky tissues at the location of the hindlimb. The fluorescent nanofluid conferred a high optical contrast for the visualization of the lymphatic microtube, with which the concentration and viscosity of the nanofluid could be determined. The nanofluid and microtube mechanics of the hindlimb lymph vessels exhibited similar behaviours as the previously described base fluid flow of peristaltic mesenteric lymph vessels. Specifically, the microtube contraction and expansion induced increased forward flows, and a reverse flow developed at the maximum contraction, all of which corresponded to Poiseuille flow and implied that higher tube wall shear stress was related to increased axial flow velocity. On the other hand, our study identified a highly heterogeneous flow pattern that could appear during the microtube expansion phase, whose axial velocity profile remarkably deviated from the Hagen–Poiseuille equation. In addition, the peristaltic pumping power was estimated to be on the nanowatt order of magnitude. Finally, we discuss the possible applications of this nanofluidic model system in the context of nanobiotechnology. (paper)

  3. Uterine contractions evaluated on cine MR imaging in patients with uterine leiomyomas

    International Nuclear Information System (INIS)

    Purpose: Submucosal leiomyoma is one of the most recognized causes of infertility and habitual abortion. The purpose of this study is to evaluate uterine peristalsis, a cycle-related inherent contractility of uterus probably responsible for sperm transport and conservation of pregnancy, in patients with uterine leiomyomas using cine magnetic resonance (MR) imaging. Materials and methods: Study population consisted of 26 female patients (age range: 19-51 years, mean: 41 years), in which 16 patients had submucosal leiomyomas and 10 patients had intramural or subserosal leiomyomas. We prospectively performed MR imaging of the midsagittal plane of uterus using 1.5 T magnet (Symphony, Siemens Medical Systems) with a body array coil, and obtained 60 half-Fourier acquisition single shot turbo spin echo (HASTE) images (Echo time=80 ms, FOV=300 mm, slice thickness 5 mm, matrix 256x256) within 2 min, and displayed them on cine mode at 12x faster than real speed. Evaluated were peristaltic movements at the endometral-myometrial junction and focal myometrial movements, adjacent to leiomyomas, regarding presence, direction, frequency, and conduction. Results: The peristaltic movements were identified in 12/16 patients with submucosal lesions and 10/10 with other leiomyomas. The frequency and direction were cycle-related. Loss of peristalsis was noted adjacent to submucosal myomas in 4/12 patients, but was not in others. Focal myometrial movements were noted in 9/16 patients with submucosal myomas, but not in others. Conclusions: Uterine peristaltic movements were partly interrupted by submucosal leiomoymas, but not by myometrial or subserosal leiomyomas. Loss of peristalsis and focal myometrial movements was noted only adjacent to submucosal leiomyomas. These findings are considered to represent dysfunctional contractility, and may be related with pregnancy loss

  4. Nanofluid transport in a living soft microtube

    Science.gov (United States)

    Sung, Baeckkyoung; Kim, Se Hoon; Lee, Sungwoo; Lim, Jaekwan; Lee, Jin-Kyu; Soh, Kwang-Sup

    2015-09-01

    The mechanism of hydrodynamic transport of nanoparticles in living tissues by intrinsic lymphatic pumping remains one of the fundamental questions in the field of nanomedicine. However, despite its importance, direct visualization of the nanofluid transport mechanism has not been achieved. In this article, we report a novel in situ fluorescence bioimaging method for observing real-time microflow patterns of nanofluids confined in a contracting and expanding soft microtube. This method allows for physiological monitoring of spatiotemporally resolved microfluidic behaviour and channel undulation during the peristaltic transport of fluorescent nanoparticle suspensions by lymph vessels embedded in bulky tissues at the location of the hindlimb. The fluorescent nanofluid conferred a high optical contrast for the visualization of the lymphatic microtube, with which the concentration and viscosity of the nanofluid could be determined. The nanofluid and microtube mechanics of the hindlimb lymph vessels exhibited similar behaviours as the previously described base fluid flow of peristaltic mesenteric lymph vessels. Specifically, the microtube contraction and expansion induced increased forward flows, and a reverse flow developed at the maximum contraction, all of which corresponded to Poiseuille flow and implied that higher tube wall shear stress was related to increased axial flow velocity. On the other hand, our study identified a highly heterogeneous flow pattern that could appear during the microtube expansion phase, whose axial velocity profile remarkably deviated from the Hagen-Poiseuille equation. In addition, the peristaltic pumping power was estimated to be on the nanowatt order of magnitude. Finally, we discuss the possible applications of this nanofluidic model system in the context of nanobiotechnology.

  5. Uterine contractions evaluated on cine MR imaging in patients with uterine leiomyomas

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki E-mail: mizuki@mbox.kyoto-inet.or.jpnishinomizuki@hotmail.com; Togashi, Kaori; Nakai, Asako; Hayakawa, Katsumi; Kanao, Shotarou; Iwasaku, Kazuhiro; Fujii, Shingo

    2005-01-01

    Purpose: Submucosal leiomyoma is one of the most recognized causes of infertility and habitual abortion. The purpose of this study is to evaluate uterine peristalsis, a cycle-related inherent contractility of uterus probably responsible for sperm transport and conservation of pregnancy, in patients with uterine leiomyomas using cine magnetic resonance (MR) imaging. Materials and methods: Study population consisted of 26 female patients (age range: 19-51 years, mean: 41 years), in which 16 patients had submucosal leiomyomas and 10 patients had intramural or subserosal leiomyomas. We prospectively performed MR imaging of the midsagittal plane of uterus using 1.5 T magnet (Symphony, Siemens Medical Systems) with a body array coil, and obtained 60 half-Fourier acquisition single shot turbo spin echo (HASTE) images (Echo time=80 ms, FOV=300 mm, slice thickness 5 mm, matrix 256x256) within 2 min, and displayed them on cine mode at 12x faster than real speed. Evaluated were peristaltic movements at the endometral-myometrial junction and focal myometrial movements, adjacent to leiomyomas, regarding presence, direction, frequency, and conduction. Results: The peristaltic movements were identified in 12/16 patients with submucosal lesions and 10/10 with other leiomyomas. The frequency and direction were cycle-related. Loss of peristalsis was noted adjacent to submucosal myomas in 4/12 patients, but was not in others. Focal myometrial movements were noted in 9/16 patients with submucosal myomas, but not in others. Conclusions: Uterine peristaltic movements were partly interrupted by submucosal leiomoymas, but not by myometrial or subserosal leiomyomas. Loss of peristalsis and focal myometrial movements was noted only adjacent to submucosal leiomyomas. These findings are considered to represent dysfunctional contractility, and may be related with pregnancy loss.

  6. Homogeneous-heterogeneous reaction effects in peristalsis through curved geometry

    Science.gov (United States)

    Hayat, Tasawar; Tanveer, Anum; Alsaadi, Fuad; Alotaibi, Naif D.

    2015-06-01

    This paper looks at the influence of homogeneous-heterogeneous reactions on the peristaltic transport of non-Newtonian fluid in a curved channel with wall properties. Constitutive relations for thermodynamic third grade material are utilized in the problem development. An electrically conducting fluid in the presence of radial applied magnetic field is considered. The governing flow equations are developed in the presence of viscous heating. Mathematical computations are simplified employing long wavelength and low Reynolds number considerations. The solutions for velocity, temperature, concentration and heat transfer coefficient are obtained and examined. The features of sundry parameters are analyzed by plotting graphs.

  7. Homogeneous-heterogeneous reaction effects in peristalsis through curved geometry

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    2015-06-01

    Full Text Available This paper looks at the influence of homogeneous-heterogeneous reactions on the peristaltic transport of non-Newtonian fluid in a curved channel with wall properties. Constitutive relations for thermodynamic third grade material are utilized in the problem development. An electrically conducting fluid in the presence of radial applied magnetic field is considered. The governing flow equations are developed in the presence of viscous heating. Mathematical computations are simplified employing long wavelength and low Reynolds number considerations. The solutions for velocity, temperature, concentration and heat transfer coefficient are obtained and examined. The features of sundry parameters are analyzed by plotting graphs.

  8. Homogeneous-heterogeneous reaction effects in peristalsis through curved geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Tanveer, Anum, E-mail: qau14@yahoo.com; Alsaadi, Fuad [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alotaibi, Naif D. [Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-06-15

    This paper looks at the influence of homogeneous-heterogeneous reactions on the peristaltic transport of non-Newtonian fluid in a curved channel with wall properties. Constitutive relations for thermodynamic third grade material are utilized in the problem development. An electrically conducting fluid in the presence of radial applied magnetic field is considered. The governing flow equations are developed in the presence of viscous heating. Mathematical computations are simplified employing long wavelength and low Reynolds number considerations. The solutions for velocity, temperature, concentration and heat transfer coefficient are obtained and examined. The features of sundry parameters are analyzed by plotting graphs.

  9. Mixed convection flow of nanofluid in presence of an inclined magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the mixed convection peristaltic flow of nanofluid in an inclined asymmetric channel. The fluid is conducting in the presence of inclined magnetic field. The governing equations are modelled. Mathematical formulation is completed through long wavelength and low Reynolds number approach. Numerical solution to the nonlinear analysis is made by shooting technique. Attention is mainly focused to the effects of Brownian motion and thermophoretic diffusion of nanoparticle. Results for velocity, temperature, concentration, pumping and trapping are obtained and analyzed in detail.

  10. On-line monitoring of Glucose and penicillin by sequential injection analysis

    DEFF Research Database (Denmark)

    Min, R.W.; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    A sequential injection analysis (SIA) system has been developed for on-line monitoring of glucose and penicillin during cultivations of the filamentous fungus Penicillium chrysogenum. The SIA system consists of a peristaltic pump, an injection valve, two piston pumps, two multi-position valves and...... a detector. The glucose analyzer is based on an enzymatic reaction using glucose oxidase, which converts glucose to glucono-lactone with formation of hydrogen peroxide and subsequent detection of H2O2 by a chemiluminescence reaction involving luminol. The penicillin analysis is based on formation of...

  11. Technique for injection into the sciatic nerve of the mouse for quantitative in vivo metabolic studies

    International Nuclear Information System (INIS)

    In this paper we describe a technique for intraneural injections, applicable to mouse peripheral nerves, which, compared with previous techniques, reduces trauma to the nerves and increases the level and reduces the variability of label recovery. Our technique employs glass needles (tip diameter, 50 micron) linked to a peristaltic pump by polyethylene tubing to inject small volumes (in the microliter range) of radiolabeled substrate solutions into mouse sciatic nerves, and allows the recovery of 20.9 +/- 1.9% (mean +/- standard deviation) and 30.5 +/- 4.8% of the injected radioactivity for 2 microliter [3H]acetate and 0.5 microliter of [3H]stearate, respectively

  12. Role of cineoesophageal scintigraphy in primary and secondary oesophageal motility disorders. About a 12000 radionuclide transit study experience; Place de la cine-oesophagoscintigraphie dans les troubles moteurs oesophagiens primitifs et secondaires. A propos de 12000 explorations

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, J.; Role, C.; Imbert, Y.

    1996-12-31

    Cineoesophageal scintigraphy (COS) and evaluation of oesophageal motility disorders. A 12 000 COS experience with {sup 99m}TC-sulfur colloid radiolabeled liquids is detailed. Functional qualitative and quantitative isotopic imaging parameters describe the propulsion abnormalities: mainly achalasia, diffuse esophageal spasm, nutcracker esophagus, non-specific motor disorders, systemic sclerosis, diabetes. Respective advantages and drawbacks of manometry and scintigraphy are discussed. Manometry only can measure pressures, scintigraphy only can measure bolus propulsion by peristaltic waves. Physiological and comfortable conditions, sensitivity, quantitative functional imaging, evidence of lung aspiration when swallowing advantage. (authors). 117 refs., 14 figs., 3 tabs.

  13. Role of cineoesophageal scintigraphy in primary and secondary oesophageal motility disorders. About a 12000 radionuclide transit study experience

    International Nuclear Information System (INIS)

    Cineoesophageal scintigraphy (COS) and evaluation of oesophageal motility disorders. A 12 000 COS experience with 99mTC-sulfur colloid radiolabeled liquids is detailed. Functional qualitative and quantitative isotopic imaging parameters describe the propulsion abnormalities: mainly achalasia, diffuse esophageal spasm, nutcracker esophagus, non-specific motor disorders, systemic sclerosis, diabetes. Respective advantages and drawbacks of manometry and scintigraphy are discussed. Manometry only can measure pressures, scintigraphy only can measure bolus propulsion by peristaltic waves. Physiological and comfortable conditions, sensitivity, quantitative functional imaging, evidence of lung aspiration when swallowing advantage. (authors). 117 refs., 14 figs., 3 tabs

  14. Polychlorinated biphenyls (PCB) analysis report for solid sample from 219S tank 101

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, L.A.

    1998-02-04

    One waste sample that was obtained with solids from tank 101 of 219S via a peristaltic pump equipped with a stainless steel tube and Norprene tubing (Phthalate free) was obtained in a glass jar with teflon lid was analyzed (with duplicate, matrix spike, and matrix spike duplicate) for PCBs as Aroclor mixtures by the Inorganic/Organic Chemistry Group. A soxhlet extraction procedure was used for extraction of the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). Results are presented.

  15. Modelling and simulation of diffusive processes methods and applications

    CERN Document Server

    Basu, SK

    2014-01-01

    This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport

  16. Homogeneous-heterogeneous reaction effects in peristalsis through curved geometry

    International Nuclear Information System (INIS)

    This paper looks at the influence of homogeneous-heterogeneous reactions on the peristaltic transport of non-Newtonian fluid in a curved channel with wall properties. Constitutive relations for thermodynamic third grade material are utilized in the problem development. An electrically conducting fluid in the presence of radial applied magnetic field is considered. The governing flow equations are developed in the presence of viscous heating. Mathematical computations are simplified employing long wavelength and low Reynolds number considerations. The solutions for velocity, temperature, concentration and heat transfer coefficient are obtained and examined. The features of sundry parameters are analyzed by plotting graphs

  17. Complex radioisotopic examination of renal functions using SOPHA MEDICAL program system

    International Nuclear Information System (INIS)

    Repeated isotopic scanning of the kidneys were made on a patient with complex renal diseases, on two consecutive days, in sitting and in lying position, resp. The scanning was done with 99mTc-MAG3 administered intravenously to the patient, starting computer scanning of gamma camera frames simultaneously. The data were evaluated by the SOPHA MEDICAL software of Sopha Medical GmbH, Frankfurt, Germany. It was observed that, in sitting position, the kidney perfusion, the early uptake, the tubular clearance and the ureter peristaltic are disturbed because of the compression of renal artery and ureter. These functions were recovered in the lying position. (R.P.) 14 refs.; 8 figs

  18. Polychlorinated biphenyls (PCB) analysis report for solid sample from 219S tank 101

    International Nuclear Information System (INIS)

    One waste sample that was obtained with solids from tank 101 of 219S via a peristaltic pump equipped with a stainless steel tube and Norprene tubing (Phthalate free) was obtained in a glass jar with teflon lid was analyzed (with duplicate, matrix spike, and matrix spike duplicate) for PCBs as Aroclor mixtures by the Inorganic/Organic Chemistry Group. A soxhlet extraction procedure was used for extraction of the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). Results are presented

  19. Space Station Environmental Control and Life Support System Purge Control Pump Assembly Modeling and Analysis

    Science.gov (United States)

    Schunk, R. Gregory; Hunt, Patrick L. (Technical Monitor)

    2001-01-01

    Preliminary results from a thermal/flow analysis of the Purge Control Pump Assembly (PCPA) indicate that pump performance (mass flow rate) is enhanced via cooling of the housing and lowering of the inlet vapor quality. Under a nominal operational profile (25% duty cycle or less), at the maximum motor dissipation, it appears that the peristaltic tubing temperature will still remain significantly below the expected UPA condenser temperature (78 F max versus approximately 105 F in the condenser) permitting condensation in the pump head.

  20. The Application of Flow Injection Technology to Automating Cold Vapor Mercury Analyses in Aquatic Ecosystems

    Directory of Open Access Journals (Sweden)

    TEODOROF, L.

    2009-02-01

    Full Text Available Based on flow injection techniques, FIMS is fully automated, fast, and cost-effective. The FIMS uses a high-performance single-beam optical system with a low pressure mercury lamp and solar-blind detector for maximum performance. The FIMS-400 has two stepper motor-driven peristaltic pumps for greater flexibility when used with optional accessories. FIMS is fully controlled from a personal computer using WinLab32 for AA software, a true Microsoft Windows-based program with an unparalleled offering of standard features, including a full range of analytical checks and quality control functions.

  1. Oesophageal food impaction in achalasia treated with Coca-Cola and nifedipine.

    Science.gov (United States)

    Koumi, Andriani; Panos, Marios Zenon

    2010-01-01

    Achalasia is characterised by the loss of peristaltic movement in the distal oesophagus and failure of the lower oesophageal sphincter relaxation, which results in impaired oesophageal emptying. We report a case of a 92-year-old frail woman with a history of achalasia, who presented with acute oesophageal obstruction due to impaction of a large amount of food material. She was treated successfully with nifedipine, in combination with Coca-Cola (original product, not sugar free), so avoiding the risks associated with repeated endoscopic intubation and piecemeal removal of the oesophageal content. PMID:22242073

  2. Computed tomography studies of human brain movements

    International Nuclear Information System (INIS)

    Rhythmic brain movements have been revealed by sets of sequential computed tomography scans of human brains (seen retrospectively to be normal). These scans have shown that both (unenhanced) brain parenchymal density and the shapes of the elements of the supratentorial ventricular/cisternal system are subject to wave motions having similar periods - ranging from 26 s through 56 s, 77-96 s, 109 s and 224 s to 224 X 2 s (or even longer), with good correlation between peak values. These motions, as well as phase variations between the waves, suggest a peristaltic movement of cerebrospinal fluid through the ventricular/cisternal system with progressive axial damping

  3. Slow rhythmic ventricular oscillations and parenchymal density variations shown by sequential CT scanning

    International Nuclear Information System (INIS)

    Rhythmic brain movements have been revealed by sets of sequential computerised tomography scans of human brains (seen retrospectively to be normal). These scans have shown that both (unenhanced) brain parenchymal density and the shapes of the elements of the supratentorial ventricular/cisternal system are subject to wave motions having similar periods-ranging from 26 s through 56 s, 77-96 s, 109 s, and 224 s to 224 x 2 s (or even longer), with good correlation between peak values. These motions, as well as phase variations between the waves suggest a peristaltic movement of CSF through the ventricular/cisternal system with progressive axial damping

  4. The MainSTREAM Component Platform: A Holistic Approach to Microfluidic System Design

    DEFF Research Database (Denmark)

    Sabourin, David; Skafte-Pedersen, Peder; Søe, Martin Jensen;

    2013-01-01

    A microfluidic component library for building systems driving parallel or serial microfluidic-based assays is presented. The components are a miniaturized eight-channel peristaltic pump, an eight-channel valve, sample-to-waste liquid management, and interconnections. The library of components was...... reaction chips; (2) highly parallel pumping and routing/valving capability; (3) methods to interface pumps and chip-to-liquid management systems; (4) means to construct a portable system; (5) reconfigurability/flexibility in system design; (6) means to interface to microscopes; and (7) compatibility with...

  5. Bioengineering fluid mechanics

    CERN Document Server

    Hung, Tin-kan

    2013-01-01

    This book highlights the basic concepts and equations for bioengineering flow processes. Physical concepts and meanings are emphasized while rigorous derivations are simplified, making it easier for self learning on some biological and medical flow processes. The well known Bernoulli equation in hydraulics is extended for pulsating flows, peristaltic flows and cardiac pumping. The dimensional analysis, model law and dimensionless equations can be related to computational models and experimental observations. The velocity vector imaging stored in echocardiograms can be used to analyze the pumping characteristics of the ventricular contraction. New topics included oxygen transport in membrane oxygenator and micro mixing of blood flow in capillary channels.

  6. Backflushing Filters for Field Processing of Water Samples Prior to Trace-Element Analyses

    Science.gov (United States)

    Kennedy, V.C.; Jenne, E.A.; Burchard, J.M.

    1976-01-01

    A portable unit is described for filtering water samples at field sites in such a manner that the filtrate is suitable for analysis not only of major constituents but also of trace elments at the mocrogram-per-liter level. A battery-operated peristaltic pump forces the water sample through medical-grade silicone tubing into and through an all-plastic in-line filter which can be backflushed when sediment clogs the filter membrane. Initial filtration rate exceeds 500 milliliter/minute and, because of the backflushing feature, a total time for filtering high-sediment-bearing waster samples is greatly reduced. (Woodard-USGS)

  7. Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals

    Science.gov (United States)

    Welberry, T. R.; Chan, E. J.; Goossens, D. J.; Heerdegen, A. P.

    2012-05-01

    Polymorphism occurs when the same molecular compound can crystallize in more than one distinct crystal structure. Its study is a field of great interest and activity. This is largely driven by its importance in the pharmaceutical industry, but polymorphism is also an issue in the pigments, dyes, and explosives industries. The polymorph formed by a compound generally exerts a strong influence on its solid-state properties. The polymorphic form of a drug molecule may affect the ease of manufacture and processing, shelf life, and most significantly the rate of uptake of the molecule by the human body. They can even vary in toxicity; one polymorph may be safe, while a second may be toxic. In this review of recently published work, we show how diffuse scattering experiments coupled with Monte Carlo (MC) computer modeling can aid in the understanding of polymorphism. Examples of the two common pharmaceuticals, benzocaine and aspirin, both of which are bimorphic, at ambient temperatures, are discussed.

  8. Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor

    Science.gov (United States)

    Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei

    2014-01-01

    The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.

  9. Piezoelectric energy harvester having planform-tapered interdigitated beams

    Science.gov (United States)

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  10. Remote light energy harvesting and actuation using shape memory alloy—piezoelectric hybrid transducer

    Science.gov (United States)

    Avirovik, Dragan; Kumar, Ashok; Bodnar, Robert J.; Priya, Shashank

    2013-05-01

    Shape memory alloys (SMAs) exhibit a memory effect which causes the alloy to return to its original shape when heated beyond the transformation temperature. In this study, we show that SMA can be heated remotely by laser and the resulting deformation can be converted into electricity through a piezoelectric bimorph. In addition, the laser actuated SMA deformation can also be used to provide controlled actuation. We provide experimental results demonstrating both the power harvesting and actuation behavior as a function of laser pulse rate. SMA used in this study exhibited higher absorption in the ultraviolet region which progressively decreased as the absorption wavelength increased. Raman analysis revealed TiO2 formation on the surface of SMA, whose concentration increased irreversibly with temperature. Negligible changes in the surface oxidation were detected in the working temperature range (<150 °C).

  11. Realization of cantilever arrays for parallel proximity imaging

    International Nuclear Information System (INIS)

    This paper reports on the fabrication and characterisation of self-actuating, and self-sensing cantilever arrays for large-scale parallel surface scanning. Each cantilever is integrated with a sharp silicon tip, a thermal-driven bimorph actuator, and a piezoresistive deflection sensor. Thus, the tip to the sample distance can be controlled individually for each cantilever. A radius of the tips below 10 nm is obtained, which enables nanometre in-plane surface imaging by Angstrom resolution in vertical direction. The fabricated cantilever probe arrays are also applicable for large-area manipulation, sub-10 nm metrology, bottom-up synthesis, high-speed gas analysis, for different bio-applications like recognition of DNA, RNA, or various biomarkers of a single disease, etc.

  12. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.

    Science.gov (United States)

    Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J

    2015-04-01

    MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems. PMID:25968784

  13. Biomimetic Cilia Based on MEMS Technology

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo Zhou; Zhi-wen Liu

    2008-01-01

    A review on the research of Micro Electromechanical Systems (MEMS) technology based biomimetic cilia is presented. Biomimetic cilia, enabled by the advancement of MEMS technology, have been under dynamic development for the past decade. After a brief description of the background of cilia and MEMS technology, different biomimetic cilia applications are reviewed. Biomimetic cilia micro-actuators, including micromachined polyimide bimorph biomimetic cilia micro-actuator, electro-statically actuated polymer biomimetic cilia micro-actuator, and magnetically actuated nanorod array biomimetic cilia micro-actuator, are presented. Subsequently micromachined underwater flow biomimetic cilia micro-sensor is studied, followed by acoustic flow micro-sensor. The fabrication of these MEMS-based biomimetic cilia devices, characterization of their physical properties, and the results of their application experiments are discussed.

  14. Synthesis of biomorphaus SiC-ceramics

    Directory of Open Access Journals (Sweden)

    Egelja Adela D.

    2007-01-01

    Full Text Available The carbothermal reduction processing of partially mineralized fir (Abies alba samples was used to obtain highly-porous SiC ceramics with cellular structure. The infiltration of TEOS (tetraetilortosilikat, Si(OC2H54 as a silica source, was conducted in order to carry out the mineralization process. Synthesis of the SiC was achieved with a C/SiO2 replica annealing at 1723 K in Ar atmosphere. The obtained samples were characterized using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and energy dispersive spectrometry (EDS. The experimental results revealed that the hierarchical bimorphous wood structure was preserved even after high-temperature treatment. Microstructural characterization of the ceramics revealed the presence of the P-SiC phase and traces of the a-SiC phase.

  15. Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields

    Science.gov (United States)

    Rao, M. N.; Tarun, S.; Schmidt, R.; Schröder, K.-U.

    2016-05-01

    In this article, we focus on static finite element (FE) simulation of piezoelectric laminated composite plates and shells, considering the nonlinear constitutive behavior of piezoelectric materials under large applied electric fields. Under the assumptions of small strains and large electric fields, the second-order nonlinear constitutive equations are used in the variational principle approach, to develop a nonlinear FE model. Numerical simulations are performed to study the effect of material nonlinearity for piezoelectric bimorph and laminated composite plates as well as cylindrical shells. In comparison to the experimental investigations existing in the literature, the results predicted by the present model agree very well. The importance of the present nonlinear model is highlighted especially in large applied electric fields, and it is shown that the difference between the results simulated by linear and nonlinear constitutive FE models cannot be omitted.

  16. Electrothermal MEMS parallel plate rotation for single-imager stereoscopic endoscopes.

    Science.gov (United States)

    Jang, Kyung-Won; Yang, Sung-Pyo; Baek, Seung-Hwan; Lee, Min-Suk; Park, Hyeon-Cheol; Seo, Yeong-Hyeon; Kim, Min H; Jeong, Ki-Hun

    2016-05-01

    This work reports electrothermal MEMS parallel plate-rotation (PPR) for a single-imager based stereoscopic endoscope. A thin optical plate was directly connected to an electrothermal MEMS microactuator with bimorph structures of thin silicon and aluminum layers. The fabricated MEMS PPR device precisely rotates an transparent optical plate up to 37° prior to an endoscopic camera and creates the binocular disparities, comparable to those from binocular cameras with a baseline distance over 100 μm. The anaglyph 3D images and disparity maps were successfully achieved by extracting the local binocular disparities from two optical images captured at the relative positions. The physical volume of MEMS PPR is well fit in 3.4 mm x 3.3 mm x 1 mm. This method provides a new direction for compact stereoscopic 3D endoscopic imaging systems. PMID:27137580

  17. Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. E.; Lee, S. K.; Lee, Y. G.; Kim, K. M.; Yang, Y. S.; Yang, W. S.; Kim, J. [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2012-01-15

    In this paper, we present the calculations and the results for vibration-energy-scavenging performances based on a piezoelectric single-crystal beam. Using the measured mechanical damping ratio and electro-mechanical coupling coefficient of a novel cantilever structure device, we calculated the output performances and compared them with the measured results. A device based on a bimorph cantilever structure with a proof mass was designed to have a natural resonance frequency of about 60 Hz, and the energy-scavenging capability of piezoelectric single crystal was measured. The results showed that several tens of AC volts and a few milliwatts power were achieved under a 0.1 g{sub rms} vibration condition. Also using this device and a commercial power management circuit, we performed Li-ion battery charging experiment.

  18. Flexible and Robust Multilayer Micro-Vibrational Harvesters for High Acceleration Environments

    International Nuclear Information System (INIS)

    This paper presents the fabrication and characterization of multilayer PVDF resonant micro-vibrational energy harvesters designed to withstand environments in which high levels of acceleration are present. The multilayer cantilevers are fabricated by combining two folded PVDF stacks into a multilayered, bimorph structure. This acts to increase the overall capacitance of the harvester, a problem that plaques PVDF cantilevers as a result of its low dielectric constant. Moderate powers (7 μW) are produced from the cantilevers even at high acceleration levels (20 g) due to the limited piezoelectric coefficient of PVDF; however, as a result of the high tensile strength and low elastic modulus of PVDF, the cantilevers are able to survive extremely high accelerations (> 4000 g) without breakage – a critical problem for harvesters based on brittle piezoelectric materials and substrates

  19. Degradation of Piezoelectric Materials for Energy Harvesting Applications

    International Nuclear Information System (INIS)

    The purpose of energy harvesting is to provide long term alternatives to replaceable batteries across a number of applications. Piezoelectric vibration harvesting provides advantages over other transduction methods due to the ability to generate large voltages even on a small scale. However, the operation in energy harvesting is different from typical sensors or actuators. The applied stress is often at the material limit in order to generate the maximum power output. Under these conditions, the degradation of the materials becomes an important factor for long term deployment. In this work bimorph piezoelectric beams were sub jected to lifetime testing through electromagnetic tip actuation for a large number of cycles. The results of two measurement series at different amplitudes are discussed. The dominant effect observed was a shift in mechanical resonance frequencies of the beams which could be very detrimental to resonant harvesters

  20. Monolithically integrated cantilevers with self-aligned tips for wavelength tuning in a photonic crystal cavity-based channel-drop filter

    International Nuclear Information System (INIS)

    A technology to monolithically integrate micro-bimorph cantilevers equipped with tips that are self-aligned with respect to the holes of a 2D photonic crystal cavity-based channel-drop filter is presented. On electrostatic actuation, the tips move into the holes and provide electromechano-optical modulation of light. The technology allows the fabrication of tips on specific photonic crystal holes by controlling the hole diameter and the sacrificial layer thickness. The integrated device is both mechanically and optically characterized. A 180 pm wavelength shift at the first band edge of the photonic crystal cavity-based channel-drop filter is measured on the application of a 2 V dc voltage to the cantilever. This CMOS-compatible device is designed to operate in the C-band of the telecommunication wavelengths and constitutes a promising candidate for future integrated all-optical devices

  1. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  2. Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Welberry, T.R.; Chan, E.J.; Goossens, D.J.; Heerdegen, A.P. (ANU)

    2012-04-30

    Polymorphism occurs when the same molecular compound can crystallize in more than one distinct crystal structure. Its study is a field of great interest and activity. This is largely driven by its importance in the pharmaceutical industry, but polymorphism is also an issue in the pigments, dyes, and explosives industries. The polymorph formed by a compound generally exerts a strong influence on its solid-state properties. The polymorphic form of a drug molecule may affect the ease of manufacture and processing, shelf life, and most significantly the rate of uptake of the molecule by the human body. They can even vary in toxicity; one polymorph may be safe, while a second may be toxic. In this review of recently published work, we show how diffuse scattering experiments coupled with Monte Carlo (MC) computer modeling can aid in the understanding of polymorphism. Examples of the two common pharmaceuticals, benzocaine and aspirin, both of which are bimorphic, at ambient temperatures, are discussed.

  3. Exploiting material softening in hard PZTs for resonant bandwidth enhancement

    Science.gov (United States)

    Leadenham, S.; Moura, A.; Erturk, A.

    2016-04-01

    Intentionally designed nonlinearities have been employed by several research groups to enhance the frequency bandwidth of vibration energy harvesters. Another type of nonlinear resonance behavior emerges from the piezoelectric constitutive behavior for high excitation levels and is manifested in the form of softening stiffness. This material nonlinearity does not result in the jump phenomenon in soft piezoelectric ceramics, e.g. PZT-5A and PZT-5H, due to their large internal dissipation. This paper explores the potential for wideband energy harvesting using a hard (relatively high quality factor) PZT-8 bimorph by exploiting its material softening. A wide range of base excitation experiments conducted for a set of resistive electrical loads confirms the frequency bandwidth enhancement.

  4. Design and initial validation of a wireless control system based on WSN

    Science.gov (United States)

    Yu, Yan; Li, Luyu; Li, Peng; Wang, Xu; Liu, Hang; Ou, Jinping

    2013-04-01

    At present, cantilever structure used widely in civil structures will generate continuous vibration by external force due to their low damping characteristic, which leads to a serious impact on the working performance and service time. Therefore, it is very important to control the vibration of these structures. The active vibration control is the primary means of controlling the vibration with high precision and strong adaptive ability. Nowadays, there are many researches using piezoelectric materials in the structural vibration control. Piezoelectric materials are cheap, reliable and they can provide braking and sensing method harmless to the structure, therefore they have broad usage. They are used for structural vibration control in a lot of civil engineering research currently. In traditional sensor applications, information exchanges with the monitoring center or a computer system through wires. If wireless sensor networks(WSN) technology is used, cabling links is not needed, thus the cost of the whole system is greatly reduced. Based on the above advantages, a wireless control system is designed and validated through preliminary tests. The system consists of a cantilever, PVDF as sensor, signal conditioning circuit(SCM), A/D acquisition board, control arithmetic unit, D/A output board, power amplifier, piezoelectric bimorph as actuator. DSP chip is used as the control arithmetic unit and PD control algorithm is embedded in it. PVDF collects the parameters of vibration, sends them to the SCM after A/D conversion. SCM passes the data to the DSP through wireless technology, and DSP calculates and outputs the control values according to the control algorithm. The output signal is amplified by the power amplifier to drive the piezoelectric bimorph for vibration control. The structural vibration duration reduces to 1/4 of the uncontrolled case, which verifies the feasibility of the system.

  5. Modeling and vibration control of an active membrane mirror

    Science.gov (United States)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  6. Preparation and characterization of ferroelectric thin layers for IR detection. Resume of Ph.D thesis

    International Nuclear Information System (INIS)

    The thesis is studying the ferroelectric thin films, stressing their pyroelectric properties (for applications in the IR detection). In the beginning there are presented the deposition methods used for obtaining ferroelectric thin films and some of the most important applications. An entire chapter is dedicated to the thermodynamic theory of ferroelectrics, the general presentation of a new deposition method (the sol-gel method) and to a short presentation of the characterization methods (structural and electrical) of the ferroelectric thin films. The structural characterization was made by RX diffraction and the electrical characterization was made by measuring the I-V and C-V characteristics, the polarization and the photoelectric parameters. It is described the deposition of Pb Ti O3 thin films using the sol-gel method. A buffer thin film of Ba Pb O3 - RF sputtered - was used for growing the Pb Ti O3 film because of its perovskivic structure. It was studied the electrical conduction in Ba Pb O3 films. Very important is the study of the photoelectric effect in Pb Ti O3/Si and Pb S/Pb Ti O3/Si heterostructures. In the last part an original pyroelectric detector realized by using a bimorph structure is proposed. On a Pt/Ti/Si O3/Si substrate by sol-gel method a bimorph system is deposited which consists in a basic film of PLZT 2/65/35 and a frontal film of PLZT 8/65/35. The sensitive element was defined by photolithography. The detailed discussion on the obtaining of the heterostructures and the realization of the detector are presented in the final part of this thesis. This resume contains a section describing the preparation of ferroelectric thin layers by the sol-gel method, a section describing the obtained results and the pertinent discussion and conclusions. (author) 20 figs., 1 tab., 27 refs

  7. Hyperpolarised sup 3 He gas production for magnetic resonance imaging of the human air ways

    CERN Document Server

    Fichele, S

    2002-01-01

    This thesis describes the experimental techniques, and methods employed in hyperpolarised sup 3 He gas production and magnetic resonance imaging of the human air-ways, using spin-echo sequences and MR tagging techniques. An in-house polariser utilising the metastability optical pumping technique was constructed. The main results of this work are concerned with engineering difficulties involved in compressing HP sup 3 He and a large proportion of this PhD thesis details the design, construction, and performance of an in-house built peristaltic compressor. In preliminary imaging experiments using RARE, high signal to noise projection images of the lungs were acquired using less than 0.5 cm sup 3 (STP) of purely polarised HP gas. Later, increased HP gas quantities (typically 10 cm sup 3) were obtained by employing the peristaltic compressor. Consequently we could acquire 10 mm thick slices spanning the entire lung following a single sup 3 He gas bolus administration. Finally, the first results using MR tagging t...

  8. Automation of cells of radiopharmaceuticals production

    International Nuclear Information System (INIS)

    The 67Ga is an important radiopharmaceutical used to identify inflammatory processes in chronic illnesses, diagnosis by image of tumors in soft tissues and the possibility to evaluate the result for therapeutic intervention. In the present work a module of 67Ga processing was developed with the objective to reduce the interventions in the hot cell, in order to avoid oxidation caused by metallic materials, and consuming in hoses of the peristaltic pumps, that release residues that blocked the valves used in the process. With materials such as: acrylic, PVC, PEEK e teflon and they are used vacuum as method (way) of fluid transferences instead of peristaltic pump in the majority of the procedures, with this improvements the system can make shorter the lengths of transference hoses, increasing the yield in the process with less interventions for maintenance and time exposure of the workers, guaranteeing the quality and reducing the time of the processing. using a mobile system for displacement of the processing module making in the cleanness and maintenance of the cell that works with radioactive material. Reducing the time of exposure dose of the workers in compliance with RDC-17 of ANVISA, which ruling the Good Manufacturing Practice Procedures. (author)

  9. A flow-batch analyzer with piston propulsion applied to automatic preparation of calibration solutions for Mn determination in mineral waters by ET AAS.

    Science.gov (United States)

    Almeida, Luciano F; Vale, Maria G R; Dessuy, Morgana B; Silva, Márcia M; Lima, Renato S; Santos, Vagner B; Diniz, Paulo H D; Araújo, Mário C U

    2007-10-31

    The increasing development of miniaturized flow systems and the continuous monitoring of chemical processes require dramatically simplified and cheap flow schemes and instrumentation with large potential for miniaturization and consequent portability. For these purposes, the development of systems based on flow and batch technologies may be a good alternative. Flow-batch analyzers (FBA) have been successfully applied to implement analytical procedures, such as: titrations, sample pre-treatment, analyte addition and screening analysis. In spite of its favourable characteristics, the previously proposed FBA uses peristaltic pumps to propel the fluids and this kind of propulsion presents high cost and large dimension, making unfeasible its miniaturization and portability. To overcome these drawbacks, a low cost, robust, compact and non-propelled by peristaltic pump FBA is proposed. It makes use of a lab-made piston coupled to a mixing chamber and a step motor controlled by a microcomputer. The piston-propelled FBA (PFBA) was applied for automatic preparation of calibration solutions for manganese determination in mineral waters by electrothermal atomic-absorption spectrometry (ET AAS). Comparing the results obtained with two sets of calibration curves (five by manual and five by PFBA preparations), no significant statistical differences at a 95% confidence level were observed by applying the paired t-test. The standard deviation of manual and PFBA procedures were always smaller than 0.2 and 0.1mugL(-1), respectively. By using PFBA it was possible to prepare about 80 calibration solutions per hour. PMID:19073119

  10. Effect of oral contraceptives on uterine peristalsis. Evaluation with MR imaging

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the effects of oral contraceptives (OCs) on uterine contractility using cine MR imaging. Thirty-six healthy female volunteers of reproductive age, 20 of whom were taking OCs, were evaluated at mid-cycle. MR images were acquired with a 1.5T magnet unit; 60 serial images were obtained every 3 s over 3 min by HASTE (half-Fourier acquired single-shot turbo spin-echo) in a mid-sagittal plane of the uterus. HASTE images were taken twice for each study and displayed in cine mode at 17 times real speed. Assessments were based on: a) detectability of uterine peristalsis on cine mode and b) peristaltic frequency and direction. Correlation between subjects taking OCs and the controls was examined. MR imaging demonstrated a marked decrease in the ability to identify uterine peristalsis in the subjects taking OCs (3/20 versus 16/16). Peristaltic frequency was less in OC users (0.4±0.2/min) than in the control group (2.3±0.5/mim). OCs markedly suppressed uterine peristalsis at mid-cycle. Suppressed peristalsis may result in suppression of sperm transport through the uterine cavity. (author)

  11. Measurements of Gastric Emptying by Biomagnetic Techniques

    Science.gov (United States)

    Vázquez, L. A.; Sosa, M.; Córdova, T.; Vargas, F. M.; Huerta, M. R.

    2006-09-01

    In the present work a new method to measure the average time of gastric emptying by using a magnetic tracer is showed, this work shows the application of foundations of the electromagnetic theory in the study of the gastrointestinal system. The presented technique is relatively cheap and can be used it to diagnose of diseases, is a noninvasive method, is a technique that does not use ionizing radiation. In this investigation was possible to measure the average time of gastric emptying with a very high precision. In this investigation measurements of 10 healthy volunteers were made, and an average time of gastric emptying of 36.45 minutes in the space of the time was obtained, in addition with the analysis to the signal by means of the use of a pass-band filter it was possible to measure the peristaltic frequencies of the stomach and an average time of 37.24 minutes in the space of frequencies. With this technique it is possible to obtain data of the walls of the stomach. A peristaltic frequency of 2.79 was obtained cpm (cycles per minute).

  12. Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms

    Science.gov (United States)

    Laramie, Matthew B.; Pilliod, David S.; Goldberg, Caren S.; Strickler, Katherine M.

    2015-01-01

    Environmental DNA (eDNA) analysis is an effective method of determining the presence of aquatic organisms such as fish, amphibians, and other taxa. This publication is meant to guide researchers and managers in the collection, concentration, and preservation of eDNA samples from lentic and lotic systems. A sampling workflow diagram and three sampling protocols are included as well as a list of suggested supplies. Protocols include filter and pump assembly using: (1) a hand-driven vacuum pump, ideal for sample collection in remote sampling locations where no electricity is available and when equipment weight is a primary concern; (2) a peristaltic pump powered by a rechargeable battery-operated driver/drill, suitable for remote sampling locations when weight consideration is less of a concern; (3) a 120-volt alternating current (AC) powered peristaltic pump suitable for any location where 120-volt AC power is accessible, or for roadside sampling locations. Images and detailed descriptions are provided for each step in the sampling and preservation process.

  13. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Directory of Open Access Journals (Sweden)

    Jorge Arrieta

    Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  14. Propulsor pneumático versátil e isento de pulsação para sistemas de análise em fluxo

    Directory of Open Access Journals (Sweden)

    Matos Renato C.

    2001-01-01

    Full Text Available Aquarium air pumps are proposed and evaluated as pneumatic liquid propulsion devices for flow injection and continuos flow analysis (FIA and CFA systems. This kind of pump is widely available at a very low cost and it can sustain a pressure around of 4 psi (0.28 bar indefinitely. By applying this air pressure onto a solution contained in a reservoir flask, it is possible to reach flow rates of up to 12.5 mL min-1 for circuits comprising reactors, made from 0.8 i.d. tubing with a length of 100 cm. The precise adjustment of flow rate below the maximum one can be made with a simplified needle valve or inserting in series a short length of capillary tube. The absence of flow pulsation is a definite advantage in comparison with peristaltic pumps, especially when amperometric detection is elected, as confirmed experimentally in FIA and CF applications.

  15. Uso da pressão gerada por uma coluna de água para controle da vazão em sistemas de análises em fluxo The use of pressure generated by a water column to control flow rates in flow analysis systems

    Directory of Open Access Journals (Sweden)

    Wallans T. P. dos Santos

    2007-01-01

    Full Text Available This work presents a new approach to control the flow rate in hydrodynamic flow experiments. The combination of air pressure generated by an aquarium air pump and the pressure generated by a water column were used for this purpose. This device supports a stable flow rate without pulsation for a long period of time. Furthermore, the flow rate can be easily controlled at various values in one or more streams. The performance of this approach was investigated using Fe(CN6(4- solutions in flowing systems using amperometric and voltammetric detection in wall-jet configuration. The results showed that the performance of the proposed device was better than a commercial peristaltic pump. It suggests that this approach can be used successfully in flow analysis systems.

  16. The neuropathic oesophagus. A radiographic and manometric study on the evolution of megaoesophagus in dogs with developing axonal neuropathy

    International Nuclear Information System (INIS)

    Dogs given the neurotoxin acrylamide develop peripheral neuropathy and megaoesophagus. Sequential radiographic and manometric studies on the oesophagus demonstrated that the initial abnormalities consisted of a progressive decrease in the proportion of swallows that initiated peristalsis and a gradual increase in oesophageal calibre. Regurgitation, peristaltic failure and oesophageal dilatation all appeared within three days. The eating behaviour and gait abnormalities quickly resolved on stopping the neurotoxin, but the oesophagus remained dilated for longer. Previous studies have suggested that the abnormalities present in dogs which are developing a distal axonal neuropathy or in some dogs with idiopathic megaoesophagus may be limited to the proprioceptive elements of the oesophageal innervation. The present study suggests that the progressive inefficiency in the transmission of swallows and changes in oesophageal calibre in dogs with evolving megaoesophagus may be a consequence of damage to these proprioceptive elements

  17. Primary pericardial extragastrointestinal stromal tumor: A case report and literature review

    Science.gov (United States)

    ARPACI, TANER; TOKAT, FATMA; ARPACI, RABIA BOZDOGAN; AKBAS, TUGANA; UGURLUER, GAMZE; YAVUZ, SINAN

    2015-01-01

    Gastrointestinal stromal tumors (GISTs) are the most prevalent mesenchymal tumors of the gastrointestinal tract. GISTs are considered to originate from the interstitial cells of Cajal, the pacemakers of the peristaltic activity of the gastrointestinal tract. More than 95% of GISTs express KIT protein and discovered on GIST-1. GISTs may also be encountered in locations outside the gastrointestinal tract, in which case they are referred to as extra-GISTs (EGISTs) and often behave more aggressively. This is the case report of a primary pericardial EGIST in a 53-year-old male patient, confirmed by immunohistochemistry. To the best of our knowledge, this is the third case of EGIST diagnosed above the diaphragm, without being associated with the esophageal wall. Two cases of primary EGIST arising from the pleura were reported previously. In addition, this is the first reported case of an EGIST originating from the pericardium. PMID:26137136

  18. Technical procedures for water resources: Volume 3, Environmental Field Program, Deaf Smith County Site, Texas: Final draft

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    To ensure that the environmental field program comprehensively addresses the issues and requirements of the project, a site study plan (SSP) has been prepared for Water Resources (ONWI, 1987). This technical procedure (TP) has been developed to implement the field program described in the Water Resources Site Study Plan. This procedure provides the general method for the field collection of water and sediment samples from playa lakes using an Alpha horizontal type sampler or equivalent or a peristaltic pump for water and a KB-coring devise or ponar grab for sediments. The samples will be preserved and then shipped to a laboratory for analysis. The water quality and sediment samples will be collected as part of the surface-water quality field study described in the Site Plan for Water Resources. 15 refs., 5 figs., 3 tabs.

  19. Solid Test Meal to Measure the Gastric Emptying with Magnetogastrography

    International Nuclear Information System (INIS)

    The gastric emptying is the time of evacuating the food ingested from the stomach to the duodenum in a controlled rate. Diverse studies express the results of the gastric emptying in form of half-time (t1/2). The Magnetogastrography (MGG) is a biomagnetic technique that has the advantage of not being invasive, radiation free and does not interfere with the privacy of the subject. The objective was to analyze the magnetic signal of magnetic tracers mixed in a solid food to measure gastric emptying using Magnetogastrography. The ingested test meal displayed a magnetic signal, which served to obtain the signal registered by the fluxgate and the peristaltic contractions could be calculated while the stomach was emptying. The solid food product developed results to work satisfactorily in magnetogastrography

  20. Mathematical Modeling of Flow Characteristics in the Embryonic Chick Heart

    DEFF Research Database (Denmark)

    Heebøll-Christensen, Jesper

    modified inertia, and resistance due to friction and curvature of the multilayered tubular heart. Through the modeling, flow conditions in the embryonic heart are characterized. The models suggest that eccentric rather than concentric deformation of the beating heart is optimal for mean flows induced by...... the Liebau effect. Additionally the elliptic cross-sectional shape of the embryonic heart may be optimally configured for Liebau induced flow near elliptic eccentricity 0.4. It is furthermore suggested that both peristaltic and Liebau induced pumping effectsmay be present in the embryonic heart......, though the models are not conclusive on this point. In addition the Liebau effect is investigated in a simpler system containing two elastic tubes joined to form a liquid filled ring, with a compression pump at an asymmetric location. Through comparison to other reports the system validates model...

  1. Continuous venovenous haemodialysis

    DEFF Research Database (Denmark)

    Bistrup, C; Pedersen, R S; Jensen, Dorte Møller

    1996-01-01

    A simple three-pump-based system for the performance of continuous venovenous haemodialysis is described. The method employs access to the circulation via a double-lumen catheter, and by means of a standard extracorporeal peristaltic pump the blood is circulated through a haemofiltration filter....... Standard solutions for peritoneal dialysis are administered in a single-pass manner countercurrent to the blood flow. To control the dialysate flow through the filter, two separate pumps designed for intravenous infusion are used. Anticoagulation is achieved by means of continuous heparin infusion. This...... three-pump system is effective in controlling the fluid balance and the level of azotemia. Furthermore, this system makes haemodialysis possible in spite of severe haemodynamic instability. The system is easy to use and inexpensive. 3 patients participated in the study....

  2. Absence of the interstitial cells of Cajal in a neonate with segmental dilatation of ileum

    Directory of Open Access Journals (Sweden)

    Tatsuma Sakaguchi

    2016-02-01

    Full Text Available Segmental dilatation of intestine (SD is a congenital disease characterized by localized bowel dilation with normal ganglion cells. Clinically, small intestinal type of SD frequently occurs in the neonatal period with pseudo-obstruction. Though many theories have been proposed regarding the pathogenesis, the disease etiology is unclear. Interstitial cells of Cajal (ICCs have been ascribed as the pacemaker cells that coordinate peristaltic behavior and its disorder is the possible cause of intestinal pseudo-obstruction. Here, we report a rare case of SD observed the absence of ICCs in the dilated segment. A male neonate suffered abdominal distention and vomiting underwent segmental resection of the dilated ileum on the third day after birth. He was diagnosed with SD and his clinical course after surgery was uneventful. Immunohistochemically, c-kit positive cell was not identified around the ganglion cells in the resected specimen.

  3. Phantom for comparing flow rates obtained with Doppler US and MR imaging

    International Nuclear Information System (INIS)

    When in vivo quantitative flow studies are performed with magnetic resonance (MR), imaging and Doppler ultrasound, a means for testing the accuracy of the measurement techniques is necessary. The authors have devised a nonferrous, tissue-mimicking phantom in which various sizes, configurations, and angles of tubing may be used. Removable ultrasonic tissue-mimicking material composed of graphite gel particles suspended in propanol and water allows tube pulsation simulating normal vasculature. With MR imaging, other materials such as water may be used. A reservoir of simulated blood and a high-speed peristaltic pump allows flow rates of up to 3.5 L/min. This newly designed phantom is easy to use and facilitates multimodality analysis of flow phenomena

  4. Comparison of totally tubeless percutaneous nephrolithotomy and standard percutaneous nephrolithotomy for kidney stones: a randomized, clinical trial.

    Science.gov (United States)

    Moosanejad, N; Firouzian, A; Hashemi, S A; Bahari, M; Fazli, M

    2016-01-01

    This study aimed to compare the totally tubeless percutaneous nephrolithotomy and standard percutaneous nephrolithotomy techniques regarding their rates of success and complications in patients with kidney stones. Patients were randomly assigned to two groups. Forty-four patients (24 men; mean age: 50.40±2.02 years) received totally tubeless percutaneous nephrolithotomy (PCNL; no nephrostomy catheter or ureteral catheter after PCNL) and 40 patients (18 men; mean age: 49.95 ± 13.38 years) underwent standard PCNL (a nephrostomy catheter and ureteral catheter were used after PCNL). All surgeries were performed by one surgeon. Postoperative changes in hemoglobin, the blood transfusion rate, changes in creatinine levels, operation time, analgesic need, hospitalization time, and complication rate were compared between the groups. No significant differences were observed in age, gender, stone size, and surgery side between the groups (Pnormal peristaltic ureter is the best drainage tube. PMID:27007650

  5. A biomechanical model of swallowing for understanding the influence of saliva and food bolus viscosity on flavour release

    CERN Document Server

    De Loubens, Clément; Doyennette, Marion; Tréléa, Ioan Cristian; Souchon, Isabelle

    2013-01-01

    After swallowing a liquid or a semi-liquid food product, a thin film responsible for the dynamic profile of aroma release coats the pharyngeal mucosa. The objective of the present article was to understand and quantify physical mechanisms explaining pharyngeal mucosa coating. An elastohydrodynamic model of swallowing was developed for Newtonian liquids that focused on the most occluded region of the pharyngeal peristaltic wave. The model took lubrication by a saliva film and mucosa deformability into account. Food bolus flow rate and generated load were predicted as functions of three dimensionless variables: the dimensionless saliva flow rate, the viscosity ratio between saliva and the food bolus, and the elasticity number. Considering physiological conditions, the results were applied to predict aroma release kinetics. Two sets of conditions were distinguished. The first one was obtained when the saliva film is thin, in which case food bolus viscosity has a strong impact on mucosa coating and on flavour rel...

  6. Intestinal flow of a couple stress nanofluid in arteries.

    Science.gov (United States)

    Akbar, Noreen Sher; Nadeem, S

    2013-12-01

    The current article discusses the influence of nanofluid on the peristaltic flow of an incompressible couple stress fluid in a two-dimensional uniform tube. The problem formulation is accessible in an upsurge structure of orientation for equations of momentum, energy, and concentrations. The continuity, linear momentum, energy, and nanoparticle equations lead to the mathematical development. HPM is used to get the solutions for velocity, temperature, nanoparticle, and pressure gradient. The solutions contain the Brownian motion number N(b), thermophoresis number N(t), local temperature Grashof number B(r), and local nanoparticle Grashof number G(r). The physical features of different embedded parameters are analyzed and discussed physically in detail. PMID:23974660

  7. Interstitial cells of Cajal, the Maestro in health and disease

    Directory of Open Access Journals (Sweden)

    Randa M Mostafa, Yasser M Moustafa, Hosam Hamdy

    2010-07-01

    Full Text Available Interstitial cells of Cajal (ICC are important players in the symphony of gut motility. They have a very significant physiological role orchestrating the normal peristaltic activity of the digestive system. They are the pacemaker cells in gastrointestinal (GI muscles. Absence, reduction in number or altered integrity of the ICC network may have a dramatic effect on GI system motility. More understanding of ICC physiology will foster advances in physiology of gut motility which will help in a future breakthrough in the pharmacological interventions to restore normal motor function of GI tract. This mini review describes what is known about the physiologic function and role of ICCs in GI system motility and in a variety of GI system motility disorders.

  8. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin;

    2015-01-01

    thereby ensure optimal cell production, by prolonging the fermentation cycle and increasing the bioreactor output. In this work, we report on the development of a fully automated microfluidic system capable of extracting samples directly from a bioreactor, diluting the sample, staining the cells, and...... high flow rates, to promote passive mixing of cell samples and thus homogenization of the diluted cell plug. The autonomous operation of the fluidics furthermore allows implementation of intelligent protocols for administering air bubbles from the bioreactor in the microfluidic system, so that these...... determining the total cell and dead cells concentrations, within a time frame of 10.3 min. The platform consists of custom made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample to waste liquid management and image cytometry-based detection. The total concentration of cells...

  9. Cine-oesophago-gastroscintigraphy: assessment of digestive function in paediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, J. (Hopital Pellegrin, 33 - Bordeaux (France))

    1984-05-15

    Cine-oesophago-gastroscintigraphy (COGS) can assess structure and function of the oesophagogastrointestinal tract. With this non-invasive method, the dosimetry is very low and quantification is easy. Milk or water labelled by sup(99m)Tc sulfocolloids are drunk by the patient. The transit is continuously monitored by a gamma camera and a computer. The esophageal transit time is useful in studying impairment of peristaltic motion. Fistula, diverticula and stenosis are easily detected. The sensitivity of this technique for the search of gastroesophageal reflux is as great as pH-metry. The quantification is of great interest to assess the severity of the reflux and to measure treatment efficacity. Slow rates of gastric emptying are associated with some of the reflux, and pyloric stenosis. Pulmonary contamination can be discovered in patients with gastro oesophageal reflux.

  10. [Vaginal eviscentration with secondary strangulation of small bowel].

    Science.gov (United States)

    Gembal, Piotr; Grzegorczyk, Wiesław; Grabowski, Bogumił; Milik, Krzysztof; Pajak, Marek; Bielecki, Krzysztof

    2007-01-01

    A case of 81 year old patient with eviscentration through vagina with a strangulation of small bowel was described. The woman was treated gynecologically and underwent surgery previously. The eviscentration occurred 21 months after last surgery and was connected with high abdominal pressure during defecation. Woman was qualified to an urgent laparotomy, and the hole about 15 mm length in vaginal posterior vault was found. Through the hole passed small bowel which was strangulated. The bowel was removed to the abdominal cavity and during its control no necrosis was found. The color and vascularity return to normal and right peristaltic was noticed. The hole in parietal peritoneum was closed by a continuous suture. The hole in vagina was also closed by the continuous suture from the perineal side. Woman in good general condition was discharged from hospital in the 13th day after surgery. PMID:18540188

  11. Modular microfluidic system as a model of cystic fibrosis airways

    DEFF Research Database (Denmark)

    Skolimowski, Maciej; Weiss Nielsen, Martin; Abeille, Fabien;

    2012-01-01

    pumps, bubble traps, gas exchange chip, and cell culture chambers. We have successfully applied this system for studying the antibiotic therapy of Pseudomonas aeruginosa, the bacteria mainly responsible for morbidity and mortality in cystic fibrosis, in different oxygen environments. Furthermore, we...... have mimicked the bacterial reinoculation of the aerobic compartments (lower respiratory tract) from the anaerobic compartments (cystic fibrosis sinuses) following an antibiotic treatment. This effect is hypothesised as the one on the main reasons for recurrent lung infections in cystic fibrosis......A modular microfluidic airways model system that can simulate the changes in oxygen tension in different compartments of the cystic fibrosis (CF) airways was designed, developed, and tested. The fully reconfigurable system composed of modules with different functionalities: multichannel peristaltic...

  12. Tubular Heart Pumping Mechanisms in Ciona Intestinalis

    Science.gov (United States)

    Battista, Nicholas; Miller, Laura

    2015-11-01

    In vertebrate embryogenesis, the first organ to form is the heart, beginning as a primitive heart tube. However, many invertebrates have tubular hearts from infancy through adulthood. Heart tubes have been described as peristaltic and impedance pumps. Impedance pumping assumes a single actuation point of contraction, while traditional peristalsis assumes a traveling wave of actuation. In addition to differences in flow, this inherently implies differences in the conduction system. It is possible to transition from pumping mechanism to the other with a change in the diffusivity of the action potential. In this work we consider the coupling between the fluid dynamics and electrophysiology of both mechanisms, within a basal chordate, the tunicate. Using CFD with a neuro-mechanical model of tubular pumping, we discuss implications of the both mechanisms. Furthermore, we discuss the implications of the pumping mechanism on evolution and development.

  13. A fully resolved active musculo-mechanical model for esophageal transport

    CERN Document Server

    Kou, Wenjun; Griffith, Boyce E; Pandolfino, John E; Kahrilas, Peter J; Patankar, Neelesh A

    2015-01-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, which is modeled as an actively contracting, fiber-reinforced tube. A simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are then extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation i...

  14. Enhancing visual acuity.

    Science.gov (United States)

    Stalmans, Peter

    2014-01-01

    The Enhancing Visual Acuity (EVA) System (Dutch Ophthalmic Research Centre International B.V.) features a unique fluid control system - VacuFlow Valve Timing Intelligence (VTi®) - and represents the next-generation evolution of pump machines. VacuFlow VTi® overcomes the limitations of existing Venturi and peristaltic pumps and provides the potential to enable safer, faster, and more precise techniques. Alongside many other innovative and functional features, such as a light-emitting diode light source, integrated laser, high cutting speed with twin duty cycle cutting, automated infusion compensation, wireless foot pedal, phaco module with thresholding, and viscous fluid module, EVA could make a major contribution to advancing ophthalmology. PMID:25196748

  15. ANTIDIARRHOEL ACTIVITY OF METHANOLIC EXTRACT OF VERNONIA CINEREA (L. LESS ON FEMALE ALBINO RATS

    Directory of Open Access Journals (Sweden)

    Panday Ganesh

    2011-05-01

    Full Text Available The present study was conducted with the objectives of investigating antidiarrhoel activity of Vernonia cinerea whole plant (Family-Compositae, collected from tarai region of Uttarakhand. The plant extracts were obtained via cold extraction method. For the purpose of evaluating antidiarrhoel efficacy of methanolic extract of the plant, rats were used as test animal. The time of onset of first wet faeces increased significantly and dose dependently by the extract. It was excellent at higher doses (100 & 200 mg/kg body wt., orally. It indicated reduction in peristaltic movement of gastro intestinal tract of animals. The antidiarrhoel activity was further confirmed by its significant and dose dependent decrease in number of wet faeces and number of total faeces in comparison to rats used as control.

  16. The effect of instrumental parameters on the determinations of the rare earth elements

    International Nuclear Information System (INIS)

    The effect of instrumental parameters on the determinations of the rare earth elements (REE) was studied by using ELAN 250 inductively coupled plasma - mass spectrometer (ICP-MS). Instrumental parameters include variation of radiofrequency power, ion lenses setting, and nebulizer argon flow rate. It was found that the operating condition for determination of REE using ICP-MS were as follows: B (barrel lens), S2 (stop lens), P (plates lens), and El (einzel 1.3 lens) at 27, 43, 23, and 80, respectively. The sample solution was delivered to a nebulizer at 0.8 ml minute by a peristaltic pump. At this operating condition, the deviation of the ICP-MS method for the determination of REE was about 5%. This method has been used for determination of REE in geological material, samples from Nuclear Materials Development Center. (author). 19 refs, 3 tabs, 4 figs

  17. Radionuclide-monitoring of gastro-intestinal bleeding-activity

    International Nuclear Information System (INIS)

    Radionuclide-monitoring was done in 50 patients to assess gastro-intestinal bleeding, activity and location. Monitoring with 99mTc-in vivo-labelled erythrocytes was performed as sequential scintigraphy in increments of 1-2 hours up to 62 hours. 23 patients without active GI-bleeding were correctly identified. 27 patients showed pathologic activities in abdominal bloodpool-scintigraphy. In 25 patients peristaltic movement of these activities were seen - in each case we correctly diagnosed active GI-bleeding. In 2 patients the activity stayed for a longer period in the same location - one patient had a liverhemangioma, the other patient had an aneurysma of the arteria mesenterica superior. The great impact of radionuclide-monitoring on diagnostic and therapeutic management of gastrointestinal bleeding is emphasized. (orig.)

  18. Optimal reservoir conditions for fluid extraction through permeable walls in the viscous limit

    CERN Document Server

    Herschlag, Gregory; Layton, Anita T

    2015-01-01

    In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing exchange with systems exterior the the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case of weakly permeable channel walls in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast ...

  19. Guidelines for determining inputs of inorganic contaminants into estuaries

    International Nuclear Information System (INIS)

    This publication describes sampling and sample preparation procedures suitable to obtain unpolluted samples for the purpose of determining river inputs of inorganic pollutants into estuaries. Emphasis is placed on heavy metal pollutants but procedures are suitable, with appropriate modifications for other inorganic pollutants. For example, the collection of samples for mercury may require modifications of handling procedures. River water samples are collected at the most down-river point where no estuarine influences effect results. Samples are collected using a peristaltic pump and separated into aqueous and particulate phases for pollutant analysis. As is the case of all trace pollutant analyses, meticulous care is required to prevent pollution of the sample and in addition to the precautions described in this method, great personal attention is required to minimize sample handling, pollution by smoke, hands, hair, dust, talc from gloves, etc., and to avoid all contact of the samples and reagents with skin and metallic objects. 1 ref., 3 figs, 1 tab

  20. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. PMID:23742956

  1. Standard test method for analysis of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of total uranium (U) and thorium (Th) concentrations in soils, as well as the determination of the isotopic weight percentages of 234U, 235U, 236U, and 238U, thereby allowing for the calculation of individual isotopic uranium activity or total uranium activity. This inductively coupled plasma-mass spectroscopy (ICP-MS) method is intended as an alternative analysis to methods such as alpha spectroscopy or thermal ionization mass spectroscopy (TIMS). Also, while this test method covers only those isotopes listed above, the instrumental technique may be expanded to cover other long-lived radioisotopes since the preparation technique includes the preconcentration of the actinide series of elements. The resultant sample volume can be further reduced for introduction into the ICP-MS via an electrothermal vaporization (ETV) unit or other sample introduction device, even though the standard peristaltic pump introduction is applied for this test method. The sample preparatio...

  2. Continuous sampling of liquid effluents using AMCO-BP system

    International Nuclear Information System (INIS)

    It was demonstrated that the principal exposure pathway to the public due to the radioactive wastes produced by the Centro de Desenvolvimento da Tecnologia Nuclear-CDTN, is via liquid effluents release through Engenho Nogueira stream. To perform a better sampling of these liquid effluents, has been developed by CDTN's Environment Division, named AMCO-BP, a system formed basically by two components: one motor/reductor set with a peristaltic pump and one control board compared by timing relays and digital frequency converser. The aim of this work was to describe the design of an equipment to sample different kinds of flows of liquids at low cost and with a home made technology. (author)

  3. Spectrophotometric determination of uranium and thorium with arsenazo III in the flow injection system

    International Nuclear Information System (INIS)

    A simple system for flow injection analysis (FIA) with double confluence was built using a filter photocolorimeter, an analogic potentiometer, 'plexiglass' flow cuvettes, polyethylene colls and tubes, 'plexiglass' commuter and peristaltic pump to introduce solutions and gravity as flow source. The system was dimensioned and studied using only Arsenazo III solutions. Spectrophotometric methods for uranium and thorium using Arsenazo III were studied using a scanning spectrophotometer and after chosing adequate red filter, adapted to photocolorimetry using flow cuvettes and FIA. Synthetic samples, phosphate rock, and process samples from uranium recovery of dolomites were analysed. Rocks of Morro do Ferro (MG, Brazil), Caldasite (Baddeleyte + Zirconite), Zirconite, Monazite from a program for certification and certified rocks (Dunite DC-1, CANMET) were analysed without chemical separation of Th (IV) and with ion exchange separation in semi-micro columns of cation exchange resin (Dowex 50). (Author)

  4. A Continuous Flow System for the Measurement of Ambient Nitrogen Oxides [NO + NO2] Using Rhodamine B Hydrazide as a Chemosensor.

    Science.gov (United States)

    Malingappa, Pandurangappa; Yarradoddappa, Venkataramanappa

    2014-01-01

    A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO2] at parts per billion (ppb) level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH) to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method. PMID:25210422

  5. Technical procedures for water resources: Volume 3, Environmental Field Program, Deaf Smith County Site, Texas: Final draft

    International Nuclear Information System (INIS)

    To ensure that the environmental field program comprehensively addresses the issues and requirements of the project, a site study plan (SSP) has been prepared for Water Resources (ONWI, 1987). This technical procedure (TP) has been developed to implement the field program described in the Water Resources Site Study Plan. This procedure provides the general method for the field collection of water and sediment samples from playa lakes using an Alpha horizontal type sampler or equivalent or a peristaltic pump for water and a KB-coring devise or ponar grab for sediments. The samples will be preserved and then shipped to a laboratory for analysis. The water quality and sediment samples will be collected as part of the surface-water quality field study described in the Site Plan for Water Resources. 15 refs., 5 figs., 3 tabs

  6. Pathophysiological aspects of ureterorenoscopic management of upper urinary tract calculi

    DEFF Research Database (Denmark)

    Osther, Palle J S; Pedersen, Katja V; Lildal, Søren K;

    2016-01-01

    ureter and strain-induced ureteral contractions (peristalsis). Different receptor types modulate this peristaltic activity. β-receptor agonists have been investigated in animal and human trials for the purpose of relaxing the ureter. In randomized, placebo-controlled trials in pigs and humans, usage of...... ureterorenoscopy, potentially translating into harmful effects, and how such pathophysiological processes may be minimized. RECENT FINDINGS: Complications to ureterorenoscopy and postoperative pain seem to be related to intrarenal pressure and/or access. Mean intrarenal pressures in the range of 60-100 mmHg during...... ureterorenoscopy without access sheaths have been measured, thus by far exceeding the threshold for intrarenal backflow, potentially resulting in septic complications. Intrarenal pressure may be reduced by use of ureteral access sheaths, which, however, may cause ureteral damage due to the limited size of the...

  7. Solid Test Meal to Measure the Gastric Emptying with Magnetogastrography

    Science.gov (United States)

    Reynaga-Ornelas, M. G.; De la Roca-Chiapas, J. M.; Cordova-Fraga, T.; Bernal, J. J.; Sosa, M.

    2008-08-01

    The gastric emptying is the time of evacuating the food ingested from the stomach to the duodenum in a controlled rate. Diverse studies express the results of the gastric emptying in form of half-time (t1/2). The Magnetogastrography (MGG) is a biomagnetic technique that has the advantage of not being invasive, radiation free and does not interfere with the privacy of the subject. The objective was to analyze the magnetic signal of magnetic tracers mixed in a solid food to measure gastric emptying using Magnetogastrography. The ingested test meal displayed a magnetic signal, which served to obtain the signal registered by the fluxgate and the peristaltic contractions could be calculated while the stomach was emptying. The solid food product developed results to work satisfactorily in magnetogastrography.

  8. Hydrodynamics of undulatory fish schooling in lateral configurations

    CERN Document Server

    Zhang, Li Jeany

    2010-01-01

    The thrust benefits of lateral configurations of two-dimensional undulating fish-like bodies are investigated using high-fidelity numerical simulation. The solution of the Navier--Stokes equations is carried out with a viscous vortex particle method. Configurations of tethered pairs of fish arranged side by side are studied by varying the lateral separation distance and relative phase difference. It is shown that, in mirroring symmetry, the fish in the pair augment each other's thrust even at relatively large separations (up to ten body lengths). At small distances, this augmentation is primarily brought about by a peristaltic pumping in the gap between the fish, whereas at larger distances, the thrust is affected by subtle changes in the vortex shedding at the tail due to interactions with the other fish. In cases without symmetric undulation, one fish always draws more benefit from the interaction than the other. Finally, lateral configurations with three fish are studied with mirroring symmetry between nei...

  9. Power augmentation of cheap, sail-type, horizontal-axis wind-turbines

    Science.gov (United States)

    Fleming, P. D.; Probert, S. D.

    1982-09-01

    A history of the development of windpowered machinery is presented, and the installation of tipvanes and centerbodies to enhance the performance of low cost WECS for developing countries are examined experimentally. Particular attention is given to sail wing rotors equipped with tip fins, peristaltic pumps reparable by semiskilled labor, and various configurations of tip fins and center bodies, which deflect the wind outward from the hub to the sails. Cheap, flat-plate tip fins were found to effective in augmenting rotor performance by as much as 1.6 when facing only downwind. Best results were obtained with one tip vane per sail, with the fins downwind a distance at least equal to the pitch of a wind-filled sail. Further experimentation with stationary deflectors which redirect wind into the buckets of a Savonius rotor or the sails of a horizontal axis WECS are suggested.

  10. Capsule- and disk-filter procedure

    Science.gov (United States)

    Skrobialowski, Stanley C.

    2016-01-01

    Capsule and disk filters are disposable, self-contained units composed of a pleated or woven filter medium encased in a polypropylene or other plastic housing that can be connected inline to a sample-delivery system (such as a submersible or peristaltic pump) that generates sufficient pressure (positive or negative) to force water through the filter. Filter media are available in several pore sizes, but 0.45 µm is the pore size used routinely for most studies at this time. Capsule or disk filters (table 5.2.1.A.1) are required routinely for most studies when filtering samples for trace-element analyses and are recommended when filtering samples for major-ion or other inorganic-constituent analyses.

  11. MHD pressure driven flow of nanofluid in curved channel

    Energy Technology Data Exchange (ETDEWEB)

    Noreen, S. [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); Qasim, M., E-mail: mq_qau@yahoo.com [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); Khan, Z.H. [Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa (Pakistan)

    2015-11-01

    The pressure driven peristaltic flow of nanofluid in a curved channel is investigated. The flow exploration demeanors the induced magnetic field. Long wavelength and low Reynolds number approach is followed. Numerical solutions are obtained by employing shooting method. The effects of substantial parameters have been portrayed and discussed on the temperature and mass distributions, stream function, magnetic force function, induced magnetic field and pressure rise per wavelength. - Highlights: • Symmetry in the profiles of u, ϕ and h{sub x} is disturbed because of curvature effects. • The magnitude of longitudinal velocity increases with curvature. • The qualitative behavior of Nt and Nb on γ and Ω is opposite. • Magnitude h{sub x} decreases with k.

  12. Studies on Solvent Sublation of Trace Heavy Metals by Continuous Flow System as Ternary Complexes of 1,10-Phenanthroline and Thiocyanate Ion

    International Nuclear Information System (INIS)

    A continuous flow system has been developed to determine trace Cu(II), Mn(II), Ni(II) and Zn(II) in a large volume of water samples by a solvent sublation technique. The mixed solution of 1,10-phenanthroline(phen) and thiocyanate ion was used as ligands for the formation of their ternary complexes. The continuous system was constructed in this laboratory with a peristaltic pump, a mini shaker, three mixing bottles and a flotation cell by connecting each part with a polyethylene tube. The flotation conditions such as the flow rate of sample solution and the injection rates of ligand, buffer and surfactant solutions have been investigated to obtain the best sublation efficiencies. Each solution flowed into the flotation cell through each polyethylene tube by the peristaltic pumps. The ternary complexes were floated and extracted into MIBK in a flotation cell of 2 L by bubbling a nitrogen gas. The absorbances of extracted analytes in MIBK were directly measured by graphite furnace-AAS. The concentrations of 1,10-phenanthroline and thiocyanate ion were 2.6 x 10-3 M and 2.3 x 10-2 M in the mixed solution, respectively. The pH of sample solution was adjusted to 5.0 with a buffer solution and 1%(m/v) sodium lauryl sulphate solution was added as a surfactant to support the effective flotation of the complexes. The N2 gas was bubbled at 30 mL/min for 90 minutes for 20 L of sample. Reproducible results of less than 10% RSD and recoveries of 80-120% could be obtained in real samples

  13. Endocrine cells in atresic chick embryo intestine: histochemical and immunohistochemical study

    Directory of Open Access Journals (Sweden)

    T. Renda

    2009-09-01

    Full Text Available Intestinal motility disorders are an important problem in the postoperative management of patients with intestinal atresia. Intestinal motility could be initiated by luminal factors that activate intrinsic and extrinsic primary afferent nerves involved in the peristaltic reflex. Endocrine cells act as a key point, because they transfer information regarding the intestinal contents and intraluminal pressure to nerve fibers lying in close proximity to the basolateral surface of the epithelium. In chick embryo, experimental intestinal atresia is associated with disorders in the development of the enteric nervous system, related to the severity of intestinal dilation. Our aim was to investigate the distribution pattern of endocrine cells in the developing endocrine system of chick embryo small intestine with experimentally-induced atresia on day 12 and on day 16. Changes in enteroendocrine population were examined in gut specimens (excised proximal and distal to the atresia from experimental embryos 19 days old and in control sham-operated chick embryos at the same age. Sections from proximal and distal bowel and control bowel were stained with Grimelius silver stain, a valuable histochemical method for detecting the argyrophil and argentophilic cells, and with an immunohistochemical procedure for detecting serotonin and neurotensin immunoreactive cells. In chick embryo proximal bowel, intestinal dilation differed in the various embryos. We found significantly higher enteroendocrine cell counts in proximal bowel than in distal and control bowel. The differences depended on the precociousness of surgery and the severity of dilation. Considering the major contribution of enteroendocrine cells to the peristaltic reflex, our data may help to explain the pathogenesis of motility disorders related to intestinal atresia.

  14. Inter-observer agreement for diagnostic classification of esophageal motility disorders defined in high-resolution manometry.

    Science.gov (United States)

    Fox, M R; Pandolfino, J E; Sweis, R; Sauter, M; Abreu Y Abreu, A T; Anggiansah, A; Bogte, A; Bredenoord, A J; Dengler, W; Elvevi, A; Fruehauf, H; Gellersen, S; Ghosh, S; Gyawali, C P; Heinrich, H; Hemmink, M; Jafari, J; Kaufman, E; Kessing, K; Kwiatek, M; Lubomyr, B; Banasiuk, M; Mion, F; Pérez-de-la-Serna, J; Remes-Troche, J M; Rohof, W; Roman, S; Ruiz-de-León, A; Tutuian, R; Uscinowicz, M; Valdovinos, M A; Vardar, R; Velosa, M; Waśko-Czopnik, D; Weijenborg, P; Wilshire, C; Wright, J; Zerbib, F; Menne, D

    2015-01-01

    High-resolution esophageal manometry (HRM) is a recent development used in the evaluation of esophageal function. Our aim was to assess the inter-observer agreement for diagnosis of esophageal motility disorders using this technology. Practitioners registered on the HRM Working Group website were invited to review and classify (i) 147 individual water swallows and (ii) 40 diagnostic studies comprising 10 swallows using a drop-down menu that followed the Chicago Classification system. Data were presented using a standardized format with pressure contours without a summary of HRM metrics. The sequence of swallows was fixed for each user but randomized between users to avoid sequence bias. Participants were blinded to other entries. (i) Individual swallows were assessed by 18 practitioners (13 institutions). Consensus agreement (≤ 2/18 dissenters) was present for most cases of normal peristalsis and achalasia but not for cases of peristaltic dysmotility. (ii) Diagnostic studies were assessed by 36 practitioners (28 institutions). Overall inter-observer agreement was 'moderate' (kappa 0.51) being 'substantial' (kappa > 0.7) for achalasia type I/II and no lower than 'fair-moderate' (kappa >0.34) for any diagnosis. Overall agreement was somewhat higher among those that had performed >400 studies (n = 9; kappa 0.55) and 'substantial' among experts involved in development of the Chicago Classification system (n = 4; kappa 0.66). This prospective, randomized, and blinded study reports an acceptable level of inter-observer agreement for HRM diagnoses across the full spectrum of esophageal motility disorders for a large group of clinicians working in a range of medical institutions. Suboptimal agreement for diagnosis of peristaltic motility disorders highlights contribution of objective HRM metrics. PMID:25185507

  15. Development of an integrated microfluidic solid-phase extraction and electrophoresis device.

    Science.gov (United States)

    Kumar, Suresh; Sahore, Vishal; Rogers, Chad I; Woolley, Adam T

    2016-02-15

    This study focuses on the design and fabrication of a microfluidic platform that integrates solid-phase extraction (SPE) and microchip electrophoresis (μCE) on a single device. The integrated chip is a multi-layer structure consisting of polydimethylsiloxane valves with a peristaltic pump, and a porous polymer monolith in a thermoplastic layer. The valves and pump are fabricated using soft lithography to enable pressure-based fluid actuation. A porous polymer monolith column is synthesized in the SPE unit using UV photopolymerization of a mixture consisting of monomer, cross-linker, photoinitiator, and porogens. The hydrophobic, porous structure of the monolith allows protein retention with good through flow. The functionality of the integrated device in terms of pressure-controlled flow, protein retention and elution, on-chip enrichment, and separation is evaluated using ferritin (Fer). Fluorescently labeled Fer is enriched ∼80-fold on a reversed-phase monolith from an initial concentration of 100 nM. A five-valve peristaltic pump produces higher flow rates and a narrower Fer elution peak than a three-valve pump operated under similar conditions. Moreover, the preconcentration capability of the SPE unit is demonstrated through μCE of enriched Fer and two model peptides in the integrated system. FA, GGYR, and Fer are concentrated 4-, 12-, and 50-fold, respectively. The loading capacity of the polymer monolith is 56 fmol (25 ng) for Fer. This device lays the foundation for integrated systems that can be used to analyze various disease biomarkers. PMID:26820409

  16. Stopped-in-loop flow analysis system for successive determination of trace vanadium and iron in drinking water using their catalytic reactions.

    Science.gov (United States)

    Ayala Quezada, Alejandro; Ohara, Keisuke; Ratanawimarnwong, Nuanlaor; Nacapricha, Duangjai; Murakami, Hiroya; Teshima, Norio; Sakai, Tadao

    2015-11-01

    An automated stopped-in-loop flow analysis (SILFA) system is proposed for the successive catalytic determination of vanadium and iron. The determination of vanadium was based on the p-anisidine oxidation by potassium bromate in the presence of Tiron as an activator to form a reddish dye, which has an absorption maximum at 510 nm. The selectivity of the vanadium determination was greatly improved by adding diphosphate as a masking agent of iron. For the iron determination, an iron-catalyzed oxidative reaction of p-anisidine by hydrogen peroxide with 1,10-phenanthroline as an activator to produce a reddish dye (510 nm) was employed. The SILFA system consisted of two peristaltic pumps, two six-port injection valves, a four-port selection valve, a heater device, a spectrophotometric detector and a data acquisition device. One six-port injection valve was used for the isolation of a mixed solution of standard/sample and reagent to promote each catalytic reaction, and another six-port injection valve was used for switching the reagent for vanadium or iron to achieve selective determination of each analyte. The above mentioned four-port selection valve was used to select standard solutions or sample. These three valves and the two peristaltic pumps were controlled by a built-in programmable logic controller in a touchscreen controller. The obtained results showed that the proposed SILFA monitoring system constituted an effective approach for the selective determination of vanadium and iron. The limits of detection, 0.052 and 0.55 µg L(-1), were obtained for vanadium and iron, respectively. The proposed system was successfully applied to drinking water samples without any preconcentration procedures. PMID:26452899

  17. Esophageal reflexes modulate frontoparietal response in neonates: Novel application of concurrent NIRS and provocative esophageal manometry.

    Science.gov (United States)

    Jadcherla, Sudarshan R; Pakiraih, Joanna F; Hasenstab, Kathryn A; Dar, Irfaan; Gao, Xiaoyu; Bates, D Gregory; Kashou, Nasser H

    2014-07-01

    Central and peripheral neural regulation of swallowing and aerodigestive reflexes is unclear in human neonates. Functional near infrared spectroscopy (NIRS) is a noninvasive method to measure changes in oxyhemoglobin (HbO) and deoxyhemoglobin (HbD). Pharyngoesophageal manometry permits evaluation of aerodigestive reflexes. Modalities were combined to investigate feasibility and to test neonatal frontoparietal cortical changes during pharyngoesophageal (visceral) stimulation and/or swallowing. Ten neonates (45.6 ± 3.0 wk postmenstrual age, 4.1 ± 0.5 kg) underwent novel pharyngoesophageal manometry concurrent with NIRS. To examine esophagus-brain interactions, we analyzed cortical hemodynamic response (HDR) latency and durations during aerodigestive provocation and esophageal reflexes. Data are presented as means ± SE or percent. HDR rates were 8.84 times more likely with basal spontaneous deglutition compared with sham stimuli (P = 0.004). Of 182 visceral stimuli, 95% were analyzable for esophageal responses, 38% for HDR, and 36% for both. Of analyzable HDR (n = 70): 1) HbO concentration (μmol/l) baseline 1.5 ± 0.7 vs. 3.7 ± 0.7 poststimulus was significant (P = 0.02), 2) HbD concentration (μmol/l) between baseline 0.1 ± 0.4 vs. poststimulus -0.5 ± 0.4 was not significant (P = 0.73), and 3) hemispheric lateralization was 21% left only, 29% right only, and 50% bilateral. During concurrent esophageal and NIRS responses (n = 66): 1) peristaltic reflexes were present in 74% and HDR in 61% and 2) HDR was 4.75 times more likely with deglutition reflex vs. secondary peristaltic reflex (P = 0.016). Concurrent NIRS with visceral stimulation is feasible in neonates, and frontoparietal cortical activation is recognized. Deglutition contrasting with secondary peristalsis is related to cortical activation, thus implicating higher hierarchical aerodigestive protective functional neural networks. PMID:24789204

  18. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. PMID:22271160

  19. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  20. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    International Nuclear Information System (INIS)

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells

  1. 蝴蝶式多层悬臂梁压电发电装置研究%Study on Butterfly Piezoelectric Generator with Multilayer Cantilever Beams

    Institute of Scientific and Technical Information of China (English)

    龚俊杰; 沈丽佳; 唐春秀; 陈骁尧

    2014-01-01

    A butterfly piezoelectric generator with multilayer cantilever beams is designed for improving the gen-erating performance of piezoelectric generator.To investigate the generating performance of piezoelectric bimorph beam in the equipment,the output voltage theoretical model of piezoelectric cantilever beam with load on free end is established for analyzing the open-circuit output voltage of piezoelectric bimorph beam.The experimental setup is put up and physical device is also fabricated to measure the output voltage.The present theoretical results of multilayer piezoelectric generator coincide well with the related experimental data;the error is less then 10%.After the six layers of piezoelectric generator are in series,the output power can be up to six times that of the single layer,while the output voltage remains the same.It indicates that the novel butterfly multilayer piezoelectric cantilever can signif-icantly improve the generating capacity of piezoelectric generator.%为了提高压电发电装置的发电能力,设计了一种新型的蝴蝶式多层压电悬臂梁。为了研究该装置中每个压电双晶梁的发电性能,建立了在自由端外力作用下压电悬臂梁的输出电压理论模型,以此用来分析压电双晶梁的开路输出电压。制作了多层压电发电装置,并搭建实验平台对装置的发电电压进行实验测试,将实验测试数据与理论计算结果进行比较,两者误差小于10%。将发电装置中的6层压电片串联后研究发现,装置的发电电压基本不变,而发电功率可达单层的6倍,说明该新型蝴蝶式多层压电悬臂梁结构可提高发电能力。

  2. On-chip positionable photonic waveguides for chip-to-chip optical interconnects

    Science.gov (United States)

    Peters, Tjitte-Jelte; Tichem, Marcel

    2016-05-01

    This paper reports on the progress related to a multichannel photonic alignment concept, aiming for sub-micrometer precision in the alignment of the waveguides of two photonic integrated circuits (PICs). The concept consists of two steps: chip-to-chip positioning and chip bonding provide a coarse alignment after which waveguide-to-waveguide positioning and fixing result in a fine alignment. For the waveguide-to-waveguide alignment, an alignment functionality is developed and integrated in one of the PICs, consisting of mechanically flexible waveguides and MEMS actuators. This paper reports on the fabrication and characterization of a mechanically flexible waveguide array that can be positioned by two out-of-plane actuators. Thermal actuators are integrated with mechanically flexible waveguide beams to enable positioning them with high precision. By adding a poly-Si pattern on top of SiO2 beams, an out-of-plane bimorph actuator can be realized. An analytical model enables estimating the curvature and the deflection of a single bimorph beam. Acquiring a small initial deflection while having a large motion range of the actuator proves to have conflicting demands on the poly-Si/SiO2 thickness ratio. In this paper, we show that suspended waveguide arrays with integrated alignment functionality have an initial deflection- they curl up- due to residual stress in the materials. The actuators can be operated using a driving voltage between 0V to 45V, corresponding to ~50mW. Using higher voltages brings the risk of permanently changing the material properties of the heaters. The actuators can accomplish an out-of-plane crossbar translation up to 6.5 μm at ~50mW as well as a rotation around the propagation direction of the light ranging from -0:1° to 0.1°. At a constant actuation power of ~50mW, the crossbar shows a drift in vertical deflection of 0.16 μm over a time of 30 min.

  3. Integrated design of smart rotor and robust control system

    Science.gov (United States)

    Sahasrabudhe, Vineet; Chen, Peter C.; Thompson, Peter M.; Aponso, Bimal L.

    1998-07-01

    Vibration and noise are two long-standing problems that have limited the expansion of military and commercial applications of rotorcraft. The source of these interrelated phenomena is the main rotor, which operates in an unsteady and complex aerodynamic environment. The trailing edge flap concept for smart blade control has been investigated by several researchers for possible use in noise and vibration reduction, and shows promise. The flaps are actuated using piezo-stack, bimorph or magnetostrictive actuators. It is however still unclear if there is a single actuation mechanism that addresses both noise and vibration reduction, while still having enough control authority available to act as an extra control effector in its own right. The uncertainty about the actuation mechanism, about the precise amount of flap deflection available, and about the accuracy of current constitutive models of the actuators lead to significant difficulties in analyzing the potential of the concept for helicopter applications. In this study we propose and execute an innovative approach to the above problem that consists of modeling the smart actuation mechanism using a simple low order linear model that matches test data (with an associated variation or uncertainty). We use this model in association with a helicopter flight dynamic model for carrying out an optimization of flap sizing and placement for minimum fixed frame vibration. Finally, we use the model to carry out an analysis of the effectiveness of the flap in reducing inter-axis coupling, and as a redundant control effector in case of primary actuator failure.

  4. Multi-level landscape degradation due to tourist-oriented land use changes in Serbian mountainous regions

    Science.gov (United States)

    Radić, B.; Ristić, R.; Vasiljević, N.; Nikić, Z.; Beloica, J.; Malušević, I.

    2012-04-01

    Mountain regions are characterized by pronounced heterogeneity resulting from a wide range of altitude gradients, topography and specific microclimate. In these areas natural hazards are emphasized and additional anthropogenic activities have a catalytic effect on the degradation processes. Land use change for touristic and recreational purposes, results in the creation of artificial landscape elements that disturb the landscape structure. Skiing as a type of tourist and recreational activity strongly influences the land cover, changing the dynamics of natural ecosystems. Initially, ski resorts provoke intensive erosion processes, affecting the surrounding environment and even endangering the functionality of the built objects. The dominant disturbing activities (clear cuttings, trunk transport, machine grading of slopes, huge excavations, and access road construction) are followed by the activities during skiing and non skiing periods (skiing, usage of snow groomers, moving of vehicles and tourists, forestry activities and overgrazing). On a landscape scale, the impact of the ski resorts broadens to larger areas, which is accompanied by the degradation of the landscape visual quality. Due to the technical characteristics of the ski slopes, their volume and linear distribution evoke strong contrast in the scenery (geometrical versus bimorph edges). Such areas are losing their scenic quality and visual identity, and as such can be considered anthropogenic. The applied restoration and erosion control measures have stopped the degradation processes and helped to rehabilitate the appearance and functions of the landscape. The results of this investigation can contribute to the improvement of planning processes and the implementation of development projects in ski areas.

  5. Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures

    International Nuclear Information System (INIS)

    Triboelectric energy harvesting has recently garnered a lot of interest because of its easy fabrication and high power output. Contact electrification depends on the chemical properties of contacting materials. Another important factor in contact electrification mechanism is surfaces’ elastic and topographical characteristics. One of the biggest limitations of resonant mechanism based devices is their narrow operating bandwidth. This paper presents a broadband mechanism which utilizes stiffness induced in the cantilever motion due to contact between two triboelectric surfaces. We have conducted experiments using polydimethylsiloxane (PDMS) micropad patterns to study the effect of micropad array configuration on the performance of triboelectric energy harvesting devices. The maximum power output measured from the device was observed to be 0.69 μW at an acceleration of 1 g. Due to the non-linearity introduced by contact separation mechanism, the bandwidth of the triboelectric energy harvester was observed to be increased by 63% at an acceleration level of 1 g. A hybrid energy harvesting mechanism has also been demonstrated by compounding the triboelectric energy harvester with a piezoelectric bimorph. (paper)

  6. Precisely rectilinear electro-thermal microactuator using a high-aspect ratio microstructured Si/SU-8 composite

    International Nuclear Information System (INIS)

    This paper presents a Si/SU-8 composite electro-thermal microactuator that can generate a precisely rectilinear in-plane stroke. The microactuator consists of a pair of electro-thermally activated composite bimorphs which are joined at their tips through a central Si beam. When activated, the central beam deflects and outputs an in-plane rectilinear stroke at its center. The central stroke is precisely rectilinear along the plane of symmetry due to very high stiffness in the orthogonal directions to the stroke. This composite thermal microactuator produces a much larger rectilinear stroke and blocked force per unit temperature rise compared to an all-silicon one. At a temperature rise below 87 °C (driven below 8.0 V), the stroke increases linearly with the temperature rise up to 8.0 µm. Analytical and finite element models are developed for this range of actuation. Beyond an 87 °C temperature rise, the stroke was further enhanced by Poisson's ratio effect on SU-8 which increases the effective coefficient of thermal expansion of the composite. The microactuator could produce a maximum rectilinear stroke of 42 µm and a maximum estimated blocked force of 60 mN at a driving voltage of 14.5 V which causes a SU-8 average temperature rise of 266 °C. (paper)

  7. Parameters Identification for a Composite Piezoelectric Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Mohammad Saadeh

    2015-03-01

    Full Text Available This work presents an approach for identifying the model of a composite piezoelectric (PZT bimorph actuator dynamics, with the objective of creating a robust model that can be used under various operating conditions. This actuator exhibits nonlinear behavior that can be described using backlash and hysteresis. A linear dynamic model with a damping matrix that incorporates the Bouc–Wen hysteresis model and the backlash operators is developed. This work proposes identifying the actuator’s model parameters using the hybrid master-slave genetic algorithm neural network (HGANN. In this algorithm, the neural network exploits the ability of the genetic algorithm to search globally to optimize its structure, weights, biases and transfer functions to perform time series analysis efficiently. A total of nine datasets (cases representing three different voltage amplitudes excited at three different frequencies are used to train and validate the model. Four cases are considered for training the NN architecture, connection weights, bias weights and learning rules. The remaining five cases are used to validate the model, which produced results that closely match the experimental ones. The analysis shows that damping parameters are inversely proportional to the excitation frequency. This indicates that the suggested hysteresis model is too general for the PZT model in this work. It also suggests that backlash appears only when dynamic forces become dominant.

  8. Low-frequency meandering piezoelectric vibration energy harvester.

    Science.gov (United States)

    Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios

    2012-05-01

    The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint. PMID:22622969

  9. A comparative study of piezoelectric unimorph and multilayer actuators as stiffness sensors via contact resonance

    Science.gov (United States)

    Fu, Ji; Li, Fa-Xin

    2016-08-01

    Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960s and stiffness sensors in the 1990s based on the contact impedance method. In this work, we point out that both multilayer and unimorph (or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechanical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator-based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator-based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sensors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator-based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator-based sensor is more suitable for hard materials.

  10. Analysis and modeling of a piezoelectric energy harvester for powering a wireless sensor

    Science.gov (United States)

    Bassetti, Marco; Braghin, Francesco; Milani, Damiano; Ripamonti, Francesco; Tomasini, Gisella

    2013-04-01

    The work presented aims at modeling, designing and implementing an energy harvesting system capable of generating electricity from environmental vibrations. Subject of the analysis is a piezoelectric bimorph; this particular transducer, composed of two layers of piezoceramic material, is clamped in a cantilever configuration and is dynamically bent due to vibrations. The resulting deformation ensures enough current to power the electronic circuit of a wireless sensor. An analytical model is adopted, that describes the dynamics of the mechanical system using an electrical duality. In particular the coupling of the variables is represented by an equivalent transformer. The obtainable voltage and power are investigated, focusing on the influence of the electric load on the performance of the conversion process. In addition, to overcome the limitations related to the analytical study, a finite element model is provided, capable of simulating the behavior of the system more accurately. Finally, both models are validated by means of experimental tests, showing the mutual influence between the mechanical and the electrical domain.

  11. A concept for energy harvesting from quasi-static structural deformations through axially loaded bilaterally constrained columns with multiple bifurcation points

    Science.gov (United States)

    Lajnef, N.; Burgueño, R.; Borchani, W.; Sun, Y.

    2014-05-01

    A major obstacle limiting the development of deployable sensing and actuation solutions is the scarcity of power. Converted energy from ambient loading using piezoelectric scavengers is a possible solution. Most of the previously developed research focused on vibration-based piezoelectric harvesters which are typically characterized by a response with a narrow natural frequency range. Several techniques were used to improve their effectiveness. These methods focus only on the transducer’s properties and configurations, but do little to improve the stimuli from the source. In contrast, this work proposes to focus on the input deformations generated within the structure, and the induction of an amplified amplitude and up-converted frequency toward the harvesters’ natural spectrum. This paper introduces the concept of using mechanically-equivalent energy converters and frequency modulators that can transform low-amplitude and low-rate service deformations into an amplified vibration input to the piezoelectric transducer. The introduced concept allows energy conversion within the unexplored quasi-static frequency range (≪1 Hz). The post-buckling behavior of bilaterally constrained columns is used as the mechanism for frequency up-conversion. A bimorph cantilever polyvinylidene fluoride (PVDF) piezoelectric beam is used for energy conversion. Experimental prototypes were built and tested to validate the introduced concept and the levels of extractable power were evaluated for different cases under varying input frequencies. Finally, finite element simulations are reported to provide insight into the scalability and performance of the developed concept.

  12. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    Science.gov (United States)

    Pillatsch, P.; Yeatman, E. M.; Holmes, A. S.

    2012-11-01

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s-2 a maximal power output of 2.1 mW was achieved.

  13. Development of MEMS based pyroelectric thermal energy harvesters

    Science.gov (United States)

    Hunter, Scott R.; Lavrik, Nickolay V.; Bannuru, Thirumalesh; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2011-06-01

    The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating electricity that can be used to power remote monitoring sensor systems, or recycled to provide electrical power. The energy harvester is a temperature cycled pyroelectric thermal-to-electrical energy harvester that can be used to generate electrical energy from thermal waste streams with temperature gradients of only a few degrees. The approach uses a resonantly driven pyroelectric capacitive bimorph cantilever structure that potentially has energy conversion efficiencies several times those of any previously demonstrated pyroelectric or thermoelectric thermal energy harvesters. The goals of this effort are to demonstrate the feasibility of fabricating high conversion efficiency MEMS based pyroelectric energy converters that can be fabricated into scalable arrays using well known microscale fabrication techniques and materials. These fabrication efforts are supported by detailed modeling studies of the pyroelectric energy converter structures to demonstrate the energy conversion efficiencies and electrical energy generation capabilities of these energy converters. This paper reports on the modeling, fabrication and testing of test structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy harvesters.

  14. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    Science.gov (United States)

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films. PMID:25322105

  15. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    International Nuclear Information System (INIS)

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s−2 a maximal power output of 2.1 mW was achieved. (paper)

  16. Multi-physics model of a thermo-magnetic energy harvester

    International Nuclear Information System (INIS)

    Harvesting small thermal gradients effectively to generate electricity still remains a challenge. Ujihara et al (2007 Appl. Phys. Lett. 91 093508) have recently proposed a thermo-magnetic energy harvester that incorporates a combination of hard and soft magnets on a vibrating beam structure and two opposing heat transfer surfaces. This design has many advantages and could present an optimum solution to harvest energy in low temperature gradient conditions. In this paper, we describe a multi-physics numerical model for this harvester configuration that incorporates all the relevant parameters, including heat transfer, magnetic force, beam vibration, contact surface and piezoelectricity. The model was used to simulate the complete transient behavior of the system. Results are presented for the evolution of the magnetic force, changes in the internal temperature of the soft magnet (gadolinium (Gd)), thermal contact conductance, contact pressure and heat transfer over a complete cycle. Variation of the vibration frequency with contact stiffness and gap distance was also modeled. Limit cycle behavior and its bifurcations are illustrated as a function of device parameters. The model was extended to include a piezoelectric energy harvesting mechanism and, using a piezoelectric bimorph as spring material, a maximum power of 318 μW was predicted across a 100 kΩ external load. (paper)

  17. Performance of an adaptive mu-focusing Kirkpatrick-Baez system for high-pressure studies at the Advanced Photon Source

    International Nuclear Information System (INIS)

    X-ray studies of materials in extreme conditions of pressure call for focusing optics able to deliver very clean micron-size focal spots of high energy X-rays with added stringent requirements of flexibility to accommodate different experimental geometries and fast focal spot size adjustment. These requirements are fully met by multi-electrode modular piezoelectric bimorph mirrors (PBMs) in Kirkpatrick-Baez configurations, and these optical systems have already been successfully used for several years at high brilliance 3rd generation synchrotron radiation facilities such as the ESRF and SPring-8. The optical characterization and in-situ X-ray performance of the first pair of modular PBMs installed at the Advanced Photon Source at Argonne national laboratory is reported here. Metrology tests show that the mirrors are able to approximate an arbitrary surface described by a 9th order polynomial in shape with only 100 (angstrom); rms shape error over their full optical surface. Full adaptive zonal control allows wave front correction, delivers optimum focal spot profiles (as small as 8.5 (H) x 5.0 (V) (micro)m2 FWHM at a focal distance of 1 m) and fully achieves the creep-free short and long term stability and repeatability required by the experimental program.

  18. Energy harvesting for microsystems

    DEFF Research Database (Denmark)

    Xu, Ruichao

    power when strained. Three archetypes of the numerous fabricated energy harvesters will be presented in detail, they represent three major milestones in this project. The first energy harvester archetype has an unimorph cantilever beam, which consists of a 20 µm silicon layer and 10-30 µm screen printed...... PZT layer, anchored on a silicon frame at one end and attached to a silicon proof mass at the other. Electrodes will cover both side of the PZT layer, so the harvested energy can be collected electrically. The second archetype has a bimorph cantilever beam, which consists of two 15-35 µm PZT layers......, anchored on a silicon frame at the one end and attached to a silicon proof mass at the other. Electrodes are deposited below, between and above the two PZT layers. The root mean square (RMS) power output measured on this type of harvesters is as high as 37.1µW at 1 g. The third archetype is similar to the...

  19. Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications

    Science.gov (United States)

    Pozzi, Michele; Zhu, Meiling

    2012-05-01

    Wearable medical and electronic devices demand a similarly wearable electrical power supply. Human-based piezoelectric energy harvesters may be the solution, but the mismatch between the typical frequencies of human activities and the optimal operating frequencies of piezoelectric generators calls for the implementation of a frequency up-conversion technique. A rotary piezoelectric energy harvester designed to be attached to the knee-joint is here implemented and characterized. The wearable harvester is based on the plucking method of frequency up-conversion, where a piezoelectric bimorph is deflected by a plectrum and permitted to vibrate unhindered upon release. Experiments were conducted to characterize the energy produced by the rotary piezoelectric energy harvester with different electric loads and different excitation speeds, covering the range between 0.1 and 1 rev s-1 to simulate human gait speeds. The electrical loads were connected to the generator either directly or through a rectifying bridge, as would be found in most power management circuits. The focus of the paper is to study the capability of energy generation of the harvester for knee-joint wearable applications, and study the effects of the different loads and different excitation speeds. It is found that the energy harvested is around 160-490 µJ and strongly depends on the angular speed, the connected electric loads and also the manufacturing quality of the harvester. Statistical analysis is used to predict the potential energy production of a harvester manufactured to tighter tolerances than the one presented here.

  20. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements.

    Science.gov (United States)

    Burg, Brian R; Tong, Jonathan K; Hsu, Wei-Chun; Chen, Gang

    2012-10-01

    Microfabricated cantilever beams have been used in microelectromechanical systems for a variety of sensor and actuator applications. Bimorph cantilevers accurately measure temperature change and heat flux with resolutions several orders of magnitude higher than those of conventional sensors such as thermocouples, semiconductor diodes, as well as resistance and infrared thermometers. The use of traditional cantilevers, however, entails a series of important measurement limitations, because their interactions with the sample and surroundings often create parasitic deflection forces and the typical metal layer degrades the thermal sensitivity of the cantilever. The paper introduces a design to address these issues by decoupling the sample and detector section of the cantilever, along with a thermomechanical model, the fabrication, system integration, and characterization. The custom-designed bi-arm cantilever is over one order of magnitude more sensitive than current commercial cantilevers due to the significantly reduced thermal conductance of the cantilever sample arm. The rigid and immobile sample section offers measurement versatility ranging from photothermal absorption, near-field thermal radiation down to contact, conduction, and material thermal characterization measurements in nearly identical configurations. PMID:23126793