Irreducible complexity of iterated symmetric bimodal maps
Directory of Open Access Journals (Sweden)
J. P. Lampreia
2005-01-01
Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.
SYMMETRICAL AND ASYMMETRIC TERNARY FISSION OF HOT NUCLEI
SIWEKWILCZYNSKA, K; WILCZYNSKI, J; LEEGTE, HKW; SIEMSSEN, RH; WILSCHUT, HW; GROTOWSKI, K; PANASIEWICZ, A; SOSIN, Z; WIELOCH, A
1993-01-01
Emission of a particles accompanying fusion-fission processes in the Ar-40 + Th-232 reaction at E(Ar-40) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measur
De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.
1980-10-01
Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.
From symmetric cold fission fragment mass distributions to extremely asymmetric alpha decay
Poenaru, D. N.; Ivascu, M.; Maruhn*, J. A.; Greiner*, W.
1987-12-01
The analytical superasymmetric fission model, successful in the study of extremely asymmetric decay modes like α-decay and heavy ion radioactivities, is applied to cold fission phenomena. The three groups of processes are described in a unifield manner, showing that cold fission could be considered heavy cluster emission. For 234U all groups have been detected. The highest symmetry of the gragment mass distributions should be observed for the neutron rich nucleus 264Fm, leading to doubly magic products 132Sn. The most probable light fragments from cold fission of 234,236U, 239Np and 240Pu are 100Zr, 104,106,108Mo respectively, in good agreement with experimental data.
From symmetric cold fission fragment mass distributions to extremely asymmetric alpha decay
Energy Technology Data Exchange (ETDEWEB)
Poenaru, D.N.; Ivascu, M.; Maruhn, J.A.; Greiner, W.
1987-12-10
The analytical superasymmetric fission model, successful in the study of extremely asymmetric decay modes like ..cap alpha..-decay and heavy ion radioactivities, is applied to cold fission phenomena. The three groups of processes are described in a unifield manner, showing that cold fission could be considered heavy cluster emission. For /sup 234/U all groups have been detected. The highest symmetry of the gragment mass distributions should be observed for the neutron rich nucleus /sup 264/Fm, leading to doubly magic products /sup 132/Sn. The most probable light fragments from cold fission of /sup 234,236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104,106,108/Mo respectively, in good agreement with experimental data.
Fission properties for r-process nuclei
Erler, J; Loens, H P; Martínez-Pinedo, G; Reinhard, P -G
2011-01-01
We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. The computation of fission lifetimes takes care of the crucial ingredients of the large-amplitude collective dynamics along the fission path, as self-consistent collective mass and proper quantum corrections. We discuss the different topologies of fission landscapes which occur in the realm of SHE (symmetric versus asymmetric fission, regions of triaxial fission, bi-modal fission, and the impact of asymmetric ground states). The explored region is extended deep into the regime of very neutron-rich isotopes as they are expec...
Energy Technology Data Exchange (ETDEWEB)
Herbach, C.-M. E-mail: herbach@hmi.de; Hilscher, D.; Tishchenko, V.G.; Gippner, P.; Kamanin, D.V.; Oertzen, W. von; Ortlepp, H.-G.; Penionzhkevich, Yu.E.; Pyatkov, Yu.V.; Renz, G.; Schilling, K.D.; Strekalovsky, O.V.; Wagner, W.; Zhuchko, V.E
2002-12-30
Ternary fission of heavy hot composite systems with excitation energies of 1.5-2.5 MeV/amu has been studied in the reactions of {sup 14}N(53 A MeV) with {sup 197}Au and {sup 232}Th. The ternary yields have been explored as a function of the charge Z{sub L} of the lightest fragment: while Z{sub L} increases from 6 to 25, the cross sections decrease from 5 to 0.08 mb for N+Au and from 15 to 0.8 mb for N+Th. The velocity vector v{yields}{sub L} of the lightest fragment has been investigated in the rest frame of the other two heavier fragments. Two different components are observed: (i) an isotropic one with values of v{sub L} corresponding to the Coulomb repulsion from the combined heavier fragments before separation and, (ii) an anisotropic contribution with the lightest fragment emitted with lower v{sub L} perpendicular to the scission axis of the two heavier fragments. The latter component is distinguished from the isotropic one by an enhanced fraction of mass-symmetric ternary events and by up to 50 MeV lower total kinetic fragment energies. These features are indicative of a collinear stretched scission configuration, where the lightest fragment is positioned between the two heavier ones.
Fission modes of mercury isotopes
Warda, M; Nazarewicz, W
2012-01-01
Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asymmetric fission in $^{180}$Hg [1] have stimulated renewed interest in the mechanism of fission in heavy nuclei. Here we study fission modes and fusion valleys in $^{180}$Hg and $^{198}$Hg using the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. We show that the observed transition from asymmetric fission in $^{180}$Hg towards more symmetric distribution of fission fragments in $^{198}$Hg can be explained in terms of competing fission modes of different geometries that are governed by shell effects in pre-scission configurations. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.
Isoscaling of the Fission Fragments with Langevin Equation
Institute of Scientific and Technical Information of China (English)
WANG Kun; TIAN Wen-Dong; ZHONG Chen; ZHOU Xing-Fei; MA Yu-Gang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; FANG De-Qing; GUO Wei; MA Guo-Liang; SHEN Wen-Qing
2005-01-01
@@ The Langevin equation is used to simulate the fission process of 112Sn + 112Sn and 116Sn + 116Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. The isoscaling behaviour has been observed from the analysis of fission fragments of both the reactions, and the isoscaling parameter α seems to be sensitive to the width of fission probability and the beam energy.
Energy Technology Data Exchange (ETDEWEB)
Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-07-01
Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)
Hidden systematics of fission channels
Directory of Open Access Journals (Sweden)
Schmidt Karl-Heinz
2013-12-01
Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy
Experimental approach to fission process of actinides
Energy Technology Data Exchange (ETDEWEB)
Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science
1997-07-01
From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)
Detecting bimodality in astronomical datasets
Ashman, Keith A.; Bird, Christina M.; Zepf, Stephen E.
1994-01-01
We discuss statistical techniques for detecting and quantifying bimodality in astronomical datasets. We concentrate on the KMM algorithm, which estimates the statistical significance of bimodality in such datasets and objectively partitions data into subpopulations. By simulating bimodal distributions with a range of properties we investigate the sensitivity of KMM to datasets with varying characteristics. Our results facilitate the planning of optimal observing strategies for systems where bimodality is suspected. Mixture-modeling algorithms similar to the KMM algorithm have been used in previous studies to partition the stellar population of the Milky Way into subsystems. We illustrate the broad applicability of KMM by analyzing published data on globular cluster metallicity distributions, velocity distributions of galaxies in clusters, and burst durations of gamma-ray sources. FORTRAN code for the KMM algorithm and directions for its use are available from the authors upon request.
Indian Academy of Sciences (India)
M Balasubramaniam; K R Vijayaraghavan; C Karthikraj
2015-09-01
We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.
Spontaneous fission of the heaviest elements
Energy Technology Data Exchange (ETDEWEB)
Hoffman, D.C.
1989-04-01
Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.
Bloch, F.; Staub, H.
1943-08-18
Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951
DEFF Research Database (Denmark)
Christiansen, Steen Ledet
; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...
Vasiljević, Gorazd
2014-01-01
This BSc thesis deals with certain topics from graph theory. When we talk about studying graphs, we usually mean studying their structure and their structural properties. By doing that, we are often interested in automorphisms of a graph (symmetries), which are permutations of its vertex set, preserving adjacency. There exist graphs, which are symmetric enough, so that automorhism group acts transitively on their vertex set. This means that for any pair of vertices of the graph, there is an a...
Bimodal Galaxies and Bimodality in Globular Cluster Systems
Forbes, D A
2005-01-01
Various galaxy properties are not continuous over a large range in mass, but rather reveal a remarkable transition or `bimodality' at a stellar mass of 3 x 10^{10} Mo. These properties include colors, stellar populations, Xray emission and mass-to-light ratios. This behavior has been interpreted as the transition from hot to cold flows by Dekel & Birnboim (2005). Here we explore whether globular cluster (GC) systems also reveal a bimodal nature with regard to this critical mass scale. Globular clusters probe star formation at early epochs in the Universe and survive subsequent galaxy mergers and accretions. We use new data from the ACS Virgo Cluster Survey (Peng etal 2005), which provides a homogeneous sample of the GC systems around one hundred Virgo early-type galaxies covering a range of five hundred in galaxy mass. Their classification of the GC color distributions is taken to examine a key quantity -- the number of GCs per unit galaxy luminosity. Below the critical mass, this quantity (called the GC ...
Solitary Dunes under Bimodal Winds
Reffet, Erwan; Courrech du Pont, S.; Hersen, P.; Fulchignoni, M.; Douady, S.
2009-01-01
The high resolution and coverage achieved on Mars' surface have detailed lots of sand dunes of various types [1]. Many are reported as barchan or barchanoid dunes and present a diversity of shape ascribed to compound wind regimes, collisions or cementation. This diversity reminds us that aeolian structures are fairly complex. Although dunes have been extensively observed and documented, the conditions of their formation and evolution are still difficult to study because of the long time required for their development and their large length-scale. We developed a laboratory approach using underwater experiments to study the morphology of dunes. This method has been used successfully to reproduce various types of dunes downsized to a few centimeters. Barchan dunes are formed using a unidirectional wind-equivalent regime on a pile of ceramic sand-sized grains [2]. Changing the wind regime to a more complex one reveals other structures. In the case of multiple wind directions star dunes can be observed. A bimodal wind regime, e.g. switching between two distinct directions, over an homogeneous layer of sand leads to transverse, longitudinal or complex compound sandbeds depending on the angle between these wind directions [3]. Here, we apply bimodal wind regimes to isolated patches of sand in order to observe the variation of morphology of the resulting dunes. We present the barchanoid dunes obtained for various angles of bimodal wind and show the transition to the "chestnut” dunes type. We also investigate sudden variations in wind direction over a barchan dune. Therefore, we illustrate how the (not so) simple barchan shape can be affected by a more complex wind regime and give a new insight in understanding dunes on Mars. [1] http://www.mars-dunes.org/ . [2] Hersen et al. PRL, 2003. [3] Reffet et al. pldu.work 2008.
Dune formation under bimodal winds.
Parteli, Eric J R; Durán, Orencio; Tsoar, Haim; Schwämmle, Veit; Herrmann, Hans J
2009-12-29
The study of dune morphology represents a valuable tool in the investigation of planetary wind systems--the primary factor controlling the dune shape is the wind directionality. However, our understanding of dune formation is still limited to the simplest situation of unidirectional winds: There is no model that solves the equations of sand transport under the most common situation of seasonally varying wind directions. Here we present the calculation of sand transport under bimodal winds using a dune model that is extended to account for more than one wind direction. Our calculations show that dunes align longitudinally to the resultant wind trend if the angle(w) between the wind directions is larger than 90 degrees. Under high sand availability, linear seif dunes are obtained, the intriguing meandering shape of which is found to be controlled by the dune height and by the time the wind lasts at each one of the two wind directions. Unusual dune shapes including the "wedge dunes" observed on Mars appear within a wide spectrum of bimodal dune morphologies under low sand availability.
BSA adsorption on bimodal PEO brushes
Bosker, WTE; Iakovlev, PA; Norde, W; Stuart, Martien A. Cohen
2005-01-01
BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N = 770) and short (N = 48) PEO chains and were prepared on PS surfaces, applying mixtures of PS29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodg
BSA adsorption on bimodal PEO brushes
Bosker, W.T.E.; Iakovlev, P.A.; Norde, W.; Cohen Stuart, M.A.
2005-01-01
BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS 29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodgett
Pomorski, Krzysztof; Ivanyuk, Fedir A
2016-01-01
The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.
Binary scission configurations in fission of light actinides
Energy Technology Data Exchange (ETDEWEB)
Ohtsuki, Tsutomu [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Nagame, Y.; Nishinaka, I.; Tsukada, K.; Ikezoe, H.; Tanikawa, M.; Zhao, Y.L.; Sueki, K.; Nakahara, H.
1997-07-01
Mass and kinetic energy distributions of fission fragments have been accurately measured by a double velocity time-of-flight technique in the 13 MeV proton-induced fissions of {sup 232}Th and {sup 238}U. A binary structure is observed in total kinetic energy distributions in the fragments with mass number around A=130 for both the fissions, indicating that there are at least two kinds of scission configurations. A correlation between the scission configurations and mass yield distributions reveals that elongated scission configurations are associated with the symmetric mass distribution and compact scission configurations with the asymmetric mass distribution. (author)
Bimodal Nuclear Thermal Rocket Analysis Developments
Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark
2014-01-01
Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.
Thermal fission rates with temperature dependent fission barriers
Zhu, Yi
2016-01-01
\\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...
Language choice in bimodal bilingual development
Directory of Open Access Journals (Sweden)
Diane eLillo-Martin
2014-10-01
Full Text Available Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children.Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending – expressions in both speech and sign simultaneously – an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children’s language choices.This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult.Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant
Periodicity in bimodal atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Lai, Chia-Yun; Santos, Sergio, E-mail: santos-en@yahoo.com; Chiesa, Matteo [Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates); Barcons, Victor [Departament de Disseny i Programació de Sistemes Electrònics, UPC - Universitat Politècnica de Catalunya, Av. Bases, 61, 08242 Manresa (Barcelona) (Spain)
2015-07-28
Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.
Fission Measurements with Dance
Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.
2008-08-01
Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.
Symmetric Powers of Symmetric Bilinear Forms
Institute of Scientific and Technical Information of China (English)
Se(a)n McGarraghy
2005-01-01
We study symmetric powers of classes of symmetric bilinear forms in the Witt-Grothendieck ring of a field of characteristic not equal to 2, and derive their basic properties and compute their classical invariants. We relate these to earlier results on exterior powers of such forms.
Fission half-lives of super-heavy nuclei in a microscopic approach
Warda, M
2012-01-01
A systematic study of 160 heavy and super-heavy nuclei is performed in the Hartree-Fock-Bogoliubov approach with the finite range and density dependent Gogny force with the D1S parameter set. We show calculations in several approximations: with axially symmetric and reflexion symmetric wave functions, with axially symmetric and non-reflexion symmetric wave functions and finally some representative examples with triaxial wave functions are also discussed. Relevant properties of the ground state and along the fission path are thoroughly analyzed. Fission barriers, Q$_\\alpha$-factors and lifetimes with respect to fission and $\\alpha$-decay as well as other observables are discussed. Larger configuration spaces and more general HFB wave functions as compared to previous studies provide a very good agreement with the experimental data.
Deaf Children's Bimodal Bilingualism and Education
Swanwick, Ruth
2016-01-01
This paper provides an overview of the research into deaf children's bilingualism and bilingual education through a synthesis of studies published over the last 15 years. This review brings together the linguistic and pedagogical work on bimodal bilingualism to inform educational practice. The first section of the review provides a synthesis of…
Bimodal Networks as Candidates for Electroactive Polymers
DEFF Research Database (Denmark)
Bahrt, Frederikke; Daugaard, Anders Egede; Bejenariu, Anca Gabriela;
An alternative network formulation method was adopted in order to obtain a different type of silicone based elastomeric systems - the so-called bimodal networks - using two vinyl-terminated polydimethyl siloxanes (PDMS) of different molecular weight, a labelled crosslinker (3 or 4-functional), an...
Jiang, Haiyong
2016-04-11
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong
2016-02-26
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Chambler, A F; Chapman-Sheath, P J; Pearse, M F; Hollingdale, J
1997-10-01
Chronic recurrent multifocal osteomyelitis is often confused with symmetrical Brodie's abscess as it has a similar pathogenesis. We report an otherwise healthy 17-year-old boy presenting with a true symmetrical Brodie's abscess. We conclude that a symmetrical Brodie's abscess presenting in an otherwise healthy patient is a separate clinical condition with a different management protocol.
Energy Technology Data Exchange (ETDEWEB)
Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-26
A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.
Synthesis and Characterization of Bimodal Mesoporous Silica
Institute of Scientific and Technical Information of China (English)
ZHANG Xiaofang; GUO Cuili; WANG Xiaoli; WU Yuanyuan
2012-01-01
Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large mesopores.The structure of synthesized samples were characterized by Fourier transform infrared (FT-IR) spectroscopy,X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 adsorption-desorption measurements.The experimental results show that bimodal mesoporous silica consists of small mesopores of about 3 nm and large mesopores of about 45 nm.The small mesopores which were formed on the external surface and pore walls of the silica gel had similar characters with those of MCM-41,while large mesopores were inherited from parent silica gel material.The pore size distribution of the synthesized silica can be adjusted by changing the relative content of TEOS and silica gel or the feeding sequence of silica gel and NH4OH.
Bimodal representation of the tropical intraseasonal oscillation
Energy Technology Data Exchange (ETDEWEB)
Kikuchi, Kazuyoshi [University of Hawaii, International Pacific Research Center, School of Ocean and Earth Science and Technology, Manoa Honolulu, HI (United States); Wang, Bin [University of Hawaii, Department of Meteorology and International Pacific Research Center, School of Ocean and Earth Science and Technology, Manoa Honolulu, HI (United States); Kajikawa, Yoshiyuki [Nagoya University, Hydrospheric Atmospheric Research Center, Nagoya (Japan)
2012-05-15
The tropical intraseasonal oscillation (ISO) shows distinct variability centers and propagation patterns between boreal winter and summer. To accurately represent the state of the ISO at any particular time of a year, a bimodal ISO index was developed. It consists of Madden-Julian Oscillation (MJO) mode with predominant eastward propagation along the equator and Boreal Summer ISO (BSISO) mode with prominent northward propagation and large variability in off-equatorial monsoon trough regions. The spatial-temporal patterns of the MJO and BSISO modes are identified with the extended empirical orthogonal function analysis of 31 years (1979-2009) OLR data for the December-February and June-August period, respectively. The dominant mode of the ISO at any given time can be judged by the proportions of the OLR anomalies projected onto the two modes. The bimodal ISO index provides objective and quantitative measures on the annual and interannual variations of the predominant ISO modes. It is shown that from December to April the MJO mode dominates while from June to October the BSISO mode dominates. May and November are transitional months when the predominant mode changes from one to the other. It is also shown that the fractional variance reconstructed based on the bimodal index is significantly higher than the counterpart reconstructed based on the Wheeler and Hendon's index. The bimodal ISO index provides a reliable real time monitoring skill, too. The method and results provide critical information in assessing models' performance to reproduce the ISO and developing further research on predictability of the ISO and are also useful for a variety of scientific and practical purposes. (orig.)
The Efficiency of the Bimodal System Transportation
Directory of Open Access Journals (Sweden)
Nada Štrumberger
2012-10-01
Full Text Available The development of fast railway results in an increased applicationof Trailer Train bimodal system transportation. Thetraffic costs are multiply reduced, particularly the variablecosts. On the other hand the environmental pollution from exhaustgases is also reduced. Therefore, by the year 2010 cargotransport should be preponderant~v used which would be characterisedby fast electric trains producing less noise, at lowercosts and with clean environment.
Possible Mechanisms of Ternary Fission in the 197Au+197Au System at 15 A MeV
Institute of Scientific and Technical Information of China (English)
TIAN Jun-Long; LI Xian; WU Xi-Zhen; LI Zhu-Xia; YAN Shi-Wei
2009-01-01
Ternary fission in 197Au+197Au collisions at 15A MeV is investigated by using the improved quantum molecular dynamical (ImQMD) model.The experimental mass distributions for each of the three fragments are reproduced for the first time without any freely adjusting parameters.The mechanisms of ternary fission in central and semicentral collisions are dynamically studied.In direct prolate ternary fission,two necks are found to be formed almost simultaneously and rupture sequentially in a very short time interval.Direct oblate ternary fission is a very rare fission event,in which three necks are formed and rupture simultaneously,forming three equally sized fragments along space-symmetric directions in the reaction plane.In sequential ternary fission a binary division is followed by another binary fission event after hundreds of fm/c.
Thermal fission rates with temperature dependent fission barriers
Zhu, Yi; Pei, J. C.
2016-08-01
Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.
Canteaut, Anne; Videau, Marion
2005-01-01
http://www.ieee.org/; We present an extensive study of symmetric Boolean functions, especially of their cryptographic properties. Our main result establishes the link between the periodicity of the simplified value vector of a symmetric Boolean function and its degree. Besides the reduction of the amount of memory required for representing a symmetric function, this property has some consequences from a cryptographic point of view. For instance, it leads to a new general bound on the order of...
DÍaz, R.; Rivas, M.
2010-01-01
In order to study Boolean algebras in the category of vector spaces we introduce a prop whose algebras in set are Boolean algebras. A probabilistic logical interpretation for linear Boolean algebras is provided. An advantage of defining Boolean algebras in the linear category is that we are able to study its symmetric powers. We give explicit formulae for products in symmetric and cyclic Boolean algebras of various dimensions and formulate symmetric forms of the inclusion-exclusion principle.
Exciton Correlations in Intramolecular Singlet Fission.
Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Appavoo, Kannatassen; Steigerwald, Michael L; Campos, Luis M; Sfeir, Matthew Y
2016-06-15
We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.
Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona
2016-09-01
In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.
Osborne, Andrew G
2016-01-01
Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...
Fission Product Library and Resource
Energy Technology Data Exchange (ETDEWEB)
Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-29
Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.
Fission modelling with FIFRELIN
Energy Technology Data Exchange (ETDEWEB)
Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)
2015-12-15
The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for
Fission modelling with FIFRELIN
Litaize, Olivier; Serot, Olivier; Berge, Léonie
2015-12-01
The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the
Fission of super-heavy nuclei explored with Skyrme forces
Schindzielorz, N; Klüpfel, P; Reinhard, P -G; Hager, G
2010-01-01
We present a large scale survey of life-times for spontaneous fission in the regime of super-heavy elements (SHE), i.e. nuclei with Z=104-122. This is done on the basis of the Skyrme-Hartree-Fock model. The axially symmetric fission path is computed using a quadrupole constraint. Self-consistent cranking is used for the collective masses and associated quantum corrections. The actual tunneling probability is estimated by the WKB approximation. Three typical Skyrme forces are used to explore the sensitivity of the results. Benchmarks in the regime Z=104-108 show an acceptable agreement. The general systematics reflects nicely the islands of shell stabilization and the crossover from $\\alpha$-decay to fission for the decay chains from the region of Z/N=118/176.
β -delayed fission and α decay of 196At
Truesdale, V. L.; Andreyev, A. N.; Ghys, L.; Huyse, M.; Van Duppen, P.; Sels, S.; Andel, B.; Antalic, S.; Barzakh, A.; Capponi, L.; Cocolios, T. E.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Heßberger, F. P.; Kalaninová, Z.; Köster, U.; Lane, J. F. W.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Mitsuoka, S.; Nagame, Y.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rothe, S.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.
2016-09-01
A nuclear-decay spectroscopy study of the neutron-deficient isotope 196At is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure α decay of 196At allowed the low-energy excited states in the daughter nucleus 192Bi to be investigated. A β -delayed fission study of 196At was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope 196Po (populated by β decay of 196At) was deduced based on the measured fission-fragment energies. A β DF probability Pβ DF(196At) =9 (1 ) ×10-5 was determined.
Inverse Symmetric Inflationary Attractors
Odintsov, S D
2016-01-01
We present a class of inflationary potentials which are invariant under a special symmetry, which depends on the parameters of the models. As we show, in certain limiting cases, the inverse symmetric potentials are qualitatively similar to the $\\alpha$-attractors models, since the resulting observational indices are identical. However, there are some quantitative differences which we discuss in some detail. As we show, some inverse symmetric models always yield results compatible with observations, but this strongly depends on the asymptotic form of the potential at large $e$-folding numbers. In fact when the limiting functional form is identical to the one corresponding to the $\\alpha$-attractors models, the compatibility with the observations is guaranteed. Also we find the relation of the inverse symmetric models with the Starobinsky model and we highlight the differences. In addition, an alternative inverse symmetric model is studied and as we show, not all the inverse symmetric models are viable. Moreove...
Symmetric cryptographic protocols
Ramkumar, Mahalingam
2014-01-01
This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees. • Provides detailed coverage of symmetric key protocols • Describes various applications of symmetric building blocks • Includes strategies for constructing compact and efficient digests of dynamic databases
Discoveries of isotopes by fission
Indian Academy of Sciences (India)
M Thoennessen
2015-09-01
Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.
Fission dynamics of hot nuclei
Indian Academy of Sciences (India)
Santanu Pal; Jhilam Sadhukhan
2014-04-01
Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.
Structural Stability of Planar Bimodal Linear Systems
Directory of Open Access Journals (Sweden)
Josep Ferrer
2014-01-01
Full Text Available Structural stability ensures that the qualitative behavior of a system is preserved under small perturbations. We study it for planar bimodal linear dynamical systems, that is, systems consisting of two linear dynamics acting on each side of a given hyperplane and assuming continuity along the separating hyperplane. We describe which one of these systems is structurally stable when (real spiral does not appear and when it does we give necessary and sufficient conditions concerning finite periodic orbits and saddle connections. In particular, we study the finite periodic orbits and the homoclinic orbits in the saddle/spiral case.
Excitation energy dependence of fission in the mercury region
McDonnell, J D; Sheikh, J A; Staszczak, A; Warda, M
2014-01-01
Background: Recent experiments on beta-delayed fission reported an asymmetric mass yield in the neutron-deficient nucleus 180Hg. Earlier experiments in the mass region A=190-200 close to the beta-stability line, using the (p,f) and (\\alpha,f) reactions, observed a more symmetric distribution of fission fragments. While the beta-delayed fission of 180Hg can be associated with relatively low excitation energy, this is not the case for light-ion reactions, which result in warm compound nuclei. Purpose: To elucidate the roles of proton and neutron numbers and excitation energy in determining symmetric and asymmetric fission yields, we compute and analyze the isentropic potential energy surfaces of 174,180,198Hg and 196,210Po. Methods: We use the finite-temperature superfluid nuclear density functional theory, for excitation energies up to E*=30MeV and zero angular momentum. For our theoretical framework, we consider the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Results: Fo...
Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket
Christie, Robert J.; Plachta, David W.
2006-01-01
Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.
Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides
Directory of Open Access Journals (Sweden)
H. Naik
2015-08-01
Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier
Photon and proton induced fission on heavy nuclei at intermediate energies
Directory of Open Access Journals (Sweden)
Andrade-II E.
2014-04-01
Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.
Comparative study of metal cluster fission in Hartree-Fock and LDA
Lyalin, A; Greiner, W; Lyalin, Andrey; Solov'yov, Andrey; Greiner, Walter
2001-01-01
Fission of doubly charged metal clusters is studied using the open-shell two-center deformed jellium Hartree-Fock model and Local Density Approximation. Results of calculations of the electronic structure and fission barriers for the symmetric and asymmetric channels associated with the following processes Na_{10}^{2+} --> Na_{7}^{+} + Na_{3}^{+}, Na_{18}^{2+} --> Na_{15}^{+} + Na_{3}^{+} and Na_{18}^{2+} --> 2 Na_{9}^{+} are presented. The role of the exact exchange and many-body correlation effects in metal clusters fission is analysed. It is demonstrated that the influence of many-electron correlation effects on the height of the fission barrier is more profound if the barrier arises nearby or beyond the scission point. The importance of cluster deformation effects in the fission process is elucidated with the use of the overlapping-spheroids shape parametrization allowing one an independent variation of deformations in the parent and daughter clusters.
Penetration in bimodal, polydisperse granular material
Kouraytem, N.
2016-11-07
We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.
On the Bimodality of ENSO Cycle Extremes
Wilson, Robert M.
1999-01-01
On the basis of sea surface temperature in the Nino 3.4 region (5 deg N-5 deg S, 120 deg- 170 deg W) during the interval of 1950-1997, Kevin Trenberth previously has identified some 16 El Nino and 10 La Nina, these 26 events representing the extremes of the quasi-periodic El Nino-Southern Oscillation (ENSO) cycle. Runs testing shows that the duration and recurrence period associated with these extremes vary randomly, as does the sequencing of the extremes. Hence, the frequency of occurrence of these events during the 1990s, especially, for El Nino should not be construed as being significantly different from that of previous epochs. Additionally, the distribution of duration for both El Nino and La Nina looks bimodal, consisting of two preferred modes - about 8 and 16 months in length for El Nino and about 9 and 18 months in length for La Nina. Likewise, the distribution of recurrence period, especially, for El Nino looks bimodal, consisting of two preferred modes - about 21 and 50 months in length. Scatter plots of the recurrence period versus duration for El Nino strongly suggest preferential associations between them, linking shorter (longer) duration with shorter (longer) recurrence period. Because the last known onset of El Nino occurred in April 1997 and the event was of longer than average duration, one infers that the onset of the next expected El Nino will not occur until February 2000 or later.
Penetration in bimodal, polydisperse granular material
Kouraytem, N.; Thoroddsen, S. T.; Marston, J. O.
2016-11-01
We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between δ =0.5 D0 and δ =7 D0 , which, for mono-modal media only, could be correlated in terms of the total drop height, H =h +δ , as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [ds˜O (30 ) μ m ] were added to the larger particles [dl˜O (200 -500 ) μ m ] , with a size ratio, ɛ =dl/ds , larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.
Bimodal Color Distribution in Hierarchical Galaxy Formation
Menci, N; Giallongo, E; Salimbeni, S
2005-01-01
We show how the observed bimodality in the color distribution of galaxies can be explained in the framework of the hierarchical clustering picture in terms of the interplay between the properties of the merging histories and the feedback/star-formation processes in the progenitors of local galaxies. Using a semi-analytic model of hierarchical galaxy formation, we compute the color distributions of galaxies with different luminosities and compare them with the observations. Our fiducial model matches the fundamental properties of the observed distributions, namely: 1) the distribution of objects brighter than M_r = -18 is clearly bimodal, with a fraction of red objects increasing with luminosity; 2) for objects brighter than M_r = -21 the color distribution is dominated by red objects with color u-r = 2.2-2.4; 3) the spread on the distribution of the red population is smaller than that of the blue population; 4) the fraction of red galaxies is larger in denser environments, even for low-luminosity objects; 5) ...
Transfer learning for bimodal biometrics recognition
Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao
2013-10-01
Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1977-08-01
Causally symmetric spacetimes are spacetimes with J/sup +/(S) isometric to J/sup -/(S) for some set S. We discuss certain properties of these spacetimes, showing for example that, if S is a maximal Cauchy surface with matter everywhere on S, then the spacetime has singularities in both J/sup +/(S) and J/sup -/(S). We also consider totally vicious spacetimes, a class of causally symmetric spacetimes for which I/sup +/(p) =I/sup -/(p) = M for any point p in M. Two different notions of stability in general relativity are discussed, using various types of causally symmetric spacetimes as starting points for perturbations.
Directory of Open Access Journals (Sweden)
Jing Wang
2009-01-01
Full Text Available Motivation: Identifying genes with bimodal expression patterns from large-scale expression profiling data is an important analytical task. Model-based clustering is popular for this purpose. That technique commonly uses the Bayesian information criterion (BIC for model selection. In practice, however, BIC appears to be overly sensitive and may lead to the identification of bimodally expressed genes that are unreliable or not clinically useful. We propose using a novel criterion, the bimodality index, not only to identify but also to rank meaningful and reliable bimodal patterns. The bimodality index can be computed using either a mixture model-based algorithm or Markov chain Monte Carlo techniques.Results: We carried out simulation studies and applied the method to real data from a cancer gene expression profiling study. Our findings suggest that BIC behaves like a lax cutoff based on the bimodality index, and that the bimodality index provides an objective measure to identify and rank meaningful and reliable bimodal patterns from large-scale gene expression datasets. R code to compute the bimodality index is included in the ClassDiscovery package of the Object-Oriented Microarray and Proteomic Analysis (OOMPA suite available at the web site http://bioinformatics.mdanderson.org/Software/OOMPA.
Dynamical features of nuclear fission
Indian Academy of Sciences (India)
Santanu Pal
2015-08-01
It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.
A new approach to barrier-top fission dynamics
Bertsch, G. F.; Mehlhaff, J. M.
2016-06-01
We proposed a calculational framework for describing induced fission that avoids the Bohr-Wheeler assumption of well-defined fission channels. The building blocks of our approach are configurations that form a discrete, orthogonal basis and can be characterized by both energy and shape. The dynamics is to be determined by interaction matrix elements between the states rather than by a Hill-Wheeler construction of a collective coordinate. Within our approach, several simple limits can be seen: diffusion; quantized conductance; and ordinary decay through channels. The specific proposal for the discrete basis is to use the Kπ quantum numbers of the axially symmetric Hartree-Fock approximation to generate the configurations. Fission paths would be determined by hopping from configuration to configuration via the residual interaction. We show as an example the configurations needed to describe a fictitious fission decay 32S → 16 O + 16 O. We also examine the geometry of the path for fission of 236U, measuring distances by the number of jumps needed to go to a new Kπ partition.
Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo
2014-11-01
The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.
Energetic Argument for Bimodal Black Hole Accretion discs
Institute of Scientific and Technical Information of China (English)
林一清; 卢炬甫; 顾为民
2002-01-01
Based on simple energetic considerations, we show that two crucial ingredients of bimodal black hole accretiondiscs, namely the sonic point and the transition radius, can be determined from the disc constant parameters.Thus, we can further justify the model of bimodal discs containing thermal instability triggered transition.
Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference
Hamilton, J. H.; Phillips, W. R.; Carter, H. K.
The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of
Bimodal stimulation: benefits for music perception and sound quality.
Sucher, Catherine M; McDermott, Hugh J
2009-01-01
With recent expansions in cochlear implantation candidacy criteria, increasing numbers of implantees can exploit their remaining hearing by using bimodal stimulation (combining electrical stimulation via the implant with acoustic stimulation via hearing aids). This study examined the effect of bimodal stimulation on music perception and perceived sound quality. The perception of music and sound quality by nine post-lingually deafened adult implantees was examined in three conditions: implant alone, hearing aid alone and bimodal stimulation. On average, bimodal stimulation provided the best results for music perception and perceived sound quality when compared with results obtained with electrical stimulation alone. Thus, for implantees with usable acoustic hearing, bimodal stimulation may be advantageous when listening to music and other non-speech sounds.
Optimization of phase contrast in bimodal amplitude modulation AFM
Directory of Open Access Journals (Sweden)
Mehrnoosh Damircheli
2015-04-01
Full Text Available Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM. Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Optimization of phase contrast in bimodal amplitude modulation AFM.
Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo
2015-01-01
Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Emergence of bimodality in controlling complex networks
Jia, Tao; Csóka, Endre; Pósfai, Márton; Slotine, Jean-Jacques; Barabási, Albert-László
2015-01-01
Our ability to control complex systems is a fundamental challenge of contemporary science. Recently introduced tools to identify the driver nodes, nodes through which we can achieve full control, predict the existence of multiple control configurations, prompting us to classify each node in a network based on their role in control. Accordingly a node is critical, intermittent or redundant if it acts as a driver node in all, some or none of the control configurations. Here we develop an analytical framework to identify the category of each node, leading to the discovery of two distinct control modes in complex systems: centralized vs distributed control. We predict the control mode for an arbitrary network and show that one can alter it through small structural perturbations. The uncovered bimodality has implications from network security to organizational research and offers new insights into the dynamics and control of complex systems.
Interplay of fission modes in mass distribution of light actinide nuclei 225,227Pa
Directory of Open Access Journals (Sweden)
R. Dubey
2016-01-01
Full Text Available Fission-fragment mass distributions were measured for 225,227Pa nuclei formed in fusion reactions of 19F+206,208Pb around fusion barrier energies. Mass-angle correlations do not indicate any quasi-fission like events in this bombarding energy range. Mass distributions were fitted by Gaussian distribution and mass variance extracted. At below-barrier energies, the mass variance was found to increase with decrease in energy for both nuclei. Results from present work were compared with existing data for induced fission of 224,226Th and 228U around barrier energies. Enhancement in mass variance of 225,227Pa nuclei at below-barrier energies shows evidence for presence of asymmetric fission events mixed with symmetric fission events. This is in agreement with the results of mass distributions of nearby nuclei 224,226Th and 228U where two-mode fission process was observed. Two-mode feature of fission arises due to the shell effects changing the landscape of the potential-energy surfaces at low excitation energies. The excitation-energy dependence of the mass variance gives strong evidence for survival of microscopic shell effects in fission of light actinide nuclei 225,227Pa with initial excitation energy ∼30–50 MeV.
Fission yield measurements at IGISOL
Directory of Open Access Journals (Sweden)
Lantz M.
2016-01-01
Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
Fission approach to cluster radioactivity
Indian Academy of Sciences (India)
D N Poenaru; R A Gherghescu
2015-09-01
Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.
Counting with symmetric functions
Mendes, Anthony
2015-01-01
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...
Symmetric tensor decomposition
Brachat, Jerome; Mourrain, Bernard; Tsigaridas, Elias
2009-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of total degree d as a sum of powers of linear forms (Waring's problem), incidence properties on secant varieties of the Veronese Variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester's approach from the dual point of view. Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on th...
N>=2 symmetric superpolynomials
Alarie-Vézina, L; Mathieu, P
2015-01-01
The theory of symmetric functions has been extended to the case where each variable is paired with an anticommuting one. The resulting expressions, dubbed superpolynomials, provide the natural N=1 supersymmetric version of the classical bases of symmetric functions. Here we consider the case where two independent anticommuting variables are attached to each ordinary variable. The N=2 super-version of the monomial, elementary, homogeneous symmetric functions, as well as the power sums, are then constructed systematically (using an exterior-differential formalism for the multiplicative bases), these functions being now indexed by a novel type of superpartitions. Moreover, the scalar product of power sums turns out to have a natural N=2 generalization which preserves the duality between the monomial and homogeneous bases. All these results are then generalized to an arbitrary value of N. Finally, for N=2, the scalar product and the homogenous functions are shown to have a one-parameter deformation, a result that...
Multiparty Symmetric Sum Types
DEFF Research Database (Denmark)
Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei
2010-01-01
This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...
Progressive symmetric erythrokeratoderma
Directory of Open Access Journals (Sweden)
Gharpuray Mohan
1990-01-01
Full Text Available Four patients had symmetrically distributed hyperkeratotic plaques on the trunk and extremities; The lesions in all of them had appeared during infancy, and after a brief period of progression, had remained static, All of them had no family history of similar skin lesions. They responded well to topical applications of 6% salicylic acid in 50% propylene glycol. Unusual features in these cases of progressive symmetric erythrokeratoderma were the sparing of palms and soles, involvement of the trunk and absence of erythema.
The contrasting fission potential-energy structure of actinides and mercury isotopes
Ichikawa, Takatoshi; Möller, Peter; Sierk, Arnold J
2012-01-01
Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number $A$ in the range $228 \\lnsim A \\lnsim 258$ and proton number $Z$ in the range $90\\lnsim Z \\lnsim 100$. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of $^{180}$Hg following electron capture on $^{180}$Tl is asymmetric. An earlier experiment has shown fission of $^{198}$Hg and nearby nuclei is symmetric, but with hints of asymmetric yield distributions up to about 10 MeV above the saddle-point energy. We calculate potential-energy surfaces for a typical actinide nucleus and for 12 even isotopes in the range $^{178}$Hg--$^{200}$Hg, demonstrating the radical differences between actinide and mercury potential surfaces. We discuss these differences and how the changing potential-energy structure along the mercury isotope chain affects the observed (a)symmetry of the fission fragments. We show that the ...
Roles of factorial noise in inducing bimodal gene expression
Liu, Peijiang; Yuan, Zhanjiang; Huang, Lifang; Zhou, Tianshou
2015-06-01
Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.
Measurement of Fission Product Yields from Fast-Neutron Fission
Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.
2014-09-01
One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.
The SPIDER fission fragment spectrometer for fission product yield measurements
Energy Technology Data Exchange (ETDEWEB)
Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2015-07-11
The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.
Directory of Open Access Journals (Sweden)
Ripani M.
2015-01-01
Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Distributed Searchable Symmetric Encryption
Bösch, Christoph; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter; Jonker, Willem
2014-01-01
Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes
Symmetric Spaces in Supergravity
Ferrara, Sergio
2008-01-01
We exploit the relation among irreducible Riemannian globally symmetric spaces (IRGS) and supergravity theories in 3, 4 and 5 space-time dimensions. IRGS appear as scalar manifolds of the theories, as well as moduli spaces of the various classes of solutions to the classical extremal black hole Attractor Equations. Relations with Jordan algebras of degree three and four are also outlined.
Unimodular bimode gravity and the coherent scalar-graviton field as galaxy dark matter
Pirogov, Yu F
2011-01-01
The explicit violation of general relativity is adopted as an origin of dark matter and dark energy of the gravitational nature. The violation of the local scale invariance alone, with the residual unimodular invariance/relativity, is considered as a paradigm. Besides the four-volume preserving deformation mode -- the transverse-tensor graviton -- the metric comprises a compression mode -- the scalar graviton, or the {\\em systolon}. The unimodular invariant metric theory of the bimode gravity is worked out. Due to a non-dynamical scalar density -- the dark {\\em modulus} -- the theory is general covariant. To substantially reduce the primordial ambiguity of the effective Lagrangian a dynamical global symmetry -- the {\\em compression} one -- is superimposed at the classical level, with the subsequent spontaneous breaking of the symmetry displayed. The static spherically symmetric field configuration in the empty, but possibly for the origin, space is studied. A three-parameter solution describing a new static s...
Membrane biology: fission behind BARs.
Haucke, Volker
2012-06-05
Membrane bending is accomplished in part by amphipathic helix insertion into the bilayer and the assembly of BAR domain scaffolds preparing the membrane for fission. Two recent studies highlight the roles of amphipathic helices and BAR scaffolds in membrane fission and establish the structural basis of membrane bending by the N-BAR protein endophilin.
Galaxy bimodality versus stellar mass and environment
Baldry, I; Bower, R; Glazebrook, K; Nichol, R; Bamford, S; Budavari, T
2006-01-01
We analyse a z<0.1 galaxy sample from the Sloan Digital Sky Survey focusing on the variation of the galaxy colour bimodality with stellar mass and projected neighbour density Sigma, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about 10^10.6 Msun to 10^10.9 Msun (Kroupa IMF, H_0=70) for Sigma in the range 0.1--10 per Mpc^2. The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour-mass and colour-concentration index not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in log Sigma and log mass (12 x 13 bins). The red fraction f_r generally increases continuously in both Sigma and mass such that there is a unified relation: f_r = F(Sigma,mass). Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N-body ...
Intelligent agents: adaptation of autonomous bimodal microsystems
Smith, Patrice; Terry, Theodore B.
2014-03-01
Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.
Directory of Open Access Journals (Sweden)
Olatunji K. A
2015-07-01
Full Text Available Various security challenges such as Boko Haram, theft, kidnapping, ISIL, abduction, and so on have been on a high rise as one of the major menace facing our society today. In order to overcome these challenges there is need for identification of the culprits to bring them to book. Uni-modal biometric is not enough to combat these security challenges because of its shortcomings which include- spoof attach, noise in the sensed data, inter class variation and so on. Combining two or more biometric features (bi-modal has been proved to provide better performance than uni-modal biometric approach for authentication and verification. This paper presents some literature on biometrics systems that can be employed in achieving a better accuracy in authentication and verification of biometric features. Different kind of fusion strategies to combine these characteristics, different available classifiers and fusion methodologies to achieve greater and accurate recognition performance were also discussed. It is hopeful that researchers in the area of biometrics will find this work very useful.
Audiovisual bimodal mutual compensation of Chinese
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The perception of human languages is inherently a multi-modalprocess, in which audio information can be compensated by visual information to improve the recognition performance. Such a phenomenon in English, German, Spanish and so on has been researched, but in Chinese it has not been reported yet. In our experiment, 14 syllables (/ba, bi, bian, biao, bin, de, di, dian, duo, dong, gai, gan, gen, gu/), extracted from Chinese audiovisual bimodal speech database CAVSR-1.0, were pronounced by 10 subjects. The audio-only stimuli, audiovisual stimuli, and visual-only stimuli were recognized by 20 observers. The audio-only stimuli and audiovisual stimuli both were presented under 5 conditions: no noise, SNR 0 dB, -8 dB, -12 dB, and -16 dB. The experimental result is studied and the following conclusions for Chinese speech are reached. Human beings can recognize visual-only stimuli rather well. The place of articulation determines the visual distinction. In noisy environment, audio information can remarkably be compensated by visual information and as a result the recognition performance is greatly improved.
Audiovisual bimodal mutual compensation of Chinese
Institute of Scientific and Technical Information of China (English)
ZHOU; Zhi
2001-01-01
［1］Richard, P., Schumeyer, Kenneth E. B., The effect of visual information on word initial consonant perception of dysarthric speech, in Proc. ICSLP'96 October 3-6 1996, Philadephia, Pennsylvania, USA.［2］Goff, B. L., Marigny, T. G., Benoit, C., Read my lips...and my jaw! How intelligible are the components of a speaker's face? Eurospeech'95, 4th European Conference on Speech Communication and Technology, Madrid, September 1995.［3］McGurk, H., MacDonald, J. Hearing lips and seeing voices, Nature, 1976, 264: 746.［4］Duran A. F., Mcgurk effect in Spanish and German listeners: Influences of visual cues in the perception of Spanish and German confliction audio-visual stimuli, Eurospeech'95. 4th European Conference on Speech Communication and Technology, Madrid, September 1995.［5］Luettin, J., Visual speech and speaker recognition, Ph.D thesis, University of Sheffield, 1997.［6］Xu Yanjun, Du Limin, Chinese audiovisual bimodal speech database CAVSR1.0, Chinese Journal of Acoustics, to appear.［7］Zhang Jialu, Speech corpora and language input/output methods' evaluation, Chinese Applied Acoustics, 1994, 13(3): 5.
Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite
Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P.; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M.; Ruiz-Martinez, Javier; Hensen, Emiel J. M.
2016-01-01
The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts
Bimode uninterruptible power supply compatibility in renewable hybrid energy systems
Energy Technology Data Exchange (ETDEWEB)
Bower, W. (Sandia National Labs., Albuquerque, NM (USA)); O' Sullivan, G. (Abacus Controls, Inc., Somerville, NJ (USA))
1990-08-01
Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.
Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery
Gao, Lin; Sun, Jihong; Li, Yuzhen
2011-08-01
The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.
Reactive Sintering of Bimodal WC-Co Hardmetals
Directory of Open Access Journals (Sweden)
Marek Tarraste
2015-09-01
Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511
Fission modes in charged-particle induced fission
Energy Technology Data Exchange (ETDEWEB)
Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))
1990-12-01
The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).
Generating functions for symmetric and shifted symmetric functions
Jing, Naihuan; Rozhkovskaya, Natasha
2016-01-01
We describe generating functions for several important families of classical symmetric functions and shifted Schur functions. The approach is originated from vertex operator realization of symmetric functions and offers a unified method to treat various families of symmetric functions and their shifted analogues.
Interplay of fission modes in mass distribution of light actinide nuclei 225,227Pa
Dubey, R; Jhingan, A; Kaur, Gurpreet; Mukul, Ish; Mohanto, G; Siwal, D; Saneesh, N; Banerjee, T; Thakur, Meenu; Mahajan, Ruchi; Kumar, N; Chatterjee, M B
2015-01-01
Fission-fragment mass distributions were measured for 225,227Pa nuclei formed in fusion reactions of 19F + 206, 208Pb around fusion barrier energies. Mass-angle correlations do not indicate any quasi-fission like events in this bombarding energy range. Mass distributions were fitted by Gaussian distribution and mass variance extracted. At below-barrier energies, the mass variance was found to increase with decrease in energy for both nuclei. Results from present work were compared with existing data for induced fission of 224, 226Th and 228U around barrier energies. Enhancement in mass variance of 225, 227Pa nuclei at below-barrier energies shows evidence for presence of asymmetric fission events mixed with symmetric fission events. This is in agreement with the results of mass distributions of nearby nuclei 224, 226Th and 228U where two-mode fission process was observed. Two-mode feature of fission arises due to the shell effects changing the landscape of the potential energy surfaces at low excitation energ...
EQUIFOCAL HYPERSURFACES IN SYMMETRIC SPACES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This note investigates the multiplicity problem of principal curvatures of equifocal hyper surfaces in simply connected rank 1 symmetric spaces. Using Clifford representation theory, and the author also constructs infinitely many equifocal hypersurfaces in the symmetric spaces.
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
Homogenous finitary symmetric groups
Directory of Open Access Journals (Sweden)
Otto. H. Kegel
2015-03-01
Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .
THE BIMODAL STRUCTURE OF THE SOLAR CYCLE
Energy Technology Data Exchange (ETDEWEB)
Du, Z. L., E-mail: zldu@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2015-05-01
Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.
Symmetric Extended Ockham Algebras
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; Jie Fang
2003-01-01
The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30
Symmetrization Selection Rules, 1
Page, P R
1996-01-01
We introduce a category of strong and electromagnetic interaction selection rules for the two-body connected decay and production of exotic J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, ... hybrid and four-quark mesons. The rules arise from symmetrization in states in addition to Bose symmetry and CP invariance. Examples include various decays to \\eta'\\eta, \\eta\\pi, \\eta'\\pi and four-quark interpretations of a 1^{-+} signal.
Symmetrization Selection Rules, 2
Page, P R
1996-01-01
We introduce strong interaction selection rules for the two-body decay and production of hybrid and conventional mesons coupling to two S-wave hybrid or conventional mesons. The rules arise from symmetrization in states in the limit of non-relativistically moving quarks. The conditions under which hybrid coupling to S-wave states is suppressed are determined by the rules, and the nature of their breaking is indicated.
The spectroscopy of fission fragments
Energy Technology Data Exchange (ETDEWEB)
Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.
Intrinsic energy partition in fission
Directory of Open Access Journals (Sweden)
Mirea M.
2013-03-01
Full Text Available The intrinsic energy partition between two complementary fission fragments is investigated microscopically. The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the other separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The excitation energy in a wide distribution of fission fragments is calculated for the 234U parent nucleus.
Advanced Space Fission Propulsion Systems
Houts, Michael G.; Borowski, Stanley K.
2010-01-01
Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust
Fission hindrance and nuclear viscosity
Indian Academy of Sciences (India)
Indranil Mazumdar
2015-08-01
We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard;
2010-01-01
of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of total degree d as a sum of powers of linear forms (Waring’s problem), incidence properties on secant varieties of the Veronese variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester’s approach from the dual point of view...
Symmetrically Constrained Compositions
Beck, Matthias; Lee, Sunyoung; Savage, Carla D
2009-01-01
Given integers $a_1, a_2, ..., a_n$, with $a_1 + a_2 + ... + a_n \\geq 1$, a symmetrically constrained composition $\\lambda_1 + lambda_2 + ... + lambda_n = M$ of $M$ into $n$ nonnegative parts is one that satisfies each of the the $n!$ constraints ${\\sum_{i=1}^n a_i \\lambda_{\\pi(i)} \\geq 0 : \\pi \\in S_n}$. We show how to compute the generating function of these compositions, combining methods from partition theory, permutation statistics, and lattice-point enumeration.
Perception of Sung Speech in Bimodal Cochlear Implant Users
Galvin, John J.; Fu, Qian-Jie
2016-01-01
Combined use of a hearing aid (HA) and cochlear implant (CI) has been shown to improve CI users’ speech and music performance. However, different hearing devices, test stimuli, and listening tasks may interact and obscure bimodal benefits. In this study, speech and music perception were measured in bimodal listeners for CI-only, HA-only, and CI + HA conditions, using the Sung Speech Corpus, a database of monosyllabic words produced at different fundamental frequencies. Sentence recognition was measured using sung speech in which pitch was held constant or varied across words, as well as for spoken speech. Melodic contour identification (MCI) was measured using sung speech in which the words were held constant or varied across notes. Results showed that sentence recognition was poorer with sung speech relative to spoken, with little difference between sung speech with a constant or variable pitch; mean performance was better with CI-only relative to HA-only, and best with CI + HA. MCI performance was better with constant words versus variable words; mean performance was better with HA-only than with CI-only and was best with CI + HA. Relative to CI-only, a strong bimodal benefit was observed for speech and music perception. Relative to the better ear, bimodal benefits remained strong for sentence recognition but were marginal for MCI. While variations in pitch and timbre may negatively affect CI users’ speech and music perception, bimodal listening may partially compensate for these deficits. PMID:27837051
Bimodal bilingualism and the frequency-lag hypothesis.
Emmorey, Karen; Petrich, Jennifer A F; Gollan, Tamar H
2013-01-01
The frequency-lag hypothesis proposes that bilinguals have slowed lexical retrieval relative to monolinguals and in their nondominant language relative to their dominant language, particularly for low-frequency words. These effects arise because bilinguals divide their language use between 2 languages and use their nondominant language less frequently. We conducted a picture-naming study with hearing American Sign Language (ASL)-English bilinguals (bimodal bilinguals), deaf signers, and English-speaking monolinguals. As predicted by the frequency-lag hypothesis, bimodal bilinguals were slower, less accurate, and exhibited a larger frequency effect when naming pictures in ASL as compared with English (their dominant language) and as compared with deaf signers. For English there was no difference in naming latencies, error rates, or frequency effects for bimodal bilinguals as compared with monolinguals. Neither age of ASL acquisition nor interpreting experience affected the results; picture-naming accuracy and frequency effects were equivalent for deaf signers and English monolinguals. Larger frequency effects in ASL relative to English for bimodal bilinguals suggests that they are affected by a frequency lag in ASL. The absence of a lag for English could reflect the use of mouthing and/or code-blending, which may shield bimodal bilinguals from the lexical slowing observed for spoken language bilinguals in the dominant language.
Sirsi, Swarnamala; Hegde, Subramanya
2011-01-01
Quantum computation on qubits can be carried out by an operation generated by a Hamiltonian such as application of a pulse as in NMR, NQR. Quantum circuits form an integral part of quan- tum computation. We investigate the nonlocal operations generated by a given Hamiltonian. We construct and study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power. Our work addresses the problem of analyzing the quantum evolution in the special case of two qubit symmetric states. Such a symmetric space can be considered to be spanned by the angular momentum states {|j = 1,m>;m = +1, 0,-1}. Our technique relies on the decomposition of a Hamiltonian in terms of newly defined Hermitian operators Mk's (k= 0.....8) which are constructed out of angular momentum operators Jx, Jy, Jz. These operators constitute a linearly independent set of traceless matrices (except for M0). Further...
A hypothesis for the color bimodality of Jupiter Trojans
Wong, Ian
2016-01-01
One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early Solar System evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H$_{2}$S ice...
Energy Technology Data Exchange (ETDEWEB)
Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto [Osaka Univ., Suita (Japan)] [and others
1997-09-01
Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at the 15.8-MeV excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission. (author). 73 refs.
The Symmetricity of Normal Modes in Symmetric Complexes
Song, Guang
2016-01-01
In this work, we look at the symmetry of normal modes in symmetric structures, particularly structures with cyclic symmetry. We show that normal modes of symmetric structures have different levels of symmetry, or symmetricity. One novel theoretical result of this work is that, for a ring structure with $m$ subunits, the symmetricity of the normal modes falls into $m$ groups of equal size, with normal modes in each group having the same symmetricity. The normal modes in each group can be computed separately, using a much smaller amount of memory and time (up to $m^3$ less), thus making it applicable to larger complexes. We show that normal modes with perfect symmetry or anti-symmetry have no degeneracy while the rest of the modes have a degeneracy of two. We show also how symmetry in normal modes correlates with symmetry in structure. While a broken symmetry in structure generally leads to a loss of symmetricity in symmetric normal modes, the symmetricity of some symmetric normal modes is preserved even when s...
Scheme for Generation of Entanglement among Bimodal Cavities
Institute of Scientific and Technical Information of China (English)
SONG Xin-Guo; FENG Xun-Li
2004-01-01
@@ We present a scheme for generation of an entangled state in many spatially separated bimodal cavity modes via cavity quantum electrodynamics. A V-type three-level atom, initially prepared in a coherent superposition of its excited states, successively passes through both the bimodal cavities. If the atom is measured in its ground state after leaving the last cavity, an entangled state of many cavity modes can be generated. The conditions to generate the maximally entangled state with unity probability are worked out.
Bimodal pattern in the fragmentation of Au quasi-projectiles
Bruno, M; D'Agostino, M; Gramegna, F; Gulminelli, F; Vannini, G
2006-01-01
Signals of bimodality have been investigated in experimental data of quasi-projectile decay produced in Au+Au collisions at 35 AMeV. This same data set was already shown to present several signals characteristic of a first order, liquid-gas-like phase transition. For the present analysis, events are sorted in bins of transverse energy of light charged particles emitted by the quasi-target source. A sudden change in the fragmentation pattern is observed from the distributions of the asymmetry of the two largest fragments, and the charge of the largest fragment. This latter distribution shows a bimodal behavior. The interpretation of this signal is discussed.
Challenging fission dynamics around the barrier: The case of 34S + 186W
Kozulin, E. M.; Vardaci, E.; Harca, I. M.; Schmitt, C.; Itkis, I.; Knyazheva, G.; Novikov, K.; Bogachev, A.; Dmitriev, S.; Loktev, T.; Azaiez, F.; Matea, I.; Verney, D.; Gottardo, A.; Dorvaux, O.; Piot, J.; Chubarian, G.; Trzaska, W. H.; Hanappe, F.; Borcea, C.; Calinescu, S.; Petrone, C.
2016-09-01
The current status of fission dynamics studies in heavy-ion collisions around the Coulomb barrier is illustrated with the 34S + 186W reaction. The fission-fragment mass and total kinetic energy were measured at the ALTO facility at IPN Orsay, France, with a dedicated set-up using the ( v, E) approach. The measurement reveals the presence of an asymmetric fission component on top of a predominantly symmetric distribution. The asymmetric structure, pointed out for the first time, is discussed along with results of previous experiments studying the same reaction. While these analyses suggested the contribution from either quasi-fission or pre-equilibrium fission, we offer an alternative interpretation, in terms of shell-driven compound-nucleus fission. The present measurement demonstrates the critical influence of resolution when addressing puzzling cases, situated at the crossroads of the various channels opened in a heavy-ion collision. Current status in the field clearly calls for innovative measurements involving manifold correlations and new observables. The outcome of the attempt done in this work in this direction, based on the coincident measurement of prompt γ-rays is reported, and encouraging perspectives are discussed.
Challenging fission dynamics around the barrier: The case of {sup 34}S + {sup 186}W
Energy Technology Data Exchange (ETDEWEB)
Kozulin, E.M.; Itkis, I.; Knyazheva, G.; Novikov, K.; Bogachev, A.; Dmitriev, S.; Loktev, T. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Vardaci, E. [Dipartamento di Scienze Fisiche, Napoli (Italy); INFN, Napoli (Italy); Harca, I.M. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest - Magurele (Romania); Universitatea din Bucuresti, Facultatea de Fizica, Bucharest (Romania); Schmitt, C.; Piot, J. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, Caen (France); Azaiez, F.; Matea, I.; Verney, D.; Gottardo, A. [Universite Paris-Saclay, IPN, CNRS/IN2P3, Orsay (France); Dorvaux, O. [Universite de Strasbourg, IPHC, CNRS/IN2P3, Strasbourg (France); Chubarian, G. [Texas A and M University, Cyclotron Institute, College Station, TX (United States); Trzaska, W.H. [Accelerator Laboratory of University of Jyvaskyla (JYFL), Jyvaskyla (Finland); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Borcea, C.; Calinescu, S.; Petrone, C. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest - Magurele (Romania)
2016-09-15
The current status of fission dynamics studies in heavy-ion collisions around the Coulomb barrier is illustrated with the {sup 34}S + {sup 186}W reaction. The fission-fragment mass and total kinetic energy were measured at the ALTO facility at IPN Orsay, France, with a dedicated set-up using the (v, E) approach. The measurement reveals the presence of an asymmetric fission component on top of a predominantly symmetric distribution. The asymmetric structure, pointed out for the first time, is discussed along with results of previous experiments studying the same reaction. While these analyses suggested the contribution from either quasi-fission or pre-equilibrium fission, we offer an alternative interpretation, in terms of shell-driven compound-nucleus fission. The present measurement demonstrates the critical influence of resolution when addressing puzzling cases, situated at the crossroads of the various channels opened in a heavy-ion collision. Current status in the field clearly calls for innovative measurements involving manifold correlations and new observables. The outcome of the attempt done in this work in this direction, based on the coincident measurement of prompt γ-rays is reported, and encouraging perspectives are discussed. (orig.)
Plane symmetric cosmological models
Yadav, Anil Kumar; Ray, Saibal; Mallick, A
2016-01-01
In this work, we perform the Lie symmetry analysis on the Einstein-Maxwell field equations in plane symmetric spacetime. Here Lie point symmetries and optimal system of one dimensional subalgebras are determined. The similarity reductions and exact solutions are obtained in connection to the evolution of universe. The present study deals with the electromagnetic energy of inhomogeneous universe where $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, it is assumed that the free gravitational field is Petrov type-II non-degenerate. The electromagnetic field tensor $F_{12}$ is found to be positive and increasing function of time. As a special case, to validate the solution set, we discuss some physical and geometric properties of a specific sub-model.
Assessment of fissionable material behaviour in fission chambers
Energy Technology Data Exchange (ETDEWEB)
Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)
2010-06-21
A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.
2017-03-01
The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.
Institute of Scientific and Technical Information of China (English)
傅育熙
1998-01-01
An alternative presentation of the π－calculus is given.This version of the π-calculus is symmetric in the sense that communications are symmetric and there is no difference between input and output prefixes.The point of the symmetric π-calculus is that it has no abstract names.The set of closed names is therefore homogeneous.The π－calculus can be fully embedded into the symmetric π-calculus.The symmetry changes the emphasis of the communication mechanism of the π-calculus and opens up possibility for further variations.
Thorium-uranium fission radiography
Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.
1976-01-01
Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.
Nuclear fission and neutron-induced fission cross-sections
James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E
2013-01-01
Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis
Bimodal behavior of the Kuroshio and the Gulf Stream
Schmeits, M.J.; Dijkstra, H.A.
2001-01-01
For a long time, observations have been pointing out that the Kuroshio in the North Paciffc Ocean displays bimodal meandering behavior of the southern coast of Japan. For the Gulf Stream in the North Atlantic Ocean, weakly and strongly deffected paths near the coast of South Carolina have been obser
On bimodality in warm season soil moisture observations
Teuling, A.J.; Uijlenhoet, R.; Troch, P.A.A.
2005-01-01
It has recently been suggested that the bimodality in warm season soil moisture observations in Illinois is evidence of a soil moisture-precipitation feedback. Other studies however provide little evidence for a strong feedback in this region. Here we show that seasonality in the meteorological cond
"Bi-modal" isoscalar giant dipole strength in Ni-58
Nayak, B. K.; Garg, U.; Hedden, M.; Koss, M.; Li, T.; Liu, Y.; Rao, P. V. Madhusudhana; Zhu, S.; Itoh, M.; Sakaguchi, H.; Takeda, H.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Fujimura, H.; Fujiwara, M.; Hara, K.; Kawabata, T.; Akimune, H.; Harakeh, M. N.
2006-01-01
The strength distribution of the isoscalar giant dipole resonance (ISGDR) in Ni-58 has been obtained over the energy range 10.5-49.5 MeV via extreme forward angle scattering (including 0 degrees) of 386 MeV alpha particles. We observe a "bi-modal" El strength distribution for the first time in an A
A nonlinear theory of the bimodality of the Kuroshio extension
Pierini, S.; Dijkstra, H.A.; Riccio, A.
2009-01-01
The Kuroshio Extension (KE) flow in the North Pacific Ocean displays a very distinctive decadal variability of bimodal character involving two completely different states (a large-meander “elongated” state and a small-meander “contracted” state) connected by very asymmetric temporal transitions. Alt
Bimodal Bilingual Language Development of Hearing Children of Deaf Parents
Hofmann, Kristin; Chilla, Solveig
2015-01-01
Adopting a bimodal bilingual language acquisition model, this qualitative case study is the first in Germany to investigate the spoken and sign language development of hearing children of deaf adults (codas). The spoken language competence of six codas within the age range of 3;10 to 6;4 is assessed by a series of standardised tests (SETK 3-5,…
Visualisation and characterisation of heterogeneous bimodal PDMS networks
DEFF Research Database (Denmark)
Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence;
2014-01-01
by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...
Does bimodal stimulus presentation increase ERP components usable in BCIs?
Thurlings, M.E.; Brouwer, A.M.; Erp, J.B.F. van; Blankertz, B.; Werkhoven, P.J.
2012-01-01
Event-related potential (ERP)-based brain–computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain
Parallel Symmetric Eigenvalue Problem Solvers
2015-05-01
Plemmons G. Golub and A. Sameh. High-speed computing : scientific appli- cations and algorithm design. University of Illinois Press, Champaign, Illinois , 1988...16. SECURITY CLASSIFICATION OF: Sparse symmetric eigenvalue problems arise in many computational science and engineering applications such as...Eigenvalue Problem Solvers Report Title Sparse symmetric eigenvalue problems arise in many computational science and engineering applications such as
Representation of Fuzzy Symmetric Relations
1986-03-19
Std Z39-18 REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. Valverde Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda...REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. "Valverde* Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda. Diagonal, 649
Search for Singlet Fission Chromophores
Energy Technology Data Exchange (ETDEWEB)
Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.
2012-01-01
Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
R A Gherghescu; D N Poenaru
2015-09-01
The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.
The bimodality of the Luzon Strait deep water
Institute of Scientific and Technical Information of China (English)
WU Qingsong; ZHAO Jianru; ZHANG Junbiao; SHI Weiyong; LIU Chunqiu
2014-01-01
Combined conductivity-temperature-depth (CTD) casts and Argo profiles, 3 086 historical hydrocasts were used to quantify the water column characteristics in the northern South China Sea (SCS) and its adjacent waters. Based on a two-dimensional“gravest empirical mode”(GEM), a gravitational potential (, a verti-cally integrated variable) was used as proxy for the vertical temperature profiles TG(p,).integrated from 8 MPa to the surface shows a close relationship with the temperature, except in the deep layer greater than 15 MPa, which was caused by the bimodal deep water in the region. The GEM temperature profiles successfully revealed the bimodality of the Luzon Strait deep water, that disparate hydrophic vertical profiles can pro-duce distinct specific volume anomaly (į) in the SCS and the western Philippine Sea (WPS), but failed in the Luzon Strait, where different temperature profiles may produce a sameį. A significant temperature diver-gence between the SCS water and the WPS water confirmed that the bimodal structure is strong. The deep-water bifurcation starts at about 15 MPa, and gets stronger with increasing depth . As the only deep channel connecting the bimodal-structure waters, water column characteristics in the Luzon Strait is in between, but much closer to the SCS water because of its better connectivity with the SCS. A bimodal temperature structure below 15 MPa reveals that there was a persistent baroclinic pressure gradient driving flow through the Luzon Strait. A volume flux predicted through the Bashi Channel with the hydraulic theory yields a value of 5.62×106 m3/s using all available profiles upstream and downstream of the overflow region, and 4.03×106 and 2.70×106 m3/s by exclusively using the profiles collected during spring and summer, respectively. No volume flux was calculated during autumn and winter because profiles are only available for the upstream of the Bashi Channel during the corresponding period.
A Hypothesis for the Color Bimodality of Jupiter Trojans
Wong, Ian; Brown, Michael E.
2016-10-01
One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H2S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H2S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.
Experimental study of fission process by fragment-neutron correlation measurement
Energy Technology Data Exchange (ETDEWEB)
Nishio, Katsuhisa; Yamamoto, Hideki; Kanno, Ikuo; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan). Faculty of Engineering
1997-07-01
Fragment-neutron correlation measurement of {sup 235}U(n{sub th}, f) was carried out. The obtained results showed more statistical accuracy than that of reported thermal neutron reaction. Experimental results and it`s analysis made clear the following facts. The minimum values of <{eta}> (m*) are shown at about 90 and 145 {mu} and <{eta}> (m*) showed the symmetrical form with an axis of symmetrical fission. This tendency is same as the distribution of {sup 252}Cf(s.f). -dV/dTKE(m*) indicates the saw-teethed distribution as same as <{nu}>(m*). The distribution seems depend on stiffness of fission fragment affected by the shell effect. The level density parameter a(m*) of fission fragment obtained from {sup 235}U(n{sub th}, f) expresses the saw-teethed distribution as same as that of {sup 252}Cf(s.f). This distribution can be explained by the empirical equation under consideration of the fission fragment depending on the shell effect and the collective motion. (S.Y.)
Radiochemistry and the Study of Fission
Energy Technology Data Exchange (ETDEWEB)
Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-14
These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since it’s discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.
Development of Fission Chamber Assembly
Institute of Scientific and Technical Information of China (English)
YANGJinwei; ZHANGWei; SONGXianying; LIXu
2003-01-01
The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.
Fission-fragment properties in 238U(n ,f ) between 1 and 30 MeV
Duke, D. L.; Tovesson, F.; Laptev, A. B.; Mosby, S.; Hambsch, F.-J.; Bryś, T.; Vidali, M.
2016-11-01
The fragment mass and kinetic energy in neutron-induced fission of 238U has been measured for incident energies from 1 to 30 MeV at the Los Alamos Neutron Science Center. The change in mass distributions over this energy range were studied, and the transition from highly asymmetric to more symmetric mass distributions is observed. A decrease in average total kinetic energy (TKE ¯) with increasing excitation energy is observed, consistent with previous experimental work. Additional structure at multichance fission thresholds is present in the TKE ¯ data. The correlations between fragment masses and total kinetic energy and how that changes with excitation energy of the fissioning compound nucleus were also measured. The fission mass yields and average total kinetic energy are important for fission-based technologies such as nuclear reactors to understand nuclear waste generation and energy output when developing new and advanced concepts. The correlations between fragment mass and kinetic energy are needed both as input for theoretical calculations of the deexcitation process in fission fragments by prompt radiation emission and for validating advanced theoretical fission models describing the formation of the primordial fragments.
MINIMIZATION PROBLEM FOR SYMMETRIC ORTHOGONAL ANTI-SYMMETRIC MATRICES
Institute of Scientific and Technical Information of China (English)
Yuan Lei; Anping Liao; Lei Zhang
2007-01-01
By applying the generalized singular value decomposition and the canonical correlation decomposition simultaneously, we derive an analytical expression of the optimal approximate solution (X), which is both a least-squares symmetric orthogonal anti-symmetric solution of the matrix equation ATXA ＝ B and a best approximation to a given matrix X*.Moreover, a numerical algorithm for finding this optimal approximate solution is described in detail, and a numerical example is presented to show the validity of our algorithm.
Two neutron correlations in photo-fission
Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.
2016-09-01
A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.
Fission dynamics at low excitation energy
Aritomo, Y
2013-01-01
The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.
Fission yield studies at the IGISOL facility
Energy Technology Data Exchange (ETDEWEB)
Penttilae, H.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)
2012-04-15
Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)
Control of the differential interference contrast in reinjected bimode laser
Lacot, Eric; Hugon, Olivier; de Chatellus, Hugues Guillet
2016-01-01
We have demonstrated, both theoretically and experimentally, that it is possible to control (i.e., to enhance or cancel) the contrast of the interference pattern appearing in the intensity images obtained with a laser optical feedback imaging (LOFI) setup using a bimode laser. The laser is composed of two coupled orthogonally polarized states that interact (i.e., interfere) through the cross saturation laser dynamics. We created the contrast control by choosing the frequency shift (i.e., the beating frequency) between the feedback electric fields and the intracavity electric fields. We have shown that the interference contrast of the output power modulation of the laser total intensity is independent from the frequency shift and is always maximal. On the other hand, the interference contrast of each polarization state is frequency dependent. We obtained the maximal contrast when the frequency shift was equal to one of the resonance frequencies of the bimode dynamics, and was very low (and almost cancels) for ...
NERVA-Derived Concept for a Bimodal Nuclear Thermal Rocket
Fusselman, Steven P.; Borowski, Stanley K.; Frye, Patrick E.; Gunn, Stanley V.; Morrison, Calvin Q.
2005-02-01
The Nuclear Thermal Rocket is an enabling technology for human exploration missions. The "bimodal" NTR (BNTR) provides a novel approach to meeting both propulsion and power requirements of future manned and robotic missions. The purpose of this study was to evaluate tie-tube cooling configurations, NTR performance, Brayton cycle performance, and LOX-Augmented NTR (LANTR) feasibility to arrive at a point of departure BNTR configuration for subsequent system definition.
Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite.
Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M; Ruiz-Martínez, Javier; Hensen, Emiel J M
2016-02-21
The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts demonstrate enhanced diffusion through micropores at the grain boundaries of nanocrystals running through the zeolite particles. Fluoride-assisted SSZ-13 synthesis is a cheap and scalable approach to optimize the performance of MTO zeolite catalysts.
A Neonatal Bimodal MR-CT Head Template
Mohtasebi, Mehrana; Abrishami Moghaddam, Hamid; Grebe, Reinhard; Gity, Masoumeh; Wallois, Fabrice
2017-01-01
Neonatal MR templates are appropriate for brain structural analysis and spatial normalization. However, they do not provide the essential accurate details of cranial bones and fontanels-sutures. Distinctly, CT images provide the best contrast for bone definition and fontanels-sutures. In this paper, we present, for the first time, an approach to create a fully registered bimodal MR-CT head template for neonates with a gestational age of 39 to 42 weeks. Such a template is essential for structural and functional brain studies, which require precise geometry of the head including cranial bones and fontanels-sutures. Due to the special characteristics of the problem (which requires inter-subject inter-modality registration), a two-step intensity-based registration method is proposed to globally and locally align CT images with an available MR template. By applying groupwise registration, the new neonatal CT template is then created in full alignment with the MR template to build a bimodal MR-CT template. The mutual information value between the CT and the MR template is 1.17 which shows their perfect correspondence in the bimodal template. Moreover, the average mutual information value between normalized images and the CT template proposed in this study is 1.24±0.07. Comparing this value with the one reported in a previously published approach (0.63±0.07) demonstrates the better generalization properties of the new created template and the superiority of the proposed method for the creation of CT template in the standard space provided by MR neonatal head template. The neonatal bimodal MR-CT head template is freely downloadable from https://www.u-picardie.fr/labo/GRAMFC. PMID:28129340
Mobile Education: Towards Affective Bi-modal Interaction for Adaptivity
Directory of Open Access Journals (Sweden)
Efthymios Alepis
2009-04-01
Full Text Available One important field where mobile technology can make significant contributions is education. However one criticism in mobile education is that students receive impersonal teaching. Affective computing may give a solution to this problem. In this paper we describe an affective bi-modal educational system for mobile devices. In our research we describe a novel approach of combining information from two modalities namely the keyboard and the microphone through a multi-criteria decision making theory.
Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1.
Alpizar, Yeranddy A; Gees, Maarten; Sanchez, Alicia; Apetrei, Aurelia; Voets, Thomas; Nilius, Bernd; Talavera, Karel
2013-06-01
TRPA1 is a nonselective cation channel activated by a wide variety of noxious chemicals. Intriguingly, several TRPA1 modulators induce a bimodal effect, activating the channel at micromolar concentrations and inhibiting it at higher concentrations. Here we report the bimodal action of cinnamaldehyde (CA) and camphor, which are thus far reported as agonist and antagonist of TRPA1, respectively. Whole-cell patch-clamp experiments in TRPA1-expressing CHO cells revealed that, as previously reported, extracellular application of 100 μM CA strongly stimulates TRPA1 currents. However, subsequent application of 3 mM CA induced fast and reversible current inhibition. Application of 3 mM CA in basal conditions induced a rather small current increase, followed by current inhibition and a dramatic rebound of current amplitude upon washout. These observations are reminiscent of the effects of TRPA1 modulators having bimodal effects, e.g., menthol and nicotine. In line with previous reports, extracellular application of 1 mM camphor induced a decrease of basal TRPA1 currents. However, the current amplitude showed a significant overshoot upon washout. On the other hand, application of 100 μM camphor induced a 3-fold increase of the basal current amplitude measured at -75 mV. The bimodal effects of CA and camphor on TRPA1 were also observed in microfluorimetric measurements of intracellular Ca(2+) in intact TRPA1-expressing CHO cells and in primary cultures of mouse dorsal root ganglion neurons. These findings are essential for the understanding of the complex sensory properties of these compounds, as well as their utility when used to study the pathophysiological relevance of TRPA1.
A fission fragment detector for correlated fission output studies
Energy Technology Data Exchange (ETDEWEB)
Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)
2014-09-01
A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.
Cluster fission from the standpoint of nuclear fission
Energy Technology Data Exchange (ETDEWEB)
Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics
1996-03-01
Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)
Evidence for a bimodal distribution in human communication.
Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim
2010-11-02
Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc.
Nonlinear response speedup in bimodal visual-olfactory object identification
Directory of Open Access Journals (Sweden)
Richard eHöchenberger
2015-09-01
Full Text Available Multisensory processes are vital in the perception of our environment. In the evaluation of foodstuff, redundant sensory inputs not only assist the identification of edible and nutritious substances, but also help avoiding the ingestion of possibly hazardous substances. While it is known that the non-chemical senses interact already at early processing levels, it remains unclear whether the visual and olfactory senses exhibit comparable interaction effects. To address this question, we tested whether the perception of congruent bimodal visual-olfactory objects is facilitated compared to unimodal stimulation. We measured response times (RT and accuracy during speeded object identification. The onset of the visual and olfactory constituents in bimodal trials was physically aligned in the first and perceptually aligned in the second experiment. We tested whether the data favored coactivation or parallel processing consistent with race models. A redundant-signals effect was observed for perceptually aligned redundant stimuli only, i.e. bimodal stimuli were identified faster than either of the unimodal components. Analysis of the RT distributions and accuracy data revealed that these observations could be explained by a race model. More specifically, visual and olfactory channels appeared to be operating in a parallel, positively dependent manner. While these results suggest the absence of early sensory interactions, future studies are needed to substantiate this interpretation.
Does bimodal stimulus presentation increase ERP components usable in BCIs?
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.
2012-08-01
Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.
DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy
Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.
2009-10-01
Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the 252Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the 252Cf(SF) reaction with data available from literature.
The VERDI fission fragment spectrometer
Directory of Open Access Journals (Sweden)
Frégeau M.O.
2013-12-01
Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.
Relative fission product yield determination in the USGS TRIGA Mark I reactor
Koehl, Michael A.
Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular
Technical Application of Nuclear Fission
Denschlag, J. O.
The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.
Radiochemical studies on nuclear fission at Trombay
Indian Academy of Sciences (India)
Asok Goswami
2015-08-01
Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.
Collective spectra along the fission barrier
Directory of Open Access Journals (Sweden)
Pigni M. T.
2012-12-01
Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission
Goddard, P M; Rios, A
2015-01-01
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...
Fission-product retention in HTGR fuels
Energy Technology Data Exchange (ETDEWEB)
Homan, F.J.; Kania, M.J.; Tiegs, T.N.
1982-01-01
Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.
Rapid Separation of Fission Product 141La
Institute of Scientific and Technical Information of China (English)
XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen
2013-01-01
141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then
Fission Product Decay Heat Calculations for Neutron Fission of 232Th
Son, P. N.; Hai, N. X.
2016-06-01
Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.
Effect of nuclear viscosity on fission process
Energy Technology Data Exchange (ETDEWEB)
Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa
1989-02-01
According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.
Theoretical Description of the Fission Process
Energy Technology Data Exchange (ETDEWEB)
Witold Nazarewicz
2003-07-01
The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.
Some aspects of fission and quasifission processes
Indian Academy of Sciences (India)
B B Back
2015-08-01
The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.
Harmonic analysis on symmetric spaces
Terras, Audrey
This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.
Particle-vortex symmetric liquid
Mulligan, Michael
2016-01-01
We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...
Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.
2016-10-01
It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.
Directory of Open Access Journals (Sweden)
R. Léguillon
2016-10-01
Full Text Available It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O+232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model.
Bi-Modal and Mixture Distributions in Circular Data Analysis
Directory of Open Access Journals (Sweden)
Muhammet Burak KILIC
2016-10-01
Full Text Available Objective: Circular statistics is a special area which is analyzed by observed angular data on the unit circle. In many various studies, such as environment, biology or medicine, circular (angular data is an important part of the research. For illustration, to determine the secondary structure of the proteins by utilizing dihedral angles or to asses physical disorders such as gait disturbances between the bones in the geometric morphology or the organization of the beach after leaving the eggs of sea turtles, are the important applications of this area. The uses of linear statistical methods in this area lead to misleading results because of the geometric shape of the circular data. Therefore, when it is analyzing such angular data, circular statistical methods should be used. The objective of this study is compared with the bi-modal and mixture distributions in circular data analysis. Material and Methods: The bi-modal mixture von Mises, wrapped Normal, wrapped Cauchy and the generalisations of von Mises distributions were used and it was performed by iterative methods to obtain aximum likelihood estimators. These iterative methods were applied in R programming and the R codes were given for the circular distribution of the parameter estimation. These distributions were examined for analyzing dihedral angles in proteins and turtles rotations, and model selection was performed by using Akaike and Bayesian information criteria. Results: For dihedral angles in protein, two mixture wrapped Cauchy distribution was given the better fit. For turtle rotations, the generalizations of von Mises distribution and two mixture von Mises distribution were given the better fit. Conclusion: If there is observed an excessive concentration in one or more modes in analyzing circular data, the bimodal mixture von Mises and the generalisations of von Mises distribution for modeling may not be preferred. If there is not observed an excessive concentration in
Transition for Optimal Paths in Bimodal Directed Polymers
Institute of Scientific and Technical Information of China (English)
WANG Xiao-Hong
2005-01-01
@@ The problem for optimal paths in bimodal directed polymers is studied. It is shown that the distribution of the thermal average position of the endpoints of the optimal paths is discontinuous below the threshold p ＜ pc. The origin is that there is a finite possibility that only one endpoint takes the global minimum energy for p ＜ pc. Our results suggest that the percolation threshold for directed percolation is also the critical point of the transition for the possibility that the optimal paths converge to one endpoint.
Ferrer, Josep; Pacha, Juan R; Peña, Marta
2012-01-01
We consider the set of bimodal linear systems consisting of two linear dynamics acting on each side of a given hyperplane, assuming continuity along the separating hyperplane. Focusing on the unobservable planar ones, we obtain a simple explicit characterization of controllability. Moreover, we apply the canonical forms of these systems depending on two state variables to obtain explicitly miniversal deformations, to illustrate bifurcation diagrams and to prove that the unobservable controllable systems are stabilizable. Preprint of an article submitted for consideration in IJBC \\copyright 2011 copyright World Scientific Publishing Company http://www.worldscinet.com/ijbc/
Acelerômetro a fibra óptica bimodal
Fábio Avila de Castro
1994-01-01
Sensores interferométricos a fibra óptica vêm sendo largamente utilizados em aplicações que demandam elevado desempenho. Este trabalho apresenta um novo sensor interferométrico a fibra bimodal com núcleo elíptico que, numa configuração particular, pode ser convenientemente utilizado como acelerômetro. Testes elásticos e dinâmicos foram realizados de forma a caracterizarem-se parâmetros importantes desse sensor, tais como: sensibilidade estática, fator de escala, deriva, faixa dinâmica e freqü...
Spectroscopy of heavy fissionable nuclei
Indian Academy of Sciences (India)
S K Tandel
2015-09-01
Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.
Symmetrical progressive erythro-keratoderma
Directory of Open Access Journals (Sweden)
Sunil Gupta
1999-01-01
Full Text Available A 13-year-old male child had gradually progressive, bilaterall, symmetrical, erythematous hyperkeratotic plaques over knees, elbows, natal cleft, dorsa of hands and feet with palmoplantar keratoderma. High arched palate, fissured tongue and sternal depression (pectus-excavatum were unusual associations.
Axiomatizations of symmetrically weighted solutions
Kleppe, John; Reijnierse, Hans; Sudhölter, P.
2013-01-01
If the excesses of the coalitions in a transferable utility game are weighted, then we show that the arising weighted modifications of the well-known (pre)nucleolus and (pre)kernel satisfy the equal treatment property if and only if the weight system is symmetric in the sense that the weight of a su
Computationally Efficient Searchable Symmetric Encryption
Liesdonk, van Peter; Sedghi, Saeed; Doumen, Jeroen; Hartel, Pieter; Jonker, Willem; Jonker, Willem; Petkovic, Milan
2010-01-01
Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are
Particle-vortex symmetric liquid
Mulligan, Michael
2017-01-01
We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.
Thermophoresis of Axially Symmetric Bodies
2007-11-02
Sweden Abstract. Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen-mimber, Kn. The study is made in the limit...derived. Asymptotic solutions are studied. INTRODUCTION Thermophoresis as a phenomenon has been known for a long time, and several authors have approached
Shearfree Spherically Symmetric Fluid Models
Sharif, M
2013-01-01
We try to find some exact analytical models of spherically symmetric spacetime of collapsing fluid under shearfree condition. We consider two types of solutions: one is to impose a condition on the mass function while the other is to restrict the pressure. We obtain totally of five exact models, and some of them satisfy the Darmois conditions.
Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets
Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.
2007-01-01
Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.
A Connection Between Bulge Properties and the Bimodality of Galaxies
Drory, Niv
2007-01-01
The global colors of galaxies have recently been shown to follow bimodal distributions. Galaxies separate into a ``red sequence'', populated prototypically by early-type galaxies, and a ``blue cloud'', whose typical objects are late-type disk galaxies. Intermediate-type (Sa-Sbc) galaxies populate both regions. It has been suggested that this bimodality reflects the two-component nature of disk-bulge galaxies. However, it has now been established that there are two types of bulges: ``classical bulges'' that are dynamically hot systems resembling (little) ellipticals, and ``pseudobulges'', dynamically cold, flattened, disk-like structures that could not have formed via violent relaxation. Therefore thee question is whether at types Sa-Sbc, where both bulge types are found, the red-blue dichotomy separates galaxies at some value of disk-to-bulge ratio, $B/T$, or, whether it separates galaxies of different bulge type, irrespective of their $B/T$. We identify classical bulges and pseudobulges morphologically with ...
Nuclear Power from Fission Reactors. An Introduction.
Department of Energy, Washington, DC. Technical Information Center.
The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…
Prompt fission neutron spectrum of actinides
Energy Technology Data Exchange (ETDEWEB)
Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)
2016-01-06
Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.
Correlation measurements of fission-fragment properties
Directory of Open Access Journals (Sweden)
Oberstedt A.
2010-10-01
Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.
Theoretical Description of the Fission Process
Energy Technology Data Exchange (ETDEWEB)
Witold Nazarewicz
2009-10-25
Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic
Understanding symmetrical components for power system modeling
Das, J C
2017-01-01
This book utilizes symmetrical components for analyzing unbalanced three-phase electrical systems, by applying single-phase analysis tools. The author covers two approaches for studying symmetrical components; the physical approach, avoiding many mathematical matrix algebra equations, and a mathematical approach, using matrix theory. Divided into seven sections, topics include: symmetrical components using matrix methods, fundamental concepts of symmetrical components, symmetrical components –transmission lines and cables, sequence components of rotating equipment and static load, three-phase models of transformers and conductors, unsymmetrical fault calculations, and some limitations of symmetrical components.
Fission dynamics at low excitation energy. 2
Aritomo, Y; Ivanyuk, F A
2014-01-01
The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.
Cold fission as heavy ion emission
Energy Technology Data Exchange (ETDEWEB)
Poenaru, D.N.; Maruhn, J.A.; Greiner, W.; Ivascu, M.; Mazilu, D.; Gherghescu, R.
1987-11-01
The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from /sup 234/U, /sup 236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104/Mo, /sup 106/Mo and /sup 106/Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for /sup 234/U - the first nucleus in which all three groups have been already observed.
Los Alamos National Laboratory Fission Basis
Energy Technology Data Exchange (ETDEWEB)
Keksis, A.L.; Chadwick, M.B.; Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Meade, R.A.; Burns, C.J.; Wallstrom, T.C. [Los Alamos National Laboratory, NM 87545 (United States)
2011-07-01
This report is an overview of two main publications that provide a comprehensive review of the Los Alamos National Laboratory (LANL) Fission Basis. The first is the experimental paper, {sup F}ission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U, [Selby, H. D., et al., Nucl. Data Sheets, Vol. 111 2010, pp. 2891-2922] and the second is the theoretical paper, Fission Product Yields from Fission Spectrum n+ {sup 239}Pu for ENDF/B-VII.1, [Chadwick, M. B., et al., Nucl. Data Sheets, Vol. 111, 2010, pp. 2923-2964]. One important note is that none of this work would have been possible without the great documentation of the experimental details and results by G.W. Knobeloch, G. Butler, C.I. Browne, B. Erdal, B. Bayhurst, R. Prestwood, V. Armijo, J. Hasty and many others. (authors)
Fission dynamics with systems of intermediate fissility
Indian Academy of Sciences (India)
E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis
2015-08-01
A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Carrel, Frederick; Laine, Frederic; Sari, Adrien [SAPHIR Facility, Gif-sur-Yvette (France); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Normand, S. [Laboratory of Sensors and Elctronics Architectures CEA, Gif-sur-Yvette (France)
2013-07-15
The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of {sup 238}U have been determined by recoil catcher and an off-line {gamma}-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley (P/V) ratio, average light mass (left angle A{sub L} right angle) and heavy mass (left angle A{sub H} right angle) and average number of neutrons (left angle v right angle) in the bremsstrahlung-induced fission of {sup 238}U at different excitation energies were obtained from the mass yield data. From the present and literature data in the {sup 238}U ({gamma}, f) and {sup 238}U (n, f) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the {sup 238}U ({gamma}, f) reaction at various energies of the present work are double-humped, similar to those of the {sup 238}U (n, f) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the {sup 238}U ({gamma}, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the {sup 238}U ({gamma}, f) than in the {sup 238}U (n, f), whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley (P/V ratio in the {sup 238}U ({gamma}, f) reaction is similar to the {sup 238}U (n, f) reaction. v) The increase of left angle v right angle with excitation energy is also similar between the {sup 238}U ({gamma}, f) and {sup 238}U (n, f) reactions. However, it is surprising to see that the left angle A{sub L} right angle and
Naik, H.; Carrel, Frédérick; Kim, G. N.; Laine, Frédéric; Sari, Adrien; Normand, S.; Goswami, A.
2013-07-01
The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of 238U have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley ( P/ V ratio, average light mass () and heavy mass () and average number of neutrons () in the bremsstrahlung-induced fission of 238U at different excitation energies were obtained from the mass yield data. From the present and literature data in the 238U ( γ, f ) and 238U ( n, f ) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the 238U ( γ, f ) reaction at various energies of the present work are double-humped, similar to those of the 238U ( n, f ) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the 238U ( γ, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the 238U ( γ, f ) than in the 238U ( n, f ) , whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley ( P/ V ratio in the 238U ( γ, f) reaction is similar to the 238U ( n, f) reaction. v) The increase of with excitation energy is also similar between the 238U ( γ, f ) and 238U ( n, f) reactions. However, it is surprising to see that the and values with excitation energy behave entirely differently from the 238U ( γ, f ) and 238U ( n, f ) reactions.
Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli
Directory of Open Access Journals (Sweden)
Marieke Elise Thurlings
2014-09-01
Full Text Available Gaze-independent event-related potential (ERP based brain-computer interfaces (BCIs yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1 bimodal versus unimodal stimuli, (2 location-congruent versus location-incongruent bimodal stimuli, and (3 attending to both modalities versus to either one modality. We observed an enhanced bimodal (compared to unimodal P300 tAUC, which appeared to be positively affected by location-congruency (p=.056 and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance.
Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli.
Thurlings, Marieke E; Brouwer, Anne-Marie; Van Erp, Jan B F; Werkhoven, Peter
2014-01-01
Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components' tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance.
A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...
Symmetric normalisation for intuitionistic logic
DEFF Research Database (Denmark)
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...... normalisation, where all rules dual to standard ones are permuted up in the derivation. The result is a decomposition theorem having cut elimination and interpolation as corollaries.......We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus...
Symmetric two-coordinate photodiode
Directory of Open Access Journals (Sweden)
Dobrovolskiy Yu. G.
2008-12-01
Full Text Available The two-coordinate photodiode is developed and explored on the longitudinal photoeffect, which allows to get the coordinate descriptions symmetric on the steepness and longitudinal resistance great exactness. It was shown, that the best type of the coordinate description is observed in the case of scanning by the optical probe on the central part of the photosensitive element. The ways of improvement of steepness and linear of its coordinate description were analyzed.
Fission fragment mass distributions in 35Cl+Sm,154144 reactions
Tripathi, R.; Sodaye, S.; Sudarshan, K.; Nayak, B. K.; Jhingan, A.; Pujari, P. K.; Mahata, K.; Santra, S.; Saxena, A.; Mirgule, E. T.; Thomas, R. G.
2015-08-01
Background: A new type of asymmetric fission was observed in β -delayed fission of 180Tl [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] as symmetric mass distribution would be expected based on conventional shell effects leading to the formation of N =50 fragments. Following this observation, theoretical calculations were carried out which predict asymmetric mass distribution for several mercury isotopes around mass region of ˜180 at low and moderate excitation energies [Moller, Randrup, and Sierk, Phys. Rev. C 85, 024306 (2012), 10.1103/PhysRevC.85.024306; Andreev, Adamian, and Antonenko, Phys. Rev. C 86, 044315 (2012), 10.1103/PhysRevC.86.044315]. Studies on fission fragment mass distribution are required in this mass region to investigate this newly observed phenomenon. Purpose: The fission fragment mass distributions have been measured in 35Cl+Sm,154144 reactions at Elab=152.5 ,156.1 ,and 163.7 MeV populating compound nuclei in the mass region of ˜180 with variable excitation energy and neutron number to investigate the nature of mass distribution. Method: The fission fragment mass distribution has been obtained by measuring the "time of flight (TOF)" of fragments with respect to the beam pulse using two multiwire proportional counters placed at θlab=±65 .5∘ with respect to the beam direction. From the TOF of fragments, their velocities were determined, which were used to obtain mass distribution taking the compound nucleus as the fissioning system. Results: For both systems, mass distributions, although, appear to be symmetric, could not be fitted well by a single Gaussian. The deviation from a single Gaussian fit is more pronounced for the 35Cl+144Sm reaction. A clear flat top mass distribution has been observed for the 35Cl+144Sm reaction at the lowest beam energy. The mass distribution is very similar to that observed in the 40Ca+142Nd reaction, which populated a similar compound nucleus, but for the pronounced dip in the
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
Progress in Bimodal Polyethylene Produced by Metallocene Catalyst
Institute of Scientific and Technical Information of China (English)
FENG; YuTao
2001-01-01
The external new ways, kinds and recant advances of bimodal Polyethylene produced by metallocene catalyst were reviewed. For example, U.S.Pat.No 4939217 discloses an olefin polymerization supported catalyst comprising at least two different metallocenes each having different olefin polymerization termination rate constants in the presence of hydrogen. U.S.Pat. No.5077255 discloses an olefin polymerization supported catalyst comprising at least one metallocene of a metal, a non-metallocene transition metal and an alumoxane. The supported product is highly useful for the polymerization of olefins especially ethylene and especially for the copolymerization of ethylene and other mono and diolefins. U.S.Pat.No.5986024 discloses a process is provided for preparing polymer compositions which are multimodal in nature. The process involves contacting, under polymerization conditions, a selected addition polymerizable monomer with a metallocene catalyst having two or more distinct and chemically different active sites, and a catalyst activator. ……
Progress in Bimodal Polyethylene Produced by Metallocene Catalyst
Institute of Scientific and Technical Information of China (English)
FENG YuTao
2001-01-01
@@ The external new ways, kinds and recant advances of bimodal Polyethylene produced by metallocene catalyst were reviewed. For example, U.S.Pat.No 4939217 discloses an olefin polymerization supported catalyst comprising at least two different metallocenes each having different olefin polymerization termination rate constants in the presence of hydrogen. U.S.Pat. No.5077255 discloses an olefin polymerization supported catalyst comprising at least one metallocene of a metal, a non-metallocene transition metal and an alumoxane. The supported product is highly useful for the polymerization of olefins especially ethylene and especially for the copolymerization of ethylene and other mono and diolefins. U.S.Pat.No.5986024 discloses a process is provided for preparing polymer compositions which are multimodal in nature. The process involves contacting, under polymerization conditions, a selected addition polymerizable monomer with a metallocene catalyst having two or more distinct and chemically different active sites, and a catalyst activator.
Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications
Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina
This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.
Globular Cluster Systems in Brightest Cluster Galaxies. III: Beyond Bimodality
Harris, William E.; Ciccone, Stephanie M.; Eadie, Gwendolyn M.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry; Bailin, Jeremy
2017-01-01
We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the Hubble Space Telescope (HST) ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12,000 to 23,000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ≃ 0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] ≃ ‑2.4 to solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive gas-rich halos. Last, the proportion of metal-poor GCs rises especially rapidly outside projected radii R≳ 4 {R}{eff}, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.
Parametric Analysis of Tensile Properties of Bimodal Al Alloys by Finite Element Method
Institute of Scientific and Technical Information of China (English)
W.L. Zhanga; S. Li; S.R. Nutt
2009-01-01
An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal Al alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG Al and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al.Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal Al alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal Al alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal Al alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UT5, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent.
Temperature dependent fission fragment distribution in the Langevin equation
Institute of Scientific and Technical Information of China (English)
WANG Kun; MA Yu-Gang; ZHENG Qing-Shan; CAI Xiang-Zhou; FANG De-Qing; FU Yao; LU Guang-Cheng; TIAN Wen-Dong; WANG Hong-Wei
2009-01-01
The temperature dependent width of the fission fragment distributions was simulated in the Langevin equation by taking two-parameter exponential form of the fission fragment mass variance at scission point for each fission event. The result can reproduce experimental data well, and it permits to make reliable estimate for unmeasured product yields near symmetry fission.
Recovery and use of fission product noble metals
Energy Technology Data Exchange (ETDEWEB)
Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.
1980-06-01
Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)
Rearrangement of cluster structure during fission processes
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.
2004-01-01
Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...
Fission induced by nucleons at intermediate energies
Meo, Sergio Lo; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto
2014-01-01
Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.
Fission cross section measurements for minor actinides
Energy Technology Data Exchange (ETDEWEB)
Fursov, B. [IPPE, Obninsk (Russian Federation)
1997-03-01
The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)
Fission dynamics within time-dependent Hartree-Fock: boost-induced fission
Goddard, P M; Rios, A
2015-01-01
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...
Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission
Directory of Open Access Journals (Sweden)
Rossi P C R
2012-02-01
Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.
(d,p)-transfer induced fission of heavy radioactive beams
Veselsky, Martin
2012-01-01
(d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.
Fission fragment mass and angular distributions: Probes to study non-equilibrium fission
Indian Academy of Sciences (India)
R G Thomas
2015-08-01
Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.
Singular Value Decomposition for Unitary Symmetric Matrix
Institute of Scientific and Technical Information of China (English)
ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda
2003-01-01
A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.
Symmetric products of mixed Hodge modules
Maxim, Laurentiu; Schuermann, Joerg
2010-01-01
Generalizing a theorem of Macdonald, we show a formula for the mixed Hodge structure on the cohomology of the symmetric products of bounded complexes of mixed Hodge modules by showing the existence of the canonical action of the symmetric group on the multiple external self-products of complexes of mixed Hodge modules. We also generalize a theorem of Hirzebruch and Zagier on the signature of the symmetric products of manifolds to the case of the symmetric products of symmetric parings on bounded complexes with constructible cohomology sheaves where the pairing is not assumed to be non-degenerate.
Fission fragment angular distribution in heavy-ion-induced fission with anomalous behavior
Soheyli, S.; Feizi, B.
2014-08-01
Fission fragment angular distribution in heavy-ion-induced fission reactions is of particular importance. Transition state theory is provided to determine the angular distribution of fission fragments which includes standard saddle-point statistical and standard scission-point statistical models. The standard saddle-point statistical model was not able to reproduce the experimental fission fragment angular anisotropies for several heavy-ion-induced fission systems. In contrast to the standard saddle-point model, the standard scission-point statistical model was fairly successful in the prediction of angular anisotropy in heavy-ion-induced fission reaction systems with an anomalous behavior in angular anisotropy of fission fragments, but this model is not widely used as the standard saddle-point statistical model. In this research, a generalized model is introduced for the prediction of fission fragments angular anisotropy in the heavy-ion-induced fission reaction systems having an anomalous behavior. For this purpose, we study the N14,O16,F19+Th232;O16,F19+U238;Mg24,Si28,S32+Pb208;S32+Au197; and O16+Cm248 reaction systems. Finally, it is shown that the presented model is much more successful than previous models.
Measurement of 235U Fission Yield Induced by 252Cf Fission Neutron
Institute of Scientific and Technical Information of China (English)
YANG; Yi; LIU; Shi-long; JIANG; Wen-gang
2015-01-01
We measured fission yields of 235U by 252Cf fission neutrons with the directγray spectrometric method.Square sample foils of 15 mm,abundance of 235U is 90.2%,mass of 0.7gram,covered by pure aluminum foil.After irradiations every sample was measured by HPGe spectrometry for about 2months.Based on 140Ba’s fission yield,we get relative fission yields and the results were shown in Fig.1.
Energy from nuclear fission an introduction
De Sanctis, Enzo; Ripani, Marco
2016-01-01
This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...
Development of fission Mo-99 production technology
Energy Technology Data Exchange (ETDEWEB)
Park, Jin Ho; Choung, W. M.; Lee, K. I. and others
2000-05-01
Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.
Advanced modeling of prompt fission neutrons
Energy Technology Data Exchange (ETDEWEB)
Talou, Patrick [Los Alamos National Laboratory
2009-01-01
Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.
"UCx fission targets oxidation test stand"
Lacroix, Rachel
2014-01-01
"Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."
Discrete Torsion and Symmetric Products
Dijkgraaf, R
1999-01-01
In this note we point out that a symmetric product orbifold CFT can be twisted by a unique nontrivial two-cocycle of the permutation group. This discrete torsion changes the spins and statistics of corresponding second-quantized string theory making it essentially ``supersymmetric.'' The long strings of even length become fermionic (or ghosts), those of odd length bosonic. The partition function and elliptic genus can be described by a sum over stringy spin structures. The usual cubic interaction vertex is odd and nilpotent, so this construction gives rise to a DLCQ string theory with a leading quartic interaction.
A charged spherically symmetric solution
Indian Academy of Sciences (India)
K Moodley; S D Maharaj; K S Govinder
2003-09-01
We ﬁnd a solution of the Einstein–Maxwell system of ﬁeld equations for a class of accelerating, expanding and shearing spherically symmetric metrics. This solution depends on a particular ansatz for the line element. The radial behaviour of the solution is fully speciﬁed while the temporal behaviour is given in terms of a quadrature. By setting the charge contribution to zero we regain an (uncharged) perfect ﬂuid solution found previously with the equation of state =+ constant, which is a generalisation of a stiff equation of state. Our class of charged shearing solutions is characterised geometrically by a conformal Killing vector.
Immanant Conversion on Symmetric Matrices
Directory of Open Access Journals (Sweden)
Purificação Coelho M.
2014-01-01
Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.
Parallel Symmetric Eigenvalue Problem Solvers
2015-05-01
taken from a uniform distribution in [−W/2,+W/2] with some W ∈ [1, 30], meaning the Hamiltonian matrix will likely be symmetric indefinite. This W...residual vectors Rk = AYk −BYkΘk 8: Test for convergence 9: Solve the set of linear systems AVk+1 = BYk 10: end for Our test matrix A is a synthetic test...have squared the condition number of the matrix , so it is now more difficult to solve the linear systems arising at each TraceMin iteration. Again
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
Koyel Ganguly; Narayan Banerjee
2013-03-01
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of singularity. The singularities formed are shell focussing in nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar also diverges at the singularity. The interior spherically symmetric metric is matched with exterior Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Seventy-five years of nuclear fission
Indian Academy of Sciences (India)
S S Kapoor
2015-08-01
Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also opened several new frontiers of research in nuclear physics. This article is a narrative giving an overview of the landmarks of the progress in the field.
Detector instrumentation for nuclear fission studies
Indian Academy of Sciences (India)
Akhil Jhingan
2015-09-01
The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.
MCNP6 Fission Multiplicity with FMULT Card
Energy Technology Data Exchange (ETDEWEB)
Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory
2012-06-18
With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.
Modeling Fission Product Sorption in Graphite Structures
Energy Technology Data Exchange (ETDEWEB)
Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)
2013-04-08
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission
Directory of Open Access Journals (Sweden)
Print Cristin G
2011-01-01
Full Text Available Abstract Background Identifying the functional importance of the millions of single nucleotide polymorphisms (SNPs in the human genome is a difficult challenge. Therefore, a reverse strategy, which identifies functionally important SNPs by virtue of the bimodal abundance across the human population of the SNP-related mRNAs will be useful. Those mRNA transcripts that are expressed at two distinct abundances in proportion to SNP allele frequency may warrant further study. Matrix metalloproteinase 1 (MMP1 is important in both normal development and in numerous pathologies. Although much research has been conducted to investigate the expression of MMP1 in many different cell types and conditions, the regulation of its expression is still not fully understood. Results In this study, we used a novel but straightforward method based on agglomerative hierarchical clustering to identify bimodally expressed transcripts in human umbilical vein endothelial cell (HUVEC microarray data from 15 individuals. We found that MMP1 mRNA abundance was bimodally distributed in un-treated HUVECs and showed a bimodal response to inflammatory mediator treatment. RT-PCR and MMP1 activity assays confirmed the bimodal regulation and DNA sequencing of 69 individuals identified an MMP1 gene promoter polymorphism that segregated precisely with the MMP1 bimodal expression. Chromatin immunoprecipation (ChIP experiments indicated that the transcription factors (TFs ETS1, ETS2 and GATA3, bind to the MMP1 promoter in the region of this polymorphism and may contribute to the bimodal expression. Conclusions We describe a simple method to identify putative bimodally expressed RNAs from transcriptome data that is effective yet easy for non-statisticans to understand and use. This method identified bimodal endothelial cell expression of MMP1, which appears to be biologically significant with implications for inflammatory disease. (271 Words
Bi-modal G\\"odel logic over [0,1]-valued Kripke frames
Caicedo, Xavier
2011-01-01
We consider the G\\"odel bi-modal logic determined by fuzzy Kripke models where both the propositions and the accessibility relation are infinitely valued over the standard G\\"odel algebra [0,1] and prove strong completeness of Fischer Servi intuitionistic modal logic IK plus the prelinearity axiom with respect to this semantics. We axiomatize also the bi-modal analogues of $T,$ $S4,$ and $S5$ obtained by restricting to models over frames satisfying the [0,1]-valued versions of the structural properties which characterize these logics. As application of the completeness theorems we obtain a representation theorem for bi-modal G\\"odel algebras.
Bimodality: a possible experimental signature of the liquid-gas phase transition of nuclear matter
2006-01-01
We have observed a bimodal behaviour of the distribution of the asymmetry between the charges of the two heaviest products resulting from the decay of the quasi-projectile released in binary Xe+Sn and Au+Au collisions from 60 to 100 MeV/u. Event sorting has been achieved through the transverse energy of light charged particles emitted on the quasi-target side, thus avoiding artificial correlations between the bimodality signal and the sorting variable. Bimodality is observed for intermediate ...
Schwarz Methods: To Symmetrize or Not to Symmetrize
Holst, Michael
2010-01-01
A preconditioning theory is presented which establishes sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive definite preconditioners. It allows for the analysis and use of non-variational and non-convergent linear methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition and multigrid. It is illustrated why symmetrizing may be a bad idea for linear methods. It is conjectured that enforcing minimal symmetry achieves the best results when combined with conjugate gradient acceleration. Also, it is shown that absence of symmetry in the linear preconditioner is advantageous when the linear method is accelerated by using the Bi-CGstab method. Numerical examples are presented for two test problems which illustrate the theory and conjectures.
Energy Technology Data Exchange (ETDEWEB)
Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others
2014-09-01
A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.
Inclusive spectra of hadrons created by color tube fission; 1, Probability of tube fission
Gedalin, E V
1997-01-01
The probability of color tube fission that includes the tube surface small oscillation corrections is obtained with pre-exponential factor accuracy on the basis of previously constructed color tube model. Using these expressions the probability of the tube fission in $n$ point is obtained that is the basis for calculation of inclusive spectra of produced hadrons.
The bimodal initial mass function in the Orion Nebula Cloud
Drass, H; Chini, R; Bayo, A; Hackstein, M; Hoffmeister, V; Godoy, N; Vogt, N
2016-01-01
Due to its youth, proximity and richness the Orion Nebula Cloud (ONC) is an ideal testbed to obtain a comprehensive view on the Initial Mass Function (IMF) down to the planetary mass regime. Using the HAWK-I camera at the VLT, we have obtained an unprecedented deep and wide near-infrared JHK mosaic of the ONC (90% completeness at K~19.0mag, 22'x28). Applying the most recent isochrones and accounting for the contamination of background stars and galaxies, we find that ONC's IMF is bimodal with distinct peaks at about 0.25 and 0.025 M_sun separated by a pronounced dip at the hydrogen burning limit (0.08 M_sun), with a depth of about a factor 2-3 below the log-normal distribution. Apart from ~920 low-mass stars (M 0.005 M_sun, hence about ten times more substellar candidates than known before. The substellar IMF peak at 0.025 M_sun could be caused by BDs and IPMOs which have been ejected from multiple systems during the early star-formation process or from circumstellar disks.
Effect of short range hydrodynamic on bimodal colloidal gel systems
Boromand, Arman; Jamali, Safa; Maia, Joao
2015-03-01
Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.
Bimodal activated carbons derived from resorcinol-formaldehyde cryogels
Energy Technology Data Exchange (ETDEWEB)
Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)
2011-06-15
Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.
Bimodal distribution of damage morphology generated by ion implantation
Energy Technology Data Exchange (ETDEWEB)
Mok, K.R.C. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain) and Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117576 (Singapore)]. E-mail: g0202446@nus.edu.sg; Jaraiz, M. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Martin-Bragado, I. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Synopsys, Karl-Hammerschmidt Strasse 34, D-85609 Aschheim/Dornach (Germany); Rubio, J.E. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Castrillo, P. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Pinacho, R. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117576 (Singapore); Benistant, F. [Chartered Semiconductor Manufacturing, 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)
2005-12-05
A nucleation and evolution model of damage based on amorphous pockets (APs) has recently been developed and implemented in an atomistic kinetic Monte Carlo simulator. In the model, APs are disordered structures (I {sub n}V {sub m}), which are agglomerates of interstitials (I) and vacancies (V). This model has been used to study the composition and size distribution of APs during different ion implantations. Depending strongly on the dose rate, ion mass and implant temperature, the APs can evolve to a defect population where the agglomerates have a similar number of I and V (n {approx} m), or to a defect population with pure I (m {approx} 0) and pure V (n {approx} 0) clusters, or a mixture of APs and clusters. This behaviour corresponds to a bimodal (APs/clusters) distribution of damage. As the AP have different thermal stability compared to the I and V clusters, the same damage concentration obtained through different implant conditions has a different damage morphology and, consequently, exhibit a different resistance to subsequent thermal treatments.
Utterance independent bimodal emotion recognition in spontaneous communication
Tao, Jianhua; Pan, Shifeng; Yang, Minghao; Li, Ya; Mu, Kaihui; Che, Jianfeng
2011-12-01
Emotion expressions sometimes are mixed with the utterance expression in spontaneous face-to-face communication, which makes difficulties for emotion recognition. This article introduces the methods of reducing the utterance influences in visual parameters for the audio-visual-based emotion recognition. The audio and visual channels are first combined under a Multistream Hidden Markov Model (MHMM). Then, the utterance reduction is finished by finding the residual between the real visual parameters and the outputs of the utterance related visual parameters. This article introduces the Fused Hidden Markov Model Inversion method which is trained in the neutral expressed audio-visual corpus to solve the problem. To reduce the computing complexity the inversion model is further simplified to a Gaussian Mixture Model (GMM) mapping. Compared with traditional bimodal emotion recognition methods (e.g., SVM, CART, Boosting), the utterance reduction method can give better results of emotion recognition. The experiments also show the effectiveness of our emotion recognition system when it was used in a live environment.
Isotopic fission fragment distributions as a deep probe to fusion-fission dynamics
Farget, F; Delaune, O; Tarasov, O B; Derkx, X; Schmidt, K -H; Amthor, A M; Audouin, L; Bacri, C -O; Barreau, G; Bastin, B; Bazin, D; Blank, B; Benlliure, J; Caceres, L; Casarejos, E; Chibihi, A; Fernandez-Dominguez, B; Gaudefroy, L; Golabek, C; Grevy, S; Jurado, B; Kamalou, O; Lemasson, A; Lukyanov, S; Mittig, W; Morrissey, D J; Navin, A; Pereira, J; Perrot, L; Rejmund, M; Roger, T; Saint-Laurent, M -G; Savajols, H; Schmitt, C; Sherill, B M; Stodel, C; Taieb, J; Thomas, J -C; Villari, A C
2012-01-01
During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of the nucleus, and is also strongly influenced by the single-particle structure of the nucleus. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experimental observation of the potential energy landscape of the deforming nucleus. Very asymmetric fusion-fission reactions at energy close to the Coulomb barrier, produce well-defined conditions of the compound nucleus formation, where processes such as quasi-fission, pre-equilibrium emission and incomplete fusion are negligible. In the same time, the excitation energy is sufficient to reduce significantly structural effects, and mostly the macroscopic part of the potential is responsible for the formation of the fission fragmen...
Fine Spectra of Symmetric Toeplitz Operators
Directory of Open Access Journals (Sweden)
Muhammed Altun
2012-01-01
Full Text Available The fine spectra of 2-banded and 3-banded infinite Toeplitz matrices were examined by several authors. The fine spectra of n-banded triangular Toeplitz matrices and tridiagonal symmetric matrices were computed in the following papers: Altun, “On the fine spectra of triangular toeplitz operators” (2011 and Altun, “Fine spectra of tridiagonal symmetric matrices” (2011. Here, we generalize those results to the (2+1-banded symmetric Toeplitz matrix operators for arbitrary positive integer .
Impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease patients.
Simoes Loureiro, Isabelle; Lefebvre, Laurent
2015-01-01
The aim of this study was to generalize the positive impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease (AD) patients. In practice, the naming skills of healthy elderly persons improve when additional sensory signals are included. The hypothesis of this study was that the same influence would be observable in AD patients. Sixty elderly patients separated into three groups (healthy subjects, stage 1 AD patients, and stage 2 AD patients) were tested with a battery of naming tasks comprising three different modalities: a visual modality, an auditory modality, and a visual and auditory modality (bimodality). Our results reveal the positive influence of bimodality on the accuracy with which bimodal items are named (when compared with unimodal items) and their latency (when compared with unimodal auditory items). These results suggest that multisensory enrichment can improve lexical retrieval in AD patients.
Symmetric functions and Hall polynomials
MacDonald, Ian Grant
1998-01-01
This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
A Minimally Symmetric Higgs Boson
Low, Ian
2014-01-01
Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)xU(1) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal in all models where the Higgs arises as a pseudo-Nambu-Goldstone boson (PNGB). Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.
Computing symmetric colorings of the dihedral group
Zelenyuk, Yuliya
2016-06-01
A symmetry on a group G is a mapping G ∋ x ↦ gx-1 g ∈ G, where g ∈ G. A subset A ⊆ G is symmetric if it is invariant under some symmetry, that is, A = gA-1g. The notion of symmetry has interesting relations to enumerative combinatorics. A coloring is symmetric if χ(gx-1g) = χ(x) for some g ∈ G. We discuss an approach how to compute the number of symmetric r-colorings for any finite group. Using this approach we derive the formula for the number of symmetric r-colorings of the dihedral group D3.
Bi-Modal Authentication in Mobile Environments Using Session Variability Modelling
Motlicek, Petr; El Shafey, Laurent; Wallace, Roy; McCool, Chris; Marcel, Sébastien
2012-01-01
We present a state-of-the-art bi-modal authentication system for mobile environments, using session variability modelling. We examine inter-session variability modelling (ISV) and joint factor analysis (JFA) for both face and speaker authentication and evaluate our system on the largest bi-modal mobile authentication database available, the MOBIO database, with over 61 hours of audio-visual data captured by 150 people in uncontrolled environments on a mobile phone. Our system achieves 2.6% an...
Signals of bimodality in the fragmentation of Au quasi-projectiles
Bruno, M; Cannata, F; D'Agostino, M; Gramegna, F; Vannini, G
2008-01-01
Signals of bimodality have been investigated in experimental data of quasi-projectile decay produced in Au+Au collisions at 35 AMeV. This same data set was already shown to provide several signals characteristic of a first order, liquid-gas-like phase transition. Different event sortings proposed in the recent literature are analyzed. A sudden change in the fragmentation pattern is revealed by the distribution of the charge of the largest fragment, compatible with a bimodal behavior.
Total kinetic energy release in the fast neutron-induced fission of $^{235}$U
Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y
2015-01-01
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. The standard deviation of the TKE distribution is constant from $E_{n}$=20-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II modes for a given mass is independent of neutron energy.
Total kinetic energy release in the fast neutron-induced fission of $^{235}$U
Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y
2016-01-01
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emission $E^*_{TKE}=170.7\\pm0.4$ MeV in good agreement with known values. Our measurements are thus absolute measurements. The TKE in $^{235}$U(n,f) decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II ...
Anatomy of neck configuration in fission decay
Patra, S K; Satpathy, L
2010-01-01
The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes $^{236}U$ and $^{232}Th$ in the valley of stability and exotic neutron rich isotopes $^{250}U$, $^{256}U$, $^{260}U$, $^{240}Th$, $^{250}Th$, $^{256}Th$ likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for $^{260}$U and $^{256}$Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay li...
Calantoni, J.; Landry, B. J.
2010-12-01
The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the
Robustness analysis of bimodal networks in the whole range of degree correlation
Mizutaka, Shogo; Tanizawa, Toshihiro
2016-08-01
We present an exact analysis of the physical properties of bimodal networks specified by the two peak degree distribution fully incorporating the degree-degree correlation between node connections. The structure of the correlated bimodal network is uniquely determined by the Pearson coefficient of the degree correlation, keeping its degree distribution fixed. The percolation threshold and the giant component fraction of the correlated bimodal network are analytically calculated in the whole range of the Pearson coefficient from -1 to 1 against two major types of node removal, which are the random failure and the degree-based targeted attack. The Pearson coefficient for next-nearest-neighbor pairs is also calculated, which always takes a positive value even when the correlation between nearest-neighbor pairs is negative. From the results, it is confirmed that the percolation threshold is a monotonically decreasing function of the Pearson coefficient for the degrees of nearest-neighbor pairs increasing from -1 and 1 regardless of the types of node removal. In contrast, the node fraction of the giant component for bimodal networks with positive degree correlation rapidly decreases in the early stage of random failure, while that for bimodal networks with negative degree correlation remains relatively large until the removed node fraction reaches the threshold. In this sense, bimodal networks with negative degree correlation are more robust against random failure than those with positive degree correlation.
Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.
Kiracofe, Daniel; Raman, Arvind; Yablon, Dalia
2013-01-01
One of the key goals in atomic force microscopy (AFM) imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes). It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth), but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.
Bimodality: a possible experimental signature of the liquid-gas phase transition of nuclear matter
Pichon, M; Gulminelli, F; López, O; Tamain, B
2006-01-01
We have observed a bimodal behaviour of the distribution of the asymmetry between the charges of the two heaviest products resulting from the decay of the quasi-projectile released in binary Xe+Sn and Au+Au collisions from 60 to 100 MeV/u. Event sorting has been achieved through the transverse energy of light charged particles emitted on the quasi-target side, thus avoiding artificial correlations between the bimodality signal and the sorting variable. Bimodality is observed for intermediate impact parameters for which the quasi-projectile is identified. A simulation shows that the deexcitation step rather than the geometry of the collision appears responsible for the bimodal behaviour. The influence of mid-rapidity emission has been verified. The two bumps of the bimodal distribution correspond to different excitation energies and similar temperatures. It is also shown that it is possible to correlate the bimodality signal with a change in the distribution of the heaviest fragment charge and a peak in potent...
Excitation-energy dependence of the nuclear fission characteristics
Energy Technology Data Exchange (ETDEWEB)
Baba, H.; Saito, T.; Takahashi, N. [Osaka City Univ. (Japan). Faculty of Science] [and others
1996-03-01
It is known that the width parameter of the fragment mass yield distribution follows a beautiful systematics with respect to the excitation energy. According to this systematics, the fission characteristics following the systematics should disappear when the excitation energy Ex goes down to 14 MeV. The present purpose is to elucidate if, where, how and why a transition takes place in the fission characteristics of the asymmetric fission of light actinide elements. Two types of experiments are performed, one is the double-energy measurement of the kinetic energies of complementary fragments in the thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at 13.3- and 15.7-MeV excitations, and the other is the radiochemical study of proton-induced fission and photofission of {sup 238}U at various excitation energies. In conclusion, it has demonstrated that there are two distinctive fission mechanisms in the low-energy fission of light actinide elements and the transition between them takes place around 14-MeV excitation. The characteristics of proton fission and photofission in the energy range lower than the above transition point are the essentially the same as those of thermal-neutron fission and also spontaneous fission. The results of GDR fission indicates the fission in the high-energy side starts from the nuclear collective states, whereas the lower-energy fission is of non-collective nature. It is likely that thermal-neutron fission is rather of the barrier-penetrating type like spontaneous fission than the threshold fission. (S.Y.)
Fusion-fission study at IUAC: Recent results
Pullanhiotan, Sugathan
2016-10-01
Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.
Spherically-symmetric Accretion onto a Black Hole at the Center of a Young Stellar Cluster
Silich, Sergiy; Hueyotl-Zahuantitla, Filiberto
2008-01-01
We present a self-consistent, bimodal stationary solution for spherically symmetric flows driven by young massive stellar clusters with a central supermassive black hole. We demonstrate that the hydrodynamic regime of the flow depends on the location of the cluster in the 3D (star cluster mechanical luminosity - BH mass - star cluster radius) parameter space. We show that a threshold mechanical luminosity (L_crit) separates clusters which evolve in the BH dominated regime frome those whose internal structure is strongly affected by the radiative cooling. In the first case(below the threshold energy) gravity of the BH separates the flow into two distinct zones: the inner accretion zone and the outer zone where the star cluster wind is formed. In the second case (above the critical luminosity), catastrophic cooling sets in inside the cluster. In this case the injected plasma becomes thermally unstable that inhibits a complete stationary solution. We compared the calculated accretion rates and the BH luminositie...
Automorphism groups of causal symmetric spaces of Cayley type and bounded symmetric domains
Institute of Scientific and Technical Information of China (English)
Soji; Kaneyuki
2005-01-01
Symmetric spaces of Cayley type are a higher dimensional analogue of a onesheeted hyperboloid in R3. They form an important class of causal symmetric spaces. To a symmetric space of Cayley type M, one can associate a bounded symmetric domain of tube type D. We determine the full causal automorphism group of M. This clarifies the relation between the causal automorphism group and the holomorphic automorphism group of D.
Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system
Zhou, Z.; Yang, Y.; Xu, H.
2011-10-01
This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.
Nuclear fission problem and Langevin equation
Directory of Open Access Journals (Sweden)
M Sakhaee
2011-12-01
Full Text Available A combined dynamical and statistical model for fission was employed in our calculation. There is no doubt that a Langevin description plus a Monte Carlo treatment of the evaporation processes provide the most adequate dynamical description. In this paper, we would consider a strongly shaped dependent friction force and we use the numerical method rather than the analytical one. The objective of this article is to calculate the time dependent fission widths of the 224Th nucleus. The fission widths were calculated with both chaos-weighted wall friction (CWWF and wall friction (WF dissipations. The calculations are repeated for 100000 trajectories. The result was compared to the others' work. We use nuclear elongation coordinate with time and it is necessary to repeat the small steps many times to improve the accuracy.
Energy partition in low energy fission
Mirea, M
2011-01-01
The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the another separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single particle level schemes are obtained within the two center Woods-Saxon shell model. It is shown that the available intrinsic dissipated energy is not shared proportionally to the masses of the two fission fragments. If the heavy fragment possesses nucleon numbers close to the magic ones, the accumulated intrinsic excitation energy is lower than that of the light fragment.
Solar vs. Fission Surface Power for Mars
Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.
2016-01-01
A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per
Prompt fission neutron emission: Problems and challenges
Directory of Open Access Journals (Sweden)
Hambsch F.-J.
2013-12-01
Full Text Available This paper presents some of the challenges ahead of us even after 75 years of the discovery of the fission process and large progress made since then. The focus is on application orientation, which requires improved measurements on fission cross-sections and neutron and γ-ray multiplicities. Experimental possibilities have vastly improved the past decade leading to developments of highly sophisticated detector systems and the use of digital data acquisition and signal processing. The development of innovative fast nuclear reactor technology needs improved respective nuclear data. Advancements in theoretical modelling also require better experimental data. Theory has made progress in calculating fission fragment distributions (i.e. GEF code as well as prompt neutron and γ-ray emission to catch up with the improved experiments.
Antiproton Induced Fission and Fragmentation of Nuclei
2002-01-01
The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...
Dissipative dynamics in quasi-fission
Oberacker, V E; Simenel, C
2014-01-01
Quasi-fission is the primary reaction mechanism that prevents the formation of superheavy elements in heavy-ion fusion experiments. Employing the time-dependent density functional theory approach we study quasi-fission in the systems $^{40,48}$Ca+$^{238}$U. Results show that for $^{48}$Ca projectiles the quasi-fission is substantially reduced in comparison to the $^{40}$Ca case. This partly explains the success of superheavy element formation with $^{48}$Ca beams. For the first time, we also calculate the repartition of excitation energies of the two fragments in a dynamic microscopic theory. The system is found in quasi-thermal equilibrium only for reactions with $^{40}$Ca. The differences between both systems are interpreted in terms of initial neutron to proton asymmetry of the colliding partners.
Fission Enhanced diffusion of uranium in zirconia
Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H
2005-01-01
This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.
Phase Transition Induced Fission in Lipid Vesicles
Leirer, C; Myles, V M; Schneider, M F
2010-01-01
In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (T
Research on Nuclear Reaction Network Equation for Fission Product Nuclides
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Nuclear Reaction Network Equation calculation system for fission product nuclides was developed. With the system, the number of the fission product nuclides at different time can be calculated in the different neutron field intensity and neutron energy spectra
Solar Versus Fission Surface Power for Mars
Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.
2016-01-01
A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.
CANONICAL EXTENSIONS OF SYMMETRIC LINEAR RELATIONS
Sandovici, Adrian; Davidson, KR; Gaspar, D; Stratila, S; Timotin, D; Vasilescu, FH
2006-01-01
The concept of canonical extension of Hermitian operators has been recently introduced by A. Kuzhel. This paper deals with a generalization of this notion to the case of symmetric linear relations. Namely, canonical regular extensions of symmetric linear relations in Hilbert spaces are studied. The
Symmetric products, permutation orbifolds and discrete torsion
Bántay, P
2000-01-01
Symmetric product orbifolds, i.e. permutation orbifolds of the full symmetric group S_{n} are considered by applying the general techniques of permutation orbifolds. Generating functions for various quantities, e.g. the torus partition functions and the Klein-bottle amplitudes are presented, as well as a simple expression for the discrete torsion coefficients.
Inversion-symmetric topological insulators
Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei
2011-06-01
We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion
A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission
Ethvignot, T; Giot, L; Casoli, P; Nelson, R O
2002-01-01
A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm sup 2 of pure sup 2 sup 3 sup 8 U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented.
Uranium arc fission reactor for space propulsion
Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.
1991-01-01
Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.
Actinide and fission product separation and transmutation
Energy Technology Data Exchange (ETDEWEB)
NONE
1993-07-01
The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)
Ionization Chamber for Prompt Fission Neutron Investigations
ZEYNALOV Sh.; ZEYNALOVA O. V.; Hambsch, Franz-Josef; Sedyshev, P.; SHVETSOV V.
2014-01-01
In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electro...
Fission Yeast Cell Cycle Synchronization Methods.
Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio
2016-01-01
Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.
Alpha decay from fission isomeric states
Energy Technology Data Exchange (ETDEWEB)
Poenaru, D.N.; Ivascu, M. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))
1981-07-01
Alpha-decay half-lives from shape isomeric states of some even-even isotopes of U, Pu and Cm nuclei are calculated by using fission theory in the parametrisation of a spheroid intersected with a sphere. The potential barrier was calculated in the framework of the liquid-drop model of Myers and Swiatecki (Art. Fys.; 36: 343 (1967)) extended for systems with different charge densities; a phenomenological shell correction was introduced. The WKB computed lifetimes are many orders of magnitude longer than that of the spontaneous fission process, in agreement with experimental results.
Optimally moderated nuclear fission reactor and fuel source therefor
Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.
2008-07-22
An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.
Energy Partition in n+233U Fission Reaction
Institute of Scientific and Technical Information of China (English)
CHEN; Yong-jing; LIU; Ting-jin; SHU; Neng-chuan
2012-01-01
<正>The partition of the total excitation energy between the fission fragments for the n+233U fission reactions are analyzed with a semi-empirical model, and it is a key point for calculating the prompt fission neutron spectrum, and it is still a long-standing problem for nuclear fission, and attracts more and more attention. With the available experimental data, such as the average total number of emitted neutrons, the
Joglekar, Yogesh N
2010-01-01
We study the properties of a parity- and time-reversal- (PT) symmetric tight-binding chain of size N with position-dependent hopping amplitude. In contrast to the fragile PT-symmetric phase of a chain with constant hopping and imaginary impurity potentials, we show that, under very general conditions, our model is {\\it always} in the PT-symmetric phase. We numerically obtain the energy spectrum and the density of states of such a chain, and show that they are widely tunable. By studying the size-dependence of inverse participation ratios, we show that although the chain is not translationally invariant, most of its eigenstates are extended. Our results indicate that tight-binding models with non-Hermitian PT-symmetric hopping have a robust PT-symmetric phase and rich dynamics.
Classification of Entanglement in Symmetric States
Aulbach, Martin
2011-01-01
Quantum states that are symmetric with respect to permutations of their subsystems appear in a wide range of physical settings, and they have a variety of promising applications in quantum information science. In this thesis the entanglement of symmetric multipartite states is categorised, with a particular focus on the pure multi-qubit case and the geometric measure of entanglement. An essential tool for this analysis is the Majorana representation, a generalisation of the single-qubit Bloch sphere representation, which allows for a unique representation of symmetric n qubit states by n points on the surface of a sphere. Here this representation is employed to search for the maximally entangled symmetric states of up to 12 qubits in terms of the geometric measure, and an intuitive visual understanding of the upper bound on the maximal symmetric entanglement is given. Furthermore, it will be seen that the Majorana representation facilitates the characterisation of entanglement equivalence classes such as Stoc...
The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier
Energy Technology Data Exchange (ETDEWEB)
Harca, I. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna, Russia and Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele (Romania); Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna (Russian Federation); Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D. [IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay (France); Chubarian, G. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Piot, J.; Schmitt, C. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Trzaska, W. H. [Accelerator Laboratory of University of Jyväskylä (JYFL), Jyväskylä (Finland); Vardaci, E. [Dipartamento di Scienze Fisiche and INFN (INFN-Na), Napoli (Italy)
2015-02-24
The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.
Substring-Searchable Symmetric Encryption
Directory of Open Access Journals (Sweden)
Chase Melissa
2015-06-01
Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Symmetric Structure in Logic Programming
Institute of Scientific and Technical Information of China (English)
Jin-Zhao Wu; Harald Fecher
2004-01-01
It is argued that some symmetric structure in logic programs could be taken into account when implementing semantics in logic programming. This may enhance the declarative ability or expressive power of the semantics. The work presented here may be seen as representative examples along this line. The focus is on the derivation of negative information and some other classic semantic issues. We first define a permutation group associated with a given logic program. Since usually the canonical models used to reflect the common sense or intended meaning are minimal or completed models of the program, we expose the relationships between minimal models and completed models of the original program and its so-called G-reduced form newly-derived via the permutation group defined. By means of this G-reduced form, we introduce a rule to assume negative information termed G-CWA, which is actually a generalization of the GCWA. We also develop the notions of G-definite, G-hierarchical and G-stratified logic programs, which are more general than definite, hierarchical and stratified programs, and extend some well-known declarative and procedural semantics to them, respectively.
Overview of research by the fission group in Trombay
Indian Academy of Sciences (India)
R K Chourdhury
2015-08-01
Nuclear fission studies in Trombay began nearly six decades ago, with the commissioning of the APSARA research reactor. Early experimental work was based on mass, kinetic energy distributions, neutron and X-ray emission in thermal neutron fission of 235U, which were carried out with indigenously developed detectors and electronics instrumentation. With the commissioning of CIRUS reactor and the availability of higher neutron flux, advanced experiments were carried out on ternary fission, pre-scission neutron emission, fragment charge distributions, quarternary fission, etc. In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy-ion accelerator were available, which provided a rich variety of possibilities in nuclear fission studies. Pioneering work on fragment angular distributions, fission time-scales, transfer-induced fission, -ray multiplicities and mass–energy correlations were carried out, providing important information on the dynamics of the fission process. More recently, work on fission fragment -ray spectroscopy has been initiated, to understand the nuclear structure aspects of the neutron-rich fission fragment nuclei. There have also been parallel efforts to carry out theoretical studies in the areas of shell effects, superheavy nuclei, fusion–fission dynamics, fragment angular distributions, etc. to complement the experimental studies. This paper will provide a glimpse of the work carried out by the fission group at Trombay in the above-mentioned topics.
Developing an "atomic clock" for fission lifetime measurements
Wilschut, H.W.E.M.; Kravchuk, V.
2004-01-01
The relevance of measuring fission lifetimes of hot nuclei is briefly discussed. It is shown that K X-ray emission prior to fission can be used to measure fission lifetimes. The preparation of the K-shell hole, the simultaneous nuclear excitation, and the analysis of the X-ray spectra is described.
Mass Distribution Measurement of 252Cf Spontaneous Fission
Institute of Scientific and Technical Information of China (English)
LIU; Shi-long; YANG; Yi; ZHANG; Chun-li; HAN; Hong-yin
2015-01-01
The E-v method of measuring the kinetic energy(E)and velocity(v)of outgoing fission products has been utilized,with the goal of measuring the mass resolution better than 1atomic mass units(amu),and could identify every mass for light fission products of unsymmetrical fission.This work measured mass yield distribution
Design and Simulation of High Radioactivity Fission Ionization Chamber
Institute of Scientific and Technical Information of China (English)
WANG; Qi
2012-01-01
<正>It is great effect that the fission neutron release in 239Pu(n, 2n) cross section measurement by using multi-unit gadolinium loaded liquid scintillation detector system, for the 239Pu fission cross section is larger than (n, 2n) cross section one order of magnitude. In order to deduct the effect of fission neutrons,
Fission barrier heights in the A ∼ 200 mass region
Indian Academy of Sciences (India)
K Mahata
2015-08-01
Statistical model analysis is carried out for - and -induced fission reactions using a consistent description for fission barrier and level density in A ∼ 200 mass region. A continuous damping of shell correction with excitation energy is considered. Extracted fission barriers agree well with the recent microscopic–macroscopic model. The shell corrections at the saddle point were found to be insignificant.
SPIDER Progress Towards High Resolution Correlated Fission Product Data
Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team
2014-09-01
The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.
Fission Matrix Capability for MCNP Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory
2012-09-05
In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a
Symmetric Partial Derivatives%对称偏导数
Institute of Scientific and Technical Information of China (English)
徐永平
2001-01-01
In this paper, symmetric partial derivatives and symmetric total differential of a function of several variables are defined. The relationship between partial derivative and the symmetric partial derivative, the total differential and the symmetric total derivative are discussed. By means of the concept of symmetric partial derivatives, the existence theorem of the total differential of a function of several is obtained.
Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.
Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi
2015-12-01
The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes.
Fission barriers and probabilities of spontaneous fission for elements with Z$\\geq$100
Baran, A; Reinhard, P -G; Robledo, L M; Staszczak, A; Warda, M
2015-01-01
This is a short review of methods and results of calculations of fission barriers and fission half-lives of even-even superheavy nuclei. An approvable agreement of the following approaches is shown and discussed: The macroscopic-microscopic approach based on the stratagem of the shell correction to the liquid drop model and a vantage point of microscopic energy density functionals of Skyrme and Gogny type selfconsistently calculated within Hartree-Fock-Bogoliubov method. Mass parameters are calculated in the Hartree-Fock-Bogoliubov cranking approximation. A short part of the paper is devoted to the nuclear fission dynamics. We also discuss the predictive power of Skyrme functionals applied to key properties of the fission path of $^{266}$Hs. It applies the standard techniques of error estimates in the framework of a $\\chi^2$ analysis.
Integrated propulsion and power modeling for bimodal nuclear thermal rockets
Clough, Joshua
Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube
Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River
Gran, K. B.
2015-12-01
Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a
Multiplicity and energy of neutrons from {sup 233}U(n{sub th},f) fission fragments
Energy Technology Data Exchange (ETDEWEB)
Nishio, Katsuhisa; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)
1998-03-01
The correlation between fission fragments and prompt neutrons from the reaction {sup 233}U(n{sub th},f) was measured with improved accuracy. The results determined the neutron multiplicity and emission energy as a function of fragment mass and total kinetic energy. The average energy as a function of fragment mass followed a nearly symmetric distribution centered about the equal mass-split and formed a remarkable contrast with the saw-tooth distribution of the average neutron multiplicity. The neutron multiplicity from the specified fragment decreases linearly with total kinetic energy, and the slope of multiplicity with kinetic energy had the minimum value at about 130 u. The level density parameter versus mass determined from the neutron data showed a saw-tooth structure with the pronounced minimum at about 128 and generally followed the formula by Gilbert and Cameron, suggesting that the neutron emission process was very much affected by the shell-effect of the fission fragment. (author)
Fission Product Sorptivity in Graphite
Energy Technology Data Exchange (ETDEWEB)
Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)
2015-04-01
Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one
Fission in intermediate energy heavy ion reactions
Energy Technology Data Exchange (ETDEWEB)
Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S. (Los Alamos National Lab., NM (USA)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L. (Lawrence Livermore National Lab., CA (USA)); Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G. (Lawrence Berkeley Lab., CA (USA)); Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W. (Brookhaven National Lab., Upton, NY (USA)); Dichter, B.; Kaufman, S.; Videbaek, F. (Argonne National Lab. (USA)); Fraenkel, Z.; Mamane, G. (Weizmann Inst. of Science, Rehovoth (Israel)); Cebra, D.; Westfall, G.D. (Michigan State Univ., East Lansing (USA))
1989-10-09
A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.).
Propagation of a constant velocity fission wave
Deinert, Mark
2011-10-01
The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.
Development of fission Mo-99 production technology
Energy Technology Data Exchange (ETDEWEB)
Park, Jin Ho; Choung, W. M.; Lee, K. I. and others
2001-05-01
This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.
Actinide and fission product partitioning and transmutation
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-07-01
The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)
UBA domain containing proteins in fission yeast
DEFF Research Database (Denmark)
Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P;
2003-01-01
characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...
After Apollo: Fission Origin of the Moon
O'Keefe, John A.
1973-01-01
Presents current ideas about the fission process of the Moon, including loss of mass. Saturnian rings, center of the Moon, binary stars, and uniformitarianism. Indicates that planetary formation may be best explained as a destructive, rather than a constructive process. (CC)
Formation of asteroid pairs by rotational fission.
Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A
2010-08-26
Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.
Brownian shape motion: Fission fragment mass distributions
Directory of Open Access Journals (Sweden)
Sierk Arnold J.
2012-02-01
Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.
Energy-loss distributions of fission fragments
Energy Technology Data Exchange (ETDEWEB)
Demidovich, N.N.; Nakhutin, I.E.; Shatunov, V.G.
1976-03-05
The f-f coincidence method was used to investigate the change in the form of the energy-loss distributions of Cf/sup 252/ fission fragments in air, down to fragment energies approx.0.8 MeV. A theoretical model is considered for the estimate of the mean-squared deviations of the fragment energy-loss distributions. (AIP)
Liquid uranium alloy-helium fission reactor
Minkov, V.
1984-06-13
This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.
Fission neutron output measurements at LANSCE
Energy Technology Data Exchange (ETDEWEB)
Nelson, Ronald Owen [Los Alamos National Laboratory; Haight, Robert C [Los Alamos National Laboratory; Devlin, Matthew J [Los Alamos National Laboratory; Fotiadis, Nikolaos [Los Alamos National Laboratory; Laptev, Alexander [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Taddeucci, Terry N [Los Alamos National Laboratory; Tovesson, Fredrik [Los Alamos National Laboratory; Ullmann, J L [Los Alamos National Laboratory; Wender, Stephen A [Los Alamos National Laboratory; Bredeweg, T A [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; Wu, Ching - Yen [LLNL; Becker, J A [LLNL; Stoyer, M A [LLNL; Henderson, R [LLNL; Sutton, M [LLNL; Belier, Gilbert [BRUYERES-LE-CHATEL, FRANCE; Chatillon, A [BRUYERES-LE-CHATEL, FRANCE; Granier, Thierry [CEA, BRUYERES-LE-CHATEL, FRANCE; Laurent, Benoit [CEA, BRUYERES-LE-CHATEL, FRANCE; Taieb, Julien [CEA, BRUYERES-LE-CHATEL, FRANCE
2010-01-01
Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.
Random matrix theory and symmetric spaces
Energy Technology Data Exchange (ETDEWEB)
Caselle, M.; Magnea, U
2004-05-01
In this review we discuss the relationship between random matrix theories and symmetric spaces. We show that the integration manifolds of random matrix theories, the eigenvalue distribution, and the Dyson and boundary indices characterizing the ensembles are in strict correspondence with symmetric spaces and the intrinsic characteristics of their restricted root lattices. Several important results can be obtained from this identification. In particular the Cartan classification of triplets of symmetric spaces with positive, zero and negative curvature gives rise to a new classification of random matrix ensembles. The review is organized into two main parts. In Part I the theory of symmetric spaces is reviewed with particular emphasis on the ideas relevant for appreciating the correspondence with random matrix theories. In Part II we discuss various applications of symmetric spaces to random matrix theories and in particular the new classification of disordered systems derived from the classification of symmetric spaces. We also review how the mapping from integrable Calogero-Sutherland models to symmetric spaces can be used in the theory of random matrices, with particular consequences for quantum transport problems. We conclude indicating some interesting new directions of research based on these identifications.
The symmetric extendibility of quantum states
Nowakowski, Marcin L.
2016-09-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.
Neutron induced fission of 234U
Directory of Open Access Journals (Sweden)
Pomp S.
2012-02-01
Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean
The partial fission of fast spinning asteroids
Tardivel, Simon; Sanchez, Paul; Scheeres, Daniel J.
2016-10-01
The spin rates of asteroids systematically change over time due the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. Above a certain spin rate that depends on the body's density, regions of an asteroid can enter in tension, with components held to the body by cohesive forces. When the body fails, deformation or fission can occur. Catastrophic fission leading to complete disruption has been directly observed in active asteroid P/2013 R3. Partial fission, the loss of only part of the body, has been proposed as a mechanism for the formation of binaries and is explored here.The equatorial cavities of (341843) 2008 EV5 and of (185851) 2000 DP107 (a binary system) are consistent with a localized partial fission of the body (LPSC 2016 #1036). The examination of the gravity field of these bodies reveals that a mass placed within these cavities could be shed. In this mechanism, the outward pull of inertial forces creates an average stress at the cavity interface of ≈1 Pa for 2008 EV5 and ≈3 Pa for 2000 DP107 at spin periods of ≈3.15 h for the assumed densities of 1.3 g/cm3.This work continues the study of this partial, localized fission. Specifically, it addresses the issue of the low cohesion necessary to the mechanism. These cohesion values are typically lower than global strength values inferred on other asteroids (10 - 200 Pa), meaning that partial fission may occur prior to larger-scale deformations. Yet, several processes can explain the discrepancy, as they can naturally segregate particles by size. For instance, landslides or granular convection (Brazil nut effect) could bring larger boulders to the equator of the body, while finer particles are left at higher latitudes or sink to the center. Conversely, failure of the interior could bring boulders to the surface. The peculiar profile shape of these asteroids, shared by many binaries (e.g. 1999 KW4, 1996 FG3) may also be a clue of this heterogeneity, as this "spin top" shape is obtained in simulations with
Microscopic theory of nuclear fission: a review
Schunck, N.; Robledo, L. M.
2016-11-01
This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract
Specific fission J-window and angular momentum dependence of the fission barrier
Energy Technology Data Exchange (ETDEWEB)
Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi
1997-04-01
A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.
Evolution of isotopic fission-fragment yields with excitation energy
Directory of Open Access Journals (Sweden)
Bazin D.
2012-07-01
Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.
Application of the dinuclear system model to fission process
Directory of Open Access Journals (Sweden)
Andreev A. V.
2016-01-01
Full Text Available A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron–induced fission of 239Pu.
Contributions of electric and acoustic hearing to bimodal speech and music perception.
Directory of Open Access Journals (Sweden)
Joseph D Crew
Full Text Available Cochlear implant (CI users have difficulty understanding speech in noisy listening conditions and perceiving music. Aided residual acoustic hearing in the contralateral ear can mitigate these limitations. The present study examined contributions of electric and acoustic hearing to speech understanding in noise and melodic pitch perception. Data was collected with the CI only, the hearing aid (HA only, and both devices together (CI+HA. Speech reception thresholds (SRTs were adaptively measured for simple sentences in speech babble. Melodic contour identification (MCI was measured with and without a masker instrument; the fundamental frequency of the masker was varied to be overlapping or non-overlapping with the target contour. Results showed that the CI contributes primarily to bimodal speech perception and that the HA contributes primarily to bimodal melodic pitch perception. In general, CI+HA performance was slightly improved relative to the better ear alone (CI-only for SRTs but not for MCI, with some subjects experiencing a decrease in bimodal MCI performance relative to the better ear alone (HA-only. Individual performance was highly variable, and the contribution of either device to bimodal perception was both subject- and task-dependent. The results suggest that individualized mapping of CIs and HAs may further improve bimodal speech and music perception.
Nittrouer, Susan; Chapman, Christopher
2009-09-01
There is no doubt that cochlear implants have improved the spoken language abilities of children with hearing loss, but delays persist. Consequently, it is imperative that new treatment options be explored. This study evaluated one aspect of treatment that might be modified, that having to do with bilateral implants and bimodal stimulation. A total of 58 children with at least one implant were tested at 42 months of age on four language measures spanning a continuum from basic to generative in nature. When children were grouped by the kind of stimulation they had at 42 months (one implant, bilateral implants, or bimodal stimulation), no differences across groups were observed. This was true even when groups were constrained to only children who had at least 12 months to acclimatize to their stimulation configuration. However, when children were grouped according to whether or not they had spent any time with bimodal stimulation (either consistently since their first implant or as an interlude to receiving a second) advantages were found for children who had some bimodal experience, but those advantages were restricted to language abilities that are generative in nature. Thus, previously reported benefits of simultaneous bilateral implantation early in a child's life may not extend to generative language. In fact, children may benefit from a period of bimodal stimulation early in childhood because low-frequency speech signals provide prosody and serve as an aid in learning how to perceptually organize the signal that is received through a cochlear implant.
Nilpotent orbits in real symmetric pairs
Dietrich, Heiko; Ruggeri, Daniele; Trigiante, Mario
2016-01-01
In the classification of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determining the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of SL_2(R)^4 acting on the fourth tensor power of the natural 2-dimensional SL_2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.
A class of symmetric controlled quantum operations
Vaccaro, J A; Huelga, S F; Vaccaro, John A.
2001-01-01
Certain quantum gates, such as the controlled-NOT gate, are symmetric in terms of the operation of the control system upon the target system and vice versa. However, no operational criteria yet exist for establishing whether or not a given quantum gate is symmetrical in this sense. We consider a restricted, yet broad, class of two-party controlled gate operations for which the gate transforms a reference state of the target into one of an orthogonal set of states. We show that for this class of gates it is possible to establish a simple necessary and sufficient condition for the gate operation to be symmetric.
A class of symmetric controlled quantum operations
Energy Technology Data Exchange (ETDEWEB)
Vaccaro, John A.; Steuernagel, O.; Huelga, S.F. [Division of Physics and Astronomy, Department of Physical Sciences, University of Hertfordshire, Hatfield (United Kingdom)
2001-09-07
Certain quantum gates, such as the controlled-NOT gate, are symmetric in terms of the operation of the control system upon the target system and vice versa. However, no operational criteria yet exist for establishing whether or not a given quantum gate is symmetrical in this sense. We consider a restricted, yet broad, class of two-party controlled gate operations for which the gate transforms a reference state of the target into one of an orthogonal set of states. We show that for this class of gates it is possible to establish a simple necessary and sufficient condition for the gate operation to be symmetric. (author)
Fifty years of nuclear fission: Nuclear data and measurements series
Energy Technology Data Exchange (ETDEWEB)
Lynn, J.E.
1989-06-01
This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.
Directory of Open Access Journals (Sweden)
Andrić Nevena
2015-02-01
Full Text Available The Ibar Basin was formed during Miocene large scale extension in the NE Dinaride segment of the Alpine- Carpathian-Dinaride system. The Miocene extension led to exhumation of deep seated core-complexes (e.g. Studenica and Kopaonik core-complex as well as to the formation of extensional basins in the hanging wall (Ibar Basin. Sediments of the Ibar Basin were studied by apatite and zircon fission track and vitrinite reflectance in order to define thermal events during basin evolution. Vitrinite reflectance (VR data (0.63-0.90 %Rr indicate a bituminous stage for the organic matter that experienced maximal temperatures of around 120-130 °C. Zircon fission track (ZFT ages indicate provenance ages. The apatite fission track (AFT single grain ages (45-6.7 Ma and bimodal track lengths distribution indicate partial annealing of the detrital apatites. Both vitrinite reflectance and apatite fission track data of the studied sediments imply post-depositional thermal overprint in the Ibar Basin. Thermal history models of the detritial apatites reveal a heating episode prior to cooling that began at around 10 Ma. The heating episode started around 17 Ma and lasted 10-8 Ma reaching the maximum temperatures between 100-130 °C. We correlate this event with the domal uplift of the Studenica and Kopaonik cores where heat was transferred from the rising warm footwall to the adjacent colder hanging wall. The cooling episode is related to basin inversion and erosion. The apatite fission track data indicate local thermal perturbations, detected in the SE part of the Ibar basin (Piskanja deposit with the time frame ~7.1 Ma, which may correspond to the youngest volcanic phase in the region.
Martingale Rosenthal inequalities in symmetric spaces
Energy Technology Data Exchange (ETDEWEB)
Astashkin, S V [Samara State University, Samara (Russian Federation)
2014-12-31
We establish inequalities similar to the classical Rosenthal inequalities for sequences of martingale differences in general symmetric spaces; a central role is played here by the predictable quadratic characteristic of a martingale. Bibliography: 26 titles.
Symmetric centres of braided monoidal categories
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper introduces the concept of‘symmetric centres' of braided monoidal categories. Let H be a Hopf algebra with bijective antipode over a field k. We address the symmetric centre of the Yetter-Drinfel'd module category HH(yD) and show that a left Yetter-Drinfel'd module M belongs to the symmetric centre of HH(yD) if and only if M is trivial. We also study the symmetric centres of categories of representations of quasitriangular Hopf algebras and give a sufficient and necessary condition for the braid of H(M) to induce the braid of (H(H)(A),(○)A,A,φ,l,r), or equivalently, the braid of (A#H(H),(○)A,A,φ,l,r), where A is a quantum commutative H-module algebra.
Spherically symmetric brane spacetime with bulk gravity
Chakraborty, Sumanta; SenGupta, Soumitra
2015-01-01
Introducing term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with gravity in the bulk.
Bimodal distribution of glucose is not universally useful for diagnosing diabetes
DEFF Research Database (Denmark)
Vistisen, Dorte; Colagiuri, Stephen; Borch-Johnsen, Knut;
2009-01-01
included participants with known diabetes. The aim of this study was to assess whether a bimodal structure is a general phenomenon in fasting plasma glucose (FPG) and 2-h plasma glucose that is useful for deriving a common cut point for diabetes in populations of different origin, both including......OBJECTIVE: Bimodality in the distribution of glucose has been used to define the cut point for the diagnosis of diabetes. Previous studies on bimodality have primarily been in populations with a high prevalence of type 2 diabetes, including one study in a white Caucasian population. All studies...... and excluding known diabetes. RESEARCH DESIGN AND METHODS: The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) project is an international collaboration pooling surveys from all continents. These studies include surveys in which plasma glucose...
Robustness analysis of bimodal networks in the whole range of degree correlation
Mizutaka, Shogo
2016-01-01
We present exact analysis of the physical properties of bimodal networks specified by the two peak degree distribution fully incorporating the degree-degree correlation between node connection. The structure of the correlated bimodal network is uniquely determined by the Pearson coefficient of the degree correlation, keeping its degree distribution fixed. The percolation threshold and the giant component fraction of the correlated bimodal network are analytically calculated in the whole range of the Pearson coefficient from $-1$ to $1$ against two major types of node removal, which are the random failure and the degree-based targeted attack. The Pearson coefficient for next-nearest-neighbor pairs is also calculated, which always takes a positive value even when the correlation between nearest-neighbor pairs is negative. From the results, it is confirmed that the percolation threshold is a monotonically decreasing function of the Pearson coefficient for the degrees of nearest-neighbor pairs increasing from $-1...
Symmetric states: Their nonlocality and entanglement
Energy Technology Data Exchange (ETDEWEB)
Wang, Zizhu; Markham, Damian [CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech, 23 avenue d' Italie, CS 51327, 75214 Paris CEDEX 13 (France)
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
Scattering properties of PT-symmetric objects
Miri, Mohammad-Ali; Facao, Margarida; Abouraddy, Ayman F; Bakry, Ahmed; Razvi, Mir A N; Alshahrie, Ahmed; Alù, Andrea; Christodoulides, Demetrios N
2016-01-01
We investigate the scattering response of parity-time (PT) symmetric structures. We show that, due to the local flow of energy between gain and loss regions, such systems can deflect light in unusual ways, as a function of the gain/loss contrast. Such structures are highly anisotropic and their scattering patterns can drastically change as a function of the angle of incidence. In addition, we derive a modified optical theorem for PT-symmetric scattering systems, and discuss its ramifications.
Institute of Scientific and Technical Information of China (English)
Jian WANG
2009-01-01
The study of symmetric property in the L2-sense for the non-positive definite operator is motivated by the theory of probability and analysis. This paper presents some sufficient conditions for the existence of symmetric measure for Lévy type operator. Some new examples are illustrated. The present study is an important step for considering various ergodic properties and functional inequalities of Lévy type operator.
Success and decisiveness on proper symmetric games
Freixas Bosch, Josep; Pons Vallès, Montserrat
2015-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/s10100-013-0332-5 This paper provides a complete study for the possible rankings of success and decisiveness for individuals in symmetric voting systems, assuming anonymous and independent probability distributions. It is proved that for any pair of symmetric voting systems it is always possible to rank success and decisiveness in opposite order whenever the common probability of voting for “acceptance...
Sub-library of Updated Fission Barrier Parameters(CENPL-FBP2)
Institute of Scientific and Technical Information of China (English)
2001-01-01
The fission barrier parameters are important to determine the fission character of a nucleus. The fission barrier parameters and fission level densities are key ingredients in calculations of not only fission cross section but also various cross sections, and spectra for the fissile nuclides, even heavy nuclides at higher incident energies. It is necessaries that the accuracy of fission barrier parameters requires even higher, and nuclides with fission barrier parameters can cover even wider nuclear range.
Mirror-Symmetric Matrices and Their Application
Institute of Scientific and Technical Information of China (English)
李国林; 冯正和
2002-01-01
The well-known centrosymmetric matrices correctly reflect mirror-symmetry with no component or only one component on the mirror plane. Mirror-symmetric matrices defined in this paper can represent mirror-symmetric structures with various components on the mirror plane. Some basic properties of mirror-symmetric matrices were studied and applied to interconnection analysis. A generalized odd/even-mode decomposition scheme was developed based on the mirror reflection relationship for mirror-symmetric multiconductor transmission lines (MTLs). The per-unit-length (PUL) impedance matrix Z and admittance matrix Y can be divided into odd-mode and even-mode PUL matrices. Thus the order of the MTL system is reduced from n to k and k+p, where p(≥0)is the conductor number on the mirror plane. The analysis of mirror-symmetric matrices is related to the theory of symmetric group, which is the most effective tool for the study of symmetry.
Axisymmetric Magnetic Mirror Fusion-Fission Hybrid
Energy Technology Data Exchange (ETDEWEB)
Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)
2011-05-13
The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=P_{fusion}/P_{input}~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from
Evidence of bimodal crystallite size distribution in {mu}c-Si:H films
Energy Technology Data Exchange (ETDEWEB)
Ram, Sanjay K. [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)], E-mail: sanjayk.ram@gmail.com; Islam, Md. Nazrul [QAED-SRG, Space Application Centre (ISRO), Ahmedabad 380015 (India); Kumar, Satyendra [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France)
2009-03-15
We report on the microstructural characterization studies carried out on plasma deposited highly crystalline undoped microcrystalline silicon films to explore the crystallite size distribution present in this material. The modeling of results of spectroscopic ellipsometry using two different sized crystallites is corroborated by the deconvolution of experimental Raman profiles using a modeling method that incorporates a bimodal size distribution of crystallites. The presence of a bimodal size distribution of crystallites is demonstrated as well by the results of atomic force microscopy and X-ray diffraction studies. The qualitative agreement between the results of different studies is discussed.
Tension Control of a Bimodal Coiler System by Final-State Control
Hirata, Mitsuo; Eda, Akihiro
A bimodal coiler system is a system for winding the materials rolled in a tandem mill in a rolling plant. In the bimodal coiler system, the tension changes greatly when the tail end of materials being rolled emerge out of the final stand, and as a result, the winding process might be disturbed. In this study, we attempt to suppress the fluctuation in the tension by employing a feedforward method based on final-state control. The effectiveness of the proposed method is verified by performing simulations.
Recent studies in heavy ion induced fission reactions
Choudhury, R. K.
2001-08-01
Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus--nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to
A new approach to prompt fission neutron TOF data treatment
Zeynalov, Sh.; Zeynalova, O. V.; Hambsch, F.-J.; Oberstedt, S.
The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. A new mathematical approach, applicable to single events, was developed for prompt fission neutron (PFN) time-offlight distribution unfolding. The main goal was to understand the reasons of the long existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of the fission fragments (FF). Since the 252Cf (sf) reaction is one of the main references for nuclear data the understanding of the PFN emission mechanism is very important both for nuclear fission theory and nuclear data. The experimental data were taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to the well known work of C. Budtz-Jorgensen and H.-H. Knitter. About 2.5 × 105 coincidences between fission fragment (FF) and neutron detector response to prompt fission neutron detection have been registered (∼ 1.6 × 107 of total recorded fission events). Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12-bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The main goal of this work was a detailed description of the prompt fission neutron treatment.
A new role for myosin II in vesicle fission.
Flores, Juan A; Balseiro-Gomez, Santiago; Cabeza, Jose M; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva
2014-01-01
An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.
Energy Technology Data Exchange (ETDEWEB)
Audias, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-07-01
This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la
SABR Fusion-Fission Hybrid Studies
Stewart, Chris
2012-03-01
The Subcritical Advanced Burner Reactor (SABR) concept is a fast reactor comprised of a tokamak fusion neutron source based on ITER surrounded by an annular fission core adapted from Integral Fast Reactor designs. Previous work has examined SABR used to help close the nuclear fuel cycle by fissioning the transuranics from spent nuclear fuel. One focus of the present work is a SABR Breeder Reactor to achieve tritium self-sufficieny and a Pu breeding ratio significantly above 1 in order to provide fuel for SABR as well as for MOX-fueled LWR's and other fast reactors. Another focus of this research is the dynamic safety simulation of lloss-of-flow loss-of-heat-sink, loss-of-power, and positive reactivity accidents in the TRU fuel SABR burner reactor. The reactivity effect of thermal-induced bowing of fuel pins has been modeled, which is expected to provide passive safety.
Nuclear Fission Investigation with Twin Ionization Chamber
Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.
2011-11-01
The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.
Microscopic Calculations of 240Pu Fission
Energy Technology Data Exchange (ETDEWEB)
Younes, W; Gogny, D
2007-09-11
Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.
Fusion-fission energy systems evaluation
Energy Technology Data Exchange (ETDEWEB)
Teofilo, V.L.; Aase, D.T.; Bickford, W.E.
1980-01-01
This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.
Decay spectroscopy of exotic fission products
Rykaczewski, Krzysztof
2014-09-01
The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. Supported by the U.S. DOE Office of Nuclear Physics under Contracts DE-AC05-00R22725 (ORNL), DE-FG02-96ER40983 (UTK).
Singlet fission: Towards efficient solar cells
Energy Technology Data Exchange (ETDEWEB)
Havlas, Zdeněk; Wen, Jin [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Michl, Josef [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
2015-12-31
Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.
Actinide and fission product partitioning and transmutation
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-07-01
The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)
Capture and fission with DANCE and NEUANCE
Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.
2015-12-01
A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.
Capture and fission with DANCE and NEUANCE
Energy Technology Data Exchange (ETDEWEB)
Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)
2015-12-15
A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)
Accurate fission data for nuclear safety
Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S
2013-01-01
The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...
Undergraduate Measurements For Fission Reactor Applications
Hicks, S. F.; Kersting, L. J.; Lueck, C. J.; McDonough, P.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Vanhoy, J. R.
2011-06-01
Undergraduate students at the University of Dallas (UD) have investigated elastic and inelastic neutron scattering cross sections on structural materials important for criticality considerations in nuclear fission processes. Neutrons scattered off of 23Na and NatFe were detected using neutron time-of-flight techniques at the University of Kentucky Low-Energy Nuclear Accelerator Facility. These measurements are part of an effort to increase the efficiency of power generation from existing fission reactors in the US and in the design of new fission systems. Students have learned the basics of how to operate the Model CN Van de Graaff generator at the laboratory, setup detectors and electronics, use data acquisition systems, and they are currently analyzing the angular dependence of the scattered neutrons for incident neutron energies of 3.57 and 3.80 MeV. Most students participating in the project will use the research experience as the material for their undergraduate research thesis required for all Bachelor of Science students at the University of Dallas. The first student projects on this topic were completed during the summer of 2010; an overview of student participation in this investigation and their preliminary results will be presented.
Simulating an Exploding Fission-Bomb Core
Reed, Cameron
2016-03-01
A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.
Spontaneous fission of superheavy nucleus $^{286}$Fl
Poenaru, Dorin N
2016-01-01
The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...
The Bi-Modal Organization: Balancing Autopoiesis and Fluid Social Networks for Sustainability
Smith, Peter A. C.; Sharicz, Carol Ann
2013-01-01
Purpose: The purpose of this paper is to assist an organization to restructure as a bi-modal organization in order to achieve sustainability in today's highly complex business world. Design/methodology/approach: The paper is conceptual and is based on relevant literature and the authors' research and practice. Findings: Although fluid…
Phenotypic Diversity Using Bimodal and Unimodal Expression of Stress Response Proteins.
Garcia-Bernardo, Javier; Dunlop, Mary J
2016-05-24
Populations of cells need to express proteins to survive the sudden appearance of stressors. However, these mechanisms may be taxing. Populations can introduce diversity, allowing individual cells to stochastically switch between fast-growing and stress-tolerant states. One way to achieve this is to use genetic networks coupled with noise to generate bimodal distributions with two distinct subpopulations, each adapted to a stress condition. Another survival strategy is to rely on random fluctuations in gene expression to produce continuous, unimodal distributions of the stress response protein. To quantify the environmental conditions where bimodal versus unimodal expression is beneficial, we used a differential evolution algorithm to evolve optimal distributions of stress response proteins given environments with sudden fluctuations between low and high stress. We found that bimodality evolved for a large range of environmental conditions. However, we asked whether these findings were an artifact of considering two well-defined stress environments (low and high stress). As noise in the environment increases, or when there is an intermediate environment (medium stress), the benefits of bimodality decrease. Our results indicate that under realistic conditions, a continuum of resistance phenotypes generated through a unimodal distribution is sufficient to ensure survival without a high cost to the population.
"Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions
Borowski, Stanley K.
2004-01-01
The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.
A Genealogy for Finite Kneading Sequences of Bimodal Maps on the Interval
Ringland, J; Ringland, John; Tresser, Charles
1993-01-01
We generate all the finite kneading sequences of one of the two kinds of bimodal map on the interval, building each sequence uniquely from a pair of shorter ones. There is a single pair at generation 0, with members of length 1. Concomitant with this genealogy of kneading sequences is a unified genealogy of all the periodic orbits. (6/93)
Bartov, Tamar; Most, Tova
2014-01-01
Purpose: To examine song identification by preschoolers with normal hearing (NH) versus preschoolers with cochlear implants (CIs). Method: Participants included 45 children ages 3;8-7;3 (years;months): 12 with NH and 33 with CIs, including 10 with unilateral CI, 14 with bilateral CIs, and 9 bimodal users (CI-HA) with unilateral CI and…
Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches.
Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey
2006-08-01
Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis measured between 1964 and 2005 on the island of Santa Cruz, Galápagos. Some populations of this species can display a resource-based bimodality in beak size, which mirrors the greater beak size differences among species. We first show that an historically bimodal population at one site, Academy Bay, has lost this property in concert with a marked increase in local human population density. We next show that a nearby site with lower human impacts, El Garrapatero, currently manifests strong bimodality. This comparison suggests that bimodality can persist when human densities are low (Academy Bay in the past, El Garrapatero in the present), but not when they are high (Academy Bay in the present). Human activities may negatively impact diversification in 'young' adaptive radiations, perhaps by altering adaptive landscapes.
Deaf Parents of Cochlear-Implanted Children: Beliefs on Bimodal Bilingualism
Mitchiner, Julie Cantrell
2015-01-01
This study investigated 17 Deaf families in North America with cochlear-implanted children about their attitudes, beliefs, and practices on bimodal bilingualism (defined as using both a visual/manual language and an aural/oral language) in American Sign Language (ASL) and English. A survey and follow-up interviews with 8 families were conducted.…
Gaze-independent ERP-BCIs : Augmenting performance through location-congruent bimodal stimuli
Thurlings, M.E.; Brouwer, A.M.; Erp, J.B.F. van; Werkhoven, P.J.
2014-01-01
Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bi
The Taylor-expansion method of moments for the particle system with bimodal distribution
Directory of Open Access Journals (Sweden)
Liu Yan-Hua
2013-01-01
Full Text Available This paper derives the multipoint Taylor expansion method of moments for the bimodal particle system. The collision effects are modeled by the internal and external coagulation terms. Simple theory and numerical tests are performed to prove the effect of the current model.
Parallel Bimodal Bilingual Acquisition: A Hearing Child Mediated in a Deaf Family
Cramér-Wolrath, Emelie
2013-01-01
The aim of this longitudinal case study was to describe bimodal and bilingual acquisition in a hearing child, Hugo, especially the role his Deaf family played in his linguistic education. Video observations of the family interactions were conducted from the time Hugo was 10 months of age until he was 40 months old. The family language was Swedish…
Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli
2015-06-23
Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.
Prompt Fission Gamma-ray Studies at DANCE
Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O'Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.
Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on 252Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and 239Pu. Correlated PFG data from 252Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.
Negative Pion Induced Fission with Heavy Target Nuclei
Institute of Scientific and Technical Information of China (English)
G. Sher; Mukhtar A. Rana; S. Manzoor; M. I. Shahzad
2011-01-01
We investigate fission induced by negative pions in copper and bismuth targets using CR-39 dielectric track detectors. The target-detector assemblies in Air-geometric configuration were exposed at the AGS facility of Brookhaven National Laboratory, USA. The exposed detectors were chemically etched under appropriate etching conditions and scanned to collect data in the form of fission fragments tracks produced as a result of interaction of pions with the target nuclei. Using the track counts, the experimental fission cross sections for copper and bismuth have been measured at energies of 500, 672, 1068 and 1665 MeV and compared with the calculation using the Cascade-Exciton Model code (CEM95). The values of fission probability based on experimental fission cross-sections have been compared with the theoretically calculated values of fission probabilities obtained using the CEM95 code. Good agreement is observed between the measured and computed results.
Prompt Fission Neutron Spectra of Actinides
Energy Technology Data Exchange (ETDEWEB)
Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.
2016-01-01
The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data
The wastes of nuclear fission; Les dechets de la fission nucleaire
Energy Technology Data Exchange (ETDEWEB)
Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)
2005-07-01
In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)
Proton induced fission of 181-Ta at relativistic energies
Ayyad, Y; Casarejos, E; Álvarez-Pol, H; Bacquias, A; Boudard, A; Caamaño, M; Enqvist, T; Föhr, V; Kelić-Heil, A; Kezzar, K; Leray, S; Paradela, C; Pérez-Loureiro, D; Pleskač, R; Tarrío, D
2012-01-01
Total fission cross sections of 181-Ta induced by protons at different relativistic energies have been measured at GSI, Darmstadt. The inverse kinematics technique used together with a dedicated set-up, made it possible to determine these cross sections with high accuracy. The new data obtained in this experiment will contribute to the understanding of the fission process at high excitation energies. The results are compared with data from previous experiments and systematics for proton-induced fission cross sections.
Revision of the JENDL FP Fission Yield Data
Directory of Open Access Journals (Sweden)
Katakura Jun-ichi
2016-01-01
Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.
Fission fragment mass distributions in reactions populating 200Pb
Chaudhuri, A; Ghosh, T K; Banerjee, K; Sadhukhan, Jhilam; Bhattacharya, S; Roy, P; Roy, T; Bhattacharya, C; Asgar, Md A; Dey, A; Kundu, S; Manna, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Srivastava, V; Dubey, R; Kaur, Gurpreet; Saneesh, N; Sugathan, P; Bhattacharya, P
2016-01-01
The fission fragment mass distributions have been measured in the reactions 16O + 184W and 19F+ 181Ta populating the same compound nucleus 200Pb? at similar excitation energies. It is found that the widths of the mass distribution increases monotonically with excitation energy, indicating the absence of quasi-fission for both reactions. This is contrary to two recent claims of the presence of quasi-fission in the above mentioned reactions.
Resolving the age bimodality of galaxy stellar populations on kpc scales
Zibetti, Stefano; Gallazzi, Anna R.; Ascasibar, Y.; Charlot, S.; Galbany, L.; García Benito, R.; Kehrig, C.; de Lorenzo-Cáceres, A.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.
2017-01-01
Galaxies in the local Universe are known to follow bimodal distributions in the global stellar populations properties. We analyze the distribution of the local average stellar-population ages of 654 053 sub-galactic regions resolved on ˜1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging. We find a bimodal local-age distribution, with an old and a young peak primarily due to regions in early-type galaxies and star-forming regions of spirals, respectively. Within spiral galaxies, the older ages of bulges and inter-arm regions relative to spiral arms support an internal age bimodality. Although regions of higher stellar-mass surface-density, μ★, are typically older, μ★ alone does not determine the stellar population age and a bimodal distribution is found at any fixed μ★. We identify an "old ridge" of regions of age ˜9 Gyr, independent of μ★, and a "young sequence" of regions with age increasing with μ★ from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as regions containing only old stars, and the latter as regions where the relative contamination of old stellar populations by young stars decreases as μ★ increases. The reason why this bimodal age distribution is not inconsistent with the unimodal shape of the cosmic-averaged star-formation history is that i) the dominating contribution by young stars biases the age low with respect to the average epoch of star formation, and ii) the use of a single average age per region is unable to represent the full time-extent of the star-formation history of "young-sequence" regions.
PT-Symmetric Optomechanically-Induced Transparency
Jing, H; Özdemir, S K; Zhang, J; Lü, X -Y; Peng, B; Yang, L; Nori, F
2014-01-01
Optomechanically-induced transparency (OMIT) and the associated slow-light propagation provide the basis for storing photons in nanofabricated phononic devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a reversed, non-amplifying transparency: inverted-OMIT. When the gain-to-loss ratio is steered, the system exhibits a transition from the PT-symmetric phase to the broken-PT-symmetric phase. We show that by tuning the pump power at fixed gain-to-loss ratio or the gain-to-loss ratio at fixed pump power, one can switch from slow to fast light and vice versa. Moreover, the presence of PT-phase transition results in the reversal of the pump and gain dependence of transmission rates. These features provide new tools for controlling light propagation using optomechanical devices.
Radiative corrections in symmetrized classical electrodynamics
Van Meter JR; Kerman; Chen; Hartemann
2000-12-01
The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.
INERTIA SETS OF SYMMETRIC SIGN PATTERN MATRICES
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A sign pattern matrix is a matrixwhose entries are from the set {+ ,- ,0}. The symmetric sign pattern matrices that require unique inertia have recently been characterized. The purpose of this paper is to more generally investigate the inertia sets of symmetric sign pattern matrices. In particular, nonnegative fri-diagonal sign patterns and the square sign pattern with all + entries are examined. An algorithm is given for generating nonnegative real symmetric Toeplitz matrices with zero diagonal of orders n≥3 which have exactly two negative eigenvalues. The inertia set of the square pattern with all + off-diagonal entries and zero diagonal entries is then analyzed. The types of inertias which can be in the inertia set of any sign pattern are also obtained in the paper. Specifically, certain compatibility and consecutiveness properties are established.
Local neighborliness of the symmetric moment curve
Lee, Seung Jin
2011-01-01
A centrally symmetric analogue of the cyclic polytope, the bicyclic polytope, was defined in [BN08]. The bicyclic polytope is defined by the convex hull of finitely many points on the symmetric moment curve where the set of points has a symmetry about the origin. In this paper, we study the Barvinok-Novik orbitope, the convex hull of the symmetric moment curve. It was proven in [BN08] that the orbitope is locally $k$-neighborly, that is, the convex hull of any set of $k$ distinct points on an arc of length not exceeding $\\phi_k$ in $\\mathbb{S}^1$ is a $(k-1)$-dimensional face of the orbitope for some positive constant $\\phi_k$. We prove that we can choose $\\phi_k $ bigger than $\\gamma k^{-3/2} $ for some positive constant $\\gamma$.
Revisiting the optical $PT$-symmetric dimer
Morales, J D Huerta; López-Aguayo, S; Rodríguez-Lara, B M
2016-01-01
Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of $\\mathcal{PT}$-symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical $\\mathcal{PT}$-symmetric dimer, a two-waveguide coupler were the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar $N$-waveguide couplers that are the optical realization of Lorentz group in 2+1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of Ehrenfest theorem.
Revisiting the Optical PT-Symmetric Dimer
Directory of Open Access Journals (Sweden)
José Delfino Huerta Morales
2016-08-01
Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.
Symmetric States on the Octonionic Bloch Ball
Graydon, Matthew
2012-02-01
Finite-dimensional homogeneous self-dual cones arise as natural candidates for convex sets of states and effects in a variety of approaches towards understanding the foundations of quantum theory in terms of information-theoretic concepts. The positive cone of the ten-dimensional Jordan-algebraic spin factor is one particular instantiation of such a convex set in generalized frameworks for quantum theory. We consider a projection of the regular 9-simplex onto the octonionic projective line to form a highly symmetric structure of ten octonionic quantum states on the surface of the octonionic Bloch ball. A uniform subnormalization of these ten symmetric states yields a symmetric informationally complete octonionic quantum measurement. We discuss a Quantum Bayesian reformulation of octonionic quantum formalism for the description of two-dimensional physical systems. We also describe a canonical embedding of the octonionic Bloch ball into an ambient space for states in usual complex quantum theory.
Chiral light by symmetric optical antennas
Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre
2014-01-01
Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...
Symmetric cryptographic protocols for extended millionaires' problem
Institute of Scientific and Technical Information of China (English)
LI ShunDong; WANG DaoShun; DAI YiQi
2009-01-01
Yao's millionaires' problem is a fundamental problem in secure multiparty computation, and its solutions have become building blocks of many secure multiparty computation solutions. Unfortunately,most protocols for millionaires' problem are constructed based on public cryptography, and thus are inefficient. Furthermore, all protocols are designed to solve the basic millionaires' problem, that is,to privately determine which of two natural numbers is greater. If the numbers are real, existing solutions do not directly work. These features limit the extensive application of the existing protocols. This study introduces and refines the first symmetric cryptographic protocol for the basic millionaires' problem, and then extends the symmetric cryptographic protocol to privately determining which of two real numbers is greater, which are called the extended millionaires' problem, and proposes corresponding Constructed based on symmetric cryptography, these protocols are very efficient.
The Robust Assembly of Small Symmetric Nanoshells.
Wagner, Jef; Zandi, Roya
2015-09-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine.
Isotopic yield in cold binary fission of even-even $^{244-258}$Cf isotopes
Santhosh, K P; Krishnan, Sreejith
2016-01-01
The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that highest yield for 244,246,248Cf isotopes are for the fragments with isotope of Pb (Z=82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z=80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z=50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favoured for Cf isotopes with mass number A 252. In the case of Cf isotope with A=252, there is an equal probability for asymmetric and symmetric splitti...
Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores
Lardy, Sophie; Fortin, Daniel; Pays, Olivier
2016-01-01
Many gregarious species display rapid fission-fusion dynamics with individuals frequently leaving their groups to reunite or to form new ones soon after. The adaptive value of such ephemeral associations might reflect a frequent tilt in the balance between the costs and benefits of maintaining group cohesion. The lack of information on the short-term advantages of group fission, however, hampers our understanding of group dynamics. We investigated the effect of group fission on area-restricted search, a search tactic that is commonly used when food distribution is spatially autocorrelated. Specifically, we determine if roe deer (Capreolus capreolus) improve key aspects of their extensive search mode immediately after fission. We found that groups indeed moved faster and farther over time immediately after than before fission. This gain was highest for the smallest group that resulted from fission, which was more likely to include the fission’s initiator. Sex of group members further mediated the immediate gain in search capacity, as post-fission groups moved away at farthest rate when they were only comprised of males. Our study suggests that social conflicts during the extensive search mode can promote group fission and, as such, can be a key determinant of group fission-fusion dynamics that are commonly observed in gregarious herbivores. PMID:27907143
Richmond-Welty, E. Daylene; Siple, Patricia
1999-01-01
Gaze during utterance was examined in a set of bilingual-bimodal twins acquiring spoken English and American Sign Language (ASL) and a set of monolingual twins acquiring ASL. The bilingual-bimodal twins differentiated their languages by age 3. Like the monolingual twins, the bilingual-bimodal twins established mutual gaze at the beginning of their…
Time-Symmetric Approach to Gravity
Chu, S Y
1998-01-01
Quantization of the time symmetric system of interacting strings requires that gravity, just as electromagnetism in Wheeler-Feynman's time symmetric electro- dynamics, also be an "adjunct field" instead of an independent entity. The "adjunct field" emerges, at a scale large compared to that of the strings, as a "statistic" that summarizes how the string positions in the underlying space- time are "compactified" into those in Minkowski space. We are able to show, WITHOUT adding a scalar curvature term to the string action, that the "adjunct gravitational field" satisfies Einstein's equation with no cosmological term.
Symmetry theorems via the continuous steiner symmetrization
Directory of Open Access Journals (Sweden)
L. Ragoub
2000-06-01
Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.
Synthesis of cyclically symmetric five-ports
DEFF Research Database (Denmark)
Guldbrandsen, Tom
1994-01-01
A class of matched, symmetric five-ports have been synthesized by solving the circular cylindrical wave equation. Among the solutions are chosen those for which the match condition is fulfilled over the broadest bandwidth. Bandwidths up to +/-20% have been found......A class of matched, symmetric five-ports have been synthesized by solving the circular cylindrical wave equation. Among the solutions are chosen those for which the match condition is fulfilled over the broadest bandwidth. Bandwidths up to +/-20% have been found...
Active Sound Localization in a Symmetric Environment
Directory of Open Access Journals (Sweden)
Jordan Brindza
2013-07-01
Full Text Available Localization for humanoid robots becomes difficult when events that disrupt robot positioning information occur. This holds especially true in symmetric environments because landmark data may not be sufficient to determine orientation. We propose a system of localizing humanoid robots in a known, symmetric environment using a Rao-Blackwellized particle filter and a sound localization system. This system was used in the RoboCup Standard Platform League, and has been found to reduce the amount of own-goals scored as compared with the previously used localization system without sound.
Inflation in spherically symmetric inhomogeneous models
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.
1986-11-01
Exact analytical solutions of Einstein's equations are found for a spherically symmetric inhomogeneous metric in the presence of a massless scalar field with a flat potential. The process of isotropization and homogenization is studied in detail. It is found that the time dependence of the metric becomes de Sitter for large times. Two cases are studied. The first deals with a homogeneous scalar field, while the second with a spherically symmetric inhomogeneous scalar field. In the former case the metric is of the Robertson-Walker form, while the latter is intrinsically inhomogeneous. 16 refs.
Benign symmetric lipomatosis of the knees
Institute of Scientific and Technical Information of China (English)
Zhiqiang Yin; Di Wu; Yixin Ge; Meihua Zhang; Zhigang Bi; Dan Luo
2008-01-01
Benign symmetric lipomatosis(BSL) is a rare disease characterized by the presence of multiple, symmetric and nonencapsulated fat masses in the face, neck and other areas. It is commonly seen in middle-aged Caucasian Mediterranean males, while its etiology is still not clear. The majority of the patients with BSL have a history of alcohol abuse and hepatopathy. BSL of the limbs is very rare. This article reports a unique case of a 60-year-old Chinese woman with involvement of the knees confirmed by the results of magnetic resonance imaging(MRI) and histopathology, which was not described previously in published literatures.
Mechanism of Ternary Fission in System 197Au+197Au at 15 AMeV
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>For very heavy nuclear systems there is very clear evidence for fission into three comparable mass fragments. The responsible mechanisms for this type of fission are the direct ternary fission and
Molecular distinction between true centric fission and pericentric duplication-fission
Perry, J; Nouri, S; La, P; Daniel, A; Wu, ZH; Purvis-Smith, S; Northrop, E; Choo, KHA; Slater, HR
2005-01-01
Centromere (centric) fission, also known as transverse or lateral centric misdivision, has been defined as the splitting of one functional centromere of a metacentric or submetacentric chromosome to produce two derivative centric chromosomes. It has been observed in a range of organisms and has been
Fission neutron spectra measurements at LANSCE - status and plans
Energy Technology Data Exchange (ETDEWEB)
Haight, Robert C [Los Alamos National Laboratory; Noda, Shusaku [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Devlin, Matt [Los Alamos National Laboratory; Chatillon, Audrey [CEA-FRANCE; Granier, Thierry [CEA-FRANCE; Taieb, Julien [CEA-FRANCE; Laurent, Benoit [CEA-FRANCE; Belier, Gilbert [CEA-FRANCE; Becker, John A [LLNL; Wu, Ching - Yen [LLNL
2009-01-01
A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.
Some aspects of the nuclear fission process; Quelques aspects du processus de fission nucleaire
Energy Technology Data Exchange (ETDEWEB)
Netter, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U{sup 233}, U{sup 235}, Pu{sup 239}, U{sup 238} are described at the beginning of this work. It appears that for U{sup 233} there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U{sup 239} than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U{sup 235}. Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [French] Le present travail debute par un apercu de l'etat actuel de nos connaissances sur le processus de fission nucleaire, notamment sur le passage par le point-seuil. Puis sont evoques des aspects lies au niveau d'energie d'excitation auquel est porte le noyau qui subit la fission. Les mesures de sections efficaces de fission induite dans {sup 233}U, {sup 235}U, {sup 239}Pu et {sup 238}U par des neutrons rapides effectuees a Saclay sont decrites en premier lieu; elles font apparaitre pour {sup 233}U une ondulation caracteristique du role des etats collectifs d'excitation du noyau deforme au point-seuil. Des experiences sur la fission avec emission de particules de long parcours confirment cet aspect tout en demontrant que
Material recognition using fission gamma rays
Energy Technology Data Exchange (ETDEWEB)
Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: giuseppe.viesti@pd.infn.it; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)
2009-07-21
Material recognition is studied by measuring the transmission spectrum of {sup 252}Cf fission gamma rays in the energy range E{sub {gamma}}=0.1-5.5 MeV for 0.1-MeV-wide energy bins through a number of elementary samples. Each transmitted spectrum is compared with a library of reference spectra for different elements providing the possibility of material identification. In case of elemental samples with known thickness, this procedure allows the identification of the sample Z with uncertainty typically lower than 3 Z-units over a wide range of elements. Applications to composite materials are also reported.
Ceramics in fission and fusion technology
Energy Technology Data Exchange (ETDEWEB)
Olander, D.R.
1986-04-01
The role of ceramic components in fission and fusion reactors is described. Almost all of the functions normally performed by ceramics, except mechanical, are required of nuclear ceramics. The oxides of uranium and plutonium are of predominant importance in nuclear applications, but a number of other ceramics play peripheral roles. The unique service conditions under which nuclear ceramics must operate include intense radiation fields, high temperatures and large temperature gradients, and aggressive chemical environments. Examples of laboratory research designed to broaden understanding of the behavior of uranium dioxide in such conditions are given. The programs described include high temperature vaporization, diffusional processes, and interaction with hydrogen.
Exterior Powers of Symmetric Bilinear Forms
Institute of Scientific and Technical Information of China (English)
Seán McGarraghy
2002-01-01
We study exterior powers of classes of symmetric bilinear forms in the Witt-Grothendieck ring of a field of characteristic not equal to 2, and derive their basic properties. The exterior powers are used to obtain annihilating polynomials for quadratic forms in the Witt ring.
Fields, Strings, Matrices and Symmetric Products
Dijkgraaf, R.
1999-01-01
In these notes we review the role played by the quantum mechanics and sigma models of symmetric product spaces in the light-cone quantization of quantum field theories, string theory and matrix theory. Lectures given at the Institute for Theoretical Physics, UC Santa Barbara, January 1998 and the Spring School on String Theory and Mathematics, Harvard University, May 1998.
PT -symmetric model of immune response
Bender, Carl M.; Ghatak, Ananya; Gianfreda, Mariagiovanna
2017-01-01
The study of PT -symmetric physical systems began in 1998 as a complex generalization of conventional quantum mechanics, but beginning in 2007 experiments began to be published in which the predicted PT phase transition was clearly observed in classical rather than in quantum-mechanical systems. This paper examines the classical PT phase transition in dynamical-system models that are moderately accurate representations of antigen-antibody systems. A surprising conclusion that can be drawn from these models is that it might be possible treat a serious disease in which the antigen concentration grows out of bounds (and the host dies) by injecting a small dose of a second (different) antigen. In this case a PT -symmetric analysis shows there are two possible favorable outcomes. In the unbroken-PT -symmetric phase the disease becomes chronic and is no longer lethal, while in the appropriate broken-PT -symmetric phase the concentration of lethal antigen goes to zero and the disease is completely cured.
Adaptively Secure Computationally Efficient Searchable Symmetric Encryption
Sedghi, S.; Liesdonk, van P.; Doumen, J.M.; Hartel, P.H.; Jonker, W.
2009-01-01
Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are
On balanced truncation for symmetric nonlinear systems
Fujimoto, K.; Scherpen, Jacqueline M.A.
2014-01-01
This paper is concerned with model order reduction based on balanced realization for symmetric nonlinear systems. A new notion of symmetry for nonlinear systems was characterized recently. It plays an important role in linear systems theory and is expected to provide new insights to nonlinear system
Fourier inversion on a reductive symmetric space
Ban, E.P. van den
2001-01-01
Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we e
Spectrum generating algebra of the symmetric top
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1998-03-02
We consider an algebraic treatment of a three-body system. We develop the formalism for a system of three identical objects and show that it provides a simultaneous description of the vibrational and rotational excitations of an oblate symmetric top. (orig.) 8 refs.
Spectrum generating algebra of the symmetric top
Bijker, R
1997-01-01
We consider an algebraic treatment of a three-body system. We develop the formalism for a system of three identical objects and show that it provides a simultaneous description of the vibrational and rotational excitations of an oblate symmetric top.
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating...
Noncommutative spherically symmetric spacetimes at semiclassical order
Fritz, Christopher
2016-01-01
Working within the recent formalism of Poisson-Riemannian geometry, we completely solve the case of generic spherically symmetric metric and spherically symmetric Poisson-bracket to find a unique answer for the quantum differential calculus, quantum metric and quantum Levi-Civita connection at semiclassical order $O(\\lambda)$. Here $\\lambda$ is the deformation parameter, plausibly the Planck scale. We find that $r,t,dr,dt$ are all forced to be central, i.e. undeformed at order $\\lambda$, while for each value of $r,t$ we are forced to have a fuzzy sphere of radius $r$ with a unique differential calculus which is necessarily nonassociative at order $\\lambda^2$. We give the spherically symmetric quantisation of the FLRW cosmology in detail and also recover a previous analysis for the Schwarzschild black hole, now showing that the quantum Ricci tensor for the latter vanishes at order $\\lambda$. The quantum Laplace-Beltrami operator for spherically symmetric models turns out to be undeformed at order $\\lambda$ whi...
Qp-spaces on bounded symmetric domains
Directory of Open Access Journals (Sweden)
Jonathan Arazy
2008-01-01
Full Text Available We generalize the theory of Qp spaces, introduced on the unit disc in 1995 by Aulaskari, Xiao and Zhao, to bounded symmetric domains in Cd, as well as to analogous Moebius-invariant function spaces and Bloch spaces defined using higher order derivatives; the latter generalization contains new results even in the original context of the unit disc.
Realizability of stationary spherically symmetric transonic accretion
Ray, A K; Ray, Arnab K.
2002-01-01
The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.
Designing new symmetrical facial oligothiophene amphiphiles
Janeliunas, Dainius; Eelkema, Rienk; Nieto-Ortega, Belén; Ramírez Aguilar, Francisco J; López Navarrete, Juan T; van der Mee, Lars; Stuart, Marc C A; Casado, Juan; van Esch, Jan H
2013-01-01
In this study we designed a new class of symmetrical facial oligothiophene amphiphiles, which could be obtained in fewer steps than for previously reported analogues, but still possess the specific substituent sequence to control their backbone curvature. This novel design allows the late-stage intr
Symmetrized solutions for nonlinear stochastic differential equations
Directory of Open Access Journals (Sweden)
G. Adomian
1981-01-01
Full Text Available Solutions of nonlinear stochastic differential equations in series form can be put into convenient symmetrized forms which are easily calculable. This paper investigates such forms for polynomial nonlinearities, i.e., equations of the form Ly+ym=x where x is a stochastic process and L is a linear stochastic operator.
How Symmetrical Assumptions Advance Strategic Management Research
DEFF Research Database (Denmark)
Foss, Nicolai Juul; Hallberg, Hallberg
2014-01-01
We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other appl...
Jordan algebraic approach to symmetric optimization
Vieira, M.V.C.
2007-01-01
In this thesis we present a generalization of interior-point methods for linear optimization based on kernel functions to symmetric optimization. It covers the three standard cases of conic optimization: linear optimization, second-order cone optimization and semi-definite optimization. We give an
Tautological Integrals on Symmetric Products of Curves
Institute of Scientific and Technical Information of China (English)
Zhi Lan WANG
2016-01-01
We propose a conjecture on the generating series of Chern numbers of tautological bundles on symmetric products of curves and establish the rank 1 and rank −1 case of this conjecture. Thus we compute explicitly the generating series of integrals of Segre classes of tautological bundles of line bundles on curves, which has a similar structure as Lehn’s conjecture for surfaces.
Convexity and symmetrization in relativistic theories
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
Super-symmetric informationally complete measurements
Energy Technology Data Exchange (ETDEWEB)
Zhu, Huangjun, E-mail: hzhu@pitp.ca
2015-11-15
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
Onthe static and spherically symmetric gravitational field
Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra
Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.
Fission energy program of the US Department of Energy, FY 1981
Energy Technology Data Exchange (ETDEWEB)
Ferguson, Robert L.
1980-03-01
Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.
Monte Carlo simulation based toy model for fission process
Kurniadi, Rizal; Waris, Abdul; Viridi, Sparisoma
2016-09-01
Nuclear fission has been modeled notoriously using two approaches method, macroscopic and microscopic. This work will propose another approach, where the nucleus is treated as a toy model. The aim is to see the usefulness of particle distribution in fission yield calculation. Inasmuch nucleus is a toy, then the Fission Toy Model (FTM) does not represent real process in nature completely. The fission event in FTM is represented by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. By adopting the nucleon density approximation, the Gaussian distribution is chosen as particle distribution. This distribution function generates random number that randomizes distance between particles and a central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. The yield is determined from portion of nuclei distribution which is proportional with portion of mass numbers. By using modified FTM, characteristic of particle distribution in each fission event could be formed before fission process. These characteristics could be used to make prediction about real nucleons interaction in fission process. The results of FTM calculation give information that the γ value seems as energy.
Immobilization of fission products in phosphate ceramic waste forms
Energy Technology Data Exchange (ETDEWEB)
Singh, D. [Argonne National Lab., IL (United States)
1996-10-01
The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.
Metal cluster fission: jellium model and Molecular dynamics simulations
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;
2004-01-01
Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...
Fission Product Neutron Cross Section Library and Its Reliability Assessment
Institute of Scientific and Technical Information of China (English)
QIAN; Jing; SUN; Zheng-jun; LIU; Ting-jin; SHU; Neng-chuan
2013-01-01
A complete library of neutron cross section data has been developed for fission product nuclides.It contains data for 1 121 fission product nuclides of mass number A from 66 to 172 and atomic numbers Z from 22 to 72,where involves a lot of very short-lived radioactive ones.The data were taken from better
EMISSION OF PHOTONS IN SPONTANEOUS FISSION OF CF-252
VANDERPLOEG, H; BACELAR, JCS; BUDA, A; LAURENS, CR; VANDERWOUDE, A; GAARDHOJE, JJ; ZELAZNY, Z; VANTHOF, G; KALANTARNAYESTANAKI, N
1995-01-01
High energy photon emission accompanying the spontaneous fission of Cf-252 is measured for different mass splits. The photon yields up to an energy of 20 MeV are obtained at several angles relative to the fission direction. Statistical model calculations are used to interpret the data. The photon yi
Neutron angular distribution in plutonium-240 spontaneous fission
Energy Technology Data Exchange (ETDEWEB)
Marcath, Matthew J., E-mail: mmarcath@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Shin, Tony H.; Clarke, Shaun D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Peerani, Paolo [European Commission at the Joint Research Centre, Ispra (Italy); Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)
2016-09-11
Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a {sup 252}Cf, a 0.84 g {sup 240}Pu{sub eff} metal, and a 1.63 g {sup 240}Pu{sub eff} metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons. - Highlights: • Pu-240 prompt fission fast-neutron anisotropy was quantified for the first time. • MCNPX-PoliMi and MPPost codes were used to remove cross-talk neutron detections from experiment results. • Cf-252 spontaneous fission neutrons were found to be more anisotropic than Pu-240 neutrons.
Fission-track ages from the Precambrian of Shropshire.
Naeser, C.W.; Toghill, P.; Ross, R.J.
1982-01-01
Four samples of Longmyndian and Uriconian strata from S of Shrewsbury, England have been processed for apatite and/or zircon fission-track ages. The resultant ages illustrate how depth of burial may affect fission-track ages. The analytical procedures followed were as described in Naeser (1979).-from Authors
Late Time Emission of Prompt Fission Gamma Rays
Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B
2016-01-01
The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...
Energy Technology Data Exchange (ETDEWEB)
Pichon, M
2004-10-01
Nuclear matter must present a liquid-gas phase transition at intermediate energies. This thesis is a study of this transition with binary collisions of symmetrical systems Xe+Sn and Au+Au from 60 to 100 MeV/u, detected with INDRA multidetector. A possible signature of liquid-gas phase transition is the observation of a bimodal distribution for an order parameter. Bimodality is a robust signal and can differentiate two family of event: the liquid phase and the gas one. This study is made on the quasi-projectile source with an asymmetry variable between the two heaviest decay products. The sorting of the event is provided by the perpendicular energy of the light charged particles emitted on the quasi-target side. Delta-scaling and negative heat capacity are also interpreted as a possible signature of phase transition. For the first one, we observe scaling law of heaviest fragment distributions for each phase. For the second one, fluctuations of the sharing of the available energy in the system can lead to a negative branch of heat capacity which is a theoretical signature of the transition. Correlation between all this observables are clearly demonstrated. A possible contribution of dynamical effect is tested and quantified with the generator of event HIPSE. The conclusion reveals a definite coherence between all signals of a phase transition. (author)
Symmetric key structural residues in symmetric proteins with beta-trefoil fold.
Directory of Open Access Journals (Sweden)
Jianhui Feng
Full Text Available To understand how symmetric structures of many proteins are formed from asymmetric sequences, the proteins with two repeated beta-trefoil domains in Plant Cytotoxin B-chain family and all presently known beta-trefoil proteins are analyzed by structure-based multi-sequence alignments. The results show that all these proteins have similar key structural residues that are distributed symmetrically in their structures. These symmetric key structural residues are further analyzed in terms of inter-residues interaction numbers and B-factors. It is found that they can be distinguished from other residues and have significant propensities for structural framework. This indicates that these key structural residues may conduct the formation of symmetric structures although the sequences are asymmetric.
Characterization of the scission point from fission-fragment velocities
Caamaño, M; Delaune, O; Schmidt, K -H; Schmitt, C; Audouin, L; Bacri, C -O; Benlliure, J; Casarejos, E; Derkx, X; Fernández-Domínguez, B; Gaudefroy, L; Golabek, C; Jurado, B; Lemasson, A; Ramos, D; Rodríguez-Tajes, C; Roger, T; Shrivastava, A
2015-01-01
The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.
Fission of highly excited nuclei investigated in complete kinematic measurements
Directory of Open Access Journals (Sweden)
Rodríguez-Sánchez J.L.
2013-12-01
Full Text Available Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections.
Determining isotopic distributions of fission products with a penning trap
Energy Technology Data Exchange (ETDEWEB)
Penttilae, H.; Karvonen, P.; Eronen, T.; Elomaa, V.V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Peraejaervi, K.; Rahaman, S.; Rinta-Antila, S.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)
2010-04-15
A novel method to determine independent yields in particle-induced fission employing the ion guide technique and ion counting after a Penning trap has been developed. The method takes advantage of the fact that a Penning trap can be used as a precision mass filter, which allows an unambiguous identification of the fission fragments. The method was tested with 25MeV and 50MeV proton-induced fission of {sup 238}U. The data is internally reproducible with an accuracy of a few per cent. A satisfactory agreement was obtained with older ion guide yield measurements in 25MeV proton-induced fission. The results for Rb and Cs yields in 50MeV proton-induced fission agree with previous measurements performed at an isotope separator equipped with a chemically selective ion source. (orig.)
Simple estimate of fission rate during JCO criticality accident
Energy Technology Data Exchange (ETDEWEB)
Oyamatsu, Kazuhiro [Faculty of Studies on Contemporary Society, Aichi Shukutoku Univ., Nagakute, Aichi (Japan)
2000-03-01
The fission rate during JCO criticality accident is estimated from fission-product (FP) radioactivities in a uranium solution sample taken from the preparation basin 20 days after the accident. The FP radioactivity data are taken from a report by JAERI released in the Accident Investigation Committee. The total fission number is found quite dependent on the FP radioactivities and estimated to be about 4x10{sup 16} per liter, or 2x10{sup 18} per 16 kgU (assuming uranium concentration 278.9 g/liter). On the contrary, the time dependence of the fission rate is rather insensitive to the FP radioactivities. Hence, it is difficult to determine the fission number in the initial burst from the radioactivity data. (author)
Fission fragment mass distributions via prompt -ray spectroscopy
Indian Academy of Sciences (India)
L S Danu; D C Biswas; B K Nayak; R K Choudhury
2015-09-01
The distribution of fragment masses formed in nuclear fission is one of the most striking features of the process. Such measurements are very important to understand the shape evolution of the nucleus from ground state to scission through intermediate saddle points. The fission fragment mass distributions, generally obtained via conventional methods (i.e., by measuring the energy and/or the velocity of the correlated fission fragments) are limited to a mass resolution of 4–5 units. On the other hand, by employing the -ray spectroscopy, it is possible to estimate the yield of individual fission fragments. In this work, determination of the fission fragment mass distribution by employing prompt -ray spectroscopy is described along with the recent results on 238U(18O, f) and 238U(32S, f) systems.
ISOLDE experiment explores new territory in nuclear fission
CERN Bulletin
2011-01-01
An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question. Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...
Applications of Event-by-Event Fission Modeling with FREYA
Directory of Open Access Journals (Sweden)
Vogt R.
2012-02-01
Full Text Available The recently developed code FREYA (Fission Reaction Event Yield Algorithm generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on 239Pu(nth,f, 240Pu(sf and 252Cf(sf, we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.
Modelling the widths of fission observables in GEF
Directory of Open Access Journals (Sweden)
Schmidt K.-H.
2013-03-01
Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.
Ceramic Hosts for Fission Products Immobilization
Energy Technology Data Exchange (ETDEWEB)
Peter C Kong
2010-07-01
Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent
Super stellar clusters with a bimodal hydrodynamic solution: an Approximate Analytic Approach
Wünsch, R; Palous, J; Tenorio-Tagle, G
2007-01-01
We look for a simple analytic model to distinguish between stellar clusters undergoing a bimodal hydrodynamic solution from those able to drive only a stationary wind. Clusters in the bimodal regime undergo strong radiative cooling within their densest inner regions, which results in the accumulation of the matter injected by supernovae and stellar winds and eventually in the formation of further stellar generations, while their outer regions sustain a stationary wind. The analytic formulae are derived from the basic hydrodynamic equations. Our main assumption, that the density at the star cluster surface scales almost linearly with that at the stagnation radius, is based on results from semi-analytic and full numerical calculations. The analytic formulation allows for the determination of the threshold mechanical luminosity that separates clusters evolving in either of the two solutions. It is possible to fix the stagnation radius by simple analytic expressions and thus to determine the fractions of the depo...
Directory of Open Access Journals (Sweden)
Zhizheng Wu
2012-01-01
Full Text Available Motivated by a class of contact vibration control problems in mechanical systems, this paper considers a regulation problem for discrete-time switched bimodal linear systems where it is desired to achieve output regulation against partially known deterministic and unknown random exogenous signals. First, a set of observer-based Youla parameterized stabilizing controllers is constructed, based on which the regulation conditions for the switched system against the deterministic signals along with an H2 performance constraint against the unknown random signals are derived. Then a corresponding regulator synthesis algorithm is developed based on solving properly formulated linear matrix inequalities. The proposed regulator is successfully evaluated on an experimental setup involving a switched bimodal mechanical system subject to contact vibrations, hence, demonstrating the effectiveness of the proposed regulation approach.
Bimodal score distributions and the Myers-Briggs Type Indicator: fact or artifact?
Bess, Tammy L; Harvey, Robert J
2002-02-01
We examined Myers-Briggs Type Indicator (MBTI) score distributions computed using item response theory (IRT) to assess the generalizability of earlier bimodality reports that have been cited in support of the "type" versus "trait" view of personality. Using the BILOG IRT program to score a sample of approximately 12,000 individuals who participated in leadership development programs, theta score distributions for the 4 dimensions of the MBTI computed using 10 (the BILOG default) versus 50 quadrature points were compared. Results indicated that past reports of bimodality were artifacts caused by BILOG's default use of a small number of quadrature points; when larger numbers of points were used, score distributions became strongly center-weighted. Although our findings are not supportive of the "type"-based hypothesis, the extremely high correlations between theta scores (rs > .996) suggest that no practical differences would be expected as a function of the number-of-quadrature-points decision.
Bimodal Distribution of Sulfuric Acid Aerosols in the Upper Haze of Venus
Gao, Peter; Crisp, David; Bardeen, Charles G; Yung, Yuk L
2013-01-01
The upper haze (UH) of Venus is variable on the order of days and it is populated by two particle modes. We use a 1D microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two size modes and whether their observed variability are due to cloud top vertical transient winds. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets that then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and cannot reproduce the observed bimodal size distribution. The mass transport enabled by cloud top transient winds are able to generate a bimodal size distribution in a time scale consistent with observations. Sedimentation and convection in the middle and lower...
Improved Fission Neutron Data Base for Active Interrogation of Actinides
Energy Technology Data Exchange (ETDEWEB)
Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel
2013-11-06
This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).
Chadwick, Mark B.
2009-10-01
Los Alamos conducted a dual fission-chamber experiment in the 1970s in the Bigten critical assembly to determine fission product data in a fast (fission neutron spectrum) environment, and this defined the Laboratory's fission basis today. We describe how the data from this experiment are consistent with other benchmark fission product yield measurements for 95,97Zr, 140Ba, 143,144Ce, 137Cs from the NIST-led ILRR fission chamber experiments, and from Maeck's mass-spectrometry data. We perform a new evaluation of the fission product yields that is planned for ENDF/B-VII.1. Because the measurement database for some of the FPs is small—especially for 147Nd and 99Mo—we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data. The %-relative changes compared to ENDF/B-VI are small for some FPs (less than 1% for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (3%) and 147Nd (5%). We suggest an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average energies.
Institute of Scientific and Technical Information of China (English)
CHENG Rongshi; HU Huizhen; JIANG Liansheng
1987-01-01
The variation of the molecular weight and molecular weight distribution of cis-polybutadiene in the course of polymerization catalyzed by lanthanide complex composed of triisobutyl aluminium or diisobutyl aluminium hydride was investigated by osmometry, viscometry and size exclusion chromatography. By analyzing the experimental data, the reasons of the appearance of bimodal molecular weight distribution were elucidated and the possible mechanisms of polymerization were discussed.
The Effects of Bilateral Electric and Bimodal Electric—Acoustic Stimulation on Language Development
2009-01-01
There is no doubt that cochlear implants have improved the spoken language abilities of children with hearing loss, but delays persist. Consequently, it is imperative that new treatment options be explored. This study evaluated one aspect of treatment that might be modified, that having to do with bilateral implants and bimodal stimulation. A total of 58 children with at least one implant were tested at 42 months of age on four language measures spanning a continuum from basic to generative i...
Stochastic resonance and chaotic resonance in bimodal maps: A case study
Indian Academy of Sciences (India)
G Ambika; N V Sujatha; K P Harikrishnan
2002-09-01
We present the results of an extensive numerical study on the phenomenon of stochastic resonance in a bimodal cubic map. Both Gaussian random noise as well as deterministic chaos are used as input to drive the system between the basins. Our main result is that when two identical systems capable of stochastic resonance are coupled, the SNR of either system is enhanced at an optimum coupling strength. Our results may be relevant for the study of stochastic resonance in biological systems.
Brain deactivation in the outperformance in bimodal tasks: an FMRI study.
Directory of Open Access Journals (Sweden)
Tzu-Ching Chiang
Full Text Available While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot. How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of the two tasks simultaneously. The functional magnetic resonance imaging (fMRI results are compatible with previous studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF, lateral parietal lobe (BA7, and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the temporal lobes and Brodmann area 43 (BA43 were involved in processing of auditory unimodal tasks. These results lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in the bimodal task, these areas were not deactivated where the subject performed well in only one of the two simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as courses in how to perform multiple tasks simultaneously.
Formulation and evaluation of bilayer tablet for bimodal release of venlafaxine hydrochloride
2015-01-01
The aim of the present research was to develop a bilayer tablet of venlafaxine hydrochloride for bimodal drug release. In the present investigation authors have tried to explore fenugreek mucilage (FNM) for bioadhesive sustained release layer. The attempt has been made to combine FNM with well studied bioadhesive polymers like hydroxy propyl methyl cellulose (HPMC), Carbopol, and Xanthan Gum. The formulations were evaluated for swelling Index, ex vivo bioadhesion, water uptake studies, in vit...
Flatfoot diagnosis by a unique bimodal distribution of footprint index in children.
Directory of Open Access Journals (Sweden)
Chia-Hsieh Chang
Full Text Available BACKGROUND: More than 1000 scientific papers have been devoted to flatfoot issue. However, a bimodal distribution of flatfoot indices in school-aged children has never been discovered. The purposes of this study were to establish a new classification of flatfoot by characteristic in frequency distribution of footprint index and to endue the classification with discrepancy in physical fitness. METHODS/PRINCIPAL FINDINGS: In a longitudinal survey of physical fitness and body structure, weight bearing footprints and 3 physical fitness related tests were measured in 1228 school-aged children. Frequency distribution of initial data was tested by Kolmogorov-Smirnov test for normality and a unique bimodal distribution of footprint index was identified. The frequency distribution of footprint index manifests two distinct modes, flatfoot and non-flatfoot, by deconvolution and bootstrapping procedures. A constant intersection value of 1.0 in Staheli's arch index and 0.6 in Chippaux-Smirak index could distinguish the two modes of children, and the value was constant in different age, sex, and weight status. The performance of the one leg balance was inferior in flatfoot girls (median, 4.0 seconds in flatfoot girls vs. 4.3 seconds in non-flatfoot girls, p = 0.04, 95% CI 0.404-0.484. DISCUSSION: The natural bimodality lends itself to a flatfoot classification. Bimodality suggests development of the child's foot arch would be a leap from one state to another, rather than a continuous growth as body height and weight. The underlying dynamics of the human foot arch and motor development will trigger research prospects.
Flatfoot Diagnosis by a Unique Bimodal Distribution of Footprint Index in Children
Chia-Hsieh Chang; Yu-Chen Chen; Wen-Tien Yang; Pei-Chi Ho; Ai-Wen Hwang; Chien-Hung Chen; Jia-Hao Chang; Liang-Wey Chang
2014-01-01
BACKGROUND: More than 1000 scientific papers have been devoted to flatfoot issue. However, a bimodal distribution of flatfoot indices in school-aged children has never been discovered. The purposes of this study were to establish a new classification of flatfoot by characteristic in frequency distribution of footprint index and to endue the classification with discrepancy in physical fitness. METHODS/PRINCIPAL FINDINGS: In a longitudinal survey of physical fitness and body structure, weight b...
Competencia léxica en el currículum bimodal
2012-01-01
[EN] The society in which we live has changed and keeps on changing all the time. These changes are closely related to the incorporation of Internet as a kind of appendage to our persona. The obligatory education system cannot ignore such a fact and therefore should renew its curricular approach. This innovation involves the methodological differentiation suggested by the bimodal curriculum, which makes a distinction between practical abilities and conceptual knowledge. Among the latter, the ...
Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun
2016-06-01
Correction for `Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy' by Kyoung Sub Kim, et al., Nanoscale, 2016, DOI: 10.1039/c6nr02273a.
Physical Mechanism of Formation of the Bimodal Structure in the Meiyu Front System
Institute of Scientific and Technical Information of China (English)
CUI Xiao-Peng; GAO Shou-Ting; ZONG Zhi-Ping; LIU Wen-Ming; LI Xiao-Fan
2005-01-01
@@ The bimodal structure of the Meiyu front system is readdressed after Zhou et al.(2005). The physical mechanism of the formation of the bimodal distribution is discussed. The bimodal structure of the Meiyu front system considerably results from atmospheric moisture gradients, though atmospheric temperature gradients are also not negligible. According to the definition of equivalent potential temperature, and by scale analysis, we find that atmospheric equivalent potential temperature gradients, which could be regarded as an indicator of the Meiyu front system, could be mainly attributed to the variations of atmospheric potential temperature gradients with a scaling factor of 1 and moisture gradients multiplied by a scaling factor of an order of about 2.5 × 103,which means that small variations of atmospheric moisture gradients could lead to large variations of equivalent potential temperature gradients, and thus large variations of the Meiyu front system. Quantitative diagnostics with a mesoscale simulation data in the vicinity of the Meiyu front system show that moisture gradients contribute to equivalent potential temperature gradients more than potential temperature gradients.
A New Method of Moments for the Bimodal Particle System in the Stokes Regime
Directory of Open Access Journals (Sweden)
Yan-hua Liu
2013-01-01
Full Text Available The current paper studied the particle system in the Stokes regime with a bimodal distribution. In such a system, the particles tend to congregate around two major sizes. In order to investigate this system, the conventional method of moments (MOM should be extended to include the interaction between different particle clusters. The closure problem for MOM arises and can be solved by a multipoint Taylor-expansion technique. The exact expression is deduced to include the size effect between different particle clusters. The collision effects between different modals could also be modeled. The new model was simply tested and proved to be effective to treat the bimodal system. The results showed that, for single-modal particle system, the results from new model were the same as those from TEMOM. However, for the bimodal particle system, there was a distinct difference between the two models, especially for the zero-order moment. The current model generated fewer particles than TEMOM. The maximum deviation reached about 15% for m0 and 4% for m2. The detailed distribution of each submodal could also be investigated through current model.
Wind speed analysis in La Vainest, Mexico: a bimodal probability distribution case
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O.A.; Borja, M.A. [Energias No Convencionales, Morelos (Mexico). Instituto de Investigaciones Electricas
2004-08-01
The statistical characteristics of the wind speed in La Vainest, Oxoic, Mexico, have been analyzed by using wind speed data recorded by Instituto de Investigaciones Electricas (IIE). By grouping the observations by annual, seasonal and wind direction, we show that the wind speed distribution, with calms included, is not represented by the typical two-parameter Weibull function. A mathematical formulation by using a bimodal Weibull and Weibull probability distribution function (PDF) has been developed to analyse the wind speed frequency distribution in that region. The model developed here can be applied for similar regions where the wind speed distribution presents a bimodal PDF. The two-parameter Weibull wind speed distribution must not be generalised, since it is not accurate to represent some wind regimes as the case of La Ventosa, Mexico. The analysis of wind data shows that computing the capacity factor for wind power plants to be installed in La Ventosa must be carded out by means of a bimodal PDF instead of the typical Weibull PDF. Otherwise, the capacity factor will be underestimated. (author)
Tracing Outflows and Accretion: A Bimodal Azimuthal Dependence of MgII Absorption
Kacprzak, G G; Nielsen, N M
2012-01-01
We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by MgII absorption: Halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed MgII absorption-selected galaxies [W_r(2796)> 0.1A] and 35 spectroscopically confirmed non-absorbing galaxies [W_r(2796)<0.1A] imaged with HST and SDSS. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W_r(2796)<0.1A. We find that blue star-forming galaxies clearly drive the bimodality. We compute an azimuthal angle dependent MgII absorption covering fraction and find that it is enhanced by as much as 20-30% along the major and minor axes. The equivalent width distribution for gas along the major axis is likely skewed toward weaker MgII absorption than for gas along the projected minor axis. These combined results...
Comparison between wave generation methods for numerical simulation of bimodal seas
Directory of Open Access Journals (Sweden)
Daniel A. Thompson
2016-01-01
Full Text Available This paper describes an investigation of the generation of desired sea states in a numerical wave model. Bimodal sea states containing energetic swell components can be coastal hazards along coastlines exposed to large oceanic fetches. Investigating the effects of long-period bimodal seas requires large computational domains and increased running time to ensure the development of the desired sea state. Long computational runs can cause mass stability issues due to the Stokes drift and wave reflection, which in turn affect results through the variation of the water level. A numerical wave flume, NEWRANS, was used to investigate two wave generation methods: the wave paddle method, allowing for a smaller domain; and the internal mass source function method, providing an open boundary allowing reflected waves to leave the domain. The two wave generation methods were validated against experimental data by comparing the wave generation accuracy and the variance of mass in the model during simulations. Results show that the wave paddle method not only accurately generates the desired sea state but also provides a more stable simulation, in which mass fluctuation has less of an effect on the water depth during the long-duration simulations. As a result, it is suggested that the wave paddle method with active wave absorption is preferable to the internal wave maker option when investigating intermediate-depth long-period bimodal seas for long-duration simulations.
Zou, Lijuan; Abutalebi, Jubin; Zinszer, Benjamin; Yan, Xin; Shu, Hua; Peng, Danling; Ding, Guosheng
2012-09-01
The functional brain network of a bilingual's first language (L1) plays a crucial role in shaping that of his or her second language (L2). However, it is less clear how L2 acquisition changes the functional network of L1 processing in bilinguals. In this study, we demonstrate that in bimodal (Chinese spoken-sign) bilinguals, the functional network supporting L1 production (spoken language) has been reorganized to accommodate the network underlying L2 production (sign language). Using functional magnetic resonance imaging (fMRI) and a picture naming task, we find greater recruitment of the right supramarginal gyrus (RSMG), the right temporal gyrus (RSTG), and the right superior occipital gyrus (RSOG) for bilingual speakers versus monolingual speakers during L1 production. In addition, our second experiment reveals that these regions reflect either automatic activation of L2 (RSOG) or extra cognitive coordination (RSMG and RSTG) between both languages during L1 production. The functional connectivity between these regions, as well as between other regions that are L1- or L2-specific, is enhanced during L1 production in bimodal bilinguals as compared to their monolingual peers. These findings suggest that L1 production in bimodal bilinguals involves an interaction between L1 and L2, supporting the claim that learning a second language does, in fact, change the functional brain network of the first language.
Directory of Open Access Journals (Sweden)
Jun Yin
2016-03-01
Full Text Available Modern reverse osmosis (RO/nanofiltration (NF membranes are primarily made of thin-film composites (TFC fabricated through interfacial polymerization of m-phenylene diamine (MPD and trimesoyl chloride (TMC on a polysulfone (PSF supporting membrane. In this study, two types of bimodal silica nanoparticles (~80 nm with different internal pore structures were synthesized and incorporated into the polyamide (PA thin-film layer during interfacial polymerization at concentrations varying from 0 to 0.1 wt%. The as-prepared membranes were characterized by scanning electron microscopy (SEM, atomic force microscopy (AFM, and attenuated total reflection Fourier transform infrared (ATR FT-IR spectroscopy, and their performances were evaluated in terms of the water permeability and salt rejection. The results showed the water permeability increased with increasing BSN concentrations, reaching a maximum of 53.5 L m−2 h−1 at a bimodal silica nanoparticle (BSN concentration of 0.5 wt% (pressure at 300 psi, NaCl concentration: 2000 ppm. This represented a flux increase of approximately 40%, while a near constant salt rejection of 95% was maintained. The study demonstrated that the internal micro-mesoporous structures of bimodal silica nanoparticles contributed significantly to the membrane performance, which is consistent with previous studies with relatively uniform internal pores.
REPRESENTATION OF SYMMETRIC SUPER-MARTINGALE MULTIPLICATIVE FUNCTIONALS
Institute of Scientific and Technical Information of China (English)
金蒙为; 应坚刚
2002-01-01
The authors introduce concepts of even and odd additive functionals and prove that an even martingale continuous additive functional of a symmetric Markov process vanishes identically.A representation for symmetric super-martingale multiplicative functionals are also given.
Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS
Energy Technology Data Exchange (ETDEWEB)
Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.
Polymer-based symmetric electrochromic devices
Energy Technology Data Exchange (ETDEWEB)
Arbizzani, Catia; Cerroni, Maria Grazia [Department of Chemistry `G. Ciamician`, University of Bologna, via Selmi 2, 40126 Bologna (Italy); Mastragostino, Marina [Department of Physical Chemistry, University of Palermo, via Archirafi 26, 20123 Palermo (Italy)
1998-12-30
The fact that conjugated polymers repeatedly undergo electrochemical doping/undoping processes, which are accompanied by color changes, makes these materials very attractive, and much effort has been devoted to their use in advanced devices. There is renewed interest in electroactive polymers that reversibly undergo both p- and n-doping because of their potential application in symmetric electrochemical devices. We employed fused molecules, dithienothiophenes, as monomers to obtain polymers with a narrow band gap suitable for n- and p-doping. The performance results of two symmetric electrochromic devices having as electrodes both poly(dithieno[3,4-b:3`,4`-d]thiophene) (pDTT1) and poly(dithieno[3,4-b:2`,3`-d]thiophene) (pDTT3) are reported and discussed
Leptogenesis in left-right symmetric theories
Energy Technology Data Exchange (ETDEWEB)
Joshipura, Anjan S. E-mail: anjan@prl.ernet.in; Paschos, Emmanuel A. E-mail: paschos@physik.uni-dortmund.de; Rodejohann, Werner E-mail: rodejoha@xena.physik.uni-dortmund.de
2001-09-17
The masses and mixing of the light left-handed neutrinos can be related to those of the heavy right-handed neutrinos in left-right symmetric theories. Properties of the light neutrinos are measured in terrestrial experiments and the CP-violating decays of their heavy counterparts produce a baryon asymmetry via the well-known leptogenesis mechanism. The left-handed Higgs triplet, present in left-right symmetric theories, modifies the usual see-saw formula. It is possible to relate the lepton asymmetry to the light neutrino parameters when the triplet and the top quark through the usual see-saw mechanism give the dominant contribution to the neutrino mass matrix. We find that in this situation the small angle MSW and vacuum solutions produce reasonable asymmetry, whereas the large angle MSW case requires extreme fine-tuning of the three phases in the mixing matrix.
Cusped Wilson lines in symmetric representations
Correa, Diego H; Trancanelli, Diego
2015-01-01
We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank-$k$ symmetric representation of the gauge group $U(N)$ for ${\\cal N} = 4$ super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and $k\\sqrt{\\lambda}\\gg N$. This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of $k\\gg N$, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large $k$, independently of the contour on which they are supported.
Nonlinear electrodynamics as a symmetric hyperbolic system
Abalos, Fernando; Goulart, Érico; Reula, Oscar
2015-01-01
Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the point-wise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that, the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a non-empty intersection. Namely that there exist families of symmetrizers in the sense of Geroch which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well-posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet and Euler-Heisenberg.
Maximally Symmetric Spacetimes emerging from thermodynamic fluctuations
Bravetti, A; Quevedo, H
2015-01-01
In this work we prove that the maximally symmetric vacuum solutions of General Relativity emerge from the geometric structure of statistical mechanics and thermodynamic fluctuation theory. To present our argument, we begin by showing that the pseudo-Riemannian structure of the Thermodynamic Phase Space is a solution to the vacuum Einstein-Gauss-Bonnet theory of gravity with a cosmological constant. Then, we use the geometry of equilibrium thermodynamics to demonstrate that the maximally symmetric vacuum solutions of Einstein's Field Equations -- Minkowski, de-Sitter and Anti-de-Sitter spacetimes -- correspond to thermodynamic fluctuations. Moreover, we argue that these might be the only possible solutions that can be derived in this manner. Thus, the results presented here are the first concrete examples of spacetimes effectively emerging from the thermodynamic limit over an unspecified microscopic theory without any further assumptions.
Factored Facade Acquisition using Symmetric Line Arrangements
Ceylan, Duygu
2012-05-01
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.
The Symmetric Solutions of Affiliated Value Model
Institute of Scientific and Technical Information of China (English)
Che Ka-jia; Li Zhi-chen
2004-01-01
In a symmetric affiliated value model, this paper analyses High-Technology industrial firms' competitive strategy in research and development (R&D). We obtain the symmetric Bayesian Nash Equilibrium functions with or without government's prize:b1(x)=v(x,x)Fn-1(x|x)-∫x0Fn-1(y|y)dv(y,y), b2(x)=∫x0[v(y,y)+v0]dFn-1(y|y), and b3(x)=∫x0v(y,y)(fn-1(y|y))/(1-Fn-1(y|y))dy. We find the firm's investment level will increase in prize, only when the constant prize v0≥v(y,y)(Fn-1(y|y))/(1-Fn-1(y|y)), does the firm invest more aggressively with constant prize than with variable prize.
Replica symmetric spin glass field theory
Energy Technology Data Exchange (ETDEWEB)
Temesvari, T. [Research Group for Theoretical Physics of the Hungarian Academy of Sciences, Eoetvoes University, Pazmany Peter setany 1/A, H-1117 Budapest (Hungary)]. E-mail: temtam@helios.elte.hu
2007-06-18
A new powerful method to test the stability of the replica symmetric spin glass phase is proposed by introducing a replicon generator function g(v). Exact symmetry arguments are used to prove that its extremum is proportional to the inverse spin glass susceptibility. By the idea of independent droplet excitations a scaling form for g(v) can be derived, whereas it can be exactly computed in the mean field Sherrington-Kirkpatrick model. It is shown by a first order perturbative treatment that the replica symmetric phase is unstable down to dimensions d < or approx. 6, and the mean field scaling function proves to be very robust. Although replica symmetry breaking is escalating for decreasing dimensionality, a mechanism caused by the infrared divergent replicon propagator may destroy the mean field picture at some low enough dimension.
Replica symmetric spin glass field theory
Temesvári, T.
2007-06-01
A new powerful method to test the stability of the replica symmetric spin glass phase is proposed by introducing a replicon generator function g(v). Exact symmetry arguments are used to prove that its extremum is proportional to the inverse spin glass susceptibility. By the idea of independent droplet excitations a scaling form for g(v) can be derived, whereas it can be exactly computed in the mean field Sherrington-Kirkpatrick model. It is shown by a first order perturbative treatment that the replica symmetric phase is unstable down to dimensions d≲6, and the mean field scaling function proves to be very robust. Although replica symmetry breaking is escalating for decreasing dimensionality, a mechanism caused by the infrared divergent replicon propagator may destroy the mean field picture at some low enough dimension.
Leptogenesis in left-right symmetric theories
Joshipura, A S; Rodejohann, W
2001-01-01
The masses and mixing of the light left-handed neutrinos can be related to those of the heavy right-handed neutrinos in left-right symmetric theories. Properties of the light neutrinos are measured in terrestrial experiments and the CP-violating decays of their heavy counterparts produce a baryon asymmetry via the well-known leptogenesis mechanism. The left-handed Higgs triplet, present in left-right symmetric theories, modifies the usual see-saw formula. It is possible to relate the lepton asymmetry to the light neutrino parameters when the triplet and the top quark through the usual see-saw mechanism give dominant contribution to the neutrino mass matrix. We find that in this situation the small angle MSW and vacuum solutions produce reasonable asymmetry, whereas the large angle MSW case requires extreme fine-tuning of the three phases in the mixing matrix.
Representations of the infinite symmetric group
Borodin, Alexei
2016-01-01
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.