WorldWideScience

Sample records for bimolecular reactions based

  1. Bimolecular reactions of carbenes: Proton transfer mechanism

    Science.gov (United States)

    Abu-Saleh, Abd Al-Aziz A.; Almatarneh, Mansour H.; Poirier, Raymond A.

    2018-04-01

    Here we report the bimolecular reaction of trifluoromethylhydroxycarbene conformers and the water-mediated mechanism of the 1,2-proton shift for the unimolecular trans-conformer by using quantum chemical calculations. The CCSD(T)/cc-pVTZ//MP2/cc-pVDZ potential-energy profile of the bimolecular reaction of cis- and trans-trifluoromethylhydroxycarbene, shows the lowest gas-phase barrier height of 13 kJ mol-1 compared to the recently reported value of 128 kJ mol-1 for the unimolecular reaction. We expect bimolecular reactions of carbene's stereoisomers will open a valuable field for new and useful synthetic strategies.

  2. Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions

    KAUST Repository

    Lipková, Jana

    2011-01-01

    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ-bcȳ model for irreversible bimolecular reactions which was introduced in [R. Erban and S. J. Chapman, Phys. Biol., 6(2009), 046001]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated. © 2011 Society for Industrial and Applied Mathematics.

  3. RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    KAUST Repository

    Suleimanov, Yu.V.

    2013-03-01

    We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH 4, OH+CH4 and H+C2H6 reactions. © 2012 Elsevier B.V. All rights reserved.

  4. RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    KAUST Repository

    Suleimanov, Yu.V.; Allen, J.W.; Green, W.H.

    2013-01-01

    We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH 4, OH+CH4 and H+C2H6 reactions. © 2012 Elsevier B.V. All rights reserved.

  5. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  6. Efficient Homodifunctional Bimolecular Ring-Closure Method for Cyclic Polymers by Combining RAFT and Self-Accelerating Click Reaction.

    Science.gov (United States)

    Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping

    2017-08-01

    An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound → bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN - , NCO - and NCS - . Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH 3 0H,F + C 2 H 5 OH,F + OH and F + H 2 . A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3 P, 1 D) + HF and F + H 2 . The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made

  8. Does increasing pressure always accelerate the condensed material decay initiated through bimolecular reactions? A case of the thermal decomposition of TKX-50 at high pressures.

    Science.gov (United States)

    Lu, Zhipeng; Zeng, Qun; Xue, Xianggui; Zhang, Zengming; Nie, Fude; Zhang, Chaoyang

    2017-08-30

    Performances and behaviors under high temperature-high pressure conditions are fundamentals for many materials. We study in the present work the pressure effect on the thermal decomposition of a new energetic ionic salt (EIS), TKX-50, by confining samples in a diamond anvil cell, using Raman spectroscopy measurements and ab initio simulations. As a result, we find a quadratic increase in decomposition temperature (T d ) of TKX-50 with increasing pressure (P) (T d = 6.28P 2 + 12.94P + 493.33, T d and P in K and GPa, respectively, and R 2 = 0.995) and the decomposition under various pressures initiated by an intermolecular H-transfer reaction (a bimolecular reaction). Surprisingly, this finding is contrary to a general observation about the pressure effect on the decomposition of common energetic materials (EMs) composed of neutral molecules: increasing pressure will impede the decomposition if it starts from a bimolecular reaction. Our results also demonstrate that increasing pressure impedes the H-transfer via the enhanced long-range electrostatic repulsion of H +δ H +δ of neighboring NH 3 OH + , with blue shifts of the intermolecular H-bonds. And the subsequent decomposition of the H-transferred intermediates is also suppressed, because the decomposition proceeds from a bimolecular reaction to a unimolecular one, which is generally prevented by compression. These two factors are the basic root for which the decomposition retarded with increasing pressure of TKX-50. Therefore, our finding breaks through the previously proposed concept that, for the condensed materials, increasing pressure will accelerate the thermal decomposition initiated by bimolecular reactions, and reveals a distinct mechanism of the pressure effect on thermal decomposition. That is to say, increasing pressure does not always promote the condensed material decay initiated through bimolecular reactions. Moreover, such a mechanism may be feasible to other EISs due to the similar intermolecular

  9. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, Stephen Edmund [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN-, NCO- and NCS-. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH30H,F + C2H5OH,F + OH and F + H2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O(3P, 1D) + HF and F + H2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H2 system, comparisons with three-dimensional quantum calculations are made.

  10. Enhanced bimolecular exchange reaction through programmed coordination of a five-coordinate oxovanadium complex for efficient redox mediation in dye-sensitized solar cells.

    Science.gov (United States)

    Oyaizu, Kenichi; Hayo, Noriko; Sasada, Yoshito; Kato, Fumiaki; Nishide, Hiroyuki

    2013-12-07

    Electrochemical reversibility and fast bimolecular exchange reaction found for VO(salen) gave rise to a highly efficient redox mediation to enhance the photocurrent of a dye-sensitized solar cell, leading to an excellent photovoltaic performance with a conversion efficiency of 5.4%. A heterogeneous electron-transfer rate constant at an electrode (k0) and a second-order rate constant for an electron self-exchange reaction (k(ex)) were proposed as key parameters that dominate the charge transport property, which afforded a novel design concept for the mediators based on their kinetic aspects.

  11. The stereodynamics of photon-initiated bimolecular reactions

    International Nuclear Information System (INIS)

    Hughes, D.W.

    1999-01-01

    This thesis concerns the stereodynamics of the product state resolved reaction: H( 2 S) + CO 2 → (HOCO) → OH(X 2 Π Ω ; v, N, f) + CO( 1 Σ + ). Translationally excited hydrogen atoms were generated from HBr and HCl precursor molecules, via polarised laser photolysis, and the Doppler lineshapes of nascent OH products were monitored using polarised laser radiation. Four different OH product channels were investigated at a collision energy of 2.5 eV, and two OH product channels were studied at a collision energy of 1.8 eV. Three main sources of product state specific information were recovered from the Doppler profiles: Differential cross-sections (DCS); Product translational energy distributions (P(f)); Product rotational angular momentum distributions. Product state specific differential cross-sections (generated through collisions at 2.5 eV) suggest that OH( 2 Π 1/2 ) products may be produced through a more 'direct' route than OH( 2 Π 3/2 ) products. Differential cross-sections recorded for OH products generated through collisions at 1.8 eV, however, imply that neither OH spin-orbit state is populated through a 'direct' mechanism. The P(f t ) distributions for all OH product channels exhibit more product translational excitation than would be expected on the basis of phase space theory. This may imply either that the lifetimes of the collision complexes are short with respect to the timescale for intramolecular internal energy randomisation, or that there are significant exit channel interactions. The polarisation of the OH rotational angular momentum distribution is seen to be highly sensitive to the rotational and spin-orbit state of the OH products, but less sensitive to the collision energy and lambda-doublet state of the OH product. This thesis outlines the scope of present day experimental stereodynamical studies of gas-phase reactions (chapter 1), the theory of vector correlations in photoninitiated bimolecular reactions (chapter 2) and the

  12. Theoretical study on the mechanism of the reaction of FOX-7 with OH and NO2 radicals: bimolecular reactions with low barrier during the decomposition of FOX-7

    Science.gov (United States)

    Zhang, Ji-Dong; Zhang, Li-Li

    2017-12-01

    The decomposition of 1,1-diamino-2,2-dinitroethene (FOX-7) attracts great interests, while the studies on bimolecular reactions during the decomposition of FOX-7 are scarce. This study for the first time investigated the bimolecular reactions of OH and NO2 radicals, which are pyrolysis products of ammonium perchlorate (an efficient oxidant usually used in solid propellant), with FOX-7 by computational chemistry methods. The molecular geometries and energies were calculated using the (U)B3LYP/6-31++G(d,p) method. The rate constants of the reactions were calculated by canonical variational transition state theory. We found three mechanisms (H-abstraction, OH addition to C and N atom) for the reaction of OH + FOX-7 and two mechanisms (O abstraction and H abstraction) for the reaction of NO2 + FOX-7. OH radical can abstract H atom or add to C atom of FOX-7 with barriers near to zero, which means OH radical can effectively degrade FOX-7. The O abstraction channel of the reaction of NO2 + FOX-7 results in the formation of NO3 radical, which has never been detected experimentally during the decomposition of FOX-7.

  13. The bimolecular reaction of radiolysis product of hydrated electron at temperature up to 473K; Reaksi bimolekular antar produk radiolisis elektron terhidrasi pada temperatur hingga 473K

    Energy Technology Data Exchange (ETDEWEB)

    Sunaryo, G R [Reactor Safety Technology Research Centre, National Atomic Energy Agency, Serpong (Indonesia)

    1996-06-01

    Rate constant from the bimolecular reaction of hydrated electron was determined by using radiolysis method. The methanol solution with concentration of 5 x 10{sup -2} dm{sup 3} mol{sup -1} was used as a scavenger of H and OH radicals. The pH was kept by adding the buffer solution of 1.0 x 10{sup -3} dm{sup 3} mol{sup -1} Na{sub 2}HPO{sub 4} + 1.0 x 10{sup 4} dm{sup 3} mol{sup -1} NaH{sub 2}PO{sub 4}. The irradiation was done by using the electron beam which come from linear accelerator 28 MeV with pulse width 10ns and dose of 80 Gy per pulse. The absorbance of hydrated electron was observed at wavelength of 824 nm. By using the kinetic equation the rate reaction constants were obtained. The bimolecular reaction of hydrated electron increase with temperature up to 423K. The activation energy was 19.3 kJ mol{sup -1} and the 2 k (298K) was 1.1 x 10{sup 10} dm{sup 3} mol{sup -1}. Then this bimolecular reaction decrease at temperature higher than 423K and the rate reaction constant at 473K almost similar with that at 298K. (author)

  14. Infrared laser induced organic reactions. 2. Laser vs. thermal inducment of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols

    International Nuclear Information System (INIS)

    Danen, W.C.

    1979-01-01

    It has been demonstrated that a mixture of reactant molecules can be induced by pulsed infrared laser radiation to react via a route which is totally different from the pathway resulting from heating the mixture at 300 0 C. The high-energy unimolecular elimination of H 2 O from ethanol in the presence of 2-propanol and HBr can be selectively induced with a pulsed CO 2 laser in preference to either a lower energy bimolecular HBr-catalyzed dehydration or the more facile dehydration of 2-propanol. Heating the mixture resulted in the almost exclusive reaction of 2-propanol to produce propylene. It was demonstrated that the bimolecular ethanol + HBr reaction cannot be effectively induced by the infrared laser radiation as evidenced by the detrimental effect on the yield of ethylene as the HBr pressure was increased. The selective, nonthermal inducement of H 2 O elimination from vibrationally excited ethanol in the presence of 2-propanol required relatively low reactant pressures. At higher pressures intermolecular V--V energy transfer allowed the thermally more facile dehydration from 2-propanol to become the predominant reaction channel

  15. The influence of the "cage effect" on the mechanism of reversible bimolecular multistage chemical reactions in solutions.

    Science.gov (United States)

    Doktorov, Alexander B

    2015-08-21

    Manifestations of the "cage effect" at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a "cage complex." Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the "cage effect" leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  16. The influence of the “cage effect” on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    International Nuclear Information System (INIS)

    Doktorov, Alexander B.

    2015-01-01

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants

  17. The influence of the “cage effect” on the mechanism of reversible bimolecular multistage chemical reactions in solutions

    Energy Technology Data Exchange (ETDEWEB)

    Doktorov, Alexander B., E-mail: doktorov@kinetics.nsc.ru [Voevodsky Institute of Chemical Kinetics & Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2015-08-21

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  18. The influence of the "cage" effect on the mechanism of reversible bimolecular multistage chemical reactions proceeding from different sites in solutions.

    Science.gov (United States)

    Doktorov, Alexander B

    2016-08-28

    Manifestations of the "cage" effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the "cage complex," just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of the "cage" effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course.

  19. Unraveling the role of entropy in tuning unimolecular vs . bimolecular reaction rates: The case of olefin polymerization catalyzed by transition metals

    KAUST Repository

    Falivene, Laura

    2018-04-24

    Olefin polymerization catalyzed by Group 4 transition metals is studied here as test case to reveal the entropy effects when bimolecular and unimolecular reactions are computed for processes occurring in solution. Catalytic systems characterized by different ligand frameworks, metal, and growing polymeric chain for which experimental data are available have been selected in order to validate the main approaches to entropy calculation. Applying the “standard” protocol results in a strong disagreement with the experimental results and the methods introducing a direct correction of the translational entropy term based on a single experimental parameter emerge as the most reliable. The general and powerful computational tool achieved in this study can represent a further step towards the “catalyst design” to control and predict the molecular mass of the resulting polymers.

  20. Modeling Bimolecular Reactive Transport With Mixing-Limitation: Theory and Application to Column Experiments

    Science.gov (United States)

    Ginn, T. R.

    2018-01-01

    The challenge of determining mixing extent of solutions undergoing advective-dispersive-diffusive transport is well known. In particular, reaction extent between displacing and displaced solutes depends on mixing at the pore scale, that is, generally smaller than continuum scale quantification that relies on dispersive fluxes. Here a novel mobile-mobile mass transfer approach is developed to distinguish diffusive mixing from dispersive spreading in one-dimensional transport involving small-scale velocity variations with some correlation, such as occurs in hydrodynamic dispersion, in which short-range ballistic transports give rise to dispersed but not mixed segregation zones, termed here ballisticules. When considering transport of a single solution, this approach distinguishes self-diffusive mixing from spreading, and in the case of displacement of one solution by another, each containing a participant reactant of an irreversible bimolecular reaction, this results in time-delayed diffusive mixing of reactants. The approach generates models for both kinetically controlled and equilibrium irreversible reaction cases, while honoring independently measured reaction rates and dispersivities. The mathematical solution for the equilibrium case is a simple analytical expression. The approach is applied to published experimental data on bimolecular reactions for homogeneous porous media under postasymptotic dispersive conditions with good results.

  1. Bimolecular Master Equations for a Single and Multiple Potential Wells with Analytic Solutions.

    Science.gov (United States)

    Ghaderi, Nima

    2018-04-12

    example, relevant for O 3 formation from O + O 2 + Ar up to ∼100 bar; otherwise, additional contributions from postcollision are present and especially relevant at high pressures. In the aforementioned regime Z LJ < k d ( E' J' K) the physical connection of recombination rate constants, k rec based on either utilizing population from the master equation approach or a collision based bimolecular RRKM theory is traced and elucidated analytically that the rate constants are equal. Recombination rate constants, k rec , based on the population, are also given and considered for an adiabatic or active K. For example, for O 3 formation in Ar bath gas, the K-adiabatic-based k rec for O 3 yields 4.0 × 10 -34 cm 6 molecule -2 s -1 at T = 300 K and 1 bar, in agreement with the experimental value, where the contribution from the population of metastable ozone is discussed and the adiabaticity of K highlighted. A facile numerical implementation of the formalism for g( EJK) and k rec for O 3 is noted. The application of the expressions to ozone recombination as a function of pressure and temperature is given elsewhere, beyond the selection considered here, for studying the physical features, including the contributions from the K and intermolecular energy transfer to the k rec , and the puzzles reported from experiments for this reaction.

  2. Reformulation and solution of the master equation for multiple-well chemical reactions.

    Science.gov (United States)

    Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J

    2013-11-21

    We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity.

  3. Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane

    Science.gov (United States)

    Kalay, Ziya; Fujiwara, Takahiro K.; Kusumi, Akihiro

    2012-01-01

    Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity. PMID:22479350

  4. Confining domains lead to reaction bursts: reaction kinetics in the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Ziya Kalay

    Full Text Available Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity.

  5. Construction of a bimolecular fluorescence complementation (BiFC ...

    African Journals Online (AJOL)

    Protein–protein interactions are essential for signal transduction in cells. Bimolecular fluorescence complementation (BiFC) is a novel technology that utilises green fluorescent proteins to visualize protein–protein interactions and subcellular protein localisation. BiFC based on pSATN vectors are a good system for ...

  6. Bimolecular interaction of argpyrimidine (a Maillard reaction product) in in vitro non-enzymatic protein glycation model and its potential role as an antiglycating agent.

    Science.gov (United States)

    Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar

    2017-09-01

    Non- enzymatic glycation, also known as Maillard reaction, is one of the most important and investigated reactions in biochemistry. Maillard reaction products (MRPs) like protein-derived advanced glycation end products (AGEs) are often referred to cause pathophysiological complications in human systems. On contrary, several MRPs are exogenously used as antioxidant, antimicrobial and flavouring agents. In the preset study, we have shown that argpyrimidine, a well-established AGE, interacts with bovine serum albumin (BSA) and glucose individually in standard BSA-glucose model system and successfully inhibits glycation of the protein. Bimolecular interaction of argpyrimidine with glucose or BSA has been studied independently. Chromatographic purification, different spectroscopic studies and molecular modeling have been used to evaluate the nature and pattern of interactions. Binding of argpyrimidine with BSA prevents incorporation of glucose inside the native protein. Argpyrimidine can also directly entrap glucose. Both these interactions may be associated with the antiglycation potential of argpyrimidine, indicating a beneficial function of an AGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Entropy-based critical reaction time for mixing-controlled reactive transport

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Rolle, Massimo

    2017-01-01

    Entropy-based metrics, such as the dilution index, have been proposed to quantify dilution and reactive mixing in solute transport problems. In this work, we derive the transient advection dispersion equation for the entropy density of a reactive plume. We restrict our analysis to the case where...... the concentration distribution of the transported species is Gaussian and we observe that, even in case of an instantaneous complete bimolecular reaction, dilution caused by dispersive processes dominates the entropy balance at early times and results in the net increase of the entropy density of a reactive species...

  8. Observation of correlated excitations in bimolecular collisions

    Science.gov (United States)

    Gao, Zhi; Karman, Tijs; Vogels, Sjoerd N.; Besemer, Matthieu; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Although collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum-state-resolved bimolecular cross-sections lags behind their atom-molecule counterparts by decades. For many bimolecular systems, even rules of thumb—much less intuitive understanding—of scattering cross sections are lacking. Here, we report the measurement of state-to-state differential cross sections on the collision of state-selected and velocity-controlled nitric oxide (NO) radicals and oxygen (O2) molecules. Using velocity map imaging of the scattered NO radicals, the full product-pair correlations of rotational excitation that occurs in both collision partners from individual encounters are revealed. The correlated cross sections show surprisingly good agreement with quantum scattering calculations using ab initio NO-O2 potential energy surfaces. The observations show that the well-known energy-gap law that governs atom-molecule collisions does not generally apply to bimolecular excitation processes, and reveal a propensity rule for the vector correlation of product angular momenta.

  9. Switching and sensing spin states of co-porphyrin in bimolecular reactions on Au111 using scanning tunneling microscopy.

    Science.gov (United States)

    Kim, Howon; Chang, Yun Hee; Lee, Soon-Hyeong; Kim, Yong-Hyun; Kahng, Se-Jong

    2013-10-22

    Controlling and sensing spin states of magnetic molecules at the single-molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of Co-porphyrin on Au(111) can be reversibly switched over by binding and unbinding of the NO molecule and can be sensed using scanning tunneling microscopy and spectroscopy (STM and STS). Before NO exposure, Co-porphryin showed a clear zero-bias peak, a signature of Kondo effect in STS, whereas after NO exposures, it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature, implying that the Kondo effect was switched off by binding of NO. The Kondo effect could be switched back on by unbinding of NO through single-molecule manipulation or thermal desorption. Our density functional theory calculation results explain the observations with pairing of unpaired spins in dz(2) and ppπ* orbitals of Co-porphyrin and NO, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of enormous variety of bimolecular binding and unbinding reactions on metallic surfaces.

  10. CHEMICAL REACTIONS ON ADSORBING SURFACE: KINETIC LEVEL OF DESCRIPTION

    Directory of Open Access Journals (Sweden)

    P.P.Kostrobii

    2003-01-01

    Full Text Available Based on the effective Hubbard model we suggest a statistical description of reaction-diffusion processes for bimolecular chemical reactions of gas particles adsorbed on the metallic surface. The system of transport equations for description of particles diffusion as well as reactions is obtained. We carry out the analysis of the contributions of all physical processes to the formation of diffusion coefficients and chemical reactions constants.

  11. Title: Elucidation of Environmental Fate of Artificial Sweeteners (Aspartame, Acesulfame K and Saccharin) by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Possible Reaction By-Products

    Science.gov (United States)

    Teraji, T.; Arakaki, T.; Suzuka, T.

    2012-12-01

    Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.

  12. Electron transfer reactions of metal complexes in solution

    International Nuclear Information System (INIS)

    Sutin, N.

    1977-01-01

    A few representative electron-transfer reactions are selected and their kinetic parameters compared with the predictions of activated complex models. Since Taube has presented an elegant treatment of intramolecular electron-transfer reactions, emphasis is on bimolecular reactions. The latter electron-transfer reactions are more complicated to treat theoretically since the geometries of their activated complexes are not as well known as for the intramolecular case. In addition in biomolecular reactions, the work required to bring the two reactants together needs to be calculated. Since both reactants generally carry charges this presents a non-trivial problem at the ionic strengths usually used to study bimolecular electron transfer

  13. Reaction product imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  14. Picosecond real time study of the bimolecular reaction O(3P)+C2H4 and the unimolecular photodissociation of CH3CHO and H2CO

    Science.gov (United States)

    Abou-Zied, Osama K.; McDonald, J. Douglas

    1998-07-01

    The bimolecular reaction of O(3P) with ethylene and the unimolecular photodissociation of acetaldehyde and formaldehyde have been studied using a picosecond pump/probe technique. The bimolecular reaction was initiated in a van der Waals dimer precursor, C2H4ṡNO2, and the evolution of the vinoxy radical product monitored by laser-induced fluorescence. The NO2 constituent of the complex was photodissociated at 266 nm. The triplet oxygen atom then attacks a carbon atom of C2H4 to form a triplet diradical (CH2CH2O) which subsequently dissociates to vinoxy (CH2CHO) and H. The rise time of vinoxy radical production was measured to be 217 (+75-25) ps. RRKM theory was applied and a late high exit barrier was invoked in order to fit the measured rise time. The structure and binding energy of the van der Waals complex have been modeled using Lennard-Jones type potentials and the results were compared with other systems. The unimolecular side of the potential energy surfaces of this reaction has been investigated by photodissociating acetaldehyde at the same pump energy of 266 nm. The resulting photoproducts, acetyl radical (CH3CO) and formyl radical (HCO), have been monitored by resonance enhanced multiphoton ionization (REMPI) combined with a time-of-flight mass spectrometer. The similarity in the measured evolution times of both radicals indicates the same photodissociation pathway of the parent molecule. The photodissociation rate of acetaldehyde is estimated from RRKM theory to be very fast (3×1012s-1). The T1←S1 intersystem crossing (ISC) rate is found to be the rate determining step to photodissociation and increases with energy. The REMPI mechanism for the production of CH3CO+ is proposed to be the same as that of HCO+(2+1). The HCO product from the photodissociation of formaldehyde at 266 nm reveals a faster T1←S1 ISC rate than in acetaldehyde.

  15. Uncertainty for calculating transport on Titan: A probabilistic description of bimolecular diffusion parameters

    Science.gov (United States)

    Plessis, S.; McDougall, D.; Mandt, K.; Greathouse, T.; Luspay-Kuti, A.

    2015-11-01

    Bimolecular diffusion coefficients are important parameters used by atmospheric models to calculate altitude profiles of minor constituents in an atmosphere. Unfortunately, laboratory measurements of these coefficients were never conducted at temperature conditions relevant to the atmosphere of Titan. Here we conduct a detailed uncertainty analysis of the bimolecular diffusion coefficient parameters as applied to Titan's upper atmosphere to provide a better understanding of the impact of uncertainty for this parameter on models. Because temperature and pressure conditions are much lower than the laboratory conditions in which bimolecular diffusion parameters were measured, we apply a Bayesian framework, a problem-agnostic framework, to determine parameter estimates and associated uncertainties. We solve the Bayesian calibration problem using the open-source QUESO library which also performs a propagation of uncertainties in the calibrated parameters to temperature and pressure conditions observed in Titan's upper atmosphere. Our results show that, after propagating uncertainty through the Massman model, the uncertainty in molecular diffusion is highly correlated to temperature and we observe no noticeable correlation with pressure. We propagate the calibrated molecular diffusion estimate and associated uncertainty to obtain an estimate with uncertainty due to bimolecular diffusion for the methane molar fraction as a function of altitude. Results show that the uncertainty in methane abundance due to molecular diffusion is in general small compared to eddy diffusion and the chemical kinetics description. However, methane abundance is most sensitive to uncertainty in molecular diffusion above 1200 km where the errors are nontrivial and could have important implications for scientific research based on diffusion models in this altitude range.

  16. Vibrational-rotational excitation: chemical reactions of vibrationally excited molecules

    International Nuclear Information System (INIS)

    Moore, C.B.; Smith, I.W.M.

    1979-03-01

    This review considers a limited number of systems, particularly gas-phase processes. Excited states and their preparation, direct bimolecular reactions, reactions of highly excited molecules, and reactions in condensed phases are discussed. Laser-induced isotope separation applications are mentioned briefly. 109 references

  17. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    Science.gov (United States)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  18. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  19. Single-molecule stochastic times in a reversible bimolecular reaction

    Science.gov (United States)

    Keller, Peter; Valleriani, Angelo

    2012-08-01

    In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.

  20. Inhomogeneous bimolecular recombination in partially crystallised tri-methylphenyl diamine glasses

    International Nuclear Information System (INIS)

    Goldie, D.M.

    2013-01-01

    The rise and fall dynamics of transient photocurrents induced by exposure to ultraviolet radiation have been analysed for a series of glassy tri-methylphenyl diamine films that have been partially crystallised by ageing under ambient conditions following vapour deposition. An inhomogeneous bimolecular recombination model that uses coupled rate equations is found to provide a consistent fit for the observed photocurrent dynamics provided the recombination rate of holes in the crystallised regions of the films is lower compared to the amorphous regions. Parameters returned by the bimolecular model are investigated as a function of the film age but are observed to be highly sensitive to the initial experimental estimates that are supplied for the effective hole recombination time. The effective hole recombination time generated by the model is found to be relatively independent of film age, however, and has a value of around 0.16 s for a carrier generation rate of 7 × 10 14 cm −3 s −1 . The effective recombination time and steady-state photoconductivity magnitudes are found to be consistent with experimental hole mobility and photo-carrier generation efficiency values that are obtained using complementary time-of-flight and charge collection experiments. - Highlights: ► Transient photocurrents in evaporated diamine films have fast and slow components. ► Transient photocurrents are modelled using inhomogeneous bimolecular recombination. ► Recombination rates differ between crystallised and amorphous film regions. ► Recombination parameters evolve with film age as the films crystallise

  1. Calculation of rate coefficients of some proton-transfer ion-molecule reactions in weakly ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.

    1985-01-01

    A classical collision theory is used to describe thermal bimolecular rate coefficeints for reaction between positive and negative ions and polar molecules in a carrier gas. Special attention is paid to ion-molecule reaction in which proton transfer occurs. These reactions play an important role in terrestrial plasma devices, in ionosphere, in planetary atmospheres and in interstellar matter. The equilibrium rate coefficients of the reactions are calculated based on a microscopic reactive cross section derived from a long distance polar molecule-ion potential. The results are compared with experimental values of afterglow measurements. (D.Gy.)

  2. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model

    NARCIS (Netherlands)

    Bickelhaupt, F. Matthias; Houk, Kendall N.

    2017-01-01

    The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction

  3. Real-time observation of intersystem crossing induced by charge recombination during bimolecular electron transfer reactions

    KAUST Repository

    Alsam, Amani Abdu

    2016-09-21

    Real-time probing of intersystem crossing (ISC) and triplet-state formation after photoinduced electron transfer (ET) is a particularly challenging task that can be achieved by time-resolved spectroscopy with broadband capability. Here, we examine the mechanism of charge separation (CS), charge recombination (CR) and ISC of bimolecular photoinduced electron transfer (PET) between poly[(9,9-di(3,3′-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and dicyanobenzene (DCB) using time-resolved spectroscopy. PET from PFN to DCB is confirmed by monitoring the transient absorption (TA) and infrared spectroscopic signatures for the radical ion pair (DCB─•-PFN+•). In addition, our time-resolved results clearly demonstrate that CS takes place within picoseconds followed by CR within nanoseconds. The ns-TA data exhibit the clear spectroscopic signature of PFN triplet-triplet absorption, induced by the CR of the radical ion pairs (DCB─•-PFN+•). As a result, the triplet state of PFN (3PFN*) forms and subsequently, the ground singlet state is replenished within microseconds. © 2016

  4. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  5. Femtosecond laser induced and controlled chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2011-07-01

    Full Text Available Results from experiments aimed at bimolecular chemical reaction control of CO and H2 at room temperature and pressure, without any catalyst, using shaped femtosecond laser pulses are presented. A stable reaction product (CO2) was measured after...

  6. Photochemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B.C. [Lawrence Berkeley Laboratory, Livermore, CA (United States)

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  7. Reaction of hydrogen atoms with acrylaldehyde

    International Nuclear Information System (INIS)

    Koda, Seiichiro; Nakamura, Kazumoto; Hoshino, Takashi; Hikita, Tsutomu

    1978-01-01

    The reaction of hydrogen atoms with acrylaldehyde was investigated in a fast flow reactor equipped with a time-of-flight type mass spectrometer under reduced pressure. Main reaction products were carbon monoxide, ethylene, ethane, methane, and propanal. Consideration of the distributions of the reaction products under various reaction conditions showed that hydrogen atoms attacked the C=C double bond, especially its inner carbon side under reduced pressure. Resulting hot radicals caused subsequent reactions. The relative value of the apparent bimolecular rate constant of the reaction against that of trans-2-butene with hydrogen atoms was 1.6+-0.2, which supported the above-mentioned initial reaction. (auth.)

  8. Exciplex formation in bimolecular photoinduced electron-transfer investigated by ultrafast time-resolved infrared spectroscopy.

    Science.gov (United States)

    Koch, Marius; Letrun, Romain; Vauthey, Eric

    2014-03-12

    The dynamics of bimolecular photoinduced electron-transfer reactions has been investigated with three donor/acceptor (D/A) pairs in tetrahydrofuran (THF) and acetonitrile (ACN) using a combination of ultrafast spectroscopic techniques, including time-resolved infrared absorption. For the D/A pairs with the highest driving force of electron transfer, all transient spectroscopic features can be unambiguously assigned to the excited reactant and the ionic products. For the pair with the lowest driving force, three additional transient infrared bands, more intense in THF than in ACN, with a time dependence that differs from those of the other bands are observed. From their frequency and solvent dependence, these bands can be assigned to an exciplex. Moreover, polarization-resolved measurements point to a relatively well-defined mutual orientation of the constituents and to a slower reorientational time compared to those of the individual reactants. Thanks to the minimal overlap of the infrared signature of all transient species in THF, a detailed reaction scheme including the relevant kinetic and thermodynamic parameters could be deduced for this pair. This analysis reveals that the formation and recombination of the ion pair occur almost exclusively via the exciplex.

  9. Effects of geminate and bimolecular recombination on the performance of polymeric-small molecular solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Marcel; Yin, Chunhong; Castellani, Mauro; Neher, Dieter [University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm (Germany); Sellinger, Alan [IMRE, 3 Research Link, 117602 Singapore (Singapore)

    2009-07-01

    Many physical properties of organic photovoltaics are related to the nature of the geminate pair, an intermediate state that forms after dissociation of photogenerated excitons and prior to free charge carrier generation. Whereas it was found that photocurrent generation is dominated by the strong field dependent process of geminate pair dissociation, the recombination of uncorrelated free charge carriers and the formation of space charge seem to play a minor role in the prominent P3HT/PCBM combination. The situation may change, when using different D/A combinations or other soluble acceptor molecules. We present organic solar cells comprising a novel small molecule based on 2-vinyl-4,5-dicyanoimidazole (Vinazene) as acceptor and M3EH-PPV as donor. While bilayer devices show promising results with a fill factor up to 57 %, the IU-characteristics of bulk heterojunction devices are dominated by bimolecular recombination and space charge effects even at moderate illumination intensities. Photo-CELIV measurements were performed to study the bimolecular recombination in detail. By combining photo-CELIV results with PL and IU measurements we are able to analyze the interrelation of recombination losses, free charge carrier generation and exciplex formation.

  10. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  11. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  12. [Microcalorimetric determination of thermochemical parameters of the phosphofructokinase reaction].

    Science.gov (United States)

    Böhme, H J; Schellenberger, W; Hofmann, E

    1975-01-01

    A calorimetric procedure for determining deltaH, deltaG, deltaS and Keq of a bimolecular reaction with two or more products is described. By using this method the thermodynamic parameters of the phosphofructokinase reaction are determined. At pH 7.0 and 25 degrees C a reaction enthalpy of-6.96kcal/mole was found after correction for the neutralization enthalpy of the buffer and of the enthalpy difference of the magnesium complexes of ATP and ADP, respectively. The free energy of the phosphofructokinase reaction has been found under these conditions to be -3.96kcal/mole.

  13. Enabling nucleophilic substitution reactions of activated alkyl fluorides through hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Pomarole, Julien; Thérien, Marie-Ève; Benhassine, Yasmine; Beaulieu, Samuel; Legault, Claude Y; Paquin, Jean-François

    2013-05-03

    It was discovered that the presence of water as a cosolvent enables the reaction of activated alkyl fluorides for bimolecular nucleophilic substitution reactions. DFT calculations show that activation proceeds through stabilization of the transition structure by a stronger F···H2O interaction and diminishing C-F bond elongation, and not simple transition state electrostatic stabilization. Overall, the findings put forward a distinct strategy for C-F bond activation through H-bonding.

  14. Very Low Rate Constants of Bimolecular CO Adsorption on Anionic Gold Clusters: Implications for Catalytic Activity

    Czech Academy of Sciences Publication Activity Database

    Balteanu, I.; Balaj, O. P.; Fox, B. S.; Beyer, M. K.; Bastl, Zdeněk; Bondybey, V. E.

    2003-01-01

    Roč. 5, - (2003), s. 1213-1218 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z4040901 Keywords : bimolecular * adsorption * catalytic activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.959, year: 2003

  15. A hetero retro Diels-Alder reaction in aqueous solution : A dramatic water-induced increase of the equilibrium constant and inhibition of cycloreversion

    NARCIS (Netherlands)

    Wijnen, J.W; Engberts, J.B.F.N.

    The adduct of the Diels-Alder reaction of nitrosobenzene with cyclopentadiene is not stable in solution. The equilibrium constant for the reaction depends strongly on the medium and water induces a spectacular shift to the adduct. Comparison with the bimolecular addition of nitrosobenzene to

  16. Mass spectrometric studies of bimolecular reactions in a selected ion flow tube (SIFT)

    International Nuclear Information System (INIS)

    Shul, R.J.; Upschulte, B.L.; Passarella, R.; Keesee, R.G.; Castleman, A.W.

    1985-01-01

    The rate coefficients for a number of thermal energy charge transfer reactions have been obtained with a selected ion flow tube (SIFT). The reactions studied involve Ar + and Ar 2 + with a variety of neutral molecules including: O 2 , CS 2 , CO 2 , SO 2 , H 2 S, NH 3 , and SF 6 . Such reactions have been of long-standing interest in the field of gas-phase ion-molecule chemistry from both a practical and fundamental point of view. Consideration of charge transfer reactions as possible sources of chemical lasers and their role in ionospheric and interstellar chemistry account for much of the interest. Fundamentally, the mechanism involved in these reactions has yet to be definitively established. The consumption deposition of energy into internal modes and translational degrees of freedom in such reactions has also been a topic of considerable debate. The apparatus consists of five main components: an ion source, SIFT quadrupole, ion injector, flow tube, and a mass spectrometer detection system. Ions formed in a high pressure source leak into a SIFT quadrupole where they are mass selected. The primary ion of interest is then injected into the flow tube where reactions are studied. Once in the flow tube the ions are carried downstream by an inert buffer gas, either argon, nitrogen, or helium in the present study. Neutral reactant gas is added through a reactant gas inlet (RGI) at an appropriate location downstream in the flow tube, and allowed to react with the injected ions. Ions on the flow tube axis are sampled through a 1 mm orifice where they are mass analyzed by a second quadrupole mass spectrometer and detected with a channeltron electron multiplier

  17. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    Science.gov (United States)

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  18. [Hypothesis and application of bimolecular marking methods in Chinese materia medica].

    Science.gov (United States)

    Huang, Lu-qi; Qian, Dan; Deng, Chao

    2015-01-01

    Based on the current shortage of genuine/false authentication and quality evaluation in the molecular identification, and the weak functional gene research in the establishment of two-dimensional molecular markering methods for Chinese materia medica, the authors proposed a new method, the bimolecular marking methods (BIMM) for Chinese materia medica, combining DNA marker and metabolomics marker, that could simultaneously research the species and quality differences at the molecular level at the present stage. The authors introduced the concept, principle, methods, and technical process of BIMM, and summarized the technical advantages in this paper. Meanwhile, the application of BIMM in the identification of multiple sources of Chinese materia medica, years-identification, different locations, elite germplasm research, discovery of new drugs resources, protection of new varieties was also discussed. As a supplement of two-dimensional molecular markering method for Chinese materia medica, BIMM would not only expand connotation of identification of Chinese materia medica but also provide another effective way for quality evaluating.

  19. Isotope effects in gas-phase chemical reactions and photodissociation processes: Overview

    International Nuclear Information System (INIS)

    Kaye, J.A.

    1992-01-01

    The origins of isotope effects in equilibrium and non-equilibrium chemical processes are reviewed. In non-equilibrium processes, attention is given to isotope effects in simple bimolecular reactions, symmetry-related reactions, and photodissociation processes. Recent examples of isotope effects in these areas are reviewed. Some indication of other scientific areas for which measurements and/or calculations of isotope effects are used is also given. Examples presented focus on neutral molecule chemistry and in many cases complement examples considered in greater detail in the other chapters of this volume

  20. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    Science.gov (United States)

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society

  1. A KDE-Based Random Walk Method for Modeling Reactive Transport With Complex Kinetics in Porous Media

    Science.gov (United States)

    Sole-Mari, Guillem; Fernà ndez-Garcia, Daniel; Rodríguez-Escales, Paula; Sanchez-Vila, Xavier

    2017-11-01

    In recent years, a large body of the literature has been devoted to study reactive transport of solutes in porous media based on pure Lagrangian formulations. Such approaches have also been extended to accommodate second-order bimolecular reactions, in which the reaction rate is proportional to the concentrations of the reactants. Rather, in some cases, chemical reactions involving two reactants follow more complicated rate laws. Some examples are (1) reaction rate laws written in terms of powers of concentrations, (2) redox reactions incorporating a limiting term (e.g., Michaelis-Menten), or (3) any reaction where the activity coefficients vary with the concentration of the reactants, just to name a few. We provide a methodology to account for complex kinetic bimolecular reactions in a fully Lagrangian framework where each particle represents a fraction of the total mass of a specific solute. The method, built as an extension to the second-order case, is based on the concept of optimal Kernel Density Estimator, which allows the concentrations to be written in terms of particle locations, hence transferring the concept of reaction rate to that of particle location distribution. By doing so, we can update the probability of particles reacting without the need to fully reconstruct the concentration maps. The performance and convergence of the method is tested for several illustrative examples that simulate the Advection-Dispersion-Reaction Equation in a 1-D homogeneous column. Finally, a 2-D application example is presented evaluating the need of fully describing non-bilinear chemical kinetics in a randomly heterogeneous porous medium.

  2. Are Nonadiabatic Reaction Dynamics the Key to Novel Organosilicon Molecules? The Silicon (Si(3P))-Dimethylacetylene (C4H6(X1A1g)) System as a Case Study.

    Science.gov (United States)

    Thomas, Aaron M; Dangi, Beni B; Yang, Tao; Kaiser, Ralf I; Lin, Lin; Chou, Tzu-Jung; Chang, Agnes H H

    2018-06-06

    The bimolecular gas phase reaction of ground-state silicon (Si; 3 P) with dimethylacetylene (C 4 H 6 ; X 1 A 1g ) was investigated under single collision conditions in a crossed molecular beams machine. Merged with electronic structure calculations, the data propose nonadiabatic reaction dynamics leading to the formation of singlet SiC 4 H 4 isomer(s) and molecular hydrogen (H 2 ) via indirect scattering dynamics along with intersystem crossing (ISC) from the triplet to the singlet surface. The reaction may lead to distinct energetically accessible singlet SiC 4 H 4 isomers ( 1 p8- 1 p24) in overall exoergic reaction(s) (-107 -20 +12 kJ mol -1 ). All feasible reaction products are either cyclic, carry carbene analogous silylene moieties, or carry C-Si-H or C-Si-C bonds that would require extensive isomerization from the initial collision complex(es) to the fragmenting singlet intermediate(s). The present study demonstrates the first successful crossed beams study of an exoergic reaction channel arising from bimolecular collisions of silicon, Si( 3 P), with a hydrocarbon molecule.

  3. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    a radical is denoted as a H-shift reaction. Quantum chemical calculations were carried out to investigate the potential energy surface of the H-shift reactions and the subsequent decomposition pathways. The transition state theory including the Eckart quantum tunneling correction have been used to calculate...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...... a series of H-shift reactions and O2 attachments. I have investigated the H-shift reactions in two OOQOOH radicals (hydroperoxy peroxy radicals and hydroperoxy acyl peroxy radicals). The H-shift reaction rate constants have been compared with the bimolecular reaction rate constants of the peroxy radicals...

  4. Elucidation of Environmental Fate of Artificial Sweetener, Aspartame by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Reaction By-Products Presentation type:Poster Section:Ocean Sciences Session:General Contribution Authors:Takashi Teraji (1) Takemitsu Arakaki (2) AGU# 10173629 (1) Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa, 903-0123, Japan (a4269bj@yahoo.co.jp), (2) Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa, 903-0123, Japan (arakakit@sci.u-ryukyu.ac.jp)

    Science.gov (United States)

    Teraji, T.; Arakaki, T.

    2011-12-01

    Use of artificial sweeteners in drinks and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. In particular, we focused on the fate of aspartame by determining its bimolecular rate constants with hydroxyl radicals at various pH and temperature conditions and reaction by-products. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far was (2.6±1.2)×109 M-1 s-1 at pH = 3.0. Little effect was seen by changing the temperatures between 15 and 40 °C. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, which could be regarded as zero. We will report reaction rate constants at different pHs and reaction by-products which will be analyzed by GC-MS. We will further discuss the fate of aspartame in the coastal environment.

  5. Pericyclic reactions in an aqueous molecular flask.

    Science.gov (United States)

    Murase, Takashi; Fujita, Makoto

    2010-10-01

    A self-assembled molecular flask with a nanometer-sized restricted cavity offers a new reaction environment that is quite different from the bulk solution. The self-assembled cage accommodates a pair of hydrophobic molecules to perform unusual Diels-Alder reactions and [2+2] photoadditions of otherwise unreactive aromatic molecules. In this cage, for example, the Diels-Alder reaction of naphthalene proceeds smoothly under mild conditions, and aceanthrylene shows reactivity for both [2+2] and [2+4] cycloadditions via the identical ternary host-guest complex. The observed greatly enhanced reactivity stems from the increased local concentration and pre-organization of the substrate pair within the cage, which reduces the entropic cost and switches the reaction profile from a bimolecular to a pseudo-intramolecular reaction pathway. The reinforced orientation and arrangement of substrate pairs specify regio- and stereo-selectivities of the subsequent reactions in the cavity. Chiral auxiliaries outside the cage create the inner chiral environment and induce asymmetric reactions inside the cage (up to 50% ee). © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  6. Reactions of OH Radicals with Tris (1,10-Phenanthroline) Iron (II) Studied by Pulse Radiolysis

    DEFF Research Database (Denmark)

    Siekierska Floryan, E.; Pagsberg, Palle Bjørn

    1976-01-01

    The reaction of OH radicals with aqueous tris(1,10-phenanthroline)iron(II) leads to the formation of an adduct, which exhibits a broad absorption band at rmpH = 6, λmax = 460 nm, and epsilon (Porson)460 = 6700 (molar, decadic, 1 mol−1 cm−1). The rate of formation of the adduct is first order...... in complex concentration with a bimolecular rate constant Image independent of pH in the range pH 3–11. The adduct decays by mixed-order kinetics, but at 310 nm a second-order formation of a decay product can be directly observed. The reaction of OH radicals with aqueous 1,10-phenanthroline leads also...... to the formation of an adduct which absorbs in the whole visible region with a maximum at 425 nm and ε425 = 2612 (molar, decadic, 1 mol−1 cm−1) in neutral solution. The adduct exhibits a red shift in acidic and alkaline media. The formation is first order in 1,10-phenanthroline with a bimolecular rate constant...

  7. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

    International Nuclear Information System (INIS)

    Monaco, R; Bianchi, M Pandolfi; Soares, A J

    2005-01-01

    A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

  8. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    Science.gov (United States)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  9. Characterization and kinetic study of Diels-Alder reaction: Detailed study on N-phenylmaleimide and furan based benzoxazine with potential self-healing application

    Directory of Open Access Journals (Sweden)

    Z. Stirn

    2016-07-01

    Full Text Available The Diels-Alder reaction between N-phenylmaleimide and benzoxazine bearing furan group was investigated for the purpose of successful appliance of self-healing in benzoxazine polymer networks. The reaction as a function of temperature/time was performed in molten state and in a solution, where also the kinetic study was performed. The Diels-Alder reaction leads to a mixture of two diastereomers: endo presented at lower cyclo-reversion temperature and exo at higher. Therefore, the conversion rates and exo/endo ratio were studied in detail for both systems. For instance, in molten state the Diels-Alder reaction was triggered by the temperature of the melting point at 60 °C with exo/endo ratio preferable to the endo adduct. The study of the kinetics in a solution revealed that the Diels-Alder reaction followed typical bimolecular reversible second-order reaction. The activation energies were close to the previous literature data; 48.4 and 51.9 kJ·mol–1 for Diels-Alder reaction, and 91.0 and 102.3 kJ·mol–1 for retro-Diels-Alder reaction, in acetonitrile and chloroform, respectively. The reaction equilibrium in a solution is much more affected by the retro-Diels-Alder reaction than in a molten state. This study shows detailed investigation of DA reaction and provides beneficial knowledge for further use in self-healing polymer networks.

  10. Vibrational transitions in hydrogen bonded bimolecular complexes – A local mode perturbation theory approach to transition frequencies and intensities

    DEFF Research Database (Denmark)

    Mackeprang, Kasper; Kjærgaard, Henrik Grum

    2017-01-01

    The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded...

  11. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    International Nuclear Information System (INIS)

    Shushin, A I

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc

  12. Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback

    Science.gov (United States)

    Wei, Xin; Wei, Junjie

    2017-09-01

    A diffusive autocatalytic bimolecular model with delayed feedback subject to Neumann boundary conditions is considered. We mainly study the stability of the unique positive equilibrium and the existence of periodic solutions. Our study shows that diffusion can give rise to Turing instability, and the time delay can affect the stability of the positive equilibrium and result in the occurrence of Hopf bifurcations. By applying the normal form theory and center manifold reduction for partial functional differential equations, we investigate the stability and direction of the bifurcations. Finally, we give some simulations to illustrate our theoretical results.

  13. An approximate method for calculating composition of the non-equilibrium explosion products of hydrocarbons and oxygen

    International Nuclear Information System (INIS)

    Shargatov, V A; Gubin, S A; Okunev, D Yu

    2016-01-01

    We develop a method for calculating the changes in composition of the explosion products in the case where the complete chemical equilibrium is absent but the bimolecular reactions are in quasi-equilibrium with the exception bimolecular reactions with one of the components of the mixture. We investigate the possibility of using the method of 'quasiequilibrium' for mixtures of hydrocarbons and oxygen. The method is based on the assumption of the existence of the partial chemical equilibrium in the explosion products. Without significant loss of accuracy to the solution of stiff differential equations detailed kinetic mechanism can be replaced by one or two differential equation and a system of algebraic equations. This method is always consistent with the detailed mechanism and can be used separately or in conjunction with the solution of a stiff system for chemically non-equilibrium mixtures replacing it when bimolecular reactions are near to equilibrium. (paper)

  14. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.

    Science.gov (United States)

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-03-10

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  15. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors

    Directory of Open Access Journals (Sweden)

    Nozomu Tsuruoka

    2017-03-01

    Full Text Available The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  16. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Effect of micellar environment on Marcus correlation curves for photoinduced bimolecular electron transfer reactions

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2005-07-01

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amine has been investigated in two cationic micelles, namely, cetyltrimethyl ammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), and the results have been compared with those observed earlier in sodium dodecyl sulphate (SDS) and triton-X-100 (TX-100) micelles for similar donor-acceptor pairs. Due to a reasonably high effective concentration of the amines in the micellar Stern layer, the steady-state fluorescence results show significant static quenching. In the time-resolved (TR) measurements with subnanosecond time resolution, contribution from static quenching is avoided. Correlations of the dynamic quenching constants (kqTR), as estimated from the TR measurements, show the typical bell-shaped curves with the free-energy changes (ΔG0) of the ET reactions, as predicted by the Marcus outersphere ET theory. Comparing present results with those obtained earlier for similar coumarin-amine systems in SDS and TX-100 micelles, it is seen that the inversion in the present micelles occurs at an exergonicity (-ΔG0>˜1.2-1.3eV) much higher than that observed in SDS and TX-100 micelles (-ΔG0>˜0.7eV), which has been rationalized based on the relative propensities of the ET and solvation rates in different micelles. In CTAB and DTAB micelles, the kqTR values are lower than the solvation rates, which result in the full contribution of the solvent reorganization energy (λs) towards the activation barrier for the ET reaction. Contrary to this, in SDS and TX-100 micelles, kqTR values are either higher or comparable with the solvation rates, causing only a partial contribution of λs in these cases. Thus, Marcus inversion in present cationic micelles is inferred to be the true inversion, whereas that in the anionic SDS and neutral TX-100 micelles are understood to be the apparent inversion, as envisaged from two-dimensional ET theory.

  18. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    Science.gov (United States)

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  19. On the some reactions of mixed ethers of phosphorus acid with acrylonitrile and methyl iodide

    International Nuclear Information System (INIS)

    Gusev, Yu.K.; Chistokletov, V.N.; Petrov, A.A.

    1977-01-01

    The bimolecular mechanism has been confirmed of the redgrouping stage of Arbuzov's classical reactions for phosphites containing primary and secondary radicals in reactions of acrylonitrile and methyl iodide with some mixed ethers of phosphoric acid. It is suggested that dealcylation of the intermediate products formed on interaction of olefins activated by electron-acceptor groups with phosphites containing primary radicals occurs according to the Ssub(N)2-mechanism, secondary radicals, according to the mixed Ssub(N)2 and Ssub(N)1-mechanism,and radicals capable of forming stable carbonium ions, according to the Ssub(N)1-mechanism

  20. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  1. Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice

    Directory of Open Access Journals (Sweden)

    Waijiao Cai

    2018-03-01

    Full Text Available Alpha-synuclein (αSyn is encoded by the first causal gene identified in Parkinson's disease (PD and is the main component of Lewy bodies, a pathological hallmark of PD. aSyn-based animal models have contributed to our understanding of PD pathophysiology and to the development of therapeutics. Overexpression of human wildtype αSyn by viral vectors in rodents recapitulates the loss of dopaminergic neurons from the substantia nigra, another defining pathological feature of the disease. The development of a rat model exhibiting bimolecular fluorescence complementation (BiFC of αSyn by recombinant adeno-associated virus facilitates detection of the toxic αSyn oligomers species. We report here neurochemical, neuropathological and behavioral characterization of BiFC of αSyn in mice. Overexpression and oligomerization of αSyn through BiFC is detected by conjugated fluorescence. Reduced striatal dopamine and loss of nigral dopaminergic neurons are accompanied neuroinflammation and abnormal motor activities. Our mouse model may provide a valuable tool to study the role of αSyn in PD and to explore therapeutic approaches. Keywords: Parkinson's disease, Alpha-synuclein, Mouse model, Oligomers, Neuroinflammation

  2. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles

    International Nuclear Information System (INIS)

    Choudhury, Sharmistha Dutta; Kumbhakar, Manoj; Nath, Sukhendu; Pal, Haridas

    2007-01-01

    Photoinduced electron transfer (ET) from N,N-dimethylaniline to some coumarin derivatives has been studied in small unilamellar vesicles (SUVs) of the phospholipid, DL-α-dimyristoyl-phosphatidylcholine, using steady-state and time-resolved fluorescence quenching, both below and above the phase transition temperature of the vesicles. The primary interest was to examine whether Marcus inversion [H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986)] could be observed for the present ET systems in these organized assemblies. The influence of the topology of SUVs on the photophysical properties of the reactants and consequently on their ET kinetics has also been investigated. Absorption and fluorescence spectral data of the coumarins in SUVs and the variation of their fluorescence decays with temperature indicate that the dyes are localized in the bilayer of the SUVs. Time-resolved area normalized emission spectra analysis, however, reveals that the dyes are distributed in two different microenvironments in the SUVs, which we attribute to the two leaflets of the bilayer, one toward bulk water and the other toward the inner water pool. The microenvironments in the two leaflets are, however, not indicated to be that significantly different. Time-resolved anisotropy decays were biexponential for all the dyes in SUVs, and this has been interpreted in terms of the compound motion model according to which the dye molecules can experience a fast wobbling-in-cone type of motion as well as a slow overall rotating motion of the cone containing the molecule. The expected bimolecular diffusion-controlled rates in SUVs, as estimated by comparing the microviscosities in SUVs (determined from rotational correlation times) and that in acetonitrile solution, are much slower than the observed fluorescence quenching rates, suggesting that reactant diffusion (translational) does not play any role in the quenching kinetics in the present systems. Accordingly, clear inversions are

  3. Reaction between aminoalkyl radicals and akyl halides: Dehalogenation by electron transfer?

    Science.gov (United States)

    Lalevée, J.; Fouassier, J. P.; Blanchard, N.; Ingold, K. U.

    2011-07-01

    Aminoalkyl radicals, such as Et2NCrad HCH3, have low oxidation potentials and are therefore powerful reducing agents. We have found that Et2NCrad HCH3 reacts with CCl4 and CBr4 in di-tert-butyl peroxide with bimolecular rate constants (measured by LFP) close, or equal, to the diffusion-controlled limit. For the less reactive halide, CH2Br2, the reaction rate is increased substantially by the addition of acetonitrile as a co-solvent. It is tentatively concluded that these reactions occur by electron-transfer from the aminoalkyl to the organohalide with formation of the iminium ion, Et2N+dbnd CHCH3 (NMR detection), halide ion and a halomethyl radical, e.g., rad CCl3 and rad CHCl2 (ESR, spin-trapping detection).

  4. Investigating Students' Reasoning about Acid-Base Reactions

    Science.gov (United States)

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  5. Modified reaction mechanism of aerated n-dodecane liquid flowing over heated metal tubes

    Science.gov (United States)

    Reddy, K. T.; Cernansky, N. P.; Cohen, R. S.

    1988-01-01

    The degradation mechanism of the n-dodecane was studied using a modified jet fuel thermal oxidation tester containing a sample withdrawal system as a reaction vessel. The reaction products were identified using gas chromatography and mass spectorometry. The soluble products were found to consist mainly of C5-C10 n-alkanes and 1-alkenes, C7-C10 aldehydes, tetrahydrofuran derivatives, dodecanol and dodecanone isomers, dodecyl hydroperoxide (ROOH) decomposition products, and C24 alkane isomers. The data from the experiments agreed with those of Hazlett et al. (1977). It was found that alkyl peroxide radical reactions dominate in the autooxidation temperature regime (at T not above 300 C); the dominant path is for the alkyl peroxyl radical to react bimolecularly with fuel to yield primarily alkyl hydroperoxides. The alkyl peroxide radical also undergoes self-termination and unimolecular isomerization and decomposition reactions, to yield smaller amounts of C12 alcohol plus ketone products and tetrahydrofuran derivatives, respectively.

  6. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.

    Science.gov (United States)

    Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam

    2010-09-02

    Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.

  7. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    Science.gov (United States)

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  8. Reaction of [3H]-taurine maleimide with platelet surface thiols

    International Nuclear Information System (INIS)

    Karl, D.W.; Mills, D.C.B.

    1986-01-01

    Taurine Maleimide (2-maleimidoethanesulfonate, TM) was synthesized from [2- 3 H]-taurine and methoxycarbonylmaleimide (MCM). The yield of a 1 μmol synthesis approached 100% (based on taurine) when MCM was used in 4-fold excess. The product (TM*) was purified by ion exchange chromatography. TM* reacted irreversibly with thiol groups on the surface of washed human platelets, leading to incorporation of radioactivity into platelet pellets. Incorporation was blocked by cysteine, mercuribenzenesulfonate (MBS), dithiobisnitrobenzoate, and N-ethylmaleimide, but not by taurine or by inhibitors of anion transport. Reaction of TM* with platelets showed the dependence on time and concentration characteristics of a bimolecular reaction. The number of reactive sites ranged from 1 to 5 x 10 5 /platelet, and the apparent rate constant from 1 to 3 x 10 3 /(M x min). TM was less effective than MBS as an inhibitor of platelet aggregation induced by several agents. TM had no effect on the uptake of serotonin, taurine, or phosphate by the platelets, processes which are sensitive to MBS. These differences, considered with the similarity in size and charge of TM and MBS, suggest that classes of thiols defined as exofacial by their accessibility to MBS can differ substantially in their reactivity with other impermeant reagents

  9. A ring polymer molecular dynamics study of the isotopologues of the H + H2 reaction.

    Science.gov (United States)

    Suleimanov, Yury V; de Tudela, Ricardo Pérez; Jambrina, Pablo G; Castillo, Jesús F; Sáez-Rábanos, Vicente; Manolopoulos, David E; Aoiz, F Javier

    2013-03-14

    The inclusion of Quantum Mechanical (QM) effects such as zero point energy (ZPE) and tunneling in simulations of chemical reactions, especially in the case of light atom transfer, is an important problem in computational chemistry. In this respect, the hydrogen exchange reaction and its isotopic variants constitute an excellent benchmark for the assessment of approximate QM methods. In particular, the recently developed ring polymer molecular dynamics (RPMD) technique has been demonstrated to give very good results for bimolecular chemical reactions in the gas phase. In this work, we have performed a detailed RPMD study of the H + H(2) reaction and its isotopologues Mu + H(2), D + H(2) and Heμ + H(2), at temperatures ranging from 200 to 1000 K. Thermal rate coefficients and kinetic isotope effects have been computed and compared with exact QM calculations as well as with quasiclassical trajectories and experiment. The agreement with the QM results is good for the heaviest isotopologues, with errors ranging from 15% to 45%, and excellent for Mu + H(2), with errors below 15%. We have seen that RPMD is able to capture the ZPE effect very accurately, a desirable feature of any method based on molecular dynamics. We have also verified Richardson and Althorpe's prediction [J. O. Richardson and S. C. Althorpe, J. Chem. Phys., 2009, 131, 214106] that RPMD will overestimate thermal rates for asymmetric reactions and underestimate them for symmetric reactions in the deep tunneling regime. The ZPE effect along the reaction coordinate must be taken into account when assigning the reaction symmetry in the multidimensional case.

  10. Silicon-based sleeve devices for chemical reactions

    Science.gov (United States)

    Northrup, M. Allen; Mariella, Jr., Raymond P.; Carrano, Anthony V.; Balch, Joseph W.

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  11. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Mikosch, J.

    2007-11-01

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S N 2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S N 2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S N 2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S N 2 mechanism involving CH 3 -rotation. (orig.)

  12. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  13. Photoinitiated reactions in weakly bonded complexes

    International Nuclear Information System (INIS)

    Wittig, C.

    1993-01-01

    This paper discusses photoinitiated reactions in weakly bonded binary complexes in which the constituents are only mildly perturbed by the intermolecular bond. Such complexes, with their large zero point excursions, set the stage for events that occur following electronic excitation of one of the constituents. This can take several forms, but in all cases, entrance channel specificity is imposed by the character of the complex as well as the nature of the photoinitiation process. This has enabled us to examine aspects of bimolecular processes: steric effects, chemical branching ratios, and inelastic scattering. Furthermore, monitoring reactions directly in the time domain can reveal mechanisms that cannot be inferred from measurements of nascent product excitations. Consequently, we examined several systems that had been studied previously by our group with product state resolution. With CO 2 /HI, in which reaction occurs via a HOCO intermediate, the rates agree with RRKM predictions. With N 2 O/HI, the gas phase single collision reaction yielding OH + N 2 has been shown to proceed mainly via an HNNO intermediate that undergoes a 1,3-hydrogen shift to the OH + N 2 channel. With complexes, ab initio calculations and high resolution spectroscopic studies of analogous systems suggest that the hydrogen, while highly delocalized, prefers the oxygen to the nitrogen. We observe that OH is produced with a fast risetime (< 250 fs) which can be attributed to either direct oxygen-side attack or rapid HNNO decomposition and/or a termolecular contribution involving the nearby iodine

  14. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    KAUST Repository

    Miller, Nichole Cates

    2012-09-05

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    KAUST Repository

    Miller, Nichole Cates; Cho, Eunkyung; Junk, Matthias J N; Gysel, Roman; Risko, Chad; Kim, Dongwook; Sweetnam, Sean; Miller, Chad E.; Richter, Lee J.; Kline, Regis Joseph; Heeney, Martin J.; McCulloch, Iain A.; Amassian, Aram; Acevedo-Feliz, Daniel; Knox, Christopher; Hansen, Michael Ryan; Dudenko, Dmytro V.; Chmelka, Bradley F.; Toney, Michael F.; Bré das, Jean Luc; McGehee, Michael D.

    2012-01-01

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Deviation from the kinetic law of mass action for reactions induced by binary encounters in liquid solutions

    International Nuclear Information System (INIS)

    Doktorov, Alexander B; Kipriyanov, Alexey A

    2007-01-01

    In considering the irreversible chemical reaction A+B→ C+B in liquid solutions two many-particle approaches to the derivation of binary non-Markovian kinetic equations are compared: simple superposition decoupling and a method of extracting 'pair' channels from three-particle correlation evolution. It is shown that both methods provide an almost identical description of this reaction. However, in studies of reversible reactions in liquid solutions only the channel extraction method gives a correct physically clear description of the reaction though it consists of a sequence of steps: the development of integral encounter theory (IET), effective pairs approximation (EPA), modified encounter theory (MET), and the final regular form (RF) of kinetic equations. It is shown that the rate equations often encountered in the literature correspond to the independence of transient channels of 'scattering' in the bimolecular reversible reaction (A+B -B), while the independent transient channel of 'decay' in the reversible reactionA+B -C is defined solely by time integral convolution. In the general case transient channels in non-Markovian theory are not independent, and their interference manifests itself as a non-Markovian inhomogeneous source in binary non-Markovian kinetic equations in regular form. Based on the derived equations new universal kinetics (independent of models) of chemical equilibrium attainment have been obtained. It is shown that these kinetics can differ essentially from the kinetics corresponding to the kinetic law of mass action of formal chemical kinetics

  17. Nickel group cluster anion reactions with carbon monoxide: Rate coefficients and chemisorption efficiency

    Science.gov (United States)

    Hintz, Paul A.; Ervin, Kent M.

    1994-04-01

    Reactions of Ni-n(n=3-10), Pd-n(n=3-8), and Pt-n(n=3-7) with CO are studied in a flow tube reactor. Bimolecular rate coefficients are measured for the association reaction of CO adsorbing on the cluster surface. The rate coefficients range from about 10% of the collision rate for the trimer anions to near the collision rate for clusters larger than four atoms. The maximum number of CO molecules that bind to each cluster is determined. Whereas the saturation limits for nickel are typical for an 18 electron transition metal, the limits for platinum are lower, reflecting the electron deficient structures observed in condensed phase chemistry. The CO saturated palladium clusters represent the first examples of saturated binary palladium carbonyl compounds. Comparisons are made to similar studies on metal cation and neutral clusters and also to surface scattering studies of nickel group metals.

  18. Reaction rate and isomer-specific product branching ratios of C2H + C4H8: 1-butene, cis-2-butene, trans-2-butene, and isobutene at 79 K.

    Science.gov (United States)

    Bouwman, Jordy; Fournier, Martin; Sims, Ian R; Leone, Stephen R; Wilson, Kevin R

    2013-06-20

    The reactions of C2H radicals with C4H8 isomers 1-butene, cis-2-butene, trans-2-butene, and isobutene are studied by laser photolysis-vacuum ultraviolet mass spectrometry in a Laval nozzle expansion at 79 K. Bimolecular-reaction rate constants are obtained by measuring the formation rate of the reaction product species as a function of the reactant density under pseudo-first-order conditions. The rate constants are (1.9 ± 0.5) × 10(-10), (1.7 ± 0.5) × 10(-10), (2.1 ± 0.7) × 10(-10), and (1.8 ± 0.9) × 10(-10) cm(3) s(-1) for the reaction of C2H with 1-butene, cis-2-butene, trans-2-butene, and isobutene, respectively. Bimolecular rate constants for 1-butene and isobutene compare well to values measured previously at 103 K using C2H chemiluminescence. Photoionization spectra of the reaction products are measured and fitted to ionization spectra of the contributing isomers. In conjunction with absolute-ionization cross sections, these fits provide isomer-resolved product branching fractions. The reaction between C2H and 1-butene yields (65 ± 10)% C4H4 in the form of vinylacetylene and (35 ± 10)% C5H6 in the form of 4-penten-1-yne. The cis-2-butene and trans-2-butene reactions yield solely 3-penten-1-yne, and no discrimination is made between cis- and trans-3-penten-1-yne. Last, the isobutene reaction yields (26 ± 15)% 3-penten-1-yne, (35 ± 15)% 2-methyl-1-buten-3-yne, and (39 ± 15)% 4-methyl-3-penten-1-yne. The branching fractions reported for the C2H and butene reactions indicate that these reactions preferentially proceed via CH3 or C2H3 elimination rather than H-atom elimination. Within the experimental uncertainties, no evidence is found for the formation of cyclic species.

  19. Interactions among the early Escherichia coli divisome proteins revealed by bimolecular fluorescence complementation.

    Science.gov (United States)

    Pazos, Manuel; Natale, Paolo; Margolin, William; Vicente, Miguel

    2013-12-01

    We used bimolecular fluorescence complementation (BiFC) assays to detect protein-protein interactions of all possible pairs of the essential Escherichia coli proto-ring components, FtsZ, FtsA and ZipA, as well as the non-essential FtsZ-associated proteins ZapA and ZapB. We found an unexpected interaction between ZipA and ZapB at potential cell division sites, and when co-overproduced, they induced long narrow constrictions at division sites that were dependent on FtsZ. These assays also uncovered an interaction between ZipA and ZapA that was mediated by FtsZ. BiFC with ZapA and ZapB showed that in addition to their expected interaction at midcell, they also interact at the cell poles. BiFC detected interaction between FtsZ and ZapB at midcell and close to the poles. Results from the remaining pairwise combinations confirmed known interactions between FtsZ and ZipA, and ZapB with itself. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation

    Science.gov (United States)

    Kikumoto, Hideki; Ooka, Ryozo

    2012-07-01

    A large-eddy simulation is performed on a turbulent dispersion of chemically reactive air pollutants in a two-dimensional urban street canyon with an aspect ratio of 1.0. Nitrogen monoxide emitted from a line-source set on the bottom of the street canyon disperses and reacts with Ozone included in a free stream. The reactions have significant influences on the concentrations of pollutants in the canyon space, and they increase the concentrations of the reaction products relative to of the concentrations of the reactants. The transport of air pollutants through a free shear layer above the canyon is closely related to the structure of the turbulence. Gases in the canyon are mainly exhausted when low-speed regions appear above the canyon. In contrast, pollutants in the free stream flow into the canyon with high-speed fluid bodies. Consequently, the correlation between the time fluctuations of the reactants' concentrations strongly affects the reaction rates in the region near the free shear layer. In this calculation, the correlation term reaches to a value of 20% of the mean reaction rate at a maximum there.

  1. AFD: an application for bi-molecular interaction using axial frequency distribution.

    Science.gov (United States)

    Raza, Saad; Azam, Syed Sikander

    2018-03-06

    Conformational flexibility and generalized structural features are responsible for specific phenomena existing in biological pathways. With advancements in computational chemistry, novel approaches and new methods are required to compare the dynamic nature of biomolecules, which are crucial not only to address dynamic functional relationships but also to gain detailed insights into the disturbance and positional fluctuation responsible for functional shifts. Keeping this in mind, axial frequency distribution (AFD) has been developed, designed, and implemented. AFD can profoundly represent distribution and density of ligand atom around a particular atom or set of atoms. It enabled us to obtain an explanation of local movements and rotations, which are not significantly highlighted by any other structural and dynamical parameters. AFD can be implemented on biological models representing ligand and protein interactions. It shows a comprehensive view of the binding pattern of ligand by exploring the distribution of atoms relative to the x-y plane of the system. By taking a relative centroid on protein or ligand, molecular interactions like hydrogen bonds, van der Waals, polar or ionic interaction can be analyzed to cater the ligand movement, stabilization or flexibility with respect to the protein. The AFD graph resulted in the residual depiction of bi-molecular interaction in gradient form which can yield specific information depending upon the system of interest.

  2. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction

  3. Isocyanide based multi component reactions in combinatorial chemistry.

    NARCIS (Netherlands)

    Dömling, A.

    1998-01-01

    Although usually regarded as a recent development, the combinatorial approach to the synthesis of libraries of new drug candidates was first described as early as 1961 using the isocyanide-based one-pot multicomponent Ugi reaction. Isocyanide-based multi component reactions (MCR's) markedly differ

  4. Study of photo-activated electron transfer reactions in the first excited singlet state by picosecond and nanosecond laser spectroscopy

    International Nuclear Information System (INIS)

    Doizi, Denis

    1983-01-01

    Picosecond laser spectroscopy has been used to study two photo-activated electron transfer reactions: - a bimolecular electron transfer reaction between a sensitizer, DODCI, and an electron acceptor, methylviologen. The two radical ions created with an electron transfer efficiency γ ≅ 0.07 have been identified in picosecond and nanosecond laser absorption spectroscopy by adding selective solutes such as para-benzoquinone (an electron acceptor) or L(+) ascorbic acid (an electron donor). - an intramolecular electron transfer reaction in a triad molecule consisting of a tetra-aryl-porphyrin covalently linked to both a carotenoid and a quinone. The photoinduced charge separation occurs within 30 ps and leads, with a yield of 25 pc, to the formation of a zwitterion whose half-life is 2.5 μs. The experimental results obtained in these two studies show an effective decrease in the recombination rate of the two radical ions created in the encounter pair. (author) [fr

  5. Luminescence process, refractory stabilities, and new and novel electronic states: scanning chemical reactions and novel products for laser induced isotope separation. Progress report, March 1, 1975--November 20, 1975

    International Nuclear Information System (INIS)

    Gole, J.L.

    1975-11-01

    The formulation and development of versatile oven systems for high temperature metal vaporation at temperatures greater than 2000 0 C are discussed. The construction of an apparatus appropriate to the production and study of small metal aggregates M/sub n/ (2 less than or equal to n less than or equal to 6) is discussed at length. This includes a consideration of the construction and operation of an argon ion pumped dye laser system. The dye laser system will be used to induce fluorescence from the small metal aggregates, and thereby will lead to the study of their molecular electronic structure. The production of carbon vapor and the reaction of this vapor with metal atoms and metal dimers to form metal carbides is outlined. A thorough study of the luminescence process leading to a new understanding of those chemiluminescent phenomena occurring as a result of the ''single collision'' bimolecular reaction of metal atoms and metal dimers with select oxidants is outlined. Methods for the determination of upper bounds to the heats of sublimation and vaporization of those metals which can be strongly oxidized in a ''single collision'' bimolecular reaction are presented. Extremely simple methods by which one can infer the radiative lifetimes of metastable product chemiluminescing molecules are also discussed. Beginning efforts toward the formulation of new and novel catalytic surfaces via aggregate deposition are outlined. Current studies of the titanium oxide system are presented. These chemiluminescence studies allow the determination of a lower bound to the TiO dissociation energy and a determination of the heat of vaporization of titanium metal

  6. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu; Aly, Shawkat Mohammede; Usman, Anwar; Parida, Manas R.; Del Gobbo, Silvano; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  7. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  8. Chemical reaction dynamics using the Advanced Light Source

    International Nuclear Information System (INIS)

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G.; Lin, J.; Wodtke, A.M.

    1995-01-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10(sup 16) photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source

  9. Chemical reaction dynamics using the Advanced Light Source

    International Nuclear Information System (INIS)

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G.; Lin, J.; Wodtke, A.M.

    1995-09-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10 16 photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source

  10. Elucidating the hard/soft acid/base principle: A perspective based on half-reactions

    International Nuclear Information System (INIS)

    Ayers, Paul W.; Parr, Robert G.; Pearson, Ralph G.

    2006-01-01

    A comprehensive analysis is presented for the acid-base double-exchange reaction as well as the associated acid-displacement and base-displacement 'half-reactions' with the goal of elucidating the meaning of the hard/soft acid/base (HSAB) principle and the conditions for its validity. When electron-transfer effects are important and other effects are negligible, the HSAB principle is driven by the surpassing stability of the soft acid/soft base product. When electrostatic effects dominate the reactivity, the HSAB principle is driven by the surpassing stability of the hard acid/hard base product. Because electron-transfer effects favor soft/soft interactions, while electrostatic effects favor hard/hard interactions, acid-base exchange reactions may be used to determine whether a reagent's reactivity is dominated by electron-transfer or by electrostatic effects. Because electron-transfer and electrostatic considerations separately favor the HSAB principle whenever the electronic chemical potentials of the acids and bases involved in the reaction are similar, our analysis provides strong support for the HSAB principle. The electronic chemical potential measures the intrinsic strength of acids and bases

  11. Shock wave and modeling study of the thermal decomposition reactions of pentafluoroethane and 2-H-heptafluoropropane.

    Science.gov (United States)

    Cobos, C J; Sölter, L; Tellbach, E; Troe, J

    2014-06-07

    The thermal decomposition reactions of CF3CF2H and CF3CFHCF3 have been studied in shock waves by monitoring the appearance of CF2 radicals. Temperatures in the range 1400-2000 K and Ar bath gas concentrations in the range (2-10) × 10(-5) mol cm(-3) were employed. It is shown that the reactions are initiated by C-C bond fission and not by HF elimination. Differing conclusions in the literature about the primary decomposition products, such as deduced from experiments at very low pressures, are attributed to unimolecular falloff effects. By increasing the initial reactant concentrations in Ar from 60 to 1000 ppm, a retardation of CF2 formation was observed while the final CF2 yields remained close to two CF2 per C2F5H or three CF2 per C3F7H decomposed. This is explained by secondary bimolecular reactions which lead to comparably stable transient species like CF3H, releasing CF2 at a slower rate. Quantum-chemical calculations and kinetic modeling help to identify the reaction pathways and provide estimates of rate constants for a series of primary and secondary reactions in the decomposition mechanism.

  12. Rule-Based Event Processing and Reaction Rules

    Science.gov (United States)

    Paschke, Adrian; Kozlenkov, Alexander

    Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.

  13. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis–Menten and approximate kinetic equations

    DEFF Research Database (Denmark)

    Costa, Rafael S.; Machado, Daniel; Rocha, Isabel

    2010-01-01

    , represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis–Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action......The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters...

  14. Kinetic aspects of the syntheses using short-lived radionuclides

    International Nuclear Information System (INIS)

    Laangstroem, B.; Obenius, U.; Sjoeberg, S.; Bergson, G.

    1981-01-01

    In syntheses using short-lived radionuclides, such as 11 C, the reaction conditions are usually such that the concentrations of the reactants, except for the labelled reactant, can be considered constant during the reaction. Two kinetic models have been investigated - irreversible and reversible bimolecular elementary reactions. The influence of the rate constants, of the equilibrium constants, and of the ratio between the starting reactants on the yield of the labelled product has been studied. The results show that, even in cases with unfavourable equilibrium constants, high yields of the labelled products can be obtained if the rate constant for the forward reaction is large. In addition, the specific activity of the labelled product as a function of time has been studied for the irreversible bimolecular case. (author)

  15. Reaction paths based on mean first-passage times

    International Nuclear Information System (INIS)

    Park, Sanghyun; Sener, Melih K.; Lu Deyu; Schulten, Klaus

    2003-01-01

    Finding representative reaction pathways is important for understanding the mechanism of molecular processes. We propose a new approach for constructing reaction paths based on mean first-passage times. This approach incorporates information about all possible reaction events as well as the effect of temperature. As an application of this method, we study representative pathways of excitation migration in a photosynthetic light-harvesting complex, photosystem I. The paths thus computed provide a complete, yet distilled, representation of the kinetic flow of excitation toward the reaction center, thereby succinctly characterizing the function of the system

  16. Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy)

    2016-06-14

    Stochastic simulation of large biochemical reaction networks is often computationally expensive due to the disparate reaction rates and high variability of population of chemical species. An approach to accelerate the simulation is to allow multiple reaction firings before performing update by assuming that reaction propensities are changing of a negligible amount during a time interval. Species with small population in the firings of fast reactions significantly affect both performance and accuracy of this simulation approach. It is even worse when these small population species are involved in a large number of reactions. We present in this paper a new approximate algorithm to cope with this problem. It is based on bounding the acceptance probability of a reaction selected by the exact rejection-based simulation algorithm, which employs propensity bounds of reactions and the rejection-based mechanism to select next reaction firings. The reaction is ensured to be selected to fire with an acceptance rate greater than a predefined probability in which the selection becomes exact if the probability is set to one. Our new algorithm improves the computational cost for selecting the next reaction firing and reduces the updating the propensities of reactions.

  17. Radiation-chemical reaction of 2,3,5-triphenyl-tetrazolium chloride in liquid and solid state

    DEFF Research Database (Denmark)

    Kovacs, A.; Wojnarovits, L.; McLaughlin, W.L.

    1996-01-01

    In pulse radiolysis of 2,3,5-triphenyl-tetrazolium chloride (TTC) at around 360 nm fast formation of intermediate tetrazolium radical was observed under both oxidizing and reducing conditions. In the latter case bimolecular formation of formazan, absorbing at around 480 nm, was observed. This rea......In pulse radiolysis of 2,3,5-triphenyl-tetrazolium chloride (TTC) at around 360 nm fast formation of intermediate tetrazolium radical was observed under both oxidizing and reducing conditions. In the latter case bimolecular formation of formazan, absorbing at around 480 nm, was observed...

  18. Connecting the dots: Semi-analytical and random walk numerical solutions of the diffusion–reaction equation with stochastic initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paster, Amir, E-mail: paster@tau.ac.il [Environmental Fluid Mechanics Laboratories, Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States); School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978 (Israel); Bolster, Diogo [Environmental Fluid Mechanics Laboratories, Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States); Benson, David A. [Hydrologic Science and Engineering, Colorado School of Mines, Golden, CO, 80401 (United States)

    2014-04-15

    We study a system with bimolecular irreversible kinetic reaction A+B→∅ where the underlying transport of reactants is governed by diffusion, and the local reaction term is given by the law of mass action. We consider the case where the initial concentrations are given in terms of an average and a white noise perturbation. Our goal is to solve the diffusion–reaction equation which governs the system, and we tackle it with both analytical and numerical approaches. To obtain an analytical solution, we develop the equations of moments and solve them approximately. To obtain a numerical solution, we develop a grid-less Monte Carlo particle tracking approach, where diffusion is modeled by a random walk of the particles, and reaction is modeled by annihilation of particles. The probability of annihilation is derived analytically from the particles' co-location probability. We rigorously derive the relationship between the initial number of particles in the system and the amplitude of white noise represented by that number. This enables us to compare the particle simulations and the approximate analytical solution and offer an explanation of the late time discrepancies. - Graphical abstract:.

  19. Wang-Landau Reaction Ensemble Method: Simulation of Weak Polyelectrolytes and General Acid-Base Reactions.

    Science.gov (United States)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-02-14

    We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.

  20. Probing the electronic structure of redox species and direct determination of intrinsic reorganization energies of electron transfer reactions

    International Nuclear Information System (INIS)

    Wang, Xue-Bin; Wang, Lai-Sheng

    2000-01-01

    An experimental technique capable of directly determining the intrinsic reorganization energies of bimolecular electron transfer reactions is described. Appropriate solution phase redox species are prepared in the gas phase using electrospray ionization and probed using photodetachment spectroscopy. Five metal complex anions involved in the Fe 2+ -Fe 3+ redox couple are investigated and the intramolecular reorganization energies are measured directly from spectral features due to removing the most loosely bound 3d electron from the Fe(II)-complexes. The photodetachment spectra also yield electronic structure information about the Fe 2+ -Fe 3+ redox couple and provide a common electronic structure origin for the reducing capability of the Fe(II)-complexes, the most common redox reagents. (c) 2000 American Institute of Physics

  1. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Science.gov (United States)

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  2. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Directory of Open Access Journals (Sweden)

    Diogo A R S Latino

    Full Text Available The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF, the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure

  3. Investigation of the O+allyl addition/elimination reaction pathways from the OCH2CHCH2 radical intermediate

    International Nuclear Information System (INIS)

    FitzPatrick, Benjamin L.; Lau, K.-C.; Butler, Laurie J.; Lee, S.-H.; Lin, Jim Jr-Min

    2008-01-01

    These experiments study the preparation of and product channels resulting from OCH 2 CHCH 2 , a key radical intermediate in the O+allyl bimolecular reaction. The data include velocity map imaging and molecular beam scattering results to probe the photolytic generation of the radical intermediate and the subsequent pathways by which the radicals access the energetically allowed product channels of the bimolecular reaction. The photodissociation of epichlorohydrin at 193.3 nm produces chlorine atoms and c-OCH 2 CHCH 2 radicals; these undergo a facile ring opening to the OCH 2 CHCH 2 radical intermediate. State-selective resonance-enhanced multiphoton ionization (REMPI) detection resolves the velocity distributions of ground and spin-orbit excited state chlorine independently, allowing for a more accurate determination of the internal energy distribution of the nascent radicals. We obtain good agreement detecting the velocity distributions of the Cl atoms with REMPI, vacuum ultraviolet (VUV) photoionization at 13.8 eV, and electron bombardment ionization; all show a bimodal distribution of recoil kinetic energies. The dominant high recoil kinetic energy feature peaks near 33 kcal/mol. To elucidate the product channels resulting from the OCH 2 CHCH 2 radical intermediate, the crossed laser-molecular beam experiment uses VUV photoionization and detects the velocity distribution of the possible products. The data identify the three dominant product channels as C 3 H 4 O (acrolein)+H, C 2 H 4 +HCO (formyl radical), and H 2 CO (formaldehyde)+C 2 H 3 . A small signal from C 2 H 2 O (ketene) product is also detected. The measured velocity distributions and relative signal intensities at m/e=27, 28, and 29 at two photoionization energies show that the most exothermic product channel, C 2 H 5 +CO, does not contribute significantly to the product branching. The higher internal energy onset of the acrolein+H product channel is consistent with the relative barriers en route to

  4. Investigation of the O+allyl addition/elimination reaction pathways from the OCH2CHCH2 radical intermediate

    Science.gov (United States)

    Fitzpatrick, Benjamin L.; Lau, Kai-Chung; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim-Min, Jr.

    2008-08-01

    These experiments study the preparation of and product channels resulting from OCH2CHCH2, a key radical intermediate in the O+allyl bimolecular reaction. The data include velocity map imaging and molecular beam scattering results to probe the photolytic generation of the radical intermediate and the subsequent pathways by which the radicals access the energetically allowed product channels of the bimolecular reaction. The photodissociation of epichlorohydrin at 193.3 nm produces chlorine atoms and c-OCH2CHCH2 radicals; these undergo a facile ring opening to the OCH2CHCH2 radical intermediate. State-selective resonance-enhanced multiphoton ionization (REMPI) detection resolves the velocity distributions of ground and spin-orbit excited state chlorine independently, allowing for a more accurate determination of the internal energy distribution of the nascent radicals. We obtain good agreement detecting the velocity distributions of the Cl atoms with REMPI, vacuum ultraviolet (VUV) photoionization at 13.8 eV, and electron bombardment ionization; all show a bimodal distribution of recoil kinetic energies. The dominant high recoil kinetic energy feature peaks near 33 kcal/mol. To elucidate the product channels resulting from the OCH2CHCH2 radical intermediate, the crossed laser-molecular beam experiment uses VUV photoionization and detects the velocity distribution of the possible products. The data identify the three dominant product channels as C3H4O (acrolein)+H, C2H4+HCO (formyl radical), and H2CO (formaldehyde)+C2H3. A small signal from C2H2O (ketene) product is also detected. The measured velocity distributions and relative signal intensities at m/e=27, 28, and 29 at two photoionization energies show that the most exothermic product channel, C2H5+CO, does not contribute significantly to the product branching. The higher internal energy onset of the acrolein+H product channel is consistent with the relative barriers en route to each of these product channels

  5. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  6. Exact substitute processes for diffusion-reaction systems with local complete exclusion rules

    International Nuclear Information System (INIS)

    Schulz, Michael; Reineker, Peter

    2005-01-01

    Lattice systems with one species diffusion-reaction processes under local complete exclusion rules are studied analytically starting from the usual master equations with discrete variables and their corresponding representation in a Fock space. On this basis, a formulation of the transition probability as a Grassmann path integral is derived in a straightforward manner. It will be demonstrated that this Grassmann path integral is equivalent to a set of Ito stochastic differential equations. Averages of arbitrary variables and correlation functions of the underlying diffusion-reaction system can be expressed as weighted averages over all solutions of the system of stochastic differential equations. Furthermore, these differential equations are equivalent to a Fokker-Planck equation describing the probability distribution of the actual Ito solutions. This probability distribution depends on continuous variables in contrast to the original master equation, and their stochastic dynamics may be interpreted as a substitute process which is completely equivalent to the original lattice dynamics. Especially, averages and correlation functions of the continuous variables are connected to the corresponding lattice quantities by simple relations. Although the substitute process for diffusion-reaction systems with exclusion rules has some similarities to the well-known substitute process for the same system without exclusion rules, there exists a set of remarkable differences. The given approach is not only valid for the discussed single-species processes. We give sufficient arguments to show that arbitrary combinations of unimolecular and bimolecular lattice reactions under complete local exclusions may be described in terms of our approach

  7. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  8. Semiclassical methods in chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Keshavamurthy, Srihari [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  9. Semiclassical methods in chemical reaction dynamics

    International Nuclear Information System (INIS)

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems

  10. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    Science.gov (United States)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  11. Glider-based computing in reaction-diffusion hexagonal cellular automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Wuensche, Andrew; De Lacy Costello, Benjamin

    2006-01-01

    A three-state hexagonal cellular automaton, discovered in [Wuensche A. Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconvention Comput, in press], presents a conceptual discrete model of a reaction-diffusion system with inhibitor and activator reagents. The automaton model of reaction-diffusion exhibits mobile localized patterns (gliders) in its space-time dynamics. We show how to implement the basic computational operations with these mobile localizations, and thus demonstrate collision-based logical universality of the hexagonal reaction-diffusion cellular automaton

  12. Rotational laser cooling of vibrationally and translationally cold molecular ions

    DEFF Research Database (Denmark)

    Staanum, Peter; Højbjerre, Klaus; Skyt, Peter Sandegaard

    2010-01-01

    Stationary molecules in well-defined internal states are of broad interest for physics and chemistry. In physics, this includes metrology 1, 2, 3 , quantum computing 4, 5 and many-body quantum mechanics 6, 7 , whereas in chemistry, state-prepared molecular targets are of interest for uni......-molecular reactions with coherent light fields 8, 9 , for quantum-state-selected bi-molecular reactions 10, 11, 12 and for astrochemistry 12 . Here, we demonstrate rotational ground-state cooling of vibrationally and translationally cold MgH+ ions, using a laser-cooling scheme based on excitation of a single...

  13. An MHD heat source based on intermetallic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sadjian, H.; Zavitsanos, P. (General Sciences, Inc., Souderton, PA (United States)); Marston, C.H. (Villanova Univ., PA (United States))

    1991-05-06

    The main objective of this program was the development of an MHD heat source of potential use in Space - Based Multi Megawatt, MHD Power Systems. The approach is based on extension of high temperature chemical/ion release technology developed by the General Sciences, Incorporated (GSI) team and successfully applied in other Space Applications. Solid state reactions have been identified which can deliver energy densities and electrons in excess of those from high energy explosives as well as other conventional fuels. The use of intermetallic reactions can be used to generate hot hydrogen plasma from the reaction, to create a high level of seedant ionization, can be packaged as a cartridge type fuels for discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power System can range from 12 to 25 {times} 10{sup 3} kg depending on reaction system and strength of the magnetic field. The program consisted of two major tasks with eight subtasks designed to systematically evaluate these concepts in order to reduce fuel weight requirements. Laboratory measurements on energy release, reaction product identification and levels of ionization were conducted in the first task to screen candidate fuels. The second task addressed the development of a reaction chamber in which conductivity, temperature and pressure were measured. Instrumentation was developed to measure these parameters under high temperature pulsed conditions in addition to computer programs to reduce the raw data. Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and at the Franklin Research Center* for fuel weights up to 1 kilogram. The results indicate that fuel weight can be scaled using modular packaging. Estimates are presented for fuel weight requirements. 15 refs.

  14. The hydrogen atom-deuterium molecule reaction: Experimental determination of product quantum state distributions

    International Nuclear Information System (INIS)

    Rinnen, K.

    1989-01-01

    The H + H 2 atom exchange reaction (and its isotopic analogs) is the simplest neutral bimolecular chemical reaction because of the small number of electrons in the system and the lightness of the nuclei. The H 3 potential energy surface (PES) is the most accurately known reactive surface (LSTH surface); there have been both quasiclassical trajectory (QCT) and quantal calculations performed on it. This is one of the few systems for which theory is ahead of experiment, and many theoretical predictions await experimental comparison. The H + D 2 → HD + D reaction is studied using thermal D 2 (∼298 K) and translationally hot hydrogen atoms. Photolysis of HI at 266 nm generates H atoms with center-of-mass collision energies of 1.3 and 0.55 eV, both of which are above the classical reaction barrier of 0.42 eV. The rovibrational population distribution of the molecular product is measured by (2+1) resonance-enhanced multiphoton ionization (REMPI). A major effort has been directed toward calibrating the (2+1) REMPI detection procedure, to determine quantitatively the relationship between ion signals and relative quantum state populations for HD. An effusive, high-temperature nozzle has been constructed to populate thermally the high rovibrational levels observed in the reaction. The results are compared to theoretical calculations of the E,F 1 Σ g + - X 1 Σ g + two-photon transition moments. For the H + D 2 reaction, the populations of all energetically accessible HD product levels are measured. Specifically, the following levels are observed: HD(v = 0, J = 0-15), HD(v = 1, J = 0-12), and HD(v = 2, J = 0-8). Of the available energy, 73% is partitioned into product translation, 18% into HD rotation, and 9% into HD vibration

  15. COEL: A Cloud-based Reaction Network Simulator

    Directory of Open Access Journals (Sweden)

    Peter eBanda

    2016-04-01

    Full Text Available Chemical Reaction Networks (CRNs are a formalism to describe the macroscopic behavior of chemical systems. We introduce COEL, a web- and cloud-based CRN simulation framework that does not require a local installation, runs simulations on a large computational grid, provides reliable database storage, and offers a visually pleasing and intuitive user interface. We present an overview of the underlying software, the technologies, and the main architectural approaches employed. Some of COEL's key features include ODE-based simulations of CRNs and multicompartment reaction networks with rich interaction options, a built-in plotting engine, automatic DNA-strand displacement transformation and visualization, SBML/Octave/Matlab export, and a built-in genetic-algorithm-based optimization toolbox for rate constants.COEL is an open-source project hosted on GitHub (http://dx.doi.org/10.5281/zenodo.46544, which allows interested research groups to deploy it on their own sever. Regular users can simply use the web instance at no cost at http://coel-sim.org. The framework is ideally suited for a collaborative use in both research and education.

  16. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  17. A simple thermometric technique for reaction-rate determination of inorganic species, based on the iodide-catalysed cerium(IV)-arsenic(III) reaction.

    Science.gov (United States)

    Grases, F; Forteza, R; March, J G; Cerda, V

    1985-02-01

    A very simple reaction-rate thermometric technique is used for determination of iodide (5-20 ng ml ), based on its catalytic action on the cerium(IV)-arsenic(III) reaction, and for determination of mercury(II) (1.5-10 ng ml ) and silver(I) (2-10 ng ml ), based on their inhibitory effect on this reaction. The reaction is followed by measuring the rate of temperature increase. The method suffers from very few interferences and is applied to determination of iodide in biological and inorganic samples, and Hg(II) and Ag(I) in pharmaceutical products.

  18. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-08-07

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.

  19. Structure-reactivity modeling using mixture-based representation of chemical reactions.

    Science.gov (United States)

    Polishchuk, Pavel; Madzhidov, Timur; Gimadiev, Timur; Bodrov, Andrey; Nugmanov, Ramil; Varnek, Alexandre

    2017-09-01

    We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.

  20. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  1. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  2. Quantum mechanical calculations of reactive scattering cross sections in bimolecular encounters

    Science.gov (United States)

    Pirkle, J. C., Jr.

    1967-01-01

    Study applies the nonequilibrium collision theory of reaction rates to the estimation of rate constants for simple reactions. The complications in the quantum mechanical description of chemical reactions and the care needed in approximating the exact wave function for the collision are shown.

  3. In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation.

    Science.gov (United States)

    Aparicio, Frederic; Sánchez-Navarro, Jesús A; Pallás, Vicente

    2006-06-01

    Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.

  4. Radiolysis of uracil in oxygenated aqueous solutions. A study by product analysis and pulse radiolysis. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schuchnmann, M N; Sonntag, C von [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenchemie

    1983-10-01

    Hydroxyl radicals are generated by the radiolysis of N/sub 2/O-O/sub 2/ (4:1 v/v)-saturated aqueous solutions of uracil. They add to the 5,6-double bond of the substrate. These radicals are converted by oxygen into the corresponding peroxyl radicals (I) and (II), respectively. Peroxyl radical (I) undergoes a base-induced O/sub 2//sup -/ elimination. As an intermediate 5-hydroxyisopyrimidine is formed which rearranges into isobarbituric acid and adds water forming 5,6-dihydro-5,6-dihydroxyuracil. Competing with this base-induced reaction of radical (I) there is a bimolecular decay of radicals (I) and (II). These processes become predominant at low pH. For this reason a strong pH dependence of G (products) is observed. The major products are (G values at pH 3 and 10 in parentheses) 5,6-dihydroxy-5,6-dihydrouracil (1.1; 2.4), isobarbituric acid (0; 1.2), N-formyl-5-hydroxyhydantoin (1.6; 0.2), 5-hydroxybarbituric acid (0.9; 0.2). 5-Hydroxybarbituric acid is formed in its keto form. Its deprotonation has been followed by pulse conductometry. Details of the reaction mechanism, e.g. the involvement of oxyl radicals in the bimolecular decay of (I) and (II), are discussed.

  5. The radiolysis of uracil in oxygenated aqueous solutions. A study by product analysis and pulse radiolysis

    International Nuclear Information System (INIS)

    Schuchnmann, M.N.; Sonntag, C. von

    1983-01-01

    Hydroxyl radicals are generated by the radiolysis of N 2 O-O 2 (4:1 v/v)-saturated aqueous solutions of uracil. They add to the 5,6-double bond of the substrate. These radicals are converted by oxygen into the corresponding peroxyl radicals (I) and (II), respectively. Peroxyl radical (I) undergoes a base-induced O 2 - elimination. As an intermediate 5-hydroxyisopyrimidine is formed which rearranges into isobarbituric acid and adds water forming 5,6-dihydro-5,6-dihydroxyuracil. Competing with this base-induced reaction of radical (I) there is a bimolecular decay of radicals (I) and (II). These processes become predominant at low pH. For this reason a strong pH dependence of G (products) is observed. The major products are (G values at pH 3 and 10 in parentheses) 5,6-dihydroxy-5,6-dihydrouracil (1.1; 2.4), isobarbituric acid (0; 1.2), N-formyl-5-hydroxyhydantoin (1.6; 0.2), 5-hydroxybarbituric acid (0.9; 0.2). 5-Hydroxybarbituric acid is formed in its keto form. Its deprotonation has been followed by pulse conductometry. Details of the reaction mechanism, e.g. the involvement of oxyl radicals in the bimolecular decay of (I) and (II), are discussed. (author)

  6. Experimental Study of Na based Titanium Nanofluid-Water Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunyeop; Kim, Soo Jae; Baek, Jehyun; Kim, Hyun Soo; Oh, Sun Ryung; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    In KALIMER-600, a sodium-cooled fast reactor designed by KAERI, thermal energy is transported from high-temperature liquid Na (526 .deg. C at 0.1 MPa) to low temperature water (230 .deg. C at - 19.5 MPa) through a heat exchanger. If any leakage or rupture occurs during the operation of this heat exchanger, highly pressurized liquid water can penetrate into the liquid Na channels; this contact should instantly cause SWR. As reaction continues, liquid water is soon vaporized by pressure drop and huge amount of reaction heat. This generated water vapor expands large reaction area and increases sodium-water vapor reaction process. Therefore, the rapid generation of reaction product (like H{sub 2}) and water vapor increases the system pressure that can cause the system failure in SFR. To reduce this strong chemical reaction phenomena between Na and water, some we have focused on suppressing the chemical reactivity of liquid Na by dispersing nanoparticles (NPs). For the real application of NaTiNF, the pressure change induced by NaTiNF-water reaction is compared with Na-water reaction in the present study. NaTiNF contains 100nm of Ti NPs at 0.2 vol. %. The reaction rate of NaTiNF-water reaction is also investigated as reaction temperature increases. Sodium-water vapor reaction (SVR) will occur when an SWR accident occurs in SFR. In this manner, NaTiNF-water vapor reaction is experimentally performed for ensuring the suppression of chemical reactivity of NaTiNF in contact with water vapor. In the basic step for reducing risk of an SWR in SFR, we have experimentally verified the suppressed chemical reactivity of liquid sodium using Ti NPs through SWR and SVR experiments. In SWR, Na based titanium nanofluid (NaTiNF) shows lower pressure change than Na. As T{sub R} increases, P{sub max} in Na-water reaction increases while NaTiNF does not. The reaction rate of NaTiNF shows twice slower than that of Na. In SVR, NaTiNF shows slower temperature increase than Na. The distinct

  7. Maillard reaction in mild-based foods: nutritional consequences.

    Science.gov (United States)

    Pizzoferrato, L; Manzi, P; Vivanti, V; Nicoletti, I; Corradini, C; Cogliandro, E

    1998-02-01

    Chemical reactions occurring during industrial treatments or storage foods can lead to the formation of epsilon-deoxyketosyl compounds, the Amadori products. Food protein value can be adversely affected by these reactions, and in particular lysine, an essential amino acid having on its side chain a free amino group, can be converted to nonbioavailable N-substituted lysine or blocked lysine. by acid hydrolysis of epsilon-deoxyketosyl compounds, furosine is formed. In this paper furosine prepared from milk-based commercial products has been evaluated by use of a recently developed HPLC method using a microbore column and phosphate buffer as the mobile phase at controlled temperature. Furosine levels have been used, together with protein, total amino acids, and lysine content, as an estimate of protein quality of a few different products such as cooked-cream dessert, yogurt mousse, white chocolate, milk chocolate, milk chocolate with a soft nougat and caramel center, milk chocolate with a whipped white center, chocolate spread, part-skim milk tablets, milk-based dietetic meals, and baby foods. The protein content of the analyzed products ranged from 34.3 gxkg(-1) (milk nougat) to 188.4 g x kg(-1) (milk tablets). The Maillard reaction caused a loss in available lysine that varied from 2.5% (cooked cream) to 36.2% (condensed milk). The contribution to the lysine average daily requirement is heavily affected by this reaction and varied from 13% (milk tablets and soft nougat) to 61% (dietetic meal). Variable results were also obtained for the other essential amino acids.

  8. Bimodal Exciplex Formation in Bimolecular Photoinduced Electron Transfer Revealed by Ultrafast Time-Resolved Infrared Absorption.

    Science.gov (United States)

    Koch, Marius; Licari, Giuseppe; Vauthey, Eric

    2015-09-03

    The dynamics of a moderately exergonic photoinduced charge separation has been investigated by ultrafast time-resolved infrared absorption with the dimethylanthracene/phthalonitrile donor/acceptor pair in solvents covering a broad range of polarity. A distinct spectral signature of an exciplex could be identified in the -C≡N stretching region. On the basis of quantum chemistry calculations, the 4-5 times larger width of this band compared to those of the ions and of the locally excited donor bands is explained by a dynamic distribution of exciplex geometry with different mutual orientations and distances of the constituents and, thus, with varying charge-transfer character. Although spectrally similar, two types of exciplexes could be distinguished by their dynamics: short-lived, "tight", exciplexes generated upon static quenching and longer-lived, "loose", exciplexes formed upon dynamic quenching in parallel with ion pairs. Tight exciplexes were observed in all solvents, except in the least polar diethyl ether where quenching is slower than diffusion. The product distribution of the dynamic quenching depends strongly on the solvent polarity: whereas no significant loose exciplex population could be detected in acetonitrile, both exciplex and ion pair are generated in less polar solvents, with the relative population of exciplex increasing with decreasing solvent polarity. These results are compared with those reported previously with donor/acceptor pairs in different driving force regimes to obtain a comprehensive picture of the role of the exciplexes in bimolecular photoinduced charge separation.

  9. Stoichiometric Representation of Gene–Protein–Reaction Associations Leverages Constraint-Based Analysis from Reaction to Gene-Level Phenotype Prediction

    DEFF Research Database (Denmark)

    Machado, Daniel; Herrgard, Markus; Rocha, Isabel

    2016-01-01

    only describe the metabolic phenotype at the reaction level, understanding the mechanistic link between genotype and phenotype is still hampered by the complexity of gene-protein-reaction associations. We implement a model transformation that enables constraint-based methods to be applied at the gene...... design methods are not actually feasible, and show how our approach allows using the same methods to obtain feasible gene-based designs. We also show, by extensive comparison with experimental 13C-flux data, how simple reformulations of different simulation methods with gene-wise objective functions...

  10. New perspectives for organic chemistry and biochemistry in VUV: reaction kinetics, chirality and thermochemistry. Summaries

    International Nuclear Information System (INIS)

    Nahon, Laurent; Field, David; Gerber, Thomas; Knopp, Gregor; Beaud, Paul; Radi, Peter; Tulej, Marek; Dedonder-Lardeux, Claude; Jung, J.M.; Laprevote, Olivier; Thissen, Roland; Le Barbu, K.; Lahmani, F.; Zehnacker, A.; Maurizot, Jean Claude; Barbier, Bernard; Kagan, Henri B.

    2001-10-01

    The aim of this workshop was to examine the conditions of use of VUV for the study of complex molecular systems, and notably bio-molecules, a domain which is greatly expanding. The conclusions of this one-day workshop should allow to define new fields of utilization of the synchrotron radiation in VUV, to precise certain performances that are needed for the transferred line, to establish the complementarities with other VUV sources (lasers, free electron lasers, lamps) and to determine the eventual need for a second low energy light line at SOLEIL. The titles of the various abstract papers presented are (two papers are in English, the rest is in French): SU5, a high resolution and variable polarization VUV line that should be transferred at SOLEIL; Interstellar organic chemistry (in English); Application of spectroscopic techniques in the VUV to combustion relevant molecules (in English); Gaseous phase reaction kinetics (bi-molecular reactions in collision and in aggregates); Liquids of biological interest (excitation and relaxation close to the ionization threshold); Successes and impediments in protein mass spectrometry (the potential contribution of VUV synchrotron radiation); Stereo-specific effects; Complexes between chiral molecules; circular dichroism of biomolecules; Exobiology; asymmetric synthesis (principles and recent results)

  11. Parallel proton transfer pathways in aqueous acid-base reactions

    NARCIS (Netherlands)

    Cox, M.J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25M to 4M. Using

  12. The formation of urea in space. I. Ion-molecule, neutral-neutral, and radical gas-phase reactions

    Science.gov (United States)

    Brigiano, Flavio Siro; Jeanvoine, Yannick; Largo, Antonio; Spezia, Riccardo

    2018-02-01

    Context. Many organic molecules have been observed in the interstellar medium thanks to advances in radioastronomy, and very recently the presence of urea was also suggested. While those molecules were observed, it is not clear what the mechanisms responsible to their formation are. In fact, if gas-phase reactions are responsible, they should occur through barrierless mechanisms (or with very low barriers). In the past, mechanisms for the formation of different organic molecules were studied, providing only in a few cases energetic conditions favorable to a synthesis at very low temperature. A particularly intriguing class of such molecules are those containing one N-C-O peptide bond, which could be a building block for the formation of biological molecules. Urea is a particular case because two nitrogen atoms are linked to the C-O moiety. Thus, motivated also by the recent tentative observation of urea, we have considered the synthetic pathways responsible to its formation. Aims: We have studied the possibility of forming urea in the gas phase via different kinds of bi-molecular reactions: ion-molecule, neutral, and radical. In particular we have focused on the activation energy of these reactions in order to find possible reactants that could be responsible for to barrierless (or very low energy) pathways. Methods: We have used very accurate, highly correlated quantum chemistry calculations to locate and characterize the reaction pathways in terms of minima and transition states connecting reactants to products. Results: Most of the reactions considered have an activation energy that is too high; but the ion-molecule reaction between NH2OHNH2OH2+ and formamide is not too high. These reactants could be responsible not only for the formation of urea but also of isocyanic acid, which is an organic molecule also observed in the interstellar medium.

  13. Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties

    Science.gov (United States)

    Montal, M.; Mueller, P.

    1972-01-01

    Bimolecular membranes are formed from two lipid monolayers at an air-water interface by the apposition of their hydrocarbon chains when an aperture in a Teflon partition separating two aqueous phases is lowered through the interface. Formation of the membrane is monitored by an increase of the electrical capacity, as measured with a voltage clamp. Electrical resistance of the unmodified membrane is analogous to that of conventional planar bilayers (black lipid membranes) prepared in the presence of a hydrocarbon solvent, i.e., 106-108 ohm cm2; the resistance can be lowered to values of 103 ohm cm2 by gramicidin, an antibiotic that modifies the conductance only when the membranes are of biomolecular thickness. In contrast to the resistance, there is a significant difference between the capacity of bilayers made from mono-layers and that of hydrocarbon-containing bilayers made by phase transition; the average values are 0.9 and 0.45 μF cm-2, respectively. The value of 0.9 μF cm-2 approximates that of biological membranes. Assuming a dielectric constant of 2.1 for the hydrocarbon region, the dielectric thickness, as calculated from a capacity of 0.9 μF cm-2, is 22 Å. This value is 6-10 Å smaller than the actual thickness of the hydrocarbon region of bilayers and cell membranes, as determined by x-ray diffraction. The difference may be due to a limited penetration of water into the hydrocarbon region near the ester groups that would lower the electrical resistance of this region and reduce the dielectric thickness. Asymmetric membranes have been formed by adjoining two lipid monolayers of different chemical composition. Images PMID:4509315

  14. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  15. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  16. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-01-01

    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  17. Detection of Heteromers Formed by Cannabinoid CB1, Dopamine D2, and Adenosine A2A G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer

    Science.gov (United States)

    Navarro, Gemma; Carriba, Paulina; Gandí, Jorge; Ciruela, Francisco; Casadó, Vicent; Cortés, Antoni; Mallol, Josefa; Canela, Enric I.; Lluis, Carmen; Franco, Rafael

    2008-01-01

    Functional interactions in signaling occur between dopamine D2 (D2R) and cannabinoid CB1 (CB1R) receptors, between CB1R and adenosine A2A (A2AR) receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells. PMID:18956124

  18. Detection of Heteromers Formed by Cannabinoid CB1, Dopamine D2, and Adenosine A2A G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    2008-01-01

    Full Text Available Functional interactions in signaling occur between dopamine D2 (D2R and cannabinoid CB1 (CB1R receptors, between CB1R and adenosine A2A (A2AR receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells.

  19. Research progress on trifluoromethyl-based radical reaction process

    Science.gov (United States)

    Song, Hao

    2017-12-01

    Due to the unique properties imparted by the trifluoromethyl group, such as high electron density and strong lipotropy, which effectively improve acidity, lipophilicity and metabolic stability of the molecule itself, trifluoromethyl-substituted organic compounds are becoming increasingly important as structural motifs in pharmaceuticals, agrochemicals and organic materials. In this review, we present several methods developed for the direct introduction of a trifluoromethyl group, beginning with its rich and storied history. Then the present article addresses mechanism and process in carbon-carbon bond forming reaction based on radical process which is divided into three parts according to the way of CF3 radical generation. Finally, challenges and opportunities of researches on trifluoromethylation reactions facing are prospected.

  20. New era of silicon technologies due to radical reaction based semiconductor manufacturing

    International Nuclear Information System (INIS)

    Ohmi, Tadahiro; Hirayama, Masaki; Teramoto, Akinobu

    2006-01-01

    Current semiconductor technology, the so-called the molecule reaction based semiconductor manufacturing, now faces a very severe standstill due to the drastic increase of gate leakage currents and drain leakage currents. Radical reaction based semiconductor manufacturing has been developed to completely overcome the current standstill by introducing microwave excited high density plasma with very low electron temperatures and without accompanying charge-up damage. The introduction of radical reaction based semiconductor manufacturing has made it possible to fabricate LSI devices on any crystal orientation Si substrate surface as well as (100) Si substrate surfaces, and to eliminate a very severe limitation to the antenna ratio in the circuit layout patterns, which is strictly limited to less than 100-200 in order to obtain a relatively high production yield. (topical review)

  1. A case report on a severe anaphylaxis reaction to Gadolinium-based MR contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juil; Kim, Tae Hyung; Park, Chang Min; Yoon, Soon Ho; Lee, Whal; Kang, Hye Ryun; Choi, Young Hun [Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-02-15

    Acute hypersensitivity reactions to gadolinium-based magnetic resonance (MR) contrast media have been shown to have a much lower incidence and they are generally milder in terms of severity than acute adverse reactions associated with the use of iodinated contrast media for computed tomography scans. However, even though it is rare, a severe hypersensitivity reaction to MR contrast media can occur. Here we present the case of a 66-year-old woman who experienced a severe hypersensitivity reaction after administration of gadolinium-based contrast media without a previous history of allergies.

  2. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento (Italy)

    2014-10-07

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concrete biological models.

  3. Oxidative removal of quinclorac by permanganate through a rate-limiting [3 + 2] cycloaddition reaction.

    Science.gov (United States)

    Song, Dean; Cheng, Hanyang; Jiang, Xiaohua; Sun, Huiqing; Kong, Fanyu; Liang, Rongning; Qiang, Zhimin; Liu, Huijuan; Qu, Jiuhui

    2018-04-05

    Quinclorac, a widely used herbicide in agriculture, has been recognized as an emerging environmental pollutant owing to its long persistence and potential risk to humans. However, no related information is available on the degradation of quinclorac by employing oxidants. Herein, the reactivity of quinclorac with permanganate was systematically investigated in water by combining experimental and computational approaches. The reaction followed overall second-order kinetics pointing to a bimolecular rate-limiting step. The second-order rate constant was found to be 3.47 × 10-3 M-1 s-1 at 25 °C, which was independent of pH over the range from 5 to 9 and was dependent on temperature over the range from 19 to 35 °C. The initial product was identified by UPLC-Q-TOF-MS to be mono-hydroxylated quinclorac, which was more susceptible to further oxidation. The result could be supported by the complete simulation of the reaction process in DFT calculations, indicating the [3 + 2] cycloaddition oxidation of the benzene ring in the rate-limiting step. The plausible mechanism was then proposed, accompanied by the analysis of the HOMO indicating the hydroxylation position and of the ESP suggesting a more electron-rich moiety. Considering the high effectiveness and low toxicity, permanganate oxidation was considered to be a very promising technique for removing quinclorac from aquatic environments.

  4. Generic Model-Based Tailor-Made Design and Analysis of Biphasic Reaction Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata

    systems have a broad range of application, such as the manufacture of petroleum based chemicals, pharmaceuticals, and agro-bio products. Major considerations in the design and analysis of biphasic reaction systems are physical and chemical equilibria, kinetic mechanisms, and reaction rates. The primary...... contribution of this thesis is the development of a systematic modelling framework for the biphasic reaction system. The developed framework consists of three modules describing phase equilibria, reactions and mass transfer, and material balances of such processes. Correlative and predictive thermodynamic......Biphasic reaction systems are composed of immiscible aqueous and organic liquid phases where reactants, products, and catalysts are partitioned. These biphasic conditions point to novel synthesis paths, higher yields, and faster reactions, as well as facilitate product separation. The biphasic...

  5. Stable and efficient nitrogen-containing-carbon based electrocatalysts for reactions in energy conversion systems.

    Science.gov (United States)

    Wang, Sicong; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2018-05-17

    High activity and stability are crucial for practical electrocatalysts used for reactions in fuel cells, metal-air batteries and water electrolysis including ORR, HER, OER and oxidation reactions of formic acid and alcohols. N-C based electrocatalysts have shown promising prospects for catalyzing these reactions, however, there is no systematic review for strategies toward engineering active and stable N-C based electrocatalysts reported by far. Herein, a comprehensive comparison of recently reported N-C based electrocatalysts regarding both electrocatalytic activity and long-term stability is presented. In the first part of this review, relationships between electrocatalytic reactions and element selections for modifying N-C based materials are discussed. Afterwards, synthesis methods for N-C based electrocatalysts are summarized, and synthetic strategies for highly stable N-C based electrocatalysts are presented. Multiple tables containing data on crucial parameters for both electrocatalytic activity and stability are displayed in this review. Finally, constructing M-Nx moieties is proposed as the most promising engineering strategy for stable N-C based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A combined crossed molecular beam and theoretical investigation of the reaction of the meta-tolyl radical with vinylacetylene--toward the formation of methylnaphthalenes.

    Science.gov (United States)

    Yang, Tao; Muzangwa, Lloyd; Kaiser, Ralf I; Jamal, Adeel; Morokuma, Keiji

    2015-09-07

    Crossed molecular beam experiments and electronic structure calculations on the reaction of the meta-tolyl radical with vinylacetylene were conducted to probe the formation of methyl-substituted naphthalene isomers. We present the compelling evidence that under single collision conditions 1- and 2-methylnaphthalene can be formed without an entrance barrier via indirect scattering dynamics through a bimolecular collision of two non-PAH reactants: the meta-tolyl radical and vinylacetylene. The electronic structure calculations, conducted at the UCCSD(T)-F12b/cc-pVDZ//UM06-2x/cc-pVTZ + ZPE(UM06-2x/cc-pVTZ) level of theory, reveal that this reaction is initiated by the barrierless addition of the meta-tolyl radical to the terminal vinyl carbon (C1) of vinylacetylene, via a van-der-Waals complex implying that this mechanism can play a key role in forming methyl-substituted PAHs in low temperature extreme environments such as the low temperature interstellar medium and hydrocarbon-rich atmospheres of planets and their moons in the outer solar system. The reaction mechanism, proposed from the C11H11 potential energy surface, involves a sequence of isomerizations involving hydrogen transfer and ring closure, followed by hydrogen dissociation, which eventually leads to 1- and 2-methylnaphthalene in an overall exoergic process.

  7. Photoconductivity studies of the ferrocyanide ion under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Finston, M. I.

    1979-01-01

    The photoaquation of the ferrocyanide ion was studied using a high-pressure photoconductivity apparatus and a steady-state high-pressure mercury lamp. The first-order photocurrent rise-time could be related to the relative quantum efficiency of the photoaquation process, while the dark decay of the photocurrent yielded a relative value of the bimolecular rate-constant for the reverse reaction. Kinetic measurements were carried out on dilute solutions of potassium ferrocyanide in pure water, and in 20% ethanol. The photocurrent yield in aqueous solution was dependent upon secondary chemical equilibria which were sensitive to pressure in a predictable way. In ethanolic solution, the dependence of photocurrent yield on pressure followed the variation of the reciprocal solvent vicosity. In both aqueous and alcoholic solution, the photoaquation quantum efficiency decreased exponentially with pressure, as did the biomolecular rate-constant for the dark reaction in aqueous solution. The pressure dependence of the bimolecular rate-constant in the alcoholic solution indicated a diffusion-limited process. The pressure dependence of the photoaquation quantum yield, and of the bimolecular rate-constant in aqueous solution, was interpreted in terms of an activation volume model. The photoaquation data for both the aqueous and the alcoholic solutions agreed with a hypothetical mechanism whereby ligand-to-metal bond-breaking, and solvent-to-metal bond-formation, are effectively simultaneous. The results for the aqueous dark reaction strongly indicated breaking of the solvent-to-metal bond as the rate-limiting step.

  8. Laser Spot Detection Based on Reaction Diffusion.

    Science.gov (United States)

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J M; Dormido, Raquel; Duro, Natividad

    2016-03-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  9. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.

    Science.gov (United States)

    Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean

    2017-01-18

    As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.

  10. Advanced Oxidation Degradation of Diclofenac

    International Nuclear Information System (INIS)

    Cooper, William J.; Song Weihua

    2012-01-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e - aq ). The bimolecular reaction rate constants (M -1 s -1 ) for diclofenac for •OH was (9.29 ± 0.11) x 10 9 , and, for e- aq was (1.53 ± 0.03) x10 9 . Preliminary degradation mechanisms are suggested based on product analysis using 60 Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  11. Fatal anaphylactic reaction to intravenous gadobutrol, a gadolinium-based MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Sabine Franckenberg, MD

    2018-02-01

    Full Text Available We present the rare case of a fatal anaphylactic reaction to gadobutrol, a magnetic resonance imaging contrast agent, in a 42-year-old man. The patient underwent elective magnetic resonance imaging for diagnostic clarification of a suspicious finding in the abdomen. The patient had undergone contrast-enhanced computed tomography previously without the occurrence of any adverse effects. Adverse drug reactions in gadobutrol have a very low prevalence of 0.32%-3.5%, with serious adverse drug reactions in <0.1%. There are only a few cases of fatal anaphylactoid reactions to gadolinium-based contrast agents in general. However, if an anaphylactoid reaction occurs, it can present itself with a fulminant course within minutes.

  12. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  13. Process for carrying out analyses based on concurrent reactions

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J S; Shepherd, B P

    1980-01-03

    The invention refers to a process for carrying out analyses based on concurrent reactions. A part of a compound to be analysed is subjected with a standard quantity of this compound in a labelled form to a common reaction with a standard quantity of a reagent, which must be less than the sum of the two parts of the reacting compound. The parts of the marked reaction compound and the labelled final compound resulting from the concurrence are separated in a tube (e.g. by centrifuging) after forced phase change (precipitation, absorption etc.) and the radio-activity of both phases in contact is measured separately. The shielded measuring device developed for this and suitable for centrifuge tubes of known dimensions is also included in the patent claims. The insulin concentration of a defined serum is measured as an example of the applications of the method (Radioimmunoassay).

  14. Laser Spot Detection Based on Reaction Diffusion

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Otero

    2016-03-01

    Full Text Available Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  15. Laser Spot Detection Based on Reaction Diffusion

    OpenAIRE

    Alejandro Vázquez-Otero; Danila Khikhlukha; J. M. Solano-Altamirano; Raquel Dormido; Natividad Duro

    2016-01-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presente...

  16. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  17. DNA-based catalytic enantioselective intermolecular oxa-Michael addition reactions

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2012-01-01

    Using the DNA-based catalysis concept, a novel Cu(II) catalyzed enantioselective oxa-Michael addition of alcohols to enones is reported. Enantioselectivities of up to 86% were obtained. The presence of water is important for the reactivity, possibly by reverting unwanted side reactions such as

  18. Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.

    Science.gov (United States)

    Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter

    2012-04-01

    This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.

  19. Thermal runaway reaction hazards and mechanisms of hydroxylamine with acid/base contaminants

    International Nuclear Information System (INIS)

    Wei Chunyang; Saraf, Sanjeev R.; Rogers, William J.; Sam Mannan, M.

    2004-01-01

    Hydroxylamine (HA) has been involved in two incidents since 1999 because of its thermal instability and incompatibility. In this study, thermal runaway reactions of hydroxylamine with various concentrations of KOH and HCl were studied using the reactive system screening tool (RSST) and automatic pressure tracking adiabatic calorimeter (APTAC). The thermokinetic data, such as onset temperature, heat of reaction, maximum self-heat rate, maximum pressure rate, and non-condensable gas pressure, were compared with those of hydroxylamine solution without added impurity. Our study shows that the thermal decomposition behavior of hydroxylamine is affected by the presence of acid/base, and mixing of hydroxylamine with acid/base may cause thermal decomposition at lower temperatures. Different decomposition pathways can be initiated by hydrogen ion and hydroxide ion. The decomposition mechanisms of hydroxylamine in alkaline and acidic solutions are proposed based on the products, information from the literature, and quantum mechanical calculations. The experimental results are discussed in terms of the proposed reaction mechanisms

  20. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  1. Kinetic equation of heterogeneous catalytic isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1979-12-01

    A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.

  2. 55 cases of allergic reactions to hair dye: a descriptive, consumer complaint-based study

    DEFF Research Database (Denmark)

    Søsted, H; Agner, T; Andersen, Klaus Ejner

    2002-01-01

    themselves, and adverse reactions to hair dye may not necessarily be recorded by the health care system, unless the reactions are especially severe. Based on this assumption, we suspected that hair dye dermatitis was occurring more frequently than reported in the literature. Consumer complaint-based data......Severe facial and scalp dermatitis following the use of permanent hair dyes has been reported in several cases. Para-phenylenediamine (PPD) is known as a potent contact allergen, and PPD is allowed in hair dye at a concentration of 6%. Hair dye reactions are usually diagnosed by the patients...

  3. Kinetics of Reactive Fronts in Porous Media: quantification through a laboratory experiment

    Science.gov (United States)

    De Anna, P.; Jimenez-Martinez, J.; Turuban, R.; Tabuteau, H.; Derrien, M.; Le Borgne, T.; Meheust, Y.

    2013-12-01

    The kinetics of reaction fronts in heterogeneous flows is tightly linked to the mixing dynamics governed by the combined action of stretching, diffusion and dispersion. Focusing on porous media flows, with a new experimental setup we show that the invading solute is organized into stretched lamellae, whose deformation and coalescence control the effective reaction kinetics of the mixing limited bimolecular reaction A + B --> C. While the classic advection-dispersion theory predicts a scaling of the cumulative product mass of C as t^(0.5), we observe two distinct kinetics regimes, one characterized by the stretching and the other by the coalescence of the invading lamellae, in which the mass of C scales faster than t^(0.5). The proposed experimental set up allows for direct quantification of mixing and reactive transport in porous media with a high spatial resolution, at the pore scale. The analogous two dimensional porous medium consists in a Hele-Shaw cell containing a single layer of cylindrical solid grains built by soft lithography. On the one hand, the measurement of the local, intra-pore, conservative concentration field is done using a fluorescent tracer. On the other hand, considering a fast bimolecular advection-dispersion reaction A + B --> C occurring as A displaces B, we quantify the reaction kinetics from the spatially-resolved measurement of the pore scale reaction rate, using a chemiluminescent reaction.

  4. Advanced Oxidation Degradation of Diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, William J., E-mail: wcooper@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States); Song Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2012-07-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e{sup -}{sub aq}). The bimolecular reaction rate constants (M{sup -1} s{sup -1}) for diclofenac for •OH was (9.29 ± 0.11) x 10{sup 9}, and, for e- aq was (1.53 ± 0.03) x10{sup 9}. Preliminary degradation mechanisms are suggested based on product analysis using {sup 60}Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  5. Genome-Wide Bimolecular Fluorescence Complementation-Based Proteomic Analysis of Toxoplasma gondii ROP18’s Human Interactome Shows Its Key Role in Regulation of Cell Immunity and Apoptosis

    Directory of Open Access Journals (Sweden)

    Jing Xia

    2018-02-01

    Full Text Available Toxoplasma gondii rhoptry protein ROP18 (TgROP18 is a key virulence factor secreted into the host cell during invasion, where it modulates the host cell response by interacting with its host targets. However, only a few TgROP18 targets have been identified. In this study, we applied a high-throughput protein–protein interaction (PPI screening in human cells using bimolecular fluorescence complementation (BiFC to identify the targets of Type I strain ROP18 (ROP18I and Type II strain ROP18 (ROP18II. From a pool of more than 18,000 human proteins, 492 and 141 proteins were identified as the targets of ROP18I and ROP18II, respectively. Gene ontology, search tool for the retrieval of interacting genes/proteins PPI network, and Ingenuity pathway analyses revealed that the majority of these proteins were associated with immune response and apoptosis. This indicates a key role of TgROP18 in manipulating host’s immunity and cell apoptosis, which might contribute to the immune escape and successful parasitism of the parasite. Among the proteins identified, the immunity-related proteins N-myc and STAT interactor, IL20RB, IL21, ubiquitin C, and vimentin and the apoptosis-related protein P2RX1 were further verified as ROP18I targets by sensitized emission-fluorescence resonance energy transfer (SE-FRET and co-immunoprecipitation. Our study substantially contributes to the current limited knowledge on human targets of TgROP18 and provides a novel tool to investigate the function of parasite effectors in human cells.

  6. Exciton Formation in Disordered Semiconductors

    DEFF Research Database (Denmark)

    Klochikhin, A.; Reznitsky, A.; Permogorov, S.

    1999-01-01

    Stationary luminescence spectra of disordered solid solutions can be accounted by the model of localized excitons. Detailed analysis of the long time decay kinetics of luminescence shows that exciton formation in these systems is in great extent due to the bimolecular reaction of separated carrie...

  7. Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder

    Science.gov (United States)

    Duan, Yingliang

    2017-06-01

    Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.

  8. Measurement of reaction heats using a polysilicon-based microcalorimetric sensor

    NARCIS (Netherlands)

    Vereshchagina, E.; Wolters, Robertus A.M.; Gardeniers, Johannes G.E.

    2011-01-01

    In this work we present a low-cost, low-power, small sample volume microcalorimetric sensor for the measurement of reaction heats. The polysilicon-based microcalorimetric sensor combines several advantages: (i) complementary metal oxide semiconductor technology (CMOS) for future integration; (ii)

  9. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E

    2014-06-01

    The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.

  10. Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors

    Directory of Open Access Journals (Sweden)

    Yuliang Liu

    2011-01-01

    Full Text Available Virus-host interactions play key roles in promoting efficient egress of many RNA viruses, including Ebola virus (EBOV or “e” and Marburg virus (MARV or “m”. Late- (L- domains conserved in viral matrix proteins recruit specific host proteins, such as Tsg101 and Nedd4, to facilitate the budding process. These interactions serve as attractive targets for the development of broad-spectrum budding inhibitors. A major gap still exists in our understanding of the mechanism of filovirus budding due to the difficulty in detecting virus-host complexes and mapping their trafficking patterns in the natural environment of the cell. To address this gap, we used a bimolecular complementation (BiMC approach to detect, localize, and follow the trafficking patterns of eVP40-Tsg101 complexes in live mammalian cells. In addition, we used the BiMC approach along with a VLP budding assay to test small molecule inhibitors identified by in silico screening for their ability to block eVP40 PTAP-mediated interactions with Tsg101 and subsequent budding of eVP40 VLPs. We demonstrated the potential broad spectrum activity of a lead candidate inhibitor by demonstrating its ability to block PTAP-dependent binding of HIV-1 Gag to Tsg101 and subsequent egress of HIV-1 Gag VLPs.

  11. Novel ion-molecular surface reaction to result in CH3 adsorbates on (111) surface of chemical vapor deposition diamond from ethane and surface anionic sites

    International Nuclear Information System (INIS)

    Komatsu, Shojiro; Okada, Katsuyuki; Shimizu, Yoshiki; Moriyoshi, Yusuke

    2001-01-01

    The existence of CH 3 adsorbates on (111) surface of chemical vapor deposited diamond, which was observed by scanning tunneling microscopy, was explained by the following S N 2 (bimolecular, substitutional, and nucleophilic) type surface reaction; C(s) - +C 2 H 6 ->C(s)-CH 3 +CH 3 - , where C(s) denotes a surface carbon atom. The activation energy was estimated to be 36.78 kcal/mol and the reaction proved to be exothermic with the enthalpy change of -9.250 kcal/mol, according to ab initio molecular orbital calculations at MP2/3-21+G * //RHF/3-21G * level; this result is consistent with typical substrate temperatures, namely about 900 degree C, for chemical vapor deposition of diamond. Charge transfer from the highest occupied molecular orbital of the surface anionic site to the lowest unoccupied molecular orbital of ethane, that is antibonding at the CH 3 - CH 3 bond, has been clearly visualized. A characteristic configuration of an ethane molecule which is associated with an anionic vacant site C(s) - on hydrogenated (111) surface of diamond was also found. [copyright] 2001 American Institute of Physics

  12. Radiochemical determination of methylmercury chloride Part 1

    International Nuclear Information System (INIS)

    Stary, J.; Prasilova, J.

    1976-01-01

    The isotope exchange between methylmercury species and an excess of inorganic radiomercury in sulphuric acid medium has been used for the simple determination of methylmercury chloride down to 0.01 ppm. The determination is not influenced by the presence of a great excess of other metals, however, chlorides, bromides and iodides interfere in higher concentrations. It has been found that the isotope exchange between CH 3 HgCl and 203 HgCl 4 2- (or 203 HgCl 2 ) in 0.01-3M hydrochloric acid is extremely slow, for the bimolecular reaction the rate constant is lower than 10 -3 mol -1 s -1 at 25 deg C. The isotope exchange rate between methylmercury chloride and mercuric-nitrate 0n on 0.5M sulphuric acid is higher. The isotope exchange is a bimolecular reaction with a rate constant k=0.050+-0.004 mol -1 s -1 at 25 deg C. (T.I.)

  13. An Unexpected Reaction between 5-Hydroxymethylfurfural and Imidazolium-Based Ionic Liquids at High Temperatures

    Directory of Open Access Journals (Sweden)

    Zongbao K. Zhao

    2011-10-01

    Full Text Available A new compound was detected during the production of 5-hydroxymethylfurfural (HMF from glucose and cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl at high temperatures. Further experiments found that it was derived from the reaction of HMF with [Bmim]Cl. The structure of new compound was established as 1-butyl-2-(5’-methyl-2’-furoylimidazole (BMI based on nuclear magnetic resonance and mass spectrometry analysis, and a possible mechanism for its formation was proposed. Reactions of HMF with other imidazolium-based ionic liquids were performed to check the formation of BMI. Our results provided new insights in terms of side reactions between HMF and imidazolium-based ionic liquids, which should be valuable for designing better processes for the production of furans using biomass and related materials.

  14. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    Science.gov (United States)

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  15. High-temperature shock tube and modeling studies on the reactions of methanol with D-atoms and CH3-radicals.

    Science.gov (United States)

    Peukert, S L; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the hydrogen abstraction reactions D + CH3OH → CH2O + H + HD (A) and CH3 + CH3OH → CH2O + H + CH4 (B). For reaction A, the experiments span a T-range of 1016 K ≤ T ≤ 1325 K, at pressures 0.25 bar ≤ P ≤ 0.46 bar. The experiments on reaction B, CH3 + CH3OH, cover a T-range of 1138 K ≤ T ≤ 1270 K, at pressures around 0.40 bar. Reflected shock tube experiments, monitoring the depletion of D-atoms by applying D-atom atomic resonance absorption spectrometry (ARAS), were performed on reaction A using gas mixtures of C2D5I and CH3OH in Kr bath gas. C2D5I was used as precursor for D-atoms. For reaction B, reflected shock tube experiments monitoring H-atom formation with H-ARAS, were carried out using gas mixtures of diacetyl ((CH3CO)2) and CH3OH in Kr bath gas. (CH3CO)2 was used as the source of CH3-radicals. Detailed reaction models were assembled to fit the D-atom and H-atom time profiles in order to obtain experimental rate constants for reactions A and B. Total rate constants from the present experiments on D + CH3OH and CH3 + CH3OH can be represented by the Arrhenius equations kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) and kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K). The experimentally obtained rate constants were compared with available rate data from the literature. The results from quantum chemical studies on reaction A were found to be in good agreement with the present results. The present work represents the first direct experimental study on these bimolecular reactions at combustion temperatures and is important to the high-temperature oxidation of CH3OH.

  16. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    Science.gov (United States)

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  17. Relationship among reaction rate, release rate and efficiency of nanomachine-based targeted drug delivery.

    Science.gov (United States)

    Zhao, Qingying; Li, Min; Luo, Jun

    2017-12-04

    In nanomachine applications towards targeted drug delivery, drug molecules released by nanomachines propagate and chemically react with tumor cells in aqueous environment. If the nanomachines release drug molecules faster than the tumor cells react, it will result in loss and waste of drug molecules. It is a potential issue associated with the relationship among reaction rate, release rate and efficiency. This paper aims to investigate the relationship among reaction rate, release rate and efficiency based on two drug reception models. We expect to pave a way for designing a control method of drug release. We adopted two analytical methods that one is drug reception process based on collision with tumors and another is based on Michaelis Menten enzymatic kinetics. To evaluate the analytical formulations, we used the well-known simulation framework N3Sim to establish simulations. The analytical results of the relationship among reaction rate, release rate and efficiency is obtained, which match well with the numerical simulation results in a 3-D environment. Based upon two drug reception models, the results of this paper would be beneficial for designing a control method of nanomahine-based drug release.

  18. Use of chemistry software to teach and assess model-based reaction and equation knowledge

    Directory of Open Access Journals (Sweden)

    Kevin Pyatt

    2014-12-01

    Full Text Available This study investigated the challenges students face when learning chemical reactions in a first-year chemistry course and the effectiveness of a curriculum and software implementation that was used to teach and assess student understanding of chemical reactions and equations. This study took place over a two year period in a public suburban high-school, in southwestern USA. Two advanced placement (AP chemistry classes participated, referred to here as study group A (year 1, N = 14; and study group B (year 2, N = 21. The curriculum for a first-year chemistry course (group A was revised to include instruction on reaction-types. The second year of the study involved the creation and implementation of a software solution which promoted mastery learning of reaction-types. Students in both groups benefited from the reaction-type curriculum and achieved proficiency in chemical reactions and equations.  The findings suggest there was an added learning benefit to using the reaction-type software solution. This study also found that reaction knowledge was a moderate to strong predictor of chemistry achievement. Based on regression analysis, reaction knowledge significantly predicted chemistry achievement for both groups.

  19. A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-05-01

    Full Text Available Abstract Background Sensitivity analysis is an indispensable tool for the analysis of complex systems. In a recent paper, we have introduced a thermodynamically consistent variance-based sensitivity analysis approach for studying the robustness and fragility properties of biochemical reaction systems under uncertainty in the standard chemical potentials of the activated complexes of the reactions and the standard chemical potentials of the molecular species. In that approach, key sensitivity indices were estimated by Monte Carlo sampling, which is computationally very demanding and impractical for large biochemical reaction systems. Computationally efficient algorithms are needed to make variance-based sensitivity analysis applicable to realistic cellular networks, modeled by biochemical reaction systems that consist of a large number of reactions and molecular species. Results We present four techniques, derivative approximation (DA, polynomial approximation (PA, Gauss-Hermite integration (GHI, and orthonormal Hermite approximation (OHA, for analytically approximating the variance-based sensitivity indices associated with a biochemical reaction system. By using a well-known model of the mitogen-activated protein kinase signaling cascade as a case study, we numerically compare the approximation quality of these techniques against traditional Monte Carlo sampling. Our results indicate that, although DA is computationally the most attractive technique, special care should be exercised when using it for sensitivity analysis, since it may only be accurate at low levels of uncertainty. On the other hand, PA, GHI, and OHA are computationally more demanding than DA but can work well at high levels of uncertainty. GHI results in a slightly better accuracy than PA, but it is more difficult to implement. OHA produces the most accurate approximation results and can be implemented in a straightforward manner. It turns out that the computational cost of the

  20. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly.

    Science.gov (United States)

    Li, Chenxi; Li, Yixin; Xu, Xiao; Wang, Xinyi; Chen, Yang; Yang, Xiaoda; Liu, Feng; Li, Na

    2014-10-15

    The widely used catalytic hairpin assembly (CHA) amplification strategy generally needs several hours to accomplish one measurement based on the prevailingly used maximum intensity detection mode, making it less practical for assays where high throughput or speed is desired. To make the best use of the kinetic specificity of toehold domain for circuit reaction initiation, we developed a mathematical model and proposed an initial reaction rate detection mode to quantitatively differentiate the single-base mismatch. Using the kinetic mode, assay time can be reduced substantially to 10 min for one measurement with the comparable sensitivity and single-base mismatch differentiating ability as were obtained by the maximum intensity detection mode. This initial reaction rate based approach not only provided a fast and quantitative differentiation of single-base mismatch, but also helped in-depth understanding of the CHA system, which will be beneficial to the design of highly sensitive and specific toehold-mediated hybridization reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biosensing strategies based on enzymatic reactions and nanoparticles.

    Science.gov (United States)

    Díez-Buitrago, Beatriz; Briz, Nerea; Liz-Marzán, Luis M; Pavlov, Valeri

    2018-04-16

    Enzymes are pivotal elements in bioanalysis due to their specificity and extremely high catalytic activity. The sensitivity of bioanalytical assays depends mainly on the capacity of an observer to detect the product(s) of a biocatalytic reaction. Both natural and artificial compounds have been traditionally used to evaluate enzymatic activities. The drawbacks of chromogenic and fluorogenic organic enzymatic substrates are their high cost and low stability, resulting in high background signals. We review here state of the art assays in the detection of enzymatic activities using recent advances in nanoscience. Novel methods based on the use of nanoparticles lead to increased sensitivity and decreased costs for bioanalysis based on enzymes as recognition elements and signal amplifiers in Enzyme-Linked Immunosorbent Assays (ELISA). Novel approaches toward the detection of enzymatic activities are based on biocatalytic synthesis, modulation, etching, and aggregation of nanoparticles under physiological conditions.

  2. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Dias de Freitas Castro

    2013-06-01

    Full Text Available The synthetic versatility and the potential application of metalloporphyrins (MP in different fields have aroused researchers’ interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs, contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  3. Nuclear reaction inputs based on effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S.; Peru, S.; Dubray, N.; Dupuis, M.; Bauge, E. [CEA, DAM, DIF, Arpajon (France); Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-11-15

    Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000 s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed. (orig.)

  4. A reaction-based fluorescent sensor for detection of cyanide in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shan-Teng; Sie, Yi-Wun [Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan (China); Wan, Chin-Feng [School of Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan (China); Wu, An-Tai, E-mail: antai@cc.ncue.edu.tw [Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan (China)

    2016-05-15

    A simple boronic acid derivative was utilized as a reaction-based receptor for CN{sup −} in aqueous solution. The receptor showed a selective and sensitive response to CN{sup −} over other various anions via nucleophilic addition of CN{sup −} to the imine moiety of the boronic-based receptor.

  5. Exploring the Reaction Pathways of Bioglycerol Hydrodeoxygenation to Propene over Molybdena-Based Catalysts.

    Science.gov (United States)

    Zacharopoulou, Vasiliki; Vasiliadou, Efterpi S; Lemonidou, Angeliki A

    2018-01-10

    The one-step reaction of glycerol with hydrogen to form propene selectively is a particularly challenging catalytic pathway that has not yet been explored thoroughly. Molybdena-based catalysts are active and selective to C-O bond scission; propene is the only product in the gas phase under the standard reaction conditions, and further hydrogenation to propane is impeded. Within this context, this work focuses on the exploration of the reaction pathways and the investigation of various parameters that affect the catalytic performance, such as the role of hydrogen on the product distribution and the effect of the catalyst pretreatment step. Under a hydrogen atmosphere, propene is produced primarily via 2-propenol, whereas under an inert atmosphere propanal and glycerol dissociation products are formed mainly. The reaction most likely proceeds through a reverse Mars-van Krevelen mechanism as partially reduced Mo species drive the reaction to the formation of the desired product. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Web-Based Search and Plot System for Nuclear Reaction Data

    International Nuclear Information System (INIS)

    Otuka, N.; Nakagawa, T.; Fukahori, T.; Katakura, J.; Aikawa, M.; Suda, T.; Naito, K.; Korennov, S.; Arai, K.; Noto, H.; Ohnishi, A.; Kato, K.

    2005-01-01

    A web-based search and plot system for nuclear reaction data has been developed, covering experimental data in EXFOR format and evaluated data in ENDF format. The system is implemented for Linux OS, with Perl and MySQL used for CGI scripts and the database manager, respectively. Two prototypes for experimental and evaluated data are presented

  7. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames.

    Science.gov (United States)

    Faßheber, Nancy; Lamoureux, Nathalie; Friedrichs, Gernot

    2015-06-28

    Bimolecular reactions of the NCN radical play a key role in modeling prompt-NO formation in hydrocarbon flames. The rate constant of the so-far neglected reaction NCN + H2 has been experimentally determined behind shock waves under pseudo-first order conditions with H2 as the excess component. NCN3 thermal decomposition has been used as a quantitative high temperature source of NCN radicals, which have been sensitively detected by difference UV laser absorption spectroscopy at [small nu, Greek, tilde] = 30383.11 cm(-1). The experiments were performed at two different total densities of ρ≈ 4.1 × 10(-6) mol cm(-3) and ρ≈ 7.4 × 10(-6) mol cm(-3) (corresponding to pressures between p = 324 mbar and p = 1665 mbar) and revealed a pressure independent reaction. In the temperature range 1057 K rate constant can be represented by the Arrhenius expression k/(cm(3) mol(-1) s(-1)) = 4.1 × 10(13) exp(-101 kJ mol(-1)/RT) (Δlog k = ±0.11). The pressure independent reaction as well as the measured activation energy is consistent with a dominating H abstracting reaction channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as examples to quantify the impact of the additional chemical pathways. Although the overall NCN consumption by H2 remains small, significant differences have been observed for NO yields with the updated mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomerization, plays a decisive role and enhances NO formation through a new HNC → HNCO → NH2→ NH → NO pathway.

  8. Imperfections and phase transformations by mono-N-alkylammonium-uranium glimmers

    International Nuclear Information System (INIS)

    Kammermeier, H.

    1982-01-01

    Uranium glimmers have a layered structure. Bimolecular intermediate layered films of parallel ordered alkyl chains can be produced by exchange of the intermediate layer kations with the mono-n-alkylammonium ions and the succession of soaking with n-alkanols. Phase changes can occur in these films that are accompanied by a change of the layer distance of the solid inorganic basic matrix. N-alkyl ammonium-n-alkanol-intercalcation compounds of uranium glimmers represent systems that can conveniently be examined with X-rays. Thermal phase changes can be performed easily. This paper describes how one can derive conclusions on the reaction mechanism of phase changes in bimolecular alkyl chain films by means of a profile analysis of X-ray reflexes. (orig./HBR) [de

  9. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions.

    Science.gov (United States)

    Ryu, JiHyeon; Lee, HeeYoung; Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary's teaching hospital, Daejeon, Korea) from 2010-2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton's preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization-Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p contrast media-induced adverse reactions. The World Health Organization-Uppsala Monitoring Centre and Naranjo algorithm causality evaluation afforded similar results.

  10. Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction

    Directory of Open Access Journals (Sweden)

    Alex Petrovici

    2014-09-01

    Full Text Available Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3 at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-COOCH3 in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•OH-CH2-COOCH3. The ESR spectrum of CH3-C(•OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K, CH3-C(•OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT support the radical assignments.

  11. Presolvated electron reactions with methyl acetoacetate: electron localization, proton-deuteron exchange, and H-atom abstraction.

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D

    2014-09-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•--CH2-COOCH3) in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-COOCH3. The ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments.

  12. Boron-Based Catalysts for C-C Bond-Formation Reactions.

    Science.gov (United States)

    Rao, Bin; Kinjo, Rei

    2018-05-02

    Because the construction of the C-C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C-C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron-based catalysts applied in the field of C-C bond-formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C 6 F 5 ) 3 ; 2) organoboron acids, RB(OH) 2 , and their ester derivatives; 3) borenium ions, (R 2 BL)X; and 4) other miscellaneous kinds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    Science.gov (United States)

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  14. Photonuclear reactions in astrophysical p-process: Theoretical calculations and experiment simulation based on ELI-NP

    Science.gov (United States)

    Xu, Yi; Luo, Wen; Balabanski, Dimiter; Goriely, Stephane; Matei, Catalin; Tesileanu, Ovidiu

    2017-09-01

    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the astrophysical reaction rates of (γ,n), (γ,p), and (γ,α) reactions are computed within the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12 Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.

  15. Isotope effects for base-promoted, gas-phase proton transfer reactions

    International Nuclear Information System (INIS)

    Grabowski, J.J.; Cheng, Xueheng

    1991-01-01

    Proton transfer reactions are among the most basic, the most common and the most important of chemical transformations; despite their apparent simplicity, much is unknown about this most fundamental of all chemical processes. Active interest in understanding the underlying principles of organic proton transfer reactions continues because of efforts being made to develop the theory of elementary chemical processes, because of the resurgence of interest in mechanistic organic chemistry and because of the resurgence of interest in mechanistic organic chemistry processes, because of the resurgence of interest in mechanistic organic chemistry and because of the dynamic role played by proton transfers in biochemical transformations. As organic chemists, the authors have used the flowing afterglow technique to gain an appreciation of the fundamental issues involved in reaction mechanisms by examining such processes in a solvent-free environment under thermally-equilibrated (300 K) conditions. Recent characterization of the facile production of both acetate and the monoenolate anion from the interaction of hydroxide or fluoride with acetic acid reinforces the idea that much yet must be learned about proton transfers/proton abstractions in general. Earlier work by Riveros and co-workers on competitive H vs D abstraction from α-d 1 -toluenes and by Noest and Nibbering on competitive H vs D abstraction from α,α,α-d 3 -acetone, in combination with the acetic acid results, challenged the author's to assemble a comprehensive picture of the competitive nature of proton transfer reactions for anionic base-promoted processes

  16. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.

    Directory of Open Access Journals (Sweden)

    Johannes Schöneberg

    Full Text Available We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.

  17. Tetronic Star Block Copolymer Micelles: Photophysical Characterisation of Microenvironments and Applicability for Tuning Electron Transfer Reactions.

    Science.gov (United States)

    Samanta, Papu; Rane, Sonal; Bahadur, Pratap; Dutta Choudhury, Sharmistha; Pal, Haridas

    2018-05-10

    Detailed photophysical investigations have been carried out using a probe dye, Coumarin-153 (C153), to understand the microenvironments of micelles formed by the newly introduced Tetronic star block copolymers, T1304 and T1307, having the same polypropylene oxide (PPO) block size but different polyethylene oxide (PEO) block sizes. Ground state absorption, steady-state fluorescence and time-resolved fluorescence measurements have been used to estimate the micropolarity, microviscosity and solvation dynamics within the two micelles. To the best of our knowledge this is the first report on these important physicochemical parameters for this new class of the star block copolymer micelles. Our results indicate that T1307 micelle offers a relatively more polar and less viscous microenvironment in the corona region, compared to T1304. The effect of the two micellar systems has subsequently been investigated on the bimolecular photoinduced electron transfer (ET) reactions between coumarin dyes (electron acceptors) and aromatic amines (electron donors). On correlating the energetics and kinetics of the ET reactions, clear Marcus Inversion (MI) behavior is observed in both the micellar media. Interestingly, the ET rates for all the donor-acceptor pairs are much higher in T1307 than in T1304, and the onset of MI also appears at a relatively higher exergenocity (-Δ G 0 ) in the former micelle (~0.45 eV for T1307) than the latter (~0.37 eV for T1304). Effect of added NaCl salt studied selectively in T1307 micelle, shows that the ET rate decreases significantly along with a shift in the onset of MI toward lower exergenocity region, so that in the presence of 2 M NaCl the system becomes quite comparable to T1304. Based on the observed results, it is realized that the micropolarity and hence the dynamics of ET process can be tuned very effectively either by changing the constitution of the star block copolymer or by using a suitable additive as a modifier of the micellar

  18. Non-allergic cutaneous reactions in airborne chemical sensitivity--a population based study.

    Science.gov (United States)

    Berg, Nikolaj Drimer; Linneberg, Allan; Thyssen, Jacob Pontoppidan; Dirksen, Asger; Elberling, Jesper

    2011-06-01

    Multiple chemical sensitivity (MCS) is characterised by adverse effects due to exposure to low levels of chemical substances. The aetiology is unknown, but chemical related respiratory symptoms have been found associated with positive patch test. The purpose of this study was to investigate the relationship between cutaneous reactions from patch testing and self-reported severity of chemical sensitivity to common airborne chemicals. A total of 3460 individuals participating in a general health examination, Health 2006, were patch tested with allergens from the European standard series and screened for chemical sensitivity with a standardised questionnaire dividing the participants into four severity groups of chemical sensitivity. Both allergic and non-allergic cutaneous reactions--defined as irritative, follicular, or doubtful allergic reactions--were analysed in relationship with severity of chemical sensitivity. Associations were controlled for the possible confounding effects of sex, age, asthma, eczema, atopic dermatitis, psychological and social factors, and smoking habits. In unadjusted analyses we found associations between allergic and non-allergic cutaneous reactions on patch testing and the two most severe groups of self-reported sensitivity to airborne chemicals. When adjusting for confounding, associations were weakened, and only non-allergic cutaneous reactions were significantly associated with individuals most severely affected by inhalation of airborne chemicals (odds ratio = 2.5, p = 0.006). Our results suggest that individuals with self-reported chemical sensitivity show increased non-allergic cutaneous reactions based on day 2 readings of patch tests. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    Science.gov (United States)

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  20. Reaction Decoder Tool (RDT): extracting features from chemical reactions.

    Science.gov (United States)

    Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Martínez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W; Holliday, Gemma L; Steinbeck, Christoph; Thornton, Janet M

    2016-07-01

    Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder : asad@ebi.ac.uk or s9asad@gmail.com. © The Author 2016. Published by Oxford University Press.

  1. Recovery Of Valuable Metals In Tin-Based Anodic Slimes By Carbothermic Reaction

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail of carbothermic reaction, thermodynamic calculation was carried out and compared with experiments. From thermodynamic calculation and experiment, it was confirmed that Sn-based anodic slime could be reduced by controlling temperature and amount of carbon. However, any tendency between the reduction temperature and carbon content for the reduction reaction was not observed.

  2. Late adverse reactions to intravascular iodine based contrast media

    DEFF Research Database (Denmark)

    Bellin, Marie-France; Stacul, Fulvio; Webb, Judith A W

    2011-01-01

    DEFINITION: Late adverse reactions (LAR) to contrast media (CM) are defined as reactions occurring 1 h to 1 week after exposure. NEED FOR REVIEW: In view of more prospective studies of LAR and new data about their pathophysiology, the Contrast Medium Safety Committee (CMSC) of the European Society...... or delayed reading intradermal). The main risk factors for LAR are a previous reaction to contrast medium, a history of allergy, and interleukin-2 treatment. Most skin reactions are mild or moderate and self-limiting. MANAGEMENT: Management is symptomatic and similar to the management of other drug......-induced skin reactions. To reduce the risk of repeat reactions avoidance of the relevant CM and any cross-reacting agents identified by skin testing is recommended....

  3. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: implications for replication and genome packaging.

    Science.gov (United States)

    Chaturvedi, Sonali; Rao, A L N

    2014-09-01

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein-protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Ligand Structure-Activity Study of DNA-Based Catalytic Asymmetric Hydration and Diels-Alder Reactions

    NARCIS (Netherlands)

    Rosati, F.; Roelfes, J.G.

    A structure-activity relationship study of the first generation ligands for the DNA-based asymmetric hydration of enones and Diels-Alder reaction in water is reported. The design of the ligand was optimized resulting in a maximum ee of 83% in the hydration reaction and 75% in the Diels-Alder

  5. Proton conduction based on intracrystalline chemical reaction

    International Nuclear Information System (INIS)

    Schuck, G.; Lechner, R.E.; Langer, K.

    2002-01-01

    Proton conductivity in M 3 H(SeO 4 ) 2 crystals (M=K, Rb, Cs) is shown to be due to a dynamic disorder in the form of an intracrystalline chemical equilibrium reaction: alternation between the association of the monomers [HSeO 4 ] 1- and [SeO 4 ] 2- resulting in the dimer [H(SeO 4 ) 2 ] 3- (H-bond formation) and the dissociation of the latter into the two monomers (H-bond breaking). By a combination of quasielastic neutron scattering and FTIR spectroscopy, reaction rates were obtained, as well as rates of proton exchange between selenate ions, leading to diffusion. The results demonstrate that this reaction plays a central role in the mechanism of proton transport in these solid-state protonic conductors. (orig.)

  6. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents.

    Science.gov (United States)

    Lushchekina, Sofya V; Schopfer, Lawrence M; Grigorenko, Bella L; Nemukhin, Alexander V; Varfolomeev, Sergei D; Lockridge, Oksana; Masson, Patrick

    2018-01-01

    Organophosphorus agents (OPs) are irreversible inhibitors of acetylcholinesterase (AChE). OP poisoning causes major cholinergic syndrome. Current medical counter-measures mitigate the acute effects but have limited action against OP-induced brain damage. Bioscavengers are appealing alternative therapeutic approach because they neutralize OPs in bloodstream before they reach physiological targets. First generation bioscavengers are stoichiometric bioscavengers. However, stoichiometric neutralization requires administration of huge doses of enzyme. Second generation bioscavengers are catalytic bioscavengers capable of detoxifying OPs with a turnover. High bimolecular rate constants ( k cat / K m > 10 6 M -1 min -1 ) are required, so that low enzyme doses can be administered. Cholinesterases (ChE) are attractive candidates because OPs are hemi-substrates. Moderate OP hydrolase (OPase) activity has been observed for certain natural ChEs and for G117H-based human BChE mutants made by site-directed mutagenesis. However, before mutated ChEs can become operational catalytic bioscavengers their dephosphylation rate constant must be increased by several orders of magnitude. New strategies for converting ChEs into fast OPase are based either on combinational approaches or on computer redesign of enzyme. The keystone for rational conversion of ChEs into OPases is to understand the reaction mechanisms with OPs. In the present work we propose that efficient OP hydrolysis can be achieved by re-designing the configuration of enzyme active center residues and by creating specific routes for attack of water molecules and proton transfer. Four directions for nucleophilic attack of water on phosphorus atom were defined. Changes must lead to a novel enzyme, wherein OP hydrolysis wins over competing aging reactions. Kinetic, crystallographic, and computational data have been accumulated that describe mechanisms of reactions involving ChEs. From these studies, it appears that introducing

  7. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents

    Directory of Open Access Journals (Sweden)

    Sofya V. Lushchekina

    2018-03-01

    Full Text Available Organophosphorus agents (OPs are irreversible inhibitors of acetylcholinesterase (AChE. OP poisoning causes major cholinergic syndrome. Current medical counter-measures mitigate the acute effects but have limited action against OP-induced brain damage. Bioscavengers are appealing alternative therapeutic approach because they neutralize OPs in bloodstream before they reach physiological targets. First generation bioscavengers are stoichiometric bioscavengers. However, stoichiometric neutralization requires administration of huge doses of enzyme. Second generation bioscavengers are catalytic bioscavengers capable of detoxifying OPs with a turnover. High bimolecular rate constants (kcat/Km > 106 M−1min−1 are required, so that low enzyme doses can be administered. Cholinesterases (ChE are attractive candidates because OPs are hemi-substrates. Moderate OP hydrolase (OPase activity has been observed for certain natural ChEs and for G117H-based human BChE mutants made by site-directed mutagenesis. However, before mutated ChEs can become operational catalytic bioscavengers their dephosphylation rate constant must be increased by several orders of magnitude. New strategies for converting ChEs into fast OPase are based either on combinational approaches or on computer redesign of enzyme. The keystone for rational conversion of ChEs into OPases is to understand the reaction mechanisms with OPs. In the present work we propose that efficient OP hydrolysis can be achieved by re-designing the configuration of enzyme active center residues and by creating specific routes for attack of water molecules and proton transfer. Four directions for nucleophilic attack of water on phosphorus atom were defined. Changes must lead to a novel enzyme, wherein OP hydrolysis wins over competing aging reactions. Kinetic, crystallographic, and computational data have been accumulated that describe mechanisms of reactions involving ChEs. From these studies, it appears that

  8. Presolvated Electron Reaction with Methylacetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-atom Abstraction

    Science.gov (United States)

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D.

    2015-01-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methylacetoacetate (MAA, CH3-CO-CH2-CO-OCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-CO-OCH3) in the temperature range (77 to ca. 170 K) have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-CO-OCH3. The ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-CO-OCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylen protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-CO-OCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-CO-OCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments. PMID:25255751

  9. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  10. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  11. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Fukuda, Jun; Tsujimura, Seiya; Kano, Kenji

    2008-01-01

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 μL was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change (ΔG o ') is negative; (2) α-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive ΔG o ' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of α-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total ΔG o ' value negative

  12. Ontology aided modeling of organic reaction mechanisms with flexible and fragment based XML markup procedures.

    Science.gov (United States)

    Sankar, Punnaivanam; Aghila, Gnanasekaran

    2007-01-01

    The mechanism models for primary organic reactions encoding the structural fragments undergoing substitution, addition, elimination, and rearrangements are developed. In the proposed models, each and every structural component of mechanistic pathways is represented with flexible and fragment based markup technique in XML syntax. A significant feature of the system is the encoding of the electron movements along with the other components like charges, partial charges, half bonded species, lone pair electrons, free radicals, reaction arrows, etc. needed for a complete representation of reaction mechanism. The rendering of reaction schemes described with the proposed methodology is achieved with a concise XML extension language interoperating with the structure markup. The reaction scheme is visualized as 2D graphics in a browser by converting them into SVG documents enabling the desired layouts normally perceived by the chemists conventionally. An automatic representation of the complex patterns of the reaction mechanism is achieved by reusing the knowledge in chemical ontologies and developing artificial intelligence components in terms of axioms.

  13. Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction

    Directory of Open Access Journals (Sweden)

    Madhan Vinu

    2017-10-01

    Full Text Available A series of aluminum-based coordination polymers or metal–organic frameworks (Al–MOFs, i.e., DUT-4, DUT-5, MIL-53, NH2-MIL-53, and MIL-100, have been facile prepared by microwave (MW-assisted reactions and used as catalysts for selective sulfoxidation reactions. The MW-assisted synthesis drastically reduced the reaction time from few days to hours. The prepared MOFs have smaller and uniform particle sizes and better yield compared to conventional hydrothermal method. Furthermore, the Al–MOFs have been successfully demonstrated as catalysts in oxidation reaction of methyl phenyl sulfide with H2O2 as oxidant, even under mild conditions, with more than 95% conversion.

  14. Microfabricated sleeve devices for chemical reactions

    Science.gov (United States)

    Northrup, M. Allen

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  15. A quantum theoretical study of reactions of methyldiazonium ion with DNA base pairs

    International Nuclear Information System (INIS)

    Shukla, P.K.; Ganapathy, Vinay; Mishra, P.C.

    2011-01-01

    Graphical abstract: Reactions of methyldiazonium ion at the different sites of the DNA bases in the Watson-Crick GC and AT base pairs were investigated employing density functional and second order Moller-Plesset (MP2) perturbation theories. Display Omitted Highlights: → Methylation of the DNA bases is important as it can cause mutation and cancer. → Methylation reactions of the GC and AT base pairs with CH 3 N 2 + were not studied earlier theoretically. → Experimental observations have been explained using theoretical methods. - Abstract: Methylation of the DNA bases in the Watson-Crick GC and AT base pairs by the methyldiazonium ion was investigated employing density functional and second order Moller-Plesset (MP2) perturbation theories. Methylation at the N3, N7 and O6 sites of guanine, N1, N3 and N7 sites of adenine, O2 and N3 sites of cytosine and the O2 and O4 sites of thymine were considered. The computed reactivities for methylation follow the order N7(guanine) > N3(adenine) > O6(guanine) which is in agreement with experiment. The base pairing in DNA is found to play a significant role with regard to reactivities of the different sites.

  16. Preparation and Characterization of Enzyme Compartments in UV-Cured Polyurethane-Based Materials and Their Application in Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Diana Uhrich

    2017-11-01

    Full Text Available The preparation and characterization of UV-cured polyurethane-based materials for the mild inclusion immobilization of enzymes was investigated. Full curing of the polymer precursor/enzyme solution mixture was realized by a short irradiation with UV-light at ambient temperatures. The included aqueous enzyme solution remains highly dispersed in the polymer material with an even size distribution throughout the polymer material. The presented concept provides stable enzyme compartments which were applied for an alcohol dehydrogenase-catalyzed reduction reaction in organic solvents. Cofactor regeneration was achieved by a substrate-coupled approach via 2-propanol or an enzyme-coupled approach by a glucose dehydrogenase. This reaction concept can also be used for a simultaneous application of contrary biocatalytic reaction conditions within an enzymatic cascade reaction. Independent polymer-based reaction compartments were provided for two incompatible enzymatic reaction systems (alcohol dehydrogenase and hydroxynitrile lyase, while the relevant reactants diffuse between the applied compartments.

  17. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    Science.gov (United States)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-01-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  18. ESR application to radiation chemistry of polymers

    International Nuclear Information System (INIS)

    Kashiwabara, H.

    1988-01-01

    Important results obtained in our group in the field of ESR application to the study of irradiated polymers are summarized. They are the analysis of the decay reaction of the free radicals, spur-like trapping of the free radicals and the related discussions. A diffusion controlled bimolecular reaction scheme was a good way of analyzing the data of the decay reaction. Power saturation phenomenon of ESR spectra of the free radicals showed a circumstance of the spur-like trapping of the free radicals in irradiated polyethylene. The phenomenon of spur-like trapping was quite consistent with the interpretation of the decay reaction of the free radicals. (author)

  19. A Comparative Study of French and Turkish Students' Ideas on Acid-Base Reactions

    Science.gov (United States)

    Cokelez, Aytekin

    2010-01-01

    The goal of this comparative study was to determine the knowledge that French and Turkish upper secondary-school students (grades 11 and 12) acquire on the concept of acid-base reactions. Following an examination of the relevant curricula and textbooks in the two countries, 528 students answered six written questions about the acid-base concept.…

  20. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations

    Directory of Open Access Journals (Sweden)

    Vincenza Granata

    2016-01-01

    Full Text Available Background and Purpose. Contrast media (CM for magnetic resonance imaging (MRI may determine the development of acute adverse reactions. Objective was to retrospectively assess the frequency and severity of adverse reactions associated with gadolinium-based contrast agents (GBCAs injection in patients who underwent MRI. Material and Methods. At our center 10608 MRI examinations with CM were performed using five different GBCAs: Gd-BOPTA (MultiHance, Gd-DTPA (Magnevist, Gd-EOBDTPA (Primovist, Gd-DOTA (Dotarem, and Gd-BTDO3A (Gadovist. Results. 32 acute adverse reactions occurred, accounting for 0.3% of all administration. Twelve reactions were associated with Gd-DOTA injection (0.11%, 9 with Gd-BOPTA injection (0.08%, 6 with Gd-BTDO3A (0.056%, 3 with Gd-EOB-DTPA (0.028%, and 2 with Gd-DTPA (0.018%. Twenty-four reactions (75.0% were mild, four (12.5% moderate, and four (12.5% severe. The most severe reactions were seen associated with use of Gd-BOPTA, with 3 severe reactions in 32 total reactions. Conclusion. Acute adverse reactions are generally rare with the overall adverse reaction rate of 0.3%. The most common adverse reactions were not severe, consisting in skin rash and hives.

  1. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    Science.gov (United States)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  2. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    Directory of Open Access Journals (Sweden)

    Jinchao Feng

    2018-03-01

    Full Text Available We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data. The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  3. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    Science.gov (United States)

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  4. Cesium Carbonate as a Heterogeneous Base Catalyst for Synthesis of 2-Aminothiophenes via Gewald Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moeinpour, Farid [Islamic Azad University, Bandar Abbas Branch, Abbas (Iran, Islamic Republic of); Omidinia, Raheleh; Dorostkar-Ahmadi, Nadieh; Khoshdeli, Bentalhoda [Islamic Azad University, Mashhad Branch, Mashhad (Iran, Islamic Republic of)

    2011-06-15

    We have reported a new simple catalytic method for the synthesis of 2-aminothiophenes via Gewald reaction using Cs{sub 2}CO{sub 3} as an efficient, reusable and green heterogeneous catalyst under heating conditions in refluxing ethanol. The catalyst could be recycled after a simple workup and reused at least three runs without appreciable reduction in its catalytic activity. Low catalyst loading, clean reaction profiles, simple experimental and workup procedures and high yields are some advantages of this protocol. The synthesis of substituted 2-aminothiophenes is attractive to chemical researchers as they are important intermediates in organic synthesis and frequently used as the scaffold motif of a variety of agrochemicals, dyes, and biologically active products. Thus, because of their wide utility, researchers have synthesized the substituted 2-aminothiophenes via efficient and convenient methods. The one-pot cyclocondensation of ketones with an activated α-hydrogen, a cyanomethylene containing an electron-withdrawing group such as cyanoacetate and elemental sulfur in the presence of organic base, for example, morpholine, diethylamine, etc, known as the Gewald reaction, has been one of the most well-studied multicomponent reactions in recent years. To extend the scope of the reaction, many alterations have been made to the original Gewald's base-catalyzed, two-component combination of α-mercapto ketones with cyanoacetate by varying the components and the conditions.

  5. Diels-Alder reactions for the rational design of benzo[b]thiophenes: DFT-based guidelines for synthetic chemists

    Science.gov (United States)

    Brasca, Romina; Kneeteman, María N.; Mancini, Pedro M. E.; Fabian, Walter M. F.

    2012-02-01

    In this work we studied the capability of several diene/dienophile pairs to undergo Diels-Alder (DA) reactions leading to benzo[b]thiophenes. A variety of synthetically and commercially available nitrothiophenes were chosen as dienophiles. Methyl 5-nitro-3-thiophenecarboxylate was selected as a potential strong electrophilic candidate based on some DFT-based properties and the substitution pattern of the expected product. The mechanistic details concerning the participation of this dienophile in polar DA reactions were investigated through a theoretical point of view. The results were compared with the experimental outcomes. This methodology should allow synthetic chemists to analyze DA reactions in detail in a stage prior to the synthetic job.

  6. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Carolyn L., E-mail: wangcl@uw.edu [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Schopp, Jennifer G.; Kani, Kimia [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Petscavage-Thomas, Jonelle M. [Penn State Hershey Medical Center, Department of Radiology, 500 University Drive, Hershey, PA 17033 (United States); Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H. [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States)

    2013-12-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation.

  7. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    International Nuclear Information System (INIS)

    Wang, Carolyn L.; Schopp, Jennifer G.; Kani, Kimia; Petscavage-Thomas, Jonelle M.; Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H.

    2013-01-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation

  8. Intensified Pozzolanic Reaction on Kaolinite Clay-Based Mortar

    Directory of Open Access Journals (Sweden)

    Yang-Hee Kwon

    2017-05-01

    Full Text Available The objective of this study is to develop and characterize kaolinite clay-based structural mortar. The pozzolanic reaction induced from two mineral additives, i.e., calcium hydroxide and silica fume (SF, and the physical filling effect from SF, were found to be effective on the enhancement of structural properties. Based on several preliminary experiments, 7:3 ratio of kaolinite clay/calcium hydroxide was selected as a basic binder. Then, the amount of SF was chosen as 0%, 7.5%, and 15% of the total binder to consider both the chemical and physical effects. The results showed that compressive strengths of samples with 7.5% and 15% SF are significantly increased by approximately 200% and 350%, respectively, at 28 days compared to the sample without SF. However, based on the results of the sample with 15% SF, it is found that excessive addition of SF causes long-term strength loss, possibly owing to micro cracks. With the careful consideration on this long-term behavior, this suggested new mix design can be further extended to develop sustainable structural materials using natural minerals or waste materials with nonbinding properties.

  9. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    Science.gov (United States)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  10. Person-based differences in pay reactions: A compensation-activation theory and integrative conceptual review.

    Science.gov (United States)

    Fulmer, Ingrid Smithey; Shaw, Jason D

    2018-06-07

    Compensation research has focused traditionally on how pay design characteristics (e.g., pay level, individual or group incentives) relate to average employee outcomes and, in toto, on how these outcomes affect organizational performance. Recently, scholars have begun to pay more attention to how individuals vary in the strength of their reactions to pay. Empirical research in several disciplines examines how the interplay of pay systems and person-based characteristics (psychological individual differences, demographics, and relative performance or position in a group) relate to important work-related outcomes. We develop a compensation-activation theory that frames compensation design characteristics as workplace "situations" providing cues that activate individuals' corresponding fundamental social motives made salient due to chronic or transient person-based characteristics. Where activation occurs, stronger-than-average responses to the compensation "situation" are expected. Using the theory as a lens, we synthesize and reinterpret existing research on person-based reactions to pay characteristics, including sorting, incentive/motivational effects, and effects on collective pay system reactions and unit/organizational outcomes. We conclude with a research agenda aimed at refining compensation-activation theory and advancing the study of compensation as it affects individual and organizational outcomes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Fabricating Simple Wax Screen-Printing Paper-Based Analytical Devices to Demonstrate the Concept of Limiting Reagent in Acid- Base Reactions

    Science.gov (United States)

    Namwong, Pithakpong; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe

    2018-01-01

    In this article, a low-cost, simple, and rapid fabrication of paper-based analytical devices (PADs) using a wax screen-printing method is reported here. The acid-base reaction is implemented in the simple PADs to demonstrate to students the chemistry concept of a limiting reagent. When a fixed concentration of base reacts with a gradually…

  12. Metal cluster cation reactions: Carbon monoxide association to Cu + n ions

    Science.gov (United States)

    Leuchtner, R. E.; Harms, A. C.; Castleman, A. W., Jr.

    1990-06-01

    Copper cluster cations (Cu+n,n=1-14) were produced in a laser vaporization/flow tube apparatus and equilibrated to room temperature. The association rate constants of carbon monoxide onto these ions were measured; low-pressure, termolecular behavior was observed for the smaller species while for clusters greater than Cu+7, the longer lifetimes due to the increased number of degrees of freedom leads to pressure independence (>0.3 Torr) of the effective bimolecular rates. Unimolecular decay theory (RRKM) is used to explain the overall trend and when intrinsic surface site reactivity is taken into account, excellent agreement with measured reactivity is obtained.

  13. Kinetics and Mechanism of the Reaction of Hydoxyl Radicals with Acetonitrile under Atmospheric Conditions

    Science.gov (United States)

    Hynes, A. J.; Wine, P. H.

    1997-01-01

    scheme to extract kinetic information about the adduct reations with O2 and branching ratios for OH regeneration. A plausible mechanism for OH regeneration in (2) involves OH addition to the nitrogen atom followed by O2 addition to the cyano carbon atom, isomeriazation and decomposition to D2CO + DOCN + OH. Our results suggest that the OH + CH3CN reaction occurs via a complex mechanism involving both bimolecular and termolecular pathways, analogous to the mechanisms for the the important atmospheric reactions of OH with CO and HNO3.

  14. Synthesis and antiacetylcholinesterase activity of new D-glyceraldehyde heterocyclic derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Scorzo, Cecilia M.; Fascio, Mirta L.; D' Accorso, Norma B. [Universidad de Buenos Aires, Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Organica; Cabrera, Margarita Gutierrez; Saavedra, Luis Astudillo [Universidad de Talca (Chile). Inst. de Quimica de Productos Naturales. Lab. de Sintesis Organica

    2010-07-01

    We report herein the convenient procedures for the syntheses of different heterocyclic compounds from 2,3-O-isopropylidene-D-glyceraldehyde using intramolecular cyclization, 1,3-dipolar cycloaddition or bimolecular coupling reactions. The products were characterized by {sup 1}H and {sup 13}C NMR spectroscopy and elemental analysis. The new heterocycles and their derivatives were evaluated as inhibitors of acetylcholinesterase enzyme. (author)

  15. Synthesis and antiacetylcholinesterase activity of new D-glyceraldehyde heterocyclic derivatives

    International Nuclear Information System (INIS)

    Scorzo, Cecilia M.; Fascio, Mirta L.; D'Accorso, Norma B.; Cabrera, Margarita Gutierrez; Saavedra, Luis Astudillo

    2010-01-01

    We report herein the convenient procedures for the syntheses of different heterocyclic compounds from 2,3-O-isopropylidene-D-glyceraldehyde using intramolecular cyclization, 1,3-dipolar cycloaddition or bimolecular coupling reactions. The products were characterized by 1 H and 13 C NMR spectroscopy and elemental analysis. The new heterocycles and their derivatives were evaluated as inhibitors of acetylcholinesterase enzyme. (author)

  16. Ultrasound-Accelerated Synthesis of Asymmetrical Thiosulfonate S-Esters by Base-Promoted Reaction of Sulfonyl Chlorides with Thiols

    DEFF Research Database (Denmark)

    Pham, Hien Thi; Nguyen, Ngoc-Lan Thi; Duus, Fritz

    2015-01-01

    Amberlyst A-26, Mg-Al hydrotalcite, potassium fluoride absorbed on alumina, triethylamine and pyridine have been tested as base catalysts and reagents for the reaction of sulfonyl chlorides with thiols to prepare thiosulfonate S-esters. The reactions were performed under solvent-free conditions...

  17. Laser spot detection based on reaction diffusion

    Czech Academy of Sciences Publication Activity Database

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J. M.; Dormido, R.; Duro, N.

    2016-01-01

    Roč. 16, č. 3 (2016), s. 1-11, č. článku 315. ISSN 1424-8220 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser spot detection * laser beam detection * reaction diffusion models * Fitzhugh-Nagumo model * reaction diffusion computation * Turing patterns Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.677, year: 2016

  18. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    Science.gov (United States)

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  19. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    Science.gov (United States)

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  20. [Epimerization of hydroxyl group in the lupan series of triterpenes].

    Science.gov (United States)

    Symon, A V; Kaplun, A P; Vlasenkova, N K; Gerasimova, G K; Shon, Le Bang; Litvin, E F; Kozlova, L M; Surkova, E L; Shvets, V I

    2003-01-01

    Two methods of obtaining of 3 alpha-betulinic acid and related compounds from their 3 beta-epimers were studied: the reaction of bimolecular substitution and the stereoselective reduction of 3-ketoderivatives. The substitution of acyloxy by formyloxy group in 3-O-tosyllupeol or of the betulin hydroxyl by benzoyloxy group resulted only in delta 2, 3-elimination products, with none of the expected products of bimolecular substitution being found. The catalytic hydrogenation of betulonic acid over Raney nickel resulted only in reduction of the isopropenyl double bond, whereas the use of 5% Ru/C gave a 60:40 mixture of epimers of dihydrobetulinic acid. Practically the same mixture of betulinic acid epimers was obtained when reducing betulonic acid with L-Selectride. The cytotoxic activity of 3 alpha-betulinic acid increased toward melanoma Bro cells and decreased toward melanoma MS cells.

  1. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent

    Science.gov (United States)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.

  2. Global Controllability of Chemical Reactions

    OpenAIRE

    Drexler, Dániel András; Tóth, János

    2015-01-01

    Controllability of chemical reactions is an important problem in chemical engineering science. In control theory, analysis of the controllability of linear systems is well-founded, however the dynamics of chemical reactions is usually nonlinear. Global controllability properties of chemical reactions are analyzed here based on the Lie-algebra of the vector fields associated to elementary reactions. A chemical reaction is controllable almost everywhere if all the reaction rate coefficients can...

  3. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael

    2011-01-01

    an excellent alternative to atomic qubits in the realization of a practical ion trap based quantum computer due to favourable internal state decoherence rates. In chemistry, state prepared molecular targets are an ideal starting point for uni-molecular reactions, including coherent control...... of photofragmentation through the application of various laser sources [5,6]. In cold bi-molecular reactions, where the effect of even tiny potential barriers becomes significant, experiments with state prepared molecules can yield important information on the details of the potential curves of the molecular complexes...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...

  4. Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates

    Directory of Open Access Journals (Sweden)

    Ina Schoon

    2017-12-01

    Full Text Available Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation conditions used on an industrial scale. The α,β-unsaturated double bond of the itaconic acid is prone to side reactions that can lead to the gelation of the polyester resin under standard conditions. This is especially true when bio-based diols such as 1,3-propanediol or 1,4-butanediol are used to obtain resins that are 100% derived from renewable resources. It was observed in earlier studies that high amounts of these aliphatic diols in the polyester lead to low conversion and gelation of the resins. In this work, a catalytic study using different diols was performed in order to elucidate the reasons for this behavior. It was shown that the choice of catalyst has a crucial influence on the side reactions occurring during the polycondensation reactions. In addition, the side reactions taking place were identified and suppressed. These results will allow for the synthesis of polyester itaconates on a larger scale, setting the stage for their industrial application.

  5. On the rejection-based algorithm for simulation and analysis of large-scale reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-06-28

    Stochastic simulation for in silico studies of large biochemical networks requires a great amount of computational time. We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)], to improve simulation performance by postponing and collapsing as much as possible the propensity updates. In this paper, we analyze the performance of this algorithm in detail, and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations to select reaction firings and forming trajectories. The memory requirement for building and storing the data structure is thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each other by exploiting the rejection-based mechanism. We test our new improvement on real biological systems with a wide range of reaction networks to demonstrate its applicability and efficiency.

  6. Knock-out reactions

    International Nuclear Information System (INIS)

    de Forest, T. Jr.

    1977-01-01

    It is pointed out that the primary motivation for performing high energy single nucleon knock-out reactions is based on the concept of quasi-elastic scattering. The validity of and corrections to the partial wave impulse approximation and kinematical invariance of knock-out reactions and tests of the reaction mechanism are treated. The effect of distortions on the momentum distribution in the effective momentum approximation for given parameters are plotted. 12 references

  7. NITRITE REDUCTASE ACTIVITY OF NON-SYMBIOTIC HEMOGLOBINS FROM ARABIDOPSIS THALIANA†

    Science.gov (United States)

    Tiso, Mauro; Tejero, Jesús; Kenney, Claire; Frizzell, Sheila; Gladwin, Mark T.

    2013-01-01

    Plant non-symbiotic hemoglobins possess hexa-coordinate heme geometry similar to the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana non-symbiotic hemoglobins class 1 and 2 (AHb1 and AHb2) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for nitrite reduction to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M−1s−1, at pH = 7.4 and 25°C, respectively. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. Release of free NO gas during reaction in anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in water submerged species, non-symbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction. PMID:22620259

  8. Modelling Students' Visualisation of Chemical Reaction

    Science.gov (United States)

    Cheng, Maurice M. W.; Gilbert, John K.

    2017-01-01

    This paper proposes a model-based notion of "submicro representations of chemical reactions". Based on three structural models of matter (the simple particle model, the atomic model and the free electron model of metals), we suggest there are two major models of reaction in school chemistry curricula: (a) reactions that are simple…

  9. A cellular automata approach to chemical reactions : 1 reaction controlled systems

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2013-01-01

    A direct link between the chemical reaction controlled (shrinking core) model and cellular automata, to study the dissolution of particles, is derived in this paper. Previous research on first and second order reactions is based on the concentration of the reactant. The present paper describes the

  10. High-precision (p,t) reactions to determine reaction rates of explosive stellar processes

    NARCIS (Netherlands)

    Matić, Andrija

    2007-01-01

    The aim of my study was to investigate the nuclear structure of 22Mg and 26Si. These two nuclei play a significant role in stellar reaction processes at high temperatures. On base of the obtained nuclear structure we calculated the stellar reaction rates for the following reactions: 18Ne(α,p)21Na,

  11. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions

    International Nuclear Information System (INIS)

    Schaefer, K.; Asmus, K.D.

    1980-01-01

    Phosphite radicals HPO 3 - and PO 3 2 -, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO 3 - and PO 3 2 - are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO 2 ) 3 - are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO 3 2 -. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO 5 - . reversible PO 5 2- . + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed

  12. Substrate dependent reaction channels of the Wolff–Kishner reduction reaction: A theoretical study

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-01-01

    Full Text Available Wolff–Kishner reduction reactions were investigated by DFT calculations for the first time. B3LYP/6-311+G(d,p SCRF=(PCM, solvent = 1,2-ethanediol optimizations were carried out. To investigate the role of the base catalyst, the base-free reaction was examined by the use of acetone, hydrazine (H2N–NH2 and (H2O8. A ready reaction channel of acetone → acetone hydrazine (Me2C=N–NH2 was obtained. The channel involves two likely proton-transfer routes. However, it was found that the base-free reaction was unlikely at the N2 extrusion step from the isopropyl diimine intermediate (Me2C(H–N=N–H. Two base-catalyzed reactions were investigated by models of the ketone, H2N–NH2 and OH−(H2O7. Here, ketones are acetone and acetophenone. While routes of the ketone → hydrazone → diimine are similar, those from the diimines are different. From the isopropyl diimine, the N2 extrusion and the C–H bond formation takes place concomitantly. The concomitance leads to the propane product concertedly. From the (1-phenylethyl substituted diimine, a carbanion intermediate is formed. The para carbon of the phenyl ring of the anion is subject to the protonation, which leads to a 3-ethylidene-1,4-cyclohexadiene intermediate. Its [1,5]-hydrogen migration gives the ethylbenzene product. For both ketone substrates, the diimines undergoing E2 reactions were found to be key intermediates.

  13. Isotope exchange reaction of tritium on precious metal catalyst based on cation-exchanged mordenite for blanket tritium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Precious metal catalyst based on cation-exchanged mordenite was prepared. • Isotope exchange reaction between H{sub 2} and HTO on the catalyst was investigated. • The order of entire reaction is not clear, but it is the first-order reaction as for HTO. • Effect of exchanged cation may appear as the difference of the surface area of catalyst. - Abstract: It is known that the chemical forms of tritium released from a ceramic breeder blanket are hydrogen form and water form. To recover tritiated water vapor, adoption of dryer that is packed column of synthetic zeolite has been proposed. On the other hand, synthetic zeolite is often used as a support of precious metal catalyst. Such catalysts usually have a capability of hydrogen isotope exchange between gas and water vapor. If this catalyst is used to dryer, the dryer may obtain a preferable function for tritium recovery by isotopic exchange reaction. To assess such functions, reaction rate should be estimated. The results of water adsorption experiment on cation-exchanged mordenite-type zeolite suggested the possibility that state of adsorbed water varied by exchanged cation. So, in this work, precious metal catalyst based on cation-exchanged mordenite was prepared, and the reaction rate of chemical exchange between hydrogen and tritiated water was investigated under temperature range between 30 °C and 80 °C by the steady-state approximation. In the case of platinum on Na-mordenite, the reaction between gaseous hydrogen and tritiated water vapor was almost expressed as first-order reaction concerning tritiated water vapor concentration.

  14. Women's Experiences of Social Reactions From Informal and Formal Supports: Using a Modified Administration of the Social Reactions Questionnaire.

    Science.gov (United States)

    DePrince, Anne P; Dmitrieva, Julia; Gagnon, Kerry L; Srinivas, Tejaswinhi

    2017-11-01

    A growing literature links social reactions to disclosures of intimate violence to posttraumatic outcomes. The Social Reactions Questionnaire (SRQ), a widely used measure developed to assess social reactions, asks about reactions received from people generally. The ability to examine the impact of social reactions from specific groups of people-such as criminal justice personnel versus community-based providers-has become increasingly more important from both research and practice perspectives. For example, as sexual assault responses nationally have relied on community-coordinated models that involve both criminal justice and community-based systems, tools are lacking to systematically assess the impact of social reactions from criminal justice personnel and community-based providers on survivors. Using the SRQ, the current study asked women to report separately on reactions received from criminal justice personnel, community-based providers, and informal supports. We recruited a diverse community sample of women ( N = 228, ages 18-63, 19% lesbian/bisexual, 44% ethnic minority) who experienced a sexual assault in the previous year and disclosed to the criminal justice system and/or a community-based provider. Multilevel analyses revealed considerable variability in the social reactions reported by women across criminal justice personnel, community-based providers, and informal supports. Analyses supported a seven-factor structure for the SRQ when the measure is yoked to particular experiences of disclosure, in this case to criminal justice personnel, community-based providers, or informal supports. The utility of this modified administration and scoring of the SRQ and the importance of considering reactions across different groups are described.

  15. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  16. Late adverse reactions to intravascular iodine based contrast media

    DEFF Research Database (Denmark)

    Bellin, Marie-France; Stacul, Fulvio; Webb, Judith A W

    2011-01-01

    DEFINITION: Late adverse reactions (LAR) to contrast media (CM) are defined as reactions occurring 1 h to 1 week after exposure. NEED FOR REVIEW: In view of more prospective studies of LAR and new data about their pathophysiology, the Contrast Medium Safety Committee (CMSC) of the European Societ...

  17. Characterization of reaction conditions providing rapid and specific cysteine alkylation for peptide-based mass spectrometry.

    Science.gov (United States)

    Paulech, Jana; Solis, Nestor; Cordwell, Stuart J

    2013-01-01

    Alkylation converts Cys thiols to thioethers and prevents unwanted side reactions, thus facilitating mass spectrometric identification of Cys-containing peptides. Alkylation occurs preferentially at Cys due to its high nucleophilicity, however reactions at other such sites are possible. N-ethylmaleimide (NEM) shows rapid reaction kinetics with Cys and careful definition of reaction conditions results in little reactivity at other sites. Analysis of a protein standard alkylated under differing reaction conditions (pH, NEM concentrations and reaction times) was performed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and selected reaction monitoring (SRM) of NEM-modified and unmodified peptide pairs. Mis-alkylation sites at primary and secondary amines were identified and limited to one equivalent of NEM. No evidence for hydroxyl or thioether alkylation was observed. Improved specificity was achieved by restricting the pH below neutral, NEM concentration below 10mM and/or reaction time to below 5min. Maximal removal of Cys activity was observed in tissue homogenates at 40mM NEM within 1min, dependent upon efficient protein denaturation. SRM assays identified peptide-specific levels of mis-alkylation, indicating that NEM-modified to unmodified ratios did not exceed 10%, with the exception of Cys alkylation that proceeded to 100%, and some Lys residues that resulted in tryptic missed cleavages. High reactivity was observed for His residues considering their relatively low abundance. These data indicate that rapid and specific Cys alkylation is possible with NEM under relatively mild conditions, with more abrasive conditions leading to increased non-specific alkylation without appreciable benefit for MS-based proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  19. Well-defined Polymethylene-Based Co/Terpolymers by Combining Anthracene/Maleimide Diels-Alder Reaction with Polyhomologation

    KAUST Repository

    Hadjichristidis, Nikolaos; Alkayal, Nazeeha

    2015-01-01

    A novel strategy towards well-defined polymethylene-based co/terpolymers, by combining anthracene/maleimide Diels-Alder reaction with polyhomologation, is presented. For the synthesis of diblock copolymers the following approach was applied: a

  20. Solution phase and membrane immobilized iron-based free radical reactions: Fundamentals and applications for water treatment

    Science.gov (United States)

    Lewis, Scott Romak

    Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. Reactive membranes synthesized through functionalization of the membrane pores offer enhanced reactivity due to increased surface area at the polymer-solution interface and low diffusion limitations. Oxidative techniques utilizing free radicals have proven effective for both the destruction of toxic organics and non-environmental applications. Most previous work focuses on reactions in the homogeneous phase; however, the immobilization of reactants in membrane pores offers several advantages. The use of polyanions immobilized in a membrane or chelates in solution prevents ferric hydroxide precipitation at near-neutral pH, a common limitation of iron(Fe(II/III))-catalyzed hydrogen peroxide (H 2O2) decomposition. The objectives of this research are to develop a membrane-based platform for the generation of free radicals, degrade toxic organic compounds using this and similar solution-based reactions, degrade toxic organic compounds in droplet form, quantify hydroxyl radical production in these reactions, and develop kinetic models for both processes. In this study, a functionalized membrane containing poly(acrylic acid) (PAA) was used to immobilize iron ions and conduct free radical reactions by permeating H2O2 through the membrane. The membrane's responsive behavior to pH and divalent cations was investigated and modeled. The conversion of Fe(II) to Fe(III) in the membrane and its effect on the decomposition of hydrogen peroxide were monitored and used to develop kinetic models for predicting H2O2 decomposition in these systems. The rate of hydroxyl radical production, and hence contaminant degradation can be varied by changing the residence time, H2O2 concentration, and/or iron loading. Using these membrane-immobilized systems, successful removal of toxic organic compounds, such as pentachlorophenol (PCP), from water

  1. Contactless, probeless and non-titrimetric determination of acid-base reactions using broadband acoustic resonance dissolution spectroscopy (BARDS).

    Science.gov (United States)

    Ahmed, M Rizwan; McSweeney, Sean; Krüse, Jacob; Vos, Bastiaan; Fitzpatrick, Dara

    2018-02-12

    pH determination is a routine measurement in scientific laboratories worldwide. Most major advances in pH measurement were made in the 19th and early 20th century. pH measurements are critical for the determination of acid base reactions. This study demonstrates how an acid-base reaction can be monitored without the use of a pH probe, indicator and titres of reagent. The stoichiometric reaction between carbonate and HCl acid yields specific quantities of CO 2 , which causes reproducible changes to the compressibility of the solvent. This in turn slows down the speed of sound in solution which is induced by a magnetic follower gently tapping the inner wall of the vessel. As a consequence the frequencies of the acoustic resonances in the vessel are reduced. This approach is called Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) which harnesses this phenomenon for many applications. The acid-carbonate experiments have also been validated using H 2 SO 4 acid and using both potassium and sodium counterions for the carbonate. This method can be used to interrogate strong acid-base reactions in a rapid and non-invasive manner using carbonate as the base. The data demonstrate the first example of a reactant also acting as an indicator. The applicability of the method to weak acids has yet to be determined. A novel conclusion from the study is that a person with a well-trained ear is capable of determining the concentration and pH of a strong acid just by listening. This brings pH measurement into the realm of human perception.

  2. Reaction energetics on long-range corrected density functional theory: Diels-Alder reactions.

    Science.gov (United States)

    Singh, Raman K; Tsuneda, Takao

    2013-02-15

    The possibility of quantitative reaction analysis on the orbital energies of long-range corrected density functional theory (LC-DFT) is presented. First, we calculated the Diels-Alder reaction enthalpies that have been poorly given by conventional functionals including B3LYP functional. As a result, it is found that the long-range correction drastically improves the reaction enthalpies. The barrier height energies were also computed for these reactions. Consequently, we found that dispersion correlation correction is also crucial to give accurate barrier height energies. It is, therefore, concluded that both long-range exchange interactions and dispersion correlations are essentially required in conventional functionals to investigate Diels-Alder reactions quantitatively. After confirming that LC-DFT accurately reproduces the orbital energies of the reactant and product molecules of the Diels-Alder reactions, the global hardness responses, the halves of highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, along the intrinsic reaction coordinates of two Diels-Alder reactions were computed. We noticed that LC-DFT results satisfy the maximum hardness rule for overall reaction paths while conventional functionals violate this rule on the reaction pathways. Furthermore, our results also show that the HOMO-LUMO gap variations are close to the reaction enthalpies for these Diels-Alder reactions. Based on these results, we foresee quantitative reaction analysis on the orbital energies. Copyright © 2012 Wiley Periodicals, Inc.

  3. Adverse allergic reactions to linear ionic gadolinium-based contrast agents: experience with 194, 400 injections

    International Nuclear Information System (INIS)

    Aran, S.; Shaqdan, K.W.; Abujudeh, H.H.

    2015-01-01

    Aim: To report the authors' experience with the administration of four gadolinium-based contrast agents (GBCA; gadopentetate dimeglumine, gadofosveset trisodium, gadoxetate disodium and gadobenate dimeglumine) in a large study population at a single, large academic medical centre. Materials and methods: The institutional review board approved this retrospective study in which data in the electronic incident reporting system were searched. A total of 194, 400 intravenous administrations of linear ionic GBCAs were assessed for the incidence of adverse reactions and risk factors from 1 January 2007 to 14 January 2014. The severity of reactions (mild, moderate, and severe), patient type (outpatients, inpatients, and emergency), examination type, and treatment options were also investigated. Results: In total, 204/194400 (0.1%) patients (mean age 45.7 ± 14.9) showed adverse reactions, consisting of 6/746 (0.80%), 10/3200 (0.31%), 14/6236 (0.22%) and 174/184218 (0.09%), for gadofosveset trisodium, gadoxetate disodium, gadobenate dimeglumine, and gadopentetate dimeglumine, respectively. An overall significant difference was found between different GBCAs regarding the total number of reactions (p < 0.0001). When comparing the GBCAs together, significant differences were found between gadofosveset trisodium versus gadopentetate dimeglumine (p < 0.0001), gadofosveset trisodium versus gadobenate dimeglumine (p = 0.0051), gadoxetate disodium versus gadopentetate dimeglumine (p < 0.0001) and gadopentetate dimeglumine versus gadobenate dimeglumine (p = 0.0013). Rate of reaction was higher in females (F: 146/113187, 0.13%/M: 58/81213, 0.07%; p < 0.0001). Rate of reactions was higher in outpatient (180/158885, 0.11%), emergency (10/10413, 0.10%), and inpatients (14/25102, 0.05%), respectively (p < 0.0001). Most of the patients had mild symptoms 171/204 (83.8%). Abdomen–pelvis, liver, and thoracic examinations had highest rates of reactions (0.17 versus 0

  4. Lab Scale Study of the Depletion of Mullite/Corundum-Based Refractories Trough Reaction with Scaffold Materials

    International Nuclear Information System (INIS)

    Stjernberg, J; Antti, M-L; Ion, J C; Lindblom, B

    2011-01-01

    To investigate the mechanisms underlying the depletion of mullite/corundum-based refractory bricks used in rotary kilns for iron ore pellet production, the reaction mechanisms between scaffold material and refractory bricks have been studied on the laboratory-scale. Alkali additions were used to enhance the reaction rates between the materials. The morphological changes and active chemical reactions at the refractory/scaffold material interface in the samples were characterized using scanning electron microscopy (SEM), thermal analysis (TA) and X-ray diffraction (XRD). No reaction products of alkali and hematite (Fe 2 O 3 ) were detected; however, alkali dissolves the mullite in the bricks. Phases such as nepheline (Na 2 O·Al 2 O 3 ·2SiO 2 ), kalsilite (K 2 O·Al 2 O 3 ·2SiO 2 ), leucite (K 2 O·Al 2 O 3 ·4SiO 2 ) and potassium β-alumina (K 2 O·11Al 2 O 3 ) were formed as a consequence of reactions between alkali and the bricks.

  5. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-01-01

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the 18 F+p→ 15 O+α process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  6. Organocatalytic aza-Michael/retro-aza-Michael reaction: pronounced chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction.

    Science.gov (United States)

    Cai, Yong-Feng; Li, Li; Luo, Meng-Xian; Yang, Ke-Fang; Lai, Guo-Qiao; Jiang, Jian-Xiong; Xu, Li-Wen

    2011-05-01

    A detailed experimental investigation of an aza-Michael reaction of aniline and chalcone is presented. A series of Cinchona alkaloid-derived organocatalysts with different functional groups were prepared and used in the aza-Michael and retro-aza-Michael reaction. There was an interesting finding that a complete reversal of stereoselectivity when a benzoyl group was introduced to the cinchonine and cinchonidine. The chirality amplification vs. time proceeds in the quinine-derived organocatalyst containing silicon-based bulky group, QN-TBS, -catalyzed aza-Michael reaction under solvent-free conditions. In addition, we have demonstrated for the first time that racemization was occurred in suitable solvents under mild conditions due to retro-aza-Michael reaction of the Michael adduct of aniline with chalcone. These indicate the equilibrium of retro-aza-Michael reaction and aza-Michael reaction produce the happening of chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction under different conditions, which would be beneficial to the development of novel chiral catalysts for the aza-Michael reactions. Copyright © 2011 Wiley-Liss, Inc.

  7. Verification of dosimetry cross sections above 10 MeV based on measurement of activation reaction rates in fission neutron field

    International Nuclear Information System (INIS)

    Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.

    1996-01-01

    To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)

  8. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  9. Accurate Determination of Tunneling-Affected Rate Coefficients: Theory Assessing Experiment.

    Science.gov (United States)

    Zuo, Junxiang; Xie, Changjian; Guo, Hua; Xie, Daiqian

    2017-07-20

    The thermal rate coefficients of a prototypical bimolecular reaction are determined on an accurate ab initio potential energy surface (PES) using ring polymer molecular dynamics (RPMD). It is shown that quantum effects such as tunneling and zero-point energy (ZPE) are of critical importance for the HCl + OH reaction at low temperatures, while the heavier deuterium substitution renders tunneling less facile in the DCl + OH reaction. The calculated RPMD rate coefficients are in excellent agreement with experimental data for the HCl + OH reaction in the entire temperature range of 200-1000 K, confirming the accuracy of the PES. On the other hand, the RPMD rate coefficients for the DCl + OH reaction agree with some, but not all, experimental values. The self-consistency of the theoretical results thus allows a quality assessment of the experimental data.

  10. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial.

    Science.gov (United States)

    Mansfield, Avril; Peters, Amy L; Liu, Barbara A; Maki, Brian E

    2010-04-01

    Compensatory stepping and grasping reactions are prevalent responses to sudden loss of balance and play a critical role in preventing falls. The ability to execute these reactions effectively is impaired in older adults. The purpose of this study was to evaluate a perturbation-based balance training program designed to target specific age-related impairments in compensatory stepping and grasping balance recovery reactions. This was a double-blind randomized controlled trial. The study was conducted at research laboratories in a large urban hospital. Thirty community-dwelling older adults (aged 64-80 years) with a recent history of falls or self-reported instability participated in the study. Participants were randomly assigned to receive either a 6-week perturbation-based (motion platform) balance training program or a 6-week control program involving flexibility and relaxation training. Features of balance reactions targeted by the perturbation-based program were: (1) multi-step reactions, (2) extra lateral steps following anteroposterior perturbations, (3) foot collisions following lateral perturbations, and (4) time to complete grasping reactions. The reactions were evoked during testing by highly unpredictable surface translation and cable pull perturbations, both of which differed from the perturbations used during training. /b> Compared with the control program, the perturbation-based training led to greater reductions in frequency of multi-step reactions and foot collisions that were statistically significant for surface translations but not cable pulls. The perturbation group also showed significantly greater reduction in handrail contact time compared with the control group for cable pulls and a possible trend in this direction for surface translations. Further work is needed to determine whether a maintenance program is needed to retain the training benefits and to assess whether these benefits reduce fall risk in daily life. Perturbation-based training

  11. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  12. Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip.

    Science.gov (United States)

    Berenguel-Alonso, Miguel; Granados, Xavier; Faraudo, Jordi; Alonso-Chamarro, Julián; Puyol, Mar

    2014-10-01

    While magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal--i.e. only trapping is achieved, with aggregation of the beads--or requires complex actuator systems. Herein, we describe a simple and low-cost magnetic actuator to trap and move MBs within a microfluidic chamber in order to enhance the mixing of a MB-based reaction. The magnetic actuator consists of a CD-shaped plastic unit with an arrangement of embedded magnets which, when rotating, generate the mixing. The magnetic actuator has been used to enhance the amplification reaction of an enzyme-linked fluorescence immunoassay to detect Escherichia coli O157:H7 whole cells, an enterohemorrhagic strain, which have caused several outbreaks in food and water samples. A 2.7-fold sensitivity enhancement was attained with a detection limit of 603 colony-forming units (CFU) /mL, when employing the magnetic actuator.

  13. Investigating Ionic Effects Applied to Water Based Organocatalysed Aldol Reactions

    Directory of Open Access Journals (Sweden)

    Joshua P. Delaney

    2011-12-01

    Full Text Available Saturated aqueous solutions of various common salts were examined for their effect on aqueous aldol reactions catalysted by a highly active C2-symmetric diprolinamide organocatalyst developed in our laboratory. With respect to the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, deionised water was always a superior medium to salt solutions though some correlation to increasing anion size and depression in enantiomeric excess could be observed. Additionally, the complete inhibition of catalyst activity observed when employing tap water could be alleviated by the inclusion of ethylenediaminetetraacetate (EDTA into the aqueous media prior to reaction initiation. Extension of these reaction conditions demonstrated that these ionic effects vary on a case-to-case basis depending on the ketone/aldehyde combination.

  14. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    International Nuclear Information System (INIS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-01-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×10 9 , (1.07±0.07)×10 10 , (7.48±0.17)×10 9 , (7.31±0.29)×10 9 , (5.47±0.25)×10 9 , (6.94±0.10)×10 9 (M −1 s −1 ), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×10 9 , (8.98±0.27)×10 9 , (5.39±0.21)×10 9 , (4.33±0.17)×10 9 , (4.72±0.15)×10 9 , (1.42±0.02)×10 9 (M −1 s −1 ), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated. - Highlights: • Free radical chemistry of salicylic and 4 methyl salicylic acids is investigated. • The transient absorptions spectra for model compounds are measured. • Absolute bimolecular reaction rate constants for hydroxyl radical are determined. • Solvated electron reaction rate constants are calculated. • The use of salicylic acids as models for pharmaceuticals is explored

  15. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-01-01

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the 10 B(n,α) 7 Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented

  16. Experimental and theoretical examples of the value and limitations of transition state theory

    International Nuclear Information System (INIS)

    Golden, D.M.

    1979-01-01

    Value and limitations of transition-state theory (TST) are reviewed. TST analyses of the temperature dependence of the ''direct'' reactions CH 3 + CH 3 CHO → CH 4 + CH 3 CO (1) and O + CH 4 → OH + CH 3 (2) are presented in detail, and other examples of TST usefulness are recalled. Limitations are discussed for bimolecular processes in terms of ''complex'' vs ''direct'' mechanisms. The reaction OH + CO → CO 2 + H is discussed in this context. Limitations for unimolecular processes seem to arise only for simple bond fission processes, and recent advances are noted. 2 figures, 5 tables

  17. Experimental and theoretical examples of the value and limitations of transition state theory

    Science.gov (United States)

    Golden, D. M.

    1979-01-01

    Value and limitations of transition-state theory (TST) are reviewed. TST analyses of the temperature dependence of the 'direct' reactions CH3 + CH3CHO yields CH4 + CH3CO(1) and O + CH4 yields OH + CH3(2) are presented in detail, and other examples of TST usefulness are recalled. Limitations are discussed for bimolecular processes in terms of 'complex' vs. 'direct' mechanisms. The reaction OH + CO yields CO2 + H is discussed in this context. Limitations for unimolecular processes seem to arise only for simple bond fission processes, and recent advances are noted.

  18. Development of a skeletal multi-component fuel reaction mechanism based on decoupling methodology

    International Nuclear Information System (INIS)

    Mohan, Balaji; Tay, Kun Lin; Yang, Wenming; Chua, Kian Jon

    2015-01-01

    Highlights: • A compact multi-component skeletal reaction mechanism was developed. • Combined bio-diesel and PRF mechanism was proposed. • The mechanism consists of 68 species and 183 reactions. • Well validated against ignition delay times, flame speed and engine results. - Abstract: A new coupled bio-diesel surrogate and primary reference fuel (PRF) oxidation skeletal mechanism has been developed. The bio-diesel surrogate sub-mechanism consists of oxidation sub-mechanisms of Methyl decanoate (MD), Methyl 9-decenoate (MD9D) and n-Heptane fuel components. The MD and MD9D are chosen to represent the saturated and unsaturated methyl esters respectively in bio-diesel fuels. Then, a reduced iso-Octane oxidation sub-mechanism is added to the bio-diesel surrogate sub-mechanism. Then, all the sub-mechanisms are integrated to a reduced C_2–C_3 mechanism, detailed H_2/CO/C_1 mechanism and reduced NO_x mechanism based on decoupling methodology. The final mechanism consisted of 68 species and 183 reactions. The mechanism was well validated with shock-tube ignition delay times, laminar flame speed and 3D engine simulations.

  19. Fiber coating/matrix reactions in silicon-base ceramic matrix composites

    International Nuclear Information System (INIS)

    Lee, K.N.; Jacobson, N.S.

    1992-01-01

    The Knudsen cell technique and coupons of carbon coated Si3N4 and BN coated SiC were employed to study the possible reactions at the SiC/C/Si3N4 and SiC/BN/SiC interface. Carbon reacts with Si3N4 to form gaseous N2 and solid SiC. Solid SiC acts as a physical barrier to the reaction, which prevents the generation of high N2 pressure predicted from thermochemical calculations. Thus, deleterious effects of the reaction to the composite are limited. Limited reactions between BN and C-rich SiC was observed. However, the vapor pressure was so low that it is not likely to cause any interfacial instability. The predicted formation of a BN-C solid solution was not observed. 10 refs

  20. Fiber coating/matrix reactions in silicon-base ceramic matrix composites

    Science.gov (United States)

    Lee, K. N.; Jacobson, N. S.

    1992-01-01

    The Knudsen cell technique and coupons of carbon coated Si3N4 and BN coated SiC were employed to study the possible reactions at the SiC/C/Si3N4 and SiC/BN/SiC interface. Carbon reacts with Si3N4 to form gaseous N2 and solid SiC. Solid SiC acts as a physical barrier to the reaction, which prevents the generation of high N2 pressure predicted from thermochemical calculations. Thus, deleterious effects of the reaction to the composite are limited. Limited reactions between BN and C-rich SiC was observed. However, the vapor pressure was so low that it is not likely to cause any interfacial instability. The predicted formation of a BN-C solid solution was not observed.

  1. The Dose Rate Dependence of the Yield of Trapped Electrons in Crystalline Ice

    DEFF Research Database (Denmark)

    Nilsson, Johan Daniel Göran; Pagsberg, Palle Bjørn

    1980-01-01

    in competition with other reactions and we propose a simple model where we assume that the mobile electrons can undergo bimolecular bulk reactions with protons and OH radicals. Rate constants of 3.0 × 1015 M−1 S−1 and 1.4 × 1014 M−1 S−1 for the two reactions were required in the model in order to account......The yield of localized excess electrons in crystalline H2O ice has been studied as a function of the dose rate at various temperatures in the range −10 to −40°C. The G value was found to decrease significantly with increasing dose rate. Thus it appears that the localization of electrons takes place...

  2. Self-reported adverse food reactions and anaphylaxis in the SchoolNuts study: A population-based study of adolescents.

    Science.gov (United States)

    McWilliam, Vicki L; Koplin, Jennifer J; Field, Michael J; Sasaki, Mari; Dharmage, Shyamali C; Tang, Mimi L K; Sawyer, Susan M; Peters, Rachel L; Allen, Katrina J

    2018-03-01

    Adolescents are at the highest risk of death from anaphylaxis, yet few population-based studies have described the frequencies and risk factors for allergic reactions caused by accidental allergen ingestion in this group. We describe the prevalence, frequency, and associated risk factors for recent adverse food reactions in 10- to 14-year-olds in Melbourne, Australia, recruited from a stratified, random, population-based sample of schools (SchoolNuts, n = 9663; 48% response rate). Self-reported food allergy and adverse reaction details, including anaphylaxis, were identified by using a student questionnaire over the past year. Of 547 students with possible IgE-mediated food allergy, 243 (44.4%; 95% CI, 40.3% to 48.7%) reported a reaction to a food. Fifty-three (9.7%; 95% CI, 7.2% to 12.2%) students reported 93 anaphylaxis episodes. Peanut and tree nuts were the most common food triggers. Among students with current IgE-mediated food allergy, those with resolved or current asthma (adjusted odds ratio [aOR], 1.9 [95% CI, 1.1-1.3] and 1.7 [95% CI, 1.1-2.6]) and those with more than 2 food allergies (aOR, 1.9 [95% CI, 1.1-3.1]) were at greatest risk of any adverse food reaction, and those with nut allergy were most at risk of severe reactions (aOR, 2.9 [95% CI, 1.1-4.4]). Resolved or current asthma was not associated with increased risk of severe reactions (aOR, 0.8 [95% CI, 0.3-2.2] and 1.6 [95% CI, 0.7-3.7]). Adolescents with food allergy are frequently exposed to food allergens. Those with asthma and more than 2 food allergies were at the greatest risk for adverse food reactions. Those with nut allergies were most at risk of severe reactions. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  3. Noncanonical Reactions of Flavoenzymes

    Directory of Open Access Journals (Sweden)

    Pablo Sobrado

    2012-11-01

    Full Text Available Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  4. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    International Nuclear Information System (INIS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-01-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction. (paper)

  5. Reaction Qualifications Revisited

    DEFF Research Database (Denmark)

    Lippert-Rasmussen, Kasper

    2009-01-01

      When, in a competitive sphere, people are selected on the basis of qualifications only, their chances of acquiring positions of advantage may seem to depend entirely upon their abilities, not discriminatory bias. However, if reaction qualifications - i.e. characteristics which contribute...... to a person's effectiveness by causing a favourable reaction in customers, co-workers etc. (for short: recipients) - are involved, this assumption is false. Building on work by Wertheimer, Mason, and Miller, this paper proposes an account of the reaction qualifications that count, from the point of view...... of merit. Specifically, it preserves symmetry between negative evaluations of antimeritocratic bases of selection and negative evaluations of qualifications rooted in comparable antimeritocratic reactions. So if employers should not select among applicants on the basis of their (the employers') racial...

  6. Reaction Qualifications Revisited

    DEFF Research Database (Denmark)

    Lippert-Rasmussen, Kasper

    2009-01-01

    to a person's effectiveness by causing a favourable reaction in customers, co-workers etc. (for short: recipients) - are involved, this assumption is false. Building on work by Wertheimer, Mason, and Miller, this paper proposes an account of the reaction qualifications that count, from the point of view...... preferences, recipients should not respond to the applicant actually hired on the basis of their (the recipients') racial preferences. My account decomposes the meritocratic ideal into four separate norms, one of which applies to recipients rather than to selectors. Finally, it defends the view that reaction...... qualifications based on antimeritocratic reactions, while not unproblematic, are not entirely irrelevant from the point of view of merit. Notably, selectors need not discount them when no one - including the targets of the objectionable preferences - is unfairly disadvantaged. Because not all problematic...

  7. Learning to predict chemical reactions.

    Science.gov (United States)

    Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre

    2011-09-26

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  8. Learning to Predict Chemical Reactions

    Science.gov (United States)

    Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  9. Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory.

    Science.gov (United States)

    Pantazis, Yannis; Katsoulakis, Markos A; Vlachos, Dionisios G

    2013-10-22

    Stochastic modeling and simulation provide powerful predictive methods for the intrinsic understanding of fundamental mechanisms in complex biochemical networks. Typically, such mathematical models involve networks of coupled jump stochastic processes with a large number of parameters that need to be suitably calibrated against experimental data. In this direction, the parameter sensitivity analysis of reaction networks is an essential mathematical and computational tool, yielding information regarding the robustness and the identifiability of model parameters. However, existing sensitivity analysis approaches such as variants of the finite difference method can have an overwhelming computational cost in models with a high-dimensional parameter space. We develop a sensitivity analysis methodology suitable for complex stochastic reaction networks with a large number of parameters. The proposed approach is based on Information Theory methods and relies on the quantification of information loss due to parameter perturbations between time-series distributions. For this reason, we need to work on path-space, i.e., the set consisting of all stochastic trajectories, hence the proposed approach is referred to as "pathwise". The pathwise sensitivity analysis method is realized by employing the rigorously-derived Relative Entropy Rate, which is directly computable from the propensity functions. A key aspect of the method is that an associated pathwise Fisher Information Matrix (FIM) is defined, which in turn constitutes a gradient-free approach to quantifying parameter sensitivities. The structure of the FIM turns out to be block-diagonal, revealing hidden parameter dependencies and sensitivities in reaction networks. As a gradient-free method, the proposed sensitivity analysis provides a significant advantage when dealing with complex stochastic systems with a large number of parameters. In addition, the knowledge of the structure of the FIM can allow to efficiently address

  10. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    International Nuclear Information System (INIS)

    Chaturvedi, Sonali; Rao, A.L.N.

    2014-01-01

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER

  11. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  12. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    Science.gov (United States)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  13. Well-defined Polymethylene-Based Co/Terpolymers by Combining Anthracene/Maleimide Diels-Alder Reaction with Polyhomologation

    KAUST Repository

    Hadjichristidis, Nikolaos

    2015-05-26

    A novel strategy towards well-defined polymethylene-based co/terpolymers, by combining anthracene/maleimide Diels-Alder reaction with polyhomologation, is presented. For the synthesis of diblock copolymers the following approach was applied: a) synthesis of α-anthracene-ω-hydroxy- polymethylene by polyhomologation using tri (9-anthracene-methyl propyl ether) borane as initiator, b) synthesis of furan-protected-maleimide-terminated poly (ε-caprolactone) or polyethylene glycol and c). Diels-Alder reaction between the anthracene and maleimide-terminated polymers. In the case of triblock terpolymers the α-anthracene-ω-hydroxy-polymethylene was used as macroinitiator for the ring-opening polymerization of D, L-lactide to afford an anthracene-terminated PM-b-PLA copolymer, followed by Diels-Alder reaction with furan-protected maleimide-terminated poly (ε-caprolactone) or polyethylene glycol to give the triblock terpolymers. All intermediate and final products were characterized by SEC, 1H NMR, UV-VIS spectroscopy and DSC.

  14. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  15. Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar

    Directory of Open Access Journals (Sweden)

    Yang-Hee Kwon

    2017-02-01

    Full Text Available Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days. A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity, X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted. These tests show that this new fly ash-based mortar has a compressive strength of 15 MPa at 91 days without any silica fume addition or initial thermal treatment. The strength increased to over 50 MPa based on the acceleration of the intensified pozzolanic reaction from the silica fume addition and initial thermal treatment. This is explained by a significant synergistic effect induced by the silica fume. It intensifies the pozzolanic reaction under thermal treatment and provides a space filling effect. This improved material performance can open a new pathway to utilize the industrial by-product of fly ash in cementless construction materials.

  16. Kinetics and Thermodynamics of Watson-Crick Base Pairing Driven DNA Origami Dimerization.

    Science.gov (United States)

    Zenk, John; Tuntivate, Chanon; Schulman, Rebecca

    2016-03-16

    We investigate the kinetics and thermodynamics of DNA origami dimerization using flat rectangle origami components and different architectures of Watson-Crick complementary single-stranded DNA ("sticky end") linking strategies. We systematically vary the number of linkers, the length of the sticky ends on the linker, and linker architecture and measure the corresponding yields as well as forward and reverse reaction rate constants through fluorescence quenching assays. Yields were further verified using atomic force microscopy. We calculate values of H° and ΔS° for various interface designs and find nonlinear van't Hoff behavior, best described by two linear equations, suggesting distinct regimes of dimerization between those with and those without well-formed interfaces. We find that self-assembly reactions can be tuned by manipulating the interface architecture without suffering a loss in yield, even when yield is high, ∼75-80%. We show that the second-order forward reaction rate constant (k(on)) depends on both linker architecture and number of linkers used, with typical values on the order of 10(5)-10(6) (M·s)(-1), values that are similar to those of bimolecular association of small, complementary DNA strands. The k(on) values are generally non-Arrhenius, tending to increase with decreasing temperature. Finally, we use kinetic and thermodynamic information about the optimal linking architecture to extend the system to an infinite, two-component repeating lattice system and show that we can form micron-sized lattices, with well-formed structures up to 8 μm(2).

  17. Insights into the mechanisms on chemical reactions: reaction paths for chemical reactions

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Rosen, E.; Eades, R.A.

    1987-01-01

    We report reaction paths for two prototypical chemical reactions: Li + HF, an electron transfer reaction, and OH + H 2 , an abstraction reaction. In the first reaction we consider the connection between the energetic terms in the reaction path Hamiltonian and the electronic changes which occur upon reaction. In the second reaction we consider the treatment of vibrational effects in chemical reactions in the reaction path formalism. 30 refs., 9 figs

  18. A Study on the Role of Reaction Modeling in Multi-phase CFD-based Simulations of Chemical Looping Combustion; Impact du modele de reaction sur les simulations CFD de la combustion en boucle chimique

    Energy Technology Data Exchange (ETDEWEB)

    Kruggel-Emden, H.; Stepanek, F. [Department of Chemical Engineering, South Kensington Campus, Imperial College London, SW7 2AZ, London (United Kingdom); Kruggel-Emden, H.; Munjiza, A. [Department of Engineering, Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom)

    2011-03-15

    Chemical Looping Combustion is an energy efficient combustion technology for the inherent separation of carbon dioxide for both gaseous and solid fuels. For scale up and further development of this process multi-phase CFD-based simulations have a strong potential which rely on kinetic models for the solid/gaseous reactions. Reaction models are usually simple in structure in order to keep the computational cost low. They are commonly derived from thermogravimetric experiments. With only few CFD-based simulations performed on chemical looping combustion, there is a lack in understanding of the role and of the sensitivity of the applied chemical reaction model on the outcome of a simulation. The aim of this investigation is therefore the study of three different carrier materials CaSO{sub 4}, Mn{sub 3}O{sub 4} and NiO with the gaseous fuels H{sub 2} and CH{sub 4} in a batch type reaction vessel. Four reaction models namely the linear shrinking core, the spherical shrinking core, the Avrami-Erofeev and a recently proposed multi parameter model are applied and compared on a case by case basis. (authors)

  19. A Multilevel Adaptive Reaction-splitting Simulation Method for Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks characterized by having simultaneously fast and slow reaction channels. To produce efficient simulations, our method adaptively classifies the reactions channels into fast and slow channels. To this end, we first introduce a state-dependent quantity named level of activity of a reaction channel. Then, we propose a low-cost heuristic that allows us to adaptively split the set of reaction channels into two subsets characterized by either a high or a low level of activity. Based on a time-splitting technique, the increments associated with high-activity channels are simulated using the tau-leap method, while those associated with low-activity channels are simulated using an exact method. This path simulation technique is amenable for coupled path generation and a corresponding multilevel Monte Carlo algorithm. To estimate expected values of observables of the system at a prescribed final time, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This goal is achieved with a computational complexity of order O(TOL-2), the same as with a pathwise-exact method, but with a smaller constant. We also present a novel low-cost control variate technique based on the stochastic time change representation by Kurtz, showing its performance on a numerical example. We present two numerical examples extracted from the literature that show how the reaction-splitting method obtains substantial gains with respect to the standard stochastic simulation algorithm and the multilevel Monte Carlo approach by Anderson and Higham. © 2016 Society for Industrial and Applied Mathematics.

  20. A Multilevel Adaptive Reaction-splitting Simulation Method for Stochastic Reaction Networks

    KAUST Repository

    Moraes, Alvaro

    2016-07-07

    In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks characterized by having simultaneously fast and slow reaction channels. To produce efficient simulations, our method adaptively classifies the reactions channels into fast and slow channels. To this end, we first introduce a state-dependent quantity named level of activity of a reaction channel. Then, we propose a low-cost heuristic that allows us to adaptively split the set of reaction channels into two subsets characterized by either a high or a low level of activity. Based on a time-splitting technique, the increments associated with high-activity channels are simulated using the tau-leap method, while those associated with low-activity channels are simulated using an exact method. This path simulation technique is amenable for coupled path generation and a corresponding multilevel Monte Carlo algorithm. To estimate expected values of observables of the system at a prescribed final time, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This goal is achieved with a computational complexity of order O(TOL-2), the same as with a pathwise-exact method, but with a smaller constant. We also present a novel low-cost control variate technique based on the stochastic time change representation by Kurtz, showing its performance on a numerical example. We present two numerical examples extracted from the literature that show how the reaction-splitting method obtains substantial gains with respect to the standard stochastic simulation algorithm and the multilevel Monte Carlo approach by Anderson and Higham. © 2016 Society for Industrial and Applied Mathematics.

  1. The isotope effect and enthalpy of a base-promoted 1,4-elimination reaction by a thermokinetic method

    International Nuclear Information System (INIS)

    Ahlberg, P.

    1974-01-01

    Microcalorimetry (MC) has been used to measure the second order rate constants (k) for the base-promoted 1,4-elimination reactions of 3-(2-acetoxy-2-propyl)indene (B sub (H)) and 3-di-d-3-(2-acetoxy-2-propyl)indene (B sub (D)). Triethylamine (TEA) was used as eliminating base in methanol buffered with TEAH + AcO - as solvent. The MC-rate constants agreed with those obtained by an independent method, a calibrated quench-extraction-NMR (Q-E-NMR) method. In the present case the MC-method yields k/s with a precision of -1 (-9.5 kcal/mol) for B sub (H). The usefulness microcalorimetry in the study of reaction mechanisms is discussed. (author)

  2. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the OH-addition pathway.

    Science.gov (United States)

    Shiroudi, Abolfazl; Deleuze, Michael S; Canneaux, Sébastien

    2014-07-03

    The oxidation mechanisms of naphthalene by OH radicals under inert (He) conditions have been studied using density functional theory along with various exchange-correlation functionals. Comparison has been made with benchmark CBS-QB3 theoretical results. Kinetic rate constants were correspondingly estimated by means of transition state theory and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Comparison with experiment confirms that, on the OH-addition reaction pathway leading to 1-naphthol, the first bimolecular reaction step has an effective negative activation energy around -1.5 kcal mol(-1), whereas this step is characterized by an activation energy around 1 kcal mol(-1) on the OH-addition reaction pathway leading to 2-naphthol. Effective rate constants have been calculated according to a steady state analysis upon a two-step model reaction mechanism. In line with experiment, the correspondingly obtained branching ratios indicate that, at temperatures lower than 410 K, the most abundant product resulting from the oxidation of naphthalene by OH radicals must be 1-naphthol. The regioselectivity of the OH(•)-addition onto naphthalene decreases with increasing temperatures and decreasing pressures. Because of slightly positive or even negative activation energies, the RRKM calculations demonstrate that the transition state approximation breaks down at ambient pressure (1 bar) for the first bimolecular reaction steps. Overwhelmingly high pressures, larger than 10(5) bar, would be required for restoring to some extent (within ∼5% accuracy) the validity of this approximation for all the reaction channels that are involved in the OH-addition pathway. Analysis of the computed structures, bond orders, and free energy profiles demonstrate that all reaction steps involved in the oxidation of naphthalene by OH radicals satisfy Leffler-Hammond's principle. Nucleus independent chemical shift indices and natural bond orbital analysis also show that the computed

  3. Elucidation of reaction mechanism for m -cresol hydrodeoxygenation over Fe based catalysts: A kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yongchun; Wang, Yong

    2017-09-01

    Fe based catalysts are promising for hydrodeoxygenation (HDO) of lignin derived phenolics due to their high selectivity for aromatics. In this work, the reaction mechanism of m-cresol HDO on Fe catalysts and the kinetic consequence with Pd addition were elucidated by examining the effect of H2, H2O and m-cresol pressures on toluene formation rate on Fe and PdFe catalysts. A direct CO bond cleavage mechanism is proposed for HDO catalysis on both Fe and PdFe catalysts, while Pd provides a facilitated reaction pathway at the PdFe interface and therefore promotes the catalysis on Fe without changing the high selectivity towards aromatics.

  4. Testing a potential alternative to traditional identification procedures: Reaction time-based concealed information test does not work for lineups with cooperative witnesses.

    Science.gov (United States)

    Sauerland, Melanie; Wolfs, Andrea C F; Crans, Samantha; Verschuere, Bruno

    2017-11-27

    Direct eyewitness identification is widely used, but prone to error. We tested the validity of indirect eyewitness identification decisions using the reaction time-based concealed information test (CIT) for assessing cooperative eyewitnesses' face memory as an alternative to traditional lineup procedures. In a series of five experiments, a total of 401 mock eyewitnesses watched one of 11 different stimulus events that depicted a breach of law. Eyewitness identifications in the CIT were derived from longer reaction times as compared to well-matched foil faces not encountered before. Across the five experiments, the weighted mean effect size d was 0.14 (95% CI 0.08-0.19). The reaction time-based CIT seems unsuited for testing cooperative eyewitnesses' memory for faces. The careful matching of the faces required for a fair lineup or the lack of intent to deceive may have hampered the diagnosticity of the reaction time-based CIT.

  5. NO Reactions Over Ir-Based Catalysts in the Presence of O2

    Directory of Open Access Journals (Sweden)

    Mingxin Guo

    2011-01-01

    Full Text Available The behaviour of a series of Ir-based catalysts supported on SiO2, ZSM-5 and γ-Al2O3 with various Ir loadings prepared by impregnation method was conducted by temperature programmed reaction (TPR technique. The result implies that NO is oxidized to NO2 while simultaneously being reduced to N2 or N2O in the NO reactions over iridium catalysts. The surface active phase over iridium catalysts that promote the NO reactions is IrO2. The catalytic activity increases with the increase of the Ir loading and support materials have a little effect on the catalytic activity. When the loading is less than 0.1%, the catalytic activity was found to be dependent on the nature of support materials and in order: Ir/ZSM-5>Ir/γ-Al2O3>Ir/SiO2. When the loading is higher than 0.1%, the catalytic activity for NO oxidation is in order: Ir/ZSM-5>Ir/SiO2>Ir/γ -Al2O3, which is correlated with Ir dispersion on the surface of support materials and the catalytic activity for NO reduction is in sequence: Ir/γ -Al2O3>Ir/SiO2>Ir/ZSM-5, which is attributed to the adsorbed-dissociation of NO2. Compared to Pt/γ-Al2O3, Ir/γ-Al2O3 catalyst is more benefit for the NO reduction.

  6. Radiation chemistry of alternative fuel oxygenates - substituted ethers

    International Nuclear Information System (INIS)

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-01-01

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE)

  7. The electron beam treatment process for site remediation

    International Nuclear Information System (INIS)

    Cooper, W.J.; Nickelsen, M.G.; Waite, T.D.; Kurucz, C.N.

    1994-01-01

    This paper summarizes recent studies in the application of high energy electrons for the destruction of toxic organic compounds in hazardous waste leachates. Initial studies have been conducted using single organic solutes in treated groundwater. The solutes of interest are among those most frequently reported in hazardous waste leachates or contaminated ground water. From these studies it has been shown that the process can effectively remove a number of different regulated organic compounds. Using a kinetically based model for open-quotes pure-waterclose quotes the authors have undertaken studies to extend this model to account for the destruction of these compounds in natural waters. Because of the presence of numerous radical scavengers in natural water, e.g., carbonate/biocarbonate ion, dissolved organic carbon, and oxygen, this requires adding a substantial number of bimolecular reaction rate constants. However, it appears that even though many of the reaction rate constants are not known reasonable predictions are possible

  8. Reactivity of monoolefin ligand in transition metal complexes

    International Nuclear Information System (INIS)

    Rybinskaya, M.I.

    1978-01-01

    The main tendencies in the coordinated olefin ligand property changes are discussed in the transition metal complexes in comparison with free olefins. The review includes the papers published from 1951 up to 1976. It has been shown that in complexes with transition metal cations olefin π-base acquires the ability to react with nucleophylic reagents. Olefin π-acids in complexes with zero valent metals are easily subjected to electrophylic reagent action. At coordination with transition metal cations the olefin properties are generally preserved, while in the zero-valent metal complexes the nonsaturated ligand acquires the properties of a saturated compounds. The ability of transition metal cations in complexes to intensify reactions of nucleophylic bimolecular substitution of vinyl halogen is clearly detected in contrast to the zero valent metal complexes. It has been shown that investigations of the coordinated olefin ligand reactivity give large possibilities in the further development of the organic synthesis. Some reactions are taken as the basis of important industrial processes

  9. Nanocatalysts for Suzuki cross-coupling reactions

    KAUST Repository

    Fihri, Aziz

    2011-01-01

    This critical review deals with the applications of nanocatalysts in Suzuki coupling reactions, a field that has attracted immense interest in the chemical, materials and industrial communities. We intend to present a broad overview of nanocatalysts for Suzuki coupling reactions with an emphasis on their performance, stability and reusability. We begin the review with a discussion on the importance of Suzuki cross-coupling reactions, and we then discuss fundamental aspects of nanocatalysis, such as the effects of catalyst size and shape. Next, we turn to the core focus of this review: the synthesis, advantages and disadvantages of nanocatalysts for Suzuki coupling reactions. We begin with various nanocatalysts that are based on conventional supports, such as high surface silica, carbon nanotubes, polymers, metal oxides and double hydroxides. Thereafter, we reviewed nanocatalysts based on non-conventional supports, such as dendrimers, cyclodextrin and magnetic nanomaterials. Finally, we discuss nanocatalyst systems that are based on non-conventional media, i.e., fluorous media and ionic liquids, for use in Suzuki reactions. At the end of this review, we summarise the significance of nanocatalysts, their impacts on conventional catalysis and perspectives for further developments of Suzuki cross-coupling reactions (131 references). © 2011 The Royal Society of Chemistry.

  10. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification.

    Science.gov (United States)

    Xu, Jingguo; Guo, Jia; Maina, Sarah Wanjiku; Yang, Yumeng; Hu, Yimin; Li, Xuanxuan; Qiu, Jiarong; Xin, Zhihong

    2018-05-15

    An ultra-sensitive aptamer-based biosensor for the detection of staphylococcus aureus was established by adopting the nicking enzyme amplification reaction (NEAR) and the rolling circle amplification (RCA) technologies. Aptamer-probe (AP), containing an aptamer and a probe sequence, was developed to act as the recognition unit of the biosensor, which was specifically bound to S. aureus. The probe was released from AP and initiated into the subsequent DNA amplification reactions where S. aureus was present, converting the detection of S. aureus to the investigation of probe oligonucleotide. The RCA amplification products contained a G-quadruplex motif and formed a three dimensional structure in presence of hemin. The G4/hemin complex showed horseradish peroxidase (HRP)-mimic activity and catalyzed the chemiluminescence reaction of luminol mediated by H 2 O 2 . The results showed that the established biosensor could detect S. aureus specifically with a good linear correlation at 5-10 4  CFU/mL. The signal values based on NEAR-RCA two-step cycle were boosted acutely, much higher than that relied on one-cycle magnification. The limit of detection (LoD) was determined to be as low as 5 CFU/mL. The established aptasensor exhibited a good discrimination of living against dead S. aureus, and can be applied to detect S. aureus in the food industry. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Secondary Interactions Arrest the Hemiaminal Intermediate To Invert the Modus Operandi of Schiff Base Reaction: A Route to Benzoxazinones.

    Science.gov (United States)

    Patel, Ketan; Deshmukh, Satej S; Bodkhe, Dnyaneshwar; Mane, Manoj; Vanka, Kumar; Shinde, Dinesh; Rajamohanan, Pattuparambil R; Nandi, Shyamapada; Vaidhyanathan, Ramanathan; Chikkali, Samir H

    2017-04-21

    Discovered by Hugo Schiff, condensation between amine and aldehyde represents one of the most ubiquitous reactions in chemistry. This classical reaction is widely used to manufacture pharmaceuticals and fine chemicals. However, the rapid and reversible formation of Schiff base prohibits formation of alternative products, of which benzoxazinones are an important class. Therefore, manipulating the reactivity of two partners to invert the course of this reaction is an elusive target. Presented here is a synthetic strategy that regulates the sequence of Schiff base reaction via weak secondary interactions. Guided by the computational models, reaction between 2,3,4,5,6-pentafluoro-benzaldehyde with 2-amino-6-methylbenzoic acid revealed quantitative (99%) formation of 5-methyl-2-(perfluorophenyl)-1,2-dihydro-4H-benzo[d][1,3]oxazin-4-one (15). Electron donating and electron withdrawing ortho-substituents on 2-aminobenzoic acid resulted in the production of benzoxazinones 9-36. The mode of action was tracked using low temperature NMR, UV-vis spectroscopy, and isotopic ( 18 O) labeling experiments. These spectroscopic mechanistic investigations revealed that the hemiaminal intermediate is arrested by the hydrogen-bonding motif to yield benzoxazinone. Thus, the mechanistic investigations and DFT calculations categorically rule out the possibility of in situ imine formation followed by ring-closing, but support instead hydrogen-bond assisted ring-closing to prodrugs. This unprecedented reaction represents an interesting and competitive alternative to metal catalyzed and classical methods of preparing benzoxazinone.

  12. The radiochemistry of [18 F]-FDG: the first experience in Mexico

    International Nuclear Information System (INIS)

    Lopez D, F.A.

    2004-01-01

    The present work describes the more used method for the synthesis of 2 - [ 18 F] - fluorine-2-deoxy-D-glucose that is the more used radiopharmaceutical in the nuclear medicine in the cancer diagnostic. The process consists on two chemical reactions: i) [ 18 F - ] - nucleophilic radio fluorination and i i) a hydrolysis catalyzed by acid. The first reaction incorporates to the [ 18 F]- fluorine labelled inside the organic precursor 1,3,4,6-tetra- O -acetil-2- O-trifluoromethanesulfonyl- β-D-mannopyranose (triflate of mannose). The mechanism of this reaction is a bimolecular nucleophilic substitution (SN 2 ) with the ion [ 18 F - ] - fluoride; in the second reaction, the hydrolysis of those protective acetyl groups generate the hydroxyl groups free of the [ 18 F]-FDG. The process includes an azeotropic distillation and several purification steps. (Author)

  13. Action-reaction based parameters identification and states estimation of flexible systems

    OpenAIRE

    Khalil, Islam; Kunt, Emrah Deniz; Şabanoviç, Asif; Sabanovic, Asif

    2012-01-01

    This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...

  14. Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin

    Directory of Open Access Journals (Sweden)

    H. Kimura

    2011-12-01

    Full Text Available Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin were investigated. The cure behavior of benzoxazine with cyanate ester resin was monitored by model reaction using nuclear magnetic resonance (NMR. As a result of the model reaction, the ring opening reaction of benzoxazine ring and thermal self-cyclotrimerization of cyanate ester group occurred, and then the phenolic hydoroxyl group generated by the ring opening reaction of benzoxazine ring co-reacted with cyanate ester group. The properties of the cured thermosetting resin were estimated by mechanical properties, electrical resistivity, water resistance and heat resistance. The cured thermosetting resin from benzoxazine and cyanate ester resin showed good heat resistance, high electrical resistivity and high water resistance, compared with the cured thermosetting resin from benzoxazine and epoxy resin.

  15. [Determination of serum acetaminophen based on the diazo reaction and its application in the evaluation of gastric emptying].

    Science.gov (United States)

    Li, Cai-na; Sun, Su-juan; Shen, Zhu-fang

    2015-05-01

    This study aims to establish a method to determine the serum acetaminophen concentration based on diazo reaction, and apply it in the gastric emptying evaluation. Theoretically, acetaminophen could take hydrolysis reaction in hydrochloric acid solution to produce p-aminophenol, which could then take diazo reaction resulting in a product with special absorption peak at 312 nm. Then the serum acetaminophen concentration and recovery rate were calculated according to the standard curve drawn with absorbance at 312 nm. ICR mice were given a dose of acetaminophen (500 mg x kg(-1)) by gavage and the serum acetaminophen was dynamically measured through the diazo reaction. Besides, ICR mice were subcutaneously injected with the long-acting GLP-1 analog GW002 before the gavage of acetaminophen, and serum acetaminophen concentration was measured as above to study how GW002 could influence the gastric emptying. The data showed acetaminophen ranging from 0 to 160 μg x mL(-1) could take diazo reaction with excellent linear relationship, and the regression equation was y = 0.0181 x +0.0104, R2 = 0.9997. The serum acetaminophen was also measured with good linear relationship (y = 0.0045 x + 0.0462, R = 0.9982) and the recovery rate was 97.4%-116.7%. The serum concentration of acetaminophen reached peak at about 0.5 h after gavage, and then gradually decreased. GW002 could significantly lower the serum acetaminophen concentration and make the area under the concentration-time curve (AUC) decrease by 28.4%. In conclusion, a method for the determination of serum acetaminophen based on the diazo reaction was established with good accuracy and could be used in the evaluation of gastric emptying.

  16. Exclusive data-based modeling of neutron-nuclear reactions below 20 MeV

    Science.gov (United States)

    Savin, Dmitry; Kosov, Mikhail

    2017-09-01

    We are developing CHIPS-TPT physics library for exclusive simulation of neutron-nuclear reactions below 20 MeV. Exclusive modeling reproduces each separate scattering and thus requires conservation of energy, momentum and quantum numbers in each reaction. Inclusive modeling reproduces only selected values while averaging over the others and imposes no such constraints. Therefore the exclusive modeling allows to simulate additional quantities like secondary particle correlations and gamma-lines broadening and avoid artificial fluctuations. CHIPS-TPT is based on the formerly included in Geant4 CHIPS library, which follows the exclusive approach, and extends it to incident neutrons with the energy below 20 MeV. The NeutronHP model for neutrons below 20 MeV included in Geant4 follows the inclusive approach like the well known MCNP code. Unfortunately, the available data in this energy region is mostly presented in ENDF-6 format and semi-inclusive. Imposing additional constraints on secondary particles complicates modeling but also allows to detect inconsistencies in the input data and to avoid errors that may remain unnoticed in inclusive modeling.

  17. Wave Packet Based Statistical Approach to Complex-Forming Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hua [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry and Chemical Biology

    2017-12-06

    Combustion represents a key chemical process in energy consumption in modern societies and a clear and comprehensive understanding of the elemental reactions in combustion is of great importance to a number of challenging areas such as engine efficiency and environmental protection. In this award, we proposed to develop new theoretical tools to understand elemental chemical processes in combustion environments. With the support of this DOE grant, we have made significant advances in developing new and more efficient and accurate algorithms to characterize reaction dynamics.

  18. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    Science.gov (United States)

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  19. Action-reaction based parameters identification and states estimation of flexible systems

    OpenAIRE

    Khalil, Islam Shoukry Mohammed; Şabanoviç, Asif; Sabanovic, Asif

    2010-01-01

    This work attempts to identify and estimate flexible system’s parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system’s reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...

  20. Electronic shift register memory based on molecular electron-transfer reactions

    Science.gov (United States)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  1. Simple membrane-based model of the Min oscillator

    International Nuclear Information System (INIS)

    Petrášek, Zdeněk; Schwille, Petra

    2015-01-01

    Min proteins in E. coli bacteria organize into a dynamic pattern oscillating between the two cell poles. This process identifies the middle of the cell and enables symmetric cell division. In an experimental model system consisting of a flat membrane with effectively infinite supply of proteins and energy source, the Min proteins assemble into travelling waves. Here we propose a simple one-dimensional model of the Min dynamics that, unlike the existing models, reproduces the sharp decrease of Min concentration when the majority of protein detaches from the membrane, and even the narrow MinE maximum immediately preceding the detachment. The proposed model thus provides a possible mechanism for the formation of the MinE ring known from cells. The model is restricted to one dimension, with protein interactions described by chemical kinetics allowing at most bimolecular reactions, and explicitly considering only three, membrane-bound, species. The bulk solution above the membrane is approximated as being well-mixed, with constant concentrations of all species. Unlike other models, our proposal does not require autocatalytic binding of MinD to the membrane. Instead, it is assumed that two MinE molecules are necessary to induce the dissociation of the MinD dimer and its subsequent detachment from the membrane. We investigate which reaction schemes lead to unstable homogeneous steady states and limit cycle oscillations, and how diffusion affects their stability. The suggested model qualitatively describes the shape of the Min waves observed on flat membranes, and agrees with the experimental dependence of the wave period on the MinE concentration. These results highlight the importance of MinE presence on the membrane without being bound to MinD, and of the reactions of Min proteins on the membrane. (paper)

  2. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    Science.gov (United States)

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Free Radical Chemistry of Disinfection Byproducts 1: Kinetics of Hydrated Electron and Hydroxyl Radical Reactions with Halonitromethanes in Water

    International Nuclear Information System (INIS)

    B. J. Mincher; R. V. Fox; S. P. Mezyk; T. Helgeson; S. K. Cole; W. J. Cooper; P. R. Gardinali

    2006-01-01

    Halonitromethanes are disinfection-byproducts formed during ozonation and chlorine/chloramine treatment of waters that contain bromide ion and natural organic matter. In this study, the chemical kinetics of the free-radical-induced degradations of a series of halonitromethanes were determined. Absolute rate constants for hydroxyl radical, OH, and hydrated electron, e aq - , reaction with both chlorinated and brominated halonitromethanes were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M -1 s -1 ), for e aq - /OH, respectively, were the following: chloronitromethane (3.01 ± 0.40) x 10 10 /(1.94 ± 0.32) x 10 8 ; dichloronitromethane (3.21 ± 0.17) x 10 10 /(5.12 ± 0.77) x 10 8 ; bromonitromethane (3.13 ± 0.06) x 10 10 /(8.36 ± 0.57) x 107; dibromonitromethane (3.07 ± 0.40) x 10 10 /(4.75 ± 0.98) x 10 8 ; tribromonitromethane (2.29 ± 0.39) x 10 10 /(3.25 ± 0.67) x 10 8 ; bromochloronitromethane (2.93 ± 0.47) x 10 10 /(4.2 ± 1.1) x 10 8 ; bromodichloronitromethane (2.68 ± 0.13) x 10 10 /(1.02 ± 0.15) x 10 8 ; and dibromochloronitromethane (2.95 ± 0.43) x 10 10 /(1.80 ± 0.31) x 10 8 at room temperature and pH ∼7. Comparison data were also obtained for hydroxyl radical reaction with bromoform (1.50 ± 0.05) x 10 8 , bromodichloromethane (7.11 ± 0.26) x 10 7 , and chlorodibromomethane (8.31 ± 0.25) x 10 7 M -1 s -1 , respectively. These rate constants are compared to recently obtained data for trichloronitromethane and bromonitromethane, as well as to other established literature data for analogous compounds

  4. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  5. Synthesis and characterization of an octaimidazolium-based polyhedral oligomeric silsesquioxanes ionic liquid by an ion-exchange reaction.

    Science.gov (United States)

    Tan, Jinglin; Ma, Depeng; Sun, Xingrong; Feng, Shengyu; Zhang, Changqiao

    2013-04-07

    Preparation of POSS-min-DS, an octaimidazolium-based polyhedral oligomeric silsesquioxanes (POSS) room temperature ionic liquid, by an ion-exchange reaction between POSS and sodium dodecyl sulfate was reported. Octaimidazolium-based POSS was synthesized with more than 98% yield within 3 h. POSS-min-DS and octaimidazolium-based POSS were confirmed by (1)H, (13)C, and (29)Si NMR, FT-IR and elemental analysis.

  6. Need for Uniqueness Determines Reactions to Web-Based Personalized Advertising.

    Science.gov (United States)

    Stiglbauer, Barbara; Kovacs, Carrie

    2018-01-01

    The presented empirical study among a sample of n = 256 participants addressed the relationship between consumers' need for uniqueness and their reactions to web-based personalized advertising. Drawing on regulatory focus theory, we argue that the consumers' need for uniqueness dimensions creative choice and similarity avoidance may relate to promotion and prevention regulatory orientations, respectively. Accordingly, we hypothesized that creative choice and similarity avoidance would differentially predict self-reported approach and avoidance behavior toward personalized advertising. These direct relationships were further expected to be mediated by subjective evaluations of personalized advertising (i.e., perceived value and irritation). In line with these hypotheses, we found that creative choice predicted approach behavior through increased web-based personalized advertising value, whereas similarity avoidance predicted avoidance behavior through increased irritation. Creative choice also predicted decreased irritation, which in turn was related to decreased approach behavior. In sum, the results suggest that the consumers' need for uniqueness dimensions should not be investigated as a composite, as they seem to reflect different regulatory orientations and are therefore likely to evoke different affective, cognitive, and behavioral responses.

  7. Development, validation, and standardization of polymerase chain reaction-based detection of E-coli O157

    DEFF Research Database (Denmark)

    Abdulmawjood, A.; Bulte, M.; Roth, S.

    2004-01-01

    A diagnostic polymerase chain reaction assay was developed for the detection of E. coli O157 as the first part of a multicenter validation and standardization project. The assay is based on amplification of sequences of the rfbE O157 gene and includes an internal amplification control. The select...

  8. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Science.gov (United States)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  9. Study on synthesis, application and mechanism of benzophenone/amine initiator

    International Nuclear Information System (INIS)

    Xiong Wei; Liu Jinshui; Wen Yinjun; Wan Qizhong; Zhou Xianyan; Xiao Hanling; Yang Jianwen

    1999-01-01

    Through Michael addition reaction of trimethylolpropane triacrylate (TMPTA) with diethylamine (DEA), a new kind of tertiary amine derivative was synthesized and its structure was identified by 'H-NMR. When used in combination with benzophenone, this amine presented excellent curing speed and could be a substitute for initiator Darocur R 1173, which is effective but expensive. If so, the cost of UV-curable coatings can descend apparently. The functioning mechanism of benzophenone/amine bimolecular initiator was studied

  10. Low-energy nuclear reactions with double-solenoid- based ...

    Indian Academy of Sciences (India)

    solenoids to produce low-energy radioactive nuclear beams. In these systems the ... For many years, the disadvantage in these investigations ... fusion or breakup reaction, preferred with large forward-peaked cross-sections. To transfer the ...

  11. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  12. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  13. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis

    Science.gov (United States)

    Wang, Meng; Liu, Chao; Xu, Xiaoxiao; Li, Qibin

    2016-06-01

    The unimolecular and bimolecular decomposition reactions in processes of vanillin pyrolysis were theoretically investigated by employing density functional theory (DFT) method at M06-2X/6-31 G+(d,p) level. The result shows that the homolytic cleavage of O-CH3 bond could be the dominant initial step in the pyrolysis of vanillin. The hydrogen abstractions from functional groups of vanillin by the formed radicals play important roles in the formation of main products. Both formyl, hydroxyl and methoxyl group contribute to the formation of CO. Benzene is formed from the hydrogen addition reaction between hydrogen radical and phenol at high temperature.

  14. A sensitive DNA biosensor based on a facile sulfamide coupling reaction for capture probe immobilization

    International Nuclear Information System (INIS)

    Wang, Qingxiang; Ding, Yingtao; Gao, Feng; Jiang, Shulian; Zhang, Bin; Ni, Jiancong; Gao, Fei

    2013-01-01

    Graphical abstract: A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction between probe DNA and the sulfonic dye of 1-amino-2-naphthol-4-sulfonic acid that electrodeposited on a glassy carbon electrode. -- Highlights: •A versatile sulfonic dye of ANS was electrodeposited on a GCE. •A DNA biosensor was fabricated based on a facile sulfamide coupling reaction. •High probe DNA density of 3.18 × 10 13 strands cm −2 was determined. •A wide linear range and a low detection limit were obtained. -- Abstract: A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction. First, the versatile sulfonic dye molecule of 1-amino-2-naphthol-4-sulfonate (AN-SO 3 − ) was electrodeposited on the surface of a glassy carbon electrode (GCE) to form a steady and ordered AN-SO 3 − layer. Then the amino-terminated capture probe was covalently grafted to the surface of SO 3 − -AN deposited GCE through the sulfamide coupling reaction between the amino groups in the probe DNA and the sulfonic groups in the AN-SO 3 − . The step-by-step modification process was characterized by electrochemistry and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Using Ru(NH 3 ) 6 3+ as probe, the probe density and the hybridization efficiency of the biosensor were determined to be 3.18 × 10 13 strands cm −2 and 86.5%, respectively. The hybridization performance of the biosensor was examined by differential pulse voltammetry using Co(phen) 3 3+/2+ (phen = 1,10-phenanthroline) as the indicator. The selectivity experiments showed that the biosensor presented distinguishable response after hybridization with the three-base mismatched, non-complementary and complementary sequences. Under the optimal conditions, the oxidation peak currents of Co(phen) 3 3+/2+ increased linearly with the logarithm values of the concentration of the complementary sequences in the range from 1.0 × 10 −13 M to 1.0 × 10 −8 M with

  15. Computational intelligence-based polymerase chain reaction primer selection based on a novel teaching-learning-based optimisation.

    Science.gov (United States)

    Cheng, Yu-Huei

    2014-12-01

    Specific primers play an important role in polymerase chain reaction (PCR) experiments, and therefore it is essential to find specific primers of outstanding quality. Unfortunately, many PCR constraints must be simultaneously inspected which makes specific primer selection difficult and time-consuming. This paper introduces a novel computational intelligence-based method, Teaching-Learning-Based Optimisation, to select the specific and feasible primers. The specified PCR product lengths of 150-300 bp and 500-800 bp with three melting temperature formulae of Wallace's formula, Bolton and McCarthy's formula and SantaLucia's formula were performed. The authors calculate optimal frequency to estimate the quality of primer selection based on a total of 500 runs for 50 random nucleotide sequences of 'Homo species' retrieved from the National Center for Biotechnology Information. The method was then fairly compared with the genetic algorithm (GA) and memetic algorithm (MA) for primer selection in the literature. The results show that the method easily found suitable primers corresponding with the setting primer constraints and had preferable performance than the GA and the MA. Furthermore, the method was also compared with the common method Primer3 according to their method type, primers presentation, parameters setting, speed and memory usage. In conclusion, it is an interesting primer selection method and a valuable tool for automatic high-throughput analysis. In the future, the usage of the primers in the wet lab needs to be validated carefully to increase the reliability of the method.

  16. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  17. ANAM4 TBI Reaction Time-Based Tests have Prognostic Utility for Acute Concussion

    Science.gov (United States)

    2013-07-01

    7:767. 2013 ANAM4 TBI Reaction Time-Based Tests Have Prognostic Utility for Acute Concussion LT Jacob N. Norris, MSC USN*; LCDR Waiter Carr, MSC USN...CDR Thomas Herzig, MSC USNf; CDR D. Waiter Labrie, MSC USNf; CDR Richard Sams, MC USN§ ABSTRACT The Concussion Restoration Care Center has used the...Work Unit No. N24LB. REFERENCES 1. Department of Defense: DoD Poiicy Guidance for Management of Mild Traumatic Brain Injury/Concussion in the Deployed

  18. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  19. Community reaction to noise from power stations

    International Nuclear Information System (INIS)

    Job, R.F.S.; Hede, A.J.

    1989-01-01

    Community reaction is a major consideration in noise control. The relationship between noise exposure and community reaction has received considerable attention in relation to railway, traffic, aircraft and impulsive noise. The results have shown a number of features in common, including: similarly shaped noise/reaction functions; similar results across different measurement techniques and cultures, noise/reaction correlations based on individual respondent data are low (mean r = 0.42 ± 0.12: Job, 1988), although correlations of .58 and above have been reported correlations based on data grouped by noise exposure are generally high and relatively unaffected by the type of noise studied whereas correlations based on individual data tend to be lower for impulsive noise than for transportation noise attitude to the noise source and sensitivity to noise shows strong correlations with reaction. This paper reports that the present study was undertaken in order toe establish over a wider range of noise exposure whether community reaction to power station noise is similar to reaction to other types of non-impulsive noise. It is possible that reaction is different given important differences in the source of the noise which may affect attitude. Attitudes towards power stations may be more positive than attitudes to aircraft or rail noise for example, because almost all respondents use electricity regularly every day. Further, the power stations in the present study provided employment for the relatively small surrounding communities

  20. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-107 K).

    Science.gov (United States)

    Ocaña, A J; Blázquez, S; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Jiménez, E

    2018-02-21

    Ethanol, CH 3 CH 2 OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH 3 CH 2 OH (k(T)) between 21 and 107 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(107 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10 -11 (T/300 K) -(0.71±0.10) cm 3 molecule -1 s -1 . In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (∼10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10 -11 cm 3 molecule -1 s -1 at 100 K and around 1 × 10 -10 cm 3 molecule -1 s -1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  1. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.

    Science.gov (United States)

    Kayala, Matthew A; Baldi, Pierre

    2012-10-22

    Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of Reaction

  2. Phase transformations in the reaction cell of TiNi-based sintered systems

    Science.gov (United States)

    Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon

    2018-05-01

    The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.

  3. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  4. The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy

    Science.gov (United States)

    McDermid, J. R.; Pugh, M. D.; Drew, R. A. L.

    1989-09-01

    The objective of the present research was to join reaction-bonded silicon carbide (RBSC) to INCONEL 600 (a nickel-based superalloy) for use in advanced heat engine applications using either direct brazing or composite interlayer joining. Direct brazing experiments employed American Welding Society (AWS) BNi-5, a commercial nickel-based brazing alloy, as a filler material; composite interlayers consisted of intimate mixtures of α-SiC and BNi-5 powders. Both methods resulted in the liquid filler metal forming a Ni-Si liquid with the free Si in the RBSC, which, in turn, reacted vigorously with the SiC component of the RBSC to form low melting point constituents in both starting materials and Cr carbides at the metal-ceramic interface. Using solution thermodynamics, it was shown that a Ni-Si liquid of greater than 60 at. pct Ni will decompose a-SiC at the experimental brazing temperature of 1200 ‡C; these calculations are consistent with the experimentally observed composition profiles and reaction morphology within the ceramic. It was concluded that the joining of RBSC to INCONEL 600 using a nickel-based brazing alloy is not feasible due to the inevitability of the filler metal reacting with the ceramic, degrading the high-temperature properties of the base materials.

  5. Connecting localized DNA strand displacement reactions

    Science.gov (United States)

    Mullor Ruiz, Ismael; Arbona, Jean-Michel; Lad, Amitkumar; Mendoza, Oscar; Aimé, Jean-Pierre; Elezgaray, Juan

    2015-07-01

    Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions.Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR02434J

  6. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Science.gov (United States)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  7. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    International Nuclear Information System (INIS)

    Razavi, Behnaz; Song Weihua; Santoke, Hanoz; Cooper, William J.

    2011-01-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( · OH) and reducing aqueous electron (e - aq ), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with · OH determined, (6.96±0.16)x10 9 , (2.92±0.06)x10 9 , (4.16±0.13)x10 9 , and (3.13±0.15)x10 9 M -1 s -1 , and for e - aq (2.31±0.06)x10 9 , (0.45±0.01)x10 9 , (1.26±0.01)x10 9 , and (0.69±0.02)x10 9 M -1 s -1 , respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137 Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  8. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  9. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul; Meitzner, Rico; Nwadiaru, Ogechi V.; Friebe, Christian; Cann, Jonathan; Ahner, Johannes; Ulbricht, Christoph; Kan, Zhipeng; Hö ppener, Stephanie; Hager, Martin D.; Egbe, Daniel A. M.; Welch, Gregory C.; Laquai, Fré dé ric; Schubert, Ulrich S.; Hoppe, Harald

    2018-01-01

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  10. Quantum theory of exchange reactions: Use of nonorthogonal bases and coordinates

    International Nuclear Information System (INIS)

    Stechel, E.B.; Schmalz, T.G.; Light, J.C.

    1979-01-01

    A general approach to quantum scattering theory of exchange reactions utilizing nonorthogonal (''over-complete'') basis sets and nonorthogonal coordinates is presented. The method is shown to resolve many of the formal and practical difficulties attending earlier theories. Although the inspiration came from the early and accurate work on the collinear H+H 2 reaction by Diestler possible applications include electron transfer processes as well as chemical exchange reactions. The mathematics is formulated in detail and the solution is presented in terms of the R-matrix propagation method preserving all the symmetries of the physical process, i.e., conservation of flux and microscopic reversibility

  11. The radiochemistry of [{sup 18} F]-FDG: the first experience in Mexico; La radioquimica del [{sup 18} F]-FDG: la primera experiencia en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez D, F A [Unidad PET-Ciclotron, Facultad de Medicina, UNAM, Av. Universidad 3000, Ciudad Universitaria, Coyoacan, 04500 Mexico, D. F. (Mexico)

    2004-07-01

    The present work describes the more used method for the synthesis of 2 - [{sup 18} F] - fluorine-2-deoxy-D-glucose that is the more used radiopharmaceutical in the nuclear medicine in the cancer diagnostic. The process consists on two chemical reactions: i) [{sup 18} F{sup -}] - nucleophilic radio fluorination and i i) a hydrolysis catalyzed by acid. The first reaction incorporates to the [{sup 18} F]- fluorine labelled inside the organic precursor 1,3,4,6-tetra- O -acetil-2- O-trifluoromethanesulfonyl- {beta}-D-mannopyranose (triflate of mannose). The mechanism of this reaction is a bimolecular nucleophilic substitution (SN{sub 2}) with the ion [{sup 18} F{sup -}] - fluoride; in the second reaction, the hydrolysis of those protective acetyl groups generate the hydroxyl groups free of the [{sup 18} F]-FDG. The process includes an azeotropic distillation and several purification steps. (Author)

  12. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.

    Science.gov (United States)

    Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G

    2018-04-25

    This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.

  13. Kinetic modeling and simulation of PCE and TCE removal in aqueous solutions by electron-beam irradiation

    International Nuclear Information System (INIS)

    Nickelsen, Michael G.; Cooper, William J.; Secker, David A.; Rosocha, Louis A.; Kurucz, Charles N.; Waite, Thomas D.

    2002-01-01

    The irradiation of aqueous solutions of TCE and PCE using a high-energy electron-beam results in the rapid decomposition of both chemicals. It is known that both TCE and PCE react with the aqueous electron and the hydroxyl radical with bimolecular rate constants greater than 10 9 M -1 s -1 for each reaction. The fact that high-energy electrons produce significant concentrations of both e aq - and ·OH radicals in water makes it an effective process for the removal of TCE and PCE from aqueous solution. We have employed steady state and computer-based chemical kinetic models to simulate and better understand the chemistry and kinetics of e-beam irradiation when applied to natural water systems. Model results were benchmarked to experimental data, allowing for the optimization of the reaction of DOC with the ·OH radical. Values for the associated second-order reaction rate constant were found to be 2.5x10 8 and 4.0x10 8 M -1 s -1 , consistent with reported values for k OH,DOC . The models were also used to investigate the possibility of incomplete irradiation during treatment and the presence of proposed chemical reactions of by-products. The reactions involve radicals and radical-adduct species formed by the reaction of TCE and PCE with the hydroxyl radical

  14. Structural parameter identifiability analysis for dynamic reaction networks

    DEFF Research Database (Denmark)

    Davidescu, Florin Paul; Jørgensen, Sten Bay

    2008-01-01

    method based on Lie derivatives. The proposed systematic two phase methodology is illustrated on a mass action based model for an enzymatically catalyzed reaction pathway network where only a limited set of variables is measured. The methodology clearly pinpoints the structurally identifiable parameters...... where for a given set of measured variables it is desirable to investigate which parameters may be estimated prior to spending computational effort on the actual estimation. This contribution addresses the structural parameter identifiability problem for the typical case of reaction network models....... The proposed analysis is performed in two phases. The first phase determines the structurally identifiable reaction rates based on reaction network stoichiometry. The second phase assesses the structural parameter identifiability of the specific kinetic rate expressions using a generating series expansion...

  15. Investigating the Effectiveness of Case-based Learning Instruction on Students’ Understanding the Subject of Reaction Rate

    Directory of Open Access Journals (Sweden)

    Aysel Ünal SÜMEN

    2015-04-01

    Full Text Available This study has been carried out to determine the effectiveness of case-based learning related to reaction rate on students’ conceptual understanding and conceptual change. In this respect, a class of 11th grade students in an Anatolian High School in the center of Izmir city was chosen randomly as experimental group (n=26 and another as control group (n=22. Reaction rate unit was taught to the experimental group within case-based learning method, and to the control group through activities defined in Chemistry curriculum. Comprehension Test developed by Cakmakci (2005 was utilized as data collecting instrument. The Comprehension Test was applied simultaneously to both experimental and control groups before and after the teaching. The data collected via the Comprehension Test was analyzed in terms of both quantity and quality. As a result of the study, it was noted that there was a significant difference between the groups after the instruction in favor of the experimental group. Also, it was determined that case-based learning was more effective in promoting conceptual change and assuring higher level of conceptual understanding for students.

  16. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola; Salvador, Michael; Heumueller, Thomas; Richter, Moses; Classen, Andrej; Shrestha, Shreetu; Matt, Gebhard J.; Holliday, Sarah; Strohm, Sebastian; Egelhaaf, Hans-Joachim; Wadsworth, Andrew; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2017-01-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  17. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola

    2017-09-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  18. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-10^7 K)

    Science.gov (United States)

    Ocaña, A. J.; Blázquez, S.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejoab, J.; Jiménez, E.

    2018-02-01

    Ethanol, CH3CH2OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH3CH2OH (k(T)) between 21 and 10^7 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(10^7 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10^-11 (T/300 K)-(0.71±0.10) cm^3 molecule^-1 s^-1. In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (˜10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10^-11 cm^3 molecule^-1 s^-1 at 100 K and around 1 × 10^-10 cm^3 molecule^-1 s^-1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  19. The impact of secondary-task type on the sensitivity of reaction-time based measurement of cognitive load for novices learning surgical skills using simulation.

    Science.gov (United States)

    Rojas, David; Haji, Faizal; Shewaga, Rob; Kapralos, Bill; Dubrowski, Adam

    2014-01-01

    Interest in the measurement of cognitive load (CL) in simulation-based education has grown in recent years. In this paper we present two pilot experiments comparing the sensitivity of two reaction time based secondary task measures of CL. The results suggest that simple reaction time measures are sensitive enough to detect changes in CL experienced by novice learners in the initial stages of simulation-based surgical skills training.

  20. Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface

    Directory of Open Access Journals (Sweden)

    Bushell Michael E

    2011-05-01

    Full Text Available Abstract Background Constraint-based approaches facilitate the prediction of cellular metabolic capabilities, based, in turn on predictions of the repertoire of enzymes encoded in the genome. Recently, genome annotations have been used to reconstruct genome scale metabolic reaction networks for numerous species, including Homo sapiens, which allow simulations that provide valuable insights into topics, including predictions of gene essentiality of pathogens, interpretation of genetic polymorphism in metabolic disease syndromes and suggestions for novel approaches to microbial metabolic engineering. These constraint-based simulations are being integrated with the functional genomics portals, an activity that requires efficient implementation of the constraint-based simulations in the web-based environment. Results Here, we present Acorn, an open source (GNU GPL grid computing system for constraint-based simulations of genome scale metabolic reaction networks within an interactive web environment. The grid-based architecture allows efficient execution of computationally intensive, iterative protocols such as Flux Variability Analysis, which can be readily scaled up as the numbers of models (and users increase. The web interface uses AJAX, which facilitates efficient model browsing and other search functions, and intuitive implementation of appropriate simulation conditions. Research groups can install Acorn locally and create user accounts. Users can also import models in the familiar SBML format and link reaction formulas to major functional genomics portals of choice. Selected models and simulation results can be shared between different users and made publically available. Users can construct pathway map layouts and import them into the server using a desktop editor integrated within the system. Pathway maps are then used to visualise numerical results within the web environment. To illustrate these features we have deployed Acorn and created a

  1. Free radical transfer in polymers

    International Nuclear Information System (INIS)

    Sonntag, C. von; Bothe, E.; Ulanski, P.

    1998-01-01

    For the present study of free-radical transfer in polymers pulse radiolysis and product studies have been carried out in aqueous solutions using thus far only the water-soluble polymers polyacrylic acid, polymethacrylic acid and polyvinyl alcohol. When OH radicals, generated in the radiolysis of N 2 O-saturated aqueous solutions, react with polymers the lifetime of the polymer radical thus created very much depends on the number of radicals per polymer chain. When there are a large number of radicals per chain their bimolecular decay may be faster than the corresponding (diffusion controlled) decay of monomeric radicals, but when the macromolecule contains only few or even just one radical their lifetime is considerably prolonged. Highly charged polymers such as polyacrylic acid at high pH attain a rod-like conformation which again favors a long lifetime of the radicals. Under such conditions, radical transfer reactions can occur. For example, in polyacrylic acid OH radicals generate two kinds of radicals side by side. The radical in β-position to the carboxylate group converts into the thermodynamically more stable α-radicals by an H-transfer reaction as can be followed by spectrophotometry. Besides radical transfer reactions β-fragmentation reactions occur causing chain scission. Such reactions can be followed in a pulse radiolysis experiment by conductometry, because counter ions are released upon chain scission. Such a process is especially effective in the case of polymethacrylic acid, where it results in a chain depolymerization. An intramolecular H-abstraction is also observed in the γ-radiolysis of polyacrylic acid with the corresponding peroxyl radicals. This causes a chain reaction to occur. The resulting hydroperoxides are unstable and decarboxylate given rise to acetylacetone-like products. In polyvinyl alcohol the peroxyl radicals in α-position to the alcohol function undergo HO 2 -elimination. This prevents a scission of the polymer chain in the

  2. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  3. TREHALOSE-BASED ADDITIVE IMPROVED INTER-PRIMER BINDING SITE REACTIONS FOR DNA ISOLATED FROM RECALCITRANT PLANTS

    Directory of Open Access Journals (Sweden)

    Veronika Lancíková

    2014-02-01

    Full Text Available Trehalose-based (TBT-PAR additive was tested in order to optimize PCR amplification for DNA isolated from recalcitrant plants. Retrotransposon-based inter-primer binding site reactions were significantly improved with TBT-PAR solution using genomic DNA isolated from flax (Linum usitatissimum L., genotypes Kyivskyi, Bethune grown in radio-contaminated and non-radioactive remediated Chernobyl experimental fields. Additionally, similar improvements were observed using 19 recalcitrant genotypes of maize (Zea mays L. and three genotypes of yacon (Smallanthus sonchifolius, Poepp. et Endl., genotypes PER05, ECU45, BOL22 grown in standard field conditions.

  4. Nitrogen Detection in Bulk Samples Using a D-D Reaction-Based Portable Neutron Generator

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2013-01-01

    Full Text Available Nitrogen concentration was measured via 2.52 MeV nitrogen gamma ray from melamine, caffeine, urea, and disperse orange bulk samples using a newly designed D-D portable neutron generator-based prompt gamma ray setup. Inspite of low flux of thermal neutrons produced by D-D reaction-based portable neutron generator and interference of 2.52 MeV gamma rays from nitrogen in bulk samples with 2.50 MeV gamma ray from bismuth in BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays indicates satisfactory performance of the setup for detection of nitrogen in bulk samples.

  5. Virological failure of staggered and simultaneous treatment interruption in HIV patients who began Efavirenz-based regimens after allergic reactions to nevirapine

    Directory of Open Access Journals (Sweden)

    Siripassorn Krittaecho

    2013-01-01

    Full Text Available Abstract Objective The objective of this work was to study the virological outcomes associated with two different types of treatment interruption strategies in patients with allergic reactions to nevirapine (NVP. We compared the virological outcomes of (1 HIV-1-infected patients who discontinued an initial NVP-based regimen because of cutaneous allergic reactions to NVP; different types of interruption strategies were used, and second-line regimen was based on efavirenz (EFV; and (2 HIV-1-infected patients who began an EFV-based regimen as a first-line therapy (controls. Methods This retrospective cohort included patients who began an EFV-based regimen, between January 2002 and December 2008, as either an initial regimen or as a subsequent regimen after resolving a cutaneous allergic reaction against an initial NVP-based regimen. The study ended in March 2010. The primary outcome was virological failure, which was defined as either (a two consecutive plasma HIV-1 RNA levels >400 copies/mL or (b a plasma HIV-1 RNA level >1,000 copies/mL plus any genotypic resistance mutation. Results A total of 559 patients were stratified into three groups: (a Simultaneous Interruption, in which the subjects simultaneously discontinued all the drugs in an NVP-based regimen following an allergic reaction (n=161; (b Staggered Interruption, in which the subjects discontinued NVP treatment while continuing nucleoside reverse transcriptase inhibitor (NRTI backbone therapy for a median of 7 days (n=82; and (c Control, in which the subjects were naïve to antiretroviral therapy (n=316. The overall median follow-up time was 43 months. Incidence of virological failure in Simultaneous Interruption was 12.9 cases per 1,000 person-years, which trended toward being higher than the incidences in Staggered Interruption (5.4 and Control (6.6. However, differences were not statistically significant. Conclusions Among the patients who had an acute allergic reaction to first

  6. Electrophysiological Correlates of Changes in Reaction Time Based on Stimulus Intensity

    Science.gov (United States)

    Lakhani, Bimal; Vette, Albert H.; Mansfield, Avril; Miyasike-daSilva, Veronica; McIlroy, William E.

    2012-01-01

    Background Although reaction time is commonly used as an indicator of central nervous system integrity, little is currently understood about the mechanisms that determine processing time. In the current study, we are interested in determining the differences in electrophysiological events associated with significant changes in reaction time that could be elicited by changes in stimulus intensity. The primary objective is to assess the effect of increasing stimulus intensity on the latency and amplitude of afferent inputs to the somatosensory cortex, and their relation to reaction time. Methods Median nerve stimulation was applied to the non-dominant hand of 12 healthy young adults at two different stimulus intensities (HIGH & LOW). Participants were asked to either press a button as fast as possible with their dominant hand or remain quiet following the stimulus. Electroencephalography was used to measure somatosensory evoked potentials (SEPs) and event related potentials (ERPs). Electromyography from the flexor digitorum superficialis of the button-pressing hand was used to assess reaction time. Response time was the time of button press. Results Reaction time and response time were significantly shorter following the HIGH intensity stimulus compared to the LOW intensity stimulus. There were no differences in SEP (N20 & P24) peak latencies and peak-to-peak amplitude for the two stimulus intensities. ERPs, locked to response time, demonstrated a significantly larger pre-movement negativity to positivity following the HIGH intensity stimulus over the Cz electrode. Discussion This work demonstrates that rapid reaction times are not attributable to the latency of afferent processing from the stimulated site to the somatosensory cortex, and those latency reductions occur further along the sensorimotor transformation pathway. Evidence from ERPs indicates that frontal planning areas such as the supplementary motor area may play a role in transforming the elevated sensory

  7. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  8. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  9. Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump.

    Science.gov (United States)

    Abbruzzetti, S; Crema, E; Masino, L; Vecli, A; Viappiani, C; Small, J R; Libertini, L J; Small, E W

    2000-01-01

    Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.

  10. A comprehensive survey of nuclear reactions; Panorama des reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cugnon, J. [Liege Univ., IFPA, AGO Dept. (Belgium)

    2007-07-01

    The various mechanisms of nuclear reactions are surveyed and classified in different regimes, based on the notions of coherent mechanisms and hard versus soft processes. The emphasis is put on the concepts at the basis of the understanding of these regimes and on the elements of nuclear structure which are involved in these different regimes, as well as the on the possibility of extracting this information. Due to lack of space and for pedagogical reasons, the discussion is limited to nucleon-induced and light-ion-induced reactions. However, a few remarks are given concerning some specific probes, such as weakly bound projectiles or neutron-rich nuclei. (author)

  11. Non-allergic cutaneous reactions in airborne chemical sensitivity--a population based study

    DEFF Research Database (Denmark)

    Berg, Nikolaj Drimer; Linneberg, Allan; Thyssen, Jacob Pontoppidan

    2011-01-01

    the relationship between cutaneous reactions from patch testing and self-reported severity of chemical sensitivity to common airborne chemicals. A total of 3460 individuals participating in a general health examination, Health 2006, were patch tested with allergens from the European standard series and screened...... for chemical sensitivity with a standardised questionnaire dividing the participants into four severity groups of chemical sensitivity. Both allergic and non-allergic cutaneous reactions--defined as irritative, follicular, or doubtful allergic reactions--were analysed in relationship with severity of chemical...... most severe groups of self-reported sensitivity to airborne chemicals. When adjusting for confounding, associations were weakened, and only non-allergic cutaneous reactions were significantly associated with individuals most severely affected by inhalation of airborne chemicals (odds ratio = 2.5, p = 0...

  12. Catalytic activity of calcium-based mixed metal oxides nanocatalysts in transesterification reaction of palm oil

    Science.gov (United States)

    Hassan, Noraakinah; Ismail, Kamariah Noor; Hamid, Ku Halim Ku; Hadi, Abdul

    2017-12-01

    Nowadays, biodiesel has become the forefront development as an alternative diesel fuel derived from biological sources such as oils of plant and fats. Presently, the conventional transesterification of vegetable oil to biodiesel gives rise to some technological problem. In this sense, heterogeneous nanocatalysts of calcium-based mixed metal oxides were synthesized through sol-gel method. It was found that significant increase of biodiesel yield, 91.75 % was obtained catalyzed by CaO-NbO2 from palm oil compared to pure CaO of 53.99 % under transesterification conditions (methanol/oil ratio 10:1, reaction time 3 h, catalyst concentration 4 wt%, reaction temperature 60 °C, and mixing speed of 600 rpm). The phase structure and crystallinity as well as the texture properties of the prepared catalysts were characterized by X-ray Diffraction (XRD) and the textural properties were characterized by N2 adsorption-desorption analysis. Sol-gel method has been known as versatile method in controlling the structural and chemical properties of the catalyst. Calcium-based mixed oxide synthesized from sol-gel method was found to exist as smaller crystallite size with high surface area.

  13. Hypersensitivity reaction studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation.

    Science.gov (United States)

    Wang, Hongbo; Cheng, Guang; Du, Yuan; Ye, Liang; Chen, Wenzhong; Zhang, Leiming; Wang, Tian; Tian, Jingwei; Fu, Fenghua

    2013-03-01

    The commercial drug paclitaxel (Taxol) may introduce hypersensitivity reactions associated with the polyethoxylated castor oil-ethanol solvent. To overcome these problems, we developed a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation, known as Lipusu. In this study, we performed in vitro and in vivo experiments to compare the safety profiles of Lipusu and Taxol, with special regard to hypersensitivity reactions. First, Swiss mice were used to determine the lethal dosages, and then to evaluate hypersensitivity reactions, followed by histopathological examination and enzyme-linked immunosorbent assays (ELISAs) of serum SC5b-9 and lung histamine. Additionally, healthy human serum was used to analyze in vitro complement activation. Finally, an MTT assay was used to determine the in vitro anti-proliferation activity. Our data clearly showed that Lipusu displayed a much higher safety margin and did not induce hypersensitivity or hypersensitivity-related lung lesions, which may be associated with the fact that Lipusu did not activate complement or increase histamine release in vivo. Moreover, Lipusu did not promote complement activation in healthy human serum in vitro, and demonstrated anti-proliferative activity against human cancer cells, similar to that of Taxol. Therefore, the improved formulation of paclitaxel, which exhibited a much better safety profile and comparable cytotoxic activity to Taxol, may bring a number of benefits to cancer patients.

  14. Japan Nuclear Reaction Data Centre (JCPRG) Progress Report

    International Nuclear Information System (INIS)

    2011-01-01

    In this report, we give a brief review of the activities carried out by the ''Japan Nuclear Reaction Data Centre (JCPRG)'' since the last NRDC meeting in 2009. The main subjects of our activities are; (1) reaction data compilation, (2) evaluation of the astrophysical nuclear reaction data for light nuclei, and (3) cooperation of nuclear data activities in Asia. Our activities in detail are as follows. a) New reaction data compilation (NRDF and EXFOR) b) Conversion of old NRDF to EXFOR c) Bibliography compilation (CINDA) d) Evaluation of astrophysical nuclear reaction data based on theoretical calculations for light nuclei e) Collaboration among nuclear data physicists in Asia for the EXFOR compilation to form a stable base f) Database maintenance and services (NRDF, EXFOR/ENDF and CINDA) g) Development of software systems (GSYS) h) Customer services

  15. Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO.

    Science.gov (United States)

    Vester, Michael; Grueter, Andreas; Finkler, Björn; Becker, Robert; Jung, Gregor

    2016-04-21

    Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to single molecule detection to assess the rate constants for a chemical reaction in the electronic ground state. The measurement of the second-order correlation function g((2)), i.e. the evaluation of inter-photon arrival times, is applied to the reprotonation in a Förster-cycle. We find that the antibunching of three different photoacids in the aprotic solvent DMSO significantly differs from the behavior in water. The longer decay constant of the biexponential antibunching tl is linked to the bimolecular reprotonation kinetics of the fully separated ion-pair, independent of the acidic additives. The value of the corresponding bimolecular rate constant, kp = 4 × 10(9) M(-1) s(-1), indicates diffusion-controlled reprotonation. The analysis of tl also allows for the extraction of the separation yield of proton and the conjugated base after excitation and amounts to approximately 15%. The shorter time component ts is connected to the decay of the solvent-separated ion pair. The associated time constant for geminate reprotonation is approximately 3 ± 1 ns in agreement with independent tcspc experiments. These experiments verify that the transfer of quantum-optical experiments to problems in chemistry enables mechanistic conclusions which are hardly accessible by other methods.

  16. Interfacial reactions in intermetallic matrix composites

    International Nuclear Information System (INIS)

    Cantrell, L.B.; Clevenger, E.M.; Perepezko, J.H.

    1993-01-01

    The thermal stability of advanced composites is dominated by the behavior of internal interfaces. Analysis of these internal interfaces often involves consideration of at least ternary order phase equilibria. Limited thermodynamic data exists for ternary and higher order systems. However, a combined approach based upon the use of binary data to estimate ternary phase equilibria and experimentally determined reaction pathways is effective in the analysis of interface reactions in composite systems. In blended powder samples, thermal analysis was used to find possible reaction temperatures, while X-ray analysis, EDS, and EPMA of diffusion couples were used to assess interdiffusion reaction pathways. The approach is illustrated by compatibility studies between TiAl and TiSi 2 at 1,100 C, and in-situ reactions between B 4 C and TiAl at 1300 C where multiple reaction sequences have been analyzed to provide guidance for the design of in-situ reaction processing of composites

  17. Direct Observation of Molecular Preorganization for Chirality Transfer on a Catalyst Surface

    DEFF Research Database (Denmark)

    Demers-Carpentier, Vincent; Goubert,, Guillaume; Masini, Federico

    2011-01-01

    The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex that conti......The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex...... functional theory calculations reveals the stereodirecting forces governing preorganization into precise chiral modifier-substrate bimolecular surface complexes. The study shows that the chiral modifier induces prochiral switching on the surface and that different prochiral ratios prevail at different...

  18. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Mahmood, Javeed; Li, Feng; Jung, Sun-Min; Okyay, Mahmut Sait; Ahmad, Ishfaq; Kim, Seok-Jin; Park, Noejung; Jeong, Hu Young; Baek, Jong-Beom

    2017-05-01

    The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential and have fast kinetics. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt-H bond is associated with the fastest reaction rate for the HER. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (˜65 kcal mol-1), but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s-1 in 0.5 M H2SO4 solution; 0.75 H2 s-1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm-2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

  19. Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on ε-polylysine and chitosan.

    Science.gov (United States)

    Wang, Yingying; Liu, Fuguo; Liang, Chunxuan; Yuan, Fang; Gao, Yanxiang

    2014-11-01

    Edible films based on Maillard reaction products (MRPs) of ε-polylysine and chitosan, without the use of any plasticiser, were prepared by solution casting. The effect of Maillard reaction parameters (reaction time and the ratio of polylysine/chitosan) of ε-polylysine and chitosan on the structure, moisture content, water solubility, total colour difference and mechanical properties of edible films formed by MRPs were systematically evaluated. Scanning electron microscopy confirmed that edible films prepared by the MRPs of ε-polylysine and chitosan through the Maillard reaction exhibited a more compact and dense structure than those from the mixture of biopolymers without the presence of MRPs. The tensile strength and % elongation values of films from the mixture were decreased significantly with the rise of ε-polylysine (P Maillard reaction, whereas water solubility was decreased and total colour difference was increased significantly (P Maillard reaction time. In addition, antimicrobial activity of chitosan films against E. coli and S. aureus. could be achieved by incorporating ε-polylysine into chitosan. These films can ensure food quality and safety, especially for coating highly perishable foods, such as meat products. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  20. Theory of nuclear reactions, with applications to heavy ion scattering reactions

    International Nuclear Information System (INIS)

    Youssef, M.S.A.

    1981-01-01

    Nuclear science to day, has gained its stature through the pioneer work of both theorists and experimentalists within its two main divisions, Nuclear Reaction and Nuclear Structure theories. Our main interest in this theoretical work in nuclear reaction theory is focused on three topics, come under the headings of three parts which are the constituents of the present paper. Part 1 is concerned with ''Contributions to the theory of Threshold phenomena in nuclear reactions; cluster threshold states in heavy ion reactions''. Part II is devoted to ''Hermiticity of the Laplacian operator, R-matrix theories and direct interaction theory'', while part xII is ascribed to ''Heavy ion transfer reactions and scattering''. The aforementioned selected topics are the backbones of this thesis, which starts with general introduction giving a brief account about the material included in. In each part, investiqations are given in an extended manner through several chapters. Finally, the thesis is ended eith the chapter on ''General Discussions and Conclusions''. Appendices, references, and figure captions are found at the end of each part, the matter which we believe to facilitate much the reading through of the thesis. The first two parts are based (to some extent) on the same formal background (R-matrix, Kapur-Peierls-theories) and they converge to solve some physical problems originating from flux conservation laws in nuclear reactions, while the third part is indirect related to the first two; in principle it joins the other two parts under computational aspects. All of them after all, form the solidarity of the material included in the thesis. (author)

  1. Rate Constants for the Reactions of OH with CO, NO and NO2, and of HO2 with NO2 in the Presence of Water Vapour at Lower-Tropospheric Conditions

    Science.gov (United States)

    Rolletter, Michael; Fuchs, Hendrik; Novelli, Anna; Ehlers, Christian; Hofzumahaus, Andreas

    2016-04-01

    Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm-3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and

  2. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    Science.gov (United States)

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  3. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    Science.gov (United States)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  4. Preparation of ionic-crosslinked chitosan-based gel beads and effect of reaction conditions on drug release behaviors.

    Science.gov (United States)

    Chen, Shilan; Liu, Mingzhu; Jin, Shuping; Wang, Bin

    2008-02-12

    Drug-loaded chitosan (CS) beads were prepared under simple and mild condition using trisodium citrate as ionic crosslinker. The beads were further coated with poly(methacrylic acid) (PMAA) by dipping the beads in PMAA aqueous solution. The surface and cross-section morphology of these beads were observed by scanning electron microscopy and the observation showed that the coating beads had core-shell structure. In vitro release of model drug from these beads obtained under different reaction conditions was investigated in buffer medium (pH 1.8). The results showed that the rapid drug release was restrained by PMAA coating and the optimum conditions for preparing CS-based drug-loaded beads were decided through the effect of reaction conditions on the drug release behaviors. In addition, the drug release mechanism of CS-based drug-loaded beads was analyzed by Peppa's potential equation. According to this study, the ionic-crosslinked CS beads coated by PMAA could serve as suitable candidate for drug site-specific carrier in stomach.

  5. Effect of excited states on thermonuclear reaction rates

    International Nuclear Information System (INIS)

    Sargood, D.G.

    1983-01-01

    Values of the ratio of the thermonuclear reaction rate of a reaction, with target nuclei in a thermal distribution of energy states, to the reaction rate with all target nuclei in their ground states are tabulated for neutron, proton and α-particle induced reactions on the naturally occurring nuclei from 20 Ne to 70 Zn, at temperatures of 1, 2, 3.5 and 5x10 9 K. The ratios are determined from reaction rates based on statistical model cross sections

  6. Experimental Study of Serpentinization Reactions

    Science.gov (United States)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  7. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan

    2015-01-01

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  8. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    Science.gov (United States)

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  10. Kinetics and mechanism of hydrolysis of benzimidazolylcarbamates

    OpenAIRE

    Norberto, F. P.; Santos, S. P.; Iley, J.; Silva, D. B.; Corte Real, M.

    2007-01-01

    Synthesis of new 2-aminobenzimidazole-1-carbamates was accomplished by carbamoylation of 2-aminobenzimidazole using different substituted phenyl chloroformates. The aqueous hydrolysis of the new compounds was examined in the pH range 1-13 at 25 ºC. The evaluated kinetic parameters led to the conclusion that up to pH 4 reaction proceeds by a bimolecular attack of water to the N-protonated substrate. This is the first time this behavior is described for carbamates, and can be ascribed to the hi...

  11. Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials.

    Science.gov (United States)

    Dong, Yingchao; Zhou, Jian-Er; Lin, Bin; Wang, Yongqing; Wang, Songlin; Miao, Lifeng; Lang, Ying; Liu, Xingqin; Meng, Guangyao

    2009-12-15

    Bulk porous mullite supports for ceramic membranes were prepared directly using a mixture of industrial waste fly ash and bauxite by dry-pressing, followed by sintering between 1200 and 1550 degrees C. The effects of sintering temperature on the phase composition and shrinkage percent of porous mullite were studied. The XRD results indicate that secondary mullitization reaction took place above 1200 degrees C, and completed at 1450 degrees C. During sintering, the mixture samples first shrunk, then expanded abnormally between 1326 and 1477 degrees C, and finally shrunk again above 1477 degrees C. This unique volume self-expansion is ascribed to the secondary mullitization reaction between bauxite and fly ash. More especially, the micro-structural variations induced by this self-expansion sintering were verified by SEM, porosity, pore size distribution and nitrogen gas permeation flux. During self-expansion sintering, with increasing temperature, an abnormal increase in both open porosity and pore size is observed, which also results in the increase of nitrogen gas flux. The mineral-based mullite supports with increased open porosity were obtained. Furthermore, the sintered porous mullite membrane supports were characterized in terms of thermal expansion co-efficient and mechanical strength.

  12. Study on decomposition and removal of organic pollutants in gases using electron beams

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki

    2006-01-01

    Volatile organic compounds (VOC) used as solvents and de-oil reagents have been emitted to the atmosphere and oxidized subsequently into toxic photochemical oxidants in the atmosphere. Reduction of the emission of VOC has been required under law and regulations for factories/plants at which huge amounts of VOC are used. The electron beam (EB) treatment is suitable for purification of high flow-rate ventilation air containing dilute VOC emitted from such factories/plants. The purification processes of such ventilation air have been developed based on the decomposition reactions and property changes of VOC. The results for chloro-ethylenes and aromatic hydrocarbons, which have been emitted with abundant quantities, are introduced in the present paper. Chloroethylenes, except for monochloroethylene, were oxidized into water-soluble primary products through chain reactions in EB irradiated humid air. The chain oxidation reactions of such chloro-ethylenes were initiated exclusively by a reaction with OH radicals, but electron-attachment dissociation under EB irradiation. Gas-phase termination reactions involved the bimolecular reaction of alkylperoxyl radicals for tri- and di-chloroethylenes, and the reaction of alkylperoxyl radicals and alkyl radicals beside such a bimolecular reaction for tetrachloroethylene. The deposition of the alkyl-peroxyl radicals on an irradiation vessel wall also terminated the chain oxidation reactions. The solid-phase termination reaction was negligible to the gas-phase termination reactions under irradiation with high-dose rate so that the oxidation of chloro-ethylenes was achieved with lower doses under high-dose rate irradiation like EB irradiation. The hydrolysis of the primary products combined with EB irradiation is prospective to be applied to the purification of chloroethylenes/air mixtures with lower doses. Under irradiation of aromatic hydrocarbons/air mixtures, toxic and oxidation-resistant particles with mean diameters of a few

  13. Reactions of alkylnitrosoureas in aqueous solution

    International Nuclear Information System (INIS)

    Snyder, J.K.; Stock, L.M.

    1980-01-01

    The acid- and base-catalyzed decompositions of N-methyl-,N,N'-dimethyl-, and N,N',N'-trimethyl-N-nitrosourea in aqueous solution have been studied. Below pH 2, the N-methyl compound undergoes both denitrosation and hydrolysis to yield methylurea, nitrous acid, methylamine, nitrogen, and carbon dioxide. The acid-catalyzed denitrosation and hydrolysis of the trimethylnitrosourea are somewhat more rapid than the corresponding reactions of N-methyl-N-nitrosourea. The solvent isotope effect, k/sub H 2 O//k/sub D 2 O/ = 1.3, and the absence of chloride ion catalysis suggest that the denitrosation reaction proceeds by a rate-determining proton transfer which is followed by the rapid loss of the nitroso group. The results for the hydrolysis reaction are compatible with a formulation in which a hydrate of the nitrosourea is protonated in a rate-determining step to form a tetrahedral intermediate which subsequently decomposes to yield methyldiazonium hydroxide and a carbamic acid derivative. The base-catalyzed reactions of the mono, di-, and trimethylnitrosoureas are first order in hydroxide ion over a broad pH range. The hydrolysis of N-methyl-N-nitrosourea yields methanol and derivatives of carbamic acid. Salt effects on the reaction rate are negligible except for the influence of lithium ion. The rate constants for the hydrolysis of the mono- and dimethyl compounds depend upon the buffer concentrationat pH 9.5. The rate constants for the hydrolysis of the trimethyl compound also depend upon the buffer concentration, but a limiting value is not achieved. The solvent isotope effect for the base-catalyzed reaction, the exchange reaction of water- 18 O with the carbonyl group of the urea, and the fact that N-methyl-N-nitrosourea is hydrolyzed about 2.2 x 10 4 times more rapidly than N,N',N'-trimethyl-N-nitrosourea suggest that the hydrolysis occurs by a mechanism in which a tetrahedral intermediate is formed

  14. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.

    Science.gov (United States)

    Li, Shuirong; Gong, Jinlong

    2014-11-07

    Owing to the considerable publicity that has been given to petroleum related economic, environmental, and political problems, renewed attention has been focused on the development of highly efficient and stable catalytic materials for the production of chemical/fuel from renewable resources. Supported nickel nanoclusters are widely used for catalytic reforming reactions, which are key processes for generating synthetic gas and/or hydrogen. New challenges were brought out by the extension of feedstock from hydrocarbons to oxygenates derivable from biomass, which could minimize the environmental impact of carbonaceous fuels and allow a smooth transition from fossil fuels to a sustainable energy economy. This tutorial review describes the recent efforts made toward the development of nickel-based catalysts for the production of hydrogen from oxygenated hydrocarbons via steam reforming reactions. In general, three challenges facing the design of Ni catalysts should be addressed. Nickel nanoclusters are apt to sinter under catalytic reforming conditions of high temperatures and in the presence of steam. Severe carbon deposition could also be observed on the catalyst if the surface carbon species adsorbed on metal surface are not removed in time. Additionally, the production of hydrogen rich gas with a low concentration of CO is a challenge using nickel catalysts, which are not so active in the water gas shift reaction. Accordingly, three strategies were presented to address these challenges. First, the methodologies for the preparation of highly dispersed nickel catalysts with strong metal-support interaction were discussed. A second approach-the promotion in the mobility of the surface oxygen-is favored for the yield of desired products while promoting the removal of surface carbon deposition. Finally, the process intensification via the in situ absorption of CO2 could produce a hydrogen rich gas with low CO concentration. These approaches could also guide the design

  15. Computing molecular fluctuations in biochemical reaction systems based on a mechanistic, statistical theory of irreversible processes.

    Science.gov (United States)

    Kulasiri, Don

    2011-01-01

    We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.

  16. MULTICOMPONENT DETERMINATION OF CHLORINATED HYDROCARBONS USING A REACTION-BASED CHEMICAL SENSOR .2. CHEMICAL SPECIATION USING MULTIVARIATE CURVE RESOLUTION

    NARCIS (Netherlands)

    Tauler, R.; Smilde, A. K.; HENSHAW, J. M.; BURGESS, L. W.; KOWALSKI, B. R.

    1994-01-01

    A new multivariate curve resolution method that can extract analytical information from UV/visible spectroscopic data collected from a reaction-based chemical sensor is proposed. The method is demonstrated with the determination of mixtures of chlorinated hydrocarbons by estimating the kinetic and

  17. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  18. Normal Reactions to Orthostatic Stress in Rett Syndrome

    Science.gov (United States)

    Larsson, Gunilla; Julu, Peter O. O.; Engerstrom, Ingegerd Witt; Sandlund, Marlene; Lindstrom, Britta

    2013-01-01

    The aim of this study was to investigate orthostatic reactions in females with Rett syndrome (RTT), and also whether the severity of the syndrome had an impact on autonomic reactions. Based on signs of impaired function of the central autonomic system found in RTT, it could be suspected that orthostatic reactions were affected. The orthostatic…

  19. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multizone Reaction Kinetics: Modeling of Decarburization

    Science.gov (United States)

    Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart

    2018-03-01

    In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.

  20. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multizone Reaction Kinetics: Modeling of Decarburization

    Science.gov (United States)

    Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart

    2018-06-01

    In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.

  1. Modeling of Reaction Calorimeter

    OpenAIRE

    Farzad, Reza

    2014-01-01

    The purpose of this project was to model the reaction calorimeter in order to calculate the heat of absorption which is the most important parameter in this work. Reaction calorimeter is an apparatus which is used in measuring the heat of absorption of CO2 as well as the total pressure in vapor phase based on vapor-liquid equilibrium state. Mixture of monoethanolamine (MEA) and water was used as a solvent to absorb the CO2.Project was divided in to three parts in order to make the programming...

  2. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Behnaz, E-mail: brazavi@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song Weihua, E-mail: wsong@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Santoke, Hanoz, E-mail: hsantoke@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Cooper, William J., E-mail: wcooper@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States)

    2011-03-15

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ({sup {center_dot}O}H) and reducing aqueous electron (e{sup -}{sub aq}), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with {sup {center_dot}O}H determined, (6.96{+-}0.16)x10{sup 9}, (2.92{+-}0.06)x10{sup 9}, (4.16{+-}0.13)x10{sup 9}, and (3.13{+-}0.15)x10{sup 9} M{sup -1} s{sup -1}, and for e{sup -}{sub aq} (2.31{+-}0.06)x10{sup 9}, (0.45{+-}0.01)x10{sup 9}, (1.26{+-}0.01)x10{sup 9}, and (0.69{+-}0.02)x10{sup 9} M{sup -1} s{sup -1}, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using {sup 137}Cs {gamma}-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  3. Theoretical investigation of the mechanism of tritiated methane dehydrogenation reaction using nickel-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Jiamao; Deng, Bing; Yang, Yong; Wang, Heyi [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Weiyi [School of Physics and Chemistry, Xihua University, Chengdu 610065 (China); Li, Shuo, E-mail: lishuo@cqut.edu.cn [School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China); Tan, Zhaoyi, E-mail: tanzhaoyi@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-06-15

    Graphical abstract: - Highlights: • Four-step dehydrogenation of CT{sub 4} catalyzed by Ni to form Ni–C by releasing T{sub 2}. • The process of Ni + CT{sub 4} → NiCT{sub 2} + T{sub 2} is more achievable than that of NiCT{sub 2} → NiC + T{sub 2}. • TNiCT → T{sub 2}NiC step is the RDS with the rate constant of k = 2.8 × 10{sup 13} exp(−313,136/RT). • The hydrogen isotope effect value of k{sub H}/k{sub T} is 2.94, and k{sub D}/k{sub T} is 1.39. • CH{sub 4} and CD{sub 4} dehydrogenations are likely to occur, accompanied by the CT{sub 4} cracking. - Abstract: The mechanism of tritiated methane dehydrogenation reaction catalyzed by nickel-based catalyst was investigated in detail by density functional theory (DFT) at the B3LYP/[6-311++G(d, p), SDD] level. The computational results indicated that the dehydrogenation of tritiated methane is endothermic. The decomposition of tritiated methane catalyzed by Ni to form Ni-based carbon (Ni–C) after a four-step dehydrogenation companied with releasing tritium. After the first and second dehydrogenation steps, Ni + CT{sub 4} formed NiCT{sub 2}. After the third and fourth dehydrogenation steps, NiCT{sub 2} formed NiC. The first and second steps of dehydrogenation occurred on both the singlet and triplet states, and the lowest energy route is Ni + CT{sub 4} → {sup 1}COM → {sup 1}TS1 → {sup 3}IM1 → {sup 3}TS2 → {sup 3}IM2. The third and fourth steps of dehydrogenation occurred on both the singlet and quintet states, and the minimum energy reaction pathway appeared to be IM3 → {sup 1}TS4 → {sup 5}IM4 → {sup 5}TS5 → {sup 5}IM5 → {sup 5}pro + T{sub 2}. The fourth step of dehydrogenation TNiCT → T{sub 2}NiC was the rate-determining step of the entire reaction with the rate constant of k{sub 2} = 2.8 × 10{sup 13} exp(−313,136/RT) (in cm{sup 3} mol{sup −1} s{sup −1}), and its activation energy barrier was calculated to be 51.8 kcal/mol. The Ni-catalyzed CH{sub 4} and CD{sub 4} cracking

  4. Method for Selection of Solvents for Promotion of Organic Reactions

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Jiménez-González, Concepción; Constable, David J.C.

    2005-01-01

    is to produce, for a given reaction, a short list of chemicals that could be considered as potential solvents, to evaluate their performance in the reacting system, and, based on this, to rank them according to a scoring system. Several examples of application are given to illustrate the main features and steps......A method to select appropriate green solvents for the promotion of a class of organic reactions has been developed. The method combines knowledge from industrial practice and physical insights with computer-aided property estimation tools for selection/design of solvents. In particular, it employs...... estimates of thermodynamic properties to generate a knowledge base of reaction, solvent and environment related properties that directly or indirectly influence the rate and/or conversion of a given reaction. Solvents are selected using a rules-based procedure where the estimated reaction-solvent properties...

  5. Synthesis of 1,1-Diborylalkenes through a Bronsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron

    OpenAIRE

    Morinaga, Akira; Nagao, Kazunori; Ohmiya, Hirohisa; Sawamura, Masaya

    2015-01-01

    A method for the synthesis of 1,1-diborylalkenes through a Bronsted base catalyzed reaction between terminal alkynes and bis(pinacolato)diboron has been developed. The procedure allows direct synthesis of functionalized 1,1-diborylalkenes from various terminal alkynes including propiolates, propiolamides, and 2-ethynylazoles.

  6. On Medium Chemical Reaction in Diffusion-Based Molecular Communication: a Two-Way Relaying Example

    OpenAIRE

    Farahnak-Ghazani, Maryam; Aminian, Gholamali; Mirmohseni, Mahtab; Gohari, Amin; Nasiri-Kenari, Masoumeh

    2016-01-01

    Chemical reactions are a prominent feature of molecular communication (MC) systems, with no direct parallels in wireless communications. While chemical reactions may be used inside the transmitter nodes, receiver nodes or the communication medium, we focus on its utility in the medium in this paper. Such chemical reactions can be used to perform computation over the medium as molecules diffuse and react with each other (physical-layer computation). We propose the use of chemical reactions for...

  7. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...... of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can...

  8. Luminescence quenching by reversible ionization or exciplex formation/dissociation.

    Science.gov (United States)

    Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-11-20

    The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.

  9. BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Iliadis, C.; Anderson, K. S. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Université Paris–Saclay, Bâtiment 104, F-91405 Orsay Campus (France); Timmes, F. X.; Starrfield, S., E-mail: iliadis@unc.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2016-11-01

    The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We present astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.

  10. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    KAUST Repository

    Fornander, Louise H

    2013-12-03

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.

  11. Analysis of reaction products formed in the gas phase reaction of E,E-2,4-hexadienal with atmospheric oxidants: Reaction mechanisms and atmospheric implications

    Science.gov (United States)

    Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.

    2018-03-01

    An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.

  12. Computational study of hydrogen shifts and ring-opening mechanisms in α-pinene ozonolysis products

    DEFF Research Database (Denmark)

    Kurtén, Theo; Rissanen, Matti P.; Mackeprang, Kasper

    2015-01-01

    , sterically unhindered) H-shifts of all four peroxy radicals formed in the ozonolysis of α-pinene using density functional (ωB97XD) and coupled cluster [CCSD(T)-F12] theory. In contrast to the related but chemically simpler cyclohexene ozonolysis system, none of the calculated H-shifts have rate constants...... products in the α-pinene ozonolysis system, additional ring-opening reaction mechanisms breaking the cyclobutyl ring are therefore needed. We further investigate possible uni- and bimolecular pathways for opening the cyclobutyl ring in the α-pinene ozonolysis system....

  13. Reaction rate of hydrolysis of iodine

    International Nuclear Information System (INIS)

    Miyake, Yoshikazu; Eguchi, Wataru; Adachi, Motonari

    1979-01-01

    Absorption rates of dilute iodine vapor contained in air by aqueous mixtures of sodium hydroxide and boric acid were measured using a laminar liquid jet column absorber at 298 K. Absorption rates in this system are controlled by a series of complex reactions taking place in the liquid phase. The reaction rate constant of iodine hydrolysis in the aqueous phase was determined from the absorption rates observed under the conditions that the base-catalytic hydrolysis reaction of iodine can be considered to be irreversible and that other reactions can be neglected. The absorption rates calculated theoretically with the rate constant value obtained above were in good accordance with the whole experimental data observed for a wide range of experimental conditions. (author)

  14. Structure-activity correlations for TON, FER and MOR in the hydroisomerization of n-butane

    NARCIS (Netherlands)

    Pieterse, J.A.Z.; Seshan, Kulathuiyer; Lercher, J.A.

    2000-01-01

    n-Butane hydroconversion was studied over (Pt-loaded) molecular sieves with TON, FER, and MOR morphology. The conversion occurs via a complex interplay of mono- and bimolecular bifunctional acid mechanism and monofunctional platinum-catalyzed hydrogenolysis. Hydroisomerization occurs bimolecularly

  15. Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants

    Directory of Open Access Journals (Sweden)

    Lapin Alexei

    2011-05-01

    Full Text Available Abstract Background In this paper we apply a novel agent-based simulation method in order to model intracellular reactions in detail. The simulations are performed within a virtual cytoskeleton enriched with further crowding elements, which allows the analysis of molecular crowding effects on intracellular diffusion and reaction rates. The cytoskeleton network leads to a reduction in the mobility of molecules. Molecules can also unspecifically bind to membranes or the cytoskeleton affecting (i the fraction of unbound molecules in the cytosol and (ii furthermore reducing the mobility. Binding of molecules to intracellular structures or scaffolds can in turn lead to a microcompartmentalization of the cell. Especially the formation of enzyme complexes promoting metabolic channeling, e.g. in glycolysis, depends on the co-localization of the proteins. Results While the co-localization of enzymes leads to faster reaction rates, the reduced mobility decreases the collision rate of reactants, hence reducing the reaction rate, as expected. This effect is most prominent in diffusion limited reactions. Furthermore, anomalous diffusion can occur due to molecular crowding in the cell. In the context of diffusion controlled reactions, anomalous diffusion leads to fractal reaction kinetics. The simulation framework is used to quantify and separate the effects originating from molecular crowding or the reduced mobility of the reactants. We were able to define three factors which describe the effective reaction rate, namely f diff for the diffusion effect, f volume for the crowding, and f access for the reduced accessibility of the molecules. Conclusions Molecule distributions, reaction rate constants and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of a realistic cell environment. As such, the present simulation can help to bridge the gap between in vivo and in vitro

  16. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions

    International Nuclear Information System (INIS)

    Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.; Fitzgerald, R.

    2010-01-01

    Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this issue (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, 'lower limit', 'nominal value' and 'upper limit' of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters μ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.

  17. Fabrication of a pen-shaped portable biochemical reaction system based on magnetic bead manipulation

    International Nuclear Information System (INIS)

    Shikida, Mitsuhiro; Inagaki, Noriyuki; Okochi, Mina; Honda, Hiroyuki; Sato, Kazuo

    2011-01-01

    A pen-shaped platform that is similar to a mechanical pencil is proposed for producing a portable reaction system. A reaction unit, as the key component in the system, was produced by using a heat shrinkable tube. A mechanical pencil supplied by Mitsubishi Pencil Co. Ltd was used as the pen-shaped platform for driving the reaction cylinder. It was actuated using an inchworm motion. We confirmed that the magnetic beads were successfully manipulated in the droplet in the cylinder-shaped reaction units. (technical note)

  18. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    Science.gov (United States)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  19. Modelling Chemical Reasoning to Predict and Invent Reactions.

    Science.gov (United States)

    Segler, Marwin H S; Waller, Mark P

    2017-05-02

    The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Validating the Accuracy of Reaction Time Assessment on Computer-Based Tablet Devices.

    Science.gov (United States)

    Schatz, Philip; Ybarra, Vincent; Leitner, Donald

    2015-08-01

    Computer-based assessment has evolved to tablet-based devices. Despite the availability of tablets and "apps," there is limited research validating their use. We documented timing delays between stimulus presentation and (simulated) touch response on iOS devices (3rd- and 4th-generation Apple iPads) and Android devices (Kindle Fire, Google Nexus, Samsung Galaxy) at response intervals of 100, 250, 500, and 1,000 milliseconds (ms). Results showed significantly greater timing error on Google Nexus and Samsung tablets (81-97 ms), than Kindle Fire and Apple iPads (27-33 ms). Within Apple devices, iOS 7 obtained significantly lower timing error than iOS 6. Simple reaction time (RT) trials (250 ms) on tablet devices represent 12% to 40% error (30-100 ms), depending on the device, which decreases considerably for choice RT trials (3-5% error at 1,000 ms). Results raise implications for using the same device for serial clinical assessment of RT using tablets, as well as the need for calibration of software and hardware. © The Author(s) 2015.

  1. Rates of the main thermonuclear reactions

    International Nuclear Information System (INIS)

    Abramovich, S.N.; Guzhovskii, B.Ya.; Dunaeva, S.A.; Fomushkin, E.F.

    1992-01-01

    The data on the cross sections of main thermonuclear reactions have been estimated with an account of the latest experimental results in a form of S-factor spline presentation. Based on this estimation, the reates of these reactions in 0.0001-1 MeV temperature range in the supposition of Maxwell distribution of relative velocities have been computed. The Maxwell-Boltzmann averaged -factors were calculated according to the table values of the reaction rates. Then the -factors were approximated with the 3 order spline-function. The necessity of the account of electron shielding and intramolecular movement at low temperatures is discussed (orig.)

  2. Uranium/water vapor reactions in gaseous atmospheres

    International Nuclear Information System (INIS)

    Jackson, R.L.; Condon, J.B.; Steckel, L.M.

    1977-07-01

    Experiments have been performed to determine the effect of varying humidities, gaseous atmospheres, and temperatures on the uranium/water vapor reaction. A balance, which allowed continuous in-system weighings, was used to determine the rates of the uranium/water vapor reactions at water vapor pressures of 383, 1586, and 2853 Pa and at temperatures of 80, 100, and 150 0 C in atmospheres of hydrogen, argon, or argon/oxygen mixtures. Based on rate data, the reactions were characterized as hydriding or nonhydriding. Hydriding reactions were found to be preferred in moist hydrogen systems at the higher temperatures and the lower humidities. The presence of hydrogen in hydriding systems was found to initially inhibit the reaction, but causes an acceleration of the rate in the final stages. In general, reaction rates of hydriding systems approached the hydriding rates calculated and observed in dry hydrogen. Hydriding and nonhydriding reaction rates showed a positive correlation to temperature and water vapor pressure. Final reaction rates in moist argon/oxygen mixtures of 1.93, 4.57, and 9.08 mole percent oxygen were greater than the rates observed in moist hydrogen or argon. Final reaction rates were negatively correlated to the oxygen concentration

  3. A BGK model for reactive mixtures of polyatomic gases with continuous internal energy

    Science.gov (United States)

    Bisi, M.; Monaco, R.; Soares, A. J.

    2018-03-01

    In this paper we derive a BGK relaxation model for a mixture of polyatomic gases with a continuous structure of internal energies. The emphasis of the paper is on the case of a quaternary mixture undergoing a reversible chemical reaction of bimolecular type. For such a mixture we prove an H -theorem and characterize the equilibrium solutions with the related mass action law of chemical kinetics. Further, a Chapman-Enskog asymptotic analysis is performed in view of computing the first-order non-equilibrium corrections to the distribution functions and investigating the transport properties of the reactive mixture. The chemical reaction rate is explicitly derived at the first order and the balance equations for the constituent number densities are derived at the Euler level.

  4. Experimental and numerical analysis of the combustor for a cogeneration system based on the aluminum/water reaction

    International Nuclear Information System (INIS)

    Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio; Stefani, Matteo

    2014-01-01

    Highlights: • Aluminum reaction with water is studied as a technology for hydrogen production. • A test rig is developed for the analysis of aluminum/water reaction. • The system is the core component of a cogeneration plant for hydrogen/power production. • The interaction of liquid aluminum jet and water steam stream is investigated. • The main capabilities of the injection system are assessed. - Abstract: The paper focuses on the design of the experimental apparatus aimed at analyzing the performance of the combustion chamber of a cogeneration system based on the reaction of liquid aluminum and water steam. The cogeneration system exploits the heat released by the oxidation of aluminum with water for super-heating the vapor of a steam cycle and simultaneously producing hydrogen. The only by-product is alumina, which in a closed loop can be recycled back and transformed again into aluminum. Therefore, aluminum is used as an energy carrier to transport the energy from the alumina reduction plant to the location of the proposed system. The water is also used in a closed loop since the amount of water produced employing the hydrogen obtained by the proposed system corresponds to the oxidizing water for the Al/H 2 O reaction. This study investigates the combustor where the liquid aluminum–steam reaction takes place. In particular, the design of the combustion chamber and the interaction between the liquid aluminum jet and the water steam flow are evaluated using a numerical and an experimental approach. The test rig is specifically designed for the analysis of the liquid aluminum injection in a slightly super-heated steam stream. The first experiments are carried out to verify the correct behavior of the test rig. Thermography is employed to qualitatively assess the steam entrainment of the liquid aluminum jet. Finally, the experimental measurements are compared with the multi-dimension multi-phase flow simulations in order to estimate the influence of

  5. Pycellerator: an arrow-based reaction-like modelling language for biological simulations.

    Science.gov (United States)

    Shapiro, Bruce E; Mjolsness, Eric

    2016-02-15

    We introduce Pycellerator, a Python library for reading Cellerator arrow notation from standard text files, conversion to differential equations, generating stand-alone Python solvers, and optionally running and plotting the solutions. All of the original Cellerator arrows, which represent reactions ranging from mass action, Michales-Menten-Henri (MMH) and Gene-Regulation (GRN) to Monod-Wyman-Changeaux (MWC), user defined reactions and enzymatic expansions (KMech), were previously represented with the Mathematica extended character set. These are now typed as reaction-like commands in ASCII text files that are read by Pycellerator, which includes a Python command line interface (CLI), a Python application programming interface (API) and an iPython notebook interface. Cellerator reaction arrows are now input in text files. The arrows are parsed by Pycellerator and translated into differential equations in Python, and Python code is automatically generated to solve the system. Time courses are produced by executing the auto-generated Python code. Users have full freedom to modify the solver and utilize the complete set of standard Python tools. The new libraries are completely independent of the old Cellerator software and do not require Mathematica. All software is available (GPL) from the github repository at https://github.com/biomathman/pycellerator/releases. Details, including installation instructions and a glossary of acronyms and terms, are given in the Supplementary information. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. The factor that determines photo-induced crystalline-state reaction

    International Nuclear Information System (INIS)

    Takenaka, Y.

    1995-01-01

    The photo-induced crystalline-state reaction of cobaloxime complexes were investigated by X-ray diffraction method. The reactivity or the reaction rate is dependent only on the volume of the reaction cavity. The hydrogen bond formation of the reactive group and the difference of the base ligand have no effect. (author)

  7. C2-symmetric bisamidines: Chiral Brønsted bases catalysing the Diels-Alder reaction of anthrones

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available C2-symmetric bisamidines 8 have been tested as chiral Brønsted bases in the Diels-Alder reaction of anthrones and N-substituted maleimides. High yields of cycloadducts and significant asymmetric inductions up to 76% ee are accessible. The proposed mechanism involves proton transfer between anthrone and bisamidine, association of the resulting ions and finally a cycloaddition step stereoselectively controlled by the chiral ion pair.

  8. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  9. Pre-vaccination care-seeking in females reporting severe adverse reactions to HPV vaccine. A registry based case-control study

    DEFF Research Database (Denmark)

    Mølbak, Kåre; Hansen, Niels Dalum; Valentiner-Branth, Palle

    2016-01-01

    to the DMA of suspected severe adverse reactions.We selected controls without reports of adverse reactions from the Danish vaccination registry and matched by year of vaccination, age of vaccination, and municipality, and obtained from the Danish National Patient Registry and The National Health Insurance...... vaccination programme has declined. The aim of the present study was to determine health care-seeking prior to the first HPV vaccination among females who suspected adverse reactions to HPV vaccine. Methods In this registry-based case-control study, we included as cases vaccinated females with reports...... Service Register the history of health care usage two years prior to the first vaccine. We analysed the data by logistic regression while adjusting for the matching variables. Results The study included 316 cases who received first HPV vaccine between 2006 and 2014. Age range of cases was 11 to 52 years...

  10. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels

    Science.gov (United States)

    Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing

    2018-04-01

    This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.

  11. Development and Application of Ligand-Exchange Reaction Method ...

    African Journals Online (AJOL)

    Purpose: This paper presents an improved kinetic-spectrophotometric procedure for determining clonazepam (CZP) in pharmaceutical formulations and human serum. Methods: The method is based on ligand-exchange reaction. The reaction was followed spectrophotometrically by measuring the rate of change of ...

  12. Analysis of JP-10 Combustion Mechanism Based on Bimolecular Reaction Collision Model%气体介质中 JP-10液滴蒸发数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    袁嵩; 于亮; 赵汝岩

    2016-01-01

    为了进一步了解 JP-10燃料在航空发动机燃烧室中的蒸发燃烧机理,基于 SRK 状态方程,运用数学建模的方法,对 JP-10液滴蒸发过程进行了数值模拟并分析了环境因素对液滴蒸发表面温度变化及液滴生存时间变化的影响。研究表明,气体介质与液滴间的相对速度和环境压力及温度对 JP-10液滴蒸发湿球温度、升温过程及生存时间影响明显。%In order to further understand the evaporation and combustion mechanism of the JP-10 droplet in the engine combustion chamber,based on the SRK state equation,and by means of mathematical modeling,we simulated the evaporation process of the JP-10 droplet and analyzed the influences of environmental factors on the droplet surface temperature and life time.The results show that the influences of ambient pressure and temperature and relative velocity between gas and droplet on the JP-10 evaporation wet-bulb temperature,heating process and survival time are obvious.

  13. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  14. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  15. Student reactions to problem-based learning in photonics technician education

    Science.gov (United States)

    Massa, Nicholas M.; Donnelly, Judith; Hanes, Fenna

    2014-07-01

    Problem-based learning (PBL) is an instructional approach in which students learn problem-solving and teamwork skills by collaboratively solving complex real-world problems. Research shows that PBL improves student knowledge and retention, motivation, problem-solving skills, and the ability to skillfully apply knowledge in new and novel situations. One of the challenges faced by students accustomed to traditional didactic methods, however, is acclimating to the PBL process in which problem parameters are often ill-defined and ambiguous, often leading to frustration and disengagement with the learning process. To address this problem, the New England Board of Higher Education (NEBHE), funded by the National Science Foundation Advanced Technological Education (NSF-ATE) program, has created and field tested a comprehensive series of industry-based multimedia PBL "Challenges" designed to scaffold the development of students' problem solving and critical thinking skills. In this paper, we present the results of a pilot study conducted to examine student reactions to the PBL Challenges in photonics technician education. During the fall 2012 semester, students (n=12) in two associate degree level photonics courses engaged in PBL using the PBL Challenges. Qualitative and quantitative methods were used to assess student motivation, self-efficacy, critical thinking, metacognitive self-regulation, and peer learning using selected scales from the Motivated Strategies for Learning Questionnaire (MSLQ). Results showed positive gains in all variables. Follow-up focus group interviews yielded positive themes supporting the effectiveness of PBL in developing the knowledge, skills and attitudes of photonics technicians.

  16. Stochastic reaction-diffusion algorithms for macromolecular crowding

    Science.gov (United States)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction-diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction-diffusion simulations is investigated. Reaction-diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35-53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  17. Automatized Assessment of Protective Group Reactivity: A Step Toward Big Reaction Data Analysis.

    Science.gov (United States)

    Lin, Arkadii I; Madzhidov, Timur I; Klimchuk, Olga; Nugmanov, Ramil I; Antipin, Igor S; Varnek, Alexandre

    2016-11-28

    We report a new method to assess protective groups (PGs) reactivity as a function of reaction conditions (catalyst, solvent) using raw reaction data. It is based on an intuitive similarity principle for chemical reactions: similar reactions proceed under similar conditions. Technically, reaction similarity can be assessed using the Condensed Graph of Reaction (CGR) approach representing an ensemble of reactants and products as a single molecular graph, i.e., as a pseudomolecule for which molecular descriptors or fingerprints can be calculated. CGR-based in-house tools were used to process data for 142,111 catalytic hydrogenation reactions extracted from the Reaxys database. Our results reveal some contradictions with famous Greene's Reactivity Charts based on manual expert analysis. Models developed in this study show high accuracy (ca. 90%) for predicting optimal experimental conditions of protective group deprotection.

  18. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  19. A redox-mediated chromogenic reaction and application in immunoassay.

    Science.gov (United States)

    Yu, Ru-Jia; Ma, Wei; Peng, Mao-Pan; Bai, Zhi-Shan; Long, Yi-Tao

    2016-08-31

    A novel redox-mediated chromogenic reaction was demonstrated based on the reaction between HAuCl4 and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which generate various color responses from red to green in the resulting solutions. Various redox substance could be used to mediate the reaction and trigger a distinct color response. We established a sensitive hydrogen peroxide colorimetric sensor based on the redox-mediated chromogenic reaction and depicted the application both in detection of enzyme and in an immunoassay. Combining the traditional chromogenic reagent with gold nanoparticles, our assay has the advantage in short response time (within three minutes), high sensitivity (10(-12) g mL(-1) for HBsAg) and stability. Copyright © 2016. Published by Elsevier B.V.

  20. Base-catalyzed tandem Michael/dehydro-Diels-Alder reaction of α,α-dicyanoolefins with electron-deficient 1,3-conjugated enynes: a facile entry to angularly fused polycycles.

    Science.gov (United States)

    Zhang, Mingrui; Zhang, Junliang

    2014-01-07

    Angularly fused carbocyclic frameworks and their heteroatom-substituted analogues exist in many natural products that display a broad and interesting range of biological activities. Preparation of polycyclic products by cycloaddition reactions have been the long-standing hot topic in the synthetic community. Dehydro-Diels-Alder (DDA) reactions are one class of dehydropericyclic reactions that are derived conceptually by systematic removal of hydrogen atom pairs. A base-promoted tandem Michael addition and DDA reaction of α,α-dicyanoolefins with electron-deficient 1,3-conjugated enynes was realized in which a DDA reaction takes place between the arylalkynes and electron-deficient tetrasubstituted olefin. The control experiments support the stepwise anionic reaction pathway rather than the concerted reaction pathway. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. How to Manage (Treat) Immediate-type Adverse Reactions to GBCA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S

    2016-01-01

    Acute nonrenal adverse reactions to gadolinium-based contrast agents are infrequent and occur often unexpectedly. Most reactions are self-limiting and do not require treatment. The remaining adverse reactions are either moderate or severe and they require medical treatment. Prompt and effective...

  2. BlenX-based compositional modeling of complex reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Judit Zámborszky

    2010-02-01

    Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.

  3. Random incidence absorption coefficients of porous absorbers based on local and extended reaction models

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the local reaction models give errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material and air cavity is important. If the absorber thickness is approximately 40% of the cavity depth, the local reaction...

  4. Explaining competitive reaction effects

    NARCIS (Netherlands)

    Leeflang, P.S.H.; Wittink, D.R.

    Changes in promotional expenditure decisions for a brand, as in other marketing decisions, should be based on the expected impact on purchase and consumption behavior as well as on the likely reactions by competitors. Purchase behavior may be predicted from estimated demand functions. Competitive

  5. Multi-catalysis cascade reactions based on the methoxycarbonylketene platform: diversity-oriented synthesis of functionalized non-symmetrical malonates for agrochemicals and pharmaceuticals.

    Science.gov (United States)

    Ramachary, Dhevalapally B; Venkaiah, Chintalapudi; Reddy, Y Vijayendar; Kishor, Mamillapalli

    2009-05-21

    In this paper we describe new multi-catalysis cascade (MCC) reactions for the one-pot synthesis of highly functionalized non-symmetrical malonates. These metal-free reactions are either five-step (olefination/hydrogenation/alkylation/ketenization/esterification) or six-step (olefination/hydrogenation/alkylation/ketenization/esterification/alkylation), and employ aldehydes/ketones, Meldrum's acid, 1,4-dihydropyridine/o-phenylenediamine, diazomethane, alcohols and active ethylene/acetylenes, and involve iminium-, self-, self-, self- and base-catalysis, respectively. Many of the products have direct application in agricultural and pharmaceutical chemistry.

  6. Nanoscopic analysis using Maruhn-Greiner theory by energy based variables in lattice for low energy nuclear reactions (LENRs)

    International Nuclear Information System (INIS)

    Cho, Hyo Sung; WooTae Ho

    2016-01-01

    Maruhn-Greiner theory is investigated for the low energy nuclear reactions (LENRs) in the aspect of the energy productions. Conventional nuclear reactions could give the hints in another kind of the nuclear theoretical utilizations. The results of simulations show the ranges of the configurations for H-ion to Pd with 10; 000 ions as 10 and 180 keV. The most probable ranges are 30 and 600 nanometers respectively. In the simulation result of broad energy regions, the cutoff energy, 350 keV , is very significant in analyzing the LENR, because the range usually depends on the entering particle, target particle, and energy of the entering particle. Therefore, the 350 keV shows there is priority for hydrogen interaction from the energy. In the analysis, the water (H_2O) has the better possibility in LENR after the 350 keV . Following the simulation for searching LENRs, the possible conditions that include the energy based variables of atomic ranges, Debye length, and reaction time has been investigated for the designed energy productions

  7. Flow injection chemiluminescence determination of lercanidipine based on N-chlorosuccinimide-eosin Y post-chemiluminescence reaction.

    Science.gov (United States)

    Wang, Guowei; Zhao, Fang; Gao, Ying

    2014-12-01

    A novel post-chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N-chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10(-10) to 3.0 × 10(-6)  g/mL with a detection limit of 2.3 × 10(-10) g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10(-8) g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Graphical reduction of reaction networks by linear elimination of species

    DEFF Research Database (Denmark)

    Saez Cornellana, Meritxell; Wiuf, Carsten; Feliu, Elisenda

    2017-01-01

    We give a graphically based procedure to reduce a reaction network to a smaller reaction network with fewer species after linear elimination of a set of noninteracting species. We give a description of the reduced reaction network, its kinetics and conservations laws, and explore properties...

  9. A web-based quantitative signal detection system on adverse drug reaction in China.

    Science.gov (United States)

    Li, Chanjuan; Xia, Jielai; Deng, Jianxiong; Chen, Wenge; Wang, Suzhen; Jiang, Jing; Chen, Guanquan

    2009-07-01

    To establish a web-based quantitative signal detection system for adverse drug reactions (ADRs) based on spontaneous reporting to the Guangdong province drug-monitoring database in China. Using Microsoft Visual Basic and Active Server Pages programming languages and SQL Server 2000, a web-based system with three software modules was programmed to perform data preparation and association detection, and to generate reports. Information component (IC), the internationally recognized measure of disproportionality for quantitative signal detection, was integrated into the system, and its capacity for signal detection was tested with ADR reports collected from 1 January 2002 to 30 June 2007 in Guangdong. A total of 2,496 associations including known signals were mined from the test database. Signals (e.g., cefradine-induced hematuria) were found early by using the IC analysis. In addition, 291 drug-ADR associations were alerted for the first time in the second quarter of 2007. The system can be used for the detection of significant associations from the Guangdong drug-monitoring database and could be an extremely useful adjunct to the expert assessment of very large numbers of spontaneously reported ADRs for the first time in China.

  10. Statistical formulation of gravitational radiation reaction

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1980-01-01

    A new formulation of the radiation-reaction problem is proposed, which is simpler than alternatives which have been used before. The new approach is based on the initial-value problem, uses approximations which need be uniformly valid only in compact regions of space-time, and makes no time-asymmetric assumptions (no a priori introduction of retarded potentials or outgoing-wave asymptotic conditions). It defines radiation reaction to be the expected evolution of a source obtained by averaging over a statistical ensemble of initial conditions. The ensemble is chosen to reflect one's complete lack of information (in real systems) about the initial data for the radiation field. The approach is applied to the simple case of a weak-field, slow-motion source in general relativity, where it yields the usual expressions for radiation reaction when the gauge is chosen properly. There is a discussion of gauge freedom, and another of the necessity of taking into account reaction corrections to the particle-conservation equation. The analogy with the second law of thermodynamics is very close, and suggests that the electromagnetic and thermodynamic arrows of time are the same. Because the formulation is based on the usual initial-value problem, it has no spurious ''runaway'' solutions

  11. Break-up reactions: theoretical aspects

    International Nuclear Information System (INIS)

    Baye, D.

    2007-01-01

    Breakup reactions are one of the main tools for the study of exotic nuclei. In particular, Coulomb breakup is expected to provide information on spectroscopic properties of halo nuclei and on astrophysical S factors for radiative-capture reactions. The simplest studies are based on perturbation theory and especially on its first order. However the validity of the first-order approximation may be limited for extended systems such as halo nuclei and its conditions are not always satisfied in existing experiments. More elaborate reaction models are available: resolution of the semi-classical time-dependent Schroedinger equation, eikonal and dynamical eikonal approximations, method of coupled discretized-continuum channels (CDCC). These methods are reviewed and summarized. Their interest and limitations are discussed. The Be 11 and B 8 breakups are treated as examples of the various approximations. (author)

  12. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    Science.gov (United States)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  13. Identification of aflatoxigenic fungi using polymerase chain reaction-based assay

    Directory of Open Access Journals (Sweden)

    Šošo Vladislava M.

    2014-01-01

    Full Text Available As the aflatoxins represent a health-risk for humans because of their proven carcinogenicity, food-borne fungi that produce them as secondary metabolites, mainly Aspergillus flavus and Aspergillus parasiticus, have to be isolated and identified. The best argument for identifying problem fungi is that it indicates control points within the food system as part of a hazard analysis critical control point (HACCP approach. This assumes there is a close link between fungus and toxin. Conventional methods for isolation and identification of fungi are time consuming and require admirably dedicated taxonomists. Hence, it is imperative to develop methodologies that are relatively rapid, highly specific and as an alternative to the existing methods. The polymerase chain reaction (PCR facilitates the in vitro amplification of the target sequence. The main advantages of PCR is that organisms need not be cultured, at least not for a long time, prior to their detection, target DNA can be detected even in a complex mixture, no radioactive probes are required, it is rapid, sensitive and highly versatile. The gene afl-2 has been isolated and shown to regulate aflatoxin biosynthesis in A. flavus. Also, the PCR reaction was targeted against aflatoxin synthesis regulatory gene (aflR1 since these genes are nearly identical in A. flavus and A. parasiticus in order to indicate the possibility of detection of both the species with the same PCR system (primers/reaction. [Projekat Ministarstva nauke Republike Srbije, br. III46009

  14. An integrated one-chip-sensor system for microRNA quantitative analysis based on digital droplet polymerase chain reaction

    Science.gov (United States)

    Tsukuda, Masahiko; Wiederkehr, Rodrigo Sergio; Cai, Qing; Majeed, Bivragh; Fiorini, Paolo; Stakenborg, Tim; Matsuno, Toshinobu

    2016-04-01

    A silicon microfluidic chip was developed for microRNA (miRNA) quantitative analysis. It performs sequentially reverse transcription and polymerase chain reaction in a digital droplet format. Individual processes take place on different cavities, and reagent and sample mixing is carried out on a chip, prior to entering each compartment. The droplets are generated on a T-junction channel before the polymerase chain reaction step. Also, a miniaturized fluorescence detector was developed, based on an optical pick-up head of digital versatile disc (DVD) and a micro-photomultiplier tube. The chip integrated in the detection system was tested using synthetic miRNA with known concentrations, ranging from 300 to 3,000 templates/µL. Results proved the functionality of the system.

  15. Simple and reusable picoinjector for liquid delivery via nanofluidics approach

    KAUST Repository

    Li, Shunbo; Cao, Wenbin; Hui, Yu Sanna; Wen, Weijia

    2014-01-01

    Precise control of sample volume is one of the most important functions in lab-on-a-chip (LOC) systems, especially for chemical and biological reactions. The common approach used for liquid delivery involves the employment of capillaries and microstructures for generating a droplet which has a volume in the nanoliter or picoliter range. Here, we report a novel approach for constructing a picoinjector which is based on well-controlled electroosmotic (EO) flow to electrokinetically drive sample solutions. This picoinjector comprises an array of interconnected nanochannels for liquid delivery. Such technique for liquid delivery has the advantages of well-controlled sample volume and reusable nanofluidic chip, and it was reported for the first time. In the study of the pumping process for this picoinjector, the EO flow rate was determined by the intensity of the fluorescent probe. The influence of ion concentration in electrolyte solutions over the EO flow rate was also investigated and discussed. The application of this EO-driven picoinjector for chemical reactions was demonstrated by the reaction between Fluo-4 and calcium chloride with the reaction cycle controlled by the applied square waves of different duty cycles. The precision of our device can reach down to picoliter per second, which is much smaller than that of most existing technologies. This new approach, thus, opens further possibilities of adopting nanofluidics for well-controlled chemical reactions with particular applications in nanoparticle synthesis, bimolecular synthesis, drug delivery, and diagnostic testing.

  16. Simple and reusable picoinjector for liquid delivery via nanofluidics approach

    KAUST Repository

    Li, Shunbo

    2014-03-25

    Precise control of sample volume is one of the most important functions in lab-on-a-chip (LOC) systems, especially for chemical and biological reactions. The common approach used for liquid delivery involves the employment of capillaries and microstructures for generating a droplet which has a volume in the nanoliter or picoliter range. Here, we report a novel approach for constructing a picoinjector which is based on well-controlled electroosmotic (EO) flow to electrokinetically drive sample solutions. This picoinjector comprises an array of interconnected nanochannels for liquid delivery. Such technique for liquid delivery has the advantages of well-controlled sample volume and reusable nanofluidic chip, and it was reported for the first time. In the study of the pumping process for this picoinjector, the EO flow rate was determined by the intensity of the fluorescent probe. The influence of ion concentration in electrolyte solutions over the EO flow rate was also investigated and discussed. The application of this EO-driven picoinjector for chemical reactions was demonstrated by the reaction between Fluo-4 and calcium chloride with the reaction cycle controlled by the applied square waves of different duty cycles. The precision of our device can reach down to picoliter per second, which is much smaller than that of most existing technologies. This new approach, thus, opens further possibilities of adopting nanofluidics for well-controlled chemical reactions with particular applications in nanoparticle synthesis, bimolecular synthesis, drug delivery, and diagnostic testing.

  17. Ultraselective electrochemiluminescence biosensor based on locked nucleic acid modified toehold-mediated strand displacement reaction and junction-probe.

    Science.gov (United States)

    Zhang, Xi; Zhang, Jing; Wu, Dongzhi; Liu, Zhijing; Cai, Shuxian; Chen, Mei; Zhao, Yanping; Li, Chunyan; Yang, Huanghao; Chen, Jinghua

    2014-12-07

    Locked nucleic acid (LNA) is applied in toehold-mediated strand displacement reaction (TMSDR) to develop a junction-probe electrochemiluminescence (ECL) biosensor for single-nucleotide polymorphism (SNP) detection in the BRCA1 gene related to breast cancer. More than 65-fold signal difference can be observed with perfectly matched target sequence to single-base mismatched sequence under the same conditions, indicating good selectivity of the ECL biosensor.

  18. The base catalysed hydrolysis of methyl paraben: a test reaction for flow microcalorimeters used for determination of both kinetic and thermodynamic parameters

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, M.A.A.; Beezer, A.E.; Labetoulle, C.; Nicolaides, L.; Mitchell, J.C.; Orchard, J.A.; Connor, J.A.; Kemp, R.B.; Olomolaiye, D

    2003-03-24

    The results of an inter/intra-laboratory study into a test and reference reaction for isothermal microcalorimeters, the imidazole catalysed hydrolysis of triacetin, have been reported in a recent paper [Thermochim. Acta 380 (2001) 13]. The results and conclusions drawn from this study have been extended to a consideration of the need for a similar test and reference reaction for isothermal microcalorimeters operating in flow mode. This paper reports the findings of a preliminary inter/intra-laboratory study of the base catalysed hydrolysis of methyl 4-hydroxy benzoate (methyl paraben) and its suitability as a test and reference reaction. The derived values for the hydrolysis reaction were (3.15{+-}0.11)x10{sup -4} s{sup -1} and -50.5{+-}4.3 kJ mol{sup -1} for the rate constant and enthalpy, respectively. It is also reported how such a test and reference reaction can be used to validate the thermal output from a LKB 10-700-1 and Thermometric Thermal Activity Monitor (TAM) 2277-202 flow microcalorimeters.

  19. Kinetics and mechanism of the base-catalysed reaction of 4 ...

    African Journals Online (AJOL)

    NPMPF) in benzene has been investigated at 27oC and in the presence of functionally similar, but structurally different addenda, namely; imidazole, pyridine and triethylamine. The reaction is catalysed by the nucleophile and imidazole in a linear ...

  20. Visualization of reaction mechanism by CG based on quantum ...

    African Journals Online (AJOL)

    In this work, the change in the molecular configuration in fundamental chemical reactions such as, F + HCl ¨ HF + Cl, I + H2¨ HI + H, OH- + CH3Cl ¨ CH3OH + Cl-, and esterification of acetic acid and ethyl alcohol were visualized by the quantum chemical calculation MOPAC with PM5 Hamiltonian. The CG teaching material ...

  1. Submicroscopic malaria parasite carriage: how reproducible are polymerase chain reaction-based methods?

    Directory of Open Access Journals (Sweden)

    Daniela Camargos Costa

    2014-02-01

    Full Text Available The polymerase chain reaction (PCR-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34 of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.

  2. Role amplification of the coulomb interaction in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok; Soni, S K; Pancholi, S K; Gupta, S L [AN SSSR, Moscow. Radiotekhnicheskij Inst.

    1976-10-01

    The genarally adopted estimate of coulomb interaction in nuclear reactions based on the comparison of relative energies of real particles participating in the reaction with the coulomb barrier has been shown to provide wrong presentation of the role of coulomb interaction in the reaction mechanism. The relative energy of particles participating in virtual processes forming the reaction mechanism and its relation to the coulomb barrier turn out to be tens of per cent less than for the particles in an inlet channel. This is the main reason of increasing the role of coulomb interaction in the reaction mechanism. This increase is particularly significant for nuclei with large charges, in particular, in heavy ion reaction.

  3. Lab-on-a-chip based total-phosphorus analysis device utilizing a photocatalytic reaction

    Science.gov (United States)

    Jung, Dong Geon; Jung, Daewoong; Kong, Seong Ho

    2018-02-01

    A lab-on-a-chip (LOC) device for total phosphorus (TP) analysis was fabricated for water quality monitoring. Many commercially available TP analysis systems used to estimate water quality have good sensitivity and accuracy. However, these systems also have many disadvantages such as bulky size, complex pretreatment processes, and high cost, which limit their application. In particular, conventional TP analysis systems require an indispensable pretreatment step, in which the fluidic analyte is heated to 120 °C for 30 min to release the dissolved phosphate, because many phosphates are soluble in water at a standard temperature and pressure. In addition, this pretreatment process requires elevated pressures of up to 1.1 kg cm-2 in order to prevent the evaporation of the heated analyte. Because of these limiting conditions required by the pretreatment processes used in conventional systems, it is difficult to miniaturize TP analysis systems. In this study, we employed a photocatalytic reaction in the pretreatment process. The reaction was carried out by illuminating a photocatalytic titanium dioxide (TiO2) surface formed in a microfluidic channel with ultraviolet (UV) light. This pretreatment process does not require elevated temperatures and pressures. By applying this simplified, photocatalytic-reaction-based pretreatment process to a TP analysis system, greater degrees of freedom are conferred to the design and fabrication of LOC devices for TP monitoring. The fabricated LOC device presented in this paper was characterized by measuring the TP concentration of an unknown sample, and comparing the results with those measured by a conventional TP analysis system. The TP concentrations of the unknown sample measured by the proposed LOC device and the conventional TP analysis system were 0.018 mgP/25 mL and 0.019 mgP/25 mL, respectively. The experimental results revealed that the proposed LOC device had a performance comparable to the conventional bulky TP analysis

  4. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  5. Highly sensitive "signal-on" electrochemiluminescent biosensor for the detection of DNA based on dual quenching and strand displacement reaction.

    Science.gov (United States)

    Lou, Jing; Wang, Zhaoyin; Wang, Xiao; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-10-07

    A "signal-on" electrochemiluminescent DNA biosensing platform was proposed based on the dual quenching and strand displacement reaction. This novel "signal-on" detection strategy revealed its sensitivity in achieving a detection limit of 2.4 aM and its selectivity in distinguishing single nucleotide polymorphism of target DNA.

  6. Extracting reaction networks from databases-opening Pandora's box.

    Science.gov (United States)

    Fearnley, Liam G; Davis, Melissa J; Ragan, Mark A; Nielsen, Lars K

    2014-11-01

    Large quantities of information describing the mechanisms of biological pathways continue to be collected in publicly available databases. At the same time, experiments have increased in scale, and biologists increasingly use pathways defined in online databases to interpret the results of experiments and generate hypotheses. Emerging computational techniques that exploit the rich biological information captured in reaction systems require formal standardized descriptions of pathways to extract these reaction networks and avoid the alternative: time-consuming and largely manual literature-based network reconstruction. Here, we systematically evaluate the effects of commonly used knowledge representations on the seemingly simple task of extracting a reaction network describing signal transduction from a pathway database. We show that this process is in fact surprisingly difficult, and the pathway representations adopted by various knowledge bases have dramatic consequences for reaction network extraction, connectivity, capture of pathway crosstalk and in the modelling of cell-cell interactions. Researchers constructing computational models built from automatically extracted reaction networks must therefore consider the issues we outline in this review to maximize the value of existing pathway knowledge. © The Author 2013. Published by Oxford University Press.

  7. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction

    Science.gov (United States)

    Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu

    2018-02-01

    In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.

  8. Minisatellite Attitude Guidance Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ion STROE

    2015-06-01

    Full Text Available In a previous paper [2], the active torques needed for the minisatellite attitude guidance from one fixed attitude posture to another fixed attitude posture were determined using an inverse dynamics method. But when considering reaction/momentum wheels, instead of this active torques computation, the purpose is to compute the angular velocities of the three reaction wheels which ensure the minisatellite to rotate from the initial to the final attitude. This paper presents this computation of reaction wheels angular velocities using a similar inverse dynamics method based on inverting Euler’s equations of motion for a rigid body with one fixed point, written in the framework of the x-y-z sequence of rotations parameterization. For the particular case A=B not equal C of an axisymmetric minisatellite, the two computations are compared: the active torques computation versus the computation of reaction wheels angular velocities ̇x , ̇y and ̇z. An interesting observation comes out from this numerical study: if the three reaction wheels are identical (with Iw the moment of inertia of one reaction wheel with respect to its central axis, then the evolutions in time of the products between Iw and the derivatives of the reaction wheels angular velocities, i.e. ̇ , ̇ and ̇ remain the same and do not depend on the moment of inertia Iw.

  9. Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods.

    Science.gov (United States)

    Kassem, Summer; Ahmed, Marawan; El-Sheikh, Salah; Barakat, Khaled H

    2015-11-01

    Entropy of binding constitutes a major, and in many cases a detrimental, component of the binding affinity in biomolecular interactions. While the enthalpic part of the binding free energy is easier to calculate, estimating the entropy of binding is further more complicated. A precise evaluation of entropy requires a comprehensive exploration of the complete phase space of the interacting entities. As this task is extremely hard to accomplish in the context of conventional molecular simulations, calculating entropy has involved many approximations. Most of these golden standard methods focused on developing a reliable estimation of the conformational part of the entropy. Here, we review these methods with a particular emphasis on the different techniques that extract entropy from atomic fluctuations. The theoretical formalisms behind each method is explained highlighting its strengths as well as its limitations, followed by a description of a number of case studies for each method. We hope that this brief, yet comprehensive, review provides a useful tool to understand these methods and realize the practical issues that may arise in such calculations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. An Equilibrium-Based Model of Gas Reaction and Detonation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    2000-01-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999

  11. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    Science.gov (United States)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  12. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    Science.gov (United States)

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-11-15

    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Theoretical analysis of thermal molten metal-water reactions

    International Nuclear Information System (INIS)

    Schwalbe, W.

    1982-01-01

    In experiments with greater masses (kg-scale) two extreme cases had been oberved during the course of reaction when hot melt reacted with a vaporizable cooler liquid. Relatively mild hot interactions with slow pressure build-up and small pressure peak in the reaction volume often occurred but there were also some very violent reactions (steam explosions) where a remarkable portion of thermal energy had been transformed into mechanical energy with high pressure peaks. For the two types of reactions overall models for water as a coolant are developed here. Based on calculations and on comparisons with corresponding experiments it is shown that a relatively mild course of reaction can be explained by a fragmentation of the melt under following violent evaporation of the cooling medium. Pressures only with small reaction volumes up to the MPa range can be found in these reactions. The calculations, for example of Bird and Millington, showed a pressure maximum of 1 MPa after 170 ms of the start of the reaction; this agrees very well with the result of the experiment of 1.08 MPa. (orig./GL) [de

  14. Spallation reactions - physics and applications

    International Nuclear Information System (INIS)

    Kelic, A.; Ricciardi, M.; Schmidt, K-H.

    2009-01-01

    Spallation reactions have become an ideal tool for studying the equation of state and thermal instabilities of nuclear matter. In astrophysics, the interactions of cosmic rays with the interstellar medium have to be understood in detail for deducing their original composition and their production mechanisms. Renewed interest in spallation reactions with protons around 1 GeV came up recently with the developments of spallation neutron sources. The project of an accelerator-driven system (ADS) as a technological solution for incinerating the radioactive waste even intensified the efforts for better understanding the physics involved in the spallation process. Experiments on spallation reactions were performed for determining the production cross sections and properties of particles, fragments and heavy residues. Traditional experiments on heavy residues, performed in direct kinematics, were limited to the direct observation of long-lived radioactive nuclides and did not provide detailed information on the kinematics of the reaction. Therefore, an innovative experimental method has been developed, based on inverse kinematics, which allowed to identify all reaction residues in-flight, using the high resolution magnetic spectrometer FRS of GSL Darmstadt. It also gives direct access to the reaction kinematics. An experimental campaign has been carried out in a Europe-wide collaboration, investigating the spallation of several nuclei ranging from 56 Fe to 238 U Complementary experiments were performed with a full-acceptance detection system, yielding total fission cross sections. Recently, another detection system using the large acceptance ALADIN dipole and the LAND neutron detector was introduced to measure light particles in coincidence with the heavy residues. Another intense activity was dedicated to developing codes, which cover nuclear reactions occurring in an ADS. The first phase of the reaction is successfully described by a sequence of quasi-free nucleon

  15. Outpatient desensitization in selected patients with platinum hypersensitivity reactions.

    Science.gov (United States)

    O'Malley, David M; Vetter, Monica Hagan; Cohn, David E; Khan, Ambar; Hays, John L

    2017-06-01

    Platinum-based chemotherapies are a standard treatment for both initial and recurrent gynecologic cancers. Given this widespread use, it is important to be aware of the features of platinum hypersensitivity reactions and the subsequent treatment of these reactions. There is also increasing interest in the development of desensitization protocols to allow patients with a history of platinum hypersensitivity to receive further platinum based therapy. In this review, we describe the management of platinum hypersensitivity reactions and the desensitization protocols utilized at our institution. We also describe the clinical categorizations utilized to triage patients to appropriate desensitization protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Sorption-enhanced water gas shift reaction for high-purity hydrogen production: Application of a Na-Mg double salt-based sorbent and the divided section packing concept

    International Nuclear Information System (INIS)

    Lee, Chan Hyun; Lee, Ki Bong

    2017-01-01

    Highlights: •Na-Mg double salt-based sorbent was used for high-temperature CO 2 sorption. •Divided section packing concept was applied to the SE-WGS reaction. •High-purity H 2 was produced from the SE-WGS reaction with divided section packing. •High-purity H 2 productivity could be further enhanced by modifying packing method. -- Abstract: Hydrogen is considered a promising environmentally benign energy carrier because it has high energy density and produces no pollutants when it is converted into other types of energy. The sorption-enhanced water gas shift (SE-WGS) reaction, where the catalytic WGS reaction and byproduct CO 2 removal are carried out simultaneously in a single reactor, has received considerable attention as a novel method for high-purity hydrogen production. Since the high-purity hydrogen productivity of the SE-WGS reaction is largely dependent on the performance of the CO 2 sorbent, the development of sorbents having high CO 2 sorption capacity is crucial. Recently, a Na-Mg double salt-based sorbent has been considered for high-temperature CO 2 capture since it has been reported to have a high sorption capacity and fast sorption kinetics. In this study, the SE-WGS reaction was experimentally demonstrated using a commercial catalyst and a Na-Mg double salt-based sorbent. However, the SE-WGS reaction with a one-body hybrid solid, a physical admixture of catalyst and sorbent, showed poor reactivity and reduced CO 2 sorption uptake. As a result, a divided section packing concept was suggested as a solution. In the divided section packing method, the degree of mixing for the catalyst and sorbent in a column can be controlled by the number of sections. High-purity hydrogen (<10 ppm CO) was produced directly from the SE-WGS reaction with divided section packing, and the hydrogen productivity was further improved when the reactor column was divided into more sections and packed with more sorbent.

  17. Reclassifying Anaphylaxis to Neuromuscular Blocking Agents Based on the Presumed Patho-Mechanism: IgE-Mediated, Pharmacological Adverse Reaction or “Innate Hypersensitivity”?

    Directory of Open Access Journals (Sweden)

    David Spoerl

    2017-06-01

    Full Text Available Approximately 60% of perioperative anaphylactic reactions are thought to be immunoglobulin IgE mediated, whereas 40% are thought to be non-IgE mediated hypersensitivity reactions (both considered non-dose-related type B adverse drug reactions. In both cases, symptoms are elicited by mast cell degranulation. Also, pharmacological reactions to drugs (type A, dose-related may sometimes mimic symptoms triggered by mast cell degranulation. In case of hypotension, bronchospasm, or urticarial rash due to mast cell degranulation, identification of the responsible mechanism is complicated. However, determination of the type of the underlying adverse drug reaction is of paramount interest for the decision of whether the culprit drug may be re-administered. Neuromuscular blocking agents (NMBA are among the most frequent cause of perioperative anaphylaxis. Recently, it has been shown that NMBA may activate mast cells independently from IgE antibodies via the human Mas-related G-protein-coupled receptor member X2 (MRGPRX2. In light of this new insight into the patho-mechanism of pseudo-allergic adverse drug reactions, in which as drug-receptor interaction results in anaphylaxis like symptoms, we critically reviewed the literature on NMBA-induced perioperative anaphylaxis. We challenge the dogma that NMBA mainly cause IgE-mediated anaphylaxis via an IgE-mediated mechanism, which is based on studies that consider positive skin test to be specific for IgE-mediated hypersensitivity. Finally, we discuss the question whether MRGPRX2 mediated pseudo-allergic reactions should be re-classified as type A adverse reactions.

  18. Stellar evolution and the triple-α reactions

    International Nuclear Information System (INIS)

    Suda, Takuma

    2014-01-01

    Nuclear reaction rates play a crucial role in the evolution of stars. For low-mass stars, the triple-α reaction controls the helium burning stars in the red giant and asymptotic giant branch (AGB) phase. More importantly, the cross section of the triple-α reaction has a great impact on the helium ignition at the center of the electron degenerate helium core of red giants and on the helium shell flashes of AGB stars. It is to be noted that stellar evolution models are influenced not only by the value of the cross section, but also by the temperature dependence of the reaction rate. In this paper, I present the impact of the triple-α reaction rates on the evolution of low-mass metal-free stars and intermediate-mass AGB stars. According to the previous study, the constraint on the triple-α reaction rate is derived based on stellar evolution theory. It is found that the recent revisions of the rate proposed by nuclear physics calculations satisfy the condition for the ignition of the helium core flash in low-mass stars

  19. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  20. Contributions of separate reactions to the acid-base buffering of soils in brook floodplains (Central Forest State Reserve)

    Science.gov (United States)

    Sokolova, T. A.; Tolpeshta, I. I.; Rusakova, E. S.

    2016-04-01

    The acid-base buffering of gleyic gray-humus soils developed in brook floodplains and undisturbed southern-taiga landscapes has been characterized by the continuous potentiometric titration of soil water suspensions. During the interaction with an acid, the major amount of protons (>80%) is consumed for the displacement of exchangeable bases and the dissolution of Ca oxalates. In the O and AY horizons, Mn compounds make the major contribution (2-15%) to the acid buffering. The buffer reactions with the participation of Al compounds make up from 0.5 to 1-2% of the total buffering capacity, and the protonation of the surface OH groups of kaolinite consumes 2-3% of the total buffering capacity. The deprotonation of OH groups on the surface of Fe hydroxides (9-43%), the deprotonation of OH groups on the surface of illite crystals (3-19%), and the dissolution of unidentified aluminosilicates (9-14%) are the most significant buffer reactions whose contributions have been quantified during the interaction with a base. The contribution of the deprotonation of OH groups on the surface of kaolinite particles is lower (1-5%) because of the small specific surface area of this mineral, and that of the dissolution of Fe compounds is insignificant. In the AY horizon, the acid and base buffering of soil in the rhizosphere is higher than beyond the rhizosphere because of the higher contents of organic matter and nonsilicate Fe and Al compounds.