WorldWideScience

Sample records for bimodal velocity distribution

  1. A bimodal flexible distribution for lifetime data

    OpenAIRE

    Ramires, Thiago G.; Ortega, Edwin M. M.; Cordeiro, Gauss M.; Hens, Niel

    2016-01-01

    A four-parameter extended bimodal lifetime model called the exponentiated log-sinh Cauchy distribution is proposed. It extends the log-sinh Cauchy and folded Cauchy distributions. We derive some of its mathematical properties including explicit expressions for the ordinary moments and generating and quantile functions. The method of maximum likelihood is used to estimate the model parameters. We implement the fit of the model in the GAMLSS package and provide the codes. The flexibility of the...

  2. The Centaurus cluster of galaxies. II. The bimodal-velocity structure

    International Nuclear Information System (INIS)

    Lucey, J.R.; Currie, M.J.; Dickens, R.J.

    1985-09-01

    This is the second paper in a series that describes an extensive study of the Centaurus cluster of galaxies. The paper concerns the bimodal velocity distribution of the galaxies in the cluster. The likely location of the two main cluster components is discussed. The data strongly favours the hypothesis that the two components lie within the same cluster. (UK)

  3. Velocity selection for ultra-cold atoms using bimodal mazer cavity

    International Nuclear Information System (INIS)

    Irshad, A.; Qamar, S.

    2009-04-01

    In this paper, we discuss the velocity selection of ultra-cold three-level atoms in Λ configuration using a micromazer. Our model is the same as discussed by Arun et al., for mazer action in a bimodal cavity. We have shown that significantly narrowed velocity distribution of ultra-cold atoms can be obtained in this system due to the presence of dark states. (author)

  4. Asymmetric Bimodal Exponential Power Distribution on the Real Line

    Directory of Open Access Journals (Sweden)

    Mehmet Niyazi Çankaya

    2018-01-01

    Full Text Available The asymmetric bimodal exponential power (ABEP distribution is an extension of the generalized gamma distribution to the real line via adding two parameters that fit the shape of peakedness in bimodality on the real line. The special values of peakedness parameters of the distribution are a combination of half Laplace and half normal distributions on the real line. The distribution has two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using these parameters. Adding a skewness parameter is considered to model asymmetry in data. The location-scale form of this distribution is proposed. The Fisher information matrix of these parameters in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood estimates of parameters of ABEP and other distributions having an algorithm for artificial data generation procedure are provided to test the similarity with real data. A brief simulation study is presented.

  5. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    Science.gov (United States)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  6. Evidence for a bimodal distribution in human communication.

    Science.gov (United States)

    Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2010-11-02

    Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc.

  7. Bimodal distribution of damage morphology generated by ion implantation

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A nucleation and evolution model of damage based on amorphous pockets (APs) has recently been developed and implemented in an atomistic kinetic Monte Carlo simulator. In the model, APs are disordered structures (I n V m ), which are agglomerates of interstitials (I) and vacancies (V). This model has been used to study the composition and size distribution of APs during different ion implantations. Depending strongly on the dose rate, ion mass and implant temperature, the APs can evolve to a defect population where the agglomerates have a similar number of I and V (n ∼ m), or to a defect population with pure I (m ∼ 0) and pure V (n ∼ 0) clusters, or a mixture of APs and clusters. This behaviour corresponds to a bimodal (APs/clusters) distribution of damage. As the AP have different thermal stability compared to the I and V clusters, the same damage concentration obtained through different implant conditions has a different damage morphology and, consequently, exhibit a different resistance to subsequent thermal treatments

  8. Bimodal distribution of glucose is not universally useful for diagnosing diabetes

    DEFF Research Database (Denmark)

    Vistisen, Dorte; Colagiuri, Stephen; Borch-Johnsen, Knut

    2009-01-01

    OBJECTIVE: Bimodality in the distribution of glucose has been used to define the cut point for the diagnosis of diabetes. Previous studies on bimodality have primarily been in populations with a high prevalence of type 2 diabetes, including one study in a white Caucasian population. All studies i...

  9. Estimation of Bimodal Urban Link Travel Time Distribution and Its Applications in Traffic Analysis

    Directory of Open Access Journals (Sweden)

    Yuxiong Ji

    2015-01-01

    Full Text Available Vehicles travelling on urban streets are heavily influenced by traffic signal controls, pedestrian crossings, and conflicting traffic from cross streets, which would result in bimodal travel time distributions, with one mode corresponding to travels without delays and the other travels with delays. A hierarchical Bayesian bimodal travel time model is proposed to capture the interrupted nature of urban traffic flows. The travel time distributions obtained from the proposed model are then considered to analyze traffic operations and estimate travel time distribution in real time. The advantage of the proposed bimodal model is demonstrated using empirical data, and the results are encouraging.

  10. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    International Nuclear Information System (INIS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-01-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m−1|⪡1) and the Beer–Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's S B (J-S B ) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-S B and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-S B function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available. - Highlights: • Bimodal PSDs are retrieved by ACO based on probability density function accurately. • J-S B and M-β functions can be used as the versatile function to recover bimodal PSDs. • Bimodal aerosol PSDs can be estimated by J-S B function more reasonably

  11. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    Science.gov (United States)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  12. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications

    NARCIS (Netherlands)

    Sun, D.G.; Bloemendal, J.; Rea, D.K.; An, Z.S.; Vandenberghe, J.; Lu, H.; Su, R.; Liu, T.S.

    2004-01-01

    Grain-size analysis indicates that Chinese loess generally shows a bimodal distribution with a coarse and a fine component. The coarse component, comprising the main part of the loess, has pronounced kurtosis and is well sorted, which is interpreted to be the product of dust storms generated by

  13. Looking for bimodal distributions in multi-fragmentation reactions

    International Nuclear Information System (INIS)

    Gulminelli, F.

    2007-01-01

    The presence of a phase transition in a finite system can be deduced, together with its order, from the form of the distribution of the order parameter. This issue has been extensively studied in multifragmentation experiments, with results that do not appear fully consistent. In this paper we discuss the effect of the statistical ensemble or sorting conditions on the form of fragment distributions, and propose a new method, which can be easily implemented experimentally, to discriminate between different fragmentation scenarios. This method, based on a re-weighting of the measured distribution to account for the experimental constraints linked to the energy deposit, is tested on different simple models, and appears to provide a powerful discrimination. (author)

  14. Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution

    Science.gov (United States)

    Dillard, Leslie A.; Essaid, Hedeff I.; Herkelrath, William N.

    1997-01-01

    Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal lognormally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.

  15. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    Science.gov (United States)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 μm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  16. Thermal induced carrier's transfer in bimodal size distribution InAs/GaAs quantum dots

    Science.gov (United States)

    Ilahi, B.; Alshehri, K.; Madhar, N. A.; Sfaxi, L.; Maaref, H.

    2018-06-01

    This work reports on the investigation of the thermal induced carriers' transfer mechanism in vertically stacked bimodal size distribution InAs/GaAs quantum dots (QD). A model treating the QD as a localized states ensemble (LSE) has been employed to fit the atypical temperature dependence of the photoluminescence (PL) emission energies and linewidth. The results suggest that thermally activated carriers transfer within the large size QD family occurs through the neighboring smaller size QD as an intermediate channel before direct carriers redistribution. The obtained activation energy suggests also the possible contribution of the wetting layer (WL) continuum states as a second mediator channel for carriers transfer.

  17. Velocity distribution of fragments of catastrophic impacts

    Science.gov (United States)

    Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi

    1992-01-01

    Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.

  18. Velocity distribution in snow avalanches

    Science.gov (United States)

    Nishimura, K.; Ito, Y.

    1997-12-01

    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  19. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    International Nuclear Information System (INIS)

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment

  20. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  1. In-situ observations of a bi-modal ion distribution in the outer coma of comet P/Halley

    Science.gov (United States)

    Thomsen, M. F.; Feldman, W. C.; Wilken, B.; Jockers, K.; Stuedemann, W.

    1987-01-01

    Observations obtained by the Johnstone Plasma Analyzer on the Giotto fly-by of comet Halley showed a fairly sudden decrease in the count rate of energetic (about 30 KeV) water-group ions inside about 500,000 km from the nucleus. This decrease was accompanied by the appearance of a new water-group ion population at slightly lower energies (less than 10 KeV). Close inspection reveals that this lower-energy peak was also present somewhat earlier in the postshock flow but only became prominent near the sudden transition just described. It is shown that the observed bimodal ion distribution is well explained in terms of the velocity history of the accreting solar wind flow in the outer coma. The decline in count rate of the energetic pick-up distribution is due to a relatively sudden slowing of the bulk flow there and not to a loss of particles. Hence, charge-exchange cooling of the flow is probably not important at these distances from the nucleus. The observations suggest that pitch-angle scattering is fairly efficient at least after the bow shock, but that energy diffusion is probably not very efficient.

  2. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  3. Bimodal Nanoparticle Size Distributions Produced by Laser Ablation of Microparticles in Aerosols

    International Nuclear Information System (INIS)

    Nichols, William T.; Malyavanatham, Gokul; Henneke, Dale E.; O'Brien, Daniel T.; Becker, Michael F.; Keto, John W.

    2002-01-01

    Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3-6-nm) and a second, less populated mode at larger sizes (11-16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3-4.2-J/cm 2 . Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser-solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles

  4. Diverse Kir expression contributes to distinct bimodal distribution of resting potentials and vasotone responses of arterioles.

    Directory of Open Access Journals (Sweden)

    Yuqin Yang

    Full Text Available The resting membrane potential (RP of vascular smooth muscle cells (VSMCs is a major determinant of cytosolic calcium concentration and vascular tone. The heterogeneity of RPs and its underlying mechanism among different vascular beds remain poorly understood. We compared the RPs and vasomotion properties between the guinea pig spiral modiolar artery (SMA, brain arterioles (BA and mesenteric arteries (MA. We found: 1 RPs showed a robust bimodal distribution peaked at -76 and -40 mV evenly in the SMA, unevenly at -77 and -51 mV in the BA and ~-71 and -52 mV in the MA. Ba(2+ 0.1 mM eliminated their high RP peaks ~-75 mV. 2 Cells with low RP (~-45 mV hyperpolarized in response to 10 mM extracellular K(+, while cells with a high RP depolarized, and cells with intermediate RP (~-58 mV displayed an initial hyperpolarization followed by prolonged depolarization. Moderate high K(+ typically induced dilation, constriction and a dilation followed by constriction in the SMA, MA and BA, respectively. 3 Boltzmann-fit analysis of the Ba(2+-sensitive inward rectifier K(+ (Kir whole-cell current showed that the maximum Kir conductance density significantly differed among the vessels, and the half-activation voltage was significantly more negative in the MA. 4 Corresponding to the whole-cell data, computational modeling simulated the three RP distribution patterns and the dynamics of RP changes obtained experimentally, including the regenerative swift shifts between the two RP levels after reaching a threshold. 5 Molecular works revealed strong Kir2.1 and Kir2.2 transcripts and Kir2.1 immunolabeling in all 3 vessels, while Kir2.3 and Kir2.4 transcript levels varied. We conclude that a dense expression of functional Kir2.X channels underlies the more negative RPs in endothelial cells and a subset of VSMC in these arterioles, and the heterogeneous Kir function is primarily responsible for the distinct bimodal RPs among these arterioles. The fast Kir

  5. On the velocity distributions of granular gases

    International Nuclear Information System (INIS)

    Polito, A.M.M.; Rocha Filho, T.M.; Figueiredo, A.

    2009-01-01

    We present a new approach to determine velocity distributions in granular gases to improve the Sonine polynomial expansion of the velocity distribution function, at higher inelasticities, for the homogeneous cooling regime of inelastic hard spheres. The perturbative consistency is recovered using a new set of dynamical variables based on the characteristic function and we illustrate our approach by computing the first four Sonine coefficients for moderate and high inelasticities. The analytical coefficients are compared with molecular dynamics simulations results and with a previous approach by Huthmann et al.

  6. Elaboration of austenitic stainless steel samples with bimodal grain size distributions and investigation of their mechanical behavior

    Science.gov (United States)

    Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.

    2017-10-01

    Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.

  7. THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ∼< 1

    International Nuclear Information System (INIS)

    Lehner, N.; Howk, J. C.; Tripp, T. M.; Tumlinson, J.; Thom, C.; Fox, A. J.; Prochaska, J. X.; Werk, J. K.; O'Meara, J. M.; Ribaudo, J.

    2013-01-01

    We assess the metal content of the cool (∼10 4 K) circumgalactic medium (CGM) about galaxies at z ∼ H I ∼ H I selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N H I in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H] ≅ –1.6 and –0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z ∼< 1 galaxies.

  8. Anisotropy of dark matter velocity distribution

    OpenAIRE

    Nagao, Keiko I.

    2018-01-01

    Direct detection of dark matter with directional sensitivity has the potential to discriminate the dark matter velocity distribution. Especially, it will be suitable to discriminate isotropic distribution from anisotropic one. Analyzing data produced with Monte-Carlo simulation, required conditions for the discrimination is estimated. If energy threshold of detector is optimized, $O(10^3-10^4)$ event number is required to discriminate the anisotropy.

  9. Velocity distributions in dilute granular systems

    NARCIS (Netherlands)

    van Zon, J.S.; Mac Kintosh, F.C.

    2005-01-01

    We investigate the idea that velocity distributions in granular gases are determined mainly by η, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases

  10. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  11. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dengchao; Ni Wenbin; Pang Huan; Lu Qingyi; Huang Zhongjie [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China); Zhao Jianwei, E-mail: zhaojw@nju.edu.c [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China)

    2010-09-01

    Mesoporous nickel oxide with a porous structure exhibiting a bimodal pore size distribution (2.6 and 30.3 nm diameter pores) has been synthesized in this paper. Firstly, a mesoporous precursor of coordination complex Ni{sub 3}(btc){sub 2}.12H{sub 2}O (btc = 1,3,5-benzenrtricarboxylic acid) is synthesized based on the metal-organic coordination mechanism by a hydrothermal method. Then mesoporous NiO with a bimodal size distribution is obtained by calcining the precursor in the air, and characterized by transmission electron microscopy and N{sub 2} adsorption measurements. Such unique multiple porous structure indicates a promising application of the obtained NiO as electrode materials for supercapacitors. The electrochemical behavior has been investigated by cyclic voltammogram, electrochemical impedance spectra and chronopotentiometry in 3 wt.% KOH aqueous electrolyte. The results reveal that the prepared NiO has high-capacitance retention at high scan rate and exhibits excellent cycle-life stability due to its special mesoporous character with bimodal size distribution.

  12. THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z {approx}< 1

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, N.; Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Tumlinson, J.; Thom, C.; Fox, A. J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Prochaska, J. X.; Werk, J. K. [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); O' Meara, J. M. [Department of Physics, Saint Michael' s College, Vermont, One Winooski Park, Colchester, VT 05439 (United States); Ribaudo, J. [Department of Physics, Utica College, 1600 Burrstone Road, Utica, New York 13502 (United States)

    2013-06-20

    We assess the metal content of the cool ({approx}10{sup 4} K) circumgalactic medium (CGM) about galaxies at z {approx}< 1 using an H I-selected sample of 28 Lyman limit systems (LLS; defined here as absorbers with 16.2 {approx}< log N{sub H{sub I}} {approx}< 18.5) observed in absorption against background QSOs by the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The N{sub H{sub I}} selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N{sub H{sub I}} in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H] {approx_equal} -1.6 and -0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z {approx}< 1 galaxies.

  13. Evidence of A Bimodal US GDP Growth Rate Distribution: A Wavelet Approach

    Directory of Open Access Journals (Sweden)

    Sandro Claudio Lera

    2017-04-01

    Full Text Available We present a quantitative characterisation of the fluctuations of the annualized growth rate of the real US GDP per capita at many scales, using a wavelet transform analysis of two data sets, quarterly data from 1947 to 2015 and annual data from 1800 to 2010. The chosen mother wavelet (first derivative of the Gaussian function applied to the logarithm of the real US GDP per capita provides a robust estimation of the instantaneous growth rate at different scales. Our main finding is that business cycles appear at all scales and the distribution of GDP growth rates can be well approximated by a bimodal function associated to a series of switches between regimes of strong growth rate $\\rho_\\text{high}$ and regimes of low growth rate $\\rho_\\text{low}$. The succession of such two regimes compounds to produce a remarkably stable long term average real annualized growth rate of 1.6% from 1800 to 2010 and $\\approx 2.0\\%$ since 1950, which is the result of a subtle compensation between the high and low growth regimes that alternate continuously. Thus, the overall growth dynamics of the US economy is punctuated, with phases of strong growth that are intrinsically unsustainable, followed by corrections or consolidation until the next boom starts. We interpret these findings within the theory of "social bubbles" and argue as a consequence that estimations of the cost of the 2008 crisis may be misleading. We also interpret the absence of strong recovery since 2008 as a protracted low growth regime $\\rho_\\text{low}$ associated with the exceptional nature of the preceding large growth regime.

  14. Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions

    International Nuclear Information System (INIS)

    Li Rui; Li Zhi-Hao; Zhang Duan-Ming

    2011-01-01

    We study by numerical simulation the property of velocity distributions of granular gases with a power-law size distribution, driven by uniform heating and boundary heating. It is found that the form of velocity distribution is primarily controlled by the restitution coefficient η and q, the ratio between the average number of heatings and the average number of collisions in the system. Furthermore, we show that uniform and boundary heating can be understood as different limits of q, with q ≫ 1 and q ≤ 1, respectively. (general)

  15. The Taylor-expansion method of moments for the particle system with bimodal distribution

    Directory of Open Access Journals (Sweden)

    Liu Yan-Hua

    2013-01-01

    Full Text Available This paper derives the multipoint Taylor expansion method of moments for the bimodal particle system. The collision effects are modeled by the internal and external coagulation terms. Simple theory and numerical tests are performed to prove the effect of the current model.

  16. The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Casas, C.; Tejedor, R. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Rodríguez-baracaldo, R. [Department of Mechanical Engineering, Universidad Nacional de Colombia, Bogotá. Colombia (Colombia); Benito, J.A., E-mail: Josep.a.benito@upc.edu [Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain)

    2015-03-11

    The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity.

  17. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    Science.gov (United States)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  18. Bimodal distribution of risk for childhood obesity in urban Baja California, Mexico.

    Science.gov (United States)

    Wojcicki, Janet M; Jimenez-Cruz, Arturo; Bacardi-Gascon, Montserrat; Schwartz, Norah; Heyman, Melvin B

    2012-08-01

    In Mexico, higher socioeconomic status (SES) has been found to be associated with increased risk for obesity in children. Within developed urban areas, however, there may be increased risk among lower SES children. Students in grades 4-6 from five public schools in Tijuana and Tecate, Mexico, were interviewed and weight, height and waist circumference (WC) measurements were taken. Interviews consisted of questions on food frequency, food insecurity, acculturation, physical activity and lifestyle practices. Multivariate logistic models were used to assess risk factors for obesity (having a body mass index [BMI] ≥95th percentile) and abdominal obesity (a WC >90th percentile) using Stata 11.0. Five hundred and ninety students were enrolled; 43.7% were overweight or obese, and 24.3% were obese and 20.2% had abdominal obesity. Independent risk factors for obesity included watching TV in English (odds ratio [OR] 1.60, 95% confidence interval [CI] 1.06-2.41) and perceived child food insecurity (OR 1.57, 95% CI 1.05-2.36). Decreased risk for obesity was associated with female sex (OR 0.64, 95% CI 0.43-0.96), as was regular multivitamin use (OR 0.63, 95% CI 0.42-0.94). Risk obesity was also decreased with increased taco consumption (≥1×/week; OR 0.64, 95% CI 0.43-0.96). Independent risk factors for abdominal obesity included playing video games ≥1×/week (OR 1.18, 95% CI 1.11-2.96) and older age group (10-11 years, OR 2.47, 95% CI 1.29-4.73 and ≥12 years, OR 2.21, 95% CI 1.09-4.49). Increased consumption of tacos was also associated with decreased risk for abdominal obesity (≥1×/week; OR 0.56, 95% CI 0.40-1.00). We found a bimodal distribution for risk of obesity and abdominal obesity in school aged children on the Mexican border with the United States. Increased risk for obesity and abdominal obesity were associated with factors indicative of lower and higher SES including watching TV in English, increased video game playing and perceived food insecurity

  19. Stationary velocity distributions in traffic flows

    International Nuclear Information System (INIS)

    1997-01-01

    We introduce a traffic flow model that incorporates clustering and passing. We obtain analytically the steady state characteristics of the flow from a Boltzmann-like equation. A single dimensionless parameter, R=c 0 v 0 t 0 with c 0 the concentration, v 0 the velocity range, and t 0 -1 the passing rate, determines the nature of the steady state. When R 1, large clusters with average mass left-angle m right-angle ∼R α form, and the flux is J∼R -γ . The initial distribution of slow cars governs the statistics. When P 0 (v)∼v μ as v→0, the scaling exponents are γ=1/(μ+2), α=1/2 when μ>0, and α=(μ+1)/(μ+2) when μ<0. copyright 1997 The American Physical Society

  20. Bimodal height distribution of self-assembled germanium islands grown on Si0.84Ge0.16 pseudo-substrates

    DEFF Research Database (Denmark)

    Pedersen, Erik Vesterlund; Jensen, Flemming; Shiryaev, Sergey Y.

    1998-01-01

    We have investigated the size distribution of germanium islands deposited onto a Si0.84Ge0.16 buffer layer, by atomic force microscopy. The size distribution was found to be bimodal at 630-740 degrees C and consisted of one group of smaller 'pyramidal' islands with a broad distribution of diameters...

  1. Dynamical effects of the spiral arms on the velocity distribution of disc stars

    Science.gov (United States)

    Hattori, Kohei; Gouda, Naoteru; Yano, Taihei; Sakai, Nobuyuki; Tagawa, Hiromichi

    2018-04-01

    Nearby disc stars in Gaia DR1 (TGAS) and RAVE DR5 show a bimodal velocity distribution in the metal-rich region (characterized by the Hercules stream) and mono-modal velocity distribution in the metal-poor region. We investigate the origin of this [Fe/H] dependence of the local velocity distribution by using 2D test particle simulations. We found that this [Fe/H] dependence can be well reproduced if we assume fast rotating bar models with Ωbar ~= 52 km s-1 kpc-1. A possible explanation for this result is that the metal-rich, relatively young stars are more likely to be affected by bar's outer Lindblad resonance due to their relatively cold kinematics. We also found that slowly rotating bar models with Ωbar ~= 39 km s-1 kpc-1 can not reproduce the observed data. Interestingly, when we additionally consider spiral arms, some models can reproduce the observed velocity distribution even when the bar is slowly rotating.

  2. Turbulent flow velocity distribution at rough walls

    International Nuclear Information System (INIS)

    Baumann, W.

    1978-08-01

    Following extensive measurements of the velocity profile in a plate channel with artificial roughness geometries specific investigations were carried out to verify the results obtained. The wall geometry used was formed by high transverse square ribs having a large pitch. The measuring position relative to the ribs was varied as a parameter thus providing a statement on the local influence of roughness ribs on the values measured. As a fundamental result it was found that the gradient of the logarithmic rough wall velocity profiles, which differs widely from the value 2.5, depends but slightly on the measuring position relative to the ribs. The gradients of the smooth wall velocity profiles deviate from 2.5 near the ribs, only. This fact can be explained by the smooth wall shear stress varying with the pitch of the ribs. (orig.) 891 GL [de

  3. Analyses of subchannel velocity distribution for HANARO fuel assembly

    International Nuclear Information System (INIS)

    Chae, Hee Taek; Han, Gee Yang; Park, Cheol; Lim, In Cheol

    1998-10-01

    MATRA-h which is a subchannel analysis computer code is used to evaluate the thermal margin of HANARO core. To estimate core thermal margin, accurate prediction of subchannel velocity is very important. The average subchannel velocities of 18 element fuel assembly were obtained from the results of velocity measurement test. To validate the adequacy of the hydraulic model code predictions were compared with the experimental results for the subchannel velocity distribution in 18 element fuel channel. The calculated subchannel velocity distributions in the central channels were larger than those of experiment. On the other hand the subchannel velocities in the outer channels were smaller. It is speculated that the prediction like as above would make CHF value lower because CHF phenomena had been occurred in the outer fuel element in the bundle CHF test of AECL. The prediction for axial pressure distribution coincided with the experimental results well. (author). 9 refs., 9 tabs., 14 figs

  4. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    International Nuclear Information System (INIS)

    Santana, Steven Michael; Kirby, Brian J; Antonyak, Marc A; Cerione, Richard A

    2014-01-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell–cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells. (paper)

  5. Development of vortex model with realistic axial velocity distribution

    International Nuclear Information System (INIS)

    Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki

    2014-01-01

    A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)

  6. Modelling the Skinner Thesis : Consequences of a Lognormal or a Bimodal Resource Base Distribution

    NARCIS (Netherlands)

    Auping, W.L.

    2014-01-01

    The copper case is often used as an example in resource depletion studies. Despite these studies, several profound uncertainties remain in the system. One of these uncertainties is the distribution of copper grades in the lithosphere. The Skinner thesis promotes the idea that copper grades may be

  7. A phenomenological retention tank model using settling velocity distributions.

    Science.gov (United States)

    Maruejouls, T; Vanrolleghem, P A; Pelletier, G; Lessard, P

    2012-12-15

    Many authors have observed the influence of the settling velocity distribution on the sedimentation process in retention tanks. However, the pollutants' behaviour in such tanks is not well characterized, especially with respect to their settling velocity distribution. This paper presents a phenomenological modelling study dealing with the way by which the settling velocity distribution of particles in combined sewage changes between entering and leaving an off-line retention tank. The work starts from a previously published model (Lessard and Beck, 1991) which is first implemented in a wastewater management modelling software, to be then tested with full-scale field data for the first time. Next, its performance is improved by integrating the particle settling velocity distribution and adding a description of the resuspension due to pumping for emptying the tank. Finally, the potential of the improved model is demonstrated by comparing the results for one more rain event. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Empirical analysis on the runners' velocity distribution in city marathons

    Science.gov (United States)

    Lin, Zhenquan; Meng, Fan

    2018-01-01

    In recent decades, much researches have been performed on human temporal activity and mobility patterns, while few investigations have been made to examine the features of the velocity distributions of human mobility patterns. In this paper, we investigated empirically the velocity distributions of finishers in New York City marathon, American Chicago marathon, Berlin marathon and London marathon. By statistical analyses on the datasets of the finish time records, we captured some statistical features of human behaviors in marathons: (1) The velocity distributions of all finishers and of partial finishers in the fastest age group both follow log-normal distribution; (2) In the New York City marathon, the velocity distribution of all male runners in eight 5-kilometer internal timing courses undergoes two transitions: from log-normal distribution at the initial stage (several initial courses) to the Gaussian distribution at the middle stage (several middle courses), and to log-normal distribution at the last stage (several last courses); (3) The intensity of the competition, which is described by the root-mean-square value of the rank changes of all runners, goes weaker from initial stage to the middle stage corresponding to the transition of the velocity distribution from log-normal distribution to Gaussian distribution, and when the competition gets stronger in the last course of the middle stage, there will come a transition from Gaussian distribution to log-normal one at last stage. This study may enrich the researches on human mobility patterns and attract attentions on the velocity features of human mobility.

  9. How required reserve ratio affects distribution and velocity of money

    Science.gov (United States)

    Xi, Ning; Ding, Ning; Wang, Yougui

    2005-11-01

    In this paper the dependence of wealth distribution and the velocity of money on the required reserve ratio is examined based on a random transfer model of money and computer simulations. A fractional reserve banking system is introduced to the model where money creation can be achieved by bank loans and the monetary aggregate is determined by the monetary base and the required reserve ratio. It is shown that monetary wealth follows asymmetric Laplace distribution and latency time of money follows exponential distribution. The expression of monetary wealth distribution and that of the velocity of money in terms of the required reserve ratio are presented in a good agreement with simulation results.

  10. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    Science.gov (United States)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications

  11. Possible detection of a bimodal cloud distribution in the atmosphere of HAT-P-32 A b from multiband photometry

    Science.gov (United States)

    Tregloan-Reed, J.; Southworth, J.; Mancini, L.; Mollière, P.; Ciceri, S.; Bruni, I.; Ricci, D.; Ayala-Loera, C.; Henning, T.

    2018-03-01

    We present high-precision photometry of eight separate transit events in the HAT-P-32 planetary system. One transit event was observed simultaneously by two telescopes of which one obtained a simultaneous multiband light curve in three optical bands, giving a total of 11 transit light curves. Due to the filter selection and in conjunction with using the defocused photometry technique, we were able to obtain an extremely high-precision, ground-based transit in the u band (350 nm), with an rms scatter of ≈1 mmag. All 11 transits were modelled using PRISM and GEMC, and the physical properties of the system calculated. We find the mass and radius of the host star to be 1.182 ± 0.041 M⊙ and 1.225 ± 0.015 R⊙, respectively. For the planet, we find a mass of 0.80 ± 0.14 MJup, a radius of 1.807 ± 0.022 RJup, and a density of 0.126 ± 0.023 ρJup. These values are consistent with those found in the literature. We also obtain a new orbital ephemeris for the system T0 = BJD/TDB 2 454 420.447187(96) + 2.15000800(10) × E. We measured the transmission spectrum of HAT-P-32 A b and compared it to theoretical transmission spectra. Our results indicate a bimodal cloud particle distribution consisting of Rayleigh-like haze and grey absorbing cloud particles within the atmosphere of HAT-P-32 A b.

  12. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, G.; Lambrecht, A.; Reynaud, S. [CNRS, ENS, UPMC, Laboratoire Kastler-Brossel, Paris (France); Debu, P. [CEA-Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, Gif-sur-Yvette (France); Nesvizhevsky, V.V. [Institut Max von Laue-Paul Langevin, Grenoble (France); Voronin, A.Yu. [P.N. Lebedev Physical Institute, Moscow (Russian Federation)

    2014-01-15

    GBAR is a project aiming at measuring the freefall acceleration of gravity for antimatter, namely antihydrogen atoms (H). The precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution.We propose to use a new method for shaping the distribution of the vertical velocities of H, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing H with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk.We estimate statistical and systematic uncertainties, and we show that the accuracy for measuring the free fall acceleration g of H could be pushed below 10{sup -3} under realistic experimental conditions. (orig.)

  13. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    CERN Document Server

    Dufour, G.; Lambrecht, A.; Nesvizhevsky, V.V.; Reynaud, S.; Voronin, A.Yu.

    2014-01-30

    GBAR is a project aiming at measuring the free fall acceleration of gravity for antimatter, namely antihydrogen atoms ($\\overline{\\mathrm{H}}$). Precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of vertical velocities of $\\overline{\\mathrm{H}}$, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing $\\overline{\\mathrm{H}}$ with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and show that the accuracy for measuring the free fall acceleration $\\overline{g}$ of $\\overline{\\mathrm{H}}$ could be pushed below $10^{-3}$ under realistic experimental conditions.

  14. Generation of the auroral electron velocity distribution by stochastic acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de.

    1990-07-01

    In a further development of the wave theory of the aurora, it is demonstrated, using a Monte-Carlo numerical model, that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions between an initially monotonic distribution and lower-hybrid electrostatic turbulence. The principal requirement is that the velocity spectrum of resonant waves has a sharp cut-off at high velocity. It is then shown that a cut-off is expected as a natural consequence of the difference between the phase and group velocities of lower-hybrid waves. The possibility is considered that a second peak, sometimes observed at lower velocities, is due to the same statistical mechanism, arising from the damping of waves of low phase velocity. An enhancement of wave intensity is found at higher velocities, where momentum flows preferentially from electrons to waves. The relation between the wave theory and the currently prevailing potential-difference theory emerges clearly from the analysis. (author)

  15. Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sooyoung; Yoon, Suk-Jin, E-mail: sjyoon0691@yonsei.ac.kr [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line index versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.

  16. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    NARCIS (Netherlands)

    van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal

  17. Eccentricity samples: Implications on the potential and the velocity distribution

    Directory of Open Access Journals (Sweden)

    Cubarsi R.

    2017-01-01

    Full Text Available Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. No 176011: Dynamics and Kinematics of Celestial Bodies and Systems

  18. How Required Reserve Ratio Affects Distribution and Velocity of Money

    OpenAIRE

    Xi, Ning; Ding, Ning; Wang, Yougui

    2005-01-01

    In this paper the dependence of wealth distribution and the velocity of money on the required reserve ratio is examined based on a random transfer model of money and computer simulations. A fractional reserve banking system is introduced to the model where money creation can be achieved by bank loans and the monetary aggregate is determined by the monetary base and the required reserve ratio. It is shown that monetary wealth follows asymmetric Laplace distribution and latency time of money fo...

  19. Current distribution in triodes neglecting space charge and initial velocities

    NARCIS (Netherlands)

    Hamaker, H.C.

    1950-01-01

    A theory of the current distribution in triodes with positive grid is developed on the assumption that space charge and the initial velocities of both primary and secondary electrons may be neglected. This theory, which is originally due to De Lussanct de la Sablonière, has been put in a more lucid

  20. Supply Chain Synchronization: Improving Distribution Velocity to the Theatre

    Science.gov (United States)

    2009-06-01

    Figures ix List of Tables x I. Introduction 1 II. Literature Review 4...DISTRIBUTION VELOCITY TO THE THEATRE I. Introduction “When you do battle, even if you are winning, if you continue for a long time it will...jointvision/jvpub2.htm Accessed 9 March 2009. Lambert, Douglas M. Supply Chain Mangement : Processes, Partnerships, Performance. Jacksonville: The

  1. Velocity Distributions of Runaway Stars Produced by Supernovae in ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2016) 37: 22. DOI: 10.1007/s12036-016-9400-2. Velocity Distributions of Runaway Stars Produced by Supernovae in the Galaxy. Abudusaimaitijiang Yisikandeer. ∗. , Chunhua Zhu, Zhaojun Wang. & Guoliang Lü. School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, China. ∗.

  2. Instantaneous fluctuation velocity and skewness distributions upstream of transition onset

    International Nuclear Information System (INIS)

    Hernon, D.; Walsh, E.J.; McEligot, D.M.

    2007-01-01

    The development of streamwise orientated disturbances through the boundary layer thickness prior to transition onset for zero-pressure gradient boundary layer flow under the influence %Tu = 4.2 is presented. The analysis concentrates on the development of the maximum positive and negative of the fluctuation velocity in order to gain further insight into the transition process. The average location of the peak negative fluctuation velocity over a range of Reynolds numbers was measured in the upper portion of the boundary layer at y/δ ∼ 0.6, whereas the location of the peak positive value was measured at y/δ ∼ 0.3. The disturbance magnitude of the negative fluctuation velocity increased beyond that of the positive as transition onset approached. The distribution and disturbance magnitude of the maximum positive and negative fluctuation velocities indicate that the initiation of transition may occur on the low-speed components of the flow that are lifted up to the upper region of the boundary layer. This is in qualitative agreement with recent direct numerical simulations on the breakdown of the flow on the lifted low-speed streaks near the boundary layer edge. The results presented in this investigation also demonstrate the increased physical insight gained by examining the distributions of the maximum positive and negative of the streamwise fluctuation velocity component associated with the low- and high-speed streaks, compared to time-averaged values, in determining what structures cause the breakdown to turbulence

  3. Generation of the auroral electron velocity distribution by electrostatic turbulence

    International Nuclear Information System (INIS)

    Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de; Perry, C.H.

    1991-01-01

    It is shown from first principles that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions with lower-hybrid electrostatic turbulence. The peak itself is shown to be the inevitable consequence of restrictions imposed on random walk in velocity space by the limitation in wave group velocity. A Monte-Carlo model of the process demonstrates how the various properties of the acceleration region are reflected in the resultant electron distribution. It is shown, in particular, that the width of the peak is governed by the amplitude of the turbulence, while the amplitude of the peak reflects the column density of wave energy. Electron distributions encountered within three auroral arcs are interpreted to yield order of magnitude estimates of the amplitude and rms electric field of lower-hybrid wave packets. The velocities and frequencies of the resonant waves, the net electric field, the column density of wave energy and the electric field energy density are also estimated. The results are found to be not inconsistent with available electric-field measurements. (author)

  4. Optimized velocity distributions for direct dark matter detection

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Alejandro; Rappelt, Andreas, E-mail: ibarra@tum.de, E-mail: andreas.rappelt@tum.de [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)

    2017-08-01

    We present a method to calculate, without making assumptions about the local dark matter velocity distribution, the maximal and minimal number of signal events in a direct detection experiment given a set of constraints from other direct detection experiments and/or neutrino telescopes. The method also allows to determine the velocity distribution that optimizes the signal rates. We illustrate our method with three concrete applications: i) to derive a halo-independent upper limit on the cross section from a set of null results, ii) to confront in a halo-independent way a detection claim to a set of null results and iii) to assess, in a halo-independent manner, the prospects for detection in a future experiment given a set of current null results.

  5. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  6. Experimental investigations on frictional resistance and velocity distribution of rough wall with regularly distributed triangular ribs

    International Nuclear Information System (INIS)

    Motozawa, Masaaki; Ito, Takahiro; Iwamoto, Kaoru; Kawashima, Hideki; Ando, Hirotomo; Senda, Tetsuya; Tsuji, Yoshiyuki; Kawaguchi, Yasuo

    2013-01-01

    Highlights: • Flow over the regularly distributed triangular ribs was investigated. • Simultaneous measurement of flow resistance and velocity profile was performed. • Flow resistance was measured directly and velocity profile was measured by LDV. • Flow resistance was estimated by the information of the velocity field. • Estimated flow resistance has good agreement with the measured flow resistance. -- Abstract: The relationship between the flow resistance of a turbulent flow over triangular ribs regularly distributed on a wall surface and the velocity distribution around the ribs was investigated experimentally. A concentric cylinder device composed of an inner test cylinder and an outer cylinder was employed to measure the flow resistance using the torque of the shaft of the inner cylinder and the velocity distribution of the flow around a rib by laser Doppler velocimetry (LDV) simultaneously. We prepared four inner test cylinders having 4, 8, 12 and 16 triangular ribs on the surface with the same interval between them. Each rib had an isosceles right triangle V-shape and a height of 2 mm. To investigate the relationship between flow resistance and velocity distribution, we estimated the frictional drag and pressure drag acting on the surface of the ribs separately using the velocity distribution. Therefore, we could also estimate the total flow resistance using the velocity distribution. As a result of the experiment, the flow resistance and the attachment point downstream of the rib were shown to depend on the distance between ribs. Moreover, the flow resistance estimated using the velocity distribution had good agreement with the flow resistance measured using the torque of the inner cylinder

  7. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deepthi Chander

    2009-01-01

    Full Text Available Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  8. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jagyasi Bhushan

    2009-01-01

    Full Text Available Abstract Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  9. Velocity distribution in a turbulent flow near a rough wall

    Science.gov (United States)

    Korsun, A. S.; Pisarevsky, M. I.; Fedoseev, V. N.; Kreps, M. V.

    2017-11-01

    Velocity distribution in the zone of developed wall turbulence, regardless of the conditions on the wall, is described by the well-known Prandtl logarithmic profile. In this distribution, the constant, that determines the value of the velocity, is determined by the nature of the interaction of the flow with the wall and depends on the viscosity of the fluid, the dynamic velocity, and the parameters of the wall roughness.In extreme cases depending on the ratio between the thickness of the viscous sublayer and the size of the roughness the constant takes on a value that does not depend on viscosity, or leads to a ratio for a smooth wall.It is essential that this logarithmic profile is the result not only of the Prandtl theory, but can be derived from general considerations of the theory of dimensions, and also follows from the condition of local equilibrium of generation and dissipation of turbulent energy in the wall area. This allows us to consider the profile as a universal law of velocity distribution in the wall area of a turbulent flow.The profile approximation up to the maximum speed line with subsequent integration makes possible to obtain the resistance law for channels of simple shape. For channels of complex shape with rough walls, the universal profile can be used to formulate the boundary condition when applied to the calculation of turbulence models.This paper presents an empirical model for determining the constant of the universal logarithmic profile. The zone of roughness is described by a set of parameters and is considered as a porous structure with variable porosity.

  10. Deformation behavior of multilayered NiFe with bimodal grain size distribution at room and elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, Jochen, E-mail: jmfiebig@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); Jian, Jie [Department of Electrical and Computer Engineering, Texas A& M University, College Station, TX 77843-3128 (United States); Kurmanaeva, Lilia [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); McCrea, Jon [Integran Technologies Inc., Toronto (Canada); Wang, Haiyan [Department of Electrical and Computer Engineering, Texas A& M University, College Station, TX 77843-3128 (United States); Lavernia, Enrique [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697 (United States); Mukherjee, Amiya [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States)

    2016-02-22

    We describe a study of the temperature dependent deformation behavior of a multilayered NiFe-60 wt%Fe alloy with a layer thickness of 5 μm fabricated by electrodeposition. The structure of adjacent layers alternates between a nanocrystalline and a coarse grained. Uniaxial tensile tests at temperature between 20 °C and 400 °C and strain rate of 10{sup −4}–10{sup −2} were used to determine the mechanical behavior. Microstructure observations via transmission electron microscopy and fractography were performed to provide insight into the underlying deformation mechanism. The mechanical behavior is discussed in the context of the bimodal microstructure of multilayered samples and the contribution of each sub-layer to strength and ductility. The results reveal that even at higher temperatures the nanocrystalline layer determines the mechanical performance of multilayered materials.

  11. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions

    Directory of Open Access Journals (Sweden)

    Alufelwi M. Tshavhungwe

    2010-07-01

    Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.

  12. Study on velocity distribution in a pool by submersible mixers

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; Lu, X N; Chen, B; Jiang, H

    2012-01-01

    To study the distribution of submersible mixers and agitating effect in the sewage treatment pool, Pro/E software was utilized to build the three-dimensional model. Then, the large-scale computational fluid dynamics software FLUENT6.3 was used. ICEM software was used to build unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. The macro fluid field and each section velocity flow field distribution were analyzed to observe the efficiency of each submersible mixer. The average velocity and mixing area in the sewage pool were studied simultaneously. Results show that: the preferred project B, two submersible mixers speed is 980 r/min, and setting angles are all 30°. Fluid mixing area in the pool has reached more than 95%. Under the action of two mixers, the fluid in the sewage pool form a continuous circulating water flow. The fluid is mixed adequately and average velocity of fluid in the pool is at around 0.241m/s, which agreed with the work requirements. Consequently it can provide a reference basis for practical engineering application of submersible mixers by using this method.

  13. Creating unstable velocity-space distributions with barium injections

    International Nuclear Information System (INIS)

    Pongratz, M.B.

    1983-01-01

    Large Debye lengths relative to detector dimensions and the absence of confining walls makes space an attractive laboratory for studying fundamental theories of plasma instabilities. However, natural space plasmas are rarely found displaced from equilibrium enough to permit isolation and diagnosis of the controlling parameters and driving conditions. Furthermore, any plasma or field response to the departure from equilibrium can be masked by noise in the natural system. Active experiments provide a technique for addressing the chicken or egg dilemma. Early thermite barium releases were generally conducted at low altitudes from sounding rockets to trace electric fields passively or to study configuration-space instabilities. One can also study velocity-space instabilities with barium releases. Neutral barium vapor releases wherein a typical speed greatly exceeds the thermal speed can be used to produce barium ion velocity-space distributions that should be subject to a number of microinstabilities. We examine the ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped-charges

  14. Electron velocity distributions near the earth's bow shock

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Bame, S.J.; Gary, S.P.; Gosling, J.T.; McComas, D.J.; Thomsen, M.F.; Paschmann, G.; Hoppe, M.M.

    1983-01-01

    A survey of two-dimensional electron velocity distributions, f(V), measured near the earth's bow shock using Los Alamos/Garching plasma instrumentation aboard ISEE 2 is presented. This survey provides clues to the mechanisms of electron thermalization within the shock and the relaxation of both the upsteam and downstream velocity distributions. First, near the foreshock boundary, fluxes of electrons having a power law shape at high energies backstream from the shock. Second, within the shock, cuts through f(V) along B. f(V), often show single maxima offset toward the magnetosheath by speeds comparable to, but larger than, the upstream thermal speed.Third, magnetosheath distributions generally have flat tops out to an energy, E 0 , with maxima substantially lower than that in the solar wind. Occasionally, cuts through f(V) along B show one and sometimes two small peaks at the edge of the flat tops making them appear concave upward. The electron distributions characteristic of these three regions are interpreted as arising from the effects of macroscopic (scale size comparable to or larger than the shock width) electric and magnetic fields and the subsequent effects of microscopic (scale size small in comparison with the shock width) fields. In particular, our results suggest that field-aligned instabilities are likely to be present in the earth's bow shock

  15. Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

    International Nuclear Information System (INIS)

    Igor Kaganovich; Edward Startsev; Gennady Shvets

    2004-01-01

    The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order nTx/w and nTz/w, where nTx,z/w = (Tx,z/m)1/2 is the thermal electron velocity and w is the incident wave frequency

  16. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  17. Predicted and measured velocity distribution in a model heat exchanger

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Carlucci, L.N.

    1984-01-01

    This paper presents a comparison between numerical predictions, using the porous media concept, and measurements of the two-dimensional isothermal shell-side velocity distributions in a model heat exchanger. Computations and measurements were done with and without tubes present in the model. The effect of tube-to-baffle leakage was also investigated. The comparison was made to validate certain porous media concepts used in a computer code being developed to predict the detailed shell-side flow in a wide range of shell-and-tube heat exchanger geometries

  18. Jeans' criterion and nonextensive velocity distribution function in kinetic theory

    International Nuclear Information System (INIS)

    Du Jiulin

    2004-01-01

    The effect of nonextensivity of self-gravitating systems on the Jeans' criterion for gravitational instability is studied in the framework of Tsallis statistics. The nonextensivity is introduced in the Jeans problem by a generalized q-nonextensive velocity distribution function through the equation of state of ideal gas in nonextensive kinetic theory. A new Jeans' criterion is deduced with a factor √(2/(5-3q)) that, however, differs from that one in [Astron. Astrophys. 396 (2002) 309] and new results of gravitational instability are analyzed for the nonextensive parameter q. An understanding of physical meaning of q and a possible seismic observation to find astronomical evidence for a value of q different from unity are also discussed

  19. Characterization of Medication Velocity and Size Distribution from Pressurized Metered-Dose Inhalers by Phase Doppler Anemometry.

    Science.gov (United States)

    Alatrash, Abubaker; Matida, Edgar

    2016-12-01

    Particle size and velocity are two of the most significant factors that impact the deposition of pressurized metered-dose inhaler (pMDI) sprays in the mouth cavity. pMDIs are prominently used around the world in the treatment of patients suffering from a variety of lung diseases such as asthma and chronic obstructive pulmonary disease. Since their introduction in the field, and as a result of their effectiveness and simplicity of usage, pMDIs are considered to be the most widely prescribed medical aerosol delivery system. In the current study, particle velocity and size distribution were measured at three different locations along the centerline of a pMDI spray using Phase Doppler Anemometry. pMDIs from four different pharmaceutical companies were tested, each using salbutamol sulfate as the medication. Measurements along at the pMDI centerline (at 0, 75, and 100 mm downstream of the inhaler mouthpiece) showed that the spray velocities were bimodal in time for all four pMDI brands. The first peak occurred as the spray was leaving the mouthpiece, while the second peak (at the same location, 0 mm) occurred at around 60, 95, 95, and 115 milliseconds later, respectively, for the four tested inhalers, with a drop in the velocity between the two peaks. Three probability density functions (PDFs) were tested, and the Rosin-Rammler PDF best fit the empirical data, as determined using a chi-squared test. These results suggest that there is a difference in the mean particle velocities at the centerline for the tested pMDIs and the diameter of released particles varied statistically for each brand.

  20. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    Science.gov (United States)

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Significant Corrosion Resistance in an Ultrafine-Grained Al6063 Alloy with a Bimodal Grain-Size Distribution through a Self-Anodic Protection Mechanism

    Directory of Open Access Journals (Sweden)

    Mahdieh Shakoori Oskooie

    2016-12-01

    Full Text Available The bimodal microstructures of Al6063 consisting of 15, 30, and 45 vol. % coarse-grained (CG bands within the ultrafine-grained (UFG matrix were synthesized via blending of high-energy mechanically milled powders with unmilled powders followed by hot powder extrusion. The corrosion behavior of the bimodal specimens was assessed by means of polarization, steady-state cyclic polarization and impedance tests, whereas their microstructural features and corrosion products were examined using optical microscopy (OM, scanning transmission electron microscopy (STEM, field emission scanning electron microscopy (FE-SEM, electron backscattered diffraction (EBSD, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD techniques. The bimodal Al6063 containing 15 vol. % CG phase exhibits the highest corrosion resistance among the bimodal microstructures and even superior electrochemical behavior compared with the plain UFG and CG materials in the 3.5% NaCl solution. The enhanced corrosion resistance is attributed to the optimum cathode to anode surface area ratio that gives rise to the formation of an effective galvanic couple between CG areas and the UFG matrix. The operational galvanic coupling leads to the domination of a “self-anodic protection system” on bimodal microstructure and consequently forms a uniform thick protective passive layer over it. In contrast, the 45 vol. % CG bimodal specimen shows the least corrosion resistance due to the catastrophic galvanic corrosion in UFG regions. The observed results for UFG Al6063 suggest that metallurgical tailoring of the grain structure in terms of bimodal microstructures leads to simultaneous enhancement in the electrochemical behavior and mechanical properties of passivable alloys that are usually inversely correlated. The mechanism of self-anodic protection for passivable metals with bimodal microstructures is discussed here for the first time.

  2. Beta-binomial regression and bimodal utilization.

    Science.gov (United States)

    Liu, Chuan-Fen; Burgess, James F; Manning, Willard G; Maciejewski, Matthew L

    2013-10-01

    To illustrate how the analysis of bimodal U-shaped distributed utilization can be modeled with beta-binomial regression, which is rarely used in health services research. Veterans Affairs (VA) administrative data and Medicare claims in 2001-2004 for 11,123 Medicare-eligible VA primary care users in 2000. We compared means and distributions of VA reliance (the proportion of all VA/Medicare primary care visits occurring in VA) predicted from beta-binomial, binomial, and ordinary least-squares (OLS) models. Beta-binomial model fits the bimodal distribution of VA reliance better than binomial and OLS models due to the nondependence on normality and the greater flexibility in shape parameters. Increased awareness of beta-binomial regression may help analysts apply appropriate methods to outcomes with bimodal or U-shaped distributions. © Health Research and Educational Trust.

  3. Experimental research on velocity distribution in narrow slots of plane type reactor fuel

    International Nuclear Information System (INIS)

    Qu Xinxing; Zhang Youjie; Jia Haijun; Jiang Shengyao; Bo Hanliang; Min Gang

    2003-01-01

    The experimental research on velocity distribution in multiple parallel narrow channels formed by fuel plane of assembly is carried out under various Re and the water without ions as fluid in testing loop. The experimental results show that under various Re within a channel the velocity in the middle area is high and the velocity in the edge of channel decreases rapidly to zero, and the velocity is symmetrically distributed along the central line, thus the velocity distribution within a channel is like a trapezium. While in parallel channels the velocity of the middle channel is low and the velocity of the channel close to the edge is high, it is supposed to be caused by the inlet structure of channels, this concave distribution is a disadvantage to the even distribution of reactor flux

  4. Relative-velocity distributions for two effusive atomic beams in counterpropagating and crossed-beam geometries

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke

    2012-01-01

    Formulas are presented for calculating the relative velocity distributions in effusive, orthogonal crossed beams and in effusive, counterpropagating beams experiments, which are two important geometries for the study of collision processes between atoms. In addition formulas for the distributions...

  5. Channel flow analysis. [velocity distribution throughout blade flow field

    Science.gov (United States)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  6. Techniques for obtaining velocity distributions of atoms or ions from Doppler-broadened spectral line profiles

    International Nuclear Information System (INIS)

    Moran, T.G.

    1986-12-01

    Analysis of the doppler-broadened profiles of spectral lines radiated by atoms or ions in plasmas yields information about their velocity distributions. Researchers have analysed profiles of lines radiated by atoms in isotropic velocity distributions in several ways, one being the inversion of the integral equation which relates the velocity distribution to the line profile. This inversion formula was derived for a separate application and was given to within an arbitrary multiplicative constant. This paper presents a new derivation which obtains the inversion exactly, using a method which is easily generalized for determination of anisotropic velocity distribution functions. The technique to obtain an anisotropic velocity distribution function from line profiles measured at different angles is outlined

  7. Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow

    International Nuclear Information System (INIS)

    Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.

    1992-01-01

    Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)

  8. Bimodal Nuclear Thermal Rocket Analysis Developments

    Science.gov (United States)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  9. The size distributions of fragments ejected at a given velocity from impact craters

    Science.gov (United States)

    O'Keefe, John D.; Ahrens, Thomas J.

    1987-01-01

    The mass distribution of fragments that are ejected at a given velocity for impact craters is modeled to allow extrapolation of laboratory, field, and numerical results to large scale planetary events. The model is semi-empirical in nature and is derived from: (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter, (4) measurements and theory of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad, e.g., 68 percent of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. The broad distribution suggests that in impact processes, additional comminution of ejecta occurs after the upward initial shock has passed in the process of the ejecta velocity vector rotating from an initially downward orientation. This additional comminution produces the broader size distribution in impact ejecta as compared to that obtained in simple brittle failure experiments.

  10. Electronic oscillations in a hot plasma due the non-Maxwellian velocity distributions

    International Nuclear Information System (INIS)

    Dias, L.A.V.; Nakamura, Y.

    1977-01-01

    In a completely ionized hot plasma, with a non-Maxwellian electron velocity distribution, it is shown that, depending on the electron temperature, oscillations may occur at the elctron plasma and gyro frequencies. For three different electron velocity distributions, it is shown the oscillations dependency on the temperature. This situation occurs in the ionospheric plasma when artificially heated by HF radio waves. If the distribution is Maxwellian, the oscillation only occur near the electron plasma frequency [pt

  11. Late Quaternary climate-change velocity: Implications for modern distributions and communities

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dalsgaard, Bo; Arge, Lars Allan

    a global map of climate-change velocity since the Last Glacial Maximum and used this measure of climate instability to address a number of classic hypotheses. Results/Conclusions We show that historical climate-change velocity is related to a wide range of characteristics of modern distributions...

  12. Crucial role of sidewalls in velocity distributions in quasi-two-dimensional granular gases

    NARCIS (Netherlands)

    van Zon, J.S.; Kreft, J.; Goldman, D.L.; Miracle, D.; Swift, J. B.; Swinney, H. L.

    2004-01-01

    The significance of sidewalls which yield velocity distributions with non-Gaussian tails and a peak near zero velocity in quasi-two-dimensional granular gases, was investigated. It was observed that the particles gained energy only through collisions with the bottom of the container, which was not

  13. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    International Nuclear Information System (INIS)

    Klimas, A.J.; Fitzenreiter, R.J.

    1988-01-01

    Further evidence for the persistence of bump-on-tail unstable reduced velocity distribution in the Earth's electron foreshock is presented. This persistence contradicts our understanding of quasi-linear saturation of the bump-on-tail instability; the distributions should be stabilized through velocity space diffusion too quickly to allow an observation of their unstable form. A modified theory for the saturation of the bump-on-tail instability in the Earth's foreshock is proposed and examined using numerical simulation and quasi-linear theoretical techniques. It is argued the mechanism due to Filbert and Kellogg and to Cairns which is responsible for the creation of the bump-on-tail velocity distribution in the foreshock is still operative during the evolution of the bump-on-tail instability. The saturated state of the plasma must represent a balance between this creation mechanism and velocity space diffusion; the saturated state is not determined by velocity space diffusion alone. Thus the velocity distribution of the saturated stat may still appear bump-on-tail unstable to standard linear analysis which does not take the creation mechanism into account. The bump-on-tail velocity distributions in the foreshock would then represent the state of the plasma after saturation of the bump-on-tail instability, not before

  14. Settling-velocity specific SOC distribution on hillslopes

    DEFF Research Database (Denmark)

    Hu, Yaxian; Berhe, Asmeret Asefaw; Fogel, Marilyn L.

    The net effect of soil erosion by water, as a sink or source of atmospheric CO2, is determined by the spatial (re-)distribution and stability of eroded soil organic carbon (SOC). The depositional position of eroded SOC is a function of the transport distances of soil fractions where the SOC...... fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples were fractionated into five settling classes using a settling tube apparatus. The spatial distribution of soil settling classes...... shows a coarsening effect immediately below the eroding slope, followed by a fining trend at the slope tail. The 13C values of soil fractions were more positive at the footslope than on the slope shoulder or at the slope tail, suggesting enhanced decomposition rate of fresh SOC input at the footslope...

  15. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de......In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants....... In this study laboratory measurements in a ventilated test room with "pig simulators" are compared with CFD-simulations....

  16. Corredor Bimodal Cafetero

    OpenAIRE

    Duque Escobar, Gonzalo

    2015-01-01

    El Corredor Bimodal Cafetero es un proyecto de infraestructura estratégica que articula la Hidrovía del Magdalena con el Corredor Férreo del río Cauca, inscrito en el Plan Nacional de Desarrollo 2014/2018 y financiable con la salida de 30 mil toneladas diarias de carbón andino a la cuenca del Pacífico. Incluye el Túnel Cumanday para cruzar la Cordillera Central, el Ferrocarril Cafetero de 150 km y 3% de pendiente entre La Dorada y el Km 41, y la Transversal Cafetera de 108 km para una vía de...

  17. Study of the relaxation of electron velocity distributions in gases

    Energy Technology Data Exchange (ETDEWEB)

    Braglia, G L [Parma Univ. (Italy). Ist. di Fisica; Caraffini, G L; Diligenti, M [Parma Univ. (Italy). Ist. di Matematica

    1981-03-11

    The Fokker-Planck equation governing the relaxation of the electron speed (energy) distribution in gases is solved in a number of cases of special interest. The solution is given in terms of eigenfunctions of the Fokker-Planck operator, satisfying an orthonormalization condition in which the steady-state distribution is the weight function. The real cross-sections of the noble gases He, Ne, Ar, Kr and Xe, together with model collision frequencies of the form ..nu..(v) = ..cap alpha..vsup(n) with n = 0.5, 1, 1.5, 3 and 3.5, are used to calculate eigenvalues and eigenfunctions. The first fifteen eigenvalues are obtained in each case both in the absence and in the presence of a d.c. electric field and, in the latter case, both with atoms at rest and atoms in motion. Calculations of relaxation times and examples of evolutions towards their steady-state forms of given initial distributions are reported in several particular cases.

  18. Measurement of pressure distributions and velocity fields of water jet intake flow

    International Nuclear Information System (INIS)

    Jeong, Eun Ho; Yoon, Sang Youl; Kwon, Seong Hoon; Chun, Ho Hwan; Kim, Mun Chan; Kim, Kyung Chun

    2002-01-01

    Waterjet propulsion system can avoid cavitation problem which is being arised conventional propeller propulsion system. The main issue of designing waterjet system is the boundary layer separation at ramp and lib of water inlet. The flow characteristics are highly depended on Jet to Velocity Ratio(JVR) as well as the intake geometry. The present study is conducted in a wind tunnel to provide accurate pressure destribution at the inlet wall and velocity field of the inlet and exit planes. Particle image velocimetry technique is used to obtain detail velocity fields. Pressure distributions and velocity field are discussed with accelerating and deaccelerating flow zones and the effect of JVR

  19. Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.

    Science.gov (United States)

    Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J

    2013-08-15

    Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.

  20. The three-dimensional distributions of tangential velocity and total- temperature in vortex tubes

    DEFF Research Database (Denmark)

    Linderstrøm-Lang, C.U.

    1971-01-01

    The axial and radial gradients of the tangential velocity distribution are calculated from prescribed secondary flow functions on the basis of a zero-order approximation to the momentum equations developed by Lewellen. It is shown that secondary flow functions may be devised which meet pertinent...... physical requirements and which at the same time lead to realistic tangential velocity gradients. The total-temperature distribution in both the axial and radial directions is calculated from such secondary flow functions and corresponding tangential velocity results on the basis of an approximate...

  1. Asymmetric Velocity Distributions from Halo Density Profiles in the Eddington Approach

    International Nuclear Information System (INIS)

    Vergados, J. D.

    2015-01-01

    We show how to obtain the energy distribution f(E) in our vicinity starting from WIMP density profiles in a self-consistent way by employing the Eddington approach and adding reasonable angular momentum dependent terms in the expression of the energy. We then show how we can obtain the velocity dispersions and the asymmetry parameter β in terms of the parameters describing the angular momentum dependence. From this expression, for f(E), we proceed to construct an axially symmetric WIMP a velocity distribution, which, for a gravitationally bound system, automatically has a velocity upper bound and is characterized by the same asymmetriy β. This approach is tested and clarified by constructing analytic expressions in a simple model, with adequate structure. We then show how such velocity distributions can be used in determining the event rates, including modulation, in both the standard and the directional WIMP searches.

  2. THE VELOCITY DISTRIBUTION OF NEARBY STARS FROM HIPPARCOS DATA. II. THE NATURE OF THE LOW-VELOCITY MOVING GROUPS

    International Nuclear Information System (INIS)

    Bovy, Jo; Hogg, David W.

    2010-01-01

    The velocity distribution of nearby stars (∼<100 pc) contains many overdensities or 'moving groups', clumps of comoving stars, that are inconsistent with the standard assumption of an axisymmetric, time-independent, and steady-state Galaxy. We study the age and metallicity properties of the low-velocity moving groups based on the reconstruction of the local velocity distribution in Paper I of this series. We perform stringent, conservative hypothesis testing to establish for each of these moving groups whether it could conceivably consist of a coeval population of stars. We conclude that they do not: the moving groups are neither trivially associated with their eponymous open clusters nor with any other inhomogeneous star formation event. Concerning a possible dynamical origin of the moving groups, we test whether any of the moving groups has a higher or lower metallicity than the background population of thin disk stars, as would generically be the case if the moving groups are associated with resonances of the bar or spiral structure. We find clear evidence that the Hyades moving group has higher than average metallicity and weak evidence that the Sirius moving group has lower than average metallicity, which could indicate that these two groups are related to the inner Lindblad resonance of the spiral structure. Further, we find weak evidence that the Hercules moving group has higher than average metallicity, as would be the case if it is associated with the bar's outer Lindblad resonance. The Pleiades moving group shows no clear metallicity anomaly, arguing against a common dynamical origin for the Hyades and Pleiades groups. Overall, however, the moving groups are barely distinguishable from the background population of stars, raising the likelihood that the moving groups are associated with transient perturbations.

  3. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  4. Study on velocity field in a wire wrapped fuel pin bundle of sodium cooled reactor. Detailed velocity distribution in a subchannel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Kobayashi, Jun; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up core in a feasibility study on commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is of importance to obtain the flow velocity distribution in a wire wrapped pin bundle. A 2.5 times enlarged 7-pin bundle water model was applied to investigate the detailed velocity distribution in an inner subchannel surrounded by 3 pins with wrapping wire. The test section consisted of a hexagonal acrylic duct tube and fluorinated resin pins which had nearly the same refractive index with that of water and a high light transmission rate. The velocity distribution in an inner subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through the front and lateral sides of the duct tube. In the vertical velocity distribution in a narrow space between the pins, the wrapping wire decreased the velocity downstream of the wire and asymmetric flow distribution was formed between the pin and wire. In the horizontal velocity distribution, swirl flow around the wrapping wire was obviously observed. The measured velocity data are useful for code validation of pin bundle thermalhydraulics. (author)

  5. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.

    2014-01-01

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10 3 km s –1 ) –1 for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A V extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances

  6. Validation of MCDS by comparison of predicted with experimental velocity distribution functions in rarefied normal shocks

    Science.gov (United States)

    Pham-Van-diep, Gerald C.; Erwin, Daniel A.

    1989-01-01

    Velocity distribution functions in normal shock waves in argon and helium are calculated using Monte Carlo direct simulation. These are compared with experimental results for argon at M = 7.18 and for helium at M = 1.59 and 20. For both argon and helium, the variable-hard-sphere (VHS) model is used for the elastic scattering cross section, with the velocity dependence derived from a viscosity-temperature power-law relationship in the way normally used by Bird (1976).

  7. Analysis of the velocity distribution in different types of ventilation system ducts

    Science.gov (United States)

    Peszyński, Kazimierz; Olszewski, Lukasz; Smyk, Emil; Perczyński, Daniel

    2018-06-01

    The paper presents the results obtained during the preliminary studies of circular and rectangular ducts before testing the properties elements (elbows, tees, etc.)of rectangular with rounded corners ducts. The fundamental problem of the studies was to determine the flow rate in the ventilation duct. Due to the size of the channel it was decided to determine the flow rate based on the integration of flow velocity over the considered cross-section. This method requires knowledge of the velocity distribution in the cross section. Approximation of the measured actual profile by the classic and modified Prandtl power-law velocity profile was analysed.

  8. Analysis of the velocity distribution in different types of ventilation system ducts

    Directory of Open Access Journals (Sweden)

    Peszyński Kazimierz

    2018-01-01

    Full Text Available The paper presents the results obtained during the preliminary studies of circular and rectangular ducts before testing the properties elements (elbows, tees, etc.of rectangular with rounded corners ducts. The fundamental problem of the studies was to determine the flow rate in the ventilation duct. Due to the size of the channel it was decided to determine the flow rate based on the integration of flow velocity over the considered cross-section. This method requires knowledge of the velocity distribution in the cross section. Approximation of the measured actual profile by the classic and modified Prandtl power-law velocity profile was analysed.

  9. Galactic Subsystems on the Basis of Cumulative Distribution of Space Velocities

    Directory of Open Access Journals (Sweden)

    Vidojević, S.

    2008-12-01

    Full Text Available A sample containing $4,614$ stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92\\%, thick disc 6\\% and halo 2\\%. These results are verified by analysing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.

  10. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    Science.gov (United States)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  11. Velocity-space tomography of the fast-ion distribution function

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Geiger, Benedikt

    2013-01-01

    probes certain regions in velocity-space, determined by the geometry of the set-up. Exploiting this, the fast-ion distribution function can be inferred using a velocity-space tomography method. This poster contains a tomography calculated from measured spectra from three different FIDA views at ASDEX......Fast ions play an important role in heating the plasma in a magnetic confinement fusion device. Fast-ion Dα(FIDA) spectroscopy diagnoses fast ions in small measurement volumes. Spectra measured by a FIDA diagnostic can be related to the 2D fast-ion velocity distribution function. A single FIDA view...... Upgrade. The quality of the tomography improves with the number of FIDA views simultaneously measuring the same volume. To investigate the potential benefits of including additional views (up to 18), tomographies are inferred from synthetic spectra calculated from a simulated distribution function...

  12. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    Science.gov (United States)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  13. Dynamical and statistical bimodality in nuclear fragmentation

    Science.gov (United States)

    Mallik, S.; Chaudhuri, G.; Gulminelli, F.

    2018-02-01

    The origin of bimodal behavior in the residue distribution experimentally measured in heavy ion reactions is reexamined using Boltzmann-Uehling-Uhlenbeck simulations. We suggest that, depending on the incident energy and impact parameter of the reaction, both entrance channel and exit channel effects can be at the origin of the observed behavior. Specifically, fluctuations in the reaction mechanism induced by fluctuations in the collision rate, as well as thermal bimodality directly linked to the nuclear liquid-gas phase transition, are observed in our simulations. Both phenomenologies were previously proposed in the literature but presented as incompatible and contradictory interpretations of the experimental measurements. These results indicate that heavy ion collisions at intermediate energies can be viewed as a powerful tool to study both bifurcations induced by out-of-equilibrium critical phenomena, as well as finite-size precursors of thermal phase transitions.

  14. Maximum Likelihood-Based Methods for Target Velocity Estimation with Distributed MIMO Radar

    Directory of Open Access Journals (Sweden)

    Zhenxin Cao

    2018-02-01

    Full Text Available The estimation problem for target velocity is addressed in this in the scenario with a distributed multi-input multi-out (MIMO radar system. A maximum likelihood (ML-based estimation method is derived with the knowledge of target position. Then, in the scenario without the knowledge of target position, an iterative method is proposed to estimate the target velocity by updating the position information iteratively. Moreover, the Carmér-Rao Lower Bounds (CRLBs for both scenarios are derived, and the performance degradation of velocity estimation without the position information is also expressed. Simulation results show that the proposed estimation methods can approach the CRLBs, and the velocity estimation performance can be further improved by increasing either the number of radar antennas or the information accuracy of the target position. Furthermore, compared with the existing methods, a better estimation performance can be achieved.

  15. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  16. Velocity Distribution in a Room Ventilated by Displacement Ventilation and Wall-Mounted Air Terminal Devices

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2000-01-01

    The article describes experiments with wall-mounted air terminal devices. The airflow from an air terminal device influences the occupants' thermal comfort and, therefore, it is important to develop an expression for this flow in the occupied zone. The velocity at the floor is influenced...... by the flow rate to the room, the temperature difference and the type of diffuser. The flow is stratified at Archimedes numbers larger than four. The article gives expressions for the velocity distribution close to the floor. It is shown that openings between obstacles placed directly on the floor generate...... a flow similar to the air movement in front of a diffuser, and expressions for the velocity distribution in that situation are also given in the article....

  17. Detection of bump-on-tail reduced electron velocity distributions at the electron foreshock boundary

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Klimas, A.J.; Scudder, J.D.

    1984-02-01

    Reduced velocity distributions are derived from three-dimensional measurements of the velocity distribution of electrons in the 7 to 500 eV range in the electron foreshock. Bump-on-tail reduced distributions are presented for the first time at the foreshock boundary consistent with Filbert and Kellogg's proposed time-of-flight mechanism for generating the electron beams. In a significant number of boundary crossings, bump-on-tail reduced distributions were found in consecutive 3 sec measurements made 9 sec apart. It is concluded that, although the beams are linearly unstable to plasma waves according to the Penrose criterion, they persist on a time scale of 3 to 15 sec

  18. Ion velocity distributions within the LLBL and their possible implication to multiple reconnections

    Directory of Open Access Journals (Sweden)

    O. L. Vaisberg

    2004-01-01

    Full Text Available We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a D-shaped distributions, (b ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b and (c ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions

  19. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  20. Sodium Atoms in the Lunar Exotail: Observed Velocity and Spatial Distributions

    Science.gov (United States)

    Line, Michael R.; Mierkiewicz, E. J.; Oliversen, R. J.; Wilson, J. K.; Haffner, L. M.; Roesler, F. L.

    2011-01-01

    The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations determined the average radial velocity of sodium atoms moving down the lunar tail beyond Earth along the Sun-Moon-Earth line (i.e., the anti-lunar point) to be 12.4 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 x times 15 deg region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights around new moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3 degrees east along the ecliptic per night. Preliminary modeling results suggest that the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution and that observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.

  1. Analytical models for predicting the ion velocity distributions in JET in the presence of ICRF heating

    International Nuclear Information System (INIS)

    Anderson, A.; Eriksson, L.G.; Lisak, M.

    1986-01-01

    The present report summarizes the work performed within the contract JT4/9008, the aim of which is to derive analytical models for ion velocity distributions resulting from ICRF heating on JET. The work has been performed over a two-year-period ending in August 1986 and has involved a total effort of 2.4 man years. (author)

  2. The bimodal distribution spin Seebeck effect enhancement in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 thin film

    Science.gov (United States)

    Wang, Hua; Hou, Dazhi; Kikkawa, Takashi; Ramos, Rafael; Shen, Ka; Qiu, Zhiyong; Chen, Yao; Umeda, Maki; Shiomi, Yuki; Jin, Xiaofeng; Saitoh, Eiji

    2018-04-01

    The temperature dependence of the spin Seebeck effect (SSE) in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 (NZA ferrite) thin film has been investigated systematically. The SSE at high fields shows a bimodal distribution enhancement from 3 K to 300 K and is well fitted with a double-peak Lorentzian function. We speculate the symmetric SSE enhancement in Pt/NZA ferrite bilayer, which is different from the magnon polarons induced asymmetric spikes in the SSE of Pt/YIG [T. Kikkawa et al. Phys. Rev. Lett. 117, 207203 (2016)], may result from the magnon-phonon interactions occurring at the intersections of the quantized magnon and phonon dispersions. The SSE results are helpful for the investigation of the magnon-phonon interaction in the magnetic ultrathin films.

  3. Effect of bimodal grain size distribution on fatigue properties of Ti-6Al-4V alloy with harmonic structure under four-point bending

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shoichi, E-mail: kikuchi@mech.kobe-u.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Hayami, Yosuke; Ishiguri, Takayuki [Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan); Guennec, Benjamin; Ueno, Akira; Ota, Mie; Ameyama, Kei [Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2017-02-27

    Titanium alloy (Ti-6Al-4V) with a bimodal harmonic structure, which is defined as a coarse-grained structure surrounded by a network structure of fine grains, was fabricated using powder metallurgy to improve both the strength and ductility. The microstructure of the sintered compacts was characterized using electron backscattered diffraction (EBSD). The areal fraction of the fine-grained structure in the harmonic structure tended to increase with the milling time. Tensile tests and four-point bending fatigue tests at a stress ratio of 0.1 were performed in air at room temperature. The tensile strength, 0.2% proof stress and fatigue limit of Ti-6Al-4V alloy with harmonic structure tended to increase as the areal fraction of the fine-grained structure increased. In contrast, elongation decreased due to the formation of a high areal fraction of the fine-grained structure (79.0%), which resulted in a reduction of the fatigue life with a low cycle regime. Thus, titanium alloy with high strength, ductility and fatigue resistance can be formed by optimization of the milling conditions. Furthermore, the mechanism for fatigue fracture of the Ti-6Al-4V alloy with a harmonic structure is discussed with respect to fractography and crystallography. A fatigue crack was initiated from the α-facet of the coarse-grained structure in the harmonic structure.

  4. Meteoroid velocity distribution derived from head echo data collected at Arecibo during regular world day observations

    Directory of Open Access Journals (Sweden)

    M. P. Sulzer

    2004-01-01

    Full Text Available We report the observation and analysis of ionization flashes associated with the decay of meteoroids (so-called head echos detected by the Arecibo 430 MHz radar during regular ionospheric observations in the spring and autumn equinoxes. These two periods allow pointing well-above and nearly-into the ecliptic plane at dawn when the event rate maximizes. The observation of many thousands of events allows a statistical interpretation of the results, which show that there is a strong tendency for the observed meteoroids to come from the apex as has been previously reported (Chau and Woodman, 2004. The velocity distributions agree with Janches et al. (2003a when they are directly comparable, but the azimuth scan used in these observations allows a new perspective. We have constructed a simple statistical model which takes meteor velocities as input and gives radar line of sight velocities as output. The intent is to explain the fastest part of the velocity distribution. Since the speeds interpreted from the measurements are distributed fairly narrowly about nearly 60 km s-1, double the speed of the earth in its orbit, is consistent with the interpretation that many of the meteoroids seen by the Arecibo radar are moving in orbits about the sun with similar parameters as the earth, but in the retrograde direction. However, it is the directional information obtained from the beam-swinging radar experiment and the speed that together provide the evidence for this interpretation. Some aspects of the measured velocity distributions suggest that this is not a complete description even for the fast part of the distribution, and it certainly says nothing about the slow part first described in Janches et al. (2003a. Furthermore, we cannot conclude anything about the entire dust population since there are probably selection effects that restrict the observations to a subset of the population.

  5. On the Spatial Distribution of High Velocity Al-26 Near the Galactic Center

    Science.gov (United States)

    Sturner, Steven J.

    2000-01-01

    We present results of simulations of the distribution of 1809 keV radiation from the decay of Al-26 in the Galaxy. Recent observations of this emission line using the Gamma Ray Imaging Spectrometer (GRIS) have indicated that the bulk of the AL-26 must have a velocity of approx. 500 km/ s. We have previously shown that a velocity this large could be maintained over the 10(exp 6) year lifetime of the Al-26 if it is trapped in dust grains that are reaccelerated periodically in the ISM. Here we investigate whether a dust grain velocity of approx. 500 km/ s will produce a distribution of 1809 keV emission in latitude that is consistent with the narrow distribution seen by COMPTEL. We find that dust grain velocities in the range 275 - 1000 km/ s are able to reproduce the COMPTEL 1809 keV emission maps reconstructed using the Richardson-Lucy and Maximum Entropy image reconstruction methods while the emission map reconstructed using the Multiresolution Regularized Expectation Maximization algorithm is not well fit by any of our models. The Al-26 production rate that is needed to reproduce the observed 1809 keV intensity yields in a Galactic mass of Al-26 of approx. 1.5 - 2 solar mass which is in good agreement with both other observations and theoretical production rates.

  6. Bimodal SLD Ice Accretion on a NACA 0012 Airfoil Model

    Science.gov (United States)

    Potapczuk, Mark; Tsao, Jen-Ching; King-Steen, Laura

    2016-01-01

    This presentation describes the results of ice accretion measurements on a NACA 0012 airfoil model, from the NASA Icing Research Tunnel, using an icing cloud composed of a bimodal distribution of Supercooled Large Droplets. The data consists of photographs, laser scans of the ice surface, and measurements of the mass of ice for each icing condition. The results of ice shapes accumulated as a result of exposure to an icing cloud with a bimodal droplet distribution were compared to the ice shapes resulting from an equivalent cloud composed of a droplet distribution with a standard bell curve shape.

  7. Anomalous diffusion and q-Weibull velocity distributions in epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Tatiane Souza Vilela Podestá

    Full Text Available In multicellular organisms, cell motility is central in all morphogenetic processes, tissue maintenance, wound healing and immune surveillance. Hence, the control of cell motion is a major demand in the creation of artificial tissues and organs. Here, cell migration assays on plastic 2D surfaces involving normal (MDCK and tumoral (B16F10 epithelial cell lines were performed varying the initial density of plated cells. Through time-lapse microscopy quantities such as speed distributions, velocity autocorrelations and spatial correlations, as well as the scaling of mean-squared displacements were determined. We find that these cells exhibit anomalous diffusion with q-Weibull speed distributions that evolves non-monotonically to a Maxwellian distribution as the initial density of plated cells increases. Although short-ranged spatial velocity correlations mark the formation of small cell clusters, the emergence of collective motion was not observed. Finally, simulational results from a correlated random walk and the Vicsek model of collective dynamics evidence that fluctuations in cell velocity orientations are sufficient to produce q-Weibull speed distributions seen in our migration assays.

  8. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  9. Development of three-dimensional phasic-velocity distribution measurement in a large-diameter pipe

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2s. (author)

  10. Study on Droplet Size and Velocity Distributions of a Pressure Swirl Atomizer Based on the Maximum Entropy Formalism

    Directory of Open Access Journals (Sweden)

    Kai Yan

    2015-01-01

    Full Text Available A predictive model for droplet size and velocity distributions of a pressure swirl atomizer has been proposed based on the maximum entropy formalism (MEF. The constraint conditions of the MEF model include the conservation laws of mass, momentum, and energy. The effects of liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio on the droplet size and velocity distributions of a pressure swirl atomizer are investigated. Results show that model based on maximum entropy formalism works well to predict droplet size and velocity distributions under different spray conditions. Liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio have different effects on droplet size and velocity distributions of a pressure swirl atomizer.

  11. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    Science.gov (United States)

    Klimas, Alexander J.; Fitzenreiter, Richard J.

    1988-01-01

    This paper presents further evidence for the persistence of bump-on-tail unstable reduced velocity distributions in the earth's electron foreshock, which contradicts the understanding of quasi-linear saturation of the bump-on-tail instability. A modified theory for the saturation of the bump-on-tail instability in the earth's foreshock is proposed to explain the mechanism of this persistence, and the predictions are compared to the results of a numerical simulation of the electron plasma in the foreshock. The results support the thesis that quasi-linear saturation of the bump-on-tail instability is modified in the foreshock, due to the driven nature of the region, so that at saturation the stabilized velocity distribution still appears bump-on-tail unstable to linear plasma analysis.

  12. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    Science.gov (United States)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  13. Merging history of three bimodal clusters

    Science.gov (United States)

    Maurogordato, S.; Sauvageot, J. L.; Bourdin, H.; Cappi, A.; Benoist, C.; Ferrari, C.; Mars, G.; Houairi, K.

    2011-01-01

    We present a combined X-ray and optical analysis of three bimodal galaxy clusters selected as merging candidates at z ~ 0.1. These targets are part of MUSIC (MUlti-Wavelength Sample of Interacting Clusters), which is a general project designed to study the physics of merging clusters by means of multi-wavelength observations. Observations include spectro-imaging with XMM-Newton EPIC camera, multi-object spectroscopy (260 new redshifts), and wide-field imaging at the ESO 3.6 m and 2.2 m telescopes. We build a global picture of these clusters using X-ray luminosity and temperature maps together with galaxy density and velocity distributions. Idealized numerical simulations were used to constrain the merging scenario for each system. We show that A2933 is very likely an equal-mass advanced pre-merger ~200 Myr before the core collapse, while A2440 and A2384 are post-merger systems (~450 Myr and ~1.5 Gyr after core collapse, respectively). In the case of A2384, we detect a spectacular filament of galaxies and gas spreading over more than 1 h-1 Mpc, which we infer to have been stripped during the previous collision. The analysis of the MUSIC sample allows us to outline some general properties of merging clusters: a strong luminosity segregation of galaxies in recent post-mergers; the existence of preferential axes - corresponding to the merging directions - along which the BCGs and structures on various scales are aligned; the concomitance, in most major merger cases, of secondary merging or accretion events, with groups infalling onto the main cluster, and in some cases the evidence of previous merging episodes in one of the main components. These results are in good agreement with the hierarchical scenario of structure formation, in which clusters are expected to form by successive merging events, and matter is accreted along large-scale filaments. Based on data obtained with the European Southern Observatory, Chile (programs 072.A-0595, 075.A-0264, and 079.A-0425

  14. Bimodality in heavy ions collisions: systematic and comparisons

    International Nuclear Information System (INIS)

    Mercier, D.

    2008-11-01

    During the last few years, bi-modality in heavy ions collisions has been observed for different systems, on large energy scale (from 35 MeV/u up to 1 GeV/u). In this thesis, the bimodal behaviour of the largest fragment distribution (Zmax) is studied for different INDRA data sets. For peripheral collisions (Au+Au from 60 to 150 MeV/u, Xe+Sn 80-100 MeV/u), the influence of sorting and selections on bi-modality is tested. Then, two different approaches based on models are considered. In the first one (ELIE), bi-modality would reflect mainly the collision geometry and the Fermi motion of the nucleon. In the second one (SMM), bi-modality would reflect a phase transition of nuclear matter. The data are in favour of the second model. Zmax can then be considered as an order parameter of the transition. A re-weighting procedure producing a flat excitation energy distribution is used to achieve comparisons between various bombarding energies and theoretical predictions based on a canonical approach. A latent heat of the transition is extracted. For central collisions (Ni+Ni from 32 to 74 MeV/u and Xe+Sn from 25 to 50 MeV/u) single source events are isolated by a Discriminant Factor Analysis. Bi-modality is then looked for, in cumulating the different incident energies and in applying the re-weighting procedure of the corresponding excitation energy as done for peripheral collisions. The bi-modality behaviour is less manifest for central collisions than for peripheral ones. The possible reasons of this difference are discussed. (author)

  15. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  16. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    International Nuclear Information System (INIS)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 μm and a geometric standard deviation, σ g of about 2; the CMD was found to increase and σ g decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 μm and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented

  17. The PDF of fluid particle acceleration in turbulent flow with underlying normal distribution of velocity fluctuations

    International Nuclear Information System (INIS)

    Aringazin, A.K.; Mazhitov, M.I.

    2003-01-01

    We describe a formal procedure to obtain and specify the general form of a marginal distribution for the Lagrangian acceleration of fluid particle in developed turbulent flow using Langevin type equation and the assumption that velocity fluctuation u follows a normal distribution with zero mean, in accord to the Heisenberg-Yaglom picture. For a particular representation, β=exp[u], of the fluctuating parameter β, we reproduce the underlying log-normal distribution and the associated marginal distribution, which was found to be in a very good agreement with the new experimental data by Crawford, Mordant, and Bodenschatz on the acceleration statistics. We discuss on arising possibilities to make refinements of the log-normal model

  18. Nonlinear Wave-Particle Interaction: Implications for Newborn Planetary and Backstreaming Proton Velocity Distribution Functions

    Science.gov (United States)

    Romanelli, N.; Mazelle, C.; Meziane, K.

    2018-02-01

    Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.

  19. Transfer learning for bimodal biometrics recognition

    Science.gov (United States)

    Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao

    2013-10-01

    Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.

  20. Velocity and size distribution measurement of suspension droplets using PDPA technique

    Science.gov (United States)

    Amiri, Shahin; Akbarnozari, Ali; Moreau, Christian; Dolatabadi, Ali

    2015-11-01

    The creation of fine and uniform droplets from a bulk of liquid is a vital process in a variety of engineering applications, such as atomization in suspension plasma spray (SPS) in which the submicron coating materials are injected to the plasma gas through the suspension droplets. The size and velocity of these droplets has a great impact on the interaction of the suspension with the gas flow emanating from a plasma torch and can consequently affect the mechanical and chemical properties of the resultant coatings. In the current study, an aqueous suspension of small glass particles (2-8 μm) was atomized by utilizing an effervescent atomizer of 1 mm orifice diameter which involves bubbling gas (air) directly into the liquid stream. The gas to liquid ratio (GLR) was kept constant at 6% throughout this study. The mass concentration of glass particles varied in the range between 0.5 to 5% in order to investigate the effect of suspension viscosity and surface tension on the droplet characteristics, such as velocity and size distributions. These characteristics were simultaneously measured by using a non-intrusive optical technique, Phase Doppler Particle Anemometry (PDPA), which is based on the light signal scattered from the droplets moving in a measurement volume. The velocity and size distribution of suspension droplets were finally compared to those of distilled water under identical conditions. The results showed a different atomization behaviors due to the reduction in surface tension of the suspension spray.

  1. The role of the bimodal distribution of ultra-fine silicon phase and nano-scale V-phase (AlSi2Sc2) on spark plasma sintered hypereutectic Al–Si–Sc alloys

    International Nuclear Information System (INIS)

    Raghukiran, Nadimpalli; Kumar, Ravi

    2016-01-01

    Hypereutectic Al–Si and Al–Si–Sc alloys were spark plasma sintered from corresponding gas-atomized powders. The microstructures of the Al–Si and Al–Si–Sc alloys possessed remarkably refined silicon particles in the size range of 0.38–3.5 µm and 0.35–1.16 µm respectively in contrast to the silicon particles of size greater than 100 µm typically found in conventionally cast alloys. All the sintered alloys exhibited significant ductility of as high as 85% compressive strain without failure even with the presence of relatively higher weight fraction of the brittle silicon phase. Moreover, the Al–Si–Sc alloys have shown appreciable improvement in the compressive strength over their binary counterparts due to the presence of intermetallic compound AlSi 2 Sc 2 of size 10–20 nm distributed uniformly in the matrix of those alloys. The dry sliding pin-on-disc wear tests showed improvement in the wear performance of the sintered alloys with increase in silicon content in the alloys. Further, the Al–Si–Sc ternary alloys with relatively lesser silicon content exhibited appreciable improvement in the wear resistance over their binary counterparts. The Al–Si–Sc alloys with bimodal distribution of the strengthening phases consisting of ultra-fine (sub-micron size) silicon particles and the nano-scale AlSi 2 Sc 2 improved the strength and wear properties of the alloys while retaining significant amount of ductility.

  2. The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER

    Science.gov (United States)

    Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.

    2014-06-01

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.

  3. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  4. Vlasov-Maxwell equilibrium solutions for Harris sheet magnetic field with Kappa velocity distribution

    International Nuclear Information System (INIS)

    Fu, W.-Z.; Hau, L.-N.

    2005-01-01

    An exact solution of the steady-state, one-dimensional Vlasov-Maxwell equations for a plasma current sheet with oppositely directed magnetic field was found by Harris in 1962. The so-called Harris magnetic field model assumes Maxwellian velocity distributions for oppositely drifting ions and electrons and has been widely used for plasma stability studies. This paper extends Harris solutions by using more general κ distribution functions that incorporate Maxwellian distribution in the limit of κ→∞. A new functional form for the plasma pressure as a function of the magnetic vector potential p(A) is found and the magnetic field is a modified tanh z function. In the extended solutions the effective temperature is no longer spatially uniform like in the Harris model and the thickness of the current layer decreases with decreasing κ

  5. Space and velocity distributions of fast ions in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Lutsenko, V.V.; Lisak, M.; Wising, F.

    1994-01-01

    General expressions in terms of the orbit averaged distribution function are obtained for local characteristic quantities of fast ions, such as the velocity distribution, energy density and power deposition. The resulting expressions are applied to the case of a very peaked production profile of fast ions, characterized by particularly strong orbital effects. It is shown that in this case the radial profiles of the fast ions can be qualitatively different from the source profile, being e.g. strongly non-monotonic. The analysis is carried out for a straight as well as for a tokamak magnetic field. It is predicted that marginally co-passing and semi-trapped particles (i.e. particles that are trapped in only one azimuthal direction) can be transformed to trapped and circulating particles due to electron drag. This leads to e.g. different distribution functions of fast ions in the cases of co- or counter-injection. Collisional constants of motion are obtained

  6. Velocity distribution and dimer formation in a Na/Na2 beam

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    Using the TOF via optical pumping method and the Doppler-shifted laser induced emission described previously, the authors have measured the parallel and perpendicular velocity distribution respectively for Na atoms and Na 2 molecules in a variety of individual quantum states. In addition they monitored the flux of molecules in specific states while changing the stagnation pressure. In all cases a significant dependence on the internal energy of the molecules was found. The goal of these experiments is to improve understanding of the beam dynamics and the dimer formation process. (Auth.)

  7. Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model, Special Report

    Science.gov (United States)

    Brevoort, Maurice J.

    1937-01-01

    In the design of a cowling a certain pressure drop across the cylinders of a radial air-cooled engine is made available. Baffles are designed to make use of this available pressure drop for cooling. The problem of cooling an air-cooled engine cylinder has been treated, for the most part, from considerations of a large heat-transfer coefficient. The knowledge of the precise cylinder characteristics that give a maximum heat-transfer coefficient should be the first consideration. The next problem is to distribute this ability to cool so that the cylinder cools uniformly. This report takes up the problem of the design of a baffle for a model cylinder. A study has been made of the important principles involved in the operation of a baffle for an engine cylinder and shows that the cooling can be improved 20% by using a correctly designed baffle. Such a gain is as effective in cooling the cylinder with the improved baffle as a 65% increase in pressure drop across the standard baffle and fin tips.

  8. The b Distribution and the Velocity Structure of Absorption Peaks in the Lyα Forest

    International Nuclear Information System (INIS)

    Hui, L.; Rutledge, R.E.

    1999-01-01

    A theory is developed that relates the observed b parameter of a Lyα absorption line to the velocity curvature of the corresponding peak in the optical depth fluctuation. Its relation to the traditional interpretation of b as the thermal broadening width is discussed. It is demonstrated that, independent of the details of the cosmological model, the differential b distribution has a high-b asymptote of dN/db∝b -m , where m≥5, when we make the reasonable assumption that low-curvature fluctuations are statistically favored over high-curvature ones. There in general always exist lines much broader than the thermal width. We develop a linear perturbative analysis of the optical depth fluctuation, which yields a single-parameter prediction for the full b distribution. In addition to exhibiting the high-velocity tail, it qualitatively explains the observed sharp low-b cutoff a simple reflection of the fact that high-curvature fluctuations are relatively rare. Although the existence of the high-b asymptote, which is independent of the validity of the linear expansion, is consistent with the observed b distribution, a detailed comparison of the linear prediction with six observational data sets indicates that higher order corrections are not negligible. The perturbative analysis nonetheless offers valuable insights into the dependence of the b distribution on cosmological parameters such as Ω and the power spectrum. A key parameter is the effective smoothing scale of the optical depth fluctuation, which is in turn determined by three scales: the thermal broadening width, the baryon smoothing scale (approximately the Jeans scale), and the observation/simulation resolution. The first two are determined by reionization history, but are comparable in general, whereas the third varies by about an order of magnitude in current hydrodynamic simulations. Studies with non resolution-dominated b distributions can be used to probe the reionization history of the universe

  9. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    Science.gov (United States)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  10. A bimodal biometric identification system

    Science.gov (United States)

    Laghari, Mohammad S.; Khuwaja, Gulzar A.

    2013-03-01

    Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. Physicals are related to the shape of the body. Behavioral are related to the behavior of a person. However, biometric authentication systems suffer from imprecision and difficulty in person recognition due to a number of reasons and no single biometrics is expected to effectively satisfy the requirements of all verification and/or identification applications. Bimodal biometric systems are expected to be more reliable due to the presence of two pieces of evidence and also be able to meet the severe performance requirements imposed by various applications. This paper presents a neural network based bimodal biometric identification system by using human face and handwritten signature features.

  11. Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming

    Using tools from algebraic graph theory and nonsmooth analysis in combination with ideas of collective potential functions, velocity consensus and navigation feedback, a distributed leader-follower flocking algorithm for multi-agent dynamical systems with time-varying velocities is developed where

  12. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    Science.gov (United States)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  13. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Tammen, H.F.

    1995-01-10

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics `Rijnhuizen`, was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL).

  14. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    International Nuclear Information System (INIS)

    Tammen, H.F.

    1995-01-01

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics 'Rijnhuizen', was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL)

  15. MAVEN Observations of Escaping Planetary Ions from the Martian Atmosphere: Mass, Velocity, and Spatial Distributions

    Science.gov (United States)

    Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack

    2015-04-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.

  16. Measurements on multichannel arrays. The angular dependence of the absolute intensity and the velocity distribution

    International Nuclear Information System (INIS)

    Beijerinck, H.C.W.; Verster, N.F.

    1974-01-01

    Three multichannel arrays with channel-diameters of 16, 50 and 140μm have been investigated using O 2 with flow rates of 4 10 -5 through 8 10 -3 torr l s -1 mm -2 . All experimental values of the peaking factor K are described by one experimental curve if the peaking factor is reduced by K*=KT, where T is the Clausing factor, and then is plotted vs. the reduced entrance density eta*=L/lambda, where lambda is the mean free path corresponding to the entrance density and L is the length of the channel. At eta*=1 the experimental curve lies 40% below Giordmaine and Wang theory, and this deviation increases slightly with increasing eta*. In the plot of the reduced half-width-half-maximum THETAsub(1/2)sup(*)=THETAsub(1/2)T -1 vs. eta* all data are also well represented by a single experimental curve. The center-line velocity distribution is described in terms of a deformation function GAMMA(v), to be applied to the Maxwell-Boltzmann velocity distribution from an ideal orifice

  17. Interpreting dark matter direct detection independently of the local velocity and density distribution

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Kribs, Graham D.; Tait, Tim M. P.

    2011-01-01

    We demonstrate precisely what particle physics information can be extracted from a single direct detection observation of dark matter while making absolutely no assumptions about the local velocity distribution and local density of dark matter. Our central conclusions follow from a very simple observation: the velocity distribution of dark matter is positive definite, f(v)≥0. We demonstrate the utility of this result in several ways. First, we show a falling deconvoluted recoil spectrum (deconvoluted of the nuclear form factor), such as from ordinary elastic scattering, can be 'mocked up' by any mass of dark matter above a kinematic minimum. As an example, we show that dark matter much heavier than previously considered can explain the CoGeNT excess. Specifically, m χ Ge can be in just as good agreement as light dark matter, while m χ >m Ge depends on understanding the sensitivity of xenon to dark matter at very low recoil energies, E R < or approx. 6 keVnr. Second, we show that any rise in the deconvoluted recoil spectrum represents distinct particle physics information that cannot be faked by an arbitrary f(v). As examples of resulting nontrivial particle physics, we show that inelastic dark matter and dark matter with a form factor can both yield such a rise.

  18. Vessel Sampling and Blood Flow Velocity Distribution With Vessel Diameter for Characterizing the Human Bulbar Conjunctival Microvasculature.

    Science.gov (United States)

    Wang, Liang; Yuan, Jin; Jiang, Hong; Yan, Wentao; Cintrón-Colón, Hector R; Perez, Victor L; DeBuc, Delia C; Feuer, William J; Wang, Jianhua

    2016-03-01

    This study determined (1) how many vessels (i.e., the vessel sampling) are needed to reliably characterize the bulbar conjunctival microvasculature and (2) if characteristic information can be obtained from the distribution histogram of the blood flow velocity and vessel diameter. Functional slitlamp biomicroscope was used to image hundreds of venules per subject. The bulbar conjunctiva in five healthy human subjects was imaged on six different locations in the temporal bulbar conjunctiva. The histograms of the diameter and velocity were plotted to examine whether the distribution was normal. Standard errors were calculated from the standard deviation and vessel sample size. The ratio of the standard error of the mean over the population mean was used to determine the sample size cutoff. The velocity was plotted as a function of the vessel diameter to display the distribution of the diameter and velocity. The results showed that the sampling size was approximately 15 vessels, which generated a standard error equivalent to 15% of the population mean from the total vessel population. The distributions of the diameter and velocity were not only unimodal, but also somewhat positively skewed and not normal. The blood flow velocity was related to the vessel diameter (r=0.23, Psampling size of the vessels and the distribution histogram of the blood flow velocity and vessel diameter, which may lead to a better understanding of the human microvascular system of the bulbar conjunctiva.

  19. 'Bi-modal' isoscalar giant dipole strength in 58Ni

    International Nuclear Information System (INIS)

    Nayak, B.K.; Garg, U.; Hedden, M.; Koss, M.; Li, T.; Liu, Y.; Madhusudhana Rao, P.V.; Zhu, S.; Itoh, M.; Sakaguchi, H.; Takeda, H.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Fujimura, H.; Fujiwara, M.; Hara, K.; Kawabata, T.; Akimune, H.; Harakeh, M.N.

    2006-01-01

    The strength distribution of the isoscalar giant dipole resonance (ISGDR) in 58 Ni has been obtained over the energy range 10.5-49.5 MeV via extreme forward angle scattering (including 0 deg.) of 386 MeV α particles. We observe a 'bi-modal' E1 strength distribution for the first time in an A<90 nucleus. The observed ISGDR strength distribution is in reasonable agreement with the predictions of a recent RPA calculation

  20. Production of a double-humped ion velocity distribution function in a single-ended Q-machine

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Michelsen, Poul

    1970-01-01

    An experimental method of producing a double-humped velocity distribution function for the ions in a Q-machine is described. The method is based on charge exchange processes between neutral ceasium and the ions in a ceasium plasma.......An experimental method of producing a double-humped velocity distribution function for the ions in a Q-machine is described. The method is based on charge exchange processes between neutral ceasium and the ions in a ceasium plasma....

  1. Experimental study of the spatial distribution of the velocity field of sedimenting particles: mean velocity, pseudo-turbulent fluctuations, intrinsic convection

    International Nuclear Information System (INIS)

    Bernard-Michel, G.

    2001-01-01

    This work follows previous experiments from Nicolai et al. (95), Peysson and Guazzelli (98) and Segre et al. (97), which consisted in measures of the velocity of particles sedimenting in a liquid at low particular Reynolds numbers. Our goal, introduced in the first part with a bibliographic study, is to determinate the particles velocity fluctuations properties. The fluctuations are indeed of the same order as the mean velocity. We are proceeding with PIV Eulerian measures. The method is described in the second part. Its originality comes from measures obtained in a thin laser light sheet, from one side to the other of the cells, with a square section: the measures are therefore spatially localised. Four sets of cells and three sets of particles were used, giving access to ratios 'cell width over particle radius' ranging from about 50 up to 800. In the third part, we present the results concerning the velocity fluctuations structure and their spatial distribution. The intrinsic convection between to parallel vertical walls is also studied. The velocity fluctuations are organised in eddy structures. Their size (measured with correlation length) is independent of the volume fraction, contradicting the results of Segre et al. (97). The results concerning the velocity fluctuations spatial profiles - from one side to the other of the cell - confirm those published by Peysson and Guazzelli (98) in the case of stronger dilution. The evolution of the spatial mean velocity fluctuations confirms the results obtained by Segre et al. (97). The intrinsic convection is also observed in the case of strong dilutions. (author)

  2. A Gordeyev integral for electrostatic waves in a magnetized plasma with a kappa velocity distribution

    International Nuclear Information System (INIS)

    Mace, R.L.

    2003-01-01

    A Gordeyev-type integral for the investigation of electrostatic waves in magnetized plasma having a kappa or generalized Lorentzian velocity distribution is derived. The integral readily reduces, in the unmagnetized and parallel propagation limits, to simple expressions involving the Z κ function. For propagation perpendicular to the magnetic field, it is shown that the Gordeyev integral can be written in closed form as a sum of two generalized hypergeometric functions, which permits easy analysis of the dispersion relation for electrostatic waves. Employing the same analytical techniques used for the kappa distribution, it is further shown that the well-known Gordeyev integral for a Maxwellian distribution can be written very concisely as a generalized hypergeometric function in the limit of perpendicular propagation. This expression, in addition to its mathematical conciseness, has other advantages over the traditional sum over modified Bessel functions form. Examples of the utility of these generalized hypergeometric series, especially how they simplify analyses of electrostatic waves propagating perpendicular to the magnetic field, are given. The new expression for the Gordeyev integral for perpendicular propagation is solved numerically to obtain the dispersion relations for the electrostatic Bernstein modes in a plasma with a kappa distribution

  3. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  4. EISCAT measurements of ion temperatures which indicate non-isotropic ion velocity distributions

    International Nuclear Information System (INIS)

    Perraut, S.; Brekke, A.; Hubert, D.

    1984-01-01

    Substantial increases of the ion temperature can be observed at high latitudes as a consequence of strong convection electric fields. We have measured, with EISCAT, three independent components of the ion velocity vector and temperature in the same scattering volume, at about 300 km. During periods of strong variations in ion velocity (consequently of the E-field), the ion temperatures derived at the 3 sites are different. This difference, which appears to be systematic for the two experiments studied, can be interpreted in terms of different ion temperature perpendicular and parallel to the magnetic field, i.e. Tsub(i perpendicular) greater than Tsub(i parallel). Assuming that a bi-Maxwellian distribution is present for convection electric field strengths as large as 50 mV m -1 , one obtains an anisotropy factor of approximately 1.5. It also appears that resonant charge exchange is the dominant collision process. During the evening sector events studied, the electron density was decreasing, whereas the electron temperature was generally increasing. Such events are strongly related to variations in the magnetic H component detected on the ground. (author)

  5. Distributed Extended Kalman Filter for Position, Velocity, Time, Estimation in Satellite Navigation Receivers

    Directory of Open Access Journals (Sweden)

    O. Jakubov

    2013-09-01

    Full Text Available Common techniques for position-velocity-time estimation in satellite navigation, iterative least squares and the extended Kalman filter, involve matrix operations. The matrix inversion and inclusion of a matrix library pose requirements on a computational power and operating platform of the navigation processor. In this paper, we introduce a novel distributed algorithm suitable for implementation in simple parallel processing units each for a tracked satellite. Such a unit performs only scalar sum, subtraction, multiplication, and division. The algorithm can be efficiently implemented in hardware logic. Given the fast position-velocity-time estimator, frequent estimates can foster dynamic performance of a vector tracking receiver. The algorithm has been designed from a factor graph representing the extended Kalman filter by splitting vector nodes into scalar ones resulting in a cyclic graph with few iterations needed. Monte Carlo simulations have been conducted to investigate convergence and accuracy. Simulation case studies for a vector tracking architecture and experimental measurements with a real-time software receiver developed at CTU in Prague were conducted. The algorithm offers compromises in stability, accuracy, and complexity depending on the number of iterations. In scenarios with a large number of tracked satellites, it can outperform the traditional methods at low complexity.

  6. Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution

    Energy Technology Data Exchange (ETDEWEB)

    Lao, Hai-Ling; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics, Shanxi (China); Lacey, Roy A. [Stony Brook University, Departments of Chemistry and Physics, Stony Brook, NY (United States)

    2017-03-15

    We analyze the transverse-momentum (p{sub T}) spectra of identified particles (π{sup ±}, K{sup ±}, p, and anti p) produced in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions over a √(s{sub NN}) (center-of-mass energy per nucleon pair) range from 14.5 GeV (one of the Relativistic Heavy Ion Collider (RHIC) energies) to 2.76 TeV (one of the Large Hadron Collider (LHC) energies). For the spectra with a narrow p{sub T} range, an improved Tsallis distribution which is in fact the Tsallis distribution with radial flow is used. For the spectra with a wide p{sub T} range, a superposition of the improved Tsallis distribution and an inverse power law is used. Both the extracted kinetic freeze-out temperature (T{sub 0}) and radial flow velocity (β{sub T}) increase with the increase of √(s{sub NN}), which indicates a higher excitation and larger expansion of the interesting system at the LHC. Both the values of T{sub 0} and β{sub T} in central collisions are slightly larger than those in peripheral collisions, and they are independent of isospin and slightly dependent on mass. (orig.)

  7. Prediction of the low-velocity distribution from the pore structure in simple porous media

    Science.gov (United States)

    de Anna, Pietro; Quaife, Bryan; Biros, George; Juanes, Ruben

    2017-12-01

    The macroscopic properties of fluid flow and transport through porous media are a direct consequence of the underlying pore structure. However, precise relations that characterize flow and transport from the statistics of pore-scale disorder have remained elusive. Here we investigate the relationship between pore structure and the resulting fluid flow and asymptotic transport behavior in two-dimensional geometries of nonoverlapping circular posts. We derive an analytical relationship between the pore throat size distribution fλ˜λ-β and the distribution of the low fluid velocities fu˜u-β /2 , based on a conceptual model of porelets (the flow established within each pore throat, here a Hagen-Poiseuille flow). Our model allows us to make predictions, within a continuous-time random-walk framework, for the asymptotic statistics of the spreading of fluid particles along their own trajectories. These predictions are confirmed by high-fidelity simulations of Stokes flow and advective transport. The proposed framework can be extended to other configurations which can be represented as a collection of known flow distributions.

  8. Anisotropic electron velocity distribution in an ECR helium plasma as determined from polarization of emission lines

    International Nuclear Information System (INIS)

    Iwamae, A; Sato, T; Horimoto, Y; Inoue, K; Fujimoto, T; Uchida, M; Maekawa, T

    2005-01-01

    A helium plasma is produced by electron-cyclotron resonance heating in a cusp-configuration magnetic field. Several neutral helium lines are found polarized in the direction perpendicular to the magnetic field; the maximum polarization degree exceeds 10%. The polarization degree and intensity of the emission lines yield, respectively, the alignment and population of the upper levels. The population-alignment collisional-radiative model is developed, and the experimental result is interpreted in terms of an anisotropic electron velocity distribution; it is of a Saturn-type with the central thermal component of 14 eV and the 'ring' component displaced by 9.2 eV from the central component. The relative number of 'ring' electrons is 40%. (letter to the editor)

  9. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    International Nuclear Information System (INIS)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-01-01

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  10. Investigation of Velocity Distribution in Open Channel Flows Based on Conditional Average of Turbulent Structures

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-01-01

    Full Text Available We report the development of a new analytical model similar to the Reynolds-averaged Navier-Stokes equations to determine the distribution of streamwise velocity by considering the bursting phenomenon. It is found that, in two-dimensional (2D flows, the underlying mechanism of the wake law in 2D uniform flow is actually a result of up/down events. A special experiment was conducted to examine the newly derived analytical model, and good agreement is achieved between the experimental data in the inner region and the model’s prediction. The obtained experimental data were also used to examine the DML-Law (dip-modified-log-law, MLW-Law (modified-log-wake law, and CML-Law (Cole’s wake law, and the agreement is not very satisfactory in the outer region.

  11. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.

    2008-01-01

    reported [Bindslev , Phys. Rev. Lett. 97, 205005 2006]. Here we extend the discussion of these results which were obtained at the TEXTOR tokamak. The fast ions are generated by neutral-beam injection and ion-cyclotron resonance heating. The CTS system uses 100-150 kW of 110-GHz gyrotron probing radiation......Fast ions created in the fusion processes will provide up to 70% of the heating in ITER. To optimize heating and current drive in magnetically confined plasmas insight into fast-ion dynamics is important. First measurements of such dynamics by collective Thomson scattering (CTS) were recently...... of the velocity distribution after turnoff of the ion heating. These results are in close agreement with numerical simulations....

  12. Three-dimensional distribution of random velocity inhomogeneities at the Nankai trough seismogenic zone

    Science.gov (United States)

    Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kaiho, Y.; Kodaira, S.; Kaneda, Y.

    2012-12-01

    The Nankai trough in southwestern Japan is a convergent margin where the Philippine sea plate is subducted beneath the Eurasian plate. There are major faults segments of huge earthquakes that are called Tokai, Tonankai and Nankai earthquakes. According to the earthquake occurrence history over the past hundreds years, we must expect various rupture patters such as simultaneous or nearly continuous ruptures of plural fault segments. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted seismic surveys at Nankai trough in order to clarify mutual relations between seismic structures and fault segments, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. This study evaluated the spatial distribution of random velocity inhomogeneities from Hyuga-nada to Kii-channel by using velocity seismograms of small and moderate sized earthquakes. Random velocity inhomogeneities are estimated by the peak delay time analysis of S-wave envelopes (e.g., Takahashi et al. 2009). Peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This quantity mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities, and is quite insensitive to the inelastic attenuation. Peak delay times are measured from the rms envelopes of horizontal components at 4-8Hz, 8-16Hz and 16-32Hz. This study used the velocity seismograms that are recorded by 495 ocean bottom seismographs and 378 onshore seismic stations. Onshore stations are composed of the F-net and Hi-net stations that are maintained by National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. It is assumed that the random inhomogeneities are represented by the von Karman type PSDF. Preliminary result of inversion analysis shows that spectral gradient of PSDF (i.e., scale dependence of

  13. Velocity distribution of women's 30-km cross-country skiing during Olympic Games from 2002-2014.

    Science.gov (United States)

    Erdmann, Wlodzimierz S; Dancewicz-Nosko, Dorota; Giovanis, Vasilios

    2017-12-01

    Within several investigated endurance sport disciplines the distribution of load of the best competitors has a manner of evenly or slightly rising velocity values. Unfortunately many other competitors have usually diminishing values or when they are very poor they have evenly values. The aim of this study was to investigate distribution of velocity within 30-km cross-country female skiers. Cross-country skiing runs were investigated of Olympic Games 2002-2014 (Salt Lake City, Turin, Vancouver, Sochi). At every race two 15 km or three 10 km loops of the same vertical profile were taken into account. The competitors were divided onto: A - winners, B - medallists, C - competitors who obtained places 4 to 10 at the finish line (medium runners), D - competitors who obtained places 11 to 30 at the finish line (poor runners). Velocity data presented on the web pages of several institutions were utilized. The competitors had their velocity distributed in a manner with usually diminishing values. While comparing velocity of sequential loops with the mean velocity the difference for the poor runners reached the value of almost 6 %, which was too high. There was significant (usually negative) correlation coefficient between values of velocity deviation for the first and second loops and the mean value of velocity for the entire distance for the better runners and mixed, i.e. positive and negative values for the poorer runners. It was postulated investigations of velocity distribution should be introduced in coaching in order to inform competitors about their running. This advise is especially important for the poorer runners. Up to now cross country skiers run for themselves. It should be discussed whether the tactics used by road and track runners, i.e. running with pace makers, can be introduced in cross country skiing. Also the use of a drone during training can be used in order to maintain proper pace.

  14. A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Ian; Brown, Michael E., E-mail: iwong@caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-10-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H{sub 2}S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H{sub 2}S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.

  15. A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS

    International Nuclear Information System (INIS)

    Wong, Ian; Brown, Michael E.

    2016-01-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H 2 S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H 2 S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.

  16. Determination and shaping of the ion-velocity distribution function in a single-ended Q machine

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Michelsen, Poul

    1971-01-01

    An electrostatic energy analyzer with a resolution better than 0.03 eV was constructed. This analyzer was used to determine the ion-velocity distribution function at different densities and plate temperatures in a single-ended Q machine. In all regions good agreement with theoretical predictions...... based on simple, physical pictures is obtained. It is shown that within certain limits the velocity distribution function can be shaped; double-humped distribution functions have been obtained. The technique used here is suggested as an accurate method for determination of plasma densities within 10...

  17. Powder compaction in systems of bimodal distribution

    Science.gov (United States)

    Chattopadhyay, A. K.; Whittemore, O. J., Jr.

    1973-01-01

    The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.

  18. Impact of Zygosity on Bimodal Phenotype Distributions

    DEFF Research Database (Denmark)

    Holst-Hansen, Thomas; Abad, Elena; Muntasell, Aura

    2017-01-01

    Allele number, or zygosity, is a clear determinant of gene expression in diploid cells. However, the relationship between the number of copies of a gene and its expression can be hard to anticipate, especially when the gene in question is embedded in a regulatory circuit that contains feedback. H...

  19. Diagnosis of mildly relativistic electron velocity distributions by electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Kato, K.

    1986-09-01

    Mildly relativistic electron velocity distributions are diagnosed from measurements of the first few electron cyclotron emission harmonics in the Alcator C tokamak. The approach employs a vertical viewing chord through the center of the tokamak plasma terminating at a compact, high-performance viewing dump. The cyclotron emission spectra obtained in this way are dominated by frequency downshifts due to the relativistic mass increase, which discriminates the electrons by their total energy. In this way a one-to-one correspondence between the energy and the emission frequency is accomplished in the absence of harmonic superpositions. The distribution, described by f/sub p/, the line-averaged phase space density, and Λ, the anisotropy factor, is determined from the ratio of the optically thin harmonics or polarizations. Diagnosis of spectra in the second and the third harmonic range of frequencies obtained during lower hybrid heating, current drive, and low density ohmic discharges are carried out, using different methods depending on the degree of harmonic superposition present in the spectrum and the availability of more than one ratio measurement. Discussions of transient phenomena, the radiation temperature measurement from the optically thick first harmonic, and the measurements compared to the angular hard x-ray diagnostic results illuminate the capabilities of the vertically viewing electron cyclotron emission diagnostic

  20. Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

    Science.gov (United States)

    Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay

    2018-03-01

    In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).

  1. Fluid Distribution in Synthetic Wet Halite Rocks : Inference from Measured Elastic Wave Velocity and Electrical Conductivity

    Science.gov (United States)

    Watanabe, T.; Kitano, M.

    2011-12-01

    Intercrystalline fluid can significantly affect rheological and transport properties of rocks. Its influences are strongly dependent on its distribution. The dihedral angle between solid and liquid phases has been widely accepted as a key parameter that controls solid-liquid textures. The liquid phase is not expected to be interconnected if the dihedral angle is larger than 60 degree. However, observations contradictory to dihedral angle values have been reported. Watanabe (2010) suggested the coexistence of grain boundary fluid with a positive dihedral angle. For good understanding of fluid distribution, it is thus critical to study the nature of grain boundary fluid. We have developed a high pressure and temperature apparatus for study of intercrystalline fluid distribution. It was specially designed for measurements of elastic wave velocities and electrical conductivity. The apparatus mainly consists of a conventional cold-seal vessel with an external heater. The pressure medium is silicon oil of the viscosity of 0.1 Pa s. The pressure and temperature can be controlled from 0 to 200 MPa and from 20 to 200 C, respectively. Dimensions of a sample are 9 mm in diameter, and 15 mm in length. Halite-water system is used as an analog for crustal rocks. The dihedral angle has been studied systematically at various pressure and temperature conditions [Lewis and Holness, 1996]. The dihedral angle is larger than 60 degree at lower pressure and temperature. It decreases to be smaller than 60 degree with increasing pressure and temperature. A sample is prepared by cold-pressing and annealing of wet NaCl powder. Optical examination has shown that synthesized samples are microstructurally homogeneous. Grains are polygonal and equidimensional with a mean diameter of 100 micrometer. Grain boundaries vary from straight to bowed and 120 degree triple junctions are common. Gas and fluid bearing inclusions are visible on the grain boundaries. There are spherical inclusions or

  2. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  3. Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle-bed collisions

    International Nuclear Information System (INIS)

    Zheng Xiaojing; Xie Li; Zhou Youhe

    2005-01-01

    The wind-blown sand saltating movement is mainly categorized into two mechanical processes, that is, the interaction between the moving sand particles and the wind in the saltation layer, and the collisions of incident particles with sand bed, and the latter produces a lift-off velocity of a sand particle moving into saltation. In this Letter a methodology of phenomenological analysis is presented to get probability density (distribution) function (pdf) of the lift-off velocity of sand particles from sand bed based on the stochastic particle-bed collision. After the sand particles are dealt with by uniform circular disks and a 2D collision between an incident particle and the granular bed is employed, we get the analytical formulas of lift-off velocity of ejected and rebound particles in saltation, which are functions of some random parameters such as angle and magnitude of incident velocity of the impacting particles, impact and contact angles between the collision particles, and creeping velocity of sand particles, etc. By introducing the probability density functions (pdf's) of these parameters in communion with all possible patterns of sand bed and all possible particle-bed collisions, and using the essential arithmetic of multi-dimension random variables' pdf, the pdf's of lift-off velocities are deduced out and expressed by the pdf's of the random parameters in the collisions. The numerical results of the distributions of lift-off velocities display that they agree well with experimental ones

  4. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    International Nuclear Information System (INIS)

    Meng, Yiqing; Lucas, Gary P

    2017-01-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas–water and oil–gas–water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the

  5. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  6. Uptake, distribution, and velocity of organically complexed plutonium in corn (Zea mays).

    Science.gov (United States)

    Thompson, Shannon W; Molz, Fred J; Fjeld, Robert A; Kaplan, Daniel I

    2012-10-01

    Lysimeter experiments and associated simulations suggested that Pu moved into and through plants that invaded field lysimeters during an 11-year study at the Savannah River Site. However, probable plant uptake and transport mechanisms were not well defined, so more detailed study is needed. Therefore, experiments were performed to examine movement, distribution, and velocity of soluble, complexed Pu in corn. Corn was grown and exposed to Pu using a "long root" system in which the primary root extended through a soil pot and into a hydroponic container. To maintain solubility, Pu was complexed with the bacterial siderophore DFOB (Desferrioxamine B) or the chelating agent DTPA (diethylenetriaminepentaacetic acid). Corn plants were exposed to nutrient solutions containing Pu for periods of 10 min to 10 d. Analysis of root and shoot tissues permitted concentration measurement and calculation of uptake velocity and Pu retardation in corn. Results showed that depending on exposure time, 98.3-95.9% of Pu entering the plant was retained in the roots external to the xylem, and that 1.7-4.1% of Pu entered the shoots (shoot fraction increased with exposure time). Corn Pu uptake was 2-4 times greater as Pu(DFOB) than as Pu(2)(DTPA)(3). Pu(DFOB) solution entered the root xylem and moved 1.74 m h(-1) or greater upward, which is more than a million times faster than Pu(III/IV) downward movement through soil during the lysimeter study. The Pu(DFOB) xylem retardation factor was estimated to be 3.7-11, allowing for rapid upward Pu transport and potential environmental release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Investigation of velocity distribution in an inner subchannel of wire wrapped fuel pin bundle of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Kamide, Hideki; Ohshima, Hiroyuki; Kobayashi, Jun; Sato, Hiroyuki

    2011-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up of core fuel in commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is important to obtain the detail of flow velocity distribution in a wire wrapped pin bundle. In this study, water experiments were carried out to investigate the detailed velocity distribution in a subchannel of nominal pin geometry as the first step. These basic data are not only useful for understanding of pin bundle thermal hydraulics but also a code validation. A wire-wrapped 3-pin bundle water model was applied to investigate the detailed velocity distribution in the subchannel which is surrounded by 3 pins with wrapping wire. The test section consists of an irregular hexagonal acrylic duct tube and three pins made of fluorinated resin pins which has nearly the same refractive index with that of water and a high light transmission rate. This enables to visualize the central subchannel through the pins. The velocity distribution in the central subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through a side wall of the duct tube. Typical flow velocity conditions in the pin bundle were 0.36m/s (Re=2,700) and 1.6m/s (Re=13,500). Influence of the wrapping wire on the velocity distributions in vertical and horizontal directions was confirmed. A clockwise swirl flow around the wire was found in subchannel. Significant differences were not recognized between the two cases of Re=2,700 and 13,500 concerning flow patterns. (author)

  8. A new Technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescence (PILIF)

    International Nuclear Information System (INIS)

    Tabares, F.L.

    1992-01-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton Ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (author)

  9. A new technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescent (PILIF)

    International Nuclear Information System (INIS)

    Tabares, F.L.

    1992-01-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (Author) 8 refs

  10. A new technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescent (PILIF)

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F.L.

    1992-07-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (Author) 8 refs.

  11. Velocity distribution around a sphere descending in a salt-stratified water

    Science.gov (United States)

    Hanazaki, Hideshi; Akiyama, Shinsaku; Okino, Shinya

    2017-11-01

    When a sphere descends at constant speed in a salt-stratified water, a thin and high-speed jet is often generated above the sphere. The phenomenon has first been observed by shadowgraph and then has been investigated numerically. In this study, a systematic measurement by particle image velocimetry (PIV) has been performed for a wide range of Froude number Fr and Reynolds number Re , to actually observe the numerically simulated velocity distributions and confirm the accuracy of the numerical simulations for a very high Schmidt (Prandtl) number of Sc =(Pr =) 700 . The results show that the radius of the jet is proportional to both Fr 1 / 2 and Re - 1 / 2 , meaning that it is proportional to √{ Fr / Re } (when F < 1). The boundary layer on the sphere surface has a thickness comparable to the jet radius, and it is also proportional to √{ Fr / Re }. These results are in agreement with the recent numerical simulations and a simple dimensional analysis. Typical diverging internal-wave patterns, whose vertical wavelength has been predicted to be proportional to Fr , could also be observed.

  12. PROJECTED ROTATIONAL VELOCITIES OF 136 EARLY B-TYPE STARS IN THE OUTER GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Garmany, C. D.; Glaspey, J. W. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Bragança, G. A.; Daflon, S.; Fernandes, M. Borges; Cunha, K. [Observatório Nacional-MCTI, Rua José Cristino, 77. CEP: 20921-400, Rio de Janeiro, RJ (Brazil); Oey, M. S. [University of Michigan, Department of Astronomy, 311 West Hall, 1085 S. University Ave., Ann Arbor, MI: 48109-1107 (United States); Bensby, T., E-mail: garmany@noao.edu [Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-22100, Lund (Sweden)

    2015-08-15

    We have determined projected rotational velocities, v sin i, from Magellan/MIKE echelle spectra for a sample of 136 early B-type stars having large Galactocentric distances. The target selection was done independently of their possible membership in clusters, associations or field stars. We subsequently examined the literature and assigned each star as Field, Association, or Cluster. Our v sin i results are consistent with a difference in aggregate v sin i with stellar density. We fit bimodal Maxwellian distributions to the Field, Association, and Cluster subsamples representing sharp-lined and broad-lined components. The first two distributions, in particular, for the Field and Association are consistent with strong bimodality in v sin i. Radial velocities are also presented, which are useful for further studies of binarity in B-type stars, and we also identify a sample of possible new double-lined spectroscopic binaries. In addition, we find 18 candidate Be stars showing emission at Hα.

  13. Downward velocity distribution of free surface vortex in a cylindrical vessel

    International Nuclear Information System (INIS)

    Ohguri, Youhei; Monji, Hideaki; Kamide, Hideki

    2008-01-01

    The aim of this study is to reveal the basic flow characteristics, especially downward velocity, of the free surface vortex. The flow field at the vertical cross section in a cylindrical vessel was measured by using PIV. The measurement results showed the inclined vortex center due to the un-axisymmetric structure of the vessel. Therefore, the maximum downward velocity on the cross section was discussed with the depth. The relation between the maximum downward velocity and the depth showed the tendency where the downward velocity increased with the depth non-linearly. By using dye, the downward velocity was also measured but its results showed a little difference from that by PIV. (author)

  14. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  15. Verification of the network flow and transport/distributed velocity (NWFT/DVM) computer code

    International Nuclear Information System (INIS)

    Duda, L.E.

    1984-05-01

    The Network Flow and Transport/Distributed Velocity Method (NWFT/DVM) computer code was developed primarily to fulfill a need for a computationally efficient ground-water flow and contaminant transport capability for use in risk analyses where, quite frequently, large numbers of calculations are required. It is a semi-analytic, quasi-two-dimensional network code that simulates ground-water flow and the transport of dissolved species (radionuclides) in a saturated porous medium. The development of this code was carried out under a program funded by the US Nuclear Regulatory Commission (NRC) to develop a methodology for assessing the risk from disposal of radioactive wastes in deep geologic formations (FIN: A-1192 and A-1266). In support to the methodology development program, the NRC has funded a separate Maintenance of Computer Programs Project (FIN: A-1166) to ensure that the codes developed under A-1192 or A-1266 remain consistent with current operating systems, are as error-free as possible, and have up-to-date documentations for reference by the NRC staff. Part of this effort would include verification and validation tests to assure that a code correctly performs the operations specified and/or is representing the processes or system for which it is intended. This document contains four verification problems for the NWFT/DVM computer code. Two of these problems are analytical verifications of NWFT/DVM where results are compared to analytical solutions. The other two are code-to-code verifications where results from NWFT/DVM are compared to those of another computer code. In all cases NWFT/DVM showed good agreement with both the analytical solutions and the results from the other code

  16. Generation of lower hybrid and whistler waves by an ion velocity ring distribution

    International Nuclear Information System (INIS)

    Winske, D.; Daughton, W.

    2012-01-01

    Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant (∼15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small ( −4 ). The results are compared with relevant linear and nonlinear theory.

  17. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    Science.gov (United States)

    Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  18. DETECTION OF THE VELOCITY SHEAR EFFECT ON THE SPATIAL DISTRIBUTIONS OF THE GALACTIC SATELLITES IN ISOLATED SYSTEMS

    International Nuclear Information System (INIS)

    Lee, Jounghun; Choi, Yun-Young

    2015-01-01

    We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal

  19. Detection of the Velocity Shear Effect on the Spatial Distributions of the Galactic Satellites in Isolated Systems

    Science.gov (United States)

    Lee, Jounghun; Choi, Yun-Young

    2015-02-01

    We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal.

  20. The Development of Bimodal Bilingualism: Implications for Linguistic Theory.

    Science.gov (United States)

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2016-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and 'transfer' as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair.

  1. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    Science.gov (United States)

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  2. The GALAH Survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere and metallicity

    Science.gov (United States)

    Quillen, Alice C.; De Silva, Gayandhi; Sharma, Sanjib; Hayden, Michael; Freeman, Ken; Bland-Hawthorn, Joss; Žerjal, Maruša; Asplund, Martin; Buder, Sven; D'Orazi, Valentina; Duong, Ly; Kos, Janez; Lin, Jane; Lind, Karin; Martell, Sarah; Schlesinger, Katharine; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaz; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Cotar, Klemen; Cottrell, Peter L.; Ireland, Michael; Kafle, Prajwal R.; Horner, Jonathan; Lewis, Geraint F.; Nataf, David M.; Ting, Yuan-Sen; Watson, Fred; Wittenmyer, Rob; Wyse, Rosemary

    2018-04-01

    Using GALAH survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d ≲ 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H]>0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s-1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.

  3. Primordial inhomogeneities in the expanding universe. I - Density and velocity distributions of galaxies in the vicinities of rich clusters

    Science.gov (United States)

    Silk, J.; Wilson, M. L.

    1979-01-01

    The density profiles and Hubble flow deviations in the vicinities of rich galaxy clusters are derived for a variety of models of initial density and velocity perturbations at the recombination epoch. The galaxy correlation function, measured with respect to the Abell clusters, is used to normalize the theoretical models. The angular scales of the required primordial inhomogeneities are calculated. It is found that the resulting density profiles around rich clusters are surprisingly insensitive to the shape of the initial perturbations and also to the cosmological density parameter, Omega. However, it is shown that the distribution of galaxy radial velocities can provide a possible means of deriving Omega.

  4. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  5. The effect of reported high-velocity small raindrops on inferred drop size distributions and derived power laws

    Directory of Open Access Journals (Sweden)

    H. Leijnse

    2010-07-01

    Full Text Available It has recently been shown that at high rainfall intensities, small raindrops may fall with much larger velocities than would be expected from their diameters. These were argued to be fragments of recently broken-up larger drops. In this paper we quantify the effect of this phenomenon on raindrop size distribution measurements from a Joss-Waldvogel disdrometer, a 2-D Video Distrometer, and a vertically-pointing Doppler radar. Probability distributions of fall velocities have been parameterized, where the parameters are functions of both rainfall intensity and drop size. These parameterizations have been used to correct Joss-Waldvogel disdrometer measurements for this phenomenon. The effect of these corrections on fitted scaled drop size distributions are apparent but not major. Fitted gamma distributions for three different types of rainfall have been used to simulate drop size measurements. The effect of the high-velocity small drops is shown to be minor. Especially for the purpose of remote sensing of rainfall using radar, microwave links, or optical links, the errors caused by using the slightly different retrieval relations will be masked completely by other error sources.

  6. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Usher, Christopher; Forbes, Duncan A. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Strader, Jay, E-mail: brodie@ucolick.org [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-11-10

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  7. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    International Nuclear Information System (INIS)

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J.; Usher, Christopher; Forbes, Duncan A.; Strader, Jay

    2012-01-01

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  8. Response to 'Comment on 'Mathematical and physical aspects of Kappa velocity distribution'' [Phys. Plasmas 16, 094701 (2009)

    International Nuclear Information System (INIS)

    Hau, L.-N.; Fu, W.-Z.; Chuang, S.-H.

    2009-01-01

    The comment questions the formulation of the κ velocity distribution function used in our paper as compared to a slightly different form used by the authors. The difference in the distribution function necessarily leads to different number densities, thermal pressures, etc. We show that the restriction with their distribution function is that the macroscopic temperature (or average kinetic energy) is the same for all spatially uniform systems with a family of κ distributions including the Maxwellian case. The distribution function used in our paper and widely adopted in various studies of nonthermal systems, however, does not impose such a constraint; in particular, the temperature has κ dependence reflecting the kinetic nature of different statistical systems. The points made in the comment are trivial and misleading.

  9. Non-Maxwellian electron velocity distribution as a result of electron-attachment collisions in ionized gases

    International Nuclear Information System (INIS)

    Schmidt, R.; Stiller, W.

    1981-01-01

    The effects of electron-attachment collisions on the velocity distribution of electrons is studied on the basis of Boltzmann kinetic equations governing the energetic balance of electrons (e), atoms of a carrier gas (c), and SF 6 -molecules (m) capturing electrons. Under the assumption that 1) the densities of the particles fulfill the conditions nsub(e) << nsub(c), nsub(m), nsub(m) << nsub(c), and that 2) only the electron-attachment process is in competition with the elastic collision process between electrons and the atoms of the carrier gas, the time behaviour of the energetic balance of the electrons is investigated. The calculations lead to non-Maxwellian forms of the electron velocity distribution changing the mean electron energy. (author)

  10. Velocity Distribution in the Flow from a Wall-Mounted Diffuser in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The paper describes experiments with wall-mounted air terminal devices. The airflow from an air terminal device will influence the thermal comfort of the occupants and it is therefore important to develop an expression for this flow. The velocity at the floor is influenced by the flow rate...

  11. Deconstructing Disk Velocity Distribution Functions in the Disk-Mass Survey

    NARCIS (Netherlands)

    Westfall, K. B.; Bershady, M. A.; Verheijen, M. A. W.; Andersen, D. R.; Swaters, R. A.

    2008-01-01

    We analyze integral-field ionized gas and stellar line-of-sight kinematics in the context of determining the stellar velocity ellipsoid for spiral galaxies observed by the Disk-Mass Survey. Our new methodology enables us to measure, for the first time, a radial gradient in the ellipsoid ratio

  12. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single-particl...

  13. DISTRIBUTION AND ORIGIN OF HIGH-VELOCITY CLOUDS .3. CLOUDS, COMPLEXES AND POPULATIONS

    NARCIS (Netherlands)

    WAKKER, BP; VANWOERDEN, H

    1991-01-01

    We present the first complete catalogue of high-velocity clouds (HVCs), followed by a classification of these clouds into complexes and populations. The catalogue will form the basis for comparisons with theoretical models. The study described here yields the following conclusions: (1) Differential

  14. The Spanwise Distribution of Losses in Prismatic Turbine Cascade with Non-Uniform Inlet Velocity Profile

    Czech Academy of Sciences Publication Activity Database

    Fürst, J.; Luxa, Martin; Šimurda, David

    2014-01-01

    Roč. 21, č. 2 (2014), s. 135-141 ISSN 1802-1484 R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : prismatic turbine cascade * losses * velocity profile Subject RIV: BK - Fluid Dynamics http://www.engineeringmechanics.cz/obsahy.html?R=21&C=2

  15. Seismic velocity distribution in the vicinity of a mine tunnel at Thabazimbi, South Africa

    CSIR Research Space (South Africa)

    Wright, C

    2000-07-01

    Full Text Available Analysis of the refracted arrivals on a seismic reflection profile recorded along the wall of a tunnel at an iron mine near Thabazimbi, South Africa, shows variations in P-wave velocity in dolomite away from the de-stressed zone that vary between 4...

  16. Cutoff effects of electron velocity distribution to the properties of plasma parameters near the plasma-sheath boundary

    International Nuclear Information System (INIS)

    Jelic, N.

    2011-01-01

    The plasma properties under high thermodynamic non-equilibrium condition, established due to the presence of electrically biased electrode, are investigated. Assumption of electron cut-off velocity distribution function (VDF), as done by Andrews and Varey in their investigations of the sheath region [J. Phys. A 3, 413 (1970)], has been extended here to both plasma and sheath regions. Analytic expressions for the moments of electron VDF, as well as for the electron screening temperature function dependence on the plasma-sheath local potential are derived. In deriving the ion velocity distribution the ''standard'' assumption of strict plasma quasineutrality, or equivalently vanishing of the plasma Debye length, is employed, whereas the ions are assumed to be generated at rest over the plasma region. However, unlike the standard approach of solving the plasma equation, where pure Boltzmann electron density profile is used, here we employ modified Boltzmann's electron density profile, due to cutoff effect of the electron velocity distribution. It is shown that under these conditions the quasineutrality equation solution is characterised by the electric field singularity for any negative value of the electrode bias potential as measured with respect to the plasma potential. The point of singularity i.e., the plasma length and its dependence on the electrode bias and sheath potential is established for the particular case of ionization profile mechanism proportional to the local electron density. Relevant parameters for the kinetic Bohm criterion are explicitly calculated for both ions and electrons, for arbitrary electrode bias.

  17. Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2007-01-01

    Electron emission from discharge chamber walls is important for plasma maintenance in many low-pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field and are injected into the plasma as an electron beam. Penetration of this beam through the plasma is subject to the two-stream instability, which tends to slow down the beam electrons and heat the plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function of the plasma-beam system is a nonmonotonic function of electron speed. Low-pressure plasmas can be depleted of electrons with energy above the plasma potential. This study reveals that under such conditions the two-stream instability depends crucially on the velocity distribution function of electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters may be free of the two-stream instability if the velocity distribution of secondary electron emission is a monotonically decaying function of speed. In this case, the beams propagate between the walls with minimal loss of the beam current and the secondary electron emission does not affect the thruster plasma properties

  18. Effect of Weakly Nonthermal Ion Velocity Distribution on Jeans Instability in a Complex Plasma in Presence of Secondary Electrons

    International Nuclear Information System (INIS)

    Sarkar, S.; Maity, S.

    2013-01-01

    In this paper we have investigated the effect of weak nonthermality of ion velocity distribution on Jean’s instability in a complex plasma in presence of secondary electrons and negatively charged dust grains. The primary and secondary electron temperatures are assumed equal. Thus plasma under consideration consists of three components: Boltzman distributed electrons, non-thermal ions and negatively charged inertial dust grains. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically we have found that secondary electron emission destabilizes Jean’s mode when ion nonthermality is weak. (author)

  19. THE BIMODAL STRUCTURE OF THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. L., E-mail: zldu@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-05-01

    Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.

  20. Design of two-dimensional channels with prescribed velocity distributions along the channel walls

    Science.gov (United States)

    Stanitz, John D

    1953-01-01

    A general method of design is developed for two-dimensional unbranched channels with prescribed velocities as a function of arc length along the channel walls. The method is developed for both compressible and incompressible, irrotational, nonviscous flow and applies to the design of elbows, diffusers, nozzles, and so forth. In part I solutions are obtained by relaxation methods; in part II solutions are obtained by a Green's function. Five numerical examples are given in part I including three elbow designs with the same prescribed velocity as a function of arc length along the channel walls but with incompressible, linearized compressible, and compressible flow. One numerical example is presented in part II for an accelerating elbow with linearized compressible flow, and the time required for the solution by a Green's function in part II was considerably less than the time required for the same solution by relaxation methods in part I.

  1. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  2. The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD

    Directory of Open Access Journals (Sweden)

    David Shina Adebayo

    2016-01-01

    Full Text Available A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.

  3. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.

    2006-01-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  4. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    Science.gov (United States)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  5. Nonlinear inversion of borehole-radar tomography data to reconstruct velocity and attenuation distribution in earth materials

    Science.gov (United States)

    Zhou, C.; Liu, L.; Lane, J.W.

    2001-01-01

    A nonlinear tomographic inversion method that uses first-arrival travel-time and amplitude-spectra information from cross-hole radar measurements was developed to simultaneously reconstruct electromagnetic velocity and attenuation distribution in earth materials. Inversion methods were developed to analyze single cross-hole tomography surveys and differential tomography surveys. Assuming the earth behaves as a linear system, the inversion methods do not require estimation of source radiation pattern, receiver coupling, or geometrical spreading. The data analysis and tomographic inversion algorithm were applied to synthetic test data and to cross-hole radar field data provided by the US Geological Survey (USGS). The cross-hole radar field data were acquired at the USGS fractured-rock field research site at Mirror Lake near Thornton, New Hampshire, before and after injection of a saline tracer, to monitor the transport of electrically conductive fluids in the image plane. Results from the synthetic data test demonstrate the algorithm computational efficiency and indicate that the method robustly can reconstruct electromagnetic (EM) wave velocity and attenuation distribution in earth materials. The field test results outline zones of velocity and attenuation anomalies consistent with the finding of previous investigators; however, the tomograms appear to be quite smooth. Further work is needed to effectively find the optimal smoothness criterion in applying the Tikhonov regularization in the nonlinear inversion algorithms for cross-hole radar tomography. ?? 2001 Elsevier Science B.V. All rights reserved.

  6. Language choice in bimodal bilingual development

    Directory of Open Access Journals (Sweden)

    Diane eLillo-Martin

    2014-10-01

    Full Text Available Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children.Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending – expressions in both speech and sign simultaneously – an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children’s language choices.This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult.Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant

  7. Prediction of velocity distributions in rod bundle axial flow, with a statistical model (K-epsilon) of turbulence

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da.

    1978-12-01

    Reactor fuel elements generally consist of rod bundles with the coolant flowing axially through the region between the rods. The confiability of the thermohydraulic design of such elements is related to a detailed description of the velocity field. A two-equation statistical model (K-epsilon) of turbulence is applied to compute main and secondary flow fields, wall shear stress distributions and friction factors of steady, fully developed turbulent flows, with incompressible, temperature independent fluid flowing axially through triangular or square arrays of rod bundles. The numerical procedure uses the vorticity and the stream function to describe the velocity field. Comparison with experimental and analytical data of several investigators is presented. Results are in good agreement. (Author) [pt

  8. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    Science.gov (United States)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  9. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    International Nuclear Information System (INIS)

    Lin Jun; Pakhomov, Andrew V.

    2005-01-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (∼ 3x10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ∼35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements

  10. Risk methodology for geologic disposal of radioactive waste: The distributed velocity method of solving the convective-dispersion equation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James E; Longsine, Dennis E [Sandia National Laboratories, Albuquerque, New Mexico (United States); Reeves, Mark [INTERA Environmental Consultants, Inc. Houston, TX (United States)

    1980-06-01

    A new method is proposed for treating convective-dispersive transport. The motivation for developing this technique arises from the demands of performing a risk assessment for a nuclear waste repository. These demands include computational efficiency over a relatively large range of Peclet numbers and the ability to handle chains of decaying radionuclides with rather extreme contrasts in both solution velocities and half lives. To the extent it has been tested to date, the Distributed Velocity Method (DVM) appears to satisfy these demands. Included in this paper are the mathematical theory, numerical implementation, an error analysis employing statistical sampling and regression analysis techniques, and comparisons of DVM with other methods for convective-dispersive transport. (author)

  11. Resolving the age bimodality of galaxy stellar populations on kpc scales

    NARCIS (Netherlands)

    Zibetti, Stefano; Gallazzi, Anna R.; Ascasibar, Y.; Charlot, S.; Galbany, L.; García Benito, R.; Kehrig, C.; de Lorenzo-Cáceres, A.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.

    2017-01-01

    Galaxies in the local Universe are known to follow bimodal distributions in the global stellar population properties. We analyse the distribution of the local average stellar population ages of 654 053 sub-galactic regions resolved on ˜1 kpc scales in a volume-corrected sample of 394 galaxies, drawn

  12. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  13. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1998-10-01

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  14. Bimodality and negative heat capacity in multifragmentation

    International Nuclear Information System (INIS)

    Tamain, B.; Bougault, R.; Lopez, O.; Pichon, M.

    2003-01-01

    This contribution addresses the question of the possible link between multifragmentation and the liquid-gas phase transition of nuclear matter. Bi-modality seems to be a robust signal of this link in the sense that theoretical calculations indicate that it is preserved even if a sizeable fraction of the available energy has not been shared among all the degrees of freedom. The corresponding measured properties are coherent with what is expected in a liquid-gas phase transition picture. Moreover, bi-modality and negative heat capacity are observed for the same set of events. (authors)

  15. Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.

    Science.gov (United States)

    Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G

    1989-04-01

    Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.

  16. Drift velocity, longitudinal and transverse diffusion in hydrocarbons derived from distributions of single electrons

    International Nuclear Information System (INIS)

    Schmidt, B.; Roncossek, M.

    1992-01-01

    A time of flight method is described which allows the simultaneous measurement of drift velocity w and the ratios of the longitudinal and transverse diffusion coefficients to mobility (D L /μ, D T /μ) of electrons in gases. The accuracy achieved in this omnipurpose experiment is comparable with that of specialised techniques and is estimated to be ±1% for w and ±5% for the d/μ measurements. Results for methane, ethane, ethene, propane, propene and cyclopropane for values of E/N (the electric field strength divided by the number density) ranging from 0.02 to 15 Td are presented and discussed (1 Td = 10 21 V m 2 ). 13 refs., 4 tabs., 7 figs

  17. Axial dispersion, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column by radiotracer residence time distribution analysis.

    Science.gov (United States)

    Din, Ghiyas Ud; Chughtai, Imran Rafiq; Inayat, Mansoor Hameed; Khan, Iqbal Hussain

    2008-12-01

    Axial dispersion, holdup and slip velocity of dispersed phase have been investigated for a range of dispersed and continuous phase superficial velocities in a pulsed sieve plate extraction column using radiotracer residence time distribution (RTD) analysis. Axial dispersion model (ADM) was used to simulate the hydrodynamics of the system. It has been observed that increase in dispersed phase superficial velocity results in a decrease in its axial dispersion and increase in its slip velocity while its holdup increases till a maximum asymptotic value is achieved. An increase in superficial velocity of continuous phase increases the axial dispersion and holdup of dispersed phase until a maximum value is obtained, while slip velocity of dispersed phase is found to decrease in the beginning and then it increases with increase in superficial velocity of continuous phase.

  18. Comment on ‘Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion’

    Science.gov (United States)

    Mustafaev, A. S.; Sukhomlinov, V. S.; Timofeev, N. A.

    2018-03-01

    This Comment is devoted to some mathematical inaccuracies made by the authors of the paper ‘Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion’ (Plasma Sources Science and Technology 26 055003). In the Comment, we show that the diapason of plasma parameters for the validity of the theoretical results obtained by the authors was defined incorrectly; we made a more accurate definition of this diapason. As a result, we show that it is impossible to confirm or refute the feasibility of the Bohm kinetic criterion on the basis of the data of the cited paper.

  19. Improving the modelling of redshift-space distortions - I. A bivariate Gaussian description for the galaxy pairwise velocity distributions

    Science.gov (United States)

    Bianchi, Davide; Chiesa, Matteo; Guzzo, Luigi

    2015-01-01

    As a step towards a more accurate modelling of redshift-space distortions (RSD) in galaxy surveys, we develop a general description of the probability distribution function of galaxy pairwise velocities within the framework of the so-called streaming model. For a given galaxy separation r, such function can be described as a superposition of virtually infinite local distributions. We characterize these in terms of their moments and then consider the specific case in which they are Gaussian functions, each with its own mean μ and dispersion σ. Based on physical considerations, we make the further crucial assumption that these two parameters are in turn distributed according to a bivariate Gaussian, with its own mean and covariance matrix. Tests using numerical simulations explicitly show that with this compact description one can correctly model redshift-space distortions on all scales, fully capturing the overall linear and non-linear dynamics of the galaxy flow at different separations. In particular, we naturally obtain Gaussian/exponential, skewed/unskewed distribution functions, depending on separation as observed in simulations and data. Also, the recently proposed single-Gaussian description of RSD is included in this model as a limiting case, when the bivariate Gaussian is collapsed to a two-dimensional Dirac delta function. We also show how this description naturally allows for the Taylor expansion of 1 + ξS(s) around 1 + ξR(r), which leads to the Kaiser linear formula when truncated to second order, explicating its connection with the moments of the velocity distribution functions. More work is needed, but these results indicate a very promising path to make definitive progress in our programme to improve RSD estimators.

  20. Refining Bimodal Microstructure of Materials with MSTRUCT

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Kadlecová, A.; Janeček, M.; Matějová, Lenka; Dopita, M.; Kužel, R.

    2014-01-01

    Roč. 29, S2 (2014), S35-S41 ISSN 0885-7156 R&D Projects: GA ČR GA14-23274S Grant - others:UK(CZ) UNCE 204023/2012 Institutional support: RVO:67985858 Keywords : XRD * bimodal * crystallite size Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.636, year: 2014

  1. A course in bimodal provability logic

    NARCIS (Netherlands)

    Visser, A.

    The aim of the present paper is twofold: first I am somewhat dissatisfied with current treatments of Bimodal Provability Logic: the models employed there are singled out by certain syntactical conditions, moreover they validate the logics under consideration only locally. In this paper I give a

  2. Deaf Children's Bimodal Bilingualism and Education

    Science.gov (United States)

    Swanwick, Ruth

    2016-01-01

    This paper provides an overview of the research into deaf children's bilingualism and bilingual education through a synthesis of studies published over the last 15 years. This review brings together the linguistic and pedagogical work on bimodal bilingualism to inform educational practice. The first section of the review provides a synthesis of…

  3. THE POSTERIOR DISTRIBUTION OF sin(i) VALUES FOR EXOPLANETS WITH MT sin(i) DETERMINED FROM RADIAL VELOCITY DATA

    International Nuclear Information System (INIS)

    Ho, Shirley; Turner, Edwin L.

    2011-01-01

    Radial velocity (RV) observations of an exoplanet system giving a value of M T sin(i) condition (i.e., give information about) not only the planet's true mass M T but also the value of sin(i) for that system (where i is the orbital inclination angle). Thus, the value of sin(i) for a system with any particular observed value of M T sin(i) cannot be assumed to be drawn randomly from a distribution corresponding to an isotropic i distribution, i.e., the presumptive prior distribution. Rather, the posterior distribution from which it is drawn depends on the intrinsic distribution of M T for the exoplanet population being studied. We give a simple Bayesian derivation of this relationship and apply it to several 'toy models' for the intrinsic distribution of M T , on which we have significant information from available RV data in some mass ranges but little or none in others. The results show that the effect can be an important one. For example, even for simple power-law distributions of M T , the median value of sin(i) in an observed RV sample can vary between 0.860 and 0.023 (as compared to the 0.866 value for an isotropic i distribution) for indices of the power law in the range between -2 and +1, respectively. Over the same range of indices, the 95% confidence interval on M T varies from 1.0001-2.405 (α = -2) to 1.13-94.34 (α = +2) times larger than M T sin(i) due to sin(i) uncertainty alone. More complex, but still simple and plausible, distributions of M T yield more complicated and somewhat unintuitive posterior sin(i) distributions. In particular, if the M T distribution contains any characteristic mass scale M c , the posterior sin(i) distribution will depend on the ratio of M T sin(i) to M c , often in a non-trivial way. Our qualitative conclusion is that RV studies of exoplanets, both individual objects and statistical samples, should regard the sin(i) factor as more than a 'numerical constant of order unity' with simple and well-understood statistical

  4. Seismic Velocity Structure of the San Jacinto Fault Zone from Double-Difference Tomography and Expected Distribution of Head Waves

    Science.gov (United States)

    Allam, A. A.; Ben-Zion, Y.

    2010-12-01

    We present initial results of double-difference tomographic images for the velocity structure of the San Jacinto Fault Zone (SJFZ), and related 3D forward calculations of waves in the immediate vicinity of the SJFZ. We begin by discretizing the SJFZ region with a uniform grid spacing of 500 m, extending 140 km by 80 km and down to 25 km depth. We adopt the layered 1D model of Dreger & Helmberger (1993) as a starting model for this region, and invert for 3D distributions of VP and VS with the double-difference tomography of Zhang & Thurber (2003), which makes use of absolute event-station travel times as well as relative travel times for phases from nearby event pairs. Absolute arrival times of over 78,000 P- and S-wave phase picks generated by 1127 earthquakes and recorded at 70 stations near the SJFZ are used. Only data from events with Mw greater than 2.2 are used. Though ray coverage is limited at shallow depths, we obtain relatively high-resolution images from 4 to 13 km which show a clear contrast in velocity across the NW section of the SJFZ. To the SE, in the so-called trifurcation area, the structure is more complicated, though station coverage is poorest in this region. Using the obtained image, the current event locations, and the 3D finite-difference code of Olsen (1994), we estimate the likely distributions of fault zone head waves as a tool for future deployment of instrument. We plan to conduct further studies by including more travel time picks, including those from newly-deployed stations in the SJFZ area, in order to gain a more accurate image of the velocity structure.

  5. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    International Nuclear Information System (INIS)

    Vagin, K. Yu.; Uryupin, S. A.

    2013-01-01

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function

  6. Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation

    Science.gov (United States)

    Dasgupta, Debayan; Nath, Sujit; Bhanja, Dipankar

    2018-04-01

    Twin fluid atomizers utilize the kinetic energy of high speed gases to disintegrate a liquid sheet into fine uniform droplets. Quite often, the gas streams are injected at unequal velocities to enhance the aerodynamic interaction between the liquid sheet and surrounding atmosphere. In order to improve the mixing characteristics, practical atomizers confine the gas flows within ducts. Though the liquid sheet coming out of an injector is usually annular in shape, it can be considered to be planar as the mean radius of curvature is much larger than the sheet thickness. There are numerous studies on breakup of the planar liquid sheet, but none of them considered the simultaneous effects of confinement and unequal gas velocities on the spray characteristics. The present study performs a nonlinear temporal analysis of instabilities in the planar liquid sheet, produced by two co-flowing gas streams moving with unequal velocities within two solid walls. The results show that the para-sinuous mode dominates the breakup process at all flow conditions over the para-varicose mode of breakup. The sheet pattern is strongly influenced by gas velocities, particularly for the para-varicose mode. Spray characteristics are influenced by both gas velocity and proximity to the confining wall, but the former has a much more pronounced effect on droplet size. An increase in the difference between gas velocities at two interfaces drastically shifts the droplet size distribution toward finer droplets. Moreover, asymmetry in gas phase velocities affects the droplet velocity distribution more, only at low liquid Weber numbers for the input conditions chosen in the present study.

  7. The analysis of coolant-velocity distribution in plat-typed fuel element using CFD method for RSG-GAS research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Darwis Isnaini; Endiah Puji Hastuti

    2013-01-01

    The measurement experiment for coolant-velocity distribution in the subchannel of fuel element of RSG-GAS research reactor is difficult to be carried out due to too narrow channel and subchannel placed inside the fuel element. Hence, the calculation is required to predict the coolant-velocity distribution inside subchannel to confirm that the handle presence does not ruin the velocity distribution into every subchannel. This calculation utilizes CFD method, which respect to 3-dimension interior. Moreover, the calculation of coolant-velocity distribution inside subchannel was not ever carried out. The research object is to investigate the distribution of coolant-velocity in plat-typed fuel element using 3-dimension CFD method for RSG-GAS research reactor. This research is required as a part of the development of thermalhydraulic design of fuel element for innovative research reactor as well. The modeling uses ½ model in Gambit software and calculation uses turbulence equation in FLUENT 6.3 software. Calculation result of 3D coolant-velocity in subchannel using CFD method is lower about 4.06 % than 1D calculation result due to 1D calculation obeys handle availability. (author)

  8. The Efficiency of the Bimodal System Transportation

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger

    2012-10-01

    Full Text Available The development of fast railway results in an increased applicationof Trailer Train bimodal system transportation. Thetraffic costs are multiply reduced, particularly the variablecosts. On the other hand the environmental pollution from exhaustgases is also reduced. Therefore, by the year 2010 cargotransport should be preponderant~v used which would be characterisedby fast electric trains producing less noise, at lowercosts and with clean environment.

  9. Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor

    Science.gov (United States)

    Yang, Yong; Chai, Xueguang

    2018-05-01

    When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.

  10. Velocity distribution of laser photoionized neutrals ejected from methanol-dosed aluminium(111) by electron-stimulated desorption

    International Nuclear Information System (INIS)

    Young, C.E.; Whitten, J.E.; Pellin, M.J.; Gruen, D.M.; Jones, P.L.; Ohio State Univ., Columbus, OH

    1989-01-01

    Nonresonant multiphoton ionization at 193 nm wavelength was employed for efficient detection of electron-stimulated neutral desorption from Al(111) dosed with methanol to produce monolayer methoxide coverage. Velocity spectra were measured by the flight time from the crystal surface to the focal region of the laser beam with a pulsed primary electron beam of 3 keV and the sample at 300 K. Either the C + or HCO + photofragment indicated the same non-Boltzmann velocity spectrum for the neutral parent precursor with a peak kinetic energy of ∼0.1 eV. Identical distributions were obtained when the cleaned crystal was pre-oxidized with O 2 prior to methanol dosing. As the crystal temperature was raised, photoion signal from the HCO + fragment declined steadily, while C + increased until ∼550 K. The total cross section for loss of parent signal with dose of 3 keV electrons was measured to be 2±1 x 10 -17 cm -2 . 19 refs., 4 figs

  11. Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with Maxwell-Jüttner velocity distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington DC, DC 20064 (United States); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago (Chile)

    2014-09-15

    We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.

  12. Study of microinstabilities due to an anisotropic velocity distribution function of the particles of a homogeneous plasma

    International Nuclear Information System (INIS)

    Hennion, F.

    1966-06-01

    A study is made of instabilities in a plasma with an ion velocity distribution function of the form: f oi = 1 / (2*π*α p e i *α p a i ) * λ(ν p e - α p e i ) * e -(v p a 2 /α p a i 2 ) . The plasma is assumed to have finite dimensions limited by infinitely conductive boundary surfaces. A theoretical and numerical analysis of marginal stability locates the regions of stability as a function of several parameters; i.e. plasma length, ion anisotropy (τ) and electron temperature (T e ). A limiting plasma length is found, below which the plasma is stable regardless of its density. For the parameters of the injection experiment M.M.I.I. at Fontenay-aux-roses it is found that the type of instabilities studied here should not occur. (author) [fr

  13. Bimodal nature in low-energy fission of light actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Nishinaka, Ichiro; Tsukada, Kazuaki; Ikezoe, Hiroshi; Otsuki, Tsutomu; Sueki, Keisuke; Nakahara, Hiromichi; Kudo, Hisaaki.

    1995-01-01

    To solve various problems in the mass division process of light actinoids, some experiments on the basis of bimodal fission were carried. Mass and kinetic energy distribution of Th-232 and U-238 were determined. Pa-225 (N= 134) and Pa-227 (N=136), fission nuclei, were produced by Bi-209 + 0-16 and Bi-209 + 0-18 heavy ion nucleus reactions, and the mass yield distribution were determined by the time-of-flight method and the radiochemical procedure. From the results, two independent deforming processes were proved in the fission process of light actinoid nuclei. On the deforming process through the low fission barrier, nucleus fissioned after small deformation under the influence of stabilization of the shell structure of fission product. In the case of process through the high barrier, however, the nucleus fissioned after large deformation. The unsymmetrical mass division was derived from the former and the symmetrical one from the latter. (S.Y.)

  14. Prediction of the Velocity Contours in Triangular Channel with Non-uniform Roughness Distributions by Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Sara Bardestani

    2017-09-01

    Full Text Available Triangular channels have different applications in many water and wastewater engineering problems. For this purpose investigating hydraulic characteristics of flow in these sections has great importance. Researchers have presented different prediction methods for the velocity contours in prismatic sections. Most proposed methods are not able to consider the effect of walls roughness, the roughness distribution and secondary flows. However, due to complexity and nonlinearity of velocity contours in open channel flow, there is no simple relationship that can be fully able to exactly draw the velocity contours. In this paper an efficient approach for modeling velocity contours in triangular open channels with non-uniform roughness distributions by Adaptive Neuro-Fuzzy Inference System (ANFIS has been suggested. For training and testing model, the experimental data including 1703 data in triangular channels with geometric symmetry and non-uniform roughness distributions have been used. Comparing experimental results with predicted values by model indicates that ANFIS model is capable to be used in simulation of local velocity and determining velocity contours and the independent evaluation showed that the calculated values of discharge and depth-averaged velocity from model information are precisely in conformity with experimental values.

  15. Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS

    Science.gov (United States)

    Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron

    2017-12-01

    This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.

  16. Sublimation pit distribution indicates convection cell surface velocities of ∼10 cm per year in Sputnik Planitia, Pluto

    Science.gov (United States)

    Buhler, Peter B.; Ingersoll, Andrew P.

    2018-01-01

    The ∼106 km2 Sputnik Planitia, Pluto is the upper surface of a vast basin of nitrogen ice. Cellular landforms in Sputnik Planitia with areas in the range of a few × 102-103 km2 are likely the surface manifestation of convective overturn in the nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 × 10-3 and 5.9 ± 0.8 × 10-3 m m-1 away from the cell center, depending on the cell. This is a lower bound on the size increase because of the finite resolution of the data. Accounting for resolution yields upper bounds on the size vs. distance distribution of between 4.2 ± 0.2 × 10-3 and 23.4 ± 1.5 × 10-3 m m-1. We then use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6-0.6+2.1 ×10-4 m yr-1, which allows us to convert the pit size vs. distance distribution into a pit age vs. distance distribution. This yields surface velocities between 1.5-0.2+1.0 and 6.2-1.4+3.4 cm yr-1 for the slowest cell and surface velocities between 8.1-1.0+5.5 and 17.9-5.1+8.9 cm yr-1 for the fastest cell. These convection rates imply that the surface ages at the edge of cells reach ∼4.2-8.9 × 105 yr. The rates are comparable to rates of ∼6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia (McKinnon et al., 2016). Finally, we investigate the surface rheology of the convection cells and estimate that the minimum ice viscosity necessary to support the geometry of the observed pits is of order 1016-1017 Pa s, based on the argument that pits would relax away before growing to their observed radii of several hundred meters if the viscosity were lower than this value.

  17. Scaling of Ln(Permeability) in Sediments and Velocity Distributions in Turbulence: The Possibility of an Analogy.

    Science.gov (United States)

    Molz, F. J.; Kozubowski, T. J.; Miller, R. S.; Podgorski, K.

    2005-12-01

    The theory of non-stationary stochastic processes with stationary increments gives rise to stochastic fractals. When such fractals are used to represent measurements of (assumed stationary) physical properties, such as ln(k) increments in sediments or velocity increments "delta(v)" in turbulent flows, the resulting measurements exhibit scaling, either spatial, temporal or both. (In the present context, such scaling refers to systematic changes in the statistical properties of the increment distributions, such as variance, with the lag size over which the increments are determined.) Depending on the class of probability density functions (PDFs) that describe the increment distributions, the resulting stochastic fractals will display different properties. Until recently, the stationary increment process was represented using mainly Gaussian, Gamma or Levy PDFs. However, measurements in both sediments and fluid turbulence indicate that these PDFs are not commonly observed. Based on recent data and previous studies referenced and discussed in Meerschaert et al. (2004) and Molz et al. (2005), the measured increment PDFs display an approximate double exponential (Laplace) shape at smaller lags, and this shape evolves towards Gaussian at larger lags. A model for this behavior based on the Generalized Laplace PDF family called fractional Laplace motion, in analogy with its Gaussian counterpart - fractional Brownian motion, has been suggested (Meerschaert et al., 2004) and the necessary mathematics elaborated (Kozubowski et al., 2005). The resulting stochastic fractal is not a typical self-affine monofractal, but it does exhibit monofractal-like scaling in certain lag size ranges. To date, it has been shown that the Generalized Laplace family fits ln(k) increment distributions and reproduces the original 1941 theory of Kolmogorov when applied to Eulerian turbulent velocity increments. However, to make a physically self-consistent application to turbulence, one must adopt a

  18. Bimodal Networks as Candidates for Electroactive Polymers

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Bejenariu, Anca Gabriela

    An alternative network formulation method was adopted in order to obtain a different type of silicone based elastomeric systems - the so-called bimodal networks - using two vinyl-terminated polydimethyl siloxanes (PDMS) of different molecular weight, a labelled crosslinker (3 or 4-functional), an...... themselves between the long chains and show how this leads to unexpectedly good properties for DEAP purposes due both to the low extensibility of the short chains that attach strongly the long chains and to the extensibility of the last ones that retards the rupture process....

  19. Alert-derivative bimodal space power and propulsion systems

    International Nuclear Information System (INIS)

    Houts, M.G.; Ranken, W.A.; Buksa, J.J.

    1994-01-01

    Safe, reliable, low-mass bimodal space power and propulsion systems could have numerous civilian and military applications. This paper discusses potential bimodal systems that could be derived from the ALERT space fission power supply concept. These bimodal concepts have the potential for providing 5 to 10 kW of electrical power and a total impulse of 100 MN-s at an average specific impulse of 770 s. System mass is on the order of 1000 kg

  20. Movement, drivers and bimodality of the South Asian High

    Directory of Open Access Journals (Sweden)

    M. Nützel

    2016-11-01

    Full Text Available The South Asian High (SAH is an important component of the summer monsoon system in Asia. In this study we investigate the location and drivers of the SAH at 100 hPa during the boreal summers of 1979 to 2014 on interannual, seasonal and synoptic timescales using seven reanalyses and observational data. Our comparison of the different reanalyses focuses especially on the bimodality of the SAH, i.e. the two preferred modes of the SAH centre location: the Iranian Plateau to the west and the Tibetan Plateau to the east. We find that only the National Centers for Environmental Prediction–National Center of Atmospheric Research (NCEP–NCAR reanalysis shows a clear bimodal structure of the SAH centre distribution with respect to daily and pentad (5 day mean data. Furthermore, the distribution of the SAH centre location is highly variable from year to year. As in simple model studies, which connect the SAH to heating in the tropics, we find that the mean seasonal cycle of the SAH and its centre are dominated by the expansion of convection in the South Asian region (70–130° E  ×  15–30° N on the south-eastern border of the SAH. A composite analysis of precipitation and outgoing long-wave radiation data with respect to the location of the SAH centre reveals that a more westward (eastward location of the SAH is related to stronger (weaker convection and rainfall over India and weaker (stronger precipitation over the western Pacific.

  1. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, Nadia; Thoroddsen, Sigurdur T; Marston, J. O.

    2016-01-01

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  2. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, N.

    2016-11-07

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  3. Distributed Acoustic Sensing (DAS) Array near a Highway for Traffic Monitoring and Near-Surface Shear-Wave Velocity Profiles

    Science.gov (United States)

    Wang, H. F.; Fratta, D.; Lancelle, C.; Ak, E. Ms; Lord, N. E.

    2017-12-01

    Monitoring traffic is important for many technical reasons. It allows for better design of future roads and assessment of the state of current roads. The number, size, weight, and speed of vehicles control deterioration rate. Also, real-time information supplies data to intelligent information systems to help control traffic. Recently there have been studies looking at monitoring traffic seismically as vibrations from traffic are not sensitive to weather and poor visibility. Furthermore, traffic noise can be used to image S-wave velocity distribution in the near surface by capturing and interpreting Rayleigh and Love waves (Nakata, 2016; Zeng et al. 2016). The capability of DAS for high spatial sampling (1 m), temporal sampling (up to 10 kHz), and distributed nature (tens of kilometers) allows for a closer look at the traffic as it passes and how the speed of the vehicle may change over the length of the array. The potential and difficulties of using DAS for these objectives were studied using two DAS arrays. One at Garner Valley in Southern California (a 700-meter array adjacent to CA Highway 74) and another in Brady Hot Springs, Nevada (an 8700-meter array adjacent to Interstate 80). These studies experimentally evaluated the use of DAS data for monitoring traffic and assessing the use of traffic vibration as non-localized sources for seismic imaging. DAS arrays should also be resilient to issues with lighting conditions that are problematic for video monitoring and it may be sensitive to the weight of a vehicle. This study along a major interstate provides a basis for examining DAS' potential and limitations as a key component of intelligent highway systems.

  4. TEGENA: Detailed experimental investigations of temperature and velocity distributions in rod bundle geometries with turbulent sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.

    1989-02-01

    Precise knowledge of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle TEGENA, containing 4 rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr ≅ 0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and load tilting) and the flow conditions were varied in the range from 4000 ≤ Re ≤ 76.000, 20 ≤ Pe ≤ 400. The essential process of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of load tilting investigated the flow at the end of the heated zone had not yet developed thermally. By inspection of all thermocouples in isothermal experiments performed at regular intervals, by redundant arrangement of the mobile probe thermocouples and by demonstration of the reproducibility of results of measurement the experiments have been validated satisfactorily. (orig./GL) [de

  5. TEGENA: Detailed experimental investigations of temperature and velocity distributions in rod bundle geometries with turbulent sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.

    1989-12-01

    Precise knowlege of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle, TEGENA, containing four rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr≅0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and flux tilting) and the flow conditions were varied in the ranges 4000≤Re≤76,000; 20≤Pe≤400. The essential processes of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of flux tilting investigated the flow at the end of the heated zone had not yet developed thermally. (orig.) [de

  6. Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings

    Science.gov (United States)

    Silveira, L. L.; Sucharski, G. B.; Pukasiewicz, A. G. M.; Paredes, R. S. C.

    2018-02-01

    The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ-ɛ martensitic transformation.

  7. Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings

    Science.gov (United States)

    Silveira, L. L.; Sucharski, G. B.; Pukasiewicz, A. G. M.; Paredes, R. S. C.

    2018-04-01

    The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ- ɛ martensitic transformation.

  8. Theory of pixel lensing towards M31 II, The velocity anisotropy and flattening of the MACHO distribution

    CERN Document Server

    Kerins, E; Evans, N W; Baillon, Paul; Carr, B J; Giraud-Héraud, Yannick; Gould, A; Hewett, P C; Kaplan, J; Paulin-Henriksson, S; Smartt, S J; Tsapras, Y; Valls-Gabaud, D

    2003-01-01

    The POINT-AGAPE collaboration is currently searching for massive compact halo objects (MACHOs) towards the Andromeda galaxy (M31). The survey aims to exploit the high inclination of the M31 disk, which causes an asymmetry in the spatial distribution of M31 MACHOs. Here, we investigate the effects of halo velocity anisotropy and flattening on the asymmetry signal using simple halo models. For a spherically symmetric and isotropic halo, we find that the underlying pixel-lensing rate in far-disk M31 MACHOs is more than 5 times the rate of near-disk events. We find that the asymmetry is increased further by about 30% if the MACHOs occupy radial orbits rather than tangential orbits, but is substantially reduced if the MACHOs lie in a flattened halo. However, even for haloes with a minor-to-major axis ratio q = 0.3, the numbers of M31 MACHOs in the far-side outnumber those in the near-side by a factor of ~2. We show that, if positional information is exploited in addition to number counts, then the number of candid...

  9. An asymptotic inversion method of inferring the sound velocity distribution in the sun from the spectrum of p-mode oscillations

    International Nuclear Information System (INIS)

    Sekii, Takashi; Shibahashi, Hiromoto

    1989-01-01

    We present an inversion method of inferring the sound velocity distribution in the Sun from its oscillation data of p-modes. The equation governing the p-mode oscillations is reduced to a form similar to the Schroedinger equation in quantum mechanics. By using a quantization rule based on the KWBJ asymptotic method, we derive an integral equation of which solution provides the 'acoustic potential' of the wave equation. The acoustic potential consists of two parts: One of them is related with the squared sound velocity and is dependent on the degree of the mode l, while the other term is independent of l and dominates in the outer part of the Sun. By examining the l-dependence of the acoustic potential obtained as the solution of the integral equation, we separate these two components of the potential and eventually obtain the sound velocity distribution from a set of eigenfrequencies of p-modes. In order to evaluate prospects of this inversion method, we perform numerical simulations in which eigenfrequencies of a theoretical solar model are used to reproduce the sound velocity distribution of the model. The error of thus inferred sound velocity relative to the true values is estimated to be less than a few percent. (author)

  10. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    Science.gov (United States)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  11. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    International Nuclear Information System (INIS)

    Werner, F.; Hofmann, M.; Them, K.; Knopp, T.; Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H.; Werner, R.; Säring, D.; Weber, O. M.

    2016-01-01

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  12. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.; Knopp, T. [Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany and Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg 21073 (Germany); Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Werner, R.; Säring, D. [Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Weber, O. M. [Philips Medical Systems DMC GmbH, Hamburg 22335 (Germany)

    2016-06-15

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  13. Micro manometer and pitot tube for measuring the velocity distribution in a natural convection water stream between two vertical parallel plates (1961)

    International Nuclear Information System (INIS)

    Santon, L.; Vernier, Ph.

    1961-01-01

    For heat transfer studies in certain cases of cooling in swimming-pool type nuclear reactors, a knowledge of the distribution of the velocities between two heating elements is of prime importance. A Pitot tube and a micro-manometer have been developed for making these measurements on an experimental model. (authors) [fr

  14. Speech Recognition and Cognitive Skills in Bimodal Cochlear Implant Users

    Science.gov (United States)

    Hua, Håkan; Johansson, Björn; Magnusson, Lennart; Lyxell, Björn; Ellis, Rachel J.

    2017-01-01

    Purpose: To examine the relation between speech recognition and cognitive skills in bimodal cochlear implant (CI) and hearing aid users. Method: Seventeen bimodal CI users (28-74 years) were recruited to the study. Speech recognition tests were carried out in quiet and in noise. The cognitive tests employed included the Reading Span Test and the…

  15. Disentangling internal and external factors in bimodal acquisition

    NARCIS (Netherlands)

    Hulk, A.; Van den Bogaerde, B.

    2016-01-01

    In this commentary we address some of the internal and external factors which are generally found to interact with purely linguistic factors in the languages of bimodal children, and which we think should be taken into account while analysing the bimodal data.

  16. Bimodal magmatism produced by progressively inhibited crustal assimilation 2 (PICA)

    NARCIS (Netherlands)

    Meade, F.C.; Troll, V.R.; Ellam, R.M.; Freda, C.; Font Morales, L.; Donaldson, C.H.; Klonowska, I.

    2014-01-01

    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous

  17. Settling velocities in batch sedimentation

    International Nuclear Information System (INIS)

    Fricke, A.M.; Thompson, B.E.

    1982-10-01

    The sedimentation of mixtures containing one and two sizes of spherical particles (44 and 62 μm in diameter) was studied. Radioactive tracing with 57 Co was used to measure the settling velocities. The ratio of the settling velocity U of uniformly sized particles to the velocity predicted to Stokes' law U 0 was correlated to an expression of the form U/U 0 = epsilon/sup α/, where epsilon is the liquid volume fraction and α is an empirical constant, determined experimentally to be 4.85. No effect of viscosity on the ratio U/U 0 was observed as the viscosity of the liquid medium was varied from 1x10 -3 to 5x10 -3 Pa.s. The settling velocities of particles in a bimodal mixture were fit by the same correlation; the ratio U/U 0 was independent of the concentrations of different-sized particles

  18. Bimodality in macroscopic dynamics of nuclear fission

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Salamatin, V.S.; Strteltsova, O.I.; Molodtsova, I.V.; Podgainy, D.V.; )

    2000-01-01

    The elastodynamic collective model of nuclear fission is outlined whose underlying idea is that the stiff structure of nuclear shells imparts to nucleus properties typical of a small piece of an elastic solid. Emphasis is placed on the macroscopic dynamics of nuclear deformations resulting in fission by two energetically different modes. The low-energy S-mode is the fission due to disruption of elongated quadrupole spheroidal shape. The characteristic features of the high-energy T-mode of division by means of torsional shear deformations is the compact scission configuration. Analytic and numerical estimates for the macroscopic fission-barrier heights are presented, followed by discussion of fingerprints of the above dynamical bimodality in the available data [ru

  19. Transient bimodality in interacting particle systems

    International Nuclear Information System (INIS)

    Calderoni, P.; Pellegrinotti, A.; Presutti, E.; Vares, M.E.

    1989-01-01

    The authors consider a system of spins which have values ± 1 and evolve according to a jump Markov process whose generator is the sum of two generators, one describing a spin-flip Glauber process, the other a Kawasaki (stirring) evolution. It was proven elsewhere that if the Kawasaki dynamics is speeded up by a factor var-epsilon -2 , then, in the limit var-epsilon → 0 (continuum limit), propagation of chaos holds and the local magnetization solves a reaction-diffusion equation. They choose the parameters of the Glauber interaction so that the potential of the reaction term in the reaction-diffusion equation is a double-well potential with quartic maximum at the origin. They assume further that for each var-epsilon the system is in a finite interval of Z with var-epsilon -1 sites and periodic boundary conditions. They specify the initial measure as the product measure with 0 spin average, thus obtaining, in the continuum limit, a constant magnetic profile equal to 0, which is a stationary unstable solution to the reaction-diffusion equation. They prove that at times of the order var-epsilon -1/2 propagation of chaos does not hold any more and, in the limit as var-epsilon → 0, the state becomes a nontrivial superposition of Bernoulli measures with parameters corresponding to the minima of the reaction potential. The coefficients of such a superposition depend on time (on the scale var-epsilon -1/2 ) and at large times (on this scale) the coefficient of the term corresponding to the initial magnetization vanishes (transient bimodality). This differs from what was observed by De Masi, Presutti, and Vares, who considered a reaction potential with quadratic maximum and no bimodal effect was seen, as predicted by Broggi, Lugiato, and Colombo

  20. Spectra of globular clusters in the Sombrero galaxy: evidence for spectroscopic metallicity bimodality

    Science.gov (United States)

    Alves-Brito, Alan; Hau, George K. T.; Forbes, Duncan A.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.; Rhode, Katherine L.

    2011-11-01

    We present a large sample of over 200 integrated-light spectra of confirmed globular clusters (GCs) associated with the Sombrero (M104) galaxy taken with the Deep Imaging Multi-Object Spectrograph (DEIMOS) instrument on the Keck telescope. A significant fraction of the spectra have signal-to-noise ratio levels high enough to allow measurements of GC metallicities using the method of Brodie & Huchra. We find a distribution of spectroscopic metallicities in the range -2.2 < [Fe/H] < +0.1 that is bimodal, with peaks at [Fe/H]˜-1.4 and -0.6. Thus, the GC system of the Sombrero galaxy, like a few other galaxies now studied in detail, reveals a bimodal spectroscopic metallicity distribution supporting the long-held belief that colour bimodality reflects two metallicity subpopulations. This further suggests that the transformation from optical colour to metallicity for old stellar populations, such as GCs, is not strongly non-linear. We also explore the radial and magnitude distribution with metallicity for GC subpopulations but small number statistics prevent any clear trends in these distributions. Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  1. Velocity distribution of electrons in time-varying low-temperature plasmas: progress in theoretical procedures over the past 70 years

    Science.gov (United States)

    Makabe, Toshiaki

    2018-03-01

    A time-varying low-temperature plasma sustained by electrical powers with various kinds of fRequencies has played a key role in the historical development of new technologies, such as gas lasers, ozonizers, micro display panels, dry processing of materials, medical care, and so on, since World War II. Electrons in a time-modulated low-temperature plasma have a proper velocity spectrum, i.e. velocity distribution dependent on the microscopic quantum characteristics of the feed gas molecule and on the external field strength and the frequency. In order to solve and evaluate the time-varying velocity distribution, we have mostly two types of theoretical methods based on the classical and linear Boltzmann equations, namely, the expansion method using the orthogonal function and the procedure of non-expansional temporal evolution. Both methods have been developed discontinuously and progressively in synchronization with those technological developments. In this review, we will explore the historical development of the theoretical procedure to evaluate the electron velocity distribution in a time-varying low-temperature plasma over the past 70 years.

  2. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, Christopher W.; Nielsen, Nikole M., E-mail: gkacprzak@astro.swin.edu.au [New Mexico State University, Las Cruces, NM 88003 (United States)

    2012-11-20

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W{sub r} (2796) {>=} 0.1 A] and 35 spectroscopically confirmed non-absorbing galaxies [W{sub r} (2796) < 0.1 A] imaged with Hubble Space Telescope and Sloan Digital Sky Survey. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W{sub r} (2796) < 0.1 A. We find that blue star-forming galaxies clearly drive the bimodality while red passive galaxies may exhibit an excess along their major axis. These results are consistent with galaxy evolution scenarios where star-forming galaxies accrete new gas, forming new stars and producing winds, while red galaxies exist passively due to reduced gas reservoirs. We further compute an azimuthal angle dependent Mg II absorption covering fraction, which is enhanced by as much as 20%-30% along the major and minor axes. The W{sub r} (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100 Degree-Sign and 40 Degree-Sign , respectively. We find that the probability of detecting outflows is {approx}60%, implying that winds are more commonly observed.

  3. Experimental investigation of the velocity distribution of the attached plane jet after impingement with the corner in a high room

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guangyu [Department of Energy Technology, Helsinki University of Technology, Otakaari 4, 02150 Espoo (Finland); Ruponen, Mika [Halton Oy, Haltonintie 1-3, 47400 Kausala (Finland); Kurnitski, Jarek [Finnish Innovation Fund, Itaemerentori 2, 00181 Helsinki (Finland)

    2010-06-15

    Supplying air into rooms properly without causing a sensation of draught is a challenging task. Airflow patterns and the air velocity of attached plane jets should be predicted and designed accurately before the airflow enters an occupied zone in different applications. The objective of this study is to identify the airflow patterns of attached plane jets and set up an efficient model to predict the maximum jet velocity decay of an attached plane jet after its impingement with the corner in a high room. A full-scale test chamber was used to measure the jet velocity with a plane jet supply device. The attached plane jet is bounded initially by the ceiling and the insulated wall after being discharged from the jet slot. Three velocities from the slot, 0.5, 1.0, and 2.0 m/s, are used as the initial jet velocities with three Reynolds numbers, 1000, 2000, and 4000, respectively. The results show that the behaviours of the attached plane jet differ from earlier studies carried out in a relatively low room. The virtual origin model setup in this study can be used to predict the maximum jet velocity decay for jet flow design with impingement in the corners of rooms. (author)

  4. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    International Nuclear Information System (INIS)

    Kacprzak, Glenn G.; Churchill, Christopher W.; Nielsen, Nikole M.

    2012-01-01

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W r (2796) ≥ 0.1 Å] and 35 spectroscopically confirmed non-absorbing galaxies [W r (2796) r (2796) r (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100° and 40°, respectively. We find that the probability of detecting outflows is ∼60%, implying that winds are more commonly observed.

  5. Stellar Rotation with Kepler and Gaia: Evidence for a Bimodal Star Formation History

    Science.gov (United States)

    Davenport, James

    2018-01-01

    Kepler stars with rotation periods measured via starspot modulations in their light curves have been matched against the astrometric data from Gaia Data Release 1. A total of 1,299 bright rotating stars were recovered, most with temperatures hotter than 5000 K. From these, 894 were selected as being near the main sequence. These main sequence stars show a bimodality in their rotation period distribution, centered around a ~600 Myr rotation-isochrone. This feature matches the bimodal period distribution found in cooler stars with Kepler, but was previously undetected for solar-type stars due to sample contamination by subgiant and binary stars. A tenuous connection between the rotation period and total proper motion is found, suggesting the period bimodality is due to the age distribution of stars within 300pc of the Sun, rather than a phase of rapid angular momentum loss. I will discuss how the combination of Kepler/K2/TESS with Gaia will enable us to map the star formation history of our galactic neighborhood.

  6. Simulating Pre-Asymptotic, Non-Fickian Transport Although Doing Simple Random Walks - Supported By Empirical Pore-Scale Velocity Distributions and Memory Effects

    Science.gov (United States)

    Most, S.; Jia, N.; Bijeljic, B.; Nowak, W.

    2016-12-01

    Pre-asymptotic characteristics are almost ubiquitous when analyzing solute transport processes in porous media. These pre-asymptotic aspects are caused by spatial coherence in the velocity field and by its heterogeneity. For the Lagrangian perspective of particle displacements, the causes of pre-asymptotic, non-Fickian transport are skewed velocity distribution, statistical dependencies between subsequent increments of particle positions (memory) and dependence between the x, y and z-components of particle increments. Valid simulation frameworks should account for these factors. We propose a particle tracking random walk (PTRW) simulation technique that can use empirical pore-space velocity distributions as input, enforces memory between subsequent random walk steps, and considers cross dependence. Thus, it is able to simulate pre-asymptotic non-Fickian transport phenomena. Our PTRW framework contains an advection/dispersion term plus a diffusion term. The advection/dispersion term produces time-series of particle increments from the velocity CDFs. These time series are equipped with memory by enforcing that the CDF values of subsequent velocities change only slightly. The latter is achieved through a random walk on the axis of CDF values between 0 and 1. The virtual diffusion coefficient for that random walk is our only fitting parameter. Cross-dependence can be enforced by constraining the random walk to certain combinations of CDF values between the three velocity components in x, y and z. We will show that this modelling framework is capable of simulating non-Fickian transport by comparison with a pore-scale transport simulation and we analyze the approach to asymptotic behavior.

  7. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations

    Science.gov (United States)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  8. Shell-like configuration in O+ ion velocity distribution at high altitudes in the dayside magnetosphere observed by Cluster/CIS

    Directory of Open Access Journals (Sweden)

    S. Joko

    2004-07-01

    Full Text Available We report shell-like configurations seen in O+ ion velocity distributions. One case was observed above 8RE in radial distance in the dayside magnetosphere, presumably in the mantle region, during the observation period of 09:30-10:00 UT on 12 April 2001 by the CIS instrument on board the Cluster satellite. This shell-like configuration was different from so-called "conics" or "beams": the lower energy (cold population and the higher energy partial shell part were seen together, but there was no obvious signature of heating process. With respect to H+ ion velocity distributions observed simultaneously, transverse heating (so-called in "pan-cake" shape or field-aligned energisation configurations were seen as the result of heating/energisation processes and the upward-going part of the distribution also formed a half spherical thick shell configuration. Concerning O+ ion heating in the case of 12 April 2001, it was obviously observed when the spacecraft passed through the mantle region close to the poleward cusp. As the spacecraft moved toward the dayside cusp shell-like (or dome shape velocity distributions appeared apparently and continued to be observed until the spacecraft reached the magnetopause according to two other different cases (13 February 2001 and 14 April 2001. Two other cases were observed in the Southern Hemisphere and the spacecraft was supposed to pass through the dayside cusp toward the mantle region at higher altitudes (9-11RE. O+ ion velocity distributions in these cases show pre-/post-structured shell-like configurations, depending on the observation sites (mantle or dayside cusp.

  9. The spatial distribution and velocity field of the molecular hydrogen line emission from the centre of the Galaxy

    International Nuclear Information System (INIS)

    Gatley, I.; Krisciunas, K.; Jones, T.J.; Hyland, A.R.; Geballe, T.R.; Rijksuniversiteit Groningen

    1986-01-01

    In an earlier paper the existence of a ring of molecular hydrogen-line emission surrounding the nucleus of the Galaxy was demonstrated. Here are presented the first detailed maps of the surface brightness and the velocity field, made in the upsilon=1-0 S(1) line of molecular hydrogen with a spatial resolution of 18 arcsec and a velocity resolution of 130 km s -1 . It is found that the molecular ring is tilted approximately 20 0 out of the plane of the Galaxy, has a broken and clumpy appearance, rotates at 100 km s -1 in the sense of galactic rotation, and exhibits radial motion at a velocity of 50 km s -1 . (author)

  10. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  11. Isotopic and velocity distributions of {sub 83}Bi produced in charge-pickup reactions of {sup 208}{sub 82}PB at 1 A GeV

    Energy Technology Data Exchange (ETDEWEB)

    Kelic, A.; Schmidt, K.H.; Enqvist, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (DE)] [and others

    2004-07-01

    Isotopically resolved cross sections and velocity distributions have been measured in charge-pickup reactions of 1 A GeV {sup 208}Pb with proton, deuterium and titanium target. The total and partial charge-pickup cross sections in the reactions {sup 208}Pb + {sup 1}H and {sup 208}Pb + {sup 2}H are measured to be the same in the limits of the error bars. A weak increase in the total charge-pickup cross section is seen in the reaction of {sup 208}Pb with the titanium target. The measured velocity distributions show different contributions - quasi-elastic scattering and {delta}-resonance excitation - to the charge-pickup production. Data on total and partial charge-pickup cross sections from these three reactions are compared with other existing data and also with model calculations based on the coupling of different intra-nuclear cascade codes and an evaporation code. (orig.)

  12. Intelligent agents: adaptation of autonomous bimodal microsystems

    Science.gov (United States)

    Smith, Patrice; Terry, Theodore B.

    2014-03-01

    Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.

  13. SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    Science.gov (United States)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-03-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.

  14. Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy

    Science.gov (United States)

    Mallik, S.; Das Gupta, S.; Chaudhuri, G.

    2016-04-01

    This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.

  15. A peculiar distribution of radial velocities of faint radio-galaxies with 13.0<=msub(corr)<=15.5

    International Nuclear Information System (INIS)

    Karoji, H.; Nottale, L.; Vigier, J.-P.

    1976-01-01

    A sample of 41 radio-galaxies with 13.0<=msub(corr)<=15.5 has been analyzed to test the angular redshift anisotropy discovered on Sc I galaxies by Rubin, Rubin and Ford (1973). The sample does not present their anisotropy but contains an even more curious distribution of radial velocities which suggests that the Rubin-Ford effect results from an anomalous redshift of light when it travels through clusters of galaxies. (Auth.)

  16. Fine-Structure Artifact of the Velocity Distribution of Cs Beam Tubes as Measured by the Pulsed Microwave Power Technique

    Science.gov (United States)

    1990-10-15

    Officer MOIE Program manager SSD/MSSB AFSTC/WCO OL-AB UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE la . REPORT SECURITY...34 Metrologia , 9, 1973, pp. 107-112. 2. H. Hellwig, S. Jarvis, D. J. Glaze, D. Halford, and H. E. Bell, "Time domain velocity selection modulation as a

  17. Application of one-dimensional model to calculate water velocity distributions over elastic elements simulating Canadian waterweed plants (Elodea Canadensis)

    Science.gov (United States)

    Kubrak, Elżbieta; Kubrak, Janusz; Rowiński, Paweł

    2013-02-01

    One-dimensional model for vertical profiles of longitudinal velocities in open-channel flows is verified against laboratory data obtained in an open channel with artificial plants. Those plants simulate Canadian waterweed which in nature usually forms dense stands that reach all the way to the water surface. The model works particularly well for densely spaced plants.

  18. The velocity distribution caused by an airplane at the points of a vertical plane containing the span

    Science.gov (United States)

    Munk, Max M

    1925-01-01

    A formula for the computation of the vertical velocity component on all sides of an airplane is deduced and discussed. The formation is of value for the interpretation of such free flight tests where two airplanes fly alongside each other to facilitate observation.

  19. Estimating regional pore pressure distribution using 3D seismic velocities in the Dutch Central North Sea Graben

    NARCIS (Netherlands)

    Winthaegen, P.L.A.; Verweij, J.M.

    2003-01-01

    The application of the empirical Eaton method to calibrated sonic well information and 3D seismic interval velocity data in the southeastern part of the Central North Sea Graben, using the Japsen (Glob. Planet. Change 24 (2000) 189) normal velocitydepth trend, resulted in the identification of an

  20. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  1. Transition in the equilibrium distribution function of relativistic particles.

    Science.gov (United States)

    Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  2. Model of the seismic velocity distribution in the upper lithosphere of the Vrancea seismogenic zone and within the adjacent areas

    International Nuclear Information System (INIS)

    Raileanu, Victor; Bala, Andrei

    2002-01-01

    The task of this project is to perform a detailed seismic velocity model of the P waves in the crust and upper mantle crossed by the VRANCEA 2001 seismic line and to interpret it in structural terms. The velocity model aims to contribute to a new geodynamical model of the Eastern Carpathians evolution and to a better understanding of the causes of the Vrancea earthquakes. It is performed in cooperation with the University of Karlsruhe, Germany, and University of Bucharest. The Project will be completed in 5 working stages. Vrancea 2001 is the name of the seismic line recorded with about 780 seismic instruments deployed over more then 600 km length from eastern part of Romania (east Tulcea) through Vrancea area to Aiud and south Oradea. 10 big shots with charges from 300 kg to 1500 kg dynamite were detonated along seismic line. Field data quality is from good to very good and it provides information down to the upper mantle levels. Processing of data has been performed in the first stage of present project and it consisted in merging of all individual field records in seismograms for each shotpoint. Almost 800 individual records for each out of the 10 shots were merged in 10 seismograms with about 800 channels. A seismogram of shot point S (25 km NE of Ramnicu Sarat) is given. It is visible a high energy generated by shotpoint S. Pn wave can be traced until the western end of seismic line, about 25 km from source. In the second stage of project an interpretation of seismic data is achieved for the first 5 seismograms from the eastern half of seismic line, from Tulcea to Ramnicu Sarat. It is used a forward modeling procedure. 5 unidimensional (1D) velocity-depth function models are obtained. P wave velocity-depth function models for shotpoints from O to T are presented. Velocity-depth information is extended down to 40 km for shot R and 80 km for shot S. It should noticed the unusually high velocities at the shallow levels for Dobrogea area (O and P shots) and the

  3. Bimodal Programming: A Survey of Current Clinical Practice.

    Science.gov (United States)

    Siburt, Hannah W; Holmes, Alice E

    2015-06-01

    The purpose of this study was to determine the current clinical practice in approaches to bimodal programming in the United States. To be specific, if clinicians are recommending bimodal stimulation, who programs the hearing aid in the bimodal condition, and what method is used for programming the hearing aid? An 11-question online survey was created and sent via email to a comprehensive list of cochlear implant programming centers in the United States. The survey was sent to 360 recipients. Respondents in this study represented a diverse group of clinical settings (response rate: 26%). Results indicate little agreement about who programs the hearing aids, when they are programmed, and how they are programmed in the bimodal condition. Analysis of small versus large implant centers indicated small centers are less likely to add a device to the contralateral ear. Although a growing number of cochlear implant recipients choose to wear a hearing aid on the contralateral ear, there is inconsistency in the current clinical approach to bimodal programming. These survey results provide evidence of large variability in the current bimodal programming practices and indicate a need for more structured clinical recommendations and programming approaches.

  4. Bimodal distribution of fasting gastric acidity in a rural African ...

    African Journals Online (AJOL)

    Setting. The people of Transkei eat a diet high in linoleic acid, the principal fatty acid in maize. The theory has been put forward that a diet high in linoleic acid and low in fat and riboflavin, such as the traditional diet in Transkei, results in overproduction of prostaglandin E2 in the gastric mucosa, and that this overproduction ...

  5. ORIGINAL ARTICLES Bimodal distribution of fasting gastric acidity ...

    African Journals Online (AJOL)

    2003-10-18

    Oct 18, 2003 ... nasogastric tube aspiration from 150 volunteers at a rural health clinic. The pH ... Ethical permission for the study was obtained from the. Research .... beans might be a spurious marker of some other aspect of. Transkeian life ...

  6. Bimodality and the formation of Saturn's ring particles

    International Nuclear Information System (INIS)

    Gehrels, T.

    1980-01-01

    The F ring appears to have an outer and an inner rim, with only the latter observed by the imaging photopolarimeter (IPP) on the Pioneer Saturn spacecraft. The inside of the G ring, near 2.49 R/sub S/, may also be seen in the optical data. 1979S1 is red as well as dark. The light scattered through the B ring is noticeably red. The A ring has a dense outer rim. The Cassini Division and the French Division (Dollfus Division) have a dark gap near their centers. The C ring becomes weaker toward the center such that outer, middle, and inner C rings can be recognized. The Pioneer and earth-based observations are explained with a model for the B and A rings to some extent of a bimodal size distributions of particles; the larger ones may be original accretions, while small debris diffuses inward through the Cassini Division and the C ring. During the formation of the ring system, differential gravitation allowed only silicaceous grains of higher density (rho> or approx. =3 g cm -3 ) to coagulate. These serve as interstitial cores for snowy carbonaceous grains, between the times of accretion from interplanetary cometary grains and liberation by collision followed by diffusion inward to Saturn and final evaporation

  7. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    A. Poerschke, R. Beach, T. Begg

    2017-06-01

    IBACOS investigated the performance of a small-diameter high-velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance.

  8. Analytical and numerical studies of approximate phase velocity matching based nonlinear S0 mode Lamb waves for the detection of evenly distributed microstructural changes

    International Nuclear Information System (INIS)

    Wan, X; Xu, G H; Tao, T F; Zhang, Q; Tse, P W

    2016-01-01

    Most previous studies on nonlinear Lamb waves are conducted using mode pairs that satisfying strict phase velocity matching and non-zero power flux criteria. However, there are some limitations in existence. First, strict phase velocity matching is not existed in the whole frequency bandwidth; Second, excited center frequency is not always exactly equal to the true phase-velocity-matching frequency; Third, mode pairs are isolated and quite limited in number; Fourth, exciting a single desired primary mode is extremely difficult in practice and the received signal is quite difficult to process and interpret. And few attention has been paid to solving these shortcomings. In this paper, nonlinear S0 mode Lamb waves at low-frequency range satisfying approximate phase velocity matching is proposed for the purpose of overcoming these limitations. In analytical studies, the secondary amplitudes with the propagation distance considering the fundamental frequency, the maximum cumulative propagation distance (MCPD) with the fundamental frequency and the maximum linear cumulative propagation distance (MLCPD) using linear regression analysis are investigated. Based on analytical results, approximate phase velocity matching is quantitatively characterized as the relative phase velocity deviation less than a threshold value of 1%. Numerical studies are also conducted using tone burst as the excitation signal. The influences of center frequency and frequency bandwidth on the secondary amplitudes and MCPD are investigated. S1–S2 mode with the fundamental frequency at 1.8 MHz, the primary S0 mode at the center frequencies of 100 and 200 kHz are used respectively to calculate the ratios of nonlinear parameter of Al 6061-T6 to Al 7075-T651. The close agreement of the computed ratios to the actual value verifies the effectiveness of nonlinear S0 mode Lamb waves satisfying approximate phase velocity matching for characterizing the material nonlinearity. Moreover, the ratios derived

  9. Microstructure, plastic deformation and strengthening mechanisms of an Al–Mg–Si alloy with a bimodal grain structure

    International Nuclear Information System (INIS)

    Shakoori Oskooie, M.; Asgharzadeh, H.; Kim, H.S.

    2015-01-01

    Highlights: • Al6063 with bimodal grain structures was fabricated by a powder metallurgy route. • The bimodal alloys showed a reasonable ductility together with a high strength. • Grain boundary strengthening was reduced at higher fraction of coarse grains. • The enhanced tensile ductility was attributed to crack blunting and delamination. - Abstract: Al6063 alloys with bimodal grain size distributions comprised of ultrafine-grained (UFG) and coarse-grained (CG) regions were produced via mechanical milling followed by hot extrusion. High-energy planetary ball milling for 22.5 h with a rotational speed of 350 rpm was employed for the synthesis of nanocrystalline Al6063 powders. The as-milled Al6063 powders were mixed with 15, 30, and 45 vol.% of the unmilled powders and then the powder mixtures were consolidated via extrusion at 450 °C with an extrusion ratio of 9:1. The microstructure of the bimodal extrudates was investigated using optical microscope, transmission electron microscope (TEM) and field emission scanning electron microscope equipped with an electron backscattered diffraction (EBSD) detector. The deformation behavior was investigated by means of uniaxial tensile tests. The bimodal Al6063 exhibited balanced mechanical properties, including high yield stress and ultimate tensile strength resulting from the UFG regions together with reasonable ductility attained from the CG areas. The fracture surfaces demonstrated a ductile fracture mode, in which the dimple size was correlated with the grain structure. The strengthening mechanisms are discussed based on the dislocation models and the functions of the CGs in the deformation behavior and ductility enhancement of bimodal Al6063 are explored

  10. Effect of pressure on 3D distribution of P-wave velocity and attenuation in antigorite serpentinite

    Czech Academy of Sciences Publication Activity Database

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj; Kern, H.

    2017-01-01

    Roč. 82, č. 4 (2017), WA33-WA43 ISSN 0016-8033 R&D Projects: GA ČR GA13-13967S; GA ČR(CZ) GA16-03950S; GA ČR(CZ) GC16-19751J Institutional support: RVO:67985831 ; RVO:67985530 Keywords : antigorite * serpentinite * P-wawe velocity Subject RIV: DB - Geology ; Mineralogy; DB - Geology ; Mineralogy (GFU-E) OBOR OECD: Geology; Geology (GFU-E) Impact factor: 2.391, year: 2016

  11. The Statistical Distribution of Turbulence Driven Velocity Extremes in the Atmosperic Boundary Layer cartwright/Longuet-Higgins Revised

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    The statistical distribution of extreme wind excursions above a mean level, for a specified recurrence period, is of crucial importance in relation to design of wind sensitive structures. This is particularly true for wind turbine structures. Based on an assumption of a Gaussian "mother......" distribution, Cartwright and Longuet-Higgens [1] derived an asymptotic expression for the distribution of the largest excursion from the mean level during an arbitrary recurrence period. From its inception, this celebrated expression has been widely used in wind engineering (as well as in off-shore engineering...... associated with large excursions from the mean [2]. Thus, the more extreme turbulence excursions (i.e. the upper tail of the turbulence PDF) seem to follow an Exponential-like distribution rather than a Gaussian distribution, and a Gaussian estimate may under-predict the probability of large turbulence...

  12. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    International Nuclear Information System (INIS)

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  13. Direct detection of neutral metal atoms in electron-stimulated desorption: Al from CH3O/Al(111) - velocity distribution and absolute yield

    International Nuclear Information System (INIS)

    Whitten, J.E.; Young, C.E.; Pellin, M.J.; Gruen, D.M.; Jones, P.L.

    1994-01-01

    Electron-stimulated desorption of neutral aluminum from the system CH 3 O/Al(111) has been directly monitored via quasiresonant photoionization with 193 nm excimer laser light and confirmed by two-step resonant ionization, utilizing the Al 3d 2 D manifold. Velocity distribution measurements for the neutral Al peak at ∼ 800 m/s for 1 keV incident electron energy. An absolute yield of 3.2 x 10 -6 Al atoms/electron was determined by comparison with sputtering measurements in the same apparatus. This is the first observation of electron-stimulated metal desorption from adsorbate-covered metallic surfaces

  14. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Éloïse C Déaux

    Full Text Available Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual or bimodal (audio-visual stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

  15. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence

    2014-01-01

    The existence of short-chain domains in heterogeneous bimodal PDMS networks has been confirmed visually, for the first time, through confocal fluorescence microscopy. The networks were prepared using a controlled reaction scheme where short PDMS chains were reacted below the gelation point...... bimodal networks with short-chain domains within a long-chain network. The average sizes of the short-chain domains were found to vary from 2.1 to 5.7 mm depending on the short-chain content. The visualised network structure could be correlated thereafter to the elastic properties, which were determined...... by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  16. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    Science.gov (United States)

    Déaux, Éloïse C; Clarke, Jennifer A; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

  17. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract

    Energy Technology Data Exchange (ETDEWEB)

    Erath, Byron D.; Plesniak, Michael W. [Purdue University, School of Mechanical Engineering, Indiana (United States)

    2006-05-15

    Pulsatile two-dimensional flow through static divergent models of the human vocal folds is investigated. Although the motivation for this study is speech production, the results are generally applicable to a variety of engineering flows involving pulsatile flow through diffusers. Model glottal divergence angles of 10, 20, and 40 represent various geometries encountered in one phonation cycle. Frequency and amplitude of the flow oscillations are scaled with physiological Reynolds and Strouhal numbers typical of human phonation. Glottal velocity trajectories are measured along the anterior-posterior midline by using phase-averaged particle image velocimetry to acquire 1,000 realizations at ten discrete instances in the phonation cycle. The angular deflection of the glottal jet from the streamwise direction (symmetric configuration) is quantified for each realization. A bimodal flow configuration is observed for divergence angles of 10 and 20 , with the flow eventually skewing and attaching to the vocal fold walls. The deflection of the flow toward the vocal fold walls occurs when the forcing function reaches maximum velocity and zero acceleration. For a divergence angle of 40 , the flow never attaches to the vocal fold walls; however, there is increased variability in the glottal jet after the forcing function reaches maximum velocity and zero acceleration. The variation in the jet trajectory as a function of divergence angle is explained by performance maps of diffuser flow regimes. The smaller angle cases are in the unstable transitory stall regime while the 40 divergent case is in the fully developed two-dimensional stall regime. Very small geometric variations in model size and surface finish significantly affect the flow behavior. The bimodal, or flip-flopping, glottal jet behavior is expected to influence the dipole contribution to sound production. (orig.)

  18. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    Science.gov (United States)

    Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T

    2010-03-10

    Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  19. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    Directory of Open Access Journals (Sweden)

    Alka A Potdar

    2010-03-01

    Full Text Available Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells that exist in multi-cellular organisms (humans follow a bimodal correlated random walk (BCRW.Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation.Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  20. High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel

    International Nuclear Information System (INIS)

    Chauhan, Ankur; Litvinov, Dimitri; Aktaa, Jarir

    2016-01-01

    This article describes the tensile properties and fracture characteristics of a 12Cr oxide dispersion strengthened (ODS) ferritic steel with unique elongated bimodal grain size distribution. The tensile tests were carried out at four different temperatures, ranging from room temperature to 700 °C, at a nominal strain rate of 10"−"3 s"−"1. At room temperature the material exhibits a high tensile strength of 1294 MPa and high yield strength of 1200 MPa. At 700 °C, the material still exhibits relatively high tensile strength of 300 MPa. The total elongation-to-failure exceeds 18% over the whole temperature range and has a maximum value of 29% at 600 °C. This superior ductility is attributed to the material's bimodal grain size distribution. In comparison to other commercial, as well as experimental, ODS steels, the material shows an excellent compromise between strength and ductility. The fracture surface studies reveal a change in fracture behavior from a mixed mode fracture at room temperature to fully ductile fracture at 600 °C. At 700 °C, the fracture path changes from intragranular to intergranular fracture, which is associated with a reduced ductility. - Highlights: • The steel has a unique elongated bimodal grain size distribution. • The steel shows an excellent compromise between strength and ductility. • Superior ductility in comparison to other commercial and experimental ODS steels. • Fracture behavior changes from mixed mode fracture at room temperature to fully ductile fracture at 600 °C. • Fracture path changes from intragranular to intergranular fracture at 700 °C.

  1. Effect of the borax mass and pre-spray medium temperature on droplet size and velocity vector distributions of intermittently sprayed starchy solutions.

    Science.gov (United States)

    Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariwahjoedi, Bambang

    2015-02-07

    Spray coating technology has demonstrated great potential in the slow release fertilizers industry. The better understanding of the key spray parameters benefits both the environment and low cost coating processes. The use of starch based materials to coat the slow release fertilizers is a new development. However, the hydraulic spray jet breakup of the non-Newtonian starchy solutions is a complex phenomenon and very little known. The aim of this research was to study the axial and radial distributions of the Sauter Mean Diameter (SMD) and velocity vectors in pulsing spray patterns of native and modified tapioca starch solutions. To meet the objective, high speed imaging and Phase Doppler Anemometry (PDA) techniques were employed to characterize the four compositions of the starch-urea-borax complex namely S0, S1, S2 and S3. The unheated solutions exhibited very high viscosities ranging from 2035 to 3030 cP. No jet breakup was seen at any stage of the nozzle operation at an injection pressure of 1-5 bar. However, at 80 °C temperature and 5 bar pressure, the viscosity was reduced to 455 to 638 cP and dense spray patterns emerged from the nozzle obscuring the PDA signals. The axial size distribution revealed a significant decrease in SMD along the spray centreline. The smallest axial SMD (51 to 79 μm) was noticed in S0 spray followed by S1, S2 and S3. Unlikely, the radial SMD in S0 spray did not vary significantly at any stage of the spray injection. This trend was attributed to the continuous growth of the surface wave instabilities on the native starch sheet. However, SMD obtained with S1, S2 and S3 varied appreciably along the radial direction. The mean velocity vector profiles followed the non-Gaussian distribution. The constant vector distributions were seen in the near nozzle regions, where the spray was in the phase of development. In far regions, the velocity vectors were poly-dispersed and a series of ups and downs were seen in the respective radial

  2. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-09

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore the small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.

  3. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application

    Science.gov (United States)

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-01

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.

  4. Measurement of a 2D fast-ion velocity distribution function by tomographic inversion of fast-ion D-alpha spectra

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Jacobsen, Asger Schou

    2014-01-01

    We present the first measurement of a local fast-ion 2D velocity distribution function f(v‖, v⊥). To this end, we heated a plasma in ASDEX Upgrade by neutral beam injection and measured spectra of fast-ion Dα (FIDA) light from the plasma centre in three views simultaneously. The measured spectra ...... can measure spectra in up to seven views simultaneously in the next ASDEX Upgrade campaign which would further improve measurements of f(v‖, v⊥) by tomographic inversion.......We present the first measurement of a local fast-ion 2D velocity distribution function f(v‖, v⊥). To this end, we heated a plasma in ASDEX Upgrade by neutral beam injection and measured spectra of fast-ion Dα (FIDA) light from the plasma centre in three views simultaneously. The measured spectra...... agree very well with synthetic spectra calculated from a TRANSP/NUBEAM simulation. Based on the measured FIDA spectra alone, we infer f(v‖, v⊥) by tomographic inversion. Salient features of our measurement of f(v‖, v⊥) agree reasonably well with the simulation: the measured as well as the simulated f...

  5. Bi-Modal Micro-Cathode Arc Thruster for Cube Satellites

    Science.gov (United States)

    Chiu, Dereck

    A new concept design, named the Bi-Modal Micro-Cathode Arc Thruster (BM-muCAT), has been introduced utilizing features from previous generations of muCATs and incorporating a multi-propellant functionality. This arc thruster is a micro-Newton level thruster based off of vacuum arc technology utilizing an enhanced magnetic field. Adjusting the magnetic field allows the thrusters performance to be varied. The goal of this thesis is to present a new generation of micro-cathode arc thrusters utilizing a bi-propellant, nickel and titanium, system. Three experimental procedures were run to test the new designs capabilities. Arc rotation experiment was used as a base experiment to ensure erosion was occurring uniformly along each electrode. Ion utilization efficiency was found, using an ion collector, to be up to 2% with the nickel material and 2.5% with the titanium material. Ion velocities were also studied using a time-of-flight method with an enhanced ion detection system. This system utilizes double electrostatic probes to measure plasma propagation. Ion velocities were measured to be 10km/s and 20km/s for nickel and titanium without a magnetic field. With an applied magnetic field of 0.2T, nickel ion velocities almost doubled to about 17km/s, while titanium ion velocities also increased to about 30km/s.

  6. Determination of concentration distribution and velocity of a catalyst in a model of a fluidized bed reactor using nuclear techniques

    International Nuclear Information System (INIS)

    Santos, V.A. dos.

    1981-09-01

    A simplified model of a cracking unit was construct. The gaseous phase consisted of air, the solid phase (zeolite catalyst cracking) and both the phases circulate at the ambiente temperature in the steady state with 500 g of catalyst and air flow of 1600 1/h. Measurements for the circulation time of the solid phase (catalyst), concentration and radial distribution of catalyst have been carried out. The reduced experimental model of the cracking reactor (FCC) was used and radioctive tracer and attenuation of γ-radiation techniques were employed. (E.G.) [pt

  7. Effects of non-Maxwellian electron velocity distribution functions and nonspherical geometry on minor ions in the solar wind

    Science.gov (United States)

    Burgi, A.

    1987-01-01

    A previous model has shown that in order to account for the charge state distribution in the low-speed solar wind, a high coronal temperature is necessary and that this temperature peak goes together with a peak of nx/np in the corona. In the present paper, one of the assumptions made previously, i.e., that coronal electrons are Maxwellian, is relaxed, and a much cooler model is presented, which could account for the same oxygen charge states in the solar wind due to the inclusion of non-Maxwellian electrons. Also, due to a different choice of the coronal magnetic field geometry, this model would show no enhancement of the coronal nx/np. Results of the two models are then compared, and observational tests to distinguish between the two scenarios are proposed: comparison of directly measured coronal Te to charge state measurements in the solar wind, determination of the coronal nx/np measurement of ion speeds in the acceleration region of the solar wind, and measurement of the frozen-in silicon charge state distribution.

  8. Does bimodal stimulus presentation increase ERP components usable in BCIs?

    NARCIS (Netherlands)

    Thurlings, M.E.; Brouwer, A.M.; Erp, J.B.F. van; Blankertz, B.; Werkhoven, P.J.

    2012-01-01

    Event-related potential (ERP)-based brain–computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain

  9. Bimodal Bilingual Language Development of Hearing Children of Deaf Parents

    Science.gov (United States)

    Hofmann, Kristin; Chilla, Solveig

    2015-01-01

    Adopting a bimodal bilingual language acquisition model, this qualitative case study is the first in Germany to investigate the spoken and sign language development of hearing children of deaf adults (codas). The spoken language competence of six codas within the age range of 3;10 to 6;4 is assessed by a series of standardised tests (SETK 3-5,…

  10. Measuring oxygen uptake in fishes with bimodal respiration.

    Science.gov (United States)

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. © 2015 The Fisheries Society of the British Isles.

  11. Planar and nonplanar electron-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution

    International Nuclear Information System (INIS)

    Han, Jiu-Ning; Luo, Jun-Hua; Sun, Gui-Hua; Liu, Zhen-Lai; Ge, Su-Hong; Wang, Xin-Xing; Li, Jun-Xiu

    2014-01-01

    The nonlinear dynamics of nonplanar (cylindrical and spherical) electron-acoustic solitary wave structures in an unmagnetized, collisionless plasma composed of stationary ions, cold fluid electrons and hot q-nonextensive distributed electrons are theoretically studied. We discuss the effects of the nonplanar geometry, nonextensivity of hot electrons and ‘hot’ to ‘cold’ electron number density ratio on the time evolution characters of cylindrical and spherical solitary waves. Moreover, the effects of plasma parameters on the nonlinear structure induced by the interaction between two planar solitary waves are also investigated. It is found that these plasma parameters have significant influences on the properties of the above-mentioned nonlinear structures. Our theoretical study may be useful to understand the nonlinear features of electron-acoustic wave structures in astrophysical plasma systems. (paper)

  12. Effect of Magnetic Flux Density and Applied Current on Temperature, Velocity and Entropy Generation Distributions in MHD Pumps

    Directory of Open Access Journals (Sweden)

    M. Kiyasatfar

    2011-01-01

    Full Text Available In the present study, simulation of steady state, incompressible and fully developed laminar flow has been conducted in a magneto hydrodynamic (MHD pump. The governing equations are solved numerically by finite-difference method. The effect of the magnetic flux density and current on the flow and temperature distributions in a MHD pump is investigated. The obtained results showed that controlling the flow and the temperature is possible through the controlling of the applied current and the magnetic flux. Furthermore, the effects of the magnetic flux density and current on entropy generation in MHD pump are considered. Our presented numerical results are in good agreement with the experimental data showed in literature.

  13. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    Science.gov (United States)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Elgarayhi, A.; Kassem, A. I.

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  14. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration

    International Nuclear Information System (INIS)

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2017-01-01

    In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode . We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close to sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3–5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4–7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.

  15. Effect of Flow Configuration on Velocity and Temperature Distribution of Moderator Inside 540 MWe PHWR Calandria using CFD Techniques

    International Nuclear Information System (INIS)

    Bharj, J.S.; Sahaya, R.R.; Datta, D.; Dharne, S.P.

    2006-01-01

    The calandria of a Pressurized Heavy Water Reactor (PHWR) is a horizontal cylindrical vessel housing a matrix of horizontal tubes called calandria tubes, through which pass the pressure tubes that house the fuel bundles. The calandria is filled with heavy water acting as moderator. A large amount of heat (about 95 MW) is generated within the moderator mainly due to neutron slowing down and attenuation of gamma radiations. In the present configuration of 540 MWe calandria, moderator inlet diffusers are directed upwards and the outlet is from the bottom of the calandria. This configuration is not conducive for the buoyancy-dominated flows generated due to large volumetric heat generation in the moderator. In order to decide the effects of changes in flow configuration by changing location/direction of inlet/outlet nozzles, a study was done for moderator flows in the using PHOENICS CFD software. The results of study with various flow configurations show that modification in moderator flow configuration, reduces the peak temperature of moderator in calandria by about 12 deg C as well as gives a much more uniform temperature distribution. (authors)

  16. Tribological properties and morphology of bimodal elastomeric nitrile butadiene rubber networks

    International Nuclear Information System (INIS)

    Guo, Yin; Wang, Jiaxu; Li, Kang; Ding, Xingwu

    2013-01-01

    Highlights: • Bimodal elastomeric NBR as a new material was developed. • The structure of bimodal elastomeric NBR networks was determined. • The relationship between structure and mechanical properties was investigated. • The tribological properties and mechanisms of bimodal NBR were analyzed. • The benefits of bimodal NBR in the field of tribology were discussed. - Abstract: Bimodal nitrile butadiene rubber (NBR) was examined in this study. The molecular structure was determined by dynamic mechanical analysis and transmission electron microscopy. The relationship between the structure and the mechanical properties related to elastomeric tribological properties was investigated. The properties and the mechanisms of friction and wear of bimodal elastomeric NBR networks were also analyzed. The lubricating characteristics of bimodal NBR networks were revealed based on the mechanisms of friction and wear. Results show that bimodal NBR networks are similar to bimodal polydimethylsiloxane networks. The form and density of the network structure can be controlled from elastomeric networks to thermosetting resin networks. The mechanical properties of bimodal NBR networks, such as elasticity, elongation at break, fatigue characteristic, tensile strength, elastic modulus, and thermal stability can be precisely controlled following the variation in network structure. The friction, wear, and lubrication of bimodal NBR networks can be clearly described according to the principles of tribology. Common elastomers cannot simultaneously reduce friction and wear because of the different mechanisms of friction and wear; however, bimodal elastomer networks can efficiently address this problem

  17. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    Science.gov (United States)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  18. Galex Lyman-alpha Emitters: Physical Properties, Luminosity Bimodality, And Morphologies.

    Science.gov (United States)

    Mallery, Ryan P.

    2010-01-01

    The Galaxy Evolution Explorer spectroscopic survey has uncovered a large statistically significant sample of Lyman-alpha emitters at z sim0.3. ACS imaging of these sources in the COSMOS and AEGIS deep fields reveals that these Lyman-alpha emitters consist of two distinct galaxy morphologies, face on spiral galaxies and compact starburst/merging systems. The morphology bimodality also results in a bimodal distribution of optical luminosity. A comparison between the UV photometry and MIPS 24 micron detections of these sources indicates that they are bluer, and have less dust extinction than similar star forming galaxies that lack Lyman-alpha detection. Our findings show how the global gas and dust distribution of star forming galaxies inhibits Lyman-alpha emission in star forming galaxies. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the CNES of France and the Korean Ministry of Science and Technology.

  19. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Kern, H.; Svitek, Tomáš; Ivankina, T.

    2014-01-01

    Roč. 231, June (2014), s. 1-15 ISSN 0031-9201 R&D Projects: GA MŠk LH13102; GA ČR(CZ) GAP104/12/0915; GA ČR GA13-13967S Institutional support: RVO:67985831 Keywords : 3D-velocity calculation * measured and calculated elastic properties * neutron diffraction * seismic anisotropy * velocity measurements Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.895, year: 2014

  20. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  1. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    International Nuclear Information System (INIS)

    Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W.

    2015-01-01

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample

  2. NERVA-Derived Concept for a Bimodal Nuclear Thermal Rocket

    International Nuclear Information System (INIS)

    Fusselman, Steven P.; Frye, Patrick E.; Gunn, Stanley V.; Morrison, Calvin Q.; Borowski, Stanley K.

    2005-01-01

    The Nuclear Thermal Rocket is an enabling technology for human exploration missions. The 'bimodal' NTR (BNTR) provides a novel approach to meeting both propulsion and power requirements of future manned and robotic missions. The purpose of this study was to evaluate tie-tube cooling configurations, NTR performance, Brayton cycle performance, and LOX-Augmented NTR (LANTR) feasibility to arrive at a point of departure BNTR configuration for subsequent system definition

  3. Mobile Education: Towards Affective Bi-modal Interaction for Adaptivity

    Directory of Open Access Journals (Sweden)

    Efthymios Alepis

    2009-04-01

    Full Text Available One important field where mobile technology can make significant contributions is education. However one criticism in mobile education is that students receive impersonal teaching. Affective computing may give a solution to this problem. In this paper we describe an affective bi-modal educational system for mobile devices. In our research we describe a novel approach of combining information from two modalities namely the keyboard and the microphone through a multi-criteria decision making theory.

  4. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: a test from the GMGS2 expedition in the South China Sea

    Science.gov (United States)

    Liu, Tao; Liu, Xuewei

    2018-06-01

    Pore-filling and fracture-filling are two basic distribution morphologies of gas hydrates in nature. A clear knowledge of gas hydrate morphology is important for better resource evaluation and exploitation. Improper exploitation may cause seafloor instability and exacerbate the greenhouse effect. To identify the gas hydrate morphologies in sediments, we made a thorough analysis of the characteristics of gas hydrate bearing sediments (GHBS) based on rock physics modeling. With the accumulation of gas hydrate in sediments, both the velocities of two types of GHBS increase, and their densities decrease. Therefore, these two morphologies cannot be differentiated only by velocity or density. After a series of tests, we found the attribute ρ {{V}{{P}}}0.5 as a function of hydrate concentration show opposite trends for these two morphologies due to their different formation mechanisms. The morphology of gas hydrate can thus be identified by comparing the measured ρ {{V}{{P}}}0.5 with its background value, which means the ρ {{V}{{P}}}0.5 of the hydrate-free sediments. In 2013, China’s second gas hydrate expedition was conducted by Guangzhou Marine Geologic Survey to explore gas hydrate resources in the northern South China Sea, and both two hydrate morphologies were recovered. We applied this method to three sites, which include two pore-filling and three fracture-filling hydrate layers. The data points, that agree with the actual situations, account for 72% and 82% of the total for the two pore-filling hydrate layers, respectively, and 86%, 74%, and 69% for the three fracture-filling hydrate layers, respectively.

  5. Does bimodal stimulus presentation increase ERP components usable in BCIs?

    Science.gov (United States)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.

    2012-08-01

    Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.

  6. RADIAL VELOCITIES FROM VLT-KMOS SPECTRA OF GIANT STARS IN THE GLOBULAR CLUSTER NGC 6388

    International Nuclear Information System (INIS)

    Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Origlia, L.; Valenti, E.; Cirasuolo, M.

    2015-01-01

    We present new radial velocity measurements for 82 stars, members of the Galactic globular cluster (GC) NGC 6388, obtained from ESO-VLT K-band Multi Object Spectrograph (KMOS) spectra acquired during the instrument Science Verification. The accuracy of the wavelength calibration is discussed and a number of tests of the KMOS response are presented. The cluster systemic velocity obtained (81.3 ± 1.5 km s –1 ) is in very good agreement with previous determinations. While a hint of ordered rotation is found between 9'' and 20'' from the cluster center, where the distribution of radial velocities is clearly bimodal, more data are needed before drawing any firm conclusions. The acquired sample of radial velocities has also been used to determine the cluster velocity dispersion (VD) profile between ∼9'' and 70'', supplementing previous measurements at r < 2'' and r > 60'' obtained with ESO-SINFONI and ESO-FLAMES spectroscopy, respectively. The new portion of the VD profile nicely matches the previous ones, better defining the knee of the distribution. The present work clearly shows the effectiveness of a deployable integral field unit in measuring the radial velocities of individual stars for determining the VD profile of Galactic GCs. It represents the pilot project for an ongoing large program with KMOS and FLAMES at the ESO-VLT, aimed at determining the next generation of VD and rotation profiles for a representative sample of GCs

  7. Effects of tensile test parameters on the mechanical properties of a bimodal Al–Mg alloy

    International Nuclear Information System (INIS)

    Magee, Andrew; Ladani, Leila; Topping, Troy D.; Lavernia, Enrique J.

    2012-01-01

    The properties of aluminum alloy (AA) 5083 are shown to be significantly improved by grain size reduction through cryomilling and the incorporation of unmilled Al particles into the material, creating a bimodal grain size distribution consisting of coarse grains in a nanocrystalline matrix. To provide insight into the mechanical behavior and ultimately facilitate engineering applications, the present study reports on the effects of coarse grain ratio, anisotropy, strain rate and specimen size on the elastic–plastic behavior of bimodal AA 5083 evaluated in uniaxial tension tests using a full-factorial experiment design. To determine the governing failure mechanisms under different testing conditions, the specimens’ failure surfaces were analyzed using optical and electron microscopy. The results of the tests were found to conform to Joshi’s plasticity model. Significant anisotropy effects were observed, in a drastic reduction in strength and ductility, when tension was applied perpendicular (transverse) to the direction of extrusion. These specimens also exhibited a smooth, flat fracture surface morphology with a significantly different surface texture than specimens tested in the axial direction. It was found that decreasing specimen thickness and strain rate served to increase both the strength and ductility of the material. The failure surface morphology was found to differ between specimens of different thicknesses.

  8. Particle filtering with path sampling and an application to a bimodal ocean current model

    International Nuclear Information System (INIS)

    Weare, Jonathan

    2009-01-01

    This paper introduces a recursive particle filtering algorithm designed to filter high dimensional systems with complicated non-linear and non-Gaussian effects. The method incorporates a parallel marginalization (PMMC) step in conjunction with the hybrid Monte Carlo (HMC) scheme to improve samples generated by standard particle filters. Parallel marginalization is an efficient Markov chain Monte Carlo (MCMC) strategy that uses lower dimensional approximate marginal distributions of the target distribution to accelerate equilibration. As a validation the algorithm is tested on a 2516 dimensional, bimodal, stochastic model motivated by the Kuroshio current that runs along the Japanese coast. The results of this test indicate that the method is an attractive alternative for problems that require the generality of a particle filter but have been inaccessible due to the limitations of standard particle filtering strategies.

  9. Velocity distribution of liquid in rotary cylinder when a rotary disc is disposed in contact with a liquid surface; Ekimen ni kaitenenban no arubaai no kaiten entonai ekitai no sokudo bunpu

    Energy Technology Data Exchange (ETDEWEB)

    Karino, Fumimaru; Kawai, Kazuho; Domoto, Takuya; Takahashi, Toru [Kyoto University, Tokyoto (Japan)

    1999-02-05

    As a model of a flow in a crucible of Cz method, which is a crystal growth method, a system was formed by flowing water into a rotary cylindrical container and disposing a rotary disc in contact with a free surface of the liquid, and this system was used to determine the velocity distribution in the cylindrical container by a laser Doppler hydrometer. The effects of cylinder rotation Reynolds number, disc rotation Reynolds number, the distance between the disc and the cylinder bottom, and the radius ratio of the disc to the cylinder on the determined radial distribution of tangential time average velocity were examined. As a result, it was found that, in the cases where only the cylinder is rotated, where only the disc is rotated, and where an absolute value of the rotation angular velocity ratio of the disc to the cylinder is small when the cylinder and the disc are rotated in directions inverse to each other, the radial distribution of the time average tangential velocity shows a distribution substantially the same independent on vertical positions, thus Taylor-Proudman theorem is valid. It was further known that, when the disc and the cylinder are rotated in inverse directions and the absolute value of the angular velocity ratio is great, the effect of the disc rotation is remarkable, and particularly, this effect becomes greater in the lower flow than near the disc. (translated by NEDO)

  10. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  11. Distribution and inventories of fallout radionuclides (239+24Pu, 137Cs) and 21Pb to study the filling velocity of salt marshes in Donana National Park (Spain)

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.; Pozuelo, M.; Clemente, L.; Rodriguez, A.; Yanez, C.; Gonzalez, A.; Meral, J.

    2006-01-01

    Within an extensive multinational and multidisciplinary project carried out in Donana National Park (Spain) to investigate its preservation and regeneration, the filling velocity of the salt marshes has been evaluated through the calculation of their average sediment accumulation rates. 239+24 Pu and 137 Cs from weapons testing fallout and total 21 Pb distribution profiles and inventories have been determined in some of the most characteristic zones of the park, namely, the ponds (or 'lucios') and the waterjets (or 'canos'). Plutonium inventories range from 16 to 101 Bq m -2 , 137 Cs values fluctuate between 514 and 3758 Bq m -2 and unsupported 21 Pb values comprise between 124 and 9398 Bq m -2 . Average sedimentation rates range from 3 to 5 mm y -1 (1952-2002). These data are higher than those obtained by carbon dating for the period 6500 AD-present, estimated as 1.5-2 mm y -1 , suggesting an increase in the accumulation of sediments and the alteration of the park's hydrodynamics caused by the re-channeling of the major rivers feeding the salt marshes

  12. Diagnostic of the spatial and velocity distribution of alpha particles in tokamak fusion reactor using beat-wave generated lower hybrid wave. Progress report, 1994-1995

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Evans, R.

    1995-01-01

    The alpha particle population from fusion reactions in a DT tokamak reactor can have dramatic effects on the pressure profiles, energetic particle confinement, and the overall stability of the plasma; thus leading to important design consideration of a fusion reactor based on the tokamak concept. In order to fully understand the effects of the alpha population, a non-invasive diagnostic technique suitable for use in a reacting plasma environment needs to be developed to map out both the spatial and velocity distribution of the alphas. The proposed experimental goals for the eventual demonstration of LH wave interaction with a fast ion population is given in the reduced 3 year plan in table 1. At present time the authors are approaching the 8th month in their first year of this project. Up to now, their main effort has been concentrated in the operation of the two beat wave sources in burst mode. The second priority in the experimental project is the probe diagnostics and computer aided data acquisition system. The progress made so far is given, and they are ready to perform the beat-wave generated lower hybrid wave experiment. Some theoretical calculation had been reported at APS meetings. More refined theoretical models are being constructed in collaboration with Drs. J. Rogers and E. Valeo at PPPL

  13. WIYN Open Cluster Study. XXXII. Stellar Radial Velocities in the Old Open Cluster NGC 188

    Science.gov (United States)

    Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.; McClure, Robert D.

    2008-06-01

    We present the results of our ongoing radial-velocity (RV) survey of the old (7 Gyr) open cluster NGC 188. Our WIYN 3.5 m data set spans a time baseline of 11 years, a magnitude range of 12 =3 measurements, finding 473 to be likely cluster members. We detect 124 velocity-variable cluster members, all of which are likely to be dynamically hard-binary stars. Using our single member stars, we find an average cluster radial velocity of -42.36 ± 0.04 km s-1. We use our precise RV and proper-motion membership data to greatly reduce field-star contamination in our cleaned color-magnitude diagram, from which we identify six stars of note that lie far from a standard single-star isochrone. We present a detailed study of the spatial distribution of cluster-member populations, and find the binaries to be centrally concentrated, providing evidence for the presence of mass segregation in NGC 188. We observe the BSs to populate a bimodal spatial distribution that is not centrally concentrated, suggesting that we may be observing two populations of BSs in NGC 188, including a centrally concentrated distribution as well as a halo population. Finally, we find NGC 188 to have a global RV dispersion of 0.64 ± 0.04 km s-1, which may be inflated by up to 0.23 km s-1 from unresolved binaries. When corrected for unresolved binaries, the NGC 188 RV dispersion has a nearly isothermal radial distribution. We use this mean-corrected velocity dispersion to derive a virial mass of 2300 ± 460 M sun .

  14. Analysis of in situ water velocity distributions in the lowland river floodplain covered by grassland and reed marsh habitats - a case study of the bypass channel of Warta River (Western Poland

    Directory of Open Access Journals (Sweden)

    Laks Ireneusz

    2017-12-01

    Full Text Available The analysis of in situ measurements of velocity distribution in the floodplain of the lowland river has been carried out. The survey area was located on a bypass channel of the Warta River (West of Poland which is filled with water only in case of flood waves. The floodplain is covered by grassland and reed marsh habitats. The velocity measurements were performed with an acoustic Doppler current profiler (ADCP in a cross-section with a bed reinforced with concrete slabs. The measured velocities have reflected the differentiated impact of various vegetation types on the loss of water flow energy. The statistical analyses have proven a relationship between the local velocities and the type of plant communities.

  15. Small Low Mass Advanced PBR's for Bi-Modal Operation

    Science.gov (United States)

    Ludewig, Hans; Todosow, Michael; Powell, James R.

    1994-07-01

    A preliminary assessment is made of a low mass bi-modal reactor for use as a propulsion unit and as a heat source for generating electricity. This reactor is based on the particle bed reactor (PBR) concept. It will be able to generate both thrust and electricity simultaneously. This assessment indicates that the reactor can generate approximately 6.8 (4) N of thrust using hydrogen as a coolant, and 100 KWe using a closed Brayton cycle (CBC) power conversion system. Two cooling paths pass through the reactor allowing simultaneous operation of both modes. The development of all the components for this reactor are within the experience base of the NTP project.

  16. Bimodality: A Sign of Critical Behavior in Nuclear Reactions

    International Nuclear Information System (INIS)

    Le Fevre, A.; Aichelin, J.

    2008-01-01

    The recently discovered coexistence of multifragmentation and residue production for the same total transverse energy of light charged particles, which has been dubbed bimodality like it has been introduced in the framework of equilibrium thermodynamics, can be well reproduced in numerical simulations of heavy ion reactions. A detailed analysis shows that fluctuations (introduced by elementary nucleon-nucleon collisions) determine which of the exit states is realized. Thus, we can identify bifurcation in heavy ion reactions as a critical phenomenon. Also the scaling of the coexistence region with beam energy is well reproduced in these results from the quantum molecular dynamics simulation program

  17. Fish oil supplementation prevents diabetes-induced nerve conduction velocity and neuroanatomical changes in rats.

    Science.gov (United States)

    Gerbi, A; Maixent, J M; Ansaldi, J L; Pierlovisi, M; Coste, T; Pelissier, J F; Vague, P; Raccah, D

    1999-01-01

    Diabetic neuropathy has been associated with a decrease in nerve conduction velocity, Na,K-ATPase activity and characteristic histological damage of the sciatic nerve. The aim of this study was to evaluate the potential effect of a dietary supplementation with fish oil [(n-3) fatty acids] on the sciatic nerve of diabetic rats. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (n = 20) were fed a nonpurified diet supplemented with either olive oil (DO) or fish oil (DM), and control animals (n = 10) were fed a nonpurified diet supplemented with olive oil at a daily dose of 0.5 g/kg by gavage for 8 wk. Nerves were characterized by their conduction velocity, morphometric analysis and membrane Na, K-ATPase activity. Nerve conduction velocity, as well as Na,K-ATPase activity, was improved by fish oil treatment. A correlation was found between these two variables (R = 0.999, P < 0.05). Moreover, a preventive effect of fish oil was observed on nerve histological damage [endoneurial edema, axonal degeneration (by 10-15%) with demyelination]. Moreover, the normal bimodal distribution of the internal diameter of myelinated fibers was absent in the DO group and was restored in the DM group. These data suggest that fish oil therapy may be effective in the prevention of diabetic neuropathy.

  18. Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle.

    Science.gov (United States)

    Del Vecchio, A; Negro, F; Felici, F; Farina, D

    2018-02-01

    Motor units are recruited in an orderly manner according to the size of motor neurones. Moreover, because larger motor neurones innervate fibres with larger diameters than smaller motor neurones, motor units should be recruited orderly according to their conduction velocity (MUCV). Because of technical limitations, these relations have been previously tested either indirectly or in small motor unit samples that revealed weak associations between motor unit recruitment threshold (RT) and MUCV. Here, we analyse the relation between MUCV and RT for large samples of motor units. Ten healthy volunteers completed a series of isometric ankle dorsiflexions at forces up to 70% of the maximum. Multi-channel surface electromyographic signals recorded from the tibialis anterior muscle were decomposed into single motor unit action potentials, from which the corresponding motor unit RT, MUCV and action potential amplitude were estimated. Established relations between muscle fibre diameter and CV were used to estimate the fibre size. Within individual subjects, the distributions of MUCV and fibre diameters were unimodal and did not show distinct populations. MUCV was strongly correlated with RT (mean (SD) R 2  = 0.7 (0.09), P motor units), which supported the hypothesis that fibre diameter is associated with RT. The results provide further evidence for the relations between motor neurone and muscle fibre properties for large samples of motor units. The proposed methodology for motor unit analysis has also the potential to open new perspectives in the study of chronic and acute neuromuscular adaptations to ageing, training and pathology. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. II. A TEST ON THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY USING THE u-BAND COLORS: THE CASE OF M87 (NGC 4486)

    International Nuclear Information System (INIS)

    Yoon, Suk-Jin; Lee, Sang-Yoon; Kim, Hak-Sub; Cho, Jaeil; Chung, Chul; Sohn, Sangmo T.; Blakeslee, John P.

    2011-01-01

    The optical color distributions of globular clusters (GCs) in most large elliptical galaxies are bimodal. Based on the assumed linear relationship between GC colors and their metallicities, the bimodality has been taken as evidence of two GC subsystems with different metallicities in each galaxy and has led to a number of theories in the context of galaxy formation. More recent observations and modeling of GCs, however, suggests that the color-metallicity relations (CMRs) are inflected, and thus colors likely trace metallicities in a nonlinear manner. The nonlinearity could produce bimodal color distributions from a broad underlying metallicity spread, even if it is unimodal. Despite the far-reaching implications, whether CMRs are nonlinear and whether the nonlinearity indeed causes the color bimodality are still open questions. Given that the spectroscopic refinement of CMRs is still very challenging, we here propose a new photometric technique to probe the possible nonlinear nature of CMRs. In essence, a color distribution of GCs is a 'projected' distribution of their metallicities. Since the form of CMRs hinges on which color is used, the shape of color distributions varies depending significantly on the colors. Among other optical colors, the u-band related colors (e.g., u – g and u – z) are theoretically predicted to exhibit significantly less inflected CMRs than other preferred CMRs (e.g., for g – z). As a case study, we performed the Hubble Space Telescope (HST)/WFPC2 archival u-band photometry for the M87 (NGC 4486) GC system with confirmed color bimodality. We show that the u-band color distributions are significantly different from that of g – z and consistent with our model predictions. With more u-band measurements, this method will support or rule out the nonlinear CMR scenario for the origin of GC color bimodality with high confidence. The HST/WFC3 observations in F336W for nearby large elliptical galaxies are highly anticipated in this regard.

  20. Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites.

    Science.gov (United States)

    Zhao, Dan; Di Nicola, Matteo; Khani, Mohammad M; Jestin, Jacques; Benicewicz, Brian C; Kumar, Sanat K

    2016-09-14

    We compare the self-assembly of silica nanoparticles (NPs) with physically adsorbed polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymers (BCP) against NPs with grafted bimodal (BM) brushes comprised of long, sparsely grafted PS chains and a short dense carpet of P2VP chains. As with grafted NPs, the dispersion state of the BCP NPs can be facilely tuned in PS matrices by varying the PS coverage on the NP surface or by changes in the ratio of the PS graft to matrix chain lengths. Surprisingly, the BCP NPs are remarkably better dispersed than the NPs tethered with bimodal brushes at comparable PS grafting densities. We postulate that this difference arises because of two factors inherent in the synthesis of the NPs: In the case of the BCP NPs the adsorption process is analogous to the chains being "grafted to" the NP surface, while the BM case corresponds to "grafting from" the surface. We have shown that the "grafted from" protocol yields patchy NPs even if the graft points are uniformly placed on each particle. This phenomenon, which is caused by chain conformation fluctuations, is exacerbated by the distribution function associated with the (small) number of grafts per particle. In contrast, in the case of BCP adsorption, each NP is more uniformly coated by a P2VP monolayer driven by the strongly favorable P2VP-silica interactions. Since each P2VP block is connected to a PS chain we conjecture that these adsorbed systems are closer to the limit of spatially uniform sparse brush coverage than the chemically grafted case. We finally show that the better NP dispersion resulting from BCP adsorption leads to larger mechanical reinforcement than those achieved with BM particles. These results emphasize that physical adsorption of BCPs is a simple, effective and practically promising strategy to direct NP dispersion in a chemically unfavorable polymer matrix.

  1. Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean

    Energy Technology Data Exchange (ETDEWEB)

    Razooky, Brandon S. [Rockefeller Univ., New York, NY (United States). Lab. of Virology and Infectious Disease; Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Univ. of California, San Francisco, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary; Cao, Youfang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hansen, Maike M. K. [Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Perelson, Alan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simpson, Michael L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary; Weinberger, Leor S. [Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Univ. of California, San Francisco, CA (United States). Dept. of Biochemistry and Biophysics; Univ. of California, San Francisco, CA (United States). QB3: California Inst. of Quantitative Biosciences; Univ. of California, San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry

    2017-10-18

    Fundamental to biological decision-making is the ability to generate bimodal expression patterns where two alternate expression states simultaneously exist. Here in this study, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV’s fate decision between active replication and viral latency. We find that the HIV Tat protein manipulates the intrinsic toggling of HIV’s promoter, the LTR, to generate bimodal ON-OFF expression, and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-length virus. Strikingly, computational analysis indicates that the Tat circuit’s non-cooperative ‘non-latching’ feedback architecture is optimized to slow the promoter’s toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that non-latching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean-expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV’s decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.

  2. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli

    Science.gov (United States)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947

  3. Bimodal Reading: Benefits of a Talking Computer for Average and Less Skilled Readers.

    Science.gov (United States)

    Montali, Julie; Lewandowski, Lawrence

    1996-01-01

    Eighteen average readers and 18 less-skilled readers (grades 8 and 9) were presented with social studies and science passages via a computer either visually (on screen), auditorily (read by digitized voice), or bimodally (on screen, highlighted while being voiced). Less-skilled readers demonstrated comprehension in the bimodal condition equivalent…

  4. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    Science.gov (United States)

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  5. Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications

    Science.gov (United States)

    Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina

    This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.

  6. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco

    2017-06-01

    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  7. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Science.gov (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda

    2017-06-01

    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  8. Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution

    Science.gov (United States)

    Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo

    2018-03-01

    The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.

  9. Dogs with hearth diseases causing turbulent high-velocity blood flow have changes in patelet function and von Willebrand factor multimer distribution

    DEFF Research Database (Denmark)

    Tarnow, Inge; Kristensen, Annemarie Thuri; Olsen, Lisbeth Høier

    2005-01-01

    The purpose of this prospective study was to investigate platelet function using in vitro tests based on both high and low shear rates and von Willebrand factor (vWf) multimeric composition in dogs with cardiac disease and turbulent high-velocity blood flow. Client-owned asymptomatic, untreated d...

  10. Distribution of motor unit potential velocities in short static and prolongd dynamic contractions at low forces: Use of the within-subject's skewness and standard deviation variables

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Henriquez, N.R.; Oosterloo, Sebe J.; Klaver, P.; Bos, J.M.; Zwarts, M.J.

    2007-01-01

    Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as

  11. Probabilistic distributions of wind velocity for the evaluation of the wind power potential; Distribuicoes probabilisticas de velocidades do vento para avaliacao do potencial energetico eolico

    Energy Technology Data Exchange (ETDEWEB)

    Vendramini, Elisa Zanuncio

    1986-10-01

    The theoretical model of wind speed distributions allow valuable information about the probability of events relative to the variable in study eliminating the necessity of a new experiment. The most used distributions has been the Weibull and the Rayleigh. These distributions are examined in the present investigation, as well as the exponential, gamma, chi square and lognormal distributions. Three years of hourly averages wind data recorded from a anemometer setting at the city of Ataliba Leonel, Sao Paulo State, Brazil, were used. Using wind speed distribution the theoretical relative frequency was calculated from the distributions which have been examined. Results from the Kolmogorov - Smirnov test allow to conclude that the lognormal distribution fit better the wind speed data, followed by the gamma and Rayleigh distributions. Using the lognormal probability density function the yearly energy output from a wind generator installed in the side was calculated. 30 refs, 4 figs, 14 tabs

  12. Study of microinstabilities due to an anisotropic velocity distribution function of the particles of a homogeneous plasma; Etude des microinstabilities liees a l'anisotropie de la fonction de distribution des vitesses des particules d'un plasma homogene

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-06-01

    A study is made of instabilities in a plasma with an ion velocity distribution function of the form: f{sub oi} = 1 / (2*{pi}*{alpha}{sub p}e{sub i}*{alpha}{sub p}a{sub i}) * {lambda}({nu}{sub p}e - {alpha}{sub p}e{sub i}) * e{sup -}(v{sub pa2}/{alpha}{sub pai2}). The plasma is assumed to have finite dimensions limited by infinitely conductive boundary surfaces. A theoretical and numerical analysis of marginal stability locates the regions of stability as a function of several parameters; i.e. plasma length, ion anisotropy ({tau}) and electron temperature (T{sub e}). A limiting plasma length is found, below which the plasma is stable regardless of its density. For the parameters of the injection experiment M.M.I.I. at Fontenay-aux-roses it is found that the type of instabilities studied here should not occur. (author) [French] L'etude est faite en choisissant une fonction de distribution des ions de la forme f{sub oi} = 1 / (2*{pi}*{alpha}{sub p}e{sub i}*{alpha}{sub p}a{sub i}) * {lambda}({nu}{sub p}e - {alpha}{sub p}e{sub i}) * e{sup -}(v{sub pa2}/{alpha}{sub pai2}) et en supposant une conductivite infinie sur les limites du plasma de dimensions finies. L'etude theorique et numerique de la stabilite marginale determine les domaines de stabilite qui sont etudies en fonction de plusieurs parametres: longueur du plasma, anisotropie des ions ({tau}), temperature electronique (T{sub e}). Il apparait une longueur limite du plasma au-dessous de laquelle le plasma est stable, independemment de la densite. L'application faite avec les valeurs des parametres de l'experience d'injection M.M.I.I, a Fontenay-aux-Roses permet de conclure a la non existence dans cet appareil du type d'instabilite etudie ici. (auteur)

  13. Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Inkyoung; Ohm, Inyong [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2017-02-15

    This study is the second investigation on the steady flow characteristics of an SI engine with a semi-edge combustion chamber as a function of the port shape with varying evaluation positions. For this purpose, the planar velocity profiles were measured from 1.75B, 1.75 times of bore position apart from the bottom of head, to 6.00B positions using particle – image velocimetry. The flow patterns were examined with both a straight and a helical port. The velocity profiles, streamlines, and centers of swirl were almost the same at the same valve lift regardless of the measuring position, which is quite different from the case of the pent-roof combustion chamber. All the eccentricity values of the straight port were out of distortion criterion 0.15 through the lifts and the position. However, the values of the helical port exceeded the distortion criterion by up to 4 mm lift, but decreased rapidly above the 3.00B position and the 5 mm lift. There always existed a relative offset effect in the evaluation of the swirl coefficient using the PIV method due to the difference of the ideal impulse swirl meter velocity profile assumption, except for the cylinder-center-base estimation that was below 4 mm of the straight port. Finally, it was concluded that taking the center as an evaluation basis and the assumption about the axial velocity profile did not have any qualitative effect on swirl evaluation, but affected the value owing to the detailed profile.

  14. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids

    International Nuclear Information System (INIS)

    MartInez, N F; Lozano, J R; Herruzo, E T; Garcia, F; Garcia, R; Richter, C; Sulzbach, T

    2008-01-01

    We have developed a dynamic atomic force microscopy (AFM) method based on the simultaneous excitation of the first two flexural modes of the cantilever. The instrument, called a bimodal atomic force microscope, allows us to resolve the structural components of antibodies in both monomer and pentameric forms. The instrument operates in both high and low quality factor environments, i.e., air and liquids. We show that under the same experimental conditions, bimodal AFM is more sensitive to compositional changes than amplitude modulation AFM. By using theoretical and numerical methods, we study the material contrast sensitivity as well as the forces applied on the sample during bimodal AFM operation

  15. Utterance independent bimodal emotion recognition in spontaneous communication

    Science.gov (United States)

    Tao, Jianhua; Pan, Shifeng; Yang, Minghao; Li, Ya; Mu, Kaihui; Che, Jianfeng

    2011-12-01

    Emotion expressions sometimes are mixed with the utterance expression in spontaneous face-to-face communication, which makes difficulties for emotion recognition. This article introduces the methods of reducing the utterance influences in visual parameters for the audio-visual-based emotion recognition. The audio and visual channels are first combined under a Multistream Hidden Markov Model (MHMM). Then, the utterance reduction is finished by finding the residual between the real visual parameters and the outputs of the utterance related visual parameters. This article introduces the Fused Hidden Markov Model Inversion method which is trained in the neutral expressed audio-visual corpus to solve the problem. To reduce the computing complexity the inversion model is further simplified to a Gaussian Mixture Model (GMM) mapping. Compared with traditional bimodal emotion recognition methods (e.g., SVM, CART, Boosting), the utterance reduction method can give better results of emotion recognition. The experiments also show the effectiveness of our emotion recognition system when it was used in a live environment.

  16. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Science.gov (United States)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  17. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)

    2011-06-15

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.

  18. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    Science.gov (United States)

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  19. The Medial Ventrothalamic Circuitry: Cells Implicated in a Bimodal Network

    Directory of Open Access Journals (Sweden)

    Tomas Vega-Zuniga

    2018-02-01

    Full Text Available Previous avian thalamic studies have shown that the medial ventral thalamus is composed of several nuclei located close to the lateral wall of the third ventricle. Although the general connectivity is known, detailed morphology and connectivity pattern in some regions are still elusive. Here, using the intracellular filling technique in the chicken, we focused on two neural structures, namely, the retinorecipient neuropil of the n. geniculatus lateralis pars ventralis (GLv, and the adjacent n. intercalatus thalami (ICT. We found that the GLv-ne cells showed two different neuronal types: projection cells and horizontal interneurons. The projection cells showed variable morphologies and dendritic arborizations with axons that targeted the n. lentiformis mesencephali (LM, griseum tectale (GT, ICT, n. principalis precommissuralis (PPC, and optic tectum (TeO. The horizontal cells showed a widespread mediolateral neural process throughout the retinorecipient GLv-ne. The ICT cells, on the other hand, had multipolar somata with wide dendritic fields that extended toward the lamina interna of the GLv, and a projection pattern that targeted the n. laminaris precommissuralis (LPC. Together, these results elucidate the rich complexity of the connectivity pattern so far described between the GLv, ICT, pretectum, and tectum. Interestingly, the implication of some of these neural structures in visuomotor and somatosensory roles strongly suggests that the GLv and ICT are part of a bimodal circuit that may be involved in the generation/modulation of saccades, gaze control, and space perception.

  20. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates.

    Science.gov (United States)

    Camarero, Jesús Julio; Olano, José Miguel; Parras, Alfonso

    2010-01-01

    *Seasonal radial-increment and xylogenesis data can help to elucidate how climate modulates wood formation in conifers. Few xylogenesis studies have assessed how plastic xylogenesis is in sympatric conifer species from continental Mediterranean areas, where low winter temperatures and summer drought constrain growth. *Here, we analysed intra-annual patterns of secondary growth in sympatric conifer species (Juniperus thurifera, Pinus halepensis and Pinus sylvestris). Two field sites (xeric and mesic) were evaluated using dendrometers, microcores and climatic data. *A bimodal pattern of xylogenesis characterized by spring and autumn precipitation and subsequent cambial reactivation was detected in J. thurifera at both study sites and in P. halepensis at the xeric site, but was absent in P. sylvestris where growth was largely controlled by day length. In the xeric site J. thurifera exhibited an increased response to water availability in autumn relative to P. halepensis and summer cambial suppression was more marked in J. thurifera than in P. halepensis. *Juniperus thurifera exhibited increased plasticity in its xylogenesis pattern compared with sympatric pines, enabling this species to occupy sites with more variable climatic conditions. The plastic xylogenesis patterns of junipers in drought-stressed areas may also provide them with a competitive advantage against co-occurring pines.

  1. Non-Gaussian theory of rubberlike elasticity based on rotational isomeric state simulations of network chain configurations. II. Bimodal poly(dimethylsiloxane) networks

    International Nuclear Information System (INIS)

    Curro, J.G.; Mark, J.E.

    1984-01-01

    Bimodal, poly(dimethylsiloxane) (PDMS) networks containing a large mole fraction of very short chains have been shown to be unusually tough elastomers. The purpose of this investigation is to understand the rubber elasticity behavior of these bimodal networks. As a first approach, we have assumed that the average chain deformation is affine. This deformation, however, is partitioned nonaffinely between the long and short chains so that the free energy is minimized. Gaussian statistics are used for the long chains. The distribution function for the short chains is found from Monte Carlo calculations. This model predicts an upturn in the stress-strain curve, the steepness depending on the network composition, as is observed experimentally

  2. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  3. SUBARU WEAK-LENSING STUDY OF A2163: BIMODAL MASS STRUCTURE

    International Nuclear Information System (INIS)

    Okabe, N.; Bourdin, H.; Mazzotta, P.; Maurogordato, S.

    2011-01-01

    We present a weak-lensing analysis of the merging cluster A2163 using Subaru/Suprime-Cam and CFHT/Mega-Cam data and discuss the dynamics of this cluster merger, based on complementary weak-lensing, X-ray, and optical spectroscopic data sets. From two-dimensional multi-component weak-lensing analysis, we reveal that the cluster mass distribution is well described by three main components including the two-component main cluster A2163-A with mass ratio 1:8, and its cluster satellite A2163-B. The bimodal mass distribution in A2163-A is similar to the galaxy density distribution, but appears as spatially segregated from the brightest X-ray emitting gas region. We discuss the possible origins of this gas-dark-matter offset and suggest the gas core of the A2163-A subcluster has been stripped away by ram pressure from its dark matter component. The survival of this gas core from the tidal forces exerted by the main cluster lets us infer a subcluster accretion with a non-zero impact parameter. Dominated by the most massive component of A2163-A, the mass distribution of A2163 is well described by a universal Navarro-Frenk-White profile as shown by a one-dimensional tangential shear analysis, while the singular-isothermal sphere profile is strongly ruled out. Comparing this cluster mass profile with profiles derived assuming intracluster medium hydrostatic equilibrium (H.E.) in two opposite regions of the cluster atmosphere has allowed us to confirm the prediction of a departure from H.E. in the eastern cluster side, presumably due to shock heating. Yielding a cluster mass estimate of M 500 = 11.18 +1.64 –1.46 × 10 14 h –1 M ☉ , our mass profile confirms the exceptionally high mass of A2163, consistent with previous analyses relying on the cluster dynamical analysis and Y X mass proxy.

  4. SDSS-IV MaNGA: What Shapes the Distribution of Metals in Galaxies? Exploring the Roles of the Local Gas Fraction and Escape Velocity

    Science.gov (United States)

    Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.; Zakamska, N. L.; Cleary, J.; Zhu, G.; Brinkmann, J.; Drory, N.; THE MaNGA TEAM

    2018-01-01

    We determine the local metallicity of the ionized gas for more than 9.2 × 105 star-forming regions (spaxels) located in 1023 nearby galaxies included in the Sloan Digital Sky Survey-IV MaNGA integral field spectroscopy unit survey. We use the dust extinction derived from the Balmer decrement and the stellar template fitting in each spaxel to estimate the local gas and stellar mass densities, respectively. We also use the measured rotation curves to determine the local escape velocity (V esc). We then analyze the relationships between the local metallicity and both the local gas fraction (μ) and V esc. We find that metallicity decreases with both increasing μ and decreasing V esc. By examining the residuals in these relations we show that the gas fraction plays a more primary role in the local chemical enrichment than does V esc. We show that the gas-regulator model of chemical evolution provides a reasonable explanation of the metallicity on local scales. The best-fit parameters for this model are consistent with the metal loss caused by momentum-driven galactic outflows. We also argue that both the gas fraction and the local escape velocity are connected to the local stellar surface density, which in turn is a tracer of the epoch at which the dominant local stellar population formed.

  5. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

    Directory of Open Access Journals (Sweden)

    Daniel Kiracofe

    2013-06-01

    Full Text Available One of the key goals in atomic force microscopy (AFM imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes. It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth, but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.

  6. BDVC (Bimodal Database of Violent Content): A database of violent audio and video

    Science.gov (United States)

    Rivera Martínez, Jose Luis; Mijes Cruz, Mario Humberto; Rodríguez Vázqu, Manuel Antonio; Rodríguez Espejo, Luis; Montoya Obeso, Abraham; García Vázquez, Mireya Saraí; Ramírez Acosta, Alejandro Álvaro

    2017-09-01

    Nowadays there is a trend towards the use of unimodal databases for multimedia content description, organization and retrieval applications of a single type of content like text, voice and images, instead bimodal databases allow to associate semantically two different types of content like audio-video, image-text, among others. The generation of a bimodal database of audio-video implies the creation of a connection between the multimedia content through the semantic relation that associates the actions of both types of information. This paper describes in detail the used characteristics and methodology for the creation of the bimodal database of violent content; the semantic relationship is stablished by the proposed concepts that describe the audiovisual information. The use of bimodal databases in applications related to the audiovisual content processing allows an increase in the semantic performance only and only if these applications process both type of content. This bimodal database counts with 580 audiovisual annotated segments, with a duration of 28 minutes, divided in 41 classes. Bimodal databases are a tool in the generation of applications for the semantic web.

  7. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    Science.gov (United States)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  8. Sap-flow velocities and distribution of wet-wood in trunks of healthy and unhealthy Quercus robur, Quercus petraea and Quercus cerris oak trees in Hungary

    International Nuclear Information System (INIS)

    Fenyvesi, A.; Béres, C.; Raschi, A.; Tognietti, R.; Ridder, H.W.; Molnár, T.; Röfler, J.; Lakatos, T.; Csiha, I.

    1998-01-01

    Sap-flow of Quercus robur, Quercus petraea and Quercus cerris oak trees were studied. 43 K radioisotope tracing, the heat pulse velocity technique and the Granier-method were employed. Numerous intense pulses were observed in healthy Quercus petraea superposing onto the usual diurnal change. Only a few pulses were observed in unhealthy Quercus petraea, in healthy Quercus cerris and healthy and unhealthy Quercus robur trees. Proportion of wet-wood assessed by γ- and X-ray computer tomography and magnetic resonance imaging was significantly less in healthy Quercus petraea trees than in healthy Quercus cerris trees. Proportion of wet-wood was higher in healthy trees than unhealthy trees of both species. (author)

  9. Seismic velocity structure and spatial distribution of reflection intensity off the Boso Peninsula, Central Japan, revealed by an ocean bottom seismographic experiment

    Science.gov (United States)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke

    2016-04-01

    Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et

  10. Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Evans, R.W.

    1999-01-01

    The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population

  11. Effects of Short-Term Exenatide Treatment on Regional Fat Distribution, Glycated Hemoglobin Levels, and Aortic Pulse Wave Velocity of Obese Type 2 Diabetes Mellitus Patients

    Directory of Open Access Journals (Sweden)

    Ju-Young Hong

    2016-03-01

    Full Text Available BackgroundMost type 2 diabetes mellitus patients are obese and have obesity related vascular complications. Exenatide treatment is well known for both decreasing glycated hemoglobin levels and reduction in body weight. So, this study aimed to determine the effects of exenatide on body composition, glycated hemoglobin levels, and vascular stiffness in obese type 2 diabetes mellitus patients.MethodsFor 1 month, 32 obese type 2 diabetes mellitus patients were administered 5 µg of exenatide twice daily. The dosage was then increased to 10 µg. Patients' height, body weight, glycated hemoglobin levels, lipid profile, pulse wave velocity (PWV, body mass index, fat mass, and muscle mass were measured by using Inbody at baseline and after 3 months of treatment.ResultsAfter 3 months of treatment, glycated hemoglobin levels decreased significantly (P=0.007. Triglyceride, total cholesterol, and low density lipoprotein levels decreased, while aspartate aminotransferase and alanine aminotransferase levels were no change. Body weight, and fat mass decreased significantly (P=0.002 and P=0.001, respectively, while interestingly, muscle mass did not decrease (P=0.289. In addition to, Waist-to-hip ratio and aortic PWV decreased significantly (P=0.006 and P=0.001, respectively.ConclusionEffects of short term exenatide use in obese type 2 diabetes mellitus with cardiometabolic high risk patients not only reduced body weight without muscle mass loss, body fat mass, and glycated hemoglobin levels but also improved aortic PWV in accordance with waist to hip ratio.

  12. Cyanogen distribution of M4 and the possible connection between horizontal branch morphology and chemical inhomogeneity

    International Nuclear Information System (INIS)

    Norris, J.

    1981-01-01

    A spectroscopic survey of 45 red giants in the globular cluster M4 has been completed with a view to ascertaining whether the bimodal distribution of stars on the horizontal branch (Lee) is accompanied by a cyanogen dichotomy on the giant branch, similar to the situation found in NGC 6752. From analysis of some 118 spectra, it is concluded that the red giants in M4 (in the magnitude range M/sub V/approx.0.3 to -1.2) do show a bimodal cyanogen distribution. There appears also to be an anticorrelation between the behavior of CN and CH. A working hypothesis is proposed which will explain most of the known peculiarities of the three globular clusters 47 Tuc, M4, and NGC 6752, for which comprehensive cyanogen surveys are available. It is suggested that there is a spectrum of core rotational velocity in the main-sequence stars of globular clusters. Beyond some critical value of the rotational velocity, a star will mix the products of the CN cycle into its outer layers, while still on or near the main sequence. The range in angular momentum leads also to a range in luminosity at which helium flash occurs and, thereby, to a range in envelope mass on the horizontal branch. Both the distribution of the products of mixing in the red giants and that of stars along the horizontal branch are thus determined by the spectrum of angular velocities in the cluster stars. This work thus supports the contention that core rotation is a parameter which effects horizontal branch morphology (the case is made that it should be regarded as the third parameter). The hypothesis has the advantage that it makes several predictions which are open to observational test

  13. Lanthanide oxide and phosphate nanoparticles for thermometry and bimodal imaging =

    Science.gov (United States)

    Debasu, Mengistie Leweyehu

    . Finalmente, estudam-se as propriedades de fotoluminescencia correspondentes as conversoes ascendente e descendente de energia em nanocristais de (Gd,Yb,Tb)PO4 sintetizados por via hidrotermica. A relaxividade (ressonancia magnetica) do 1H destes materiais sao investigadas, tendo em vista possiveis aplicacoes em imagem bimodal (luminescencia e ressonancia magnetica nuclear).

  14. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    Science.gov (United States)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a

  15. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans.

    Science.gov (United States)

    Marks, Kendra L; Martel, David T; Wu, Calvin; Basura, Gregory J; Roberts, Larry E; Schvartz-Leyzac, Kara C; Shore, Susan E

    2018-01-03

    The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibited increased spontaneous activity and cross-unit synchrony, which are physiological correlates of tinnitus. We delivered repeated bimodal auditory-somatosensory stimulation to the dorsal cochlear nucleus of guinea pigs with tinnitus, choosing a stimulus interval known to induce long-term depression (LTD). Twenty minutes per day of LTD-inducing bimodal (but not unimodal) stimulation reduced physiological and behavioral evidence of tinnitus in the guinea pigs after 25 days. Next, we applied the same bimodal treatment to 20 human subjects with tinnitus using a double-blinded, sham-controlled, crossover study. Twenty-eight days of LTD-inducing bimodal stimulation reduced tinnitus loudness and intrusiveness. Unimodal auditory stimulation did not deliver either benefit. Bimodal auditory-somatosensory stimulation that induces LTD in the dorsal cochlear nucleus may hold promise for suppressing chronic tinnitus, which reduces quality of life for millions of tinnitus sufferers worldwide. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Early Bimodal Stimulation Benefits Language Acquisition for Children With Cochlear Implants.

    Science.gov (United States)

    Moberly, Aaron C; Lowenstein, Joanna H; Nittrouer, Susan

    2016-01-01

    Adding a low-frequency acoustic signal to the cochlear implant (CI) signal (i.e., bimodal stimulation) for a period of time early in life improves language acquisition. Children must acquire sensitivity to the phonemic units of language to develop most language-related skills, including expressive vocabulary, working memory, and reading. Acquiring sensitivity to phonemic structure depends largely on having refined spectral (frequency) representations available in the signal, which does not happen with CIs alone. Combining the low-frequency acoustic signal available through hearing aids with the CI signal can enhance signal quality. A period with this bimodal stimulation has been shown to improve language skills in very young children. This study examined whether these benefits persist into childhood. Data were examined for 48 children with CIs implanted under age 3 years, participating in a longitudinal study. All children wore hearing aids before receiving a CI, but upon receiving a first CI, 24 children had at least 1 year of bimodal stimulation (Bimodal group), and 24 children had only electric stimulation subsequent to implantation (CI-only group). Measures of phonemic awareness were obtained at second and fourth grades, along with measures of expressive vocabulary, working memory, and reading. Children in the Bimodal group generally performed better on measures of phonemic awareness, and that advantage was reflected in other language measures. Having even a brief period of time early in life with combined electric-acoustic input provides benefits to language learning into childhood, likely because of the enhancement in spectral representations provided.

  17. How the bimodal format of presentation affects working memory: an overview.

    Science.gov (United States)

    Mastroberardino, Serena; Santangelo, Valerio; Botta, Fabiano; Marucci, Francesco S; Olivetti Belardinelli, Marta

    2008-03-01

    The best format in which information that has to be recalled is presented has been investigated in several studies, which focused on the impact of bimodal stimulation on working memory performance. An enhancement of participant's performance in terms of correct recall has been repeatedly found, when bimodal formats of presentation (i.e., audiovisual) were compared to unimodal formats (i.e, either visual or auditory), in providing implications for multimedial learning. Several theoretical frameworks have been suggested in order to account for the bimodal advantage, ranging from those emphasizing early stages of processing (such as automatic alerting effects or multisensory integration processes) to those centred on late stages of processing (as postulated by the dual coding theory). The aim of this paper is to review previous contributions to this topic, providing a comprehensive theoretical framework, which is updated by the latest empirical studies.

  18. A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

    International Nuclear Information System (INIS)

    Polansky, G.F.; Gunther, N.A.; Rochow, R.F.; Bixler, C.H.

    1995-01-01

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies

  19. Application of a bi-modal PBR nuclear propulsion and power system to military missions

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The rapid proliferation of arms technology and space access combined with current economic realities in the United States are creating ever greater demands for more capable space-based military assets. The paper illustrates that bi-modal nuclear propulsion and power based on the Particle Bed Reactor (PBR) is a high-leverage tehcnology that can maximize utility while minimizing cost. Mission benefits offered by the bi-modal PBR, including enhanced maneuverability, lifetime, survivability, payload power, and operational flexibility, are discussed. The ability to deliver desired payloads on smaller boosters is also illustrated. System descriptions and parameters for 10 kWe and 100 kWe power output levels are summarized. It is demonstrated via design exercise that bi-modal PBR dramtically enhances performance of a military satellite in geosynchronous orbit, increasing payload mass, payload power, and maneuverability.

  20. Evolution of twinning in extruded AZ31 alloy with bimodal grain structure

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, G., E-mail: ggarces@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research CENIM-CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain); Oñorbe, E. [CIEMAT, Division of Structural Materials, Avenida Complutense, 40, 28040 Madrid (Spain); Gan, W. [German Engineering Materials Science Centre at MLZ, Helmholtz-Zentrum Geesthacht, Lichtebergstr. 1, D-85747 Garching (Germany); Máthis, K. [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, KeKarlovu 5, 121 16 Praha 2 (Czech Republic); Tolnai, D. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Horváth, K. [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, KeKarlovu 5, 121 16 Praha 2 (Czech Republic); Pérez, P.; Adeva, P. [Department of Physical Metallurgy, National Centre for Metallurgical Research CENIM-CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain)

    2017-04-15

    Twinning in extruded AZ31 alloy with a bimodal grain structure is studied under compression along the extrusion direction. This study has combined in-situ measurements during the compression tests by Synchrotron Radiation Diffraction and Acoustic Emission techniques and the evaluation of the microstructure and texture in post-mortem compression samples deformed at different strains. The microstructure of the alloy is characterized by the coexistence of large areas of fine dynamic recrystallized grains and coarse non-recrystallized grains elongated along extrusion direction. Twinning occurs initially in large elongated grains before the macroscopic yield stress which is controlled by the twinning in equiaxed dynamically recrystallized grains. - Highlights: • The AZ31 extruded at low temperature exhibits a bimodal grains structure. • Twinning takes place before macroscopic yielding in coarse non-DRXed grains. • DRXed grains controls the beginning of plasticity in magnesium alloys with bimodal grain structure.

  1. Evidence for bimodal fission in the heaviest elements

    International Nuclear Information System (INIS)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.

    1987-08-01

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: 258 Fm, 259 Md, 260 Md 258 No, and 260 [104]. Each was produced by heavy-ion reactions with either 248 Cm, 249 Bk, or 254 Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, 258 No and 260 [104], were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for 260 [104], indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of 260 Md. 25 refs., 9 figs

  2. A novel high-pressure vessel for simultaneous observations of seismic velocity and in situ CO2 distribution in a porous rock using a medical X-ray CT scanner

    Science.gov (United States)

    Jiang, Lanlan; Nishizawa, Osamu; Zhang, Yi; Park, Hyuck; Xue, Ziqiu

    2016-12-01

    Understanding the relationship between seismic wave velocity or attenuation and CO2 saturation is essential for CO2 storage in deep saline formations. In the present study, we describe a novel upright high-pressure vessel that is designed to keep a rock sample under reservoir conditions and simultaneously image the entire sample using a medical X-ray CT scanner. The pressure vessel is composed of low X-ray absorption materials: a carbon-fibre-enhanced polyetheretherketone (PEEK) cylinder and PEEK vessel closures supported by carbon-fibre-reinforced plastic (CFRP) joists. The temperature was controlled by a carbon-coated film heater and an aramid fibre thermal insulator. The assembled sample cell allows us to obtain high-resolution images of rock samples during CO2 drainage and brine imbibition under reservoir conditions. The rock sample was oriented vertical to the rotation axis of the CT scanner, and seismic wave paths were aligned parallel to the rotation axis to avoid shadows from the acoustic transducers. The reconstructed CO2 distribution images allow us to calculate the CO2 saturation in the first Fresnel zone along the ray path between transducers. A robust relationship between the seismic wave velocity or attenuation and the CO2 saturation in porous rock was obtained from experiments using this pressure vessel.

  3. Transport coefficients and orientational distributions of dilute colloidal dispersions composed of hematite particles (for an external magnetic field parallel to the angular velocity vector of simple shear flow)

    International Nuclear Information System (INIS)

    Satoh, Akira; Hayasaka, Ryo; Majima, Tamotsu

    2008-01-01

    We have treated a dilute dispersion composed of ferromagnetic rodlike particles with a magnetic moment normal to the particle axis, such as hematites, to investigate the influences of the magnetic field strength, shear rate, and random forces on the orientational distribution of rodlike particles and also on transport coefficients, such as viscosity and diffusion coefficient. In the present analysis, these rodlike particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The results obtained here are summarized as follows. In the case of a strong magnetic field and a smaller shear rate, the rodlike particle can freely rotate in the xy-plane with the magnetic moment continuing to point the magnetic field direction. On the other hand, for a strong shear flow, the particle has a tendency to incline in the flow direction with the magnetic moment pointing to the magnetic field direction. In the case of the magnetic field applied normal to the direction of the sedimentation, the diffusion coefficient gives rise to smaller values than expected, since the rodlike particle sediments with the particle axis inclining toward directions normal to the movement direction and, of course, toward the direction along that direction

  4. Bi-modal G\\"odel logic over [0,1]-valued Kripke frames

    OpenAIRE

    Caicedo, Xavier; Rodriguez, Ricardo Oscar

    2011-01-01

    We consider the G\\"odel bi-modal logic determined by fuzzy Kripke models where both the propositions and the accessibility relation are infinitely valued over the standard G\\"odel algebra [0,1] and prove strong completeness of Fischer Servi intuitionistic modal logic IK plus the prelinearity axiom with respect to this semantics. We axiomatize also the bi-modal analogues of $T,$ $S4,$ and $S5$ obtained by restricting to models over frames satisfying the [0,1]-valued versions of the structural ...

  5. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  6. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  7. THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5

    International Nuclear Information System (INIS)

    Brammer, G. B.; Whitaker, K. E.; Van Dokkum, P. G.; Marchesini, D.; Lee, K.-S.; Muzzin, A.; Labbe, I.; Franx, M.; Quadri, R. F.; Kriek, M.; Illingworth, G.; Rudnick, G.

    2009-01-01

    We select 25,000 galaxies from the NEWFIRM Medium Band Survey (NMBS) to study the rest-frame U - V color distribution of galaxies at 0 < z ∼< 2.5. The five unique NIR filters of the NMBS enable the precise measurement of photometric redshifts and rest-frame colors for 9900 galaxies at 1 < z < 2.5. The rest-frame U - V color distribution at all z ∼< 2.5 is bimodal, with a red peak, a blue peak, and a population of galaxies in between (the green valley). Model fits to the optical-NIR spectral energy distributions and the distribution of MIPS-detected galaxies indicate that the colors of galaxies in the green valley are determined largely by the amount of reddening by dust. This result does not support the simplest interpretation of green valley objects as a transition from blue star forming to red quiescent galaxies. We show that correcting the rest-frame colors for dust reddening allows a remarkably clean separation between the red and blue sequences up to z ∼ 2.5. Our study confirms that dusty-starburst galaxies can contribute a significant fraction to red-sequence samples selected on the basis of a single rest-frame color (i.e., U - V), so extra care must be taken if samples of truly 'red and dead' galaxies are desired. Interestingly, of galaxies detected at 24 μm, 14% remain on the red sequence after applying the reddening correction.

  8. Distribution

    Science.gov (United States)

    John R. Jones

    1985-01-01

    Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....

  9. Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind

    Science.gov (United States)

    Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.

    2007-08-01

    We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.

  10. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    Science.gov (United States)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star

  11. Linkage disequilibrium in the insulin gene region: Size variation at the 5{prime} flanking polymorphism and bimodality among {open_quotes}Class I{close_quotes} alleles

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, R.E.; Spielman, R.S. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1994-09-01

    The 5{prime} flanking polymorphism (5{prime}FP), a hypervariable region at the 5{prime} end of the insulin gene, has {open_quotes}class 1{close_quotes} alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). The authors report that precise sizing of the 5{prime}FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. They also examined 5{prime}FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5{prime}FP, they found that one allele exhibits near-total association with the upper component of the 5FP class 1 distribution. Such associations represent a little-known but potentially wide-spread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. 22 refs., 5 figs., 6 tabs.

  12. Spatial attention triggered by unimodal, crossmodal, and bimodal exogenous cues: a comparison of reflexive orienting mechanisms

    NARCIS (Netherlands)

    Santangelo, Valerio; van der Lubbe, Robert Henricus Johannes; Belardinelli, Marta Olivetti; Postma, Albert

    The aim of this study was to establish whether spatial attention triggered by bimodal exogenous cues acts differently as compared to unimodal and crossmodal exogenous cues due to crossmodal integration. In order to investigate this issue, we examined cuing effects in discrimination tasks and

  13. Effects of Removing Low-Frequency Electric Information on Speech Perception with Bimodal Hearing

    Science.gov (United States)

    Fowler, Jennifer R.; Eggleston, Jessica L.; Reavis, Kelly M.; McMillan, Garnett P.; Reiss, Lina A. J.

    2016-01-01

    Purpose: The objective was to determine whether speech perception could be improved for bimodal listeners (those using a cochlear implant [CI] in one ear and hearing aid in the contralateral ear) by removing low-frequency information provided by the CI, thereby reducing acoustic-electric overlap. Method: Subjects were adult CI subjects with at…

  14. The role of continuous low-frequency harmonicity cues for interrupted speech perception in bimodal hearing.

    Science.gov (United States)

    Oh, Soo Hee; Donaldson, Gail S; Kong, Ying-Yee

    2016-04-01

    Low-frequency acoustic cues have been shown to enhance speech perception by cochlear-implant users, particularly when target speech occurs in a competing background. The present study examined the extent to which a continuous representation of low-frequency harmonicity cues contributes to bimodal benefit in simulated bimodal listeners. Experiment 1 examined the benefit of restoring a continuous temporal envelope to the low-frequency ear while the vocoder ear received a temporally interrupted stimulus. Experiment 2 examined the effect of providing continuous harmonicity cues in the low-frequency ear as compared to restoring a continuous temporal envelope in the vocoder ear. Findings indicate that bimodal benefit for temporally interrupted speech increases when continuity is restored to either or both ears. The primary benefit appears to stem from the continuous temporal envelope in the low-frequency region providing additional phonetic cues related to manner and F1 frequency; a secondary contribution is provided by low-frequency harmonicity cues when a continuous representation of the temporal envelope is present in the low-frequency, or both ears. The continuous temporal envelope and harmonicity cues of low-frequency speech are thought to support bimodal benefit by facilitating identification of word and syllable boundaries, and by restoring partial phonetic cues that occur during gaps in the temporally interrupted stimulus.

  15. The Bi-Modal Organization: Balancing Autopoiesis and Fluid Social Networks for Sustainability

    Science.gov (United States)

    Smith, Peter A. C.; Sharicz, Carol Ann

    2013-01-01

    Purpose: The purpose of this paper is to assist an organization to restructure as a bi-modal organization in order to achieve sustainability in today's highly complex business world. Design/methodology/approach: The paper is conceptual and is based on relevant literature and the authors' research and practice. Findings: Although fluid…

  16. Controllability of a Class of Bimodal Discrete-Time Piecewise Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Camlibel, M.K.; Heemels, W.P.M.H.

    2013-01-01

    In this paper we will provide algebraic necessary and sufficient conditions for the controllability/reachability/null controllability of a class of bimodal discrete-time piecewise linear systems including several instances of interest that are not covered by existing works which focus primarily on

  17. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  18. Quantifying Young's moduli of protein fibrils and particles with bimodal force spectroscopy.

    Science.gov (United States)

    Gilbert, Jay; Charnley, Mirren; Cheng, Christopher; Reynolds, Nicholas P; Jones, Owen G

    2017-10-19

    Force spectroscopy is a means of obtaining mechanical information of individual nanometer-scale structures in composite materials, such as protein assemblies for use in consumer films or gels. As a recently developed force spectroscopy technique, bimodal force spectroscopy relates frequency shifts in cantilevers simultaneously excited at multiple frequencies to the elastic properties of the contacted material, yet its utility for quantitative characterization of biopolymer assemblies has been limited. In this study, a linear correlation between experimental frequency shift and Young's modulus of polymer films was used to calibrate bimodal force spectroscopy and quantify Young's modulus of two protein nanostructures: β-lactoglobulin fibrils and zein nanoparticles. Cross-sectional Young's modulus of protein fibrils was determined to be 1.6 GPa while the modulus of zein nanoparticles was determined as 854 MPa. Parallel measurement of β-lactoglobulin fibril by a competing pulsed-force technique found a higher cross-sectional Young's modulus, highlighting the importance of comparative calibration against known standards in both pulsed and bimodal force spectroscopies. These findings demonstrate a successful procedure for measuring mechanical properties of individual protein assemblies with potential use in biological or packaging applications using bimodal force spectroscopy.

  19. Deaf Parents of Cochlear-Implanted Children: Beliefs on Bimodal Bilingualism

    Science.gov (United States)

    Mitchiner, Julie Cantrell

    2015-01-01

    This study investigated 17 Deaf families in North America with cochlear-implanted children about their attitudes, beliefs, and practices on bimodal bilingualism (defined as using both a visual/manual language and an aural/oral language) in American Sign Language (ASL) and English. A survey and follow-up interviews with 8 families were conducted.…

  20. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.

    Science.gov (United States)

    Meraj, Md; Pal, Snehanshu

    2017-10-11

    In this paper, the creep behavior of nanocrystalline Ni having bimodal grain structure is investigated using molecular dynamics simulation. Analysis of structural evolution during the creep process has also been performed. It is observed that an increase in size of coarse grain causes improvement in creep properties of bimodal nanocrystalline Ni. Influence of bimodality (i.e., size difference between coarse and fine grains) on creep properties are found to be reduced with increasing creep temperature. The dislocation density is observed to decrease exponentially with progress of creep deformation. Grain boundary diffusion controlled creep mechanism is found to be dominant at the primary creep region and the initial part of the secondary creep region. After that shear diffusion transformation mechanism is found to be significantly responsible for deformation as bimodal nanocrystalline Ni transforms to amorphous structure with further progress of the creep process. The presence of , , and  distorted icosahedra has a significant influence on creep rate in the tertiary creep regime according to Voronoi cluster analysis.

  1. Algorithms for estimating blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2000-01-01

    Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes...... have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...... are parallel to the skin surface. Angling the transducer will often disturb the flow, and new techniques for finding transverse velocities are needed. The various approaches for determining transverse velocities will be explained. This includes techniques using two-dimensional correlation (speckle tracking...

  2. The OH + D2 --> HOD + D angle-velocity distribution: quasi-classical trajectory calculations on the YZCL2 and WSLFH potential energy surfaces and comparison with experiments at ET = 0.28 eV.

    Science.gov (United States)

    Sierra, José Daniel; Martínez, Rodrigo; Hernando, Jordi; González, Miguel

    2009-12-28

    The angle-velocity distribution (HOD) of the OH + D(2) reaction at a relative translational energy of 0.28 eV has been calculated using the quasi-classical trajectory (QCT) method on the two most recent potential energy surfaces available (YZCL2 and WSLFH PESs), widely extending a previous investigation of our group. Comparison with the high resolution experiments of Davis and co-workers (Science, 2000, 290, 958) shows that the structures (peaks) found in the relative translational energy distributions of products could not be satisfactorily reproduced in the calculations, probably due to the classical nature of the QCT method and the importance of quantum effects. The calculations, however, worked quite well for other properties. Overall, both surfaces led to similar results, although the YZCL2 surface is more accurate to describe the H(3)O PES, as derived from comparison with high level ab initio results. The differences observed in the QCT calculations were interpreted considering the somewhat larger anisotropy of the YZCL2 PES when compared with the WSLFH PES.

  3. Probabilistic analysis and fatigue damage assessment of offshore mooring system due to non-Gaussian bimodal tension processes

    Science.gov (United States)

    Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng

    2017-08-01

    Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.

  4. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    Science.gov (United States)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  5. Bimodal emotion congruency is critical to preverbal infants' abstract rule learning.

    Science.gov (United States)

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-05-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of the shapes alone (circle-triangle-circle) or auditory presentation of the syllables (la-ba-la) alone. However, the mechanisms and constraints for this bimodal learning facilitation are still unknown. In this study, we used audio-visual relation congruency between bimodal stimulation to disentangle possible facilitation sources. We exposed 8- to 10-month-old infants to an AAB sequence consisting of visual faces with affective expressions and/or auditory voices conveying emotions. Our results showed that infants were able to distinguish the learned AAB rule from other novel rules under bimodal stimulation when the affects in audio and visual stimuli were congruently paired (Experiments 1A and 2A). Infants failed to acquire the same rule when audio-visual stimuli were incongruently matched (Experiment 2B) and when only the visual (Experiment 1B) or the audio (Experiment 1C) stimuli were presented. Our results highlight that bimodal facilitation in infant rule learning is not only dependent on better statistical probability and redundant sensory information, but also the relational congruency of audio-visual information. A video abstract of this article can be viewed at https://m.youtube.com/watch?v=KYTyjH1k9RQ. © 2015 John Wiley & Sons Ltd.

  6. Exact results for the Kuramoto model with a bimodal frequency distribution

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Barreto, E.; Strogatz, S. H.

    2009-01-01

    weighted Lorentzians. Using an ansatz recently discov- ered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence......, where all the oscillators are desynchronized; partial synchrony, where a macro- scopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented...

  7. Bimodal Distribution of Risk for Childhood Obesity in Urban Baja California, Mexico

    OpenAIRE

    Wojcicki, Janet M.; Jimenez-Cruz, Arturo; Bacardi-Gascon, Montserrat; Schwartz, Norah; Heyman, Melvin B.

    2012-01-01

    In Mexico, higher socioeconomic status (SES) has been found to be associated with increased risk for obesity in children. Within developed urban areas, however, there may be increased risk among lower SES children. Students in grades 4–6 from five public schools in Tijuana and Tecate, Mexico, were interviewed and weight, height and waist circumference (WC) measurements were taken. Interviews consisted of questions on food frequency, food insecurity, acculturation, physical activity and lifest...

  8. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    Science.gov (United States)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  9. CHROMOSPHERICALLY ACTIVE STARS IN THE RADIAL VELOCITY EXPERIMENT (RAVE) SURVEY. I. THE CATALOG

    International Nuclear Information System (INIS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Strassmeier, K. G.; Siviero, A.; Steinmetz, M.; Bienaymé, O.; Bland-Hawthorn, J.; Boeche, C.; Grebel, E. K.; Freeman, K. C.; Kordopatis, G.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G.; Wyse, R. F. G.

    2013-01-01

    RAVE, the unbiased magnitude limited survey of southern sky stars, contained 456,676 medium-resolution spectra at the time of our analysis. Spectra cover the Ca II infrared triplet (IRT) range, which is a known indicator of chromospheric activity. Our previous work classified all spectra using locally linear embedding. It identified 53,347 cases with a suggested emission component in calcium lines. Here, we use a spectral subtraction technique to measure the properties of this emission. Synthetic templates are replaced by the observed spectra of non-active stars to bypass the difficult computations of non-local thermal equilibrium profiles of the line cores and stellar parameter dependence. We derive both the equivalent width of the excess emission for each calcium line on a 5 Å wide interval and their sum EW IRT for ∼44,000 candidate active dwarf stars with signal-to-noise ratio >20, with no cuts on the basis of the source of their emission flux. From these, ∼14,000 show a detectable chromospheric flux with at least a 2σ confidence level. Our set of active stars vastly enlarges previously known samples. Atmospheric parameters and, in some cases, radial velocities of active stars derived from automatic pipelines suffer from systematic shifts due to their shallower calcium lines. We re-estimate the effective temperature, metallicity, and radial velocities for candidate active stars. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with non-active stars and the second with the pre-main-sequence cases. The catalog will be made publicly available with the next RAVE public data releases

  10. Cosmic string induced peculiar velocities

    International Nuclear Information System (INIS)

    van Dalen, A.; Schramm, D.N.

    1987-02-01

    We calculate analytically the probability distribution for peculiar velocities on scales from 10h -1 to 60h -1 Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We consider a range of parameters βGμ appropriate for both hot (HDM) and cold (CDM) dark matter scenarios. An Ω = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large value for βGμ or the effect of loop fissioning and production details be considerable. Specifically, for optimal CDM string parameters Gμ = 10 -6 , β = 9, h = .5, and scales of 60h -1 Mpc, the parent size spectrum must be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s with only a 10% probability. The string induced velocity spectrum is relatively flat out to scales of about 2t/sub eq//a/sub eq/ and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. With HDM a larger value of βGμ is necessary for galaxy formation since accretion on small scales starts later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored in greater detail in a later paper. 27 refs., 4 figs., 1 tab

  11. Two-Dimensional Distributed Velocity Collision Avoidance

    Science.gov (United States)

    2014-02-11

    place (i.e., in the global problem space) as much as possible in an effort to simplify the process/description. Additionally, to make some of the...guide agents without collision in the vast majority of cases. NAWCWD TP 8786 31 7.0 REFERENCES 1. P. L. Franchi . “Near Misses Between

  12. Single-crystal 40Ar/39Ar incremental heating reveals bimodal sanidine ages in the Bishop Tuff

    Science.gov (United States)

    Andersen, N. L.; Jicha, B. R.; Singer, B. S.

    2015-12-01

    The 650 km3 Bishop Tuff (BT) is among the most studied volcanic deposits because it is an extensive marker bed deposited just after the Matuyama-Brunhes boundary. Reconstructions of the vast BT magma reservoir from which high-silica rhyolite erupted have long influenced thinking about how large silicic magma systems are assembled, crystallized, and mixed. Yet, the longevity of the high silica rhyolitic melt and exact timing of the eruption remain controversial due to recent conflicting 40Ar/39Ar sanidine vs. SIMS and ID-TIMS U-Pb zircon dates. We have undertaken 21 40Ar/39Ar incremental heating ages on 2 mm BT sanidine crystals from pumice in 3 widely separated outcrops of early-erupted fall and flow units. Plateau ages yield a bimodal distribution: a younger group has a mean of 766 ka and an older group gives a range between 772 and 782 ka. The younger population is concordant with the youngest ID-TIMS and SIMS U-Pb zircon ages recently published, as well as the astronomical age of BT in marine sediment. Of 21 crystals, 17 yield older, non-plateau, steps likely affected by excess Ar that would bias traditional 40Ar/39Ar total crystal fusion ages. The small spread in older sanidine ages, together with 25+ kyr of pre-eruptive zircon growth, suggest that the older sanidines are not partially outgassed xenocrysts. A bimodal 40Ar/39Ar age distribution implies that some fraction of rhyolitic melt cooled below the Ar closure temperature at least 10 ky prior to eruption. We propose that rapid "thawing" of a crystalline mush layer released older crystals into rhyolitic melt from which sanidine also nucleated and grew immediately prior to the eruption. High precision 40Ar/39Ar dating can thus provide essential information on thermo-physical processes at the millenial time scale that are critical to interpreting U-Pb zircon age distributions that are complicated by large uncertainties associated with zircon-melt U-Th systematics.

  13. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  14. Children with dyslexia show a reduced processing benefit from bimodal speech information compared to their typically developing peers.

    Science.gov (United States)

    Schaadt, Gesa; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Männel, Claudia

    2018-01-17

    During information processing, individuals benefit from bimodally presented input, as has been demonstrated for speech perception (i.e., printed letters and speech sounds) or the perception of emotional expressions (i.e., facial expression and voice tuning). While typically developing individuals show this bimodal benefit, school children with dyslexia do not. Currently, it is unknown whether the bimodal processing deficit in dyslexia also occurs for visual-auditory speech processing that is independent of reading and spelling acquisition (i.e., no letter-sound knowledge is required). Here, we tested school children with and without spelling problems on their bimodal perception of video-recorded mouth movements pronouncing syllables. We analyzed the event-related potential Mismatch Response (MMR) to visual-auditory speech information and compared this response to the MMR to monomodal speech information (i.e., auditory-only, visual-only). We found a reduced MMR with later onset to visual-auditory speech information in children with spelling problems compared to children without spelling problems. Moreover, when comparing bimodal and monomodal speech perception, we found that children without spelling problems showed significantly larger responses in the visual-auditory experiment compared to the visual-only response, whereas children with spelling problems did not. Our results suggest that children with dyslexia exhibit general difficulties in bimodal speech perception independently of letter-speech sound knowledge, as apparent in altered bimodal speech perception and lacking benefit from bimodal information. This general deficit in children with dyslexia may underlie the previously reported reduced bimodal benefit for letter-speech sound combinations and similar findings in emotion perception. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task

    Directory of Open Access Journals (Sweden)

    Lorraine Perronnet

    2017-04-01

    Full Text Available Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D. Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback.

  16. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  17. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  18. Application of Bimodal Master Curve Approach on KSNP RPV steel SA508 Gr. 3

    International Nuclear Information System (INIS)

    Kim, Jongmin; Kim, Minchul; Choi, Kwonjae; Lee, Bongsang

    2014-01-01

    In this paper, the standard MC approach and BMC are applied to the forging material of the KSNP RPV steel SA508 Gr. 3. A series of fracture toughness tests were conducted in the DBTT transition region, and fracture toughness specimens were extracted from four regions, i.e., the surface, 1/8T, 1/4T and 1/2T. Deterministic material inhomogeneity was reviewed through a conventional MC approach and the random inhomogeneity was evaluated by BMC. In the present paper, four regions, surface, 1/8T, 1/4T and 1/2T, were considered for the fracture toughness specimens of KSNP (Korean Standard Nuclear Plant) SA508 Gr. 3 steel to provide deterministic material inhomogeneity and review the applicability of BMC. T0 determined by a conventional MC has a low value owing to the higher quenching rate at the surface as expected. However, more than about 15% of the KJC values lay above the 95% probability curves indexed with the standard MC T0 at the surface and 1/8T, which implies the existence of inhomogeneity in the material. To review the applicability of the BMC method, the deterministic inhomogeneity owing to the extraction location and quenching rate is treated as random inhomogeneity. Although the lower bound and upper bound curve of the BMC covered more KJC values than that of the conventional MC, there is no significant relationship between the BMC analysis lines and measured KJC values in the higher toughness distribution, and BMC and MC provide almost the same T0 values. Therefore, the standard MC evaluation method for this material is appropriate even though the standard MC has a narrow upper/lower bound curve range from the RPV evaluation point of view. The material is not homogeneous in reality. Such inhomogeneity comes in the effect of material inhomogeneity depending on the specimen location, heat treatment, and whole manufacturing process. The conventional master curve has a limitation to be applied to a large scatted data of fracture toughness such as the weld region

  19. Emotional Intensity Modulates the Integration of Bimodal Angry Expressions: ERP Evidence

    Directory of Open Access Journals (Sweden)

    Zhihui Pan

    2017-06-01

    Full Text Available Integration of information from face and voice plays a central role in social interactions. The present study investigated the modulation of emotional intensity on the integration of facial-vocal emotional cues by recording EEG for participants while they were performing emotion identification task on facial, vocal, and bimodal angry expressions varying in emotional intensity. Behavioral results showed the rates of anger and reaction speed increased as emotional intensity across modalities. Critically, the P2 amplitudes were larger for bimodal expressions than for the sum of facial and vocal expressions for low emotional intensity stimuli, but not for middle and high emotional intensity stimuli. These findings suggested that emotional intensity modulates the integration of facial-vocal angry expressions, following the principle of Inverse Effectiveness (IE in multimodal sensory integration.

  20. Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy

    International Nuclear Information System (INIS)

    Lee, Z.; Witkin, D.B.; Radmilovic, V.; Lavernia, E.J.; Nutt, S.R.

    2005-01-01

    The microstructure, mechanical properties and deformation response of bimodal structured nanocrystalline Al-7.5Mg alloy were investigated. Grain refinement was achieved by cryomilling of atomized Al-7.5Mg powders, and then cryomilled nanocrystalline powders blended with 15 and 30% unmilled coarse-grained powders were consolidated by hot isostatic pressing followed by extrusion to produce bulk nanocrystalline alloys. Bimodal bulk nanocrystalline Al-7.5Mg alloys, which were comprised of nanocrystalline grains separated by coarse-grain regions, show balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness compared to comparable conventional alloys and nanocrystalline metals. The investigation of tensile and hardness test suggests unusual deformation mechanisms and interactions between ductile coarse-grain bands and nanocrystalline regions

  1. A Novel Method of Extraction of Blend Component Structure from SANS Measurements of Homopolymer Bimodal Blends.

    Science.gov (United States)

    Smerdova, Olga; Graham, Richard S; Gasser, Urs; Hutchings, Lian R; De Focatiis, Davide S A

    2014-05-01

    A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with [Formula: see text]. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. [Formula: see text].

  2. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  3. Brain deactivation in the outperformance in bimodal tasks: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Chiang

    Full Text Available While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot. How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of the two tasks simultaneously. The functional magnetic resonance imaging (fMRI results are compatible with previous studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF, lateral parietal lobe (BA7, and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the temporal lobes and Brodmann area 43 (BA43 were involved in processing of auditory unimodal tasks. These results lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in the bimodal task, these areas were not deactivated where the subject performed well in only one of the two simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as courses in how to perform multiple tasks simultaneously.

  4. Bi-Modal Face and Speech Authentication: a BioLogin Demonstration System

    OpenAIRE

    Marcel, Sébastien; Mariéthoz, Johnny; Rodriguez, Yann; Cardinaux, Fabien

    2006-01-01

    This paper presents a bi-modal (face and speech) authentication demonstration system that simulates the login of a user using its face and its voice. This demonstration is called BioLogin. It runs both on Linux and Windows and the Windows version is freely available for download. Bio\\-Login is implemented using an open source machine learning library and its machine vision package.

  5. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands.

    Science.gov (United States)

    Pacheco, Arturo; Camarero, J Julio; Ribas, Montse; Gazol, Antonio; Gutierrez, E; Carrer, Marco

    2018-02-15

    Mediterranean climate promotes two distinct growth peaks separated by summer quiescence in trees. This bimodal pattern has been associated to favourable growing conditions during spring and autumn when mild temperatures and soil-water availability enhance cambial activity. Climatic models predict progressive warming and drying for the Mediterranean Basin, which could shorten or shift the spring and autumn growing seasons. We explored this idea by comparing two sites with different Mediterranean climate types (continental/dry and coastal/wet) and studied how climate drives the bimodal growth pattern in Aleppo pine (Pinus halepensis). Specifically we investigated the intra-annual changes in wood anatomy and the corresponding formation of density fluctuations (IADF). Trees on both sites were analyzed by dendrometer monitoring and by developing chronologies of wood anatomical traits. Radial-increment dynamics followed a similar bimodal pattern in both sites but coastal trees showed higher increments during the spring and autumn growth peaks, especially in autumn. The summer rest of cambium activity occurs almost one month earlier in the coastal than in the inland site. Lumen area and cell-wall thickness were significantly smaller in the continental site, while the increment rate of cell-wall thickness during an IADF event was much higher in the coastal pines. The accumulated soil moisture deficit was the main climatic constraint of tracheid enlargement in continental pines. Intra-annual density fluctuations were more frequent in the coastal trees where wood anatomy features recover to average values after such events, meanwhile inland trees presented a much lower recovery rate. Growth bimodality and the formation of density fluctuations were linked, but mild climate of the coastal site allows a longer growing season, which explains why trees in this area showed higher and more variable growth rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. How bilingualism protects the brain from aging: Insights from bimodal bilinguals.

    Science.gov (United States)

    Li, Le; Abutalebi, Jubin; Emmorey, Karen; Gong, Gaolang; Yan, Xin; Feng, Xiaoxia; Zou, Lijuan; Ding, Guosheng

    2017-08-01

    Bilingual experience can delay cognitive decline during aging. A general hypothesis is that the executive control system of bilinguals faces an increased load due to controlling two languages, and this increased load results in a more "tuned brain" that eventually creates a neural reserve. Here we explored whether such a neuroprotective effect is independent of language modality, i.e., not limited to bilinguals who speak two languages but also occurs for bilinguals who use a spoken and a signed language. We addressed this issue by comparing bimodal bilinguals to monolinguals in order to detect age-induced structural brain changes and to determine whether we can detect the same beneficial effects on brain structure, in terms of preservation of gray matter volume (GMV), for bimodal bilinguals as has been reported for unimodal bilinguals. Our GMV analyses revealed a significant interaction effect of age × group in the bilateral anterior temporal lobes, left hippocampus/amygdala, and left insula where bimodal bilinguals showed slight GMV increases while monolinguals showed significant age-induced GMV decreases. We further found through cortical surface-based measurements that this effect was present for surface area and not for cortical thickness. Moreover, to further explore the hypothesis that overall bilingualism provides neuroprotection, we carried out a direct comparison of GMV, extracted from the brain regions reported above, between bimodal bilinguals, unimodal bilinguals, and monolinguals. Bilinguals, regardless of language modality, exhibited higher GMV compared to monolinguals. This finding highlights the general beneficial effects provided by experience handling two language systems, whether signed or spoken. Hum Brain Mapp 38:4109-4124, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Combining bimodal presentation schemes and buzz groups improves clinical reasoning and learning at morning report.

    Science.gov (United States)

    Balslev, Thomas; Rasmussen, Astrid Bruun; Skajaa, Torjus; Nielsen, Jens Peter; Muijtjens, Arno; De Grave, Willem; Van Merriënboer, Jeroen

    2014-12-11

    Abstract Morning reports offer opportunities for intensive work-based learning. In this controlled study, we measured learning processes and outcomes with the report of paediatric emergency room patients. Twelve specialists and 12 residents were randomised into four groups and discussed the same two paediatric cases. The groups differed in their presentation modality (verbal only vs. verbal + text) and the use of buzz groups (with vs. without). The verbal interactions were analysed for clinical reasoning processes. Perceptions of learning and judgment of learning were reported in a questionnaire. Diagnostic accuracy was assessed by a 20-item multiple-choice test. Combined bimodal presentation and buzz groups increased the odds ratio of clinical reasoning to occur in the discussion of cases by a factor of 1.90 (p = 0.013), indicating superior reasoning for buzz groups working with bimodal materials. For specialists, a positive effect of bimodal presentation was found on perceptions of learning (p presentation on diagnostic accuracy was noted in the specialists (p presentation and buzz group discussion of emergency cases improves clinicians' clinical reasoning and learning.

  8. Contralateral Bimodal Stimulation: A Way to Enhance Speech Performance in Arabic-Speaking Cochlear Implant Patients.

    Science.gov (United States)

    Abdeltawwab, Mohamed M; Khater, Ahmed; El-Anwar, Mohammad W

    2016-01-01

    The combination of acoustic and electric stimulation as a way to enhance speech recognition performance in cochlear implant (CI) users has generated considerable interest in the recent years. The purpose of this study was to evaluate the bimodal advantage of the FS4 speech processing strategy in combination with hearing aids (HA) as a means to improve low-frequency resolution in CI patients. Nineteen postlingual CI adults were selected to participate in this study. All patients wore implants on one side and HA on the contralateral side with residual hearing. Monosyllabic word recognition, speech in noise, and emotion and talker identification were assessed using CI with fine structure processing/FS4 and high-definition continuous interleaved sampling strategies, HA alone, and a combination of CI and HA. The bimodal stimulation showed improvement in speech performance and emotion identification for the question/statement/order tasks, which was statistically significant compared to patients with CI alone, but there were no significant statistical differences in intragender talker discrimination and emotion identification for the happy/angry/neutral tasks. The poorest performance was obtained with HA only, and it was statistically significant compared to the other modalities. The bimodal stimulation showed enhanced speech performance in CI patients, and it improves the limitations provided by electric or acoustic stimulation alone. © 2016 S. Karger AG, Basel.

  9. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Science.gov (United States)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  10. Pluto/Charon exploration utilizing a bi-modal PBR nuclear propulsion/power system

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The paper describes a Pluto/Charon orbiter utilizing a bi-modal nuclear propulsion and power system based on the Particle Bed Reactor. The orbiter is sized for launch to Nuclear-Safe orbit atop a Titan IV or equivalent launch veicle. The bi-modal system provides thermal propulsion for Earth orbital departure and Pluto orbital capture, and 10 kWe of electric power for payload functions and for in-system maneuvering with ion thrusters. Ion thrusters are used to perform inclination changes about Pluto, a transfer from low Pluto orbit to low Charon orbit, and inclination changes about charon. A nominal payload can be deliverd in as little as 15 years, 1000 kg in 17 years, and close to 2000 kg in 20 years. Scientific return is enormously aided by the availability of up to 10 kWe, due to greater data transfer rates and more/better instruments. The bi-modal system can provide power at Pluto/Charon for 10 or more years, enabling an extremely robust, scientifically rewarding, and cost-effective exploration mission.

  11. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  12. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  13. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  14. Distribution and Mobility of Wealth of Nations

    NARCIS (Netherlands)

    R. Paap (Richard); H.K. van Dijk (Herman)

    2009-01-01

    textabstractWe estimate the empirical bimodal cross-section distribution of real Gross Domestic Product per capita of 120 countries over the period 1960–1989 by a mixture of a Weibull and a truncated normal density. The components of the mixture represent a group of poor and a group of rich

  15. Distribution of sensory taste thresholds for phenylthiocarbamide ...

    African Journals Online (AJOL)

    The ability to taste Phenylthiocarbamide (PTC), a bitter organic compound has been described as a bimodal autosomal trait in both genetic and anthropological studies. This study is based on the ability of a person to taste PTC. The present study reports the threshold distribution of PTC taste sensitivity among some Muslim ...

  16. Ca II TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. I. ABUNDANCES AND VELOCITIES FOR A SAMPLE OF CLUSTERS

    International Nuclear Information System (INIS)

    Parisi, M. C.; Claria, J. J.; Grocholski, A. J.; Geisler, D.; Sarajedini, A.

    2009-01-01

    We have obtained near-infrared spectra covering the Ca II triplet lines for a large number of stars associated with 16 Small Magellanic Cloud (SMC) clusters using the VLT + FORS2. These data compose the largest available sample of SMC clusters with spectroscopically derived abundances and velocities. Our clusters span a wide range of ages and provide good areal coverage of the galaxy. Cluster members are selected using a combination of their positions relative to the cluster center as well as their location in the color-magnitude diagram, abundances, and radial velocities (RVs). We determine mean cluster velocities to typically 2.7 km s -1 and metallicities to 0.05 dex (random errors), from an average of 6.4 members per cluster. By combining our clusters with previously published results, we compile a sample of 25 clusters on a homogeneous metallicity scale and with relatively small metallicity errors, and thereby investigate the metallicity distribution, metallicity gradient, and age-metallicity relation (AMR) of the SMC cluster system. For all 25 clusters in our expanded sample, the mean metallicity [Fe/H] = -0.96 with σ = 0.19. The metallicity distribution may possibly be bimodal, with peaks at ∼-0.9 dex and -1.15 dex. Similar to the Large Magellanic Cloud (LMC), the SMC cluster system gives no indication of a radial metallicity gradient. However, intermediate age SMC clusters are both significantly more metal-poor and have a larger metallicity spread than their LMC counterparts. Our AMR shows evidence for three phases: a very early (>11 Gyr) phase in which the metallicity reached ∼-1.2 dex, a long intermediate phase from ∼10 to 3 Gyr in which the metallicity only slightly increased, and a final phase from 3 to 1 Gyr ago in which the rate of enrichment was substantially faster. We find good overall agreement with the model of Pagel and Tautvaisiene, which assumes a burst of star formation at 4 Gyr. Finally, we find that the mean RV of the cluster system

  17. Modified circular velocity law

    Science.gov (United States)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  18. Matching Automatic Gain Control Across Devices in Bimodal Cochlear Implant Users.

    Science.gov (United States)

    Veugen, Lidwien C E; Chalupper, Josef; Snik, Ad F M; Opstal, A John van; Mens, Lucas H M

    2016-01-01

    The purpose of this study was to improve bimodal benefit in listeners using a cochlear implant (CI) and a hearing aid (HA) in contralateral ears, by matching the time constants and the number of compression channels of the automatic gain control (AGC) of the HA to the CI. Equivalent AGC was hypothesized to support a balanced loudness for dynamically changing signals like speech and improve bimodal benefit for speech understanding in quiet and with noise presented from the side(s) at 90 degree. Fifteen subjects participated in the study, all using the same Advanced Bionics Harmony CI processor and HA (Phonak Naida S IX UP). In a 3-visit crossover design with 4 weeks between sessions, performance was measured using a HA with a standard AGC (syllabic multichannel compression with 1 ms attack time and 50 ms release time) or an AGC that was adjusted to match that of the CI processor (dual AGC broadband compression, 3 and 240 msec attack time, 80 and 1500 msec release time). In all devices, the AGC was activated above the threshold of 63 dB SPL. The authors balanced loudness across the devices for soft and loud input sounds in 3 frequency bands (0 to 548, 548 to 1000, and >1000 Hz). Speech understanding was tested in free field in quiet and in noise for three spatial speaker configurations, with target speech always presented from the front. Single-talker noise was either presented from the CI side or the HA side, or uncorrelated stationary speech-weighted noise or single-talker noise was presented from both sides. Questionnaires were administered to assess differences in perception between the two bimodal fittings. Significant bimodal benefit over the CI alone was only found for the AGC-matched HA for the speech tests with single-talker noise. Compared with the standard HA, matched AGC characteristics significantly improved speech understanding in single-talker noise by 1.9 dB when noise was presented from the HA side. AGC matching increased bimodal benefit

  19. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    Science.gov (United States)

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  20. 'Bimodal' NTR and LANTR propulsion for human missions to Mars/Phobos

    International Nuclear Information System (INIS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1999-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ∼850-1000 s) and attractive engine thrust-to-weight ratio (∼3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, 'power-rich' stage enabling propulsive Mars capture and reuse capability. A family of modular 'bimodal' NTR (BNTR) vehicles are described which utilize a common 'core' stage powered by three 66.7 kN (∼15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, 'zero-boiloff' liquid hydrogen (LH 2 ) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the 'all LH 2 ' BNTR stage. The use of ''LOX-augmented' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase 'bulk' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH 2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ∼80 t 'Magnum' heavy lift launch vehicles (HLLVs)

  1. Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness.

    Science.gov (United States)

    Li, Qing; Bohin, Natacha; Wen, Tiffany; Ng, Victor; Magee, Jeffrey; Chen, Shann-Ching; Shannon, Kevin; Morrison, Sean J

    2013-12-05

    'Pre-leukaemic' mutations are thought to promote clonal expansion of haematopoietic stem cells (HSCs) by increasing self-renewal and competitiveness; however, mutations that increase HSC proliferation tend to reduce competitiveness and self-renewal potential, raising the question of how a mutant HSC can sustainably outcompete wild-type HSCs. Activating mutations in NRAS are prevalent in human myeloproliferative neoplasms and leukaemia. Here we show that a single allele of oncogenic Nras(G12D) increases HSC proliferation but also increases reconstituting and self-renewal potential upon serial transplantation in irradiated mice, all prior to leukaemia initiation. Nras(G12D) also confers long-term self-renewal potential to multipotent progenitors. To explore the mechanism by which Nras(G12D) promotes HSC proliferation and self-renewal, we assessed cell-cycle kinetics using H2B-GFP label retention and 5-bromodeoxyuridine (BrdU) incorporation. Nras(G12D) had a bimodal effect on HSCs, increasing the frequency with which some HSCs divide and reducing the frequency with which others divide. This mirrored bimodal effects on reconstituting potential, as rarely dividing Nras(G12D) HSCs outcompeted wild-type HSCs, whereas frequently dividing Nras(G12D) HSCs did not. Nras(G12D) caused these effects by promoting STAT5 signalling, inducing different transcriptional responses in different subsets of HSCs. One signal can therefore increase HSC proliferation, competitiveness and self-renewal through bimodal effects on HSC gene expression, cycling and reconstituting potential.

  2. Acid-base and ion balance in fishes with bimodal respiration.

    Science.gov (United States)

    Shartau, R B; Brauner, C J

    2014-03-01

    The evolution of air breathing during the Devonian provided early fishes with bimodal respiration with a stable O2 supply from air. This was, however, probably associated with challenges and trade-offs in terms of acid-base balance and ionoregulation due to reduced gill:water interaction and changes in gill morphology associated with air breathing. While many aspects of acid-base and ionoregulation in air-breathing fishes are similar to water breathers, the specific cellular and molecular mechanisms involved remain largely unstudied. In general, reduced ionic permeability appears to be an important adaptation in the few bimodal fishes investigated but it is not known if this is a general characteristic. The kidney appears to play an important role in minimizing ion loss to the freshwater environment in the few species investigated, and while ion uptake across the gut is probably important, it has been largely unexplored. In general, air breathing in facultative air-breathing fishes is associated with an acid-base disturbance, resulting in an increased partial pressure of arterial CO2 and a reduction in extracellular pH (pHE ); however, several fishes appear to be capable of tightly regulating tissue intracellular pH (pHI ), despite a large sustained reduction in pHE , a trait termed preferential pHI regulation. Further studies are needed to determine whether preferential pHI regulation is a general trait among bimodal fishes and if this confers reduced sensitivity to acid-base disturbances, including those induced by hypercarbia, exhaustive exercise and hypoxia or anoxia. Additionally, elucidating the cellular and molecular mechanisms may yield insight into whether preferential pHI regulation is a trait ultimately associated with the early evolution of air breathing in vertebrates. © 2014 The Fisheries Society of the British Isles.

  3. Processing bimodal stimulus information under alcohol: is there a risk to being redundant?

    Science.gov (United States)

    Fillmore, Mark T

    2010-10-01

    The impairing effects of alcohol are especially pronounced in environments that involve dividing attention across two or more stimuli. However, studies in cognitive psychology have identified circumstances in which the presentation of multiple stimuli can actually facilitate performance. The "redundant signal effect" (RSE) refers to the observation that individuals respond more quickly when information is presented as redundant, bimodal stimuli (e.g., aurally and visually), rather than as a single stimulus presented to either modality alone. The present study tested the hypothesis that the response facilitation attributed to RSE could reduce the degree to which alcohol slows information processing. Two experiments are reported. Experiment 1 demonstrated the validity of a reaction time model of RSE by showing that adults (N = 15) responded more quickly to redundant, bimodal stimuli (visual + aural) versus either stimuli presented individually. Experiment 2 used the RSE model to test the reaction time performance of 20 adults following three alcohol doses (0.0 g/kg, 0.45 g/kg, and 0.65 g/kg). Results showed that alcohol slowed reaction time in a general dose-dependent manner in all three stimulus conditions with the reaction time (RT) speed-advantage of the redundant signal being maintained, even under the highest dose of alcohol. Evidence for an RT advantage to bimodal stimuli under alcohol challenges the general assumption that alcohol impairment is intensified in multistimulus environments. The current study provides a useful model to investigate how drug effects on behavior might be altered in contexts that involve redundant response signals.

  4. A bimodal temom model for particle Brownian coagulation in the continuum-slip regime

    Directory of Open Access Journals (Sweden)

    He Qing

    2016-01-01

    Full Text Available In this paper, a bimodal Taylor-series expansion moment of method is proposed to deal with Brownian coagulation in the continuum-slip regime, where the non-linear terms in the Cunningham correction factor is approximated by Taylor-series expansion technology. The results show that both the number concentration and volume fraction decrease with time in the smaller mode due to the intra and inter coagulation, and the asymptotic behavior of the larger mode is as same as that in the continuum regime.

  5. Time shift in slope failure prediction between unimodal and bimodal modeling approaches

    Science.gov (United States)

    Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente

    2016-04-01

    Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function

  6. Impact of Bimodal Traffic on Latency in Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Yuhua Chen

    2008-01-01

    Full Text Available This paper analyzes the impact of bimodal traffic composition on latency in optical burst switching networks. In particular, it studies the performance degradation to short-length packets caused by longer packets, both of which are part of a heterogeneous traffic model. The paper defines a customer satisfaction index for each of the classes of traffic, and a composite satisfaction index. The impact of higher overall utilization of the network as well as that of the ratio of the traffic mix on each of the customer satisfaction indices is specifically addressed.

  7. Bimodal MR-PET agent for quantitative pH imaging

    Science.gov (United States)

    Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter

    2010-01-01

    Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650

  8. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...

  9. Multidisc neutron velocity selector

    International Nuclear Information System (INIS)

    Rosta, L.; Zsigmond, Gy.; Farago, B.; Mezei, F.; Ban, K.; Perendi, J.

    1987-12-01

    The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs

  10. Microseismic Velocity Imaging of the Fracturing Zone

    Science.gov (United States)

    Zhang, H.; Chen, Y.

    2015-12-01

    Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By

  11. Accelerated radial Fourier-velocity encoding using compressed sensing

    International Nuclear Information System (INIS)

    Hilbert, Fabian; Han, Dietbert

    2014-01-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  12. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  13. Accelerated radial Fourier-velocity encoding using compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)

    2014-10-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  14. Accelerated radial Fourier-velocity encoding using compressed sensing.

    Science.gov (United States)

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  15. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic...

  16. Bimodality in binary Au + Au collisions from 60 to 100 MeV/u

    International Nuclear Information System (INIS)

    Pichon, M.; Tamain, B.; Bougault, R.

    2003-03-01

    The deexcitation of quasi-projectiles (QP) released in binary Au on Au collisions as been studied from 60 to 100 MeV/u. Bimodality between two different decay patterns has been observed for intermediate violence collisions. The main experimental result is that the system jumps from one mode to the other on a narrow range of energy deposit and/or impact parameter. The sorting of the events (according to the violence of the collision) has been provided by the perpendicular energy of the light charged particles emitted on the quasi-target side. Such a sorting prevents spurious autocorrelation effects between the sorting variable and the observed mechanism. The two modes of the QP decay correspond on the one side to residue or fission fragments production, and on the other side to the multifragmentation channel. A detailed study has been performed in order to try to establish the origin of the observed bimodality in disentangling dynamical or geometrical effects from bulk matter properties linked with a liquid-gas type phase transition. The whole set of data is coherent with a dominant role of the deposited excitation energy as it is expected from theoretical arguments.(lattice gas model) in the framework of a liquid-gas phase transition picture. (authors)

  17. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  18. Anhydrides-Cured Bimodal Rubber-Like Epoxy Asphalt Composites: From Thermosetting to Quasi-Thermosetting

    Directory of Open Access Journals (Sweden)

    Yang Kang

    2016-03-01

    Full Text Available The present engineering practices show the potential that epoxy asphalt composites (EACs would be a better choice to obtain long life for busy roads. To understand the service performance–related thermorheological properties of prepared bimodal anhydrides-cured rubber-like EACs (REACs, a direct tensile tester, dynamic shear rheometer and mathematical model were used. Tensile tests demonstrate that all the REACs reported here are more flexible than previously reported anhydrides-cured REACs at both 20 and 0 °C. The better flexibility is attributed to the change of bimodal networks, in which cross-linked short chains decreased and cross-linked long chains increased, relatively. Strain sweeps show that all the REACs have linear viscoelastic (LVE properties when their strains are smaller than 1.0% from −35 to 120 °C. Temperature sweeps illustrate that the thermorheological properties of REACs evolve from thermosetting to quasi-thermosetting with asphalt content, and all the REACs retain solid state and show elastic properties in the experimental temperature range. A Cole–Cole plot and Black diagram indicate that all the REACs are thermorheologically simple materials, and the master curves were constructed and well-fitted by the Generalized Logistic Sigmoidal models. This research provides a facile approach to tune the thermorheological properties of the REACs, and the cheaper quasi-thermosetting REAC facilitates their advanced applications.

  19. Affective and physiological correlates of the perception of unimodal and bimodal emotional stimuli.

    Science.gov (United States)

    Rosa, Pedro J; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Gamito, Pedro

    2017-08-01

    Despite the multisensory nature of perception, previous research on emotions has been focused on unimodal emotional cues with visual stimuli. To the best of our knowledge, there is no evidence on the extent to which incongruent emotional cues from visual and auditory sensory channels affect pupil size. To investigate the effects of audiovisual emotional information perception on the physiological and affective response, but also to determine the impact of mismatched cues in emotional perception on these physiological indexes. Pupil size, electrodermal activity and affective subjective responses were recorded while 30 participants were exposed to visual and auditory stimuli with varied emotional content in three different experimental conditions: pictures and sounds presented alone (unimodal), emotionally matched audio-visual stimuli (bimodal congruent) and emotionally mismatched audio-visual stimuli (bimodal incongruent). The data revealed no effect of emotional incongruence on physiological and affective responses. On the other hand, pupil size covaried with skin conductance response (SCR), but the subjective experience was partially dissociated from autonomic responses. Emotional stimuli are able to trigger physiological responses regardless of valence, sensory modality or level of emotional congruence.

  20. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235 U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klb f engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH 2 ) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions

  1. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    Science.gov (United States)

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  2. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties

    Directory of Open Access Journals (Sweden)

    Wenming TIAN

    2017-10-01

    Full Text Available The bimodal grain size metals show improved strength and ductility compared to traditional metals; however, their corrosion properties are unknown. In order to evaluate the corrosion properties of these metals, the bimodal grain size 7075 aviation aluminum alloys containing different ratios of coarse (100 μm in diameter and fine (10 μm in diameter grains were prepared by spark plasma sintering (SPS. The effects of grain size as well as the mixture degree of coarse and fine grains on general corrosion were estimated by immersion tests, electrochemical measurements and complementary techniques such as scanning electron microscope (SEM and transmission electron microscope-energy disperse spectroscopy (TEM-EDS. The results show that, compared to fine grains, the coarse grains have a faster dissolution rate in acidic NaCl solution due to the bigger size, higher alloying elements content and larger area fraction of second phases in them. In coarse grains, the hydrogen ions have a faster reduction rate on cathodic second phases, therefore promoting the corrosion propagation. The mixture of coarse and fine grains also increases the electrochemical heterogeneity of alloys in micro-scale, and thus the increased mixture degree of these grains in metal matrix accelerates the corrosion rate of alloys in acidic NaCl solution.

  3. Human fatigue expression recognition through image-based dynamic multi-information and bimodal deep learning

    Science.gov (United States)

    Zhao, Lei; Wang, Zengcai; Wang, Xiaojin; Qi, Yazhou; Liu, Qing; Zhang, Guoxin

    2016-09-01

    Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.

  4. Modality-specific effects on crosstalk in task switching: evidence from modality compatibility using bimodal stimulation.

    Science.gov (United States)

    Stephan, Denise Nadine; Koch, Iring

    2016-11-01

    The present study was aimed at examining modality-specific influences in task switching. To this end, participants switched either between modality compatible tasks (auditory-vocal and visual-manual) or incompatible spatial discrimination tasks (auditory-manual and visual-vocal). In addition, auditory and visual stimuli were presented simultaneously (i.e., bimodally) in each trial, so that selective attention was required to process the task-relevant stimulus. The inclusion of bimodal stimuli enabled us to assess congruence effects as a converging measure of increased between-task interference. The tasks followed a pre-instructed sequence of double alternations (AABB), so that no explicit task cues were required. The results show that switching between two modality incompatible tasks increases both switch costs and congruence effects compared to switching between two modality compatible tasks. The finding of increased congruence effects in modality incompatible tasks supports our explanation in terms of ideomotor "backward" linkages between anticipated response effects and the stimuli that called for this response in the first place. According to this generalized ideomotor idea, the modality match between response effects and stimuli would prime selection of a response in the compatible modality. This priming would cause increased difficulties to ignore the competing stimulus and hence increases the congruence effect. Moreover, performance would be hindered when switching between modality incompatible tasks and facilitated when switching between modality compatible tasks.

  5. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    Science.gov (United States)

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Multidisk neutron velocity selectors

    International Nuclear Information System (INIS)

    Hammouda, B.

    1992-01-01

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  7. Influence of age, spatial memory, and ocular fixation on localization of auditory, visual, and bimodal targets by human subjects.

    Science.gov (United States)

    Dobreva, Marina S; O'Neill, William E; Paige, Gary D

    2012-12-01

    A common complaint of the elderly is difficulty identifying and localizing auditory and visual sources, particularly in competing background noise. Spatial errors in the elderly may pose challenges and even threats to self and others during everyday activities, such as localizing sounds in a crowded room or driving in traffic. In this study, we investigated the influence of aging, spatial memory, and ocular fixation on the localization of auditory, visual, and combined auditory-visual (bimodal) targets. Head-restrained young and elderly subjects localized targets in a dark, echo-attenuated room using a manual laser pointer. Localization accuracy and precision (repeatability) were quantified for both ongoing and transient (remembered) targets at response delays up to 10 s. Because eye movements bias auditory spatial perception, localization was assessed under target fixation (eyes free, pointer guided by foveal vision) and central fixation (eyes fixed straight ahead, pointer guided by peripheral vision) conditions. Spatial localization across the frontal field in young adults demonstrated (1) horizontal overshoot and vertical undershoot for ongoing auditory targets under target fixation conditions, but near-ideal horizontal localization with central fixation; (2) accurate and precise localization of ongoing visual targets guided by foveal vision under target fixation that degraded when guided by peripheral vision during central fixation; (3) overestimation in horizontal central space (±10°) of remembered auditory, visual, and bimodal targets with increasing response delay. In comparison with young adults, elderly subjects showed (1) worse precision in most paradigms, especially when localizing with peripheral vision under central fixation; (2) greatly impaired vertical localization of auditory and bimodal targets; (3) increased horizontal overshoot in the central field for remembered visual and bimodal targets across response delays; (4) greater vulnerability to

  8. Pulsar velocity observations: Correlations, interpretations, and discussion

    International Nuclear Information System (INIS)

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  9. The ascent of magma as determined by seismic tomography. The visualization of velocity structure and magma distribution from upper mantle to upper crust in Hakone volcano, northern Izu peninsula

    International Nuclear Information System (INIS)

    Abe, Shintaro; Aoyagi, Yasuhira; Toshida, Kiyoshi; Oda, Yoshiya

    2003-01-01

    Three-dimensional seismic reflection and refraction survey was carried out in Hakone volcanic area, northern part of Izu peninsula. The region is one of the most famous hot spring areas in Japan. Hakone volcano morphologically resembles one big caldera. However, the depression of the volcano consists of several small calderas which has been formed by multiple eruptions. Although sprouts of fumarolic gas and steam are identified in a few areas of the volcano, there is no historical record of volcanic eruption. Main purpose of our study is to determine the 3-dimensional deep velocity structure around the volcano using the seismic tomography processing. We deployed 44 sets of temporal offline seismic stations and a line of multi-channels seismic reflection survey cable. The seismic waves generated by some natural earthquakes and 14 dynamite explosions were observed, and their data were processed for tomography. The observation coverage was 20 km in diameter. Our result demonstrates the usefulness of high dense seismic observation in identifying and locating low velocity zones beneath the particular area. According to our tomography, low velocity zone was identified only in surface layer of the old caldera part of the volcano. We could not identify any remarkable reflector in deeper crust, as the result of wide-angle reflection survey using explosive shots. Moreover, we could not identify any other low velocity zone as far as 32 km depth by incorporating the results of other study. In other words, we think that magma is no longer supplied to Hakone volcanic area. (author)

  10. The Next Generation Fornax Survey (NGFS). IV. Mass and Age Bimodality of Nuclear Clusters in the Fornax Core Region

    Science.gov (United States)

    Ordenes-Briceño, Yasna; Puzia, Thomas H.; Eigenthaler, Paul; Taylor, Matthew A.; Muñoz, Roberto P.; Zhang, Hongxin; Alamo-Martínez, Karla; Ribbeck, Karen X.; Grebel, Eva K.; Ángel, Simón; Côté, Patrick; Ferrarese, Laura; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan W.; Rong, Yu; Sánchez-Janssen, Ruben

    2018-06-01

    We present the analysis of 61 nucleated dwarf galaxies in the central regions (≲R vir/4) of the Fornax galaxy cluster. The galaxies and their nuclei are studied as part of the Next Generation Fornax Survey using optical imaging obtained with the Dark Energy Camera mounted at Blanco/Cerro Tololo Inter-American Observatory and near-infrared data obtained with VIRCam at VISTA/ESO. We decompose the nucleated dwarfs in nucleus and spheroid, after subtracting the surface brightness profile of the spheroid component and studying the nucleus using point source photometry. In general, nuclei are consistent with colors of confirmed metal-poor globular clusters, but with significantly smaller dispersion than other confirmed compact stellar systems in Fornax. We find a bimodal nucleus mass distribution with peaks located at {log}({{ \\mathcal M }}* /{M}ȯ )≃ 5.4 and ∼6.3. These two nucleus subpopulations have different stellar population properties: the more massive nuclei are older than ∼2 Gyr and have metal-poor stellar populations (Z ≤ 0.02 Z ⊙), while the less massive nuclei are younger than ∼2 Gyr with metallicities in the range 0.02 < Z/Z ⊙ ≤ 1. We find that the nucleus mass ({{ \\mathcal M }}nuc}) versus galaxy mass ({{ \\mathcal M }}gal}) relation becomes shallower for less massive galaxies starting around 108 M ⊙, and the mass ratio {η }n={{ \\mathcal M }}nuc}/{{ \\mathcal M }}gal} shows a clear anticorrelation with {{ \\mathcal M }}gal} for the lowest masses, reaching 10%. We test current theoretical models of nuclear cluster formation and find that they cannot fully reproduce the observed trends. A likely mixture of in situ star formation and star cluster mergers seems to be acting during nucleus growth over cosmic time.

  11. Bimodal Long-lasting Components in Short Gamma-Ray Bursts: Promising Electromagnetic Counterparts to Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota; Sakamoto, Takanori [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Ioka, Kunihito, E-mail: kisaka@phys.aoyama.ac.jp, E-mail: tsakamoto@phys.aoyama.ac.jp, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-09-10

    Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift /BAT and XRT data. The light curves are found to consist of two distinct components at >5 σ with bimodal distributions of luminosity and duration, i.e., extended (with a timescale of ≲10{sup 3} s) and plateau emission (with a timescale of ≳10{sup 3} s), which are likely the central engine activities, but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has ∼0.01–1 times this energy. Half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET /HXM, INTEGRAL /SPI-ACS, Fermi /GBM, MAXI /GSC, Swift /BAT, XRT, the future ISS-Lobster /WFI, Einstein Probe /WXT, and eROSITA .

  12. Slab break-off triggered lithosphere - asthenosphere interaction at a convergent margin: The Neoproterozoic bimodal magmatism in NW India

    Science.gov (United States)

    Wang, Wei; Pandit, Manoj K.; Zhao, Jun-Hong; Chen, Wei-Terry; Zheng, Jian-Ping

    2018-01-01

    The Neoproterozoic Malani Igneous Suite (MIS) is described as the largest felsic igneous province in India. The linearly distributed Sindreth and Punagarh basins located along eastern margin of this province represent the only site of bimodal volcanism and associated clastic sediments within the MIS. The in-situ zircon U-Pb dating by LA-ICPMS reveals that the Sindreth rhyolites were erupted at 769-762 Ma. Basaltic rocks from both the basins show distinct geochemical signatures that suggest an E-MORB source for Punagarh basalts (low Ti/V ratios of 40.9-28.2) and an OIB source (high Ti/V ratios of 285-47.6) for Sindreth basalts. In the absence of any evidence of notable crustal contamination, these features indicate heterogeneous mantle sources for them. The low (La/Yb)CN (9.34-2.10) and Sm/Yb (2.88-1.08) ratios of Punagarh basalts suggest a spinel facies, relatively shallow level mantle source as compared to a deeper source for Sindreth basalts, as suggested by high (La/Yb)CN (7.24-5.24) and Sm/Yb (2.79-2.13) ratios. Decompression melting of an upwelling sub-slab asthenosphere through slab window seems to be the most plausible mechanism to explain the geochemical characteristics. Besides, the associated felsic volcanics show A2-type granite signatures, such as high Y/Nb (5.97-1.55) and Yb/Ta (9.36-2.57) ratios, consistent with magma derived from continental crust that has been through a cycle of continent-continent collision or an island-arc setting. A localized extension within an overall convergent scenario is interpreted for Sindreth and Punagarh volcanics. This general convergent setting is consistent with the previously proposed Andean-type continental margin for NW Indian block, the Seychelles and Madagascar, all of which lay either at the periphery of Rodinia supercontinent or slightly off the Supercontinent.

  13. Superthermal photon bunching in terms of simple probability distributions

    Science.gov (United States)

    Lettau, T.; Leymann, H. A. M.; Melcher, B.; Wiersig, J.

    2018-05-01

    We analyze the second-order photon autocorrelation function g(2 ) with respect to the photon probability distribution and discuss the generic features of a distribution that results in superthermal photon bunching [g(2 )(0 ) >2 ]. Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching.

  14. Authentically radiolabelled Mn(II) complexes as bimodal PET/MR tracers

    Energy Technology Data Exchange (ETDEWEB)

    Vanasschen, Christian; Brandt, Marie; Ermert, Johannes [Institute of Neuroscience and Medicine, INM-5 - Nuclear Chemistry, Forschungszentrum Jülich (Germany); Neumaier, Bernd [Institute for Radiochemistry and Experimental Molecular Imaging, Medical Clinics, University of Cologne (Germany); Coenen, Heinz H [Institute of Neuroscience and Medicine, INM-5 - Nuclear Chemistry, Forschungszentrum Jülich (Germany)

    2015-05-18

    The development of small molecule bimodal PET/MR tracers is mainly hampered by the lack of dedicated preparation methods. Authentic radiolabelling of MR contrast agents ensures easy access to such probes: a ligand, chelating a paramagnetic metal ion (e.g. Mn2+) and the corresponding PET isotope (e.g. 52gMn), leads to a “cocktail mixture” where both imaging reporters exhibit the same pharmacokinetics. Paramagnetic [55Mn(CDTA)]2- shows an excellent compromise between thermodynamic stability, kinetic inertness and MR contrast enhancement. Therefore, the aim of this study was to develop new PET/MR tracers by labelling CDTA ligands with paramagnetic manganese and the β+-emitter 52gMn. N.c.a. 52gMn (t1/2: 5.6 d; Eβ+: 575.8 keV (29.6%)) was produced by proton irradiation of a natCr target followed by cation-exchange chromatography. CDTA was radiolabelled with n.c.a. 52gMn2+ in NaOAc buffer (pH 6) at RT. The complex was purified by RP-HPLC and its stability tested in PBS and blood plasma at 37°C. The redox stability was assessed by monitoring the T1 relaxation (20 MHz) in HEPES buffer (pH 7.4). A functionalized CDTA ligand was synthesized in 5 steps. [52gMn(CDTA)]2- was quantitatively formed within 30 min at RT. The complex was stable for at least 6 days in PBS and blood plasma at 37°C and no oxidation occurred within 7 months storage at RT. Labelling CDTA with an isotopic 52g/55Mn2+ mixture led to the corresponding bimodal PET/MR tracer. Furthermore, a functionalized CDTA ligand was synthesized with an overall yield of 18-25%. [52g/55Mn(CDTA)]2-, the first manganese-based bimodal PET/MR tracer prepared, exhibits excellent stability towards decomplexation and oxidation. This makes the functionalized CDTA ligand highly suitable for designing PET/MR tracers with high relaxivity or targeting properties.

  15. Authentically radiolabelled Mn(II) complexes as bimodal PET/MR tracers

    International Nuclear Information System (INIS)

    Vanasschen, Christian; Brandt, Marie; Ermert, Johannes; Neumaier, Bernd; Coenen, Heinz H

    2015-01-01

    The development of small molecule bimodal PET/MR tracers is mainly hampered by the lack of dedicated preparation methods. Authentic radiolabelling of MR contrast agents ensures easy access to such probes: a ligand, chelating a paramagnetic metal ion (e.g. Mn2+) and the corresponding PET isotope (e.g. 52gMn), leads to a “cocktail mixture” where both imaging reporters exhibit the same pharmacokinetics. Paramagnetic [55Mn(CDTA)]2- shows an excellent compromise between thermodynamic stability, kinetic inertness and MR contrast enhancement. Therefore, the aim of this study was to develop new PET/MR tracers by labelling CDTA ligands with paramagnetic manganese and the β+-emitter 52gMn. N.c.a. 52gMn (t1/2: 5.6 d; Eβ+: 575.8 keV (29.6%)) was produced by proton irradiation of a natCr target followed by cation-exchange chromatography. CDTA was radiolabelled with n.c.a. 52gMn2+ in NaOAc buffer (pH 6) at RT. The complex was purified by RP-HPLC and its stability tested in PBS and blood plasma at 37°C. The redox stability was assessed by monitoring the T1 relaxation (20 MHz) in HEPES buffer (pH 7.4). A functionalized CDTA ligand was synthesized in 5 steps. [52gMn(CDTA)]2- was quantitatively formed within 30 min at RT. The complex was stable for at least 6 days in PBS and blood plasma at 37°C and no oxidation occurred within 7 months storage at RT. Labelling CDTA with an isotopic 52g/55Mn2+ mixture led to the corresponding bimodal PET/MR tracer. Furthermore, a functionalized CDTA ligand was synthesized with an overall yield of 18-25%. [52g/55Mn(CDTA)]2-, the first manganese-based bimodal PET/MR tracer prepared, exhibits excellent stability towards decomplexation and oxidation. This makes the functionalized CDTA ligand highly suitable for designing PET/MR tracers with high relaxivity or targeting properties.

  16. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    Science.gov (United States)

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  17. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    Science.gov (United States)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  18. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    International Nuclear Information System (INIS)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-01-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection

  19. FUSION DECISION FOR A BIMODAL BIOMETRIC VERIFICATION SYSTEM USING SUPPORT VECTOR MACHINE AND ITS VARIATIONS

    Directory of Open Access Journals (Sweden)

    A. Teoh

    2017-12-01

    Full Text Available This paw presents fusion detection technique comparisons based on support vector machine and its variations for a bimodal biometric verification system that makes use of face images and speech utterances. The system is essentially constructed by a face expert, a speech expert and a fusion decision module. Each individual expert has been optimized to operate in automatic mode and designed for security access application. Fusion decision schemes considered are linear, weighted Support Vector Machine (SVM and linear SVM with quadratic transformation. The conditions tested include the balanced and unbalanced conditions between the two experts in order to obtain the optimum fusion module from  these techniques best suited to the target application.

  20. Bimodal bilingualism as multisensory training?: Evidence for improved audiovisual speech perception after sign language exposure.

    Science.gov (United States)

    Williams, Joshua T; Darcy, Isabelle; Newman, Sharlene D

    2016-02-15

    The aim of the present study was to characterize effects of learning a sign language on the processing of a spoken language. Specifically, audiovisual phoneme comprehension was assessed before and after 13 weeks of sign language exposure. L2 ASL learners performed this task in the fMRI scanner. Results indicated that L2 American Sign Language (ASL) learners' behavioral classification of the speech sounds improved with time compared to hearing nonsigners. Results indicated increased activation in the supramarginal gyrus (SMG) after sign language exposure, which suggests concomitant increased phonological processing of speech. A multiple regression analysis indicated that learner's rating on co-sign speech use and lipreading ability was correlated with SMG activation. This pattern of results indicates that the increased use of mouthing and possibly lipreading during sign language acquisition may concurrently improve audiovisual speech processing in budding hearing bimodal bilinguals. Copyright © 2015 Elsevier B.V. All rights reserved.