WorldWideScience

Sample records for bimodal particle size

  1. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  2. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    Science.gov (United States)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  3. Primary particle diameter differentiation and bimodality identification by five analytical methods using gold nanoparticle size distributions synthesized by pulsed laser ablation in liquids

    Science.gov (United States)

    Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan

    2018-03-01

    For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied

  4. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements

    Science.gov (United States)

    Nicolet, Anaïs; Meli, Felix; van der Pol, Edwin; Yuana, Yuana; Gollwitzer, Christian; Krumrey, Michael; Cizmar, Petr; Buhr, Egbert; Pétry, Jasmine; Sebaihi, Noham; de Boeck, Bert; Fokkema, Vincent; Bergmans, Rob; Nieuwland, Rienk

    2016-03-01

    In future, measurements of extracellular vesicles in body fluids could become a standard diagnostic tool in medicine. For this purpose, reliable and traceable methods, which can be easily applied in hospitals, have to be established. Within the European Metrological Research Project (EMRP) ‘Metrological characterization of micro-vesicles from body fluids as non-invasive diagnostic biomarkers’ (www.metves.eu), various nanoparticle reference materials were developed and characterized. We present results of an international comparison among four national metrology institutes and a university hospital. The size distributions of five monodisperse and two bimodal spherical particle samples with diameters ranging from 50 nm to 315 nm made out of silica and polystyrene were compared. Furthermore, the stability of the samples was verified over a period of 18 months. While monodisperse reference particle samples above a certain size level lead to good agreements of the size measurements among the different methods, small and bimodal samples show the limitations of current ‘clinical’ methods. All samples proved to be stable within the uncertainty of the applied methods.

  5. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements

    International Nuclear Information System (INIS)

    Nicolet, Anaïs; Meli, Felix; Van der Pol, Edwin; Yuana, Yuana; Nieuwland, Rienk; Gollwitzer, Christian; Krumrey, Michael; Cizmar, Petr; Buhr, Egbert; Pétry, Jasmine; Sebaihi, Noham; De Boeck, Bert; Fokkema, Vincent; Bergmans, Rob

    2016-01-01

    In future, measurements of extracellular vesicles in body fluids could become a standard diagnostic tool in medicine. For this purpose, reliable and traceable methods, which can be easily applied in hospitals, have to be established. Within the European Metrological Research Project (EMRP) ‘Metrological characterization of micro-vesicles from body fluids as non-invasive diagnostic biomarkers’ (www.metves.eu), various nanoparticle reference materials were developed and characterized. We present results of an international comparison among four national metrology institutes and a university hospital. The size distributions of five monodisperse and two bimodal spherical particle samples with diameters ranging from 50 nm to 315 nm made out of silica and polystyrene were compared. Furthermore, the stability of the samples was verified over a period of 18 months. While monodisperse reference particle samples above a certain size level lead to good agreements of the size measurements among the different methods, small and bimodal samples show the limitations of current ‘clinical’ methods. All samples proved to be stable within the uncertainty of the applied methods. (paper)

  6. Multifractal Characteristics of Bimodal Mercury Pore Size Distribution Curves

    Science.gov (United States)

    dos Santos Bonini, C.; Alves, M. C.; Paz González, A.

    2012-04-01

    Characterization of Hg pore size distribution (PSDs) curves by monofractal or multifractal analysis has been demonstrated to be an useful tool, which allows a better understanding of the organization of the soil pore space. There are also evidences that multiscale analysis of different segments found in bimodal pore size distributions measured by Hg intrusion can provide further valuable information. In this study we selected bimodal PSDs from samples taken from an experimental area in São Paulo state, Brazil, where a revegetation trial was set up over saprolitic material. The saprolite was left abandoned after decapitation of an Oxisol for building purposes. The field trial consisted of various treatments with different grass species and amendments. Pore size distribution of the sampled aggregates was measured in the equivalent diameter range from 0.005 to about 50 μm and it was characterized by a bimodal pattern, so that two compartments, i.e. 0.005 to 0.2 μm and 0.2 to 50 μm, could be distinguished. The multifractal theory was used to analyse both segments. The scaling properties of these two segments could be fitted reasonably well with multifractal models. Multifractal parameters obtained for equivalent diameters for the segments > 0.2 and pore size distributions studied.

  7. Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres

    Science.gov (United States)

    Gao, Yue; Zhang, Hao; Li, Wanli; Jiu, Jinting; Nagao, Shijo; Sugahara, Tohru; Suganuma, Katsuaki

    2017-07-01

    A one-step polyol method was employed to synthesize bimodal Cu particles with average diameters around 200 nm and 1000 nm, respectively. The bimodal Cu particles were mixed with a reductive solvent of polyethylene glycol (PEG) to form a paste. The Cu paste was used as die bonding material to prepare Cu joints under N2 or vacuum sintering atmosphere. The results showed that the strength of the Cu joints in N2 atmosphere was always higher than that in vacuum. The shear strength of a Cu joint processed at 350°C under only 0.4 MPa bonding pressure in N2 was above 40 MPa, which was far higher than that obtained using single-sized nano-Cu particle paste. It is related to the dense packing of the bimodal Cu particles and slow decomposition behavior of the reductive PEG solvent. The reductive PEG solvent in the Cu paste, which effectively removed oxides on the surface of the Cu particles, was necessary for easy-oxidized Cu pastes. These results suggested that Cu pastes with suitable particle sizes, reducing solvent and sintering atmosphere could be a proper candidate for low-temperature and low-pressure bonding process.

  8. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    International Nuclear Information System (INIS)

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment

  9. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  10. Yield stress of ultrafine-grained or nanocrystalline materials with a bimodal grain size distribution

    Science.gov (United States)

    Pande, C. S.; DeGiorgi, V. G.; E Moser, A.

    2018-02-01

    An attractive processing route for enhancing the yield strength of high-strength nanocrystalline metals and alloys while maintaining high ductility is to develop a bimodal grain size distribution (GSD), in which, supposedly, the finer grains provide strength, and the coarser grains maintain or even enhance ductility. We present a theoretical model predicting the strength of such a system, and show, analytically, how the yield stress is related to the various parameters of the bimodal GSD, such as volume fraction of the two components of the bimodal distribution and their standard deviations.

  11. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications

    NARCIS (Netherlands)

    Sun, D.G.; Bloemendal, J.; Rea, D.K.; An, Z.S.; Vandenberghe, J.; Lu, H.; Su, R.; Liu, T.S.

    2004-01-01

    Grain-size analysis indicates that Chinese loess generally shows a bimodal distribution with a coarse and a fine component. The coarse component, comprising the main part of the loess, has pronounced kurtosis and is well sorted, which is interpreted to be the product of dust storms generated by

  12. Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches.

    Science.gov (United States)

    Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey

    2006-08-07

    Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis measured between 1964 and 2005 on the island of Santa Cruz, Galápagos. Some populations of this species can display a resource-based bimodality in beak size, which mirrors the greater beak size differences among species. We first show that an historically bimodal population at one site, Academy Bay, has lost this property in concert with a marked increase in local human population density. We next show that a nearby site with lower human impacts, El Garrapatero, currently manifests strong bimodality. This comparison suggests that bimodality can persist when human densities are low (Academy Bay in the past, El Garrapatero in the present), but not when they are high (Academy Bay in the present). Human activities may negatively impact diversification in 'young' adaptive radiations, perhaps by altering adaptive landscapes.

  13. Particle filtering with path sampling and an application to a bimodal ocean current model

    International Nuclear Information System (INIS)

    Weare, Jonathan

    2009-01-01

    This paper introduces a recursive particle filtering algorithm designed to filter high dimensional systems with complicated non-linear and non-Gaussian effects. The method incorporates a parallel marginalization (PMMC) step in conjunction with the hybrid Monte Carlo (HMC) scheme to improve samples generated by standard particle filters. Parallel marginalization is an efficient Markov chain Monte Carlo (MCMC) strategy that uses lower dimensional approximate marginal distributions of the target distribution to accelerate equilibration. As a validation the algorithm is tested on a 2516 dimensional, bimodal, stochastic model motivated by the Kuroshio current that runs along the Japanese coast. The results of this test indicate that the method is an attractive alternative for problems that require the generality of a particle filter but have been inaccessible due to the limitations of standard particle filtering strategies.

  14. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties

    Directory of Open Access Journals (Sweden)

    Wenming TIAN

    2017-10-01

    Full Text Available The bimodal grain size metals show improved strength and ductility compared to traditional metals; however, their corrosion properties are unknown. In order to evaluate the corrosion properties of these metals, the bimodal grain size 7075 aviation aluminum alloys containing different ratios of coarse (100 μm in diameter and fine (10 μm in diameter grains were prepared by spark plasma sintering (SPS. The effects of grain size as well as the mixture degree of coarse and fine grains on general corrosion were estimated by immersion tests, electrochemical measurements and complementary techniques such as scanning electron microscope (SEM and transmission electron microscope-energy disperse spectroscopy (TEM-EDS. The results show that, compared to fine grains, the coarse grains have a faster dissolution rate in acidic NaCl solution due to the bigger size, higher alloying elements content and larger area fraction of second phases in them. In coarse grains, the hydrogen ions have a faster reduction rate on cathodic second phases, therefore promoting the corrosion propagation. The mixture of coarse and fine grains also increases the electrochemical heterogeneity of alloys in micro-scale, and thus the increased mixture degree of these grains in metal matrix accelerates the corrosion rate of alloys in acidic NaCl solution.

  15. Superferromagnetism in mechanically alloyed fcc Fe23Cu77 with bimodal cluster size distribution

    International Nuclear Information System (INIS)

    Silva, N J O; Amaral, J S; Amaral, V S; Costa, B F O; Le Caer, G

    2009-01-01

    Magnetic measurements, x-ray diffraction and Moessbauer spectroscopy were used to characterize a nanostructured fcc Fe 23 Cu 77 at.% alloy prepared by high-energy ball-milling, addressing in particular the effect of clustering on the nature of the interacting magnetic entities. The interpretation of magnetization measurements leads to the conclusion that grains, whose mean size is ∼16 nm, contain two populations of magnetic Fe-rich nanoclusters with a bimodal size distribution. These two sets of clusters contain about 14 and 400 Fe atoms and have magnetic moments of 30 μ B and 860 μ B , respectively. The inter-cluster ferromagnetic interactions that lead to superferromagnetism with a Curie temperature T C ∼220 K can be described by a mean field determined by the smaller clusters only, which account for 90% of the magnetization.

  16. Particle sizes from sectional data

    DEFF Research Database (Denmark)

    Pawlas, Zbynek; Nyengaard, Jens Randel; Jensen, Eva Bjørn Vedel

    2009-01-01

    We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due t...

  17. Dust Particle Size Distributions during Spring in Yinchuan, China

    Directory of Open Access Journals (Sweden)

    Jiangfeng Shao

    2016-01-01

    Full Text Available Dust particle size distributions in Yinchuan, China, were measured during March and April 2014, using APS-3321 sampler. The distributions were measured under different dust conditions (background, floating dust, blowing dust, and dust storm and statistical analyses were performed. The results showed that, under different dust conditions, the instantaneous number concentrations of dust particles differed widely. For example, during blowing sand and dust storm conditions, instantaneous dust particles concentrations varied substantially, while, under floating dust conditions, concentration differences were relatively small. The average dust particles size distributions were unimodal under all dust conditions, but the average surface area and mass size distributions were all bimodal. These distributions had peaks in different locations under different dust conditions. Under different dust conditions, wind speed and humidity were very important factors for particles size distributions. With increasing wind speed and decreasing humidity, fine particles were dominant in the atmosphere and the number and mass distributions of the coarse particles were indicative of long-range transport from surrounding deserts. Different dust conditions had different influences on PM1, PM2.5, and PM10 concentrations.

  18. Recent trends in particle size analysis techniques

    Science.gov (United States)

    Kang, S. H.

    1984-01-01

    Recent advances and developments in the particle-sizing technologies are briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipment recently developed show that compact electronic circuitry and rapid data processing systems were mainly adopted in the instrument design. Some newly developed techniques characterizing the particulate system were also introduced.

  19. [Size distributions of organic carbon (OC) and elemental carbon (EC) in Shanghai atmospheric particles].

    Science.gov (United States)

    Wang, Guang-Hua; Wei, Nan-Nan; Liu, Wei; Lin, Jun; Fan, Xue-Bo; Yao, Jian; Geng, Yan-Hong; Li, Yu-Lan; Li, Yan

    2010-09-01

    Size distributions of organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC) in atmospheric particles with size range from 7.20 microm, collected in Jiading District, Shanghai were determined. For estimating size distribution of SOC in these atmospheric particles, a method of determining (OC/EC)(pri) in atmospheric particles with different sizes was discussed and developed, with which SOC was estimated. According to the correlation between OC and EC, main sources of the particles were also estimated roughly. The size distributions of OC and SOC showed a bi-modal with peaks in the particles with size of 3.0 microm, respectively. EC showed both of a bi-modal and tri-modal. Compared with OC, EC was preferably enriched in particles with size of 3.00 microm) accounted for 41.4% and 43.5% of corresponding OC. Size distributions of OC, EC and SOC showed time-dependence. The correlation between OC and EC showed that the main contribution to atmospheric particles in Jiading District derived from light petrol vehicles exhaust.

  20. A bimodal temom model for particle Brownian coagulation in the continuum-slip regime

    Directory of Open Access Journals (Sweden)

    He Qing

    2016-01-01

    Full Text Available In this paper, a bimodal Taylor-series expansion moment of method is proposed to deal with Brownian coagulation in the continuum-slip regime, where the non-linear terms in the Cunningham correction factor is approximated by Taylor-series expansion technology. The results show that both the number concentration and volume fraction decrease with time in the smaller mode due to the intra and inter coagulation, and the asymptotic behavior of the larger mode is as same as that in the continuum regime.

  1. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    Science.gov (United States)

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  2. Bimodal Porous Scaffolds by Sequential Electrospinning of Poly(glycolic acid with Sucrose Particles

    Directory of Open Access Journals (Sweden)

    B. Wulkersdorfer

    2010-01-01

    Full Text Available Electrospinning is a method to produce fine, biopolymer mesh with a three-dimensional architecture that mimics native extra-cellular matrix. Due to the small fiber diameter created in this process, conventional electrospun scaffolds have pore sizes smaller than the diameter of most cells. These scaffolds have limited application in tissue engineering due to poor cell penetration. We developed a hybrid electrospinning/particulate leaching technique to create scaffolds with increased porosity and improved cellular ingrowth. Poly(glycolic acid (PGA and a sucrose-ethanol suspension were electrospun in equal, alternating sequences at intervals of one, two, and ten minutes each. The scaffolds revealed fiber mesh with micropores of 10 m and uniformly distributed sucrose particles. Particulate leaching of sucrose from the one- or two-minute scaffolds revealed honeycomb structures with interconnected macropores between 50 and 250 m. Sucrose leaching from the ten-minute scaffolds resulted in laminated structures with isolated macropores between 200 and 350 m. Macropore size was directly proportional to the duration of the sucrose spinning interval. After 24 hours of cell culture, conventionally spun scaffolds demonstrated no cellular penetration. Conversely, the PGA/sucrose scaffolds demonstrated deep cellular penetration. This hybrid technique represents a novel method of generating electrospun scaffolds with interconnected pores suitable for cellular ingrowth.

  3. Effect of particle size distribution on permeability in the randomly packed porous media

    Science.gov (United States)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  4. Wind erosion model of a multiple sized particles bed

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, I.; Pons, A.; Harion, J.-L. [IMP-CNRS UPR 8521, Perpignan (France)

    2006-07-01

    A model has been developed in order to predict more accurately fugitive dust emissions by aeolian erosion on industrial sites. This model takes into account the time evolution of the bed surface features during erosion by a turbulent flow. It consists of four parts corresponding to aerodynamic entrainment and is based on the interaction between particle take-off and wall turbulence. A take-off criterion compares the lift force exerted by the flow on the particle with the sum of the weight and adhesive force. Bed pavement and saltation are also taken into account. Bed pavement is induced by the non-erodible particles. On steel plants stockpiles, ores and coals have granulometric spectra going a few microns to a few centimetres in diameter. In fact, the non-erodible particles, that cannot take-off because of their inertia, form obstacles in the finer particle take-off and lead to a time decrease in emitted mass flux. The new model has been tested for the case of a bimodal size distribution by comparison with relevant experimental data. The results demonstrate that the mode allows predicting the mass flux time decrease due to non-erodible particles. 17 refs., 6 figs.

  5. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions

    Directory of Open Access Journals (Sweden)

    Alufelwi M. Tshavhungwe

    2010-07-01

    Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.

  6. Commercial reference shape standards use in the study of particle shape effect on laser diffraction particle size analysis.

    Science.gov (United States)

    Kelly, Richard N; Kazanjian, Jacqueline

    2006-05-26

    The purpose of this paper is to describe the use of LGC Promochem AEA 1001 to AEA 1003 monosized fiber-analog shape standards in the study of the effect of particle shape on laser diffraction (LD) particle size analysis (psa). The psa of the AEA standards was conducted using LD psa systems from Beckman Coulter, Horiba, and Malvern Instruments. Flow speed settings, sample refractive index values, and sample cell types were varied to examine the extent to which the shape effect on LD psa results is modified by these variables. The volume and number probability plots resulting from these measurements were each characterized by a spread in the particle size distribution that roughly extended from the breadth to the longest dimension of the particles. For most of the selected sample refractive index values, the volume probability plots were characterized by apparent bimodal distributions. The results, therefore, provide experimental verification of the conclusions from theoretical studies of LD psa system response to monosized elliptical particles in which this apparent bimodality was the predicted result in the case of flow-oriented particles. The data support the findings from previous studies conducted over the past 10 years that have called into question the verity of the tenets of, and therefore the value of the application of, the equivalent spherical volume diameter theory and the random particle orientation model to the interpretation of LD psa results from measurements made on nonspherical particles.

  7. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    Science.gov (United States)

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  8. Mass size distribution of particle-bound water

    Science.gov (United States)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  9. Method for producing size selected particles

    Energy Technology Data Exchange (ETDEWEB)

    Krumdick, Gregory K.; Shin, Young Ho; Takeya, Kaname

    2016-09-20

    The invention provides a system for preparing specific sized particles, the system comprising a continuous stir tank reactor adapted to receive reactants; a centrifugal dispenser positioned downstream from the reactor and in fluid communication with the reactor; a particle separator positioned downstream of the dispenser; and a solution stream return conduit positioned between the separator and the reactor. Also provided is a method for preparing specific sized particles, the method comprising introducing reagent into a continuous stir reaction tank and allowing the reagents to react to produce product liquor containing particles; contacting the liquor particles with a centrifugal force for a time sufficient to generate particles of a predetermined size and morphology; and returning unused reagents and particles of a non-predetermined size to the tank.

  10. Intra-cohort cannibalism and size bimodality: A balance between hatching synchrony and resource feedbacks

    NARCIS (Netherlands)

    Huss, M.; Kooten, van T.; Persson, L.

    2010-01-01

    Cannibalistic interactions generally depend on the size relationship between cannibals and victims. In many populations, a large enough size variation to allow for cannibalism may not only develop among age-cohorts but also within cohorts. We studied the implications of variation in hatching period

  11. Elemental particle size distributions. Measured and estimated dry deposition in Sfax region (Tunisia)

    Science.gov (United States)

    Masmoudi, M.; Belghith, I.; Chaabane, M.

    Mass size distribution of the crustal elements (Al, Ca, Fe, Mg, Si, Ti), anthropogenic elements (Zn, Mn, Cr, Cu, K, P, Pb) and sea elements (Na, Cl) were obtained from measurements carried out with an inertial cascade impactor in Sfax. A fitting procedure by data inversion was applied to those data. This procedure yields accurate size distributions of aerosols in the diameter range 0.1-25 μm in two different sites. In a coastal industrial site, the mass distribution of the aerosol showed a bimodal structure; and in urban area, the lower particle mode cannot be observed. The elemental dry deposition flux was calculated as a function of particle size. The element flux size distribution increased rapidly with particle size. The modelling results indicate that the majority of the crustal and anthropogenic elements flux (>90%) was due to particles larger than 3 μm in diameter.

  12. Brightness calibrates particle size in single particle fluorescence imaging.

    Science.gov (United States)

    Liu, Zhihe; Sun, Zezhou; Di, Weihua; Qin, Weiping; Yuan, Zhen; Wu, Changfeng

    2015-04-01

    This Letter provides a novel approach to quantify the particle sizes of highly bright semiconductor polymer dots (Pdots) for single-particle imaging and photobleaching studies. A quadratic dependence of single-particle brightness on particle size was determined by single-particle fluorescence imaging and intensity statistics. In terms of the same imaging conditions, the particle diameter can be quantified by comparing the individual brightness intensity with associated calibration curve. Based on this sizing method, photobleaching trajectories and overall photon counts emitted by single particles were analyzed. It is found that photobleaching rate constants of different sized Pdots are not strongly dependent on particle diameter except the sparsely occurring fluorescence blinking in certain dim particles and the rapid photobleaching component in some bright particles. The overall photon counts increase with increasing particle diameter. However, those larger than 30 nm deviate away from the increasing tendency. These results reveal the significance of selecting appropriate Pdots (≤30  nm) for single-particle imaging and tracking applications.

  13. Performance Comparisons of Nanoaluminum, Coated Microaluminum and Their Bimodal Mixtures

    Science.gov (United States)

    Woody, D. L.; Dokhan, A.; Johnson, C. E.

    2004-07-01

    Comparison studies of materials containing standard nano aluminum (ultrafine) and micro aluminum coated with BaSO4 were performed. Differential thermal analysis and thermogravimetric analysis output were used to observe the effect of adding an unconventional coating to micron-sized aluminum particle materials. These results were compared to those of ultrafine aluminum particles. Bimodal combinations of ultrafine aluminum and micron-sized aluminum (coated and uncoated) were observed also. These preliminary results showed an interaction between the ultrafine aluminum (UFAL) and micron-sized aluminum in bimodal mixtures.

  14. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    International Nuclear Information System (INIS)

    Santana, Steven Michael; Kirby, Brian J; Antonyak, Marc A; Cerione, Richard A

    2014-01-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell–cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells. (paper)

  15. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    Science.gov (United States)

    Santana, Steven Michael; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-12-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell-cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells.

  16. Particle size distribution instrument. Topical report 13

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  17. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    NARCIS (Netherlands)

    van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal

  18. Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches

    OpenAIRE

    Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey

    2006-01-01

    Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis...

  19. High frequency compressional wave speed and attenuation measurements in water-saturated granular media with unimodal and bimodal grain size distributions.

    Science.gov (United States)

    Yang, Haesang; Seong, Woojae

    2018-02-01

    Compressional wave speed and attenuation were measured for water-saturated granular media employing five kinds of glass beads having unimodal and bimodal grain size distributions. Glass beads with grain sizes ranging from 250 to 850  μm were used for the acoustic measurements at a frequency range from 350 kHz to 1.1 MHz, which includes the transition range where scattering and non-scattering losses co-exist. The compressional wave speed and attenuation data are presented as a function of frequency and grain size distribution. The compressional wave speed and attenuation data show a variety of frequency dependencies for varying grain size distribution. The observed acoustic properties are investigated for the volume ratio of larger and smaller sized grains in the mixed bimodal media. Also, the measured results are compared with the empirical multiple scattering formula as a function of Rayleigh parameter  kd (product of wavenumber in the water k and mean grain diameter of the glass beads d) using weighted mean grain size. The measured results are also discussed, focusing on the geophysical difference between unimodal and bimodal mixed grains.

  20. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    , zinc and nickel) transported in ... Suspended sediment concentration; heavy metal concentration; regression model; particle size distribution;. Kojour watershed; Iran. ..... contaminants in a uranium mine pite–Lake; Water Res. 39 3055–3061.

  1. Simulation study of effects of initial particle size distribution on dissolution

    International Nuclear Information System (INIS)

    Wang, G.; Xu, D.S.; Ma, N.; Zhou, N.; Payton, E.J.; Yang, R.; Mills, M.J.; Wang, Y.

    2009-01-01

    Dissolution kinetics of γ' particles in binary Ni-Al alloys with different initial particle size distributions (PSD) is studied using a three-dimensional (3D) quantitative phase field model. By linking model inputs directly to thermodynamic and atomic mobility databases, microstructural evolution during dissolution is simulated in real time and length scales. The model is first validated against analytical solution for dissolution of a single γ' particle in 1D and numerical solution in 3D before it is applied to investigate the effects of initial PSD on dissolution kinetics. Four different types of PSD, uniform, normal, log-normal and bimodal, are considered. The simulation results show that the volume fraction of γ' particles decreases exponentially with time, while the temporal evolution of average particle size depends strongly on the initial PSD

  2. Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs.

    Science.gov (United States)

    Tartour, Kevin; Nguyen, Xuan-Nhi; Appourchaux, Romain; Assil, Sonia; Barateau, Véronique; Bloyet, Louis-Marie; Burlaud Gaillard, Julien; Confort, Marie-Pierre; Escudero-Perez, Beatriz; Gruffat, Henri; Hong, Saw See; Moroso, Marie; Reynard, Olivier; Reynard, Stéphanie; Decembre, Elodie; Ftaich, Najate; Rossi, Axel; Wu, Nannan; Arnaud, Frédérick; Baize, Sylvain; Dreux, Marlène; Gerlier, Denis; Paranhos-Baccala, Glaucia; Volchkov, Viktor; Roingeard, Philippe; Cimarelli, Andrea

    2017-09-01

    IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.

  3. Particle shape effects on subvisible particle sizing measurements.

    Science.gov (United States)

    Cavicchi, Richard E; Carrier, Michael J; Cohen, Joshua B; Boger, Shir; Montgomery, Christopher B; Hu, Zhishang; Ripple, Dean C

    2015-03-01

    Particle analysis tools for the subvisible (shape in comparison studies, we have used the methods of photolithography to create rods and disks. Although the rods are highly monodisperse, the instruments produce broadened peaks and report mean size parameters that are different for different instruments. We have fabricated a microfluidic device that simultaneously performs ESZ and FI measurements on each particle to elucidate the causes of discrepancies and broadening. Alignment of the rods with flow causes an oversizing by FI and undersizing by ESZ. FI also oversizes rods because of the incorrect edge definition that results from diffraction and imperfect focus. We present an improved correction algorithm for this effect that reduces discrepancies for rod-shaped particles. Tumbling of particles is observed in the microfluidic ESZ/FI and results in particle oversizing and breadth of size distribution for the monodisperse rods. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Characterizations of particle size distribution of the droplets exhaled by sneeze.

    Science.gov (United States)

    Han, Z Y; Weng, W G; Huang, Q Y

    2013-11-06

    This work focuses on the size distribution of sneeze droplets exhaled immediately at mouth. Twenty healthy subjects participated in the experiment and 44 sneezes were measured by using a laser particle size analyser. Two types of distributions are observed: unimodal and bimodal. For each sneeze, the droplets exhaled at different time in the sneeze duration have the same distribution characteristics with good time stability. The volume-based size distributions of sneeze droplets can be represented by a lognormal distribution function, and the relationship between the distribution parameters and the physiological characteristics of the subjects are studied by using linear regression analysis. The geometric mean of the droplet size of all the subjects is 360.1 µm for unimodal distribution and 74.4 µm for bimodal distribution with geometric standard deviations of 1.5 and 1.7, respectively. For the two peaks of the bimodal distribution, the geometric mean (the geometric standard deviation) is 386.2 µm (1.8) for peak 1 and 72.0 µm (1.5) for peak 2. The influences of the measurement method, the limitations of the instrument, the evaporation effects of the droplets, the differences of biological dynamic mechanism and characteristics between sneeze and other respiratory activities are also discussed.

  5. Particle sizes in slash fire smoke.

    Science.gov (United States)

    David V. Sandberg; Robert E. Martin

    1975-01-01

    Particulate emissions are the most objectionable atmospheric contaminant from forest burning. Little is known of the particulate sizes, and this research was done under laboratory conditions to obtain particle size information. Comments are made concerning techniques for future work in this field.

  6. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  7. Influence of particle size on appearance and in vitro efficacy of sunscreens

    Directory of Open Access Journals (Sweden)

    Débora Granemann e Silva

    2013-06-01

    Full Text Available Nanotechnology applies to diverse sectors of science. In cosmetic area, investments have strengthened the idea that nanoproducts provide innumerable benefits to consumers. Extreme exposition to solar light can cause undesirable effects, thus, adding UV filters in cosmetic products are often used as prevention. Ethylhexyl methoxycinnamate and benzophenone-3 are UV filters widely used in sunscreen formulations, this UV filters absorb UVB and UVA radiation, respectively. In this study, sunscreen formulations were developed as nano and macroemulsion, but composed by the same raw material. Nanoemulsion was obtained by phase inversion temperature method (PIT. Physical and functional properties were evaluated by visual analysis, particle size distribution and by diffuse reflectance spectrophotometry. Achieved nanoemulsion showed bluish brightness aspect, less apparent consistency than macroemulsion, stability longer than 48 hours (22.0 ± 2.0 °C and bimodal particle size distribution with average (mean sizes around 10 nm (61% and 4.5 µm (39%. Macroemulsion showed milky aspect, higher consistency than nanoemulsion, instability after 48 hours (22.0 ± 2.0 °C and bimodal particle size distribution with average (mean size around 202 nm (9% and 10.4 µm (91%. Effectiveness profile of sunscreen formulations remained apparently similar, based on achieved results of in vitro SPF, UVA/UVB ratio and critical wavelength assays.

  8. Vibro-spring particle size distribution analyser

    International Nuclear Information System (INIS)

    Patel, Ketan Shantilal

    2002-01-01

    This thesis describes the design and development of an automated pre-production particle size distribution analyser for particles in the 20 - 2000 μm size range. This work is follow up to the vibro-spring particle sizer reported by Shaeri. In its most basic form, the instrument comprises a horizontally held closed coil helical spring that is partly filled with the test powder and sinusoidally vibrated in the transverse direction. Particle size distribution data are obtained by stretching the spring to known lengths and measuring the mass of the powder discharged from the spring's coils. The size of the particles on the other hand is determined from the spring 'intercoil' distance. The instrument developed by Shaeri had limited use due to its inability to measure sample mass directly. For the device reported here, modifications are made to the original configurations to establish means of direct sample mass measurement. The feasibility of techniques for measuring the mass of powder retained within the spring are investigated in detail. Initially, the measurement of mass is executed in-situ from the vibration characteristics based on the spring's first harmonic resonant frequency. This method is often erratic and unreliable due to the particle-particle-spring wall interactions and the spring bending. An much more successful alternative is found from a more complicated arrangement in which the spring forms part of a stiff cantilever system pivoted along its main axis. Here, the sample mass is determined in the 'static mode' by monitoring the cantilever beam's deflection following the wanton termination of vibration. The system performance has been optimised through the variations of the mechanical design of the key components and the operating procedure as well as taking into account the effect of changes in the ambient temperature on the system's response. The thesis also describes the design and development of the ancillary mechanisms. These include the pneumatic

  9. Simultaneous Comparison of Two Roller Compaction Techniques and Two Particle Size Analysis Methods.

    Science.gov (United States)

    Saarinen, Tuomas; Antikainen, Osmo; Yliruusi, Jouko

    2017-11-01

    A new dry granulation technique, gas-assisted roller compaction (GARC), was compared with conventional roller compaction (CRC) by manufacturing 34 granulation batches. The process variables studied were roll pressure, roll speed, and sieve size of the conical mill. The main quality attributes measured were granule size and flow characteristics. Within granulations also the real applicability of two particle size analysis techniques, sieve analysis (SA) and fast imaging technique (Flashsizer, FS), was tested. All granules obtained were acceptable. In general, the particle size of GARC granules was slightly larger than that of CRC granules. In addition, the GARC granules had better flowability. For example, the tablet weight variation of GARC granules was close to 2%, indicating good flowing and packing characteristics. The comparison of the two particle size analysis techniques showed that SA was more accurate in determining wide and bimodal size distributions while FS showed narrower and mono-modal distributions. However, both techniques gave good estimates for mean granule sizes. Overall, SA was a time-consuming but accurate technique that provided reliable information for the entire granule size distribution. By contrast, FS oversimplified the shape of the size distribution, but nevertheless yielded acceptable estimates for mean particle size. In general, FS was two to three orders of magnitude faster than SA.

  10. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    The relationship between SSC and particle size distribution (PSD) were correlated with HMC by using bivariate and multivariate regression models. Proposed models were then selected based on statistical criteria. The results showed high correlation between dissolved and particulate chromium content with efficiency ...

  11. Effect of Particle Size on Shear Stress of Magnetorheological Fluids

    Directory of Open Access Journals (Sweden)

    Chiranjit Sarkar

    2015-05-01

    Full Text Available Magnetorheological fluids (MRF, known for their variable shear stress contain magnetisable micrometer-sized particles (few micrometer to 200 micrometers in a nonmagnetic carrier liquid. To avoid settling of particles, smaller sized (3-10 micrometers particles are preferred, while larger sized particles can be used in MR brakes, MR clutches, etc. as mechanical stirring action in those mechanisms does not allow particles to settle down. Ideally larger sized particles provide higher shear stress compared to smaller sized particles. However there is need to explore the effect of particle sizes on the shear stress. In the current paper, a comparison of different particle sizes on MR effect has been presented. Particle size distributions of iron particles were measured using HORIBA Laser Scattering Particle Size Distribution Analyser. The particle size distribution, mean sizes and standard deviations have been presented. The nature of particle shapes has been observed using scanning electron microscopy. To explore the effect of particle sizes, nine MR fluids containing small, large and mixed sized carbonyl iron particles have been synthesized. Three concentrations (9%, 18% and 36% by volume for each size of particles have been used. The shear stresses of those MRF samples have been measured using ANTON PAAR MCR-102 Rheometer. With increase in volume fraction of iron particles, the MR fluids synthesized using “mixed sized particles” show better shear stress compared to the MR fluids containing “smaller sized spherical shaped particles” and “larger sized flaked shaped particles” at higher shear rate.

  12. Remote Laser Diffraction Particle Size Distribution Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  13. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  14. Particle size and shape of calcium hydroxide.

    Science.gov (United States)

    Komabayashi, Takashi; D'souza, Rena N; Dechow, Paul C; Safavi, Kamran E; Spångberg, Larz S W

    2009-02-01

    The aim of this study was to examine the particle length, width, perimeter, and aspect ratio of calcium hydroxide powder using a flow particle image analyzer (FPIA). Five sample groups each with 10 mg of calcium hydroxide were mixed with 15 mL of alcohol and sonicated. Digital images of the particle samples were taken using the FPIA and analyzed with a one-way analysis of variance. The overall averages +/- standard deviation among the five groups for particle length (microm), width (microm), perimeter (microm), and aspect ratio were 2.255 +/- 1.994, 1.620 +/- 1.464, 6.699 +/- 5.598, and 0.737 +/- 0.149, respectively. No statistical significance was observed among the groups for all parameters. When the total of 46,818 particles from all five groups were classified into the five length categories of 0.5-microm increments, there were significant differences in width, perimeter, and aspect ratio (all p values particles have a size and shape that may allow direct penetration into open dentin tubules.

  15. Effect of Particle Size on Shear Stress of Magnetorheological Fluids

    OpenAIRE

    Chiranjit Sarkar; Harish Hirani

    2015-01-01

    Magnetorheological fluids (MRF), known for their variable shear stress contain magnetisable micrometer-sized particles (few micrometer to 200 micrometers) in a nonmagnetic carrier liquid. To avoid settling of particles, smaller sized (3-10 micrometers) particles are preferred, while larger sized particles can be used in MR brakes, MR clutches, etc. as mechanical stirring action in those mechanisms does not allow particles to settle down. Ideally larger sized particles provide higher shear str...

  16. Estimate of the particle size in nanoparticles of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Paresque, M.C.; Castro, J.A.; Campos, M.F.; Oliveira, E.M.; Liuzzi, M.A.S.C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2016-07-01

    Full Text: Nanocrystalline particles of Fe3O4 were produced by co-precipitation in aquous mean. The particle size of magnetite is a very important parameter, because for particle size around 30 nm there is a transition superparamagnetic for ferromagnetic. This transition profoundly affects the properties of the nanofluid. The Langevin model allows an estimate of the particle size, directly from measured hysteresis curves. In this study, the particle size was also determined by x-ray diffraction with Rietveld analysis and by a Laser Particle Size Analyzer equipment. These two methods pointed out particle size around 20 nm. (author)

  17. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    Science.gov (United States)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  18. Sampling surface particle size distributions and stability analysis of deep channel in the Pearl River Estuary

    Science.gov (United States)

    Feng, Hao-chuan; Zhang, Wei; Zhu, Yu-liang; Lei, Zhi-yi; Ji, Xiao-mei

    2017-06-01

    Particle size distributions (PSDs) of bottom sediments in a coastal zone are generally multimodal due to the complexity of the dynamic environment. In this paper, bottom sediments along the deep channel of the Pearl River Estuary (PRE) are used to understand the multimodal PSDs' characteristics and the corresponding depositional environment. The results of curve-fitting analysis indicate that the near-bottom sediments in the deep channel generally have a bimodal distribution with a fine component and a relatively coarse component. The particle size distribution of bimodal sediment samples can be expressed as the sum of two lognormal functions and the parameters for each component can be determined. At each station of the PRE, the fine component makes up less volume of the sediments and is relatively poorly sorted. The relatively coarse component, which is the major component of the sediments, is even more poorly sorted. The interrelations between the dynamics and particle size of the bottom sediment in the deep channel of the PRE have also been investigated by the field measurement and simulated data. The critical shear velocity and the shear velocity are calculated to study the stability of the deep channel. The results indicate that the critical shear velocity has a similar distribution over large part of the deep channel due to the similar particle size distribution of sediments. Based on a comparison between the critical shear velocities derived from sedimentary parameters and the shear velocities obtained by tidal currents, it is likely that the depositional area is mainly distributed in the northern part of the channel, while the southern part of the deep channel has to face higher erosion risk.

  19. Particle size distribution control of Pt particles used for particle gun

    Science.gov (United States)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  20. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    Science.gov (United States)

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibilitysmog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes. Copyright © 2014. Published by Elsevier B.V.

  1. Characterization of ambient particles size in workplace of manufacturing physical fitness equipments

    Science.gov (United States)

    LIN, Chih-Chung; CHEN, Mei-Ru; CHANG, Sheng-Lang; LIAO, Wei-Heng; CHEN, Hsiu-Ling

    2014-01-01

    The manufacturing of fitness equipment involves several processes, including the cutting and punching of iron tubes followed by welding. Welding operations produce hazardous gases and particulate matter, which can enter the alveolar, resulting in adverse health effects. This study sought to verify the particle size distribution and exposure concentrations of atmospheric air samples in various work areas of a fitness equipment manufacturing industry. Observed particle concentrations are presented by area and in terms of relative magnitude: painting (15.58 mg/m3) > automatic welding (0.66 mg/m3) > manual welding (0.53 mg/m3) > punching (0.18 mg/m3) > cutting (0.16 mg/m3). The concentrations in each of the five work areas were Cinh>Cthor>Cresp. In all areas except the painting area, extra-fine particles produced by welding at high temperatures, and further those coagulated to form larger particles. This study observed bimodal distribution in the size of welding fume in the ranges of 0.7–1 µm and 15–21 µm. Meanwhile, the mass concentrations of particles with different sizes were not consistent across work areas. In the painting area, the mass concentration was higher in Chead>Cth>Calv, but in welding areas, it was found that Calv>Chead>Cth. Particles smaller than 1µm were primarily produced by welding. PMID:25327301

  2. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, N.

    2016-11-07

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  3. Linkage disequilibrium in the insulin gene region: Size variation at the 5{prime} flanking polymorphism and bimodality among {open_quotes}Class I{close_quotes} alleles

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, R.E.; Spielman, R.S. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1994-09-01

    The 5{prime} flanking polymorphism (5{prime}FP), a hypervariable region at the 5{prime} end of the insulin gene, has {open_quotes}class 1{close_quotes} alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). The authors report that precise sizing of the 5{prime}FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. They also examined 5{prime}FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5{prime}FP, they found that one allele exhibits near-total association with the upper component of the 5FP class 1 distribution. Such associations represent a little-known but potentially wide-spread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. 22 refs., 5 figs., 6 tabs.

  4. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    Directory of Open Access Journals (Sweden)

    Sebastian Spath

    2015-07-01

    Full Text Available 3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  5. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds.

    Science.gov (United States)

    Spath, Sebastian; Drescher, Philipp; Seitz, Hermann

    2015-07-24

    3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  6. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  7. Concentration and size distribution of particles in abstracted groundwater.

    Science.gov (United States)

    van Beek, C G E M; de Zwart, A H; Balemans, M; Kooiman, J W; van Rosmalen, C; Timmer, H; Vandersluys, J; Stuyfzand, P J

    2010-02-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of larger particles. However, the particle concentration in groundwater derived from abstraction wells, with high groundwater flow velocities, is much lower than in groundwater from monitor wells, with minimal flow velocities. This inconsistency points to exhaustion of the particle supply in the aquifer around wells due to groundwater abstraction for many years. The particle size distribution can be described with the help of a power law or Pareto distribution. Comparing the measured particle size distribution with the Pareto distribution shows that particles with a diameter >7 microm are under-represented. As the particle size distribution is dependent on the flow velocity, so is the value of the "Pareto" slope beta. (c) 2009 Elsevier Ltd. All rights reserved.

  8. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  9. Intercomparison of 15 Aerodynamic Particle Size Spectrometers (APS 3321): Uncertainties in Particle Sizing and Number Size Distribution.

    Czech Academy of Sciences Publication Activity Database

    Pfeifer, S.; Müller, T.; Weinhold, K.; Zíková, Naděžda; dos Santos, S.M.; Marinoni, A.; Bischof, O.F.; Kykal, C.; Ries, L.; Meinhardt, F.; Aalto, P.; Mihalopoulos, N.; Wiedensohler, A.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 1545-1551 ISSN 1867-1381 EU Projects: European Commission(XE) 262254 - ACTRIS Institutional support: RVO:67985858 Keywords : counting efficiency * aerodynamic particle size spectrometers * laboratory study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.089, year: 2016

  10. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area

    Science.gov (United States)

    Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent

    2014-10-01

    This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.

  11. Producing laminated NiAl with bimodal distribution of grain size by solid–liquid reaction treatment

    DEFF Research Database (Denmark)

    Fan, G.H.; Wang, Q.W.; Du, Y.

    2014-01-01

    The prospect of combining laminated structure design and grain size tailoring to toughen brittle materials is examined. Laminated NiAl consisting of coarse-grained layers and fine-grained layers was fabricated by solid–liquid reaction treatment of stacking Ni and Al foils. The fracture toughness ...

  12. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame

    KAUST Repository

    Lucchesi, Marco

    2017-02-05

    A modeling framework based on Direct Simulation Monte Carlo (DSMC) is employed to simulate the evolution of the soot particle size distribution in turbulent sooting flames. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of a n-heptane turbulent nonpremixed flame. The DSMC method is validated against experimentally measured size distributions in laminar premixed flames and found to reproduce quantitatively the experimental results, including the appearance of the second mode at large aggregate sizes and the presence of a trough at mobility diameters in the range 3–8 nm. The model is then applied to the simulation of soot formation and growth in simplified configurations featuring a constant concentration of soot precursors and the evolution of the size distribution in time is found to depend on the intensity of the nucleation rate. Higher nucleation rates lead to a higher peak in number density and to the size distribution attaining its second mode sooner. The ensemble-averaged PSDF in the turbulent flame is computed from individual samples of the PSDF from large sets of Lagrangian trajectories. This statistical measure is equivalent to time-averaged, scanning mobility particle size (SMPS) measurements in turbulent flames. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a long, broad tail, which implies significant polydispersity induced by turbulence. Our results agree very well with SMPS measurements available in the literature. Conditioning on key features of the trajectory, such as mixture fraction or radial locations does not reduce the scatter in the size distributions and the ensemble-averaged PSDF remains broad. The results highlight and explain the important role of turbulence in broadening the size distribution of

  13. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  14. Dependence of strength on particle size in graphite

    International Nuclear Information System (INIS)

    Kennedy, E.P.; Kennedy, C.R.

    The strength to particle size relationship for specially fabricated graphites has been demonstrated and rationalized using fracture mechanics. In the past, similar studies have yielded empirical data using only commercially available material. Thus, experimental verification of these relationships has been difficult. However, the graphites of this study were fabricated by controlling the particle size ranges for a series of isotropic graphites. All graphites that were evaluated had a constant 1.85 g/cm 3 density. Thus, particle size was the only variable. This study also considered the particle size effect on other physical properties; coefficient of thermal expansion (CTE), electrical resistivity, fracture strain, and Young's modulus

  15. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  16. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  17. Artificial neural network based particle size prediction of polymeric nanoparticles.

    Science.gov (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Significant Corrosion Resistance in an Ultrafine-Grained Al6063 Alloy with a Bimodal Grain-Size Distribution through a Self-Anodic Protection Mechanism

    Directory of Open Access Journals (Sweden)

    Mahdieh Shakoori Oskooie

    2016-12-01

    Full Text Available The bimodal microstructures of Al6063 consisting of 15, 30, and 45 vol. % coarse-grained (CG bands within the ultrafine-grained (UFG matrix were synthesized via blending of high-energy mechanically milled powders with unmilled powders followed by hot powder extrusion. The corrosion behavior of the bimodal specimens was assessed by means of polarization, steady-state cyclic polarization and impedance tests, whereas their microstructural features and corrosion products were examined using optical microscopy (OM, scanning transmission electron microscopy (STEM, field emission scanning electron microscopy (FE-SEM, electron backscattered diffraction (EBSD, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD techniques. The bimodal Al6063 containing 15 vol. % CG phase exhibits the highest corrosion resistance among the bimodal microstructures and even superior electrochemical behavior compared with the plain UFG and CG materials in the 3.5% NaCl solution. The enhanced corrosion resistance is attributed to the optimum cathode to anode surface area ratio that gives rise to the formation of an effective galvanic couple between CG areas and the UFG matrix. The operational galvanic coupling leads to the domination of a “self-anodic protection system” on bimodal microstructure and consequently forms a uniform thick protective passive layer over it. In contrast, the 45 vol. % CG bimodal specimen shows the least corrosion resistance due to the catastrophic galvanic corrosion in UFG regions. The observed results for UFG Al6063 suggest that metallurgical tailoring of the grain structure in terms of bimodal microstructures leads to simultaneous enhancement in the electrochemical behavior and mechanical properties of passivable alloys that are usually inversely correlated. The mechanism of self-anodic protection for passivable metals with bimodal microstructures is discussed here for the first time.

  19. Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier

    CERN Document Server

    Lehtipalo, Katrianne; Kontkanen, Jenni; Kangasluoma, Juha; Franchin, Alessandro; Wimmer, Daniela; Schobesberger, Siegfried; Junninen, Heikki; Petäjä, Tuukka; Sipilä, Mikko; Mikkilä, Jyri; Vanhanen, Joonas; Worsnop, Douglas R; Kulmala, Markku

    2014-01-01

    The most important parameters describing the atmospheric new particle formation process are the particle formation and growth rates. These together determine the amount of cloud condensation nuclei attributed to secondary particle formation. Due to difficulties in detecting small neutral particles, it has previously not been possible to derive these directly from measurements in the size range below about 3 nm. The Airmodus Particle Size Magnifier has been used at the SMEAR II station in Hyytiälä, southern Finland, and during nucleation experiments in the CLOUD chamber at CERN for measuring particles as small as about 1 nm in mobility diameter. We developed several methods to determine the particle size distribution and growth rates in the size range of 1–3 nm from these data sets. Here we introduce the appearance-time method for calculating initial growth rates. The validity of the method was tested by simulations with the Ion-UHMA aerosol dynamic model.

  20. Particle size analysis of amalgam powder and handpiece generated specimens.

    Science.gov (United States)

    Drummond, J L; Hathorn, R M; Cailas, M D; Karuhn, R

    2001-07-01

    The increasing interest in the elimination of amalgam particles from the dental waste (DW) stream, requires efficient devices to remove these particles. The major objective of this project was to perform a comparative evaluation of five basic methods of particle size analysis in terms of the instrument's ability to quantify the size distribution of the various components within the DW stream. The analytical techniques chosen were image analysis via scanning electron microscopy, standard wire mesh sieves, X-ray sedigraphy, laser diffraction, and electrozone analysis. The DW particle stream components were represented by amalgam powders and handpiece/diamond bur generated specimens of enamel; dentin, whole tooth, and condensed amalgam. Each analytical method quantified the examined DW particle stream components. However, X-ray sedigraphy, electrozone, and laser diffraction particle analyses provided similar results for determining particle distributions of DW samples. These three methods were able to more clearly quantify the properties of the examined powder and condensed amalgam samples. Furthermore, these methods indicated that a significant fraction of the DW stream contains particles less than 20 microm. The findings of this study indicated that the electrozone method is likely to be the most effective technique for quantifying the particle size distribution in the DW particle stream. This method required a relative small volume of sample, was not affected by density, shape factors or optical properties, and measured a sufficient number of particles to provide a reliable representation of the particle size distribution curve.

  1. Synthesis of size-controlled Bi particles by electrochemical deposition

    Indian Academy of Sciences (India)

    Wintec

    ... carried out using exfoliated graphite. (EG) as the working electrode. The EG particles were prepared according to a reported procedure (Fukuda et al. 1997) from natural graphite particles. The as-received graphite flakes were sieved to result in particles of size,. 300 μm. The natural graphite flakes were intercalated with.

  2. Synthesis of size-controlled Bi particles by electrochemical deposition

    Indian Academy of Sciences (India)

    The particles have been characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, UV-visible spectroscopy and X-ray diffraction technique. The particles, as deposited, are highly crystalline in nature and the particle size and shape ...

  3. A hybrid mathematical model for controlling particle size, particle size distribution, and color properties of toner particles

    Science.gov (United States)

    Ataeefard, Maryam; Shadman, Alireza; Saeb, Mohammad Reza; Mohammadi, Yousef

    2016-08-01

    A mathematical modeling approach was proposed combining the capabilities of response surface methodology (RSM) and desirability function (DF) and implemented successfully in production of printing toner particles. Toner powders were systematically synthesized through suspension copolymerization process. Applying RSM, a series of experiments were designed and toner particles were prepared and the effects of monomer ratio, colorant and surfactant content on the particle size (PS), particle size distribution (PSD), thermal and colorimetric properties (∆ E) of the resulting toner were monitored and discussed. The second-order models corresponding to each target characteristic, i.e., PS, PSD, and ∆ E of different types of toner powders, were obtained by individual optimization to express variation of each property in terms of polymerization parameters. Applying statistical calculations, the best reduced models were identified to be fed in the second step of optimization. Since toners with appropriate PS, PSD, and CP were needed, we applied multi-objective optimization based on DF approach. The results show that exact tuning of toner properties is closely possible with the aid of hybrid mathematical model developed in this work. Noticeably, desirabilities are very close to 100 %.

  4. Concentration and size distribution of particles in abstracted groundwater

    NARCIS (Netherlands)

    Van Beek, C.G.E.M.; de Zwart, A.H.; Balemans, M.; Kooiman, J.W.; van Rosmalen, C.; Timmer, H.; Vandersluys, J.; Stuijfzand, P.J.

    2010-01-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of

  5. Micron-sized polymeric particles from cashew nut shell liquid ...

    African Journals Online (AJOL)

    Interrelationships between these variables appear to be complex, however the apparent monotonic variation of average particle size with emulsifier concentration makes emulsifier concentration the most convenient parameter of controlling particle size. The influence of the type of mixers and various reaction kettle designs ...

  6. Improved mathematical models for particle-size distribution data ...

    African Journals Online (AJOL)

    Prior studies have suggested that particle-size distribution data of soils is central and helpful in this regard. This study proposes two improved mathematical models to describe and represent the varied particle-size distribution (PSD) data for tropically weathered residual (TWR) soils. The theoretical analysis and the ...

  7. Estimation of particle size distribution of nanoparticles from electrical ...

    Indian Academy of Sciences (India)

    MS received 9 January 2016; accepted 13 August 2017; published online 2 February 2018. Abstract. .... Figure 2. XRD of sample A. Table 1. Particle size and corresponding peak positions as found from XRD analysis. Peak position. Particle size (nm). 17.87 ... relation in measuring the data is the highest at this voltage.

  8. Particle size control of detergents in mixed flow spray dryers

    Directory of Open Access Journals (Sweden)

    Mark Jonathan Crosby

    2015-03-01

    Full Text Available Particle size is a key quality parameter of a powder detergent as it determines its performance, the bulk density and the look and feel of the product. Consequently, it is essential that particle size is controlled to ensure the consistency of performance when comparing new formulations. The majority of study reported in the literature relating to particle size control, focuses on the spray produced by the atomisation technique. One approach advocated to achieve particle size control is the manipulation of the ratio of the mass slurry rate and mass flow rate of gas used for atomisation. Within this study, ratio control was compared with an automatic cascade loop approach using online measurements of the powder particle size on a small-scale pilot plant. It was concluded that cascade control of the mean particle size, based on manipulating the mass flow rate of gas, resulted in tighter, more responsive control. The effect of a ratio change varied with different formulations and different slurry rates. Furthermore, changes in slurry rate caused complications, as the impact on particle size growth in the dryer is non-linear and difficult to predict. The cascade loop enables further study into the effect of particle size on detergent performance.

  9. Measurement of resuspended aerosol in the Chernobyl area. Pt. 2. Size distribution of radioactive particles

    International Nuclear Information System (INIS)

    Garger, E.K.; Kashpur, V.; Paretzke, H.G.; Tschiersch, J.

    1998-01-01

    Size distribution measurements of particulate radionuclides were performed at two sites in the Chernobyl 30-km exclusion zone using several cascade impactors. The results obtained in the period September 1986 till June 1993 were discussed with regard to the general assumption of a log-normal activity size distribution in inhalation dose assessment. At Zapolie (a site 14 km from the Chernobyl reactor) a bimodal distribution was observed in 91% of all measured distributions. In most cases the medians were about 4 μm and in the range 20-30 μm. According to soil granulometric data this finding was explained by superimposing two processes: local resuspension and advective transport of radioactive aerosol from highly contaminated territories. The mean air concentration showed an increasing proportion of inhalable particles over the years since the accident. In 1993 the inhalable fraction was about 48% of the total concentration. At Pripyat, a site situated within a highly contaminated area, unimodal types of size distributions were predominant with the median diameters in the range 5-10 μm for 137 Cs. For the three nuclides 137 Cs, 144 Ce and 106 Ru, very similar types of distribution were observed. Apparently, the radioactive aerosol was of fuel origin. During a forest fire at a distance of 17 km, the majority of the radioactivity was associated with submicrometer particles with median diameters in the range 0.28-0.50 μm. (orig.)

  10. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  11. Laser Doppler spectrometer method of particle sizing. [for air pollution

    Science.gov (United States)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  12. Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function.

    Science.gov (United States)

    Zhang, Xiaodong; Twardowski, Michael; Lewis, Marlon

    2011-03-20

    For a particle population with known size, composition, structure, and shape distributions, its volume scattering function (VSF) can be estimated from first principles through a governing relationship, the Fredholm linear integral equation of the first kind. Inverting the Fredholm equation to derive the composition and size distribution of particles from measured VSFs remains challenging because 1) the solution depends on the kernel function, and 2) the kernel function needs to be constructed to avoid singularity. In this study, a thorough review of the earlier and current inversion techniques is provided. An inversion method based on nonnegative least squares is presented and evaluated using the VSFs measured by a prototype volume scattering meter at the LEO-15 site off the New Jersey coast. The kernel function was built by a compilation of individual subpopulations, each of which follows a lognormal size distribution and whose characteristic size and refractive index altogether cover the entire ranges of natural variability of potential marine particles of the region. Sensitivity analyses were conducted to ensure the kernel function being constructed is neither singular nor pathological. A total of 126 potential subpopulations were identified, among which 11 are common in more than half of the inversions and only five consistently present (>90% of measurements). These five subpopulations can be interpreted as small colloidal type particles of sizes around 0.02 μm, submicrometer detritus-type particles (n(r)=1.02, r(mode)=0.2 μm), two micrometer-sized subpopulations with one relatively soft (n(r)=1.04 and r(mode)=1.6 μm) and the other relatively refringent (n(r)=1.10 and r(mode)=3.2 μm), and bubbles of relatively large sizes (n(r)=0.75 and r(mode)=10 μm). Reconstructed PSDs feature a bimodal shape, with the smaller peak dominated by the colloidal subpopulations and the larger particles closely approximated by a power-law function. The Junge

  13. Reduction of glycine particle size by impinging jet crystallization.

    Science.gov (United States)

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  15. Particle Size Dependence of Biogenic Secondary Organic Aerosol Molecular Composition

    OpenAIRE

    Tu, Peijun; Johnston, Murray V.

    2017-01-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase. Mass transfer to the particle phase is thought to occur primarily by a combination of condensation of non-volatile products and partitioning of semi-volatile products, though particle phase chemistry may also play a role if it transforms semi-volatile reactants into non-volatile products. In principle, changes in particle composition as a function of particle size...

  16. Influence of starting material particle size on pellet surface roughness.

    Science.gov (United States)

    Sarkar, Srimanta; Ang, Bee Hwee; Liew, Celine Valeria

    2014-02-01

    The purpose of this study was to investigate the effect of pelletization aids, i.e., microcrystalline cellulose (MCC) and cross-linked polyvinyl pyrrolidone (XPVP), and filler, i.e., lactose, particle size on the surface roughness of pellets. Pellets were prepared from powder blends containing pelletization aid/lactose in 1:3 ratio by extrusion-spheronization. Surface roughness of pellets was assessed quantitatively and qualitatively using optical interferometry and scanning electron microscopy, respectively. Both quantitative and qualitative surface studies showed that surface roughness of pellets depended on the particle size of XPVP and lactose used in the formulation. Increase in XPVP or lactose particle size resulted in rougher pellets. Formulations containing MCC produced pellets with smoother surfaces than those containing XPVP. Furthermore, surface roughness of the resultant pellets did not appear to depend on MCC particle size. Starting material particle size was found to be a critical factor for determining the surface roughness of pellets produced by extrusion-spheronization. Smaller particles can pack well with lower peaks and valleys, resulting in pellets with smoother surfaces. Similar surface roughness of pellets containing different MCC grades could be due to the deaggregation of MCC particles into smaller subunits with more or less similar sizes during wet processing. Hence, for starting materials that deaggregate during the wet processing, pellet surface roughness is influenced by the particle size of the material upon deaggregation.

  17. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  18. Particle size and shape distributions of hammer milled pine

    Energy Technology Data Exchange (ETDEWEB)

    Westover, Tyler Lott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Matthews, Austin Colter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christopher Luke [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, John Chadron Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  19. Chemical Composition and Particle Size Analysis of Kaolin

    Directory of Open Access Journals (Sweden)

    Shehu Yahaya

    2017-10-01

    Full Text Available The mineral and elemental composition, crystal structure and particle size distribution of kaolin clays have been determined to ascertain its industrial significance. The mineral composition is evaluated by X- Ray Fluorescence (XRF, crystalline structure by X-Ray Diffraction (XRD and particle size distribution using low angle laser light scattering (LALLS technique. The results shows the presence of eight elements expressed in percentages in form of their oxides as: SiO2, Al2O3, Fe2O3, MgO, CaO, K2O, TiO2 and P2O5. Five crystalline structures are revealed by XRD result. The particle size distribution shows that kaolin particles are mainly in the range of 25–35 µm, while few particles have size distribution varied between 0.4–0.75 μm. The report is found to be in agreement with other researchers.

  20. Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background

    Directory of Open Access Journals (Sweden)

    Michael Cusack

    2013-02-01

    Full Text Available This study focuses on the daily and seasonal variability of particle number size distributions and concentrations, performed at the Montseny (MSY regional background station in the western Mediterranean from October 2010 to June 2011. Particle number concentrations at MSY were shown to be within range of various other sites across Europe reported in literature, but the seasonality of the particle number size distributions revealed significant differences. The Aitken mode is the dominant particle mode at MSY, with arithmetic mean concentrations of 1698 cm3, followed by the accumulation mode (877 cm−3 and the nucleation mode (246 cm−3. Concentrations showed a strong seasonal variability with large increases in particle number concentrations observed from the colder to warmer months. The modality of median size distributions was typically bimodal, except under polluted conditions when the size distribution was unimodal. During the colder months, the daily variation of particle number size distributions are strongly influenced by a diurnal breeze system, whereby the Aitken and accumulation modes vary similarly to PM1 and BC mass concentrations, with nocturnal minima and sharp day-time increases owing to the development of a diurnal mountain breeze. Under clean air conditions, high levels of nucleation and lower Aitken mode concentrations were measured, highlighting the importance of new particle formation as a source of particles in the absence of a significant condensation sink. During the warmer months, nucleation mode concentrations were observed to be relatively elevated both under polluted and clean conditions due to increased photochemical reactions, with enhanced subsequent growth owing to elevated concentrations of condensable organic vapours produced from biogenic volatile organic compounds, indicating that nucleation at MSY does not exclusively occur under clean air conditions. Finally, mixing of air masses between polluted and non

  1. Particle size alterations of feedstuffs during in situ NDF incubation

    DEFF Research Database (Denmark)

    Krämer, Monika; Nørgaard, P.; Lund, Peter

    2013-01-01

    evaluated in terms of particle size for a broad range of feedstuffs which typically serve as NDF sources in dairy cow rations. Early and late cut grass silages, corn silage, alfalfa silage, rapeseed meal and dried distillers grains were examined. Treatments were I) drying and grinding of forage samples...... determined and image analysis was used to estimate particle size profiles and thereby the risk for particle loss. Particle dimensions changed during NDF determination and in situ rumen incubation and variations depended on feedstuff and treatment. Late cut grass silage varied most in particle area among...... feedstuffs with a decrease of 74 % between 24 h and 288 h in situ rumen incubation. Together with the highest mass proportion (20 %) of particles in the critical zone for escape (smaller than 0.005 mm2 in area) for late cut grass silage after 288 h in situ rumen incubation, this imposes a risk for particle...

  2. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  3. Particle size distribution and behavior of sulfate aerosols in a coastal region

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, M.; Hashimoto, Y.

    1979-01-01

    To obtain fundamental knowledge about sulfate aerosols, a field research was conducted in a coastal region distant from industrial pollution sources. The aerosol samples were analyzed for some elements, sulfate and ammonium ions. Sulfate was determined by the turbidimetry with 2-aminoperimidine, and ammonium was by the colorimetry of indophenol method. Trace elements with short-lived nuclides were analyzed by instrumental neutron activation analysis. The mass-size distribution curve of total aerosols was the general bimodal pattern, although the concentration level was very low. Most of sulfate and ammonium salts were distributed in the fine particle range less than 2 microns in aerodynamic diameter, but sulfate had another peak, thought to be of maritime origin, in the coarse particle range. Nevertheless, many fine sulfate particles that had been produced secondarily in the atmosphere were found in such a less polluted coastal region. The change of the sulfate concentrations obtained by the two-stage Andersen type sampler showed a correlation with the humidity. This may suggest that the formation of sulfate aerosols from sulfur dioxide could be related to a catalytic oxidation process in water drops.

  4. Distribution Of Natural Radioactivity On Soil Size Particles

    International Nuclear Information System (INIS)

    Tran Van Luyen; Trinh Hoai Vinh; Thai Khac Dinh

    2008-01-01

    This report presents a distribution of natural radioactivity on different soil size particles, taken from one soil profile. On the results shows a range from 52% to 66% of natural radioisotopes such as 238 U, 232 Th, 226 Ra and 40 K concentrated on the soil particles below 40 micrometers in diameter size. The remained of natural radioisotopes were distributed on a soil particles with higher diameter size. The study is available for soil sample collected to natural radioactive analyze by gamma and alpha spectrometer methods. (author)

  5. Lp-norm-residual constrained regularization model for estimation of particle size distribution in dynamic light scattering.

    Science.gov (United States)

    Zhu, Xinjun; Li, Jing; Thomas, John C; Song, Limei; Guo, Qinghua; Shen, Jin

    2017-07-01

    In particle size measurement using dynamic light scattering (DLS), noise makes the estimation of the particle size distribution (PSD) from the autocorrelation function data unreliable, and a regularization technique is usually required to estimate a reasonable PSD. In this paper, we propose an Lp-norm-residual constrained regularization model for the estimation of the PSD from DLS data based on the Lp norm of the fitting residual. Our model is a generalization of the existing, commonly used L2-norm-residual-based regularization methods such as CONTIN and constrained Tikhonov regularization. The estimation of PSDs by the proposed model, using different Lp norms of the fitting residual for p=1, 2, 10, and ∞, is studied and their performance is determined using simulated and experimental data. Results show that our proposed model with p=1 is less sensitive to noise and improves stability and accuracy in the estimation of PSDs for unimodal and bimodal systems. The model with p=1 is particularly applicable to the noisy or bimodal PSD cases.

  6. Particle size distribution: A key factor in estimating powder dustiness.

    Science.gov (United States)

    López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo

    2017-12-01

    A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however

  7. Experimental analysis of particle sizes for PIV measurements

    Science.gov (United States)

    van Overbrüggen, Timo; Klaas, Michael; Soria, Julio; Schröder, Wolfgang

    2016-09-01

    The right choice of seeding particles strongly influences the outcome of a particle-image velocimetry (PIV) measurement. Particles have to scatter enough light to be seen by cameras and follow the flow faithfully. As the flow following behavior depends on the inertia and therefore the size of the particle, smaller particles are desirable. Unfortunately, larger particles possess better light scattering behavior, which is especially important for volumetric PIV measurements. In this paper, the particle response of two exemplary solid particles to an oscillatory air flow created by a piston movement is analyzed and compared to analytic results by Hjelmfelt and Mockros (1966 Appl. Sci. Res. 16 149-61) concerning phase lag and amplitude ratio between particle movement and flow field. To achieve realistic experimental boundary conditions, polydispersed particles are used for the analysis. The analytic results show a strong dependence on the diameter. That is, using the volumetric mean diameter an overestimation of the phase lag of the particles is determined, whereas an underestimation of phase lag is computed for the number mean diameter. Hence, for polydispersed particles a more general analysis than that based on the particle mean diameter is required to determine in detail the particle following behavior.

  8. Experimental analysis of particle sizes for PIV measurements

    International Nuclear Information System (INIS)

    Van Overbrüggen, Timo; Klaas, Michael; Schröder, Wolfgang; Soria, Julio

    2016-01-01

    The right choice of seeding particles strongly influences the outcome of a particle-image velocimetry (PIV) measurement. Particles have to scatter enough light to be seen by cameras and follow the flow faithfully. As the flow following behavior depends on the inertia and therefore the size of the particle, smaller particles are desirable. Unfortunately, larger particles possess better light scattering behavior, which is especially important for volumetric PIV measurements. In this paper, the particle response of two exemplary solid particles to an oscillatory air flow created by a piston movement is analyzed and compared to analytic results by Hjelmfelt and Mockros (1966 Appl. Sci. Res . 16 149–61) concerning phase lag and amplitude ratio between particle movement and flow field. To achieve realistic experimental boundary conditions, polydispersed particles are used for the analysis. The analytic results show a strong dependence on the diameter. That is, using the volumetric mean diameter an overestimation of the phase lag of the particles is determined, whereas an underestimation of phase lag is computed for the number mean diameter. Hence, for polydispersed particles a more general analysis than that based on the particle mean diameter is required to determine in detail the particle following behavior. (paper)

  9. Electrodeposited Magnesium Nanoparticles Linking Particle Size to Activation Energy

    Directory of Open Access Journals (Sweden)

    Chaoqi Shen

    2016-12-01

    Full Text Available The kinetics of hydrogen absorption/desorption can be improved by decreasing particle size down to a few nanometres. However, the associated evolution of activation energy remains unclear. In an attempt to clarify such an evolution with respect to particle size, we electrochemically deposited Mg nanoparticles on a catalytic nickel and noncatalytic titanium substrate. At a short deposition time of 1 h, magnesium particles with a size of 68 ± 11 nm could be formed on the nickel substrate, whereas longer deposition times led to much larger particles of 421 ± 70 nm. Evaluation of the hydrogen desorption properties of the deposited magnesium nanoparticles confirmed the effectiveness of the nickel substrate in facilitating the recombination of hydrogen, but also a significant decrease in activation energy from 56.1 to 37.8 kJ·mol−1 H2 as particle size decreased from 421 ± 70 to 68 ± 11 nm. Hence, the activation energy was found to be intrinsically linked to magnesium particle size. Such a reduction in activation energy was associated with the decrease of path lengths for hydrogen diffusion at the desorbing MgH2/Mg interface. Further reduction in particle size to a few nanometres to remove any barrier for hydrogen diffusion would then leave the single nucleation and growth of the magnesium phase as the only remaining rate-limiting step, assuming that the magnesium surface can effectively catalyse the dissociation/recombination of hydrogen.

  10. Study of real time detection and size distribution measurement of ultrafine aerosol with a particle growth system (PGS)

    Energy Technology Data Exchange (ETDEWEB)

    Rebours, A.

    1994-06-29

    First, the theoretical knowledge on condensation phenomena of a supersaturated vapor in a cylindrical duct where an ultrafine aerosol of nanometers size is flowing, is recalled. Then, a Particle Growth-System (PGS) of original design is developed: the aerosol is confined in a region with a uniform vapor supersaturation profile. When imperfectly filtered atmospheric air is used as source of condensation nuclei, the produced droplets are found to be monodisperse. Therefore, our PGS offers a simple method of calibrating Optical Particle Counters because the size distribution of theses droplets is controlled. After an experimental study validated by a theoretical model, we establish that, under certain supersaturation conditions, the droplet size in our PGS is a function of ultrafine particle size on which the vapor condenses. Furthermore, when the sampled aerosol is constituted of an ultrafine fraction and a fine fraction, we show that the size distribution of the droplets that come out from the PGS is bimodal too. Finally, a simple redesign of our fluids inlet system should reduce particles losses in the PGS due to brownian diffusion and, in that manner improve their detection. (author). 72 refs., 46 figs., 8 tabs., 4 appends.

  11. [Particle number size distribution near a major road with different traffic conditions].

    Science.gov (United States)

    Yang, Liu; Wu, Ye; Song, Shao-Jie; Hao, Ji-Ming

    2012-03-01

    The profiles of number concentration of ambient particles at a roadside site in Beijing were studied with different traffic conditions. A Scanning Mobility Particle Sizer (SMPS) was utilized to measure the number concentrations of fine and ultrafine (10-100 nm) particles in August 2008 and August 2009, which represented the normal and Olympic traffic conditions, respectively. Size distributions of particle number concentration were identified and their temporal variations were also discussed. Results indicated that with normal traffic pattern, the total number concentration of ultrafine and 10-478 nm particles were (1.15 +/- 0.49) x 10(4) cm(-3) and (1.61 +/- 0.57) x 10(4) cm(-3), respectively. While the concentrations were decreased to (0.55 +/- 0.14) x 10(4) cm(-3) and (1.21 +/- 0.24) x 10(4) cm(-3), respectively, with special traffic condition during the Beijing Olympic Games. Largest reduction of 52.2% was observed for ultrafine particles among all size ranges. With normal traffic condition, bimodal distribution was found with two peak values in number concentrations around 22.5 nm and 113.0 nm. During the Olympic period, nucleation mode particles were significantly reduced due to a series of temporal control measures on motor vehicles such as the removal of yellow-labeled vehicles from the roads and travel restrictions based on odd-even license plate numbers. As a result, the peak in particle number concentration at 22.5 nm disappeared. The temporal variation indicated that significantly higher ultrafine particle number concentrations occurred around 00 : 00-04 : 00, 11 : 00-13 : 00 and 17 : 00-20 : 00 with normal traffic situation, which primarily attributed to the contributions of diesel exhaust at night, secondary formation at noon and traffic jam in the evening, respectively. However during the Olympic period, the temporal variation pattern changed significantly. The gap in the number concentrations of ultrafine particle between these three time periods

  12. [Importance of particle size decrease in the preformulation].

    Science.gov (United States)

    Szunyogh, Tímea; Ambrus, Rita; Szabóné, Révész Piroska

    2011-01-01

    Present work provides a short review concerning the importance of particle size decreasing in the drug formulation. The presented theoretical introduction collects the must important factors which influence the dezintegration and integration mechanisms. Modification of particle size and morphology could overcome the formulation problems, resulted improved drug release. Wet milling and solvent diffusion, as a novel methods to complete with drying will be presented applying the poorly water-soluble niflumic acid. Differences in particle sizes were found according to the used processing. The specific surface area of the drug was increased following particle size reduction and the dissolution rate was therefore significantly improved. During structural characterizations (DSC and XRPD), strong interactions were detected between the drug and stabilizer.

  13. Cellular detonations in nano-sized aluminum particle gas suspensions

    Science.gov (United States)

    Khmel, TA

    2017-10-01

    Formation of cellular detonation structures in monodisperse nano-sized aluminum particle – oxygen suspensions is studied by methods of numerical simulations of two-dimensional detonation flows. The detonation combustion are described within the semi-empirical model developed earlier which takes into account transition of the regime of aluminum particle combustion from diffusion to kinetic for micro-sized and nano-sized particles. The free-molecular effects are considered in the processes of heat and velocity relaxation of the phases. The specific features of the cellular detonation of nanoparticle suspensions comparing with micron-sized suspensions are irregular cellular structures, much higher pick pressure values, and relatively larger detonation cells. This is due to high value of activation energy of reduced chemical reaction of aluminum particle combustion in kinetic regime.

  14. Karna Particle Size Dataset for Tables and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains 1) table of bulk Pb-XAS LCF results, 2) table of bulk As-XAS LCF results, 3) figure data of particle size distribution, and 4) figure data for...

  15. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  16. Effects of Kaolin particle size and annealing temperature on the ...

    African Journals Online (AJOL)

    The effects of kaolin particle sizes on the resistivity of zinc-kaolin composite resistors have been investigated. The composite resistors have been produced from kaolin particle sizes ranging from 0.063 mm to 0.5 mm. The resistors were produced in a mould to a dimension of 65 mm x 6.5 mm x 3.2 mm with dry zinc and ...

  17. Effects of particle size and moisture content on the apparent ...

    African Journals Online (AJOL)

    It was further observed that the flours with smaller particle size produced pastes which were more viscous with more suspended and less sedimented or less aggregated particles; and hence are more likely suitable for the processing of most quality traditional foods like Kunu, Tuwo (Hausa); nri-oka, akamu (Ibo); eko, kokoro ...

  18. Effect of limestone particle size on bone quality characteristics of ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of different limestone particle sizes in layer diets on bone quality characteristics at end-of-lay hens. Calcitic limestone (360 g Ca/kg DM) that is extensively used in commercial poultry diets was obtained from a specific South African source. Limestone particles were graded as ...

  19. Particle size- and concentration-dependent separation of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Witte, Kerstin; Müller, Knut; Grüttner, Cordula; Westphal, Fritz; Johansson, Christer

    2017-01-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  20. Photographic method measures particle size and velocity in fluid stream

    Science.gov (United States)

    Dickerson, R. A.

    1966-01-01

    Method employing a nonframing motion picture camera, a continuous front light source, and a strobe light determines the size and velocity of small particles in nonturbulent fluid streams. This method is used in the study of the motion of solid and liquid particles in research and industrial fluid flow systems.

  1. Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis)

    Science.gov (United States)

    Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Winsor H. Lowe; Michael K. Schwartz

    2015-01-01

    Environmental DNA (eDNA) sampling has become a widespread approach for detecting aquatic animals with high potential for improving conservation biology. However, little research has been done to determine the size of particles targeted by eDNA surveys. In this study, we conduct particle distribution analysis of eDNA from a captive Brook Trout (Salvelinus fontinalis) in...

  2. Effect of limestone particle size on egg production and eggshell ...

    African Journals Online (AJOL)

    Different limestone particle sizes had no effect on any of the tested egg production and eggshell quality parameters. These results suggested that larger particles limestone are not necessarily essential to provide sufficient Ca2+ to laying hens for egg production and eggshell quality at end-of-lay, provided that the dietary Ca ...

  3. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  4. Sizes of particles formed during municipal wastewater treatment.

    Science.gov (United States)

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  5. Compositional Variation of PCBs, PAHs, and OCPs at Gas Phase and Size Segregated Particle Phase during Dust Incursion from the Saharan Desert in the Northwestern Anatolian Peninsula

    Directory of Open Access Journals (Sweden)

    S. Levent Kuzu

    2016-01-01

    Full Text Available A dust incursion occurred in Istanbul on 1 February 2015 from the Saharan Desert. During this episode, 938 μg·m−3 of TSP concentration was observed. TSP concentration was 64 μg·m−3 and 78 μg·m−3 on the following two days. Particles of 3 μm were dominant during the episode; however, particles < 0.49 μm were dominant after the episode. The averages of total (gas + particle PCB, PAH, and OCP concentrations were 279 pg·m−3, 175 ng·m−3, and 589 pg·m−3, respectively. Tri-CBs were dominant in most of the samples. Flt and Phe had the highest contribution to PAH species. β-HCH and heptachlor had the highest share in terms of OCPs. Particle phase PCBs exhibited monomodal size distribution, whereas OCPs had bimodal size distribution. PAHs exhibited either monomodal or bimodal size distribution on different days. The mass median diameter of PAHs did not change significantly during different atmospheric conditions due to their local sources. Gas/particle partitioning of each pollutant was evaluated by plotting their subcooled vapor pressure against the partitioning coefficient. From 1 to 3 February, the slope of the regression line shifted close to −1, indicating that the least favorable conditions were present during dust incursion for an equilibrium state.

  6. Modeling photoacoustic spectral features of micron-sized particles.

    Science.gov (United States)

    Strohm, Eric M; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C

    2014-10-07

    The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a

  7. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs on traffic and suburban sites of a European megacity: Paris (France

    Directory of Open Access Journals (Sweden)

    J. Ringuet

    2012-09-01

    Full Text Available The size distribution of particulate nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs was determined during two field campaigns at a traffic site in summer 2010 and at a suburban site during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation experiment in summer 2009. Both, OPAHs and NPAHs were strongly associated (>85% to fine particles (Dp< 2.5 μm increasing the interest of their study on a sanitary point of view. Results showed really different NPAH and OPAH particle size distributions between both sites. At traffic site, clearly bimodal (notably for NPAHs particle size distributions (Dp = 0.14 and 1.4 μm were observed, while the particle size distributions were more scattered at the suburban site, especially for OPAHs. Bimodal particle size distribution observed at traffic site for the NPAH could be assigned to the vehicle emissions and the particle resuspension. Broadest distribution observed at the suburban site could be attributed to the mass transfer of compounds by volatilization/sorption processes during the transport of particles in the atmosphere. Results also showed that the combination of the study of particle size distributions applied to marker compounds (primary: 1-nitropyrene; secondary: 2-nitrofluoranthene and to NPAH or OPAH chemical profiles bring some indications on their primary and/or secondary origin. Indeed, 1,4-anthraquinone seemed only primary emitted by vehicles while 7-nitrobenz[a]anthracene, benz[a]antracen7,12-dione and benzo[b]fluorenone seemed secondarily formed in the atmosphere.

  8. Influences of Substrate Adhesion and Particle Size on the Shape Memory Effect of Polystyrene Particles.

    Science.gov (United States)

    Cox, Lewis M; Killgore, Jason P; Li, Zhengwei; Long, Rong; Sanders, Aric W; Xiao, Jianliang; Ding, Yifu

    2016-04-19

    Formulations and applications of micro- and nanoscale polymer particles have proliferated rapidly in recent years, yet knowledge of their mechanical behavior has not grown accordingly. In this study, we examine the ways that compressive strain, substrate surface energy, and particle size influence the shape memory cycle of polystyrene particles. Using nanoimprint lithography, differently sized particles are programmed into highly deformed, temporary shapes in contact with substrates of differing surface energies. Atomic force microscopy is used to obtain in situ measurements of particle shape recovery kinetics, and scanning electron microscopy is employed to assess differences in the profiles of particles at the conclusion of the shape memory cycle. Finally, finite element models are used to investigate the growing impact of surface energies at smaller length scales. Results reveal that the influence of substrate adhesion on particle recovery is size-dependent and can become dominating at submicron length scales.

  9. A system for aerodynamically sizing ultrafine environmental radioactive particles

    International Nuclear Information System (INIS)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by 222 Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It's major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented

  10. A system for aerodynamically sizing ultrafine environmental radioactive particles

    Energy Technology Data Exchange (ETDEWEB)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  11. The effect of particle shape and size on cellular uptake.

    Science.gov (United States)

    Zheng, M; Yu, J

    2016-02-01

    Particle shape and size have been well-recognized to exhibit important effect on drug delivery and as an excellent candidate for drug delivery applications. The recent advances in the "top-down" and "bottom-up" approaches make it possible to develop different shaped and sized polymeric nanostructures, which provide a chance to tailor the shape of the nanostructures as a drug carrier. Presently, a large amount of cellular uptake data is available for particle shape and size effect on drug delivery. However, the effect has not been well formulated or described quantitatively. In the present paper, the dynamic process of the effects of particle shape and size on cellular uptake is analyzed, quantitative expression for the influence of particle shape and size on cellular uptake is proposed on the basis of local geometric feature of particle shape and diffusion approach of a particle in a medium rationally, and the relevant parameters in the formulation are determined by the available test data. The results indicate the validity of the present formulations.

  12. Strategy for determination of an efficient Cochleate particle size.

    Science.gov (United States)

    Gil, Danay; Bracho, Gustavo; Zayas, Caridad; del Campo, Judith; Acevedo, Reinaldo; Toledo, Arturo; Lastre, Miriam; Pérez, Oliver

    2006-04-12

    Cochleate structures obtained from the outer membrane of Neisseria meningitidis serotype B have demonstrated to be high immunogenicity when administrated by intramuscular, oral or intranasal routes, and could be used as adjuvant and meningococcal nasal vaccine candidate. Due to the microparticulate nature of Cochleate it is necessary to control the particle size since it capture by cells of the immune system could be affected by this aspect. We combined optic microscopy and immunisation experiments to select the optimum particle size. Six different processes of producing Cochleate obtaining were evaluated and different mechanical stress conditions were carried out to homogenize and modulate the particles size. The more immunogenic particles were selected on the basis of the levels of specific IgA and IgG antibodies induced after intranasal immunisation in mice. The best treatment parameter for mechanical stress of the Cochleate was prolonged treatment with untrasonic low frequency waves.

  13. Micron-sized polymer particles from tanzanian cashew nut shell ...

    African Journals Online (AJOL)

    Micron-sized polymer particles (MSPP) were prepared by formaldehyde condensation polymerization of cashew nut shell liquid (CNSL) previously emulsified with sodium lauryl sulphate. The sizes of the MSPP were found to range from 0.1 to 4.4 mm. Increasing the emulsifier concentration had the effect of increasing the ...

  14. Particle size changes in unsealed mineral trioxide aggregate powder.

    Science.gov (United States)

    Ha, William N; Kahler, Bill; Walsh, Laurence James

    2014-03-01

    Mineral trioxide aggregate (MTA) is commonly supplied in 1-g packages of powder that are used by some clinicians across several treatments against the manufacturer's instructions. ProRoot MTA cannot be resealed after opening, whereas MTA Angelus has a resealable lid. This study assessed changes in particle size distribution once the packaging had been opened. Fresh ProRoot MTA and MTA Angelus powder were analyzed by using laser diffraction and scanning electron microscopy and compared with powder from packages that had been opened once and kept in storage for 2 years. The ProRoot packet was folded over, whereas the MTA Angelus jar had the lid twisted back to its original position. After 2 years, ProRoot MTA powder showed a 6-fold increase in particle size (lower 10% from 1.13 to 4.37 μm, median particle size from 1.99 to 12.87 μm, and upper 10% from 4.30 to 34.67 μm), with an accompanying 50-fold change in particle surface area. MTA Angelus showed only a 2-fold increase in particle size (4.15 to 8.32 μm, 12.72 to 23.79 μm, and 42.66 to 47.91 μm, respectively) and a 2-fold change in particle size surface area. MTA reacts with atmospheric moisture, causing an increase in particle size that may adversely affect the properties and shelf life of the material. Smaller particles have a greater predisposition to absorb moisture. Single-use systems are advised. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Particle size analysis in estimating the significance of airborne contamination

    International Nuclear Information System (INIS)

    1978-01-01

    In this report information on pertinent methods and techniques for analysing particle size distributions is compiled. The principles underlying the measurement methods are described, and the merits of different methods in relation to the information being sought and to their usefulness in the laboratory and in the field are explained. Descriptions on sampling methods, gravitational and inertial particle separation methods, electrostatic sizing devices, diffusion batteries, optical sizing techniques and autoradiography are included. Finally, the report considers sampling for respirable activity and problems related to instrument calibration

  16. Laser anemometer signals: visibility characteristics and application to particle sizing.

    Science.gov (United States)

    Adrian, R J; Orloff, K L

    1977-03-01

    The signal visibility characteristics of a dual beam laser anemometer operated in a backscatter mode have been investigated both experimentally and analytically. The analysis is based on Mie's electromagnetic scattering theory for spherical particles and is exact within the limitations of the scattering theory. It is shown that the signal visibility is a function of the ratio of the particle diameter to the fringe spacing in a certain, restricted case; but more generally it also depends on the Mie scattering size parameter, refractive index, the illuminating beam polarization, and the size, shape, and location of the light collecting aperture. The character of backscatter signal visibility differs significantly from the forward scatter case, and it is concluded that backscatter measurements of particle diameters using the visibility sizing technique may not always be possible. Restrictions on the forward scatter application of the visibility sizing method are also discussed.

  17. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  18. Size distribution of mineral aerosol: using light-scattering models in laser particle sizing.

    NARCIS (Netherlands)

    Veihelmann, B.; Konert, M.; van der Zande, W.J.

    2006-01-01

    The size distribution of semitransparent irregularly shaped mineral dust aerosol samples is determined using a commonly used laser particle-sizing technique. The size distribution is derived from intensity measurements of singly scattered light at various scattering angles close to the

  19. Size distribution of mineral aerosol: using light-scattering models in laser particle sizing

    NARCIS (Netherlands)

    Veihelmann, B.; Konert, M.; Zande, W.J. van der

    2006-01-01

    The size distribution of semitransparent irregularly shaped mineral dust aerosol,samples is determined using a commonly used laser particle-sizing technique. The size distribution is derived from intensity measurements of singly scattered light at various scattering angles close to the

  20. Study of particle size distribution of environment certified reference material

    Directory of Open Access Journals (Sweden)

    I. E. Vasilyeva

    2015-01-01

    Full Text Available One of the most important stages of the developing certified reference materials (CRM of solid natural samples is to describe a particle size distribution of prepared powders. The particle size distribution affects the degree of material homogeneity and the value representative of the analytical sample mass. The collection of CRMs was being produced at the Vinogradov Institute of Geochemistry SB RAS through a long time span; therefore the grain-size compositions of the CRM powders were measured by different instrumental methods and assessed at different scales. The laser diffraction analyzer HELOS/BR was employed to accurately and rapidly measure the grain-size composition of CRM natural sample powders. New measurements confirm that the particle size distribution of CRMs of magmatic and metamorphic rocks and sediments of Lake Baikal developed 45 and 25 years ago, accordingly have not changed fundamentally. The multimodal distributions ofparticle sizes of investigated CRMs clearly reflect the differences in mineral and chemical compositions. Aggregating of the particles of different composition and origin during long-term storage of powders is not observed. The measurement results of particle size compositions of the CRM powders show a slight dependence on the weight put into the device, as well as its mineral composition. The homogeneity of the substance of studied standard samples was confirmed by low quantities of representative sub-samples (0.075-0.100 g for a wide range of elements determined by modern instrumental analytical methods. The use of laser diffraction analyzers type HELOS could help to certify the particle size composition of CRM powder as repeatable metrological characteristic.

  1. Methods and instruments for ensemble particle sizing by light scattering

    International Nuclear Information System (INIS)

    Bayvel, L.P.

    1986-01-01

    The instruments for ensemble analysis are based on two methods. The first method involves the approximation of the relationship between intensity scattered or transmitted by a particle and its size. This method enables one to compute the number or volume particle size distributions by finding a solution to a Fredholm integral if the scattering patern is measured. An alternative method is by expressing the angle dependent intensity of scattered light, the particle size distribution and the scattering coefficients for individual particles in a matrix equation. This method exploits the Mie scattering theory. All the instruments are based on the Fraunhofer diffraction theory. The solid particle is normally illuminated by a beam from a low-power helium-neon laser. A variation of detector assemblies is used to detect the scattered light. Instruments which are used for particle size measurements measure the extinction coefficients for different wavelenghts and scattering at 90 degrees by recording light intensity in two orthogonal planes of polarisation for each of three wavelenghts. Correction factors to take multiple scattering in account are also discussed

  2. Indetermination of particle sizing by laser diffraction in the anomalous size ranges

    Science.gov (United States)

    Pan, Linchao; Ge, Baozhen; Zhang, Fugen

    2017-09-01

    The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.

  3. Nano-sized and micro-sized polystyrene particles affect phagocyte function.

    Science.gov (United States)

    Prietl, B; Meindl, C; Roblegg, E; Pieber, T R; Lanzer, G; Fröhlich, E

    2014-02-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.

  4. Biofilter media gas pressure loss as related to media particle size and particle shape

    DEFF Research Database (Denmark)

    Pugliese, Lorenzo; Poulsen, Tjalfe G.; Røjgaard Andreasen, Rune

    2013-01-01

    and shape on the V - ΔP relationship. V - ΔP measurements were performed using three commercially available materials with different particle shapes: crushed granite (very angular particles), gravel (particles of intermediate roundness) and Leca® (almost spherical particles). A total of 21 different...... containing smaller particles. A new model concept for estimating V - ΔP across different particle size fractions and shapes was proposed. This model yielded improved prediction accuracy in comparison with existing prediction approaches.......Pressure loss (ΔP) is a key parameter for estimating biofilter energy consumption. Accurate predictions of ΔP as a function of air velocity (V) are therefore essential, to assess energy consumption and minimize operation costs. This paper investigates the combined impact of medium particle size...

  5. Size-dependent collection of micrometer-sized particles using nylon mesh

    Science.gov (United States)

    Yamamoto, Naomichi; Kumagai, Kazukiyo; Fujii, Minoru; Shendell, Derek G.; Endo, Osamu; Yanagisawa, Yukio

    Our study explored the size-dependent collection characteristics for micron-sized particles using several kinds of commercially available woven nylon net filters. The particle concentrations with and without the filter were compared to determine the filtration characteristics. The theoretical efficiencies based on a single-fiber theory and a hole model were also computed. Although the theoretical efficiencies were generally consistent with the experimental results, the non-uniformity of air velocity profile within a mesh hole, and a particle's detachment from or bounce off the filters, should be further investigated in future research. Overall, the present study revealed the size-fractionation capability of the nylon wire mesh filters for micron-sized particles from experimental and theoretical points of view. Unlike impactors, the size-fractionation characteristics of the nylon wire mesh filter were determined by particle size, mesh fiber diameter, and a combination of different particle collection mechanisms including impaction, interception, and gravitational settling. Each mechanical process appears interdependently governed in part by the filter dimensions such as filter mesh size (diameter of opening) as well as related variables such as packing density and fiber diameter.

  6. Size distribution of interstellar particles. III. Peculiar extinctions and normal infrared extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.; Wallenhorst, S.G.

    1981-01-01

    The effect of changing the upper and lower size limits of a distribution of bare graphite and silicate particles with n(a)αa/sup -q/ is investigated. Mathis, Rumpl, and Nordsieck showed that the normal extinction is matched very well by having the small-size cutoff, a/sub -/, roughly-equal0.005 or 0.01 μm, and the large size a/sub +/, about 0.25 μm, and q = 3.5 for both substances. We consider the progressively peculiar extinctions exhibited by the well-observed stars, sigma Sco, rho Oph, and theta 1 Ori C, with values of R/sub v/[equivalentA/sub v//E(B--V)] of 3.4, 4.4, and 5.5 compared to the normal 3.1. Two (sigma Sco, rho Oph) are in a neutral dense cloud; theta 1 Ori C is in the Orion Nebula. We find that sigma Sco has a normal graphite distribution but has had its small silicate particles removed, so that a/sub -/(sil)roughly-equal0.04 μm if q = 3.5, or q(sil) = 2.6 if the size limits are fixed. However, the upper size limit on silicates remains normal. In rho Oph, the graphite is still normal, but both a/sub -/(sil) and a/sub +/(sil) are increased, to about 0.04 μm and 0.4 or 0.5 μm, respectively, if q = 3.5, or q(sil)roughly-equal1.3 if the size limits are fixed. In theta 1 Ori, the small limit on graphite has increased to about 0.04 μm, or q(gra)roughly-equal3, while the silicates are about like those in rho Oph. The calculated lambda2175 bump is broader than the observed, but normal foreground extinction probably contributes appreciably to the observed bump. The absolute amount of extinction per H atom for rho Oph is not explained. The column density of H is so large that systematic effects might be present. Very large graphite particles (a>3 μm) are required to ''hide'' the graphite without overly affecting the visual extinction, but a normal (small) graphite size distribution is required by the lambda2175 bump. We feel that it is unlikely that such a bimodal distribution exists

  7. The influence of particle size on infrared reflectance spectra

    Science.gov (United States)

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Johnson, Timothy J.; Richardson, Robert L.

    2014-06-01

    Reflectance spectra of solids are influenced by the absorption coefficient and index of refraction as well as particle size and morphology. In the infrared, spectral features may be observed as either maxima or minima: in general, the upwardgoing peaks in the reflectance spectrum result from surface scattering, which are rays that have reflected from the surface without penetration, whereas downward-going peaks result from either absorption or volume scattering, i.e. rays that have penetrated into the sample to be absorbed or refracted into the sample interior and are not reflected. The light signal reflected from solids usually encompasses all these effects which include dependencies on particle size, morphology and sample density. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. The bulk materials were ground and sieved to separate the samples into various size fractions: 0-45, 45-90, 90-180, 180-250, 250-500, and >500 microns. The directional-hemispherical spectra were recorded using a Fourier transform infrared spectrometer equipped with an integrating sphere to measure the reflectance for all of the particle-size fractions. We have studied both organic and inorganic materials, but this paper focuses on inorganic salts, NaNO3, in particular. Our studies clearly show that particle size has an enormous influence on the measured reflectance spectra for bulk materials and that successful identification requires sufficient representative reflectance data so as to include the particle size(s) of interest. Origins of the effects are discussed.

  8. Size distribution of aerosol particles produced during mining and processing uranium ore.

    Science.gov (United States)

    Mala, Helena; Tomasek, Ladislav; Rulik, Petr; Beckova, Vera; Hulka, Jiri

    2016-06-01

    The aerosol particle size distributions of uranium and its daughter products were studied and determined in the area of the Rožná mine, which is the last active uranium mine in the Czech Republic. A total of 13 samples were collected using cascade impactors from three sites that had the highest expected levels of dust, namely, the forefield, the end of the ore chute and an area close to workers at the crushing plant. The characteristics of most size distributions were very similar; they were moderately bimodal, with a boundary approximately 0.5 μm between the modes. The activity median aerodynamic diameter (AMAD) and geometric standard deviation (GSD) were obtained from the distributions beyond 0.39 μm, whereas the sizes of particles below 0.39 μm were not differentiated. Most AMAD and GSD values in the samples ranged between 3.5 and 10.5 μm and between 2.8 and 5.0, respectively. The geometric means of the AMADs and GSDs from all of the underground sampling sites were 4.2 μm and 4.4, respectively, and the geometric means of the AMADs and GSDs for the crushing plant samplings were 9.8 μm and 3.3, respectively. The weighted arithmetic mean of the AMADs was 4.9 μm, with a standard error of 0.7 μm, according to the numbers of workers at the workplaces. The activity proportion of the radon progeny to (226)Ra in the aerosol was 0.61. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dust Particle Size Distributions during Spring in Yinchuan, China

    OpenAIRE

    Jiangfeng Shao; Jiandong Mao

    2016-01-01

    Dust particle size distributions in Yinchuan, China, were measured during March and April 2014, using APS-3321 sampler. The distributions were measured under different dust conditions (background, floating dust, blowing dust, and dust storm) and statistical analyses were performed. The results showed that, under different dust conditions, the instantaneous number concentrations of dust particles differed widely. For example, during blowing sand and dust storm conditions, instantaneous dust pa...

  10. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria

    2013-05-10

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  11. High throughput inclusion body sizing: Nano particle tracking analysis.

    Science.gov (United States)

    Reichelt, Wieland N; Kaineder, Andreas; Brillmann, Markus; Neutsch, Lukas; Taschauer, Alexander; Lohninger, Hans; Herwig, Christoph

    2017-06-01

    The expression of pharmaceutical relevant proteins in Escherichia coli frequently triggers inclusion body (IB) formation caused by protein aggregation. In the scientific literature, substantial effort has been devoted to the quantification of IB size. However, particle-based methods used up to this point to analyze the physical properties of representative numbers of IBs lack sensitivity and/or orthogonal verification. Using high pressure freezing and automated freeze substitution for transmission electron microscopy (TEM) the cytosolic inclusion body structure was preserved within the cells. TEM imaging in combination with manual grey scale image segmentation allowed the quantification of relative areas covered by the inclusion body within the cytosol. As a high throughput method nano particle tracking analysis (NTA) enables one to derive the diameter of inclusion bodies in cell homogenate based on a measurement of the Brownian motion. The NTA analysis of fixated (glutaraldehyde) and non-fixated IBs suggests that high pressure homogenization annihilates the native physiological shape of IBs. Nevertheless, the ratio of particle counts of non-fixated and fixated samples could potentially serve as factor for particle stickiness. In this contribution, we establish image segmentation of TEM pictures as an orthogonal method to size biologic particles in the cytosol of cells. More importantly, NTA has been established as a particle-based, fast and high throughput method (1000-3000 particles), thus constituting a much more accurate and representative analysis than currently available methods. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.

    Science.gov (United States)

    Cherry, Erica M; Maxim, Peter G; Eaton, John K

    2010-01-01

    A physics-based model of a general magnetic drug targeting (MDT) system was developed with the goal of realizing the practical limitations of MDT when electromagnets are the source of the magnetic field. The simulation tracks magnetic particles subject to gravity, drag force, magnetic force, and hydrodynamic lift in specified flow fields and external magnetic field distributions. A model problem was analyzed to determine the effect of drug particle size, blood flow velocity, and magnetic field gradient strength on efficiency in holding particles stationary in a laminar Poiseuille flow modeling blood flow in a medium-sized artery. It was found that particle retention rate increased with increasing particle diameter and magnetic field gradient strength and decreased with increasing bulk flow velocity. The results suggest that MDT systems with electromagnets are unsuitable for use in small arteries because it is difficult to control particles smaller than about 20 microm in diameter.

  13. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.

    Science.gov (United States)

    Anderson, Will; Kozak, Darby; Coleman, Victoria A; Jämting, Åsa K; Trau, Matt

    2013-09-01

    The particle size distribution (PSD) of a polydisperse or multimodal system can often be difficult to obtain due to the inherent limitations in established measurement techniques. For this reason, the resolution, accuracy and precision of three new and one established, commercially available and fundamentally different particle size analysis platforms were compared by measuring both individual and a mixed sample of monodisperse, sub-micron (220, 330, and 410 nm - nominal modal size) polystyrene particles. The platforms compared were the qNano Tunable Resistive Pulse Sensor, Nanosight LM10 Particle Tracking Analysis System, the CPS Instruments's UHR24000 Disc Centrifuge, and the routinely used Malvern Zetasizer Nano ZS Dynamic Light Scattering system. All measurements were subjected to a peak detection algorithm so that the detected particle populations could be compared to 'reference' Transmission Electron Microscope measurements of the individual particle samples. Only the Tunable Resistive Pulse Sensor and Disc Centrifuge platforms provided the resolution required to resolve all three particle populations present in the mixed 'multimodal' particle sample. In contrast, the light scattering based Particle Tracking Analysis and Dynamic Light Scattering platforms were only able to detect a single population of particles corresponding to either the largest (410 nm) or smallest (220 nm) particles in the multimodal sample, respectively. When the particle sets were measured separately (monomodal) each platform was able to resolve and accurately obtain a mean particle size within 10% of the Transmission Electron Microscope reference values. However, the broadness of the PSD measured in the monomodal samples deviated greatly, with coefficients of variation being ~2-6-fold larger than the TEM measurements across all four platforms. The large variation in the PSDs obtained from these four, fundamentally different platforms, indicates that great care must still be taken in

  14. Particle size-dependent radical generation from wildland fire smoke

    International Nuclear Information System (INIS)

    Leonard, Stephen S.; Castranova, Vince; Chen, Bean T.; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M.

    2007-01-01

    Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H 2 O 2 generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more ·OH radicals in the acellular Fenton-like reaction. The

  15. Effective particle size from molecular dynamics simulations in fluids

    Science.gov (United States)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  16. Automatic particle-size analysis of HTGR nuclear fuel microspheres

    International Nuclear Information System (INIS)

    Mack, J.E.

    1977-01-01

    An automatic particle-size analyzer (PSA) has been developed at ORNL for measuring and counting samples of nuclear fuel microspheres in the diameter range of 300 to 1000 μm at rates in excess of 2000 particles per minute, requiring no sample preparation. A light blockage technique is used in conjunction with a particle singularizer. Each particle in the sample is sized, and the information is accumulated by a multi-channel pulse height analyzer. The data are then transferred automatically to a computer for calculation of mean diameter, standard deviation, kurtosis, and skewness of the distribution. Entering the sample weight and pre-coating data permits calculation of particle density and the mean coating thickness and density. Following this nondestructive analysis, the sample is collected and returned to the process line or used for further analysis. The device has potential as an on-line quality control device in processes dealing with spherical or near-spherical particles where rapid analysis is required for process control

  17. Effective particle size from molecular dynamics simulations in fluids

    Science.gov (United States)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  18. Preparation of leucite powders with controlled particle size distribution

    Czech Academy of Sciences Publication Activity Database

    Novotná, Martina; Kloužková, A.; Maixner, J.; Šatava, Vladimír

    2005-01-01

    Roč. 49, č. 4 (2005), s. 252-258 ISSN 0862-5468 R&D Projects: GA ČR GA104/03/0031 Institutional research plan: CEZ:AV0Z40320502 Keywords : leucite * preparation * particle size distribution Subject RIV: CA - Inorganic Chemistry Impact factor: 0.463, year: 2005

  19. micron-sized polymeric particles from cashew nut shell liquid

    African Journals Online (AJOL)

    of the type of mixers and various reaction kettle designs on the polymer particles' sizes should be studied. INTRODUCTION. Cashew (Anacardium occidentale L.) Nut. Shell Liquid (CNSL) is a ... thermo-properties and cure characteristics of. CNSL-based resins. Bisanda and Ansell. (1992) reported the preparation of CNSL-.

  20. effect of limestone particle size on bone quality of layers

    African Journals Online (AJOL)

    UFS

    Peer-reviewed paper: 10th World Conference on Animal Production. 41. Effect of limestone particle size on bone quality characteristics of hens at end-of-lay. F.H. de Witt. #. , N.P. Kuleile .... 18 g), were obtained from a commercial egg producer and randomly allocated to the three treatments (n. = 23). At 70 weeks of age, ...

  1. How does particle size influence caking in lactose powder?

    DEFF Research Database (Denmark)

    Carpin, Melanie Anne; Bertelsen, H.; Dalberg, A.

    2017-01-01

    Particle size distribution (PSD) is known to influence product properties such as flowability and compressibility. When producing crystalline lactose, different steps can affect the PSD of the final powder. The aim of this study was to investigate the influence of PSD on caking and the mechanisms...

  2. Particle size distribution of selected electronic nicotine delivery system products.

    Science.gov (United States)

    Oldham, Michael J; Zhang, Jingjie; Rusyniak, Mark J; Kane, David B; Gardner, William P

    2018-03-01

    Dosimetry models can be used to predict the dose of inhaled material, but they require several parameters including particle size distribution. The reported particle size distributions for aerosols from electronic nicotine delivery system (ENDS) products vary widely and don't always identify a specific product. A low-flow cascade impactor was used to determine the particle size distribution [mass median aerodynamic diameter (MMAD); geometric standard deviation (GSD)] from 20 different cartridge based ENDS products. To assess losses and vapor phase amount, collection efficiency of the system was measured by comparing the collected mass in the impactor to the difference in ENDS product mass. The levels of nicotine, glycerin, propylene glycol, water, and menthol in the formulations of each product were also measured. Regardless of the ENDS product formulation, the MMAD of all tested products was similar and ranged from 0.9 to 1.2 μm with a GSD ranging from 1.7 to 2.2. There was no consistent pattern of change in the MMAD and GSD as a function of number of puffs (cartridge life). The collection efficiency indicated that 9%-26% of the generated mass was deposited in the collection system or was in the vapor phase. The particle size distribution data are suitable for use in aerosol dosimetry programs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Estimation of particle size distribution of nanoparticles from electrical ...

    Indian Academy of Sciences (India)

    ... blockade (CB) phenomena of electrical conduction through atiny nanoparticle. Considering the ZnO nanocomposites to be spherical, Coulomb-blockade model of quantum dot isapplied here. The size distribution of particle is estimated from that model and compared with the results obtainedfrom AFM and XRD analyses.

  4. Effects of Particle Size Distribution on Bioremediation of Crude Oil ...

    African Journals Online (AJOL)

    Bioremediation has been proven to be the most effective method of cleaning up oil contaminated soils through the application of nutrients and microorganism. Hence, this research presents the effects of particle size distribution on bioremediation of crude oil polluted sandy soils. Six different soil samples were sieved using ...

  5. Evolution of the sedimentation technique for particle size distribution analysis

    International Nuclear Information System (INIS)

    Maley, R.

    1998-01-01

    After an introduction on the significance of particle size measurements, sedimentation methods are described, with emphasis on the evolution of the gravitational approach. The gravitational technique based on mass determination by X-ray adsorption allows fast analysis by automation and easy data handling, in addition to providing the accuracy required by quality control and research applications [it

  6. Size distribution of airborne particles in animal houses

    NARCIS (Netherlands)

    Lai, T.L.H.; Aarnink, A.J.A.; Cambra-Lopez, M.; Huynh, T.T.T.; Parmentier, H.K.; Groot Koerkamp, P.W.G.

    2011-01-01

    The objective of this study was to determine concentration and size distribution of airborne particles inside and outside animal houses for broilers, broiler breeder (with bedding); layers (floor or aviary housing system); turkeys (with bedding), pigs: fatteners (traditional house, low emission

  7. Impact of particle size reduction on glaze-melting behaviour

    Czech Academy of Sciences Publication Activity Database

    Gorodylova, N.; Dohnalová, Ž.; Košťál, P.; Šulcová, P.; Vlček, Milan

    2014-01-01

    Roč. 116, č. 2 (2014), s. 605-612 ISSN 1388-6150. [4th Joint Czech - Hungarian - Polish - Slovak Thermoanalytical Conference. Pardubice, 24.06.2013-27.06.2013] Institutional support: RVO:61389013 Keywords : Glaze-melting behaviour * Particle size distribution * Heating microscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 2.042, year: 2014

  8. Synthesis of micro-sized polystyrene magnetic particles

    International Nuclear Information System (INIS)

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  9. Particle Sizes and Self Gravity Wakes in Saturn's A Ring

    Science.gov (United States)

    Jerousek, R. G.; Colwell, J. E.; Esposito, L. W.; Nicholson, P. D.

    2015-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) and Visual and Infrared Mapping Spectrometer (VIMS) have measured normal optical depths throughout Saturn's rings by stellar occultations covering a wide range of viewing geometries. The UVIS photometer has an effective wavelength of 0.15 µm and a relatively wide (6.0 mrad × 6.4 mrad) field-of-view. VIMS, in occultation mode, measures at an effective wavelength of 2.9 µm and over a single pixel of angular dimensions 0.25 mrad × 0.5 mrad. Occultations measured by VIMS at the same viewing geometry as UVIS occultations overstate the optical depth if particles smaller than 1.22λVIMS/2θ ~ 8.36 mm are present because light diffracted out of the VIMS pixel by those particles is not replaced by neighboring particles. By measuring differential optical depths one can probe the parameters of the ring particle size distribution (i.e. Zebker et al. 1985, Icarus, 64, 531-548). The technique is complicated, however, by the geometric dependence of the optical depth imposed by the non-axisymmetric self-gravity wakes, which are ephemeral elongated aggregates, deformed by Keplerian shear. Beginning with the granola bar wake model of Colwell et al. (2006, Geophys. Res. Lett., 33, L07201), we introduce a free parameter τsmall which represents the excess normal optical depth measured by VIMS due to sub-cm particles between the opaque wakes and combine VIMS and UVIS occultations for particle size analysis while simultaneously determining the properties of the wakes. We find that throughout the A Ring the wake properties generally agree with previously published results (Colwell et al. 2006, Hedman et al. 2007, Astron. J., 133, 2624-2629). We find a significant fraction of sub-cm particles in the inner and outer A Ring and in the troughs of density waves near strong Lindblad resonances. While wake properties vary in the halo regions surrounding these resonances, the abundance of sub-cm particles varies little from 124

  10. Totally asymmetric exclusion processes with particles of arbitrary size

    CERN Document Server

    Lakatos, G

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...

  11. Minimum size of charged particles in general relativity

    International Nuclear Information System (INIS)

    Sardelis, D.A.

    1975-01-01

    Spherical charged matter distributions are examined in a coordinate-free manner within the framework of general relativity. Irrespective of models chosen to describe the interior structure of a charged particle, it is found that the latter's total gravitational mass is positive definite, being finite only when there exists a lower bound for its invariant extension. For a simple choice of matter and charge distributions it is then shown that there is a minimum invarient size for the particle, below which no solution of the field equation exists, the matter density becoming negative and the space-tome devloping an intrinsic singularity in the exterior of the particle for radii less than this minimum. A mass renormalization is derived, valid at the moment of time symmetry, which relates the particle's total mass to its charge, bare mass and invariant extension. (author)

  12. Diffusion of finite-size particles in confined geometries.

    Science.gov (United States)

    Bruna, Maria; Chapman, S Jonathan

    2014-04-01

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined.

  13. Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHS) in urban and industrial aerosol of Algiers, Algeria.

    Science.gov (United States)

    Ladji, R; Yassaa, N; Balducci, C; Cecinato, A

    2014-02-01

    The distribution of ambient air n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to particles with aerodynamic diameters lesser than 10 μm (PM(10)) into six fractions (five stages and a backup filter) was studied for the first time in Algeria. Investigation took place during September of 2007 at an urban and industrial site of Algiers. Size-resolved samples (<0.49, 0.49-0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2, and 7.2-10 μm) were concurrently collected at the two sampling sites using five-stage high-volume cascade impactors. Most of n-alkanes (~72 %) and PAHs (~90 %) were associated with fine particles ≤ 1.5 μm in both urban and industrial atmosphere. In both cases, the n-alkane contents exhibited bimodal or weakly bimodal distribution peaking at the 0.95-1.5-μm size range within the fine mode and at 7.3-10 μm in the coarse mode. Low molecular weight PAHs displayed bimodal patterns peaking at 0.49-0.95 and 7.3-10 μm, while high molecular weight PAHs exhibited mono-modal distribution with maximum in the <0.49-μm fraction. While the mass mean diameter of total n-alkanes in the urban and industrial sites was 0.70 and 0.84 μm, respectively, it did not exceed 0.49 μm for PAHs. Carbon preference index (~1.1), wax% (10.1-12.8), and the diagnostic ratios for PAHs all revealed that vehicular emission was the major source of these organic compounds in PM(10) during the study periods and that the contribution of epicuticular waxes emitted by terrestrial plants was minor. According to benzo[a]pyrene-equivalent carcinogenic power rates, ca. 90 % of overall PAH toxicity across PM(10) was found in particles ≤ 0.95 μm in diameter which could induce adverse health effects to the population living in these areas.

  14. Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai

    Science.gov (United States)

    Gong, Xianda; Zhang, Ci; Chen, Hong; Nizkorodov, Sergey A.; Chen, Jianmin; Yang, Xin

    2016-04-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS), a Single Particle Soot Photometer (SP2) and various meteorological instruments were employed to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai over a 5-day period in December 2013. The refractory black carbon (rBC) mass concentrations measured by SP2 averaged 3.2 µg m-3, with the peak value of 12.1 µg m-3 at 04:26 LT on 7 December. The number of BC-containing particles captured by SPAMS in the size range 200-1200 nm agreed very well with that detected by SP2 (R2 = 0.87). A cluster analysis of the single particle mass spectra allowed for the separation of BC-containing particles into five major classes: (1) Pure BC; (2) BC attributed to biomass burning (BBBC); (3) K-rich BC-containing (KBC); (4) BC internally mixed with OC and ammonium sulfate (BCOC-SOx); (5) BC internally mixed with OC and ammonium nitrate (BCOC-NOx). The size distribution of internally mixed BC particles was bimodal. Detected by SP2, the condensation mode peaked around ˜ 230 nm and droplet mode peaked around ˜ 380 nm, with a clear valley in the size distribution around ˜ 320 nm. The condensation mode mainly consisted of traffic emissions, with particles featuring a small rBC core (˜ 60-80 nm) and a relatively thin absolute coating thickness (ACT, ˜ 50-130 nm). The droplet mode included highly aged traffic emission particles and biomass burning particles. The biomass burning particles had a larger rBC core (˜ 80-130 nm) and a thick ACT (˜ 110-300 nm). The highly aged traffic emissions had a smaller core (˜ 60-80 nm) and a very thick ACT (˜ 130-300 nm), which is larger than reported in any previous literature. A fast growth rate (˜ 20 nm h-1) of rBC with small core sizes was observed during the experiment. High concentrations pollutants like NO2 likely accelerated the aging process and resulted in a continuous size growth of r

  15. Effect of particle size on the glass transition.

    Science.gov (United States)

    Larsen, Ryan J; Zukoski, Charles F

    2011-05-01

    The glass transition temperature of a broad class of molecules is shown to depend on molecular size. This dependency results from the size dependence of the pair potential. A generalized equation of state is used to estimate how the volume fraction at the glass transition depends on the size of the molecule, for rigid molecule glass-formers. The model shows that at a given pressure and temperature there is a size-induced glass transition: For molecules larger than a critical size, the volume fraction required to support the effective pressure due to particle attractions is above that which characterizes the glassy state. This observation establishes the boundary between nanoparticles, which exist in liquid form only as dispersions in low molecular weight solvents and large molecules which form liquids that have viscosities below those characterized by the glassy state.

  16. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    Science.gov (United States)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  17. Aerosol Sampling Bias from Differential Electrostatic Charge and Particle Size

    Science.gov (United States)

    Jayjock, Michael Anthony

    Lack of reliable epidemiological data on long term health effects of aerosols is due in part to inadequacy of sampling procedures and the attendant doubt regarding the validity of the concentrations measured. Differential particle size has been widely accepted and studied as a major potential biasing effect in the sampling of such aerosols. However, relatively little has been done to study the effect of electrostatic particle charge on aerosol sampling. The objective of this research was to investigate the possible biasing effects of differential electrostatic charge, particle size and their interaction on the sampling accuracy of standard aerosol measuring methodologies. Field studies were first conducted to determine the levels and variability of aerosol particle size and charge at two manufacturing facilities making acrylic powder. The field work showed that the particle mass median aerodynamic diameter (MMAD) varied by almost an order of magnitude (4-34 microns) while the aerosol surface charge was relatively stable (0.6-0.9 micro coulombs/m('2)). The second part of this work was a series of laboratory experiments in which aerosol charge and MMAD were manipulated in a 2('n) factorial design with the percentage of sampling bias for various standard methodologies as the dependent variable. The experiments used the same friable acrylic powder studied in the field work plus two size populations of ground quartz as a nonfriable control. Despite some ill conditioning of the independent variables due to experimental difficulties, statistical analysis has shown aerosol charge (at levels comparable to those measured in workroom air) is capable of having a significant biasing effect. Physical models consistent with the sampling data indicate that the level and bipolarity of the aerosol charge are determining factors in the extent and direction of the bias.

  18. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    adsorption takes place, are largely unknown. In this study, we have used atomic force microscopy (AFM) to show that the grain surfaces in offshore and onshore chalk are more heterogeneous than previously assumed. The particles are not simply calcite surfaces but are partially covered by clay that is only 1...... that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  19. Infrared reflectance spectra: effects of particle size, provenance and preparation

    Science.gov (United States)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.

    2014-10-01

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  20. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions.

    Science.gov (United States)

    Yu, Weili; Muteki, Koji; Zhang, Lin; Kim, Gloria

    2011-01-01

    The purpose of this study is to establish a modeling approach that can be used to predict bulk powder flowability of pharmaceutical materials from their particle size and shape distributions. To build and validate the model, 23 commonly used pharmaceutical excipients and 38 binary blends were fully characterized for their particle size and shape distributions. The particle size and shape of each sample was characterized by multiple descriptors to fully reflect their morphological characteristics. The flow properties of these materials were analyzed using the Schulze Ring Shear Tester at a fixed humidity condition. A partial least squares (PLS) approach was used to build the mathematical model. Several different modeling approaches were attempted and the best method was identified as using a combination of formulation composition and particle size and shape distributions of single-component powder systems. The PLS model was shown to provide excellent predictions of powder flow function coefficient (FFC) of up to approximately 20. The results also revealed that both particle size and shape play an important role in determining the powder flow behavior. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.

    Science.gov (United States)

    Hamilton, Peter; Littlejohn, David; Nordon, Alison; Sefcik, Jan; Slavin, Paul; Dallin, Paul; Andrews, John

    2011-05-21

    The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.

  2. Change of particle size distribution during Brownian coagulation

    International Nuclear Information System (INIS)

    Lee, K.W.

    1984-01-01

    Change in particle size distribution due to Brownian coagulation in the continuum regime has been stuied analytically. A simple analytic solution for the size distribution of an initially lognormal distribution is obtained based on the assumption that the size distribution during the coagulation process attains or can, at least, be represented by a time dependent lognormal function. The results are found to be in a form that corrects Smoluchowski's solution for both polydispersity and size-dependent kernel. It is further shown that regardless of whether the initial distribution is narrow or broad, the spread of the distribution is characterized by approaching a fixed value of the geometric standard deviation. This result has been compared with the self-preserving distribution obtained by similarity theory. (Author)

  3. Size segregation in bedload sediment transport at the particle scale

    Science.gov (United States)

    Frey, P.; Martin, T.

    2011-12-01

    Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles

  4. Influence of particle size distribution on nanopowder cold compaction processes

    Science.gov (United States)

    Boltachev, G.; Volkov, N.; Lukyashin, K.; Markov, V.; Chingina, E.

    2017-06-01

    Nanopowder uniform and uniaxial cold compaction processes are simulated by 2D granular dynamics method. The interaction of particles in addition to wide-known contact laws involves the dispersion forces of attraction and possibility of interparticle solid bridges formation, which have a large importance for nanopowders. Different model systems are investigated: monosized systems with particle diameter of 10, 20 and 30 nm; bidisperse systems with different content of small (diameter is 10 nm) and large (30 nm) particles; polydisperse systems corresponding to the log-normal size distribution law with different width. Non-monotone dependence of compact density on powder content is revealed in bidisperse systems. The deviations of compact density in polydisperse systems from the density of corresponding monosized system are found to be minor, less than 1 per cent.

  5. Size-dependent nonlocal effects in plasmonic semiconductor particles

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2017-01-01

    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic...... InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal...... particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017...

  6. Optically controlled grippers for manipulating micron-sized particles

    Science.gov (United States)

    Gibson, Graham; Barron, Louise; Beck, Fiona; Whyte, Graeme; Padgett, Miles

    2007-01-01

    We report the development of a joystick controlled gripper for the real-time manipulation of micron-sized objects, driven using holographic optical tweezers (HOTs). The gripper consists of an arrangement of four silica beads, located in optical traps, which can be positioned and scaled in order to trap an object indirectly. The joystick can be used to grasp, move (lateral or axial), and change the orientation of the target object. The ability to trap objects indirectly allows us to demonstrate the manipulation of a strongly scattering micron-sized metallic particle.

  7. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    Science.gov (United States)

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  8. Refining Bimodal Microstructure of Materials with MSTRUCT

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Kadlecová, A.; Janeček, M.; Matějová, Lenka; Dopita, M.; Kužel, R.

    2014-01-01

    Roč. 29, S2 (2014), S35-S41 ISSN 0885-7156 R&D Projects: GA ČR GA14-23274S Grant - others:UK(CZ) UNCE 204023/2012 Institutional support: RVO:67985858 Keywords : XRD * bimodal * crystallite size Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.636, year: 2014

  9. Geostatistical Interpolation of Particle-Size Curves in Heterogeneous Aquifers

    Science.gov (United States)

    Guadagnini, A.; Menafoglio, A.; Secchi, P.

    2013-12-01

    We address the problem of predicting the spatial field of particle-size curves (PSCs) from measurements associated with soil samples collected at a discrete set of locations within an aquifer system. Proper estimates of the full PSC are relevant to applications related to groundwater hydrology, soil science and geochemistry and aimed at modeling physical and chemical processes occurring in heterogeneous earth systems. Hence, we focus on providing kriging estimates of the entire PSC at unsampled locations. To this end, we treat particle-size curves as cumulative distribution functions, model their densities as functional compositional data and analyze them by embedding these into the Hilbert space of compositional functions endowed with the Aitchison geometry. On this basis, we develop a new geostatistical methodology for the analysis of spatially dependent functional compositional data. Our functional compositional kriging (FCK) approach allows providing predictions at unsampled location of the entire particle-size curve, together with a quantification of the associated uncertainty, by fully exploiting both the functional form of the data and their compositional nature. This is a key advantage of our approach with respect to traditional methodologies, which treat only a set of selected features (e.g., quantiles) of PSCs. Embedding the full PSC into a geostatistical analysis enables one to provide a complete characterization of the spatial distribution of lithotypes in a reservoir, eventually leading to improved predictions of soil hydraulic attributes through pedotransfer functions as well as of soil geochemical parameters which are relevant in sorption/desorption and cation exchange processes. We test our new method on PSCs sampled along a borehole located within an alluvial aquifer near the city of Tuebingen, Germany. The quality of FCK predictions is assessed through leave-one-out cross-validation. A comparison between hydraulic conductivity estimates obtained

  10. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Baijun Liu

    2016-02-01

    Full Text Available Particle coagulation is a facile approach to produce large-scale polymer latex particles. This approach has been widely used in academic and industrial research owing to its higher polymerization rate and one-step polymerization process. Our work was motivated to control the extent (or time of particle coagulation. Depending on reaction parameters, particle coagulation is also able to produce narrowly dispersed latex particles. In this study, a series of experiments were performed to investigate the role of the initiator system in determining particle coagulation and particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems or higher reaction temperature, the time of particle coagulation would be advanced to particle nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination of the Smoluchowski equation and the electrostatic stability theory, the relationship between the particle size distribution and particle coagulation was established: the earlier the particle coagulation, the narrower the particle size distribution, while the larger the extent of particle coagulation, the larger the average particle size. Combined with the results of previous studies, a systematic method controlling the particle size distribution in the presence of particle coagulation was developed.

  11. Effect of particle size on degree of inversion in ferrites

    International Nuclear Information System (INIS)

    Siddique, M.; Butt, N.M.

    2012-01-01

    Ferrites with the spinel structure are important materials because of their structural, magnetic and electrical properties. The suitability of these materials depends on both the intrinsic behavior of the material and the effects of the grain size. Moessbauer spectroscopy was employed to investigate the cation distribution and degree of inversion in bulk and nano sized particles of CuFe/sub 2/O/sub 4/, MnFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ ferrites. The Moessbauer spectra of all bulk ferrites showed complete magnetic behavior, whereas nanoparticle ferrites showed combination of ferromagnetic and superparamagnetic components. Moreover, the cation distribution in nanoparticle materials was also found to be different to that of their bulk counterparts indicating the particle size dependency. The inversion of Cu and Ni ions in bulk sample was greater than that of nanoparticles; whereas the inversion of Mn ions was less in bulk material as compared to the nanoparticles. Hence the degree of inversion decreased in CuFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ samples whereas, it increased in MnFe/sub 2/O/sub 4/ as the particle size decreased and thus showed the anomalous behavior in this case. The nanoparticle samples also showed paramagnetic behaviour due to superparamagnetism and this effect is more prominent in MnFe/sub 2/O/sub 4/. Moessbauer spectra of bulk and nanoparticles CuFe/sub 2/O/sub 4/ is shown. (Orig./A.B.)

  12. Urban sediment particle size and pollutants in Southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Poleto, Cristiano; Merten, Gustavo H. [Federal Univ. of Rio Grande do Sul - UFRGS, Porto Alegre, RS (BR). Hydraulic Research Inst. (IPH); Bortoluzzi, Edson C. [Univ. of Passo Fundo - UPF, RS (Brazil); Charlesworth, Susanne M. [Coventry Univ. (United Kingdom). Dept. of Geography, Environment and Disaster Management

    2009-08-15

    Background, aim and scope: Studies of particulate-associated pollutants, or PAPs, in urban areas have become necessary due to their potentially deleterious effects on the environment. However, it is not just the sediments themselves which are problematic but also their particle size composition, which has a great influence on their capacity to adsorb and transport pollutants. This paper presents the particle size distributions and concentrations of five metals (Cr, Cu, Ni, Pb and Zn) of urban sediments collected from paved streets and gully pots from 20 cities in southern Brazil. The cities have different characteristics and hence sources of PAPs associated with differing geologies, soil types and type of urbanisation. Studies of this nature enable elucidation of the relationship between diffuse sources such as streets and gully pots and the likelihood of PAPs to subsequently pollute the urban aquatic environment. Materials and methods: Sediment samples were taken at random from paved streets and gully pots in 20 cities in Rio Grande do Sul state, southern Brazil by means of a portable vacuum cleaner to avoid loss of finer particles. The particle sizes of the samples were measured using a Cilas {sup registered} 1180 laser particle analyzer, and the concentrations of five metals (Cr, Cu, Ni, Pb and Zn) were determined by wet acid digestion (HCl-HF-HClO{sub 4}-HNO{sub 3}) followed by inductively coupled plasma atomic emission spectroscopy on the <63-{mu}m fraction. Results: It was found that in comparison to sediments collected from the streets, gully pot sediments were more heterogeneous in terms of particle size and also that sediment samples from the gully pots were predominantly coarser than those originating on the streets. From the gully pot results, analysis of the modal particle diameter enabled the cities to be divided into three categories. The concentrations of metals in the street sediments were similar across all 20 cities, with all concentrations above

  13. High Deformability, Particle Size Distribution and Hydration of Phytoglycogen Nanoparticles

    Science.gov (United States)

    Baylis, Benjamin; Dutcher, John

    We have used atomic force microscopy to resolve a large discrepancy between the size of monodisperse phytoglycogen nanoparticles measured using small angle neutron scattering (SANS) and dynamic light scattering (DLS), and to calculate the effect of hydration on the nanoparticle size. The AFM measurements are challenging because of the ``stickiness'' and deformability of the soft nanoparticles. By significantly reducing the interaction between the AFM tip and the ``sticky'' nanoparticles, we were able to obtain high quality images in both air and water. We found that the adsorbed particles are highly deformed, forming pancake-like objects on hydrophilic mica surfaces. By measuring the distribution of isolated particle volumes in air, we calculated the average effective spherical diameter of the particles. Comparing nanoparticle aggregates in both air and water allowed the determination of the hydration of an individual nanoparticle. Our results are in excellent agreement with the diameter determined using SANS, providing insight into the unusual diffusion dynamics that is measured in DLS. These measurements illustrate the distinct advantages of AFM over other imaging techniques for visualizing nanoscopic soft objects in a liquid environment.

  14. Particle size - An important factor in environmental consequence modeling

    International Nuclear Information System (INIS)

    Yuan, Y.C.; MacFarlane, D.

    1991-01-01

    Most available environmental transport and dosimetry codes for radiological consequence analysis are designed primarily for estimating dose and health consequences to specific off-site individuals as well as the population as a whole from nuclear facilities operating under either normal or accident conditions. Models developed for these types of analyses are generally based on assumptions that the receptors are at great distances (several kilometers), and the releases are prolonged and filtered. This allows the use of simplified approaches such as averaged meteorological conditions and the use of a single (small) particle size for atmospheric transport and dosimetry analysis. Source depletion from particle settling, settle-out, and deposition is often ignored. This paper estimates the effects of large particles on the resulting dose consequences from an atmospheric release. The computer program AI-RISK has been developed to perform multiparticle-sized atmospheric transport, dose, and pathway analyses for estimating potential human health consequences from the accidental release of radioactive materials. The program was originally developed to facilitate comprehensive analyses of health consequences, ground contamination, and cleanup associated with possible energetic chemical reactions in high-level radioactive waste (HLW) tanks at a US Department of Energy site

  15. Bimodal immune activation in psoriasis.

    Science.gov (United States)

    Christophers, E; Metzler, G; Röcken, M

    2014-01-01

    Psoriasis is an immune-regulated skin disease with various clinical subtypes and disease activities. The majority of patients present with predominantly stable plaques. At the onset of new lesions, plaque-type psoriasis frequently demonstrates pin-sized and highly inflammatory papules sometimes with an inflammatory border. The histopathology of initial psoriasis differs from stable plaque-type psoriasis. Early lesions demonstrate innate immune cells with neutrophils, degranulating mast cells and macrophages. These are followed by interleukin (IL)-1-dependent T helper (Th)17 cells, finally resulting in the Th1-dominated immunopathology of stable plaque-type psoriasis, where mononuclear cells predominate with interspersed neutrophilic (Munro) microabscesses. These features suggest a bimodal immune pathway where alternate activation of either innate (autoinflammatory) or adaptive (autoimmune) immunity predominates. Neutrophilic infiltrations appear during early psoriasis with Munro abscesses. They are time limited and occur periodically, clinically best seen in linear nail pitting. These features strongly suggest a critical role for an IL-1-Th17-dominated autoinflammation in the initiation of psoriasis, followed by a Th1-dominated late-phase reaction. The concept of bimodal immune activation helps to explain results from therapeutic interventions that are variable and previously only partly understood. © 2013 British Association of Dermatologists.

  16. Building predictive models of soil particle-size distribution

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-04-01

    Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.

  17. Analysis of filler particle levels and sizes in dental alginates

    Directory of Open Access Journals (Sweden)

    Hugo Lemes Carlo

    2010-06-01

    Full Text Available The aim of this study was to determine the inorganic filler fractions and sizes of commercially alginates. The inorganic particles volumetric fractions of five alginates - Jeltrate(J, Jeltrate Plus(JP, Jeltrate Chromatic Ortho(JC, Hydrogum(H and Ezact Krom(E were accessed by weighing a previously determined mass of each material in water before and after burning samples at 450 °C for 3 hours. Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers' morphology and size. The results for the volumetric inorganic particle content were (%: J - 48.33, JP - 48.33, JC - 33.79, H - 37.55 and E - 40.55. The fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. The mean values for fillers size were (μm: J - 12.91, JP - 13.67, JC - 13.44, E - 14.59 and H - 9 (diameter, 8.81 (length. The results of this study revealed differences in filler characteristics that could lead to different results when testing mechanical properties.

  18. Shape, size, and distribution of magnetic particles in Bjurbole chondrules

    Science.gov (United States)

    Nava, David F.

    1994-01-01

    Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.

  19. Influence of Particle Size on Properties of Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Kurajica, S

    2010-02-01

    Full Text Available Expanded graphite has been applied widely in thermal insulation, adsorption, vibration damping, gasketing, electromagnetic interference shielding etc. It is made by intercalation of natural flake graphite followed by thermal expansion. Intercalation is a process whereby an intercalant material is inserted between the graphene layers of a graphite crystal. Exfoliation, a huge unidirectional expansion of the starting intercalated flakes, occurs when the graphene layers are forced apart by the sudden decomposition and vaporization of the intercalated species by thermal shock. Along with production methodologies, such as the intercalation process and heat treatment, the raw material characteristics, especially particle size, strongly influence the properties of the final product.This report evaluates the influence of the particle size of the raw material on the intercalation and expansion processes and consequently the properties of the exfoliated graphite. Natural crystalline flake graphite with wide particle diameter distribution (between dp = 80 and 425 µm was divided into four size-range portions by sieving. Graphite was intercalated via perchloric acid, glacial acetic acid and potassium dichromate oxidation and intercalation procedure. 5.0 g of graphite, 7.0 g of perchloric acid, 4.0 g of glacial acetic acid and 2.0 g of potassium dichromate were placed in glass reactor. The mixture was stirred with n = 200 min–1 at temperature of 45 °C during 60 min. Then it was filtered and washed with distilled water until pH~6 and dried at 60 °C during 24 h. Expansion was accomplished by thermal shock at 1000 °C for 1 min. The prepared samples were characterized by means of exfoliation volume measurements, simultaneous differential thermal analysis and thermo-gravimetry (DTA/TGA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, BET measurements and scanning electron microscopy (SEM.X-ray diffraction indicated a change of distance

  20. Pore size determination from charged particle energy loss measurement

    International Nuclear Information System (INIS)

    Brady, F.P.; Armitage, B.H.

    1977-01-01

    A new method aimed at measuring porosity and mean pore size in materials has been developed at Harwell. The energy width or variance of a transmitted or backscattered charged particle beam is measured and related to the mean pore size via the assumption that the variance in total path length in the porous material is given by (Δx 2 )=na 2 , where n is the mean number of pores and a the mean pore size. It is shown on the basis of a general and rigorous theory of total path length distribution that this approximation can give rise to large errors in the mean pore size determination particularly in the case of large porosities (epsilon>0.5). In practice it is found that it is not easy to utilize fully the general theory because accurate measurements of the first four moments are required to determine the means and variances of the pore and inter-pore length distributions. Several models for these distributions are proposed. When these are incorporated in the general theory the determinations of mean pore size from experimental measurements on powder samples are in good agreement with values determined by other methods. (Auth.)

  1. Effect of Particle Morphology on the Ripening of Supported Pt Nanoparticles

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2012-01-01

    , a transmission electron microscopy analysis reveals that a highly monodispersed ensemble of nanoparticles transformed into an ensemble with bimodal and subsequently Lifshitz–Slyozov–Wagner particle size distribution. Moreover, scanning transmission electron microscopy and atomic force microscopy analyses suggest...... that the Pt nanoparticle had size-dependent morphologies after sintering in the oxidizing environment. The evolution of the particle sizes is described by a simple kinetic model for ripening, and the size-dependent particle morphology is proposed as an explanation for the observed bimodal particle size...

  2. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  3. Investigation of soot morphology and particle size distrib ution in a turbulent nonpremixed flame via Monte Carlo simulations

    KAUST Repository

    Abdelgadir, Ahmed

    2015-03-30

    Recently, our group performed a set of direct numerical simulations (DNS) of soot formation and growth in a n-heptane three dimensional non-premixed jet flame [Attili et al., Proc. Comb. Inst, 35, 2015], [Attili et al., Comb. Flame, 161, 2014], [Bisetti et al.,Trans of the Royal Soc, 372, 2014]. The evolution of species relevant to soot formation and growth have been sampled along a large number of Lagrangian trajectories in the DNS. In this work, the DNS results are post-processed to compute the soot evolution along selected Lagrangian trajectories using a Monte Carlo method. An operator splitting approach is adopted to split the deterministic processes (nucleation, surface growth and oxidation) from coagulation, which is treated stochastically. The morphological properties of soot and the particlesize distribution are investigated. For trajectories that experience an early strong nucleation event, the particle size distribution is found to be bimodal, as the soot particles have enough time to coagulate and grow while it is unimodal for trajectories characterized by only late nucleation events. As a results, the average size distribution at two different crosswise positions in the flame is unimodal.

  4. Particle size tuning in silver-polyacrylonitrile nanocomposites

    Directory of Open Access Journals (Sweden)

    2010-02-01

    Full Text Available Silver-polyacrylonitrile (Ag-PAN nanocomposites were in situ synthesized by simultaneous polymerization of acrylonitrile and reduction of silver ions, starting from mixtures of silver nitrate (AgNO3, acrylonitrile (AN, and UV photoinitiator (IN. The films obtained proved to be transparent and were characterized by a homogeneous dispersion of Ag nanoparticles within the PAN matrix without any macroscopic agglomeration. The particle size and number density were found to depend on both precursor salt and UV photoinitiator weight percentages. Optical and electrical properties were investigated as a function of both AgNO3 and IN amounts, too. We found that it is possible to finely tailor the metal nanoparticle size and number density and, consequently, the film optical and electrical response by adjusting the amounts of precursor salt and UV photoinitiator in the initial mixtures.

  5. Microscopic structure of nanometer-sized silica particles

    International Nuclear Information System (INIS)

    Uchino, T.; Aboshi, A.; Kohara, S.; Ohishi, Y.; Sakashita, M.; Aoki, K.

    2004-01-01

    We have studied the structure of nanometer-sized silica particles called fumed silica, which is a synthetic amorphous silicon dioxide produced by burning silicon tetrachloride in an oxygen-hydrogen flame, using infrared and Raman spectroscopies and a high-energy x-ray diffraction method. It has been demonstrated that the structure of fumed silica is not identical to that of the normal bulk silica glass in terms especially of the distribution of the size of silica rings. Three- and four-membered rings are more frequent in fumed silica than in the bulk silica glass. It has also been shown that the network structure of fumed silica is more flexible than that of the bulk one, probably explaining the reason why fumed silica can accommodate a large number of three- and four-membered rings in the structure

  6. Particle size effect on velocity of gold particle embedded laser driven plastic targets

    Directory of Open Access Journals (Sweden)

    Dhareshwar L.J.

    2013-11-01

    Full Text Available A scheme to enhance the target foil velocity has been investigated for a direct drive inertial fusion target. Polymer PVA (polyvinyl alcohol or (C2H4On target foils of thickness 15–20 μm were used in plain form and also embedded with gold in the nano-particle (Au-np or micro-particle (Au-mp form. Nano-particles were of 20–50 nm and micro-particles of 2–3 μm in size. 17% higher target velocity was measured for foils embedded with nano-particle gold (Au-np as compared to targets embedded with micro-particles gold (Au-mp. The weight of gold in both cases was in the range 40–55% of the full target weight (atomic percentage of about 22%. Experiments were performed with the single beam of the Prague Asterix Laser System (PALS at 0.43 μm wavelength (3ω of the fundamental wavelength, 120 Joule energy and 300 psec pulse duration. Laser intensity on the target was about 1015 W/cm2. A simple model has been proposed to explain the experimental results.

  7. Corredor Bimodal Cafetero

    OpenAIRE

    Duque Escobar, Gonzalo

    2015-01-01

    El Corredor Bimodal Cafetero es un proyecto de infraestructura estratégica que articula la Hidrovía del Magdalena con el Corredor Férreo del río Cauca, inscrito en el Plan Nacional de Desarrollo 2014/2018 y financiable con la salida de 30 mil toneladas diarias de carbón andino a la cuenca del Pacífico. Incluye el Túnel Cumanday para cruzar la Cordillera Central, el Ferrocarril Cafetero de 150 km y 3% de pendiente entre La Dorada y el Km 41, y la Transversal Cafetera de 108 km para una vía de...

  8. Size-resolved fluxes of sub-100-nm particles over forests

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Spaulding, A.M.

    2009-01-01

    -resolved observations. We present size-resolved particle number fluxes for sub-100-nm particle diameters (Dp) over a deciduous forest derived using eddy covariance applied to data from a fast mobility particle sizer. The size-resolved particle number fluxes in 18 diameters between 8 and 100 nm were collected during...... are normalized by friction velocity, the key controlling role of particle diffusivity is strongly manifest. On the basis of analyses of these new measurements and recently published size-resolved particle number fluxes from a conifer forest, we present working parameterizations for size-resolved particle...

  9. Size distribution of radon daughter particles in uranium mine atmospheres

    International Nuclear Information System (INIS)

    George, A.C.; Hinchliffe, L.; Sladowski, R.

    1977-07-01

    An investigation of the particle size distribution and other properties of radon daughters in uranium mines was reported earlier but only summaries of the data were presented. This report consists mainly of tables of detailed measurements that were omitted in the original article. The tabulated data include the size distributions, uncombined fractions and ratios of radon daughters as well as the working levels, radon concentrations, condensation nuclei concentrations, temperature, and relative humidity. The measurements were made in 27 locations in four large underground mines in New Mexico during typical mining operations. The size distributions of the radon daughters were log normal. The activity median diameters ranged from 0.09 μm to 0.3 μm with a mean of 0.17 μm. Geometric standard deviations were from 1.3 to 4 with a mean of 2.7. Uncombined fractions expressed in accordance with the ICRP definition ranged from 0.004 to 0.16 with a mean of 0.04

  10. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter.

    Science.gov (United States)

    Yang, Fangxing; Ding, Jinjian; Huang, Wei; Xie, Wei; Liu, Weiping

    2014-01-01

    In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m(3). Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 μm. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (≤1 μm), while TnPP, TBEP, and EHDPP mainly on fine particles (≤2.5 μm). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract.

  11. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    Science.gov (United States)

    S Hosseini; L. Qi; D. Cocker; D. Weise; A. Miller; M. Shrivastava; J.W. Miller; S. Mahalingam; M. Princevac; H. Jung

    2010-01-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in...

  12. Mixtures of organic and inorganic substrates, particle size and proportion

    International Nuclear Information System (INIS)

    Morales-Maldonado, Emilio Raymundo; Casanova-Lugo, Fernando

    2015-01-01

    The mixtures of organic and inorganic materials used in the preparation of a new material, particle size, proportion and their response in plant were reviewed. Agricultural wastes are considered a pollutant reservoir in Mexico; however, for another perspective this represent an industry with great potential. The nutrients ingested by animals represent nutriments available for plants when properly recycled. The production of compost and vermicompost is an option that minimize the risk of contamination and improve quality. Both processes are an alternative for organic production. The efficiency of irrigation and fertilization are affected for the reducing the volumen of an organic material incresase compaction and compression of roots. The mixtures with inorganic materials are used in the development of a new material to obtain better growing conditions for the plant. (author) [es

  13. Mixtures of organic and inorganic substrates, particle size and proportion.

    Directory of Open Access Journals (Sweden)

    Emilio Raymundo Morales-Maldonado

    2015-06-01

    Full Text Available The objective of this paper was to review the mixtures of organic and inorganic materials used in the preparation of a new material, particle size, proportion, and their response in plant. In Mexico, agricultural waste is considered as a pollutant reservoir; however, from another perspective, this represents an industry with great potential. The nutrients ingested by animals represent nutriments available for plants when properly recycled. An option that minimizes the risk of contamination and improves its quality is the production of compost and vermicompost. Both processes are an alternative to organic production. A material by itself does not meet the optimum conditions. Reducing the volume of an organic material increases compaction and compression of roots, affecting the efficiency of irrigation and fertilization, so it is necessary to make mixtures with inorganic materials, that is used in the development of a new material for better growing conditions of the plant.

  14. Effect of particle size on the thermoluminescent response of hydroxyapatite

    International Nuclear Information System (INIS)

    Barrera V, A.; Zarate M, J.; Contreras, M. E.; Rivera M, T.

    2016-10-01

    We present the study of the structural characterization and the thermoluminescent response of the hydroxyapatite as a function of the calcination temperature and the effect of the particle size. For precipitation synthesis, calcium nitrate (Ca(NO 3 ) 2 and dibasic ammonium phosphate ((NH 4 ) 2 HPO 4 ) were used as precursors and ammonium hydroxide (NH 4 OH) as a ph controlling agent. The characterization of the samples was carried out by the techniques of X-ray diffraction, scanning electron microscopy and infrared spectroscopy. The powders obtained are composed of hydroxyapatite, with a different degree of dehydroxylation. The thermoluminescent characterization indicates that at higher calcination temperature there is a higher thermoluminescent response, the calcined powders at 1300 degrees Celsius show a very well defined brightness curve with a higher intensity, with its maximum intensity located at a temperature of 210 degrees Celsius, which indicates that this material can be used as a dosimeter. (Author)

  15. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  16. Evolution of Size and Chemical Composition of Copper Concentrate Particles Oxidized Under Simulated Flash Smelting Conditions

    Science.gov (United States)

    Pérez-Tello, Manuel; Parra-Sánchez, Víctor R.; Sánchez-Corrales, Víctor M.; Gómez-Álvarez, Agustín; Brown-Bojórquez, Francisco; Parra-Figueroa, Roberto A.; Balladares-Varela, Eduardo R.; Araneda-Hernández, Eugenia A.

    2018-01-01

    An experimental study was conducted to elucidate the evolution of size and chemical composition of La Caridad copper concentrate particles during oxidation under simulated flash smelting conditions. Input variables tested included particle size and oxygen concentration in the process gas. The response variables included the size distributions, chemical composition, and morphology of the reacted particles at seven locations along a laboratory reactor. Particles with initial size 45 µm contained varying amounts of chalcopyrite and pyrite, and tended to either maintain or decrease their mean size upon oxidation. When size reduction was observed, dust was produced because of fragmentation, and the particles showed no evidence of collisions during flight. The main oxidation products detected in the particles consisted of matte, cuprospinel, and magnetite. A plot of the mean size divided by the mean size in the feed against the fraction of sulfur eliminated generalized the experimental data so far reported in the literature, and helped identify the reaction path followed by the particles.

  17. Mobility particle size spectrometers : Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NARCIS (Netherlands)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A.M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J.A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S.G.; O'Dowd, C.D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P.H.; Deng, Z.; Zhao, C.S.; Moerman, M.; Henzing, B.; Leeuw, G. de; Löschau, G.; Bastian, S.

    2012-01-01

    Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack

  18. Particle size effects on protein and virus-like particle adsorption on perfusion chromatography media.

    Science.gov (United States)

    Wu, Yige; Abraham, Dicky; Carta, Giorgio

    2015-01-02

    The resin structure, chromatographic behavior, and adsorption kinetics of proteins and virus-like-particles (VLPs) are studied for POROS HS 20 and POROS HS 50 (23 and 52 μm mean diameter, respectively) to determine the effects of particle size on perfusion chromatography and to determine the predictive ability of available models. Transmission electron microscopy (TEM) and inverse size-exclusion chromatography (iSEC) show similar structures for the two resins, both containing 200-1000 nm pores that transect a network of much smaller pores. For non-binding conditions, trends of the height equivalent to a theoretical plate (HETP) as a function of reduced velocity are consistent with perfusion. The estimated intraparticle flow fractions for these conditions are 0.0018 and 0.00063 for POROS HS 20 and HS 50, respectively. For strong binding conditions, confocal laser scanning microscopy (CLSM) shows asymmetrical intraparticle concentrations profiles and enhanced rates of IgG adsorption on POROS HS 20 at 1000 cm/h. The corresponding effective diffusivity under flow is 2-3 times larger than for non-flow conditions and much larger than observed for POROS HS 50, consistent with available models. For VLPs, however, adsorption is confined to a thin layer near the particle surface for both resins, suggesting that the bound VLPs block the pores. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Particle contamination effects in EUVL: enhanced theory for the analytical determination of critical particle sizes

    Science.gov (United States)

    Brandstetter, Gerd; Govindjee, Sanjay

    2012-03-01

    Existing analytical and numerical methodologies are discussed and then extended in order to calculate critical contamination-particle sizes, which will result in deleterious effects during EUVL E-chucking in the face of an error budget on the image-placement-error (IPE). The enhanced analytical models include a gap dependant clamping pressure formulation, the consideration of a general material law for realistic particle crushing and the influence of frictional contact. We present a discussion of the defects of the classical de-coupled modeling approach where particle crushing and mask/chuck indentation are separated from the global computation of mask bending. To repair this defect we present a new analytic approach based on an exact Hankel transform method which allows a fully coupled solution. This will capture the contribution of the mask indentation to the image-placement-error (estimated IPE increase of 20%). A fully coupled finite element model is used to validate the analytical models and to further investigate the impact of a mask back-side CrN-layer. The models are applied to existing experimental data with good agreement. For a standard material combination, a given IPE tolerance of 1 nm and a 15 kPa closing pressure, we derive bounds for single particles of cylindrical shape (radius × height < 44 μm) and spherical shape (diameter < 12 μm).

  20. Particle size distributions in waters from a karstic aquifer: from particles to colloids

    Science.gov (United States)

    Atteia, O.; Kozel, R.

    1997-12-01

    Waters from the surface hydrologic network and the spring of a karstic aquifer in Switzerland were sampled to analyse their colloidal content. The measurements were done weekly with a single particle counter and were verified by other techniques. The particle size distribution (PSD) was modelled in two portions, below and above 5 μm, using two types of equation: a power law (Pareto distribution) and an exponential law. The model results matched well with the entire PSD data set by varying the parameter values. The parameters obtained from fitting the measured PSD curves were then interpreted in relation to environmental factors. It appears that the two parts of the curves vary independently. The first part of the PSD curve, relating to the smallest particles, is dependent on the pH value of the spring or the temperature of the surface brook. In contrast, the second part of the curve depends mostly on the spring discharge volume. During high flow events, the major effect of the discharge on particle size occurs during the rising limb of the hydrograph, interpreted as clays deposited in the aquifer and resuspended due to high water velocity. The contrasted behaviour of the two parts of the PSD curves suggested that the break point in the curves represents the limit between colloidal and particulate behaviour. Knowing these dependencies, and the characteristics of the particulate matter, allowed the estimation of the role of the colloids in contaminant transport. Large fluxes of suspended matter, specific to karstic aquifers, demonstrate the critical role of colloids in contaminant transport, which is markedly different from what typically occurs in porous media.

  1. The effects of particle shape and size on T2 relaxation in magnetic resonance imaging.

    Science.gov (United States)

    York, Joseph N; Albanese, Christopher; Rodriguez, Olga; Le, Yi-Chien; Ackun-Farmmer, Marian; Van Keuren, Edward

    2014-11-01

    Superparamagnetic iron oxide nanoparticles have recently been developed as T2 contrast agents for magnetic resonance imaging. Here we report the dependence of the phase relaxivity, r2, on the particle shape. We show that the size dependence of the relaxivity for spherical particles can be generalized to spheroidal particles. In addition, we show that the saturation of relaxivity above a certain size observed in spherical particles does not occur in the spheroidal particles investigated.

  2. ESTIMATING SOIL PARTICLE-SIZE DISTRIBUTION FOR SICILIAN SOILS

    Directory of Open Access Journals (Sweden)

    Vincenzo Bagarello

    2009-09-01

    Full Text Available The soil particle-size distribution (PSD is commonly used for soil classification and for estimating soil behavior. An accurate mathematical representation of the PSD is required to estimate soil hydraulic properties and to compare texture measurements from different classification systems. The objective of this study was to evaluate the ability of the Haverkamp and Parlange (HP and Fredlund et al. (F PSD models to fit 243 measured PSDs from a wide range of 38 005_Bagarello(547_33 18-11-2009 11:55 Pagina 38 soil textures in Sicily and to test the effect of the number of measured particle diameters on the fitting of the theoretical PSD. For each soil textural class, the best fitting performance, established using three statistical indices (MXE, ME, RMSE, was obtained for the F model with three fitting parameters. In particular, this model performed better in the fine-textured soils than the coarse-textured ones but a good performance (i.e., RMSE < 0.03 was detected for the majority of the investigated soil textural classes, i.e. clay, silty-clay, silty-clay-loam, silt-loam, clay-loam, loamy-sand, and loam classes. Decreasing the number of measured data pairs from 14 to eight determined a worse fitting of the theoretical distribution to the measured one. It was concluded that the F model with three fitting parameters has a wide applicability for Sicilian soils and that the comparison of different PSD investigations can be affected by the number of measured data pairs.

  3. Effect of particle size on kinetics crystallization of an iron-rich glass

    OpenAIRE

    Romero, Maximina; Kovacova, Milota; Rincón López, Jesús María

    2008-01-01

    The effect of glass particle size on the crystallization kinetics of an iron-rich glass from a nickel leaching waste has been investigated by means of differential thermal analysis (DTA). The results show that the crystallization of a pyroxene phase occurs by bulk nucleation from a constant number of nuclei. The crystallization mode and the dimensionality of crystals are strongly dependent of the glass particle size, being 100µm the critical size. Glass fractions with particle size >100µm sho...

  4. Particle size gradation of trace elements in river water

    Energy Technology Data Exchange (ETDEWEB)

    Tanizaki, Yoshiyuki; Yamazaki, Masao; Nagatsuka, Sumiko (Tokyo Metropolitan Isotope Research Center (Japan))

    1983-09-01

    It is important to know the physical and chemical existence form of trace elements for understanding the origins, physical behavior, chemical behavior and the concentration of harmful elements in aquatic organisms. But, it is difficult to analyze many kinds of elements directly. The determination of chemical species from physical state through the distribution of particle size is effective. Filtration method is most simple, and is possible to handle large amount of sample water. The existing states of about 30 elements were made clear by the application of filtration and radioactivation analysis. The specimens of river water were collected at Hamura, the upper stream of the Tama River, and at Inagi, the middle of the same river. The specimens were divided into 9 portions using 8 steps of milli-pore filters. Suspension, colloid and solution are the state of elements. As the results of consideration, the distributions of elements were divided into three patterns in accordance with their states of existence in water. The tendency of the distributions of elements in water was made clear as follows. Alkali metals, alkali earth metals and the elements of high valency were present in the state of solution, and transition elements and rare earth elements were present as suspension. Further studies on the effects of organic substances on the solubility of transition elements are scheduled.

  5. Reinforced polypropylene composites: effects of chemical compositions and particle size.

    Science.gov (United States)

    Ashori, Alireza; Nourbakhsh, Amir

    2010-04-01

    In this work, the effects of wood species, particle sizes and hot-water treatment on some physical and mechanical properties of wood-plastic composites were studied. Composites of thermoplastic reinforced with oak (Quercus castaneifolia) and pine (Pinus eldarica) wood were prepared. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as the polymer matrix and coupling agent, respectively. The results showed that pine fiber had significant effect on the mechanical properties considered in this study. This effect is explained by the higher fiber length and aspect ratio of pine compared to the oak fiber. The hot-water treated (extractive-free) samples, in both wood species, improved the tensile, flexural and impact properties, but increased the water absorption for 24h. This work clearly showed that lignocellulosic materials in both forms of fiber and flour could be effectively used as reinforcing elements in PP matrix. Furthermore, extractives have marked effects on the mechanical and physical properties. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Estimation of Tumor Size Evolution Using Particle Filters.

    Science.gov (United States)

    Costa, Jose M J; Orlande, Helcio R B; Velho, Haroldo F Campos; de Pinho, Suani T R; Dulikravich, George S; Cotta, Renato M; da Cunha Neto, Silvio H

    2015-07-01

    Cancer is characterized by the uncontrolled growth of cells with the ability of invading local organs and/or tissues and of spreading to other sites. Several kinds of mathematical models have been proposed in the literature, involving different levels of refinement, for the evolution of tumors and their interactions with chemotherapy drugs. In this article, we present the solution of a state estimation problem for tumor size evolution. A system of nonlinear ordinary differential equations is used as the state evolution model, which involves as state variables the numbers of tumor, normal and angiogenic cells, as well as the masses of the chemotherapy and anti-angiogenic drugs in the body. Measurements of the numbers of tumor and normal cells are considered available for the inverse analysis. Parameters appearing in the formulation of the state evolution model are treated as Gaussian random variables and their uncertainties are taken into account in the estimation of the state variables, by using an algorithm based on the auxiliary sampling importance resampling particle filter. Test cases are examined in the article dealing with a chemotherapy protocol for pancreatic cancer.

  7. Particle-size segregation in dense granular avalanches

    Science.gov (United States)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  8. Event-based total suspended sediment particle size distribution model

    Science.gov (United States)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  9. Mie Scattering by Ensembles of Particles with Very Large Size Parameters

    OpenAIRE

    Wolf, S.; Voshchinnikov, N. V.

    2004-01-01

    We present a computer program for the simulation of Mie scattering in case of arbitrarily large size parameters. The elements of the scattering matrix, efficiency factors as well as the corresponding cross sections, the albedo and the scattering asymmetry parameter are calculated. Single particles as well as particle ensembles consisting of several components and particle size distributions can be considered.

  10. 3D ejection behavior of different sized particles in the grain-bed collision process

    Science.gov (United States)

    Xing, Mao; He, Caiyun

    2013-04-01

    The impact-ejection process on a mixed-grain-size bed with granular packing was simulated with the discrete element method in order to understand the interaction between different sized grains in natural aeolian sand transport. In this model, the granular bed was formed by settling the randomly generated two-sized particles under gravity, and then a foreign particle was shot onto the granular bed at different speeds and angles. The recorded speed, direction and number of the ejected particles were then analyzed. It was found that the probability distributions of the ejection speed and angle for different sized particles are all identical to those for the single size grain-bed collision process, the mean ejection speeds of different sized particles are nearly equal, and the mean ejection angles of different sized particles are all equal to a constant of 60°. The average number of each size of ejected particles grows linearly with the increasing impact speed but remains invariant for various impact angles. Moreover, the smaller particles are preferentially ejected and the ratio between the mean numbers of different sized particles is independent of both the impact speed and angle. Additionally, the ejected particles were found to move in a 3D space, they become distributed symmetrically around the incident plane and jump not only forward but also backward. These results are critical to understanding the grain size-induced inhomogeneity in aeolian sand transport.

  11. Dynamical and statistical bimodality in nuclear fragmentation

    Science.gov (United States)

    Mallik, S.; Chaudhuri, G.; Gulminelli, F.

    2018-02-01

    The origin of bimodal behavior in the residue distribution experimentally measured in heavy ion reactions is reexamined using Boltzmann-Uehling-Uhlenbeck simulations. We suggest that, depending on the incident energy and impact parameter of the reaction, both entrance channel and exit channel effects can be at the origin of the observed behavior. Specifically, fluctuations in the reaction mechanism induced by fluctuations in the collision rate, as well as thermal bimodality directly linked to the nuclear liquid-gas phase transition, are observed in our simulations. Both phenomenologies were previously proposed in the literature but presented as incompatible and contradictory interpretations of the experimental measurements. These results indicate that heavy ion collisions at intermediate energies can be viewed as a powerful tool to study both bifurcations induced by out-of-equilibrium critical phenomena, as well as finite-size precursors of thermal phase transitions.

  12. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy.

    Science.gov (United States)

    Pacakova, B; Mantlikova, A; Niznansky, D; Kubickova, S; Vejpravova, J

    2016-05-25

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  13. The effect of particle size distributions on the microstructural evolution during sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2013-01-01

    Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle ra...

  14. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  15. A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution

    Directory of Open Access Journals (Sweden)

    Hong-fu Guo

    2017-01-01

    Full Text Available Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and maximum sizes are 80 μm and 263 μm, respectively. The distribution function is like a quadratic function. Based on the distribution of micron scale explosive particles, a microscopic model is established to describe the process of ignition of HMX particles under drop weight. Both temperature of contact zones and ignition probability of powder explosive can be predicted. The calculated results show that the temperature of the contact zones between the particles and the drop weight surface increases faster and higher than that of the contact zones between two neighboring particles. For HMX particles, with all other conditions being kept constant, if the drop height is less than 0.1 m, ignition probability will be close to 0. When the drop heights are 0.2 m and 0.3 m, the ignition probability is 0.27 and 0.64, respectively, whereas when the drop height is more than 0.4 m, ignition probability will be close to 0.82. In comparison with experimental results, the two curves are reasonably close to each other, which indicates our model has a certain degree of rationality.

  16. Particle size evolution in non-adhered ductile powders during mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Paz, J. [Centro de Investigaciones en Materiales y Metalurgica, UAEH (Mexico); Robles-Hernandez, F.C.; Hernandez-Silva, D.; Jaramillo-Vigueras, D. [Dept. de Ingenieria Metalurgica, ESIQIE - Inst. Politecnico Nacional, Mexico D.F. (Mexico); Martinez-Sanchez, R. [Centro de Investigacion en Materiales Avanzados, Chihuahua (Mexico)

    2001-07-01

    The interaction among events as deformation, cold-welding and fracture, occurring during the mechanical milling of powders is unclear and controversial. We believe that the understanding of such interaction can be deduced from particle size evolution studies. It is well known that the elemental ductile powders adhere to the milling media. However when some of these powders are combined to form an alloy by milling, the adherence phenomenon is not observed. Systems which include ductile powders, such as, Cu-15at.%Al, Co-68at.%Al and Ni-25at.%Al were processed with not adherence to the milling media, thus allowing to follow up the particle size evolution during the complete milling process. The particle size was measured by the sedimentation-photometry technique. Those results were supported by scanning and transmission electron microscopy. The results showed a high proportion near 95% in number of particles of submicrometric size at early milling times for the three systems. However its particle size evolution for each system was different. Such findings can be important to understand some mechanisms as the grain size refinement, the alloy formation and the microstructural evolution. In the studied systems, the particle size measurements are presented based on volume or mass, area, line and number of the particles. The particle size results based on volume and line or number of the particles can give an idea of the evolution of the biggest particles and the finest ones respectively during the milling. Also the behavior of the complete particle system can be deduced from the results based in the area of the particles. Results of particle size as well as observations by microscopy helped to suggest the particle size and shape evolution of the studied systems. Such findings were employed to previously propose a grain size refinement mechanism for ductile powder systems non-adherent to the milling media during the mechanical alloying. (orig.)

  17. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Directory of Open Access Journals (Sweden)

    A. Wiedensohler

    2012-03-01

    Full Text Available Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers or SMPS (Scanning Mobility Particle Sizers have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer.

    We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data.

    Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the

  18. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dalmora, Adilson C. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Institute for Environmental Assessment and Water Studies (IDÆA), Spanish National Research Council (CSIC), C/Jordi Girona 18-26, 08034 Barcelona (Spain); Ramos, Claudete G.; Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Teixeira, Elba C. [Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre, RS (Brazil); Kautzmann, Rubens M.; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500. Bairro Agronomia. CEP: 91501-970 Porto Alegre, RS (Brazil); and others

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO{sub 2}, Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3,} with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle

  19. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    International Nuclear Information System (INIS)

    Dalmora, Adilson C.; Ramos, Claudete G.; Oliveira, Marcos L.S.; Teixeira, Elba C.; Kautzmann, Rubens M.; Taffarel, Silvio R.; Brum, Irineu A.S. de

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO 2 , Al 2 O 3 , and Fe 2 O 3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical

  20. Influence of particle size on physical and sensory attributes of mango pulp powder

    Science.gov (United States)

    Sharma, M.; Kadam, D. M.; Chadha, S.; Wilson, R. A.; Gupta, R. K.

    2013-09-01

    The present investigation was aimed to observe the effect of particle size on physical, sensory and thermal properties of foam-mat dried mango pulp powder. Mango pulp of Dussehri variety was foam-mat dried using 3% egg white at 65ºC. Dried foam-mats were pulverized and passed through a sieve shaker for obtaining three grades of powder with 50, 60, and 85 mesh size sieves. The particle size of these samples measured using laser diffraction particle size analyzer ranged from 191.26 to 296.19 μm. The data was analysed statistically using ANOVA of SAS. There was a linear increase in lightness (`L' value) with a decrease in particle size, however, `a' value decreased with a decrease in particle size, indicating the decrease in redness. An increase in bulk density and decrease in water solubility index and water absorption index % were observed with a decrease in particle size. Particle size had a significant effect on sensory parameters. Particle size in the range of 258.01 to 264.60μmwas found most acceptable with respect to sensory characteristics. This finding can be exploited for various commercial applicationswhere powder quality is dependent on the particle size and has foremost priority for end users.

  1. Taille des particules et catalyse Particle Size and Catalysis

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.

    2006-11-01

    hydrogène pouvaient tout à fait rendre compte des phénomènes observés. En plus de cela un métal déposé sur silice et un métal déposé sur alumine peuvent se comporter de façon tout à fait différente. Tout ceci montre que certaines interprétations sont trop simplistes et que faire varier la taille des particules par n'importe quel moyen et étudier les conséquences sur l'acte catalytique n'est pas suffisant. Les deux approches complémentaires, celle du cristallographe qui tente de décrire les petites particules à partir des paramètres du métal massique et celle du chimiste qui tente de déduire la structure du comportement du catalyseur observé dans la réaction étudiée, n'arrivent pas vraiment à se rejoindre pour aboutir à une description en tout point acceptable de la structure de la particule. D'un côté le physico-chimiste utilise des simplifications outrancières lorsqu'il tente de décrire ses structures grâce à l'usage de fonctions d'état qui n'ont pas toujours des solutions évidentes. D'un autre le chimiste manipule des objets réels mais arrive difficilement à isoler le paramètre qu'il veut étudier. Ses conclusions ne sont jamais à l'abri des artefacts apportés par les conditions opératoires ou les effets de support. Ce dilemme existe aussi pour le physicien qui tente de synthétiser des agrégats bien définis dans un flux gazeux mais loin de la réalité de la catalyse. De même pour le chimiste qui veut ramener les effets de structure à de simples comparaisons entre les faces exposées par les monocristaux. Néanmoins l'apport des deux est indispensable car ils donnent des idées directrices indispensables pour l'homme de catalyse qui tente de maîtriser l'ensemble des paramètres. While heterogeneous catalysis, and especially catalysis by metals, is concerned with the size of the particles and hence with the developed surface area, this is not only to prepare an effective product at minimum cost. The study of the

  2. Anomalous change of Airy disk with changing size of spherical particles

    Science.gov (United States)

    Pan, Linchao; Zhang, Fugen; Meng, Rui; Xu, Jie; Zuo, Chenze; Ge, Baozhen

    2016-02-01

    Use of laser diffraction is considered as a method of reliable principle and mature technique in measurements of particle size distributions. It is generally accepted that for a certain relative refractive index, the size of the scattering pattern (also called Airy disk) of spherical particles monotonically decreases with increasing particle size. This fine structure forms the foundation of the laser diffraction method. Here we show that the Airy disk size of non-absorbing spherical particles becomes larger with increasing particle size in certain size ranges. To learn more about this anomalous change of Airy disk (ACAD), we present images of Airy disk and curves of Airy disk size versus particle size for spherical particles of different relative refractive indices by using Mie theory. These figures reveal that ACAD occurs periodically for non-absorbing particles and will disappear when the absorbing efficiency is higher than certain value. Then by using geometrical optics (GO) approximation, we derive the analytical formulae for the bounds of the size ranges where ACAD occurs. From the formulae, we obtain laws of ACAD as follows: (1) for non-absorbing particles, ACAD occurs periodically, and when the particle size tends to infinity, the period tends to a certain value. As the relative refractive index increases, (2) the particle size ranges where ACAD occurs shift to smaller values, (3) the period of ACAD becomes smaller, and (4) the width of the size ranges where ACAD occurs becomes narrower. In addition, we can predict from the formulae that ACAD also exists for particles whose relative refractive index is smaller than 1.

  3. Improving Sunflower Halva Stability and Texture by Controlling Tahini Particle Size Distribution

    OpenAIRE

    Vlad Mureşan; Lucian Cuibus; Anna Olari; Emil Racolţa; Carmen Socaciu; Sabine Danthine; Sevastița Muste; Christophe Blecker

    2015-01-01

    Sunflower halva is an appreciated product, but shows currently a quality below the expectations of the new generation of consumers, having a hard texture and oil exuded on the surface (low stability). The aim of this work was to assess the influence of tahini particle size on sunflower halva texture and stability. Eight different particle size sunflower tahini samples were produced at pilot plant scale, the higher the number of passes through the colloidal mill, the smaller the particle size ...

  4. Characterization of spherical core–shell particles by static light scattering. Estimation of the core- and particle-size distributions

    International Nuclear Information System (INIS)

    Clementi, Luis A.; Vega, Jorge R.; Gugliotta, Luis M.; Quirantes, Arturo

    2012-01-01

    A numerical method is proposed for the characterization of core–shell spherical particles from static light scattering (SLS) measurements. The method is able to estimate the core size distribution (CSD) and the particle size distribution (PSD), through the following two-step procedure: (i) the estimation of the bivariate core–particle size distribution (C–PSD), by solving a linear ill-conditioned inverse problem through a generalized Tikhonov regularization strategy, and (ii) the calculation of the CSD and the PSD from the estimated C–PSD. First, the method was evaluated on the basis of several simulated examples, with polystyrene–poly(methyl methacrylate) core–shell particles of different CSDs and PSDs. Then, two samples of hematite–Yttrium basic carbonate core–shell particles were successfully characterized. In all analyzed examples, acceptable estimates of the PSD and the average diameter of the CSD were obtained. Based on the single-scattering Mie theory, the proposed method is an effective tool for characterizing core–shell colloidal particles larger than their Rayleigh limits without requiring any a-priori assumption on the shapes of the size distributions. Under such conditions, the PSDs can always be adequately estimated, while acceptable CSD estimates are obtained when the core/shell particles exhibit either a high optical contrast, or a moderate optical contrast but with a high ‘average core diameter’/‘average particle diameter’ ratio. -- Highlights: ► Particles with core–shell morphology are characterized by static light scattering. ► Core size distribution and particle size distribution are successfully estimated. ► Simulated and experimental examples are used to validate the numerical method. ► The positive effect of a large core/shell optical contrast is investigated. ► No a-priori assumption on the shapes of the size distributions is required.

  5. Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    OpenAIRE

    A. Wiedensohler; W. Birmili; A. Nowak; A. Sonntag; K. Weinhold; M. Merkel; B. Wehner; T. Tuch; S. Pfeifer; M. Fiebig; A. M. Fjäraa; E. Asmi; K. Sellegri; R. Depuy; H. Venzac

    2010-01-01

    Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomp...

  6. Performance of diethylene glycol-based particle counters in the sub-3 nm size range

    CERN Document Server

    Wimmer, D; Franchin, A; Kangasluoma, J; Kreissl, F; Kürten, A; Kupc, A; Metzger, A; Mikkilä, J; Petäjä, J; Riccobono, F; Vanhanen, J; Kulmala, M; Curtius, J

    2013-01-01

    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG) as the working fluid. The desig...

  7. Size distributions of particles and their generating mechanisms

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler

    Summary of a lecture presented at the IAHR Workshop on Particle Motion and Sediment Transport: Measurement Techniques and Experimental Results, Schweiz, 5-8 April 1981......Summary of a lecture presented at the IAHR Workshop on Particle Motion and Sediment Transport: Measurement Techniques and Experimental Results, Schweiz, 5-8 April 1981...

  8. Calibration of single particle sizing velocimeters using photomask reticles

    Science.gov (United States)

    Hirleman, E. D.; Holve, D. J.; Hovenac, E. A.

    1988-01-01

    The development of photomask reticle calibration standards for single particle instruments is discussed. The calibration method studied involves the use of photomask reticles where the particle artifacts are actually disks of chrome thin film in the clear field reticles produced by photolithography and etching processes. Consideration is given to various aspects of theory, design, and performance.

  9. PQRI recommendations on particle-size analysis of drug substances used in oral dosage forms.

    Science.gov (United States)

    Snorek, Sharon M; Bauer, John F; Chidambaram, Nallaperumal; Doub, William H; Duffy, Eric P; Etzler, Frank M; Kelly, Richard N; Lane, Justin J; Mueller, Ronald L; Prasanna, Hullahalli R; Pujara, Chetan P; Reif, Van D; Scarlett, Brian; Stowell, Joseph G; Toma, Pascal H

    2007-06-01

    This document provides information for the Pharmaceutical Industry and the Federal Drug Administration (FDA) regarding the selection of suitable particle-size analysis techniques, development and validation of particle-size methods, and the establishment of acceptance criteria for the particle size of drug substances used in oral solid-dosage forms. The document is intended for analysts knowledgeable in the techniques necessary to conduct particle-size characterization (a table of acronyms is provided at the end of the document). It is acknowledged that each drug substance, formulation, and manufacturing process is unique and that multiple techniques and instruments are available to the analyst.

  10. Influence of cohesive properties of micronized drug powders on particle size analysis.

    Science.gov (United States)

    de Villiers, M M

    1995-03-01

    Particle size analysis results with respect to micronized, mean particle size below 10 microns, furosemide, chloramphenicol palmitate and acetaminophen particles are dealt with in this paper. Special consideration was given to the effect of the agglomeration of particles on data generated by three size measurement techniques. The physicochemical basis for preparing sufficiently well dispersed and stable suspensions for analysis by employing mechanical methods of pretreatment are shown. Furthermore, methods to determine the state of dispersion and methods to assess the individual particle size before size analysis are described. An attempt was also made to establish the statistical confidence that can be assigned to a particular instrument and the confidence level that may be placed on comparative data obtained with the different particle size analysers. Results especially showed the impact of the agglomeration of very small furosemide particles, mean size 3 microns, on particle size analysis and the importance of controlling the cohesive properties of this drug. To overcome the problems associated with agglomeration more attention must be paid to the physical properties of the drug substance. Combining particle size analysis with bulk density, surface area and microscopical studies also helped to identify potential problems.

  11. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    Science.gov (United States)

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  12. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  13. Particles size distribution effect on 3D packing of nanoparticles in to a bounded region

    International Nuclear Information System (INIS)

    Farzalipour Tabriz, M.; Salehpoor, P.; Esmaielzadeh Kandjani, A.; Vaezi, M. R.; Sadrnezhaad, S. K.

    2007-01-01

    In this paper, the effects of two different Particle Size Distributions on packing behavior of ideal rigid spherical nanoparticles using a novel packing model based on parallel algorithms have been reported. A mersenne twister algorithm was used to generate pseudo random numbers for the particles initial coordinates. Also, for this purpose a nano sized tetragonal confined container with a square floor (300 * 300 nm) were used in this work. The Andreasen and the Lognormal Particle Size Distributions were chosen to investigate the packing behavior in a 3D bounded region. The effects of particle numbers on packing behavior of these two Particle Size Distributions have been investigated. Also the reproducibility and the distribution of packing factor of these Particle Size Distributions were compared

  14. Mathematical model parameters for describing the particle size spectra of knife-milled corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Yang, Y.T. [University of Tennessee; Miu, P.I. [University of Tennessee; Igathanathane, C. [Mississippi State University (MSU)

    2009-09-01

    Particle size distributions of Corn stover (Zea mays L.) created by a knife mill were determined using integral classifying screens with sizes from 12.7 to 50.8 mm, operating at speeds from 250 to 500 rpm, and mass input rates ranging from 1 to 9 kg min_1. Particle distributions were classified using American Society of Agricultural and Biological Engineers (ASABE) standardised sieves for forage analysis that incorporated a horizontal sieving motion. The sieves were made from machined-aluminium with their thickness proportional to the sieve opening dimensions. A wide range of analytical descriptors that could be used to mathematically represent the range of particle sizes in the distributions were examined. The correlation coefficients between geometric mean length and screen size, feed rate, and speed were 0.980, 0.612, and _0.027, respectively. Screen size and feed rate directly influenced particle size, whereas operating speed had a weak indirect relation with particle size. The Rosin Rammler equation fitted the chopped corn stover size distribution data with coefficient of determination (R2) > 0.978. This indicated that particle size distribution of corn stover was well-fit by the Rosin Rammler function. This can be attributed to the fact that Rosin Rammler expression was well suited to the skewed distribution of particle sizes. Skewed distributions occurred when significant quantities of particles, either finer or coarser, existed or were removed from region of the predominant size. The mass relative span was slightly greater than 1, which indicated that it was a borderline narrow to wide distribution of particle sizes. The uniformity coefficient was <4.0 for 19.0 50.8 mm screens, which indicated particles of relatively uniform size. Knife mill chopping of corn stover produced fine-skewed mesokurtic particles with 12.7 50.8 mm screens. Size-related parameters, namely, geometric mean length, Rosin Rammler size parameter, median length, effective length, and

  15. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  16. Rumen Contents and Ruminal Digesta Particle Size Distribution in Buffalo Steers Fed Three Different Size of Alfalfa

    Directory of Open Access Journals (Sweden)

    A. Teimouri Yansari

    2010-02-01

    Full Text Available This study was conducted to investigate the effects of three sizes of alfalfa and time post-feeding on rumen contents and on particle size distribution of ruminal digesta. Three ruminally fistulated buffalo steers received a diet consisting just alfalfa that was harvested at 15% of flowering and chopped in three sizes. Individual small rectangular bales were chopped with a forage field harvester for theoretical cut length 19 and 10 mm for preparation of long and medium particle size, also the fine particles were prepared by milling. The geometric means and its standard deviation were 8.5, 5.5 and 2.5 mm; and 1.24, 1.16 and 1.06 mm, in coarse, medium and fine, respectively. The experimental design was a repeated 3×3 Latin squares with 21 day periods. The diets were offered twice daily at 09:00 and 21:00 h at ad libitum level. The rumens were evacuated manually at 3, 7.5 and 12h post-feeding and total ruminal contents separated into mat and bailable liquids. Dry matter weight distribution of total recovered particles was determined by a wet-sieving procedure and used to partition ruminal mat and bailable liquids among percentages of large (≥4.0 mm, medium (<4.0mm and ≥1.18 mm, and fine (<1.18 mm and ≥0.05 mm particles. Intake did not influence markedly the distribution of different particle fractions, whereas particle size and time post-feeding had a pronounced effect. With increasing time after feeding, percentage of large and medium particles significantly decreased, whereas the percentage of fine particles significantly increased. The ruminal digesta particle distributions illustrated intensive particle breakdown in the reticulo-rumen for coarse particle more than others. Dry matter contents and the proportion of particulate dry matter in the rumen increased as intake increased, i.e. ruminal mat increased at the expense of bailable liquids. It can be concluded that reduction of forage particle size for buffaloes at maintenance level

  17. Determination of Nanoparticle Size Using a Flow Particle-Tracking Method.

    Science.gov (United States)

    Matsuura, Yusuke; Nakamura, Ayako; Kato, Haruhisa

    2018-03-02

    We developed a novel method to determine the mean size of nanoparticles under flow conditions, the flow particle-tracking (FPT) method. The liquid particle counting method is commonly utilized to determine number-based size under flow conditions by converting the light scattering intensity of individual particles to size using the relationship between the size and light scattering intensity of a size standard material; however, the determined size depends strongly on the type of size standard material. In contrast, the developed FPT method can reliably determine the mean size of nanoparticles under flow conditions according to the Stokes-Einstein assumption by observing the Brownian motion of individual particles; therefore, this method does not require a calibration step using a size standard and can be applied to any type of material. To reliably size particles under flow conditions, we determined the flow velocity profile in a sample cell by extracting only the flow velocity from the particle motion. After determining the self-diffusion coefficient of each particle and subtracting the effect of the flow velocity, we successfully obtained a reliable mean size. The developed method could contribute to the application of microchannel reaction/synthesis devices using nanomaterials.

  18. Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation

    Science.gov (United States)

    Bianchi, G.; Sklar, L. S.

    2016-12-01

    Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.

  19. Optical sensor technology for simultaneous measurement of particle speed and concentration of micro sized particles

    DEFF Research Database (Denmark)

    Clausen, Casper; Han, Anpan; Kristensen, Martin

    2013-01-01

    Experimental characterization of a sensor technology that can measure particle speed and concentration simultaneously in liquids and gases is presented here. The basic sensor principle is based on an optical element that shapes a light beam into well-defined fringes. The technology can be described...... as a hybrid between Laser Doppler Velocimetry and Laser Particle Counters. The experimental characterization of a lab-scale setup has been performed with polystyrene particles in the range from 750 nm to 20 μm, with various particle speeds. It is shown that particle concentrations can be determined...... independently from particle speeds and is a key advantage compared to normal Laser Particle Counters....

  20. Hydrodynamics of multi-sized particles in stable regime of a swirling bed

    Energy Technology Data Exchange (ETDEWEB)

    Miin, Chin Swee; Sulaiman, Shaharin Anwar; Raghavan, Vijay Raj; Heikal, Morgan Raymond; Naz, Muhammad Yasin [Universiti Teknologi PETRONAS, Perak (Malaysia)

    2015-11-15

    Using particle imaging velocimetry (PIV), we observed particle motion within the stable operating regime of a swirling fluidized bed with an annular blade distributor. This paper presents velocity profiles of particle flow in an effort to determine effects from blade angle, particle size and shape and bed weight on characteristics of a swirling fluidized bed. Generally, particle velocity increased with airflow rate and shallow bed height, but decreased with bed weight. A 3 .deg. increase in blade angle reduced particle velocity by approximately 18%. In addition, particle shape, size and bed weight affected various characteristics of the swirling regime. Swirling began soon after incipience in the form of a supra-linear curve, which is the characteristic of a swirling regime. The relationship between particle and gas velocities enabled us to predict heat and mass transfer rates between gas and particles.

  1. Evolution of Size and Chemical Composition of Copper Concentrate Particles Oxidized Under Simulated Flash Smelting Conditions

    Science.gov (United States)

    Pérez-Tello, Manuel; Parra-Sánchez, Víctor R.; Sánchez-Corrales, Víctor M.; Gómez-Álvarez, Agustín; Brown-Bojórquez, Francisco; Parra-Figueroa, Roberto A.; Balladares-Varela, Eduardo R.; Araneda-Hernández, Eugenia A.

    2018-04-01

    An experimental study was conducted to elucidate the evolution of size and chemical composition of La Caridad copper concentrate particles during oxidation under simulated flash smelting conditions. Input variables tested included particle size and oxygen concentration in the process gas. The response variables included the size distributions, chemical composition, and morphology of the reacted particles at seven locations along a laboratory reactor. Particles with initial size reaction path involving rapid melting followed by collision and coalescence of reacting droplets during flight. Particles with sizes > 45 µm contained varying amounts of chalcopyrite and pyrite, and tended to either maintain or decrease their mean size upon oxidation. When size reduction was observed, dust was produced because of fragmentation, and the particles showed no evidence of collisions during flight. The main oxidation products detected in the particles consisted of matte, cuprospinel, and magnetite. A plot of the mean size divided by the mean size in the feed against the fraction of sulfur eliminated generalized the experimental data so far reported in the literature, and helped identify the reaction path followed by the particles.

  2. Doubly localized surface plasmon resonance in bimodally distributed silver nanoparticles.

    Science.gov (United States)

    Ranjan, M

    2012-06-01

    Growth of bimodally distributed silver nanoparticles using sequential physical vapour deposition (PVD) is reported. Growth conditions of nanoparticles are defined in the following three steps: In the first step, nanoparticles are grown at a heated substrate and then exposed to atmosphere, in the second step, nanoparticles are vacuum annealed and finally re-deposition of silver is performed in the third step. This special way of deposition leads to the formation of bimodally distributed nanoparticles. It has been investigated that by changing the deposition time, different sets of bimodally distributed nanoparticles can be grown. Localized surface plasmon resonance (LSPR) of such bimodally distributed nanoparticles generates double plasmon resonance peaks with overlapped absorption spectra. Double plasmon resonance peaks provide a quick indication of the existence of two sets of nanoparticles. LSPR spectra of such bimodally distributed nanoparticles could be modeled with double Lorentz oscillator model. Inclusion of double Lorentz oscillator model indicates that there exist two sets of non-interacting nanoparticles resonating at different plasma frequencies. It is also reported that silver nanoparticles grown at a heated substrate, again attain the new shape while being exposed to atmosphere, followed by vacuum annealing at the same temperature. This is because of physisorption of oxygen at the silver surface and change in surface free energy. The re-shaping due to the adsorbed oxygen on the surface is responsible for bimodal size distribution of nanoparticles.

  3. Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences.

    Science.gov (United States)

    Zhao, H; Stephens, B

    2017-01-01

    Much of human exposure to particulate matter of outdoor origin occurs inside buildings, particularly in residences. The particle penetration factor through leaks in a building's exterior enclosure assembly is a key parameter that governs the infiltration of outdoor particles. However, experimental data for size-resolved particle penetration factors in real buildings, as well as penetration factors for fine particles less than 2.5 μm (PM 2.5 ) and ultrafine particles less than 100 nm (UFPs), remain limited, in part because of previous limitations in instrumentation and experimental methods. Here, we report on the development and application of a modified test method that utilizes portable particle sizing instrumentation to measure size-resolved infiltration factors and envelope penetration factors for 0.01-2.5 μm particles, which are then used to estimate penetration factors for integral measures of UFPs and PM 2.5 . Eleven replicate measurements were made in an unoccupied apartment unit in Chicago, IL to evaluate the accuracy and repeatability of the test procedure and solution methods. Mean estimates of size-resolved penetration factors ranged from 0.41 ± 0.14 to 0.73 ± 0.05 across the range of measured particle sizes, while mean estimates of penetration factors for integral measures of UFPs and PM 2.5 were 0.67 ± 0.05 and 0.73 ± 0.05, respectively. Average relative uncertainties for all particle sizes/classes were less than 20%. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Effect of Particle Size and Grinding Time on Gold Dissolution in Cyanide Solution

    Directory of Open Access Journals (Sweden)

    Jessica Egan

    2016-07-01

    Full Text Available The recovery of gold by ore leaching is influenced by the size of the particles and the chemical environment. The effect of particle size on the dissolution of gold is usually studied using mono-size particles as the gold in solution comes from the ore of a unique leached particle size. This paper proposes a method to estimate the gold dissolution as a function of particle size using a bulk ore sample, i.e., with the dissolved gold coming from the various sizes of particles carried by the ore. The results are consistent with the fact that gold dissolution increases with the decreasing particle size but results also indicate that gold dissolution of the ore within a size interval is not significantly affected by the grinding time used for the ore size reduction. Results also show a good dissolution of the gold contained in the fine-size fractions without oxidation and lead nitrate pre-treatment for an ore that is known to require such pre-treatment.

  5. Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China

    Science.gov (United States)

    Wang, Jiao; Zhang, Jin-sheng; Liu, Ze-jun; Wu, Jian-hui; Zhang, Yu-fen; Han, Su-qin; Zheng, Xian-jue; Zhou, Lai-dong; Feng, Yin-chang; Zhu, Tan

    2017-05-01

    To investigate the characterization of chemical compositions in size-segregated particles during severe haze pollution episodes in different regions of China, a campaign was conducted in Tianjin, Hangzhou and Chengdu. Size-segregated particles were collected with eight-stage Anderson cascade impactor in these cities in winter respectively. Ten major compositions of particles including (Na+, NH4+, K+, Mg2 +, Ca2 +, Cl-, NO3-, SO42 -, OC and EC) were analyzed. A similar bimodal distribution of particles was found between northern and southern cities peaked at 0.7-2.1 and 9.0-10.0 μm. OC, EC, SO42 -, NO3-, Cl- and NH4+ were the major chemical compositions of fine-mode particles, whereas OC, EC, SO42 -, NO3- and Ca2 + were the major compositions of coarse-mode particles. In the three cities, Cl-, SO42 -, NO3-, NH4+ and K+ of all compositions were unimodal distributions peaked at 0.7-2.1 μm. Different sources to particles in the three cities were inferred based on the size distribution characteristics of chemical compositions. For Tianjin, the influence of sea salt was greater to Hangzhou and Chengdu based on the concentrations and distributions of Na+ and the Cl-. Fine-mode Cl- and SO42 - were highest in Tianjin, meaning the greater contribution of coal burning to particles during severe pollution. For Hangzhou, the NO3- concentration was higher than Tianjin and Chengdu. Contribution of nitrate to PM was higher than that of sulfate. For Chengdu, carbonaceous species contributed mostly to fine particles. However, sulfate and nitrate contributed mostly to fine particles in Tianjin and Hangzhou. The contributions of EC and Ca2 + to coarse-mode particles was much higher than that in other cities, implying the greater influence of soil particles, construction dust or falling dust to PM in Chengdu. In addition, there were greater emission source of NH4+ in Chengdu. Northwest, west and southeast were the major transport pathways of air masses for Tianjin, Hangzhou and

  6. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  7. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.

    Science.gov (United States)

    Saucedo-Espinosa, Mario A; Lapizco-Encinas, Blanca H

    2015-05-01

    Insulator-based dielectrophoresis (iDEP) employs insulating structures embedded in a microchannel to produce electric field gradients. This contribution presents a detailed analysis of the regions within an iDEP system where particles are likely to be retained due to dielectrophoretic trapping in a microchannel with an array of cylindrical insulating structures. The effects of particle size and shape on dielectrophoretic trapping were analyzed by employing 1 and 2 μm polystyrene particles and Escherichia coli cells. This research aims to study the mechanism behind dielectrophoretic trapping and develop a deeper understanding of iDEP systems. Mathematical modeling with COMSOL Multiphysics was employed to assess electrokinetic and dielectrophoretic particle velocities. Experiments were carried out to determine the location of dielectrophoretic barriers that block particle motion within an iDEP microchannel; this supported the estimation of a correction factor to match experiments and simulations. Particle velocities were predicted with the model, demonstrating how the different forces acting on the particles are in equilibrium when particle trapping occurs. The results showed that particle size and shape have a significant effect on the magnitude, location, and shape of the regions of dielectrophoretic trapping of particles, which are defined by DEP isovelocity lines and EK isovelocity lines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  9. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  10. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  11. Pluto/Charon exploration utilizing a bi-modal PBR nuclear propulsion/power system

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The paper describes a Pluto/Charon orbiter utilizing a bi-modal nuclear propulsion and power system based on the Particle Bed Reactor. The orbiter is sized for launch to Nuclear-Safe orbit atop a Titan IV or equivalent launch veicle. The bi-modal system provides thermal propulsion for Earth orbital departure and Pluto orbital capture, and 10 kWe of electric power for payload functions and for in-system maneuvering with ion thrusters. Ion thrusters are used to perform inclination changes about Pluto, a transfer from low Pluto orbit to low Charon orbit, and inclination changes about charon. A nominal payload can be deliverd in as little as 15 years, 1000 kg in 17 years, and close to 2000 kg in 20 years. Scientific return is enormously aided by the availability of up to 10 kWe, due to greater data transfer rates and more/better instruments. The bi-modal system can provide power at Pluto/Charon for 10 or more years, enabling an extremely robust, scientifically rewarding, and cost-effective exploration mission.

  12. Effect of particle size of granules on some mechanical properties of ...

    African Journals Online (AJOL)

    Solid dosage forms are invariably multiparticulate systems of heterogenous particle size distribution. The purpose of this study was to investigate the effect of particle size distribution of paracetamol granules on some tablet mechanical properties of paracetamol tablets. Granules were formed by wet massing paracetamol ...

  13. Effect of particle size of granules on some mechanical properties of ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Solid dosage forms are invariably multiparticulate systems of heterogenous particle size distribution. The purpose of this study was to investigate the effect of particle size distribution of paracetamol granules on some tablet mechanical properties of paracetamol tablets. Granules were formed by wet massing ...

  14. Role of particle size in visible light photocatalysis of Congo Red ...

    Indian Academy of Sciences (India)

    Their visible light photocatalytic activity was tested for the degradation of Congo Red dye. Maximum photodegradation was observed for the NC with = 0.1 synthesized by CPH (particle size, 71 nm). Similar composition prepared by SSR method (particle size, 6.19 m) showed lower photoactivity in comparison even with ...

  15. Cobalt particle size effects on catalytic performance for ethanol steam reforming – Smaller is better

    NARCIS (Netherlands)

    Silva, da A.L.M.; Breejen, den J.P.; Mattos, L.V.; Bitter, J.H.; Jong, de K.P.; Noronha, F.B.

    2014-01-01

    The effect of the cobalt particle size in the ethanol steam reforming reaction at 773 K for hydrogen production was investigated using cobalt on carbon nanofiber catalysts. It was found that the turnover frequency increases with decreasing Co particle size, which was attributed to the increasing

  16. Cobalt particle size effects on catalytic performance for ethanol steam reforming - Smaller is better

    NARCIS (Netherlands)

    Da Silva, Andre L M; Den Breejen, Johan P.; Mattos, Lisiane V.; Bitter, Johannes H.; De Jong, Krijn P.; Noronha, Fábio B.

    2014-01-01

    The effect of the cobalt particle size in the ethanol steam reforming reaction at 773 K for hydrogen production was investigated using cobalt on carbon nanofiber catalysts. It was found that the turnover frequency increases with decreasing Co particle size, which was attributed to the increasing

  17. Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size

    NARCIS (Netherlands)

    Borggreve, R.J.M.; Gaymans, R.J.; Schuijer, J.; Ingen Housz, J.F.

    1987-01-01

    Blends of nylon-6 and EPDM-rubber were prepared with various rubber contents (0–20 wt%) and particle sizes (0.3–1.6 μm). The effects of rubber concentration and particle size on the tensile modulus, torsion modulus, yield stress and notched impact strength of the blends were studied. Blend

  18. Mechanical properties of silicone composites reinforced with micron- and nano-sized magnetic particles

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2013-06-01

    Full Text Available Silicone composites filled with different-sized nickel particles were prepared. By applying a permanent magnet, both the micron- and nano-sized particles were found to distribute along the magnetic field direction, resulting in chain-like microstructures, which improved the key mechanical properties of the resultant samples effectively, compared to the samples with randomly-distributed particles. The composites were also tested under various magnetic field strengths. The samples with aligned particles showed larger improvements in shear storage modulus than those with random particles.

  19. A technique to measure the size of particles in laser Doppler velocimetry applications

    Science.gov (United States)

    Hess, C. F.

    1985-01-01

    A method to measure the size of particles in Laser Doppler Velocimeter (LDV) applications is discussed. Since in LDV the velocity of the flow is assocated with the velocity of particles to establish how well they follow the flow, in the present method the interferometric probe volume is surrounded by a larger beam of different polarization or wavelength. The particle size is then measured from the absolute intensity scattered from the large beam by particles crossing the fringes. Experiments using polystrene particles between 1.1 and 3.3 microns and larger glass beads are reported. It is shown that the method has an excellent size resolution and its accuracy is better than 10% for the particle size studied.

  20. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions

    DEFF Research Database (Denmark)

    Göke, Katrin; Roese, Elin; Arnold, Andreas

    2016-01-01

    into the bloodstream. Consequently, small particles with a narrow particle size distribution are desired. Hitherto, there are, however, only limited possibilities for the preparation of monodisperse, pharmaceutically relevant dispersions. In this work, the effect of autoclaving at 121 °C on the particle size...... distribution of lipid nanoemulsions and -suspensions consisting of the pharmaceutically relevant components trimyristin and poloxamer 188 was studied. Additionally, the amount of emulsifier needed to stabilize both untreated and autoclaved particles was assessed. In our study, four dispersions of mean particle...... sizes from 45 to 150 nm were prepared by high-pressure melt homogenization. The particle size distribution before and after autoclaving was characterized using static and dynamic light scattering, differential scanning calorimetry, and transmission electron microscopy. Asymmetrical flow field...

  1. Optical properties of fractal aggregates of nanoparticles: Effects of particle size polydispersity

    Science.gov (United States)

    Naeimi, Zahra; Miri, Mirfaez

    2009-12-01

    We study the effects of particle size dispersion on the absorption spectrum of nonfractal random gas of particles and fractal cluster-cluster aggregates. We use the coupled-dipole equations to describe the interaction of particles with the external electromagnetic wave. We express the absorption in terms of the spectral variable introduced by Bergman [Phys. Rev. B 19, 2359 (1979)]. In the case of nonfractal clusters, the particle size dispersion has no influence on the overall shape of the spectrum. In the case of fractal clusters, the bandwidth of the spectrum decreases as the particle size dispersion increases. Moreover, the maxima and minima of the spectrum vary, shift, and even disappear, as the particle size dispersion increases.

  2. Finite-size Lagrangian coherent particle structures in thermocapillary liquid bridges

    Science.gov (United States)

    Romano, Francesco; Kuhlmann, Hendrik

    2017-11-01

    A surprisingly rapid accumulation of small but finite-size particles taking curious shapes is observed in travelling hydrothermal waves in liquid bridges. The phenomenon has been termed particle accumulation structure (PAS) and belongs to the wider class of Lagrangian coherent structures. In PAS, particles are transferred from chaotic to regular regions of the flow by way of collision with the boundaries. Lubrication forces cause a dissipation of kinetic energy of the particle and give rise to particle motion attractors in the incompressible flow. Since the mechanism relies solely on the particle size, PAS is nothing but a finite-size Lagrangian coherent structure. Different theoretical models are investigated to find a minimum model for the simulation of Lagrangian finite-size coherent structures. Corresponding numerical simulations compare very well with experiments on SL-I and SL-II PAS.

  3. Improved Mathematical Models for Particle-Size Distribution Data

    African Journals Online (AJOL)

    BirukEdimon

    four existing curve fitting models common to geotechnical applications are reviewed and presented first. Definitions of Important Parameters and. Variables. A given soil will be made up of grains of many different sizes and described by the grain size distribution. The main variables are % Clay, %. Silt, % Sand, % of fine and ...

  4. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  5. 'Crystal Collimator' Measurement of CESR particle-beam Source Size

    International Nuclear Information System (INIS)

    Finkelstein, K.D.; Bazarov, Ivan; White, Jeffrey; Revesz, Peter

    2004-01-01

    We have measured electron and positron beam source size at CHESS when the Cornell Electron Storage Ring (CESR) is run dedicated for the production of synchrotron radiation. Horizontal source size at several beamlines is expected to shrink by a factor of two but synchrotron (visible) light measurements only provide the vertical size. Therefore a 'crystal collimator' using two Bragg reflection in dispersive (+,+) orientation has been built to image the horizontal (vertical) source by passing x-rays parallel to within 5 microradians to an imaging screen and camera. With the 'crystal collimator' we observe rms sizes of 1.2 mm horizontal by 0.28 mm vertical, in good agreement with the 1.27 mm size calculated from lattice functions, and 0.26 mm observed using a synchrotron light interferometer

  6. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  7. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  8. Anomalous Particle Size Dependence of Magnetic Relaxation Phenomena in Goethite Nanoparticles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Madsen, Daniel Esmarch; Boothroyd, Chris B.

    2015-01-01

    By use of Mossbauer spectroscopy we have studied the magnetic properties of samples of goethite nanoparticles with different particle size. The spectra are influenced by fluctuations of the magnetization directions, but the size dependence is not in accordance with the Neel-Brown expression...... for superparamagnetic relaxation of the magnetization vectors of the particles as a whole. The data suggest that the magnetic fluctuations can be explained by fluctuations of the magnetization directions of small interacting grains within the particles....

  9. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    Science.gov (United States)

    Schladitz, A.; Merkel, M.; Bastian, S.; Birmili, W.; Weinhold, K.; Löschau, G.; Wiedensohler, A.

    2013-12-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The aim of the new feature is to conduct unattended quality control experiments under field conditions at remote air quality monitoring or research stations. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter removing the diffusive particles approximately smaller than 25 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. The other feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. An exemplary one-year data set is presented for the measurement site Annaberg-Buchholz as part of the Saxon air quality monitoring network. The total particle number concentration derived from the mobility particle size spectrometer overestimates the particle number concentration by only 2% (grand average offset). Furthermore, tolerance criteria are presented to judge the performance of the mobility particle size spectrometer with respect to the particle number concentration. An upgrade of a mobility particle size spectrometer with an automated function control enhances the quality of long-term particle number size distribution measurements. Quality assured measurements are a precondition for intercomparison studies of different sites. Comparable measurements will improve cohort health and also climate-relevant research studies.

  10. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    Science.gov (United States)

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  11. Particle Size Control for PIV Seeding Using Dry Ice

    Science.gov (United States)

    2010-03-01

    in flight actually being carried out, the observations, drawings and notes of Leonardo da Vinci showed an analytical process to develop a way for...theoretical particle response: dvp dt = −C(vp − U) C = 18µ ρpd2p 86 87 Bibliography 1. Linscott, R. N. and Da Vinci , L., The Notebooks of Leonardo Da Vinci

  12. Fragment and particle size distribution of impacted ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Weerheijm, J.; Ditzhuijzen, C.; Tuinman, I.

    2014-01-01

    The fragmentation of ceramic tiles under ballistic impact has been studied. Fragments and aerosol (respirable) particles were collected and analyzed to determine the total surface area generated by fracturing (macro-cracking and comminution) of armor grade ceramics. The larger fragments were

  13. Effects of particle size and surrounding media on optical radiation ...

    Indian Academy of Sciences (India)

    Abstract. The optical radiation efficiency (η), the ratio of scattering cross-section to extinction cross-section, of spherical metal nanoparticles (M = Al, Ag, Au and Cu) surrounded by glass and water was calculated using classical electrostatics. The effect of varying particle diameter (∼100 nm) on η was also studied for free ...

  14. Aerosol particle size does not predict pharmacokinetic determined lung dose in children

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Chawes, Bo L K; Vindfeld, Signe

    2013-01-01

    an in vivo estimate of lung dose of inhaled drug in children and the corresponding particle size segments assessed ex vivo. Lung dose of fluticasone propionate after inhalation from a dry powder inhaler (Diskus®) was studied in 23 children aged 4-7 and 12-15 years with mild asthma. Six-hour pharmacokinetics...... inhaled particle size segment and lung dose assessed by pharmacokinetics and adjusted for age and body size. Measures of particles size segments were not related to lung dose in children. Until further evidence is provided it may be warranted to emphasize pharmacokinetic or pharmacodynamic assessments...

  15. Particle size and shape analysis using light scattering, Coulter principle, and image analysis

    International Nuclear Information System (INIS)

    Xu, R.; Di Guida, A.

    2002-01-01

    Particle size and shape analyses have become important tools for research and applications in a broad spectrum of industries such as pharmaceuticals, metallurgic, ceramics, food and beverage, plastics, petrochemical, clinical, etc. Two of the most utilized technologies for sizing particulate materials are laser diffraction (LD) and electrical sensing zone (ESZ) methods. In a LD experiment, particle size distribution is retrieved from the measured scattering intensity as a function of scattering angle and light wavelength based on the assumption that all particles are spheres. In ESZ measurement, the volume of each individual particle is determined by the change in the resistance of electrolyte while particles flow through an orifice to which a voltage is applied; the particle size distribution is then deduced based on a spherical assumption. Lately, another powerful means for characterizing particles, dynamic image analysis (DIA), has been shown to be able to provide both size and shape information of particulate materials. For real industrial materials, rarely are particles spheres. The effect of non-sphericity in different technologies varies causing discrepancies in results and bias from true characteristics of the sample. Systematic studies of shape effects in particle characterization are few. In this study, samples consisting of particles of the same regular shape are studied using the three technologies (LD, ESZ, and DIA). General conclusions regarding the bias, resolution, reproducibility, and predicted discrepancies from measurements using these technologies are deduced to provide a useful guideline for practical applications of these popular technologies to non-spherical samples

  16. Effect of resin-composite filler particle size and shape on shrinkage-stress.

    Science.gov (United States)

    Satterthwaite, Julian D; Maisuria, Amit; Vogel, Karin; Watts, David C

    2012-06-01

    The aim of this study was to investigate the effect of variations in filler particle size and shape on the polymerization shrinkage-stress kinetics of resin-composites. A model series of 12 VLC resin-composites were studied. The particulate dispersed phase volume fraction was 56.7%: these filler particles were systematically graded in size, and further were either spherical or irregular. A Bioman instrument (cantilever beam method) was employed to determine the shrinkage-stress kinetics following 40s irradiation (600 mW/cm(2)) at 23°C (n=3). All data were captured for 60 min and the final shrinkage-stress calculated. Shrinkage-stress varied between 3.86 MPa (SD 0.14) for S3 (spherical filler particles of 500 nm) and 8.44 MPa (SD 0.41) for I1 (irregular filler particles of 450 nm). The shrinkage-stress values were generally lower for those composites with spherical filler particles than those with irregular filler particles. The differences in shrinkage-stress with filler particle size and shape were statistically significant (pparticles exhibit lower shrinkage-stress values compared to those with irregular filler particles. Shrinkage-stress and shrinkage-stress rate vary in a complex manner with variations in the size of the dispersed phase particles: a hypothesized explanation for the effect of filler particle size and shape is presented. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Size limits for rounding of volcanic ash particles heated by lightning.

    Science.gov (United States)

    Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  18. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  19. [Particle size in the smoke produced by six different types of cigarette].

    Science.gov (United States)

    Becquemin, M H; Bertholon, J F; Attoui, M; Roy, F; Roy, M; Dautzenberg, B

    2007-09-01

    For several decades a more peripheral distribution of the broncho-pulmonary pathologies related to tobacco has been observed. The aim of this study is to examine whether changes in the particle size of cigarette smoke as the result of new manufacturing technologies could play a part in the observed epidemiologic changes through a more distal disposition of smoke particles in the airways. Using a smoking machine and a low pressure electrostatic impactor we measured the particle size of the smoke from six different types of cigarette, representing old and new manufacturing techniques. The effect of a filter was assessed by a size analyser measuring the electrical mobility of the particles. The results show a difference in particle size between the primary smoke inhaled by the smoker, S1 (0.27 +/- 0.03 microm.) and the secondary smoke, S2 inhaled by passive smokers (0.09 +/- 0.01 microm). There is no difference in particle size between the 6 different types of cigarette. Filters dilute the smoke without altering particle size. The recent alterations in the distribution of tobacco related pathologies cannot be explained by changes in particle size in cigarette smoke. The explanation has to sought elsewhere.

  20. Influence of Particle Size in Talc Suppression by a Galactomannan Depressant

    Directory of Open Access Journals (Sweden)

    Zhixiang Chen

    2018-03-01

    Full Text Available Flotation behavior of different sizes of particles may follow different trends. The influence of particle size in talc suppression by a depressant galactomannan was studied in this research. The flotation response and mechanism were examined by flotation tests, modified flotation rate constant and entrainment recovery calculation, laser particle size experiments, adsorption tests, and advancing contact angle measurement as well as scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The maximum recovery increased with particle size increases in the absence of galactomannan FPY (Fenugreek polysaccharide. The obviously suppressed effect was observed for the size fraction of −74 + 38 μm after reacting with FPY, but low efficiency was received for −38 μm and −10 μm, respectively. Laser particle size analysis indicated that the FPY has a certain function for the flocculation of fine particles. It is beneficial for reducing recovery by entrainment. EDS and advancing contact angle test results showed that the difference in contact angles probably is a result of genuine differences in the quantity of O and Mg bearing surface species, while the contact angle varied with particle size fraction in the absence of FPY. Adsorption and SEM test results demonstrated that in the case of −74 + 38 μm, the depressant adsorption density on the mineral surface is higher than the other two size fractions. On the whole, FPY probably is not enough of a depressant for talc suppression.

  1. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen

    2010-01-01

    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  2. Zooplankton Grazing Effects on Particle Size Spectra under Different Seasonal Conditions

    Science.gov (United States)

    Stamieszkin, K.; Poulton, N.; Pershing, A. J.

    2016-02-01

    Oceanic particle size spectra can be used to explain and predict variability in carbon export efficiency, since larger particles are more likely to sink to depth than small particles. The distribution of biogenic particle size in the surface ocean is the result of many variables and processes, including nutrient availability, primary productivity, aggregation, remineralization, and grazing. We conducted a series of grazing experiments to test the hypothesis that mesozooplankton shift particle size spectra toward larger particles, via grazing and egestion of relatively large fecal pellets. These experiments were carried out over several months, and used natural communities of mesozooplankton and their microbial prey, collected offshore of the Damariscotta River in the Gulf of Maine. We analyzed the samples using Fluid Imaging Technologies' FlowCam®, a particle imaging system. With this equipment, we processed live samples, decreasing the likelihood of losing or damaging fragile particles, and thereby lessening sources of error in commonly used preservation and enumeration protocols. Our results show how the plankton size spectrum changes as the Gulf of Maine progresses through a seasonal cycle. We explore the relationship of grazing community size structure to its effect on the overall biogenic particle size spectrum. At some times of year, mesozooplankton grazing does not alter the particle size spectrum, while at others it significantly does, affecting the potential for biogenic flux. We also examine prey selectivity, and find that chain diatoms are the only prey group preferentially consumed. Otherwise, we find that complete mesozooplankton communities are "evolved" to fit their prey such that most prey groups are grazed evenly. We discuss a metabolic numerical model which could be used to universalize the relationships between whole gazer and whole microbial communities, with respect to effects on particle size spectra.

  3. Drop sizes and particle coverage in emulsions stabilised solely by silica nanoparticles of irregular shape.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Parker, James; Beaussoubre, Pascal; Wong, Kenneth

    2010-10-14

    We have investigated emulsions stabilised solely by partially-hydrophobised fumed silica particles which consist of a mixture of primary particles and irregularly-shaped fused aggregates and larger agglomerates. The particle wettability is controlled by varying the extent of hydrophobisation of their surfaces. This, in turn, controls the contact angle between the oil-water interface and the particle surface (θ(ow)) which affects the particle adsorption energy and the type of emulsion formed (oil-in-water, o/w or water-in-oil, w/o). Progressive particle hydrophobisation causes transitional phase inversion of the emulsions from o/w to w/o which occurs when θ(ow) = 90° and the energy of particle adsorption to the oil-water interface is maximally favourable. The key problem addressed here is to understand why the emulsion drop size passes through a minimum at the point of emulsion phase inversion. In principle, this effect could be the result of particle desorption, changes in the extent of close-packing of the adsorbed particle film (at constant particle orientation), particle re-orientation or a combination of these processes. Using measurements of emulsion drop size and the extent of particle desorption, we have derived adsorbed particle surface concentrations as a function of the energy of desorption of the particles from the oil-water interface for a range of particle concentrations and different oil-water systems. The main conclusion is that the minimum in emulsion drop size through phase inversion is mainly caused by re-orientation of the particles from a high surface area orientation when the energy of desorption is high to a low surface area orientation when the energy of desorption is low. Some particle desorption occurs but this is a secondary effect.

  4. Comparison between direct methods for determination of microbial cell volume: electron microscopy and electronic particle sizing.

    OpenAIRE

    Montesinos, E; Esteve, I; Guerrero, R

    1983-01-01

    Size frequency distributions of different phototrophic and heterotrophic microorganisms were determined by means of scanning and transmission electron microscopy and electronic particle sizing. Statistically significant differences existed among the three techniques used in this study. Cells processed for electron microscopy showed lower mean cellular volumes than those processed for electronic particle sizing, reflecting a shrinkage by factors ranging from 1.1 to 6.2 (mean, 2.3). Processing ...

  5. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  6. Influence of Particle Size on Reaction Selectivity in Cyclohexene Hydrogenation and Dehydrogenation over Silica-Supported Monodisperse Pt Particles

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, R. M.; Hsu, B. B.; Grass, M. E.; Song, H.; Somorjai, Gabor A.

    2008-07-11

    The role of particle size during the hydrogenation/dehydrogenation of cyclohexene (10 Torr C{sub 6}H{sub 10}, 200-600 Torr H{sub 2}, and 273-650 K) was studied over a series of monodisperse Pt/SBA-15 catalysts. The conversion of cyclohexene in the presence of excess H{sub 2} (H{sub 2}:C{sub 6}H{sub 10} ratio = 20-60) is characterized by three regimes: hydrogenation of cyclohexene to cyclohexane at low temperature (< 423 K), an intermediate temperature range in which both hydrogenation and dehydrogenation occur; and a high temperature regime in which the dehydrogenation of cyclohexene dominates (> 573 K). The rate of both reactions demonstrated maxima with temperature, regardless of Pt particle size. For the hydrogenation of cyclohexene, a non-Arrhenius temperature dependence (apparent negative activation energy) was observed. Hydrogenation is structure insensitive at low temperatures, and apparently structure sensitive in the non-Arrhenius regime; the origin of the particle-size dependent reactivity with temperature is attributed to a change in the coverage of reactive hydrogen. Small particles were more active for dehydrogenation and had lower apparent activation energies than large particles. The selectivity can be controlled by changing the particle size, which is attributed to the structure sensitivity of both reactions in the temperature regime where hydrogenation and dehydrogenation are catalyzed simultaneously.

  7. Multimodal particle size distributions emitted from HFA-134a solution pressurized metered-dose inhalers.

    Science.gov (United States)

    Smyth, Hugh D C; Hickey, Anthony J

    2003-01-01

    The purpose of this research was to investigate the measurement and in vitro delivery implications of multimodal distributions, occurring near or in the respirable range, emitted from pressurized metered-dose inhalers (pMDIs). Particle size distributions of solution pMDIs containing hydrofluoroalkane-134a (HFA-134a) and ethanol were evaluated using 2 complementary particle-sizing methods: laser diffraction (LD) and cascade impaction (CI). Solution pMDIs were formulated from mixtures of HFA-134a (50%-97.5% wt/wt) and ethanol. A range of propellant concentrations was selected for a range of vapor pressures. The fluorescent probe, Rhodamine B, was included for chemical analysis. The complementary nature of LD and CI allowed identification of 2 dominant particle size modes at 1 and 10 micro m or greater. Increasing propellant concentrations resulted in increases in the proportion of the size distributions at the 1- micro m mode and also reduced the particle size of the larger droplet population. Despite significant spatial differences and time scales of measurement between the particle-sizing techniques, the fine particle fractions obtained from LD and CI were practically identical. This was consistent with LD experiments, which showed that particle sizes did not decrease with increasing measurement distance, and may be explained by the absence of significant evaporation/disintegration of larger droplets. The fine particle fractions (FPFs) emitted from HFA-134a/ethanol solution pMDI can be predicted on the basis of formulation parameters and is independent of measurement technique. These results highlight the importance of presenting particle size distribution data from complementary particle size techniques.

  8. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.

    Science.gov (United States)

    Sheng, Jennifer J; Sirois, Paul J; Dressman, Jennifer B; Amidon, Gordon L

    2008-11-01

    This work was to investigate the effects of particle size and paddle speed on the particle diffusional layer thickness h(app) in a USP dissolution apparatus II. After the determination of the powder dissolution rates of five size fractions of fenofibrate, including <20, 20-32, 32-45, 63-75, and 90-106 microm, the present work shows that the dependence of h(app) on particle size follows different functions in accordance with the paddle speed. At 50 rpm, the function of h(app) is best described by a linear plot of h{app} = 9.91sqrt d-23.31 (R(2) = 0.98) throughout the particle diameter, d, from 6.8 to 106 microm. In contrast, at 100 rpm a transitional particle radius, r, of 23.7 microm exists, under which linear relationship h(app) = 1.59r (R(2) = 0.98) occurs, but above which h(app) becomes a constant of 43.5 microm. Thus, h(app) changes not only with particle size, but also with the hydrodynamics under standard USP configurations, which has been overlooked in the past. Further, the effects of particle size and paddle speed on h(app) were combined using dimensionless analysis. Within certain fluid velocity/particle regime, linear correlation of h(app)/d with the square-root of Reynolds number (d\\varpi/upsilon){1/2}, that is, h{app}/d = 1.5207 - 9.25 x 10{- 4} (d\\varpi/n){1/2} (R(2) = 0.9875), was observed.

  9. Particle size distribution and physico-chemical composition of clay.

    African Journals Online (AJOL)

    HP USER

    <300µm, <106µm, <63µm and <44µm respectively. There was no remarkable difference in silica (SiO2) as particle fractions reduced from <. 300µm - < 106µm - < 63µm but an observed. Table 1.0 Chemical composition of crude clay. Component wt (%). SiO2. 38.48. Al2O3. 12.46. Fe2O3. 6.18. TiO2. 1.85. MgO. 14.67. CaO.

  10. Particle Sizing in a Fuel-Rich Ramjet Combustor.

    Science.gov (United States)

    1983-08-01

    view7. 5- Figure 1 - LDV optical configuration. 8 THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY LAUREL MARYLANO 6, is in micrometers . Particles...OUTPUT WIDTH VERNIER : 10.00 PROCEDURE A: Remove the coaxial 3. LRS 161 Dual Discriminator (lower unit) cable from the amplifier input and ter- a. TERMINATE...measured on the oscilloscope, then remove d. OUTPUT WIDTH VERNIER : 4.900 the 50 0 termination and reconnect the 4. Tennelec TC-214 Linear Amplifier and

  11. The effect of local sources on particle size and chemical composition and their role in aerosol-cloud interactions at Puijo measurement station

    Science.gov (United States)

    Portin, H.; Leskinen, A.; Hao, L.; Kortelainen, A.; Miettinen, P.; Jaatinen, A.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.; Komppula, M.

    2014-06-01

    Interactions between aerosols and liquid water clouds were studied during autumns 2010-2011 at a semiurban measurement station on Puijo tower in Kuopio, Finland. Cloud interstitial and total aerosol size distributions, particle chemical composition and hygroscopicity and cloud droplet size distribution were measured, with a focus on comparing clean air masses with those affected by local sources. On average, the polluted air contained more particles than the clean air masses, and generally the concentrations decreased during cloud events. Cloud processing was found to take place, especially in the clean air masses, and to a lesser extent in the polluted air. Some, mostly minor, differences in the average particle chemical composition between the air masses were observed. The average size and number concentration of activating particles were quite similar for both air masses, producing average droplet populations with only minor distinctions. As a case study, a long cloud event was analyzed in detail, with a special focus on the emissions from local sources, including a paper mill and a heating plant. This revealed larger variations in particle and cloud properties than the analysis of the whole data set. Clear differences in the total (between 214 and 2200 cm-3) and accumulation mode particle concentrations (between 62 and 169 cm-3) were observed. Particle chemical composition, especially the concentrations of organics (between 0.42 and 1.28 μg m-3) and sulfate (between 0.16 and 4.43 μg m-3), varied considerably. This affected the hygroscopic growth factor: for example, for 100 nm particles the range was from 1.21 to 1.45 at 90% relative humidity. Particularly, large particles, high hygroscopicities and elevated amounts of inorganics were linked with the pollutant plumes. Moreover, the particle hygroscopicity distributions in the polluted air were clearly bimodal, indicating externally mixed aerosol. The variable conditions also had an impact on cloud droplet

  12. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  13. Intercomparison of Numerical Inversion Algorithms for Particle Size Determination of Polystyrene Suspensions Using Spectral Turbidimetry

    Directory of Open Access Journals (Sweden)

    Benjamin Glasse

    2015-01-01

    Full Text Available The continuous monitoring of the particle size distribution in particulate processes with suspensions or emulsions requires measurement techniques that can be used as in situ devices in contrast to ex situ or laboratory methods. In this context, for the evaluation of turbidimetric spectral measurements, the application of different numerical inversion algorithms is investigated with respect to the particle size distribution determination of polystyrene suspensions. A modified regularization concept consisting of a Twomey-Phillips-Regularization with an integrated nonnegative constraint and a modified L-curve criterion for the selection of the regularization parameter is used. The particle size (i.e., particle diameter of polystyrene suspensions in the range x=0.03–3 µm was validated via dynamic light scattering and differential centrifugal sedimentation and compared to the retrieved particle size distribution from the inverted turbidimetry measurements.

  14. Kinetic plots in aqueous size exclusion chromatography of monoclonal antibodies and virus particles.

    Science.gov (United States)

    Vajda, Judith; Conze, Werner; Müller, Egbert

    2015-12-24

    The growing importance of monoclonal antibodies and virus particles has led to a pressure for faster size exclusion chromatography. In recent years, numerous small particle columns for size exclusion chromatography of biologicals have been introduced. Small particles are a strategy to reduce analysis time. In the following study, opportunities of small particles in size exclusion chromatography of large biomolecules are investigated. Poppe plots reveal that the lower particle size limit depends on the size of the sample molecule. Hydrodynamic radii of monoclonal antibody monomer, aggregates and H1N1 as well as the diffusion coefficients were determined. Considering this sample compound dependency, kinetic plots referring to the resolution of a distinct compound pair instead of the plate number of a single analyte are more meaningful. Plate times were found to be equivalent with 4 and 2μm particles for a monoclonal antibody aggregate separation at resolutions smaller than 1.8. Quantification of a H1N1 in clarified cell culture can be accomplished with 17μm and 13μm particles at equal plate times at resolutions smaller than 2.5. Virus polydispersity is likely to be affected by run times of several hours at room temperature and shear forces resulting from particles smaller than 10μm. Comparatively high flow rates should be applied in size exclusion chromatography of the 100nm H1N1 virions. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic.

    Science.gov (United States)

    Wang, Liao; Barbieri, Davide; Zhou, Hongyu; de Bruijn, Joost D; Bao, Chongyun; Yuan, Huipin

    2015-06-01

    Material factors such as chemistry, surface microstructure and geometry have shown their influence on osteoinduction of calcium phosphate ceramics. Hereby we report that osteoinduction of a micro-structured biphasic calcium phosphate ceramic (BCP) has a relation with the particle sizes. BCP particles with the size of 212-300 µm, 106-212 µm, 45-106 µm, and smaller than 45 µm were prepared and implanted in paraspinal muscle of dogs for 12 weeks. Histological evaluation of the explants showed abundant bone in all samples with particle size of 212-300 µm, 106-212 µm, and 45-106 µm, while no bone was seen in any sample having particle size smaller than 45 µm. Bone was formed as early as 3 weeks after implantation in implants having BCP particles bigger than 45 µm and the volume of the formed bone was similar among the implants with particles larger than 45 µm after 12 weeks implantation. The results herein show that a size limitation of microstructured calcium phosphate ceramic particles for osteoinduction. It is most likely that the particle size affect inductive bone formation via macroporous structures for body fluid infiltration, cell/tissue ingrowth and angiogenesis. © 2014 Wiley Periodicals, Inc.

  16. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    Science.gov (United States)

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  17. A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles.

    Science.gov (United States)

    Tanaka, Takuya; Komatsu, Yoshifumi; Fujibayashi, Teruhisa; Minami, Hideto; Okubo, Masayoshi

    2010-03-16

    Micrometer-sized, monodisperse dimple and hemispherical polystyrene (PS) particles were successfully prepared by heating (55-70 degrees C) of spherical PS particles dispersed in methanol/water media (40/60 to 80/20, w/w) in the presence of decane droplets, and subsequent cooling down to room temperature. Decane was absorbed by the PS particles during the heating process. Decane-absorbed PS particles phase-separated into PS and decane phases in the inside during the cooling process, and eventually dimple and/or hemispherical particles were formed by removal of the decane phase from phase-separated PS/decane particles by evaporation. The size of the dimple, which is determined by the volume of decane phase-separated from decane-absorbed PS particles during the cooling process, increased with increases in the heating temperature and the methanol content.

  18. Experimental investigation of particle size distribution influence on diffusion controlled coarsening

    International Nuclear Information System (INIS)

    Fang, Zhigang; Patterson, B.R.

    1993-01-01

    The influence of initial particle size distribution on coarsening during liquid phase sintering has been experimentally investigated using W-14Ni-6Fe alloy as a model system. It was found that initially wider size distribution particles coarsened more rapidly than those of an initially narrow distribution. The well known linear relationship between the cube of the average particle radius bar r -3 , and time was observed for most of the coarsening process, although the early stage coarsening rate constant changed with time, as expected with concomitant early changes in the tungsten particle size distribution. The instantaneous transient rate constant was shown to be related to the geometric standard deviation, 1nσ, of the instantaneous size distributions, with higher rate constants corresponding to larger 1nσ values. The form of the particle size distributions changed rapidly during early coarsening and reached a quasi-stable state, different from the theoretical asymptotic distribution, after some time. A linear relationship was found between the experimentally observed instantaneous rate constant and that computed from an earlier model incorporating the effect of particle size distribution. The above results compare favorably with those from prior theoretical modeling and computer simulation studies of the effect of particle size distribution on coarsening, based on the DeHoff communicating neighbor model

  19. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    International Nuclear Information System (INIS)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L.

    2015-01-01

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  20. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    Energy Technology Data Exchange (ETDEWEB)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu

    2015-12-15

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  1. Simulations of shear mixing of bidisperse cohesive particles with a large size range

    Science.gov (United States)

    Aarons, Lee Randall

    2012-03-01

    I have studied the shear mixing of bidisperse collections of cohesive particles in an effort to develop models that would allow one to predict and control the homogeneity of particle composites. The focus has been on the effects of inter-particle cohesion and shear rate on the microstructure of particle composites. As a model problem, the cohesion resulting from the van der Waals force acting between particles is considered. Discrete element method simulations were performed in which initially segregated bidisperse collections of particles featuring a 7:1 diameter ratio were subjected to plane shear under constant applied stress. Simulations were performed with and without gravity and with a variety of shear rates and particle cohesion strengths for both the large and small particles. The homogeneity of the resultant mixtures was quantified using two order statistics: the spatial variance of the relative concentrations of the different particles and the average size of clusters of small particles. Results indicate that the small particles needed to be sufficiently cohesive for the mixtures to be noticeably more inhomogeneous than mixtures of non-cohesive particles. Without gravity, the particles were most mixed when the big particles were moderately cohesive, while with gravity, mixing worsened as the big particles became more cohesive.

  2. Effects of Particle Size Distribution on the Burn Ability of Limestone

    Directory of Open Access Journals (Sweden)

    Ismaila E. SULEIMAN

    2013-11-01

    Full Text Available The effect of particle size reduction on the burn ability of Limestone was investigated using the limestone obtained from Obajana Cement Mines. Limestone samples were grinded and were classified into following particles size distribution: 90µm, 200µm, 250µm and 500µm graduated in different sieve sizes. The decomposition rates of these samples were monitored under the same temperature condition in a pre-heated furnace of 1000°C and at constant time interval of 0-35 minutes. From the results of the investigation, the material with particle size distribution of 90µm has the fastest reaction rate of 0.1369g/min and highest lime conversion of 52.0 weight percent; loss on ignition being 48 weight percent. This reaction rate increases as the particle size decreases from 500µm to 90µm.

  3. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry.

    Science.gov (United States)

    Pye, Kenneth; Blott, Simon J

    2004-08-11

    Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion.

  4. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  5. Air mass characteristics, aerosol particle number concentrations, and number size distributions at Macquarie Island during the First Aerosol Characterization Experiment (ACE 1)

    Science.gov (United States)

    Brechtel, Fred J.; Kreidenweis, Sonia M.; Swan, Hilton B.

    1998-01-01

    During the First Aerosol Characterization Experiment (ACE 1), continuous measurements were made of the particle number size distribution (between 18 and 540 nm diameter (Dp)) and total particle number concentration (Dp > 3 nm and Dp > 12 nm) on Macquarie Island, Tasmania (54°30'S, 158°57'E, 7 m above sea level). Periodic real-time measurements of dimethyl sulfide were also made. Sampled air masses were separated into clean marine and those influenced by Tasmania or Antarctica. Observations were compared to those from a southern hemisphere midlatitude site (Cape Grim) and to sites on the Antarctic continent. It was found that the average total number concentration observed during clean marine conditions, 675 cm-3, was about 21% higher than values observed at Cape Grim during ACE 1 and was similar to the high end of the historical range of number concentrations reported by Gras [1995] for Cape Grim during the same time of year. During both clean marine and influenced conditions, the Aitken and accumulation modes dominate the number size distribution, with a Young Aitken mode observed less often. The number size distribution between 18 and 540 nm exhibited two and three modes 75% and 25% of the time, respectively, during clean marine conditions, more consistent with previous observations at Cape Grim than with those from coastal Antarctica. The typical bimodal number distribution at Macquarie Island exhibited average modal diameters of 33 and 113 nm during clean marine conditions, corresponding to the smaller Aitken mode and larger accumulation mode, respectively. The 50 to 70 nm diameter range corresponds to the minimum in the bimodal size distribution at Macquarie Island, except for continentally influenced periods when the size distribution exhibits an Aitken mode near 50 nm and an accumulation mode near 128 nm. The Young Aitken mode appeared most often during or immediately after periods of precipitation associated with both warm and cold fronts, when the Aitken

  6. Characterization of particle sizes in bulk pharmaceutical solids using digital image information.

    Science.gov (United States)

    Laitinen, Niklas; Antikainen, Osmo; Yliruusi, Jouko

    2003-10-13

    The purpose of this study was to demonstrate a novel method of extracting relevant information from undispersed bulk powder surfaces to be used in particle size analysis. A new surface imaging approach for undispersed powders combined with multivariate modeling was used. Digital surface images of various granule batches were captured using an inventive optical setup in controlled illumination conditions. A descriptor, the gray scale difference matrix (GSDM), which describes the particle size of granular material was generated and extracted from the powder surface image information. Partial least squares (PLS) modeling was used to create a model between the GSDM and the particle size distribution of granules measured with sieving. The use of lateral illumination and the combining of information from 2 surface images strengthened the shading effects on the powder surfaces. The shading effects exposed the topography or the visual texture of the powder surfaces. This textural information was efficiently extracted using the GSDM descriptor. The goodness-of-fit (R2) for the created PLS model was 0.91 and the predicted variation (Q2) was 0.87, indicating a good model. The model covered granule sizes in the size range of approximately 20 to 2500 microm. The extracted descriptor was effectively used in particle size measurement. This study confirms that digital images taken from undispersed bulk powder surfaces contain substantial information needed for particle size distribution analysis. The use of the GSDM enabled the utilization of bulk powder surface information and provided a fast method for particle size measurement.

  7. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  8. Ideal Particle Sizes for Inhaled Steroids Targeting Vocal Granulomas: Preliminary Study Using Computational Fluid Dynamics.

    Science.gov (United States)

    Perkins, Elizabeth L; Basu, Saikat; Garcia, Guilherme J M; Buckmire, Robert A; Shah, Rupali N; Kimbell, Julia S

    2018-03-01

    Objectives Vocal fold granulomas are benign lesions of the larynx commonly caused by gastroesophageal reflux, intubation, and phonotrauma. Current medical therapy includes inhaled corticosteroids to target inflammation that leads to granuloma formation. Particle sizes of commonly prescribed inhalers range over 1 to 4 µm. The study objective was to use computational fluid dynamics to investigate deposition patterns over a range of particle sizes of inhaled corticosteroids targeting the larynx and vocal fold granulomas. Study Design Retrospective, case-specific computational study. Setting Tertiary academic center. Subjects/Methods A 3-dimensional anatomically realistic computational model of a normal adult airway from mouth to trachea was constructed from 3 computed tomography scans. Virtual granulomas of varying sizes and positions along the vocal fold were incorporated into the base model. Assuming steady-state, inspiratory, turbulent airflow at 30 L/min, computational fluid dynamics was used to simulate respiratory transport and deposition of inhaled corticosteroid particles ranging over 1 to 20 µm. Results Laryngeal deposition in the base model peaked for particle sizes 8 to 10 µm (2.8%-3.5%). Ideal sizes ranged over 6 to 10, 7 to 13, and 7 to 14 µm for small, medium, and large granuloma sizes, respectively. Glottic deposition was maximal at 10.8% for 9-µm-sized particles for the large posterior granuloma, 3 times the normal model (3.5%). Conclusion As the virtual granuloma size increased and the location became more posterior, glottic deposition and ideal particle size generally increased. This preliminary study suggests that inhalers with larger particle sizes, such as fluticasone propionate dry-powder inhaler, may improve laryngeal drug deposition. Most commercially available inhalers have smaller particles than suggested here.

  9. Experimental study of the effect of wearing dust-proof mask on inhaled aerosol particle size

    International Nuclear Information System (INIS)

    Lu Shunguang; Mei Chongsheng; Wu Yuangqing; Ren Liuan.

    1985-01-01

    This paper describes a method for measuring particle size of inhaled aerosol with a phantom of human head wearing dust-proof mask and a cascade impactor. The results showed that AMAD of inhaled aerosol was degraded and the size distribution of particles changed when the dust-proof mask was wearing. The leak rate of mask increased as the size of dust particles decreased. The results are applicable to estimate internal exposure dose and to evaluate the dust-proof capacity of mask

  10. Phenomenological theory of size effects in ultrafine ferroelectric particles (PbTiO3-type)

    International Nuclear Information System (INIS)

    Jiang, B.; Bursill, L.A.

    1998-01-01

    A new phenomenological model is proposed and discussed to study the size effects on phase transitions in PbTiO 3 -type ferroelectric particles. This model, by taking size effects on the phenomenological Landau-Ginzburg-Devonshire coefficients into consideration, can successfully explain the size effects on Curie temperature, c/a ratio, thermal and dielectric properties of lead-titanate-type ferroelectric particles. Theoretical and experimental results for PbTiO 3 fine particles are also compared and discussed. The relationship between the current model and the model of Zhong et al (Phys. Rev. B 50, 698 (1994)) is also presented. (authors)

  11. Change in particle size of pectin reacted with pectinesterase isozymes from pea (Pisum sativum L.) sprout.

    Science.gov (United States)

    Jiang, C M; Wu, M C; Chang, W H; Chang, H M

    2001-09-01

    Four pectinesterase (PE) isozymes were isolated by CM-Sepharose CL-6B chromatography from etiolated pea (Pisum sativum L.) sprouts and then reacted with citrus pectin (degree of esterification = 68%, 30-100 kDa) to observe the change in pectin particle size using a laser particle size analyzer. After incubation of a pectin-PE mixture (pH 6.5) at 30 degrees C for 4 h, PE 1 was observed to catalyze the transacylation reaction most remarkably, increasing the particle size from approximately 50-70 to approximately 250-350 nm, followed by PE 3, PE 2, and PE 4.

  12. Rutile nanopowders for pigment production: Formation mechanism and particle size prediction

    Science.gov (United States)

    Zhang, Wu; Tang, Hongxin

    2018-01-01

    Formation mechanism and particle size prediction of rutile nanoparticles for pigment production were investigated. Anatase nanoparticles were observed by oriented attachment with parallel lattice fringe spaces of 0.2419 nm. Upon increasing the calcination temperature, the (1 1 0) plane of rutile was gradually observed, suggesting that the anatase (1 0 3) planes undergo internal structural rearrangement of oxygen and titanium ions into rutile phase due to ionic diffusion. Backpropagation neural network was used to predict particle size of rutile nanopowders, the prediction errors were all smaller than 2%, providing an efficient method to control particle size in pigment production.

  13. Effect of particle shape and structure on the results of single-particle light-scattering size analysis.

    Science.gov (United States)

    Umhauer, H; Bottlinger, M

    1991-11-20

    To evaluate quantitatively the influence exerted by the shape and structure of nonspherical, nonideal particles on the results of single-particle scattered-light size analysis, measurements were conducted with individual particles of different materials (glass, limestone, and quartz). For this purpose, the particles were suspended in an electrodynamic balance and repeatedly passed through the analyzer's measuring volume with a continually changing random orientation. The scattered-light signal spectra thus obtained specify the probability with which a certain pulse height is induced when the particle passes once through the measuring volume at a given coincidental orientation. The spectra reflect the material-characteristic influence. They allow the loss of resolution of common scattered-light size analyses to be assessed and algorithms (matrices) to be compiled with which the shape and structure influence may be mathematically eliminated. Because a shape and structure independent size parameter is also determined from the individual particles, exact calibration curves can be derived in which the shape and structure influence are incorporated.

  14. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    Science.gov (United States)

    Eghtesad, Adnan; Knezevic, Marko

    2017-12-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  15. Improved Metrological Traceability of Particle Size Values Measured with Line-Start Incremental Centrifugal Liquid Sedimentation.

    Science.gov (United States)

    Kestens, Vikram; Coleman, Victoria A; De Temmerman, Pieter-Jan; Minelli, Caterina; Woehlecke, Holger; Roebben, Gert

    2017-08-22

    Line-start incremental centrifugal liquid sedimentation (disc-CLS) is a powerful method to determine particle size based on the principles of Stokes' law. Because several of the input quantities of the Stokes equation cannot be easily determined for this case of a rotating disc, the disc-CLS approach relies on calibrating the sedimentation time scale with reference particles. To use these calibrant particles for establishing metrological traceability, they must fulfill the same requirements as those imposed on a certified reference material, i.e., their certified Stokes diameter and density value must come with a realistic measurement uncertainty and with a traceability statement. As is the case for several other techniques, the calibrants do not always come with uncertainties for the assigned modal diameter and effective particle density. The lack of such information and the absence of a traceability statement make it difficult for the end-user to estimate the uncertainty of the measurement results and to compare them with results obtained by others. We present the results of a collaborative study that aimed at demonstrating the traceability of particle size results obtained with disc-CLS. For this purpose, the particle size and effective particle density of polyvinyl chloride calibrants were measured using different validated methods, and measurement uncertainties were estimated according to the Guide to the Expression of Uncertainty in Measurement. The results indicate that the modal Stokes diameter and effective particle density that are assigned to the calibrants are accurate within 5% and 3.5%, respectively, and that they can be used to establish traceability of particle size results obtained with disc-CLS. This conclusion has a great impact on the traceability statement of certified particle size reference materials, for which the traceability is limited to the size and density values of the calibrant particles.

  16. Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2013-08-01

    Full Text Available We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E. Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.

  17. Detection of nano- and micro-sized particles in routine biopsy material - pilot study.

    Science.gov (United States)

    Dvorackova, Jana; Bielnikova, Hana; Kukutschova, Jana; Peikertova, Pavlina; Filip, Peter; Zelenik, Karol; Kominek, Pavel; Uvirova, Magdalena; Pradna, Jana; Cermakova, Zuzana; Dvoracek, Igor

    2015-03-01

    Nanotechnology is receiving enormous funding. Very little however is known about the health dangers of this technology so far. Chronic tonsillitis is one of a number of diseases called idiopathic. Among other factors, the tonsils are exposed to suspended particles in inhaled air including nano particles. The objective of this study was to detect and evaluate metallic particles in human tonsil tissue diagnosed with chronic tonsillitis and in amniotic fluid as a comparison. . Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) was used for identification of solid particles in a total of 64 samples of routinely analyzed biopsy and cytologic material. Almost all samples were found to contain solid particles of various metals. The most frequent, regardless of diagnosis, were iron, chromium, nickel and aluminium. The size, determined using SEM, varied from around 500 nm to 25 µm. The majority formed aggregates of several micrometers in size but there were a significant number of smaller (sub-micrometer or nano-sized) particles present. The incidence of metallic particles was similar in child and adult tissues. The difference was in composition: the presence of several metals in adults was due to occupational exposure. The presence of metallic particles in pathologically altered tissues may signal an alternative causation of some diseases. The ethiopathogenic explanation of these diseases associated with the presence of nano-sized particles in the organism has emerged into a new field of pathology, nanopathology.

  18. Fundamental study on laser manipulation of contamination particles with determining shape, size and species

    International Nuclear Information System (INIS)

    Shimizu, Isao; Fujii, Taketsugu

    1995-01-01

    It has been desired to eliminate or collect the contamination particles of radioisotope in each sort of species or shape and size non-invasively. The shape and size of particle can be determined from the shape and distribution of diffraction pattern of particle in the parallel laser beam, the species of particle can be discriminated by the fluorescence from resonance of laser beam, or by the laser Raman scattering, and the particle suspended in the air or falling down in a vacuum can be levitated against the gravity and trapped by the radiation force and the trapping force of the focussed laser beam in the atmosphere or in a vacuum. For the purpose of the non-invasive manipulation of contamination particles, the laser manipulation technique, image processing technique with Multiplexed Matched Spatial Filter and the determination technique of laser Raman scattering or fluorescence from resonance of laser light were combined in the experiments. The shape, size and species of particles trapped in the focal plane of focused Ar laser beam can be determined simultaneously and instantaneously from the shape and intensity distributions of diffraction patterns of the particles in the irradiation of parallel coherent beam of He-Ne laser, and fluorescence from the resonance of YAG laser beam with variable wave length. In this research, a new technique is proposed to manipulate non-invasively the contamination particles determined with the shape, size and species in the atmosphere or in a vacuum, by laser beam. (author)

  19. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    Science.gov (United States)

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  20. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation.

    Science.gov (United States)

    Liu, Dandan; Pan, Hao; He, Fengwei; Wang, Xiaoyu; Li, Jinyu; Yang, Xinggang; Pan, Weisan

    2015-01-01

    The purpose of this work was to explore the particle size reduction effect of carvedilol on dissolution and absorption. Three suspensions containing different sized particles were prepared by antisolvent precipitation method or in combination with an ultrasonication process. The suspensions were characterized for particle size, surface morphology, and crystalline state. The crystalline form of carvedilol was changed into amorphous form after antisolvent precipitation. The dissolution rate of carvedilol was significantly accelerated by a reduction in particle size. The intestinal absorption of carvedilol nanosuspensions was greatly improved in comparison with microsuspensions and solution in the in situ single-pass perfusion experiment. The in vivo evaluation demonstrated that carvedilol nanosuspensions and microsuspensions exhibited markedly increased C(max) (2.09- and 1.48-fold) and AUC(0-t) (2.11- and 1.51-fold), and decreased T(max) (0.34- and 0.48-fold) in contrast with carvedilol coarse suspensions. Moreover, carvedilol nanosuspensions showed good biocompatibility with the rat gastric mucosa in in vivo gastrointestinal irritation test. The entire results implicated that the dissolution rate and the oral absorption of carvedilol were significantly affected by the particle size. Particle size reduction to form nanosized particles was found to be an efficient method for improving the oral bioavailability of carvedilol.

  1. Laser tweezers: spectroscopy of optically trapped micron-sized particles

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, K.M.; Livett, M.K.; Nugent, K.W. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Information is often obtained about biological systems by analysis of single cells in the system. The optimum conditions for this analysis are when the cells are living and in their natural surroundings as they will be performing their normal functions and interactions. Analysis of cells can be difficult due to their mobility. Laser tweezing is a non contact method that can be employed to overcome this problem and provides a powerful tool in the analysis of functions and interactions at single cell level. In this investigation Raman spectra of a molecule of {beta} - carotene, dissolved in microdroplets of oil was obtained. The droplets were trapped using Nd-YAG beam and a low intensity Ar{sup +} beam was used to analyse the trapped particles. 2 refs., 5 figs.

  2. Systems and methods of varying charged particle beam spot size

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  3. Study on the Particle Size Distribution Nano-Particles of Mining Minerals on Whiteness of Triaxial Body

    Science.gov (United States)

    Mathur, Ravi; Soni, Aditi

    White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.

  4. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.

    Science.gov (United States)

    Wang, Yancai; Song, Ju; Chow, Shing Fung; Chow, Albert H L; Zheng, Ying

    2015-10-15

    The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK

    Science.gov (United States)

    Walling; Owens; Waterfall; Leeks; Wass

    2000-05-05

    This paper presents information on the absolute (chemically-dispersed) particle size characteristics of the suspended sediment transported by rivers in the Humber and Tweed basins during the period 1994-1998. For most of the rivers, > 95% of the suspended sediment load at the time of sampling was 63 microm (i.e. sand-sized material). The sediment transported in the two basins were similar. There were, however, noticeable spatial variations in the particle size composition of suspended sediment within the study basins, which reflected the particle size of the sediment sources and their spatial variation, and the selectivity of the sediment mobilization and delivery processes. When particle size parameters were plotted against discharge, there were no significant relationships, although there was some evidence of trends varying between sites. The lack of significant relationships with discharge reflects the fact that sediment particle size is largely supply-controlled, rather than a function of flow and hydraulics. When particle size variations were examined during individual storm events, there was evidence of a pulse of coarse sediment on the rising limb of the hydrograph. This may reflect the remobilization of coarse channel bed sediment as flow velocity and shear stress increase. Finer sediment was transported subsequently during the hydrograph peak and on the falling limb. The findings reported have important implications for understanding and modelling suspended sediment, and associated contaminant, dynamics in river basins.

  6. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    Science.gov (United States)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  7. Study of effect of variables on particle size of telmisartan nanosuspensions using box-Behnken design.

    Science.gov (United States)

    Rao, M R P; Bajaj, A

    2014-12-01

    Telmisartan, an orally active nonpeptide angiotensin II receptor antagonist is a BCS Class II drug having aqueous solubility of 9.9 µg/ml and hence oral bioavailability of 40%. The present study involved preparation of nanosuspensions by evaporative antisolvent precipitation technique to improve the saturation solubility and dissolution rate of telmisartan. Various stabilizers such as TPGS, PVPK 30, PEG 6000 were investigated of which TPGS was found to provide maximum decrease in particle size and accord greater stability to the nanosuspensions. Box-Behnken design was used to investigate the effect of independent variables like stabilizer concentration, time and speed of stirring on particle size of nanosuspensions. Pharmacodynamic studies using Goldblatt technique were undertaken to evaluate the effect of nano-sizing on the hypotensive effect of the drug. Concentration of TPGS and speed of rotation were found to play an important role in particle size of the nanosuspensions whereas time of stirring displayed an exponential relationship with particle size. Freeze dried nanocrystals obtained from nanosuspension of least particle size were found to have increased saturation solubility of telmisartan in different dissolution media. The reconstituted nanosuspension was found to reduce both systolic and diastolic blood pressure without affecting pulse pressure and heart rate. Statistical tools can be used to identify key process and formulation parameters which play a significant role in controlling the particle size in nanosuspensions. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    methods, e.g. laser light scattering, and velocity by the double disk (DD) method. In this article we present two novel techniques, which allow a more accurate measurement of mass, velocity and shape, and we later compare the experimentally obtained flow velocities of particles with a simulation that also...... are compared with detailed 3-dimensional CT measurements and a low angle laser light scattering (LALLS) measurement system for six different samples of particles. It is shown that the particle volume or mass is usually overestimated by 16–22% when using 2-dimensional methods or LALLS. For CT allows...... additionally the surface-equivalent diameter to be calculated by using 2-dimensional projections of each particle, these results can be used to correct particle diameters measured with the particle imaging method using a pulsed LED....

  9. Effect of Particle Size on the HDS Activity of Molybdenum Sulfide

    Directory of Open Access Journals (Sweden)

    Carola Contreras

    2016-01-01

    Full Text Available More than half of the total world oil reserves are heavy oil, extra heavy oil, and bitumen; however their catalytic conversion to more valuable products is challenging. The use of submicronic particles or nanoparticles of catalysts suspended in the feedstock may be a viable alternative to the conversion of heavy oils at refinery level or downhole (in situ upgrading. In the present work, molybdenum sulfide (MoS2 particles with varying diameters (10000–10 nm were prepared using polyvinylpyrrolidone as capping agent. The prepared particles were characterized by DLS, TEM, XRD, and XPS and tested in the hydrodesulfurization (HDS of a vacuum gas oil (VGO. A correlation between particle size and activity is presented. It was found that particles with diameters around 13 nm show double the HDS activity compared with the material with micrometric particle sizes (diameter ≈ 10,000 nm.

  10. Interaural bimodal pitch matching with two-formant vowels

    DEFF Research Database (Denmark)

    Guérit, François; Chalupper, Josef; Santurette, Sébastien

    2013-01-01

    For bimodal patients, with a hearing aid (HA) in one ear and a cochlear implant (CI) in the opposite ear, usually a default frequency-to-electrode map is used in the CI. This assumes that the human brain can adapt to interaural place-pitch mismatches. This “one-size-fits-all” method might be part...

  11. Digital image processing of nanometer-size metal particles on amorphous substrates

    Science.gov (United States)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  12. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    Science.gov (United States)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  13. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    Science.gov (United States)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  14. Effects of Na and Ca on particle size; Effect of filtering on UV absorbance

    Data.gov (United States)

    U.S. Environmental Protection Agency — Effects of Na and Ca on particle size; Effect of filtering on UV absorbance. This dataset is associated with the following publication: Bouchard, D., C. Knightes, X....

  15. Study of Acid Hydrolysis on Organic Waste: Understanding The Effect of Delignification and Particle Size

    Directory of Open Access Journals (Sweden)

    Anwar Nadiem

    2018-01-01

    Full Text Available Organic wastes from Swiettenia marcophylla L, Artocarpus heterophyllus L, Mangifera indica L, and Annona muricata L were prepared by grinding into 0.1875, 0.3750, 0.7500 mm of particle size and delignified by 2% NaOH at 80°C for 90 minutes. Acid dilution hydrolysis process with H2SO4 1% was performed at 150°C for 120 minutes in a closed reactor. The effect of particle size and delignification on and reducing sugar concentration were investigated. The result showed (1 leaves that can be used as raw material to produce hydrogen should have 38–49% cellulose and hemicellulose. (2 Reducing sugar concentration increased with particle size reduction and delignification. (3 the best result with the highest reducing sugar concentration was achieved by 0.1875 mm particle size with delignification on Annona muricata L.

  16. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident.

    Science.gov (United States)

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-03-31

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium ((137)Cs) in four irrigation ponds, ~4-5 months after the Fukushima Dai-ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of (137)Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total (137)Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more (137)Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of (137)Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of (137)Cs in pond sediment, as well as the amount lost through hydraulic flushing.

  17. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    . The associated pollutants will, if not removed in stormwater treatment facilities, be discharged into receiving surface waters, due to enhanced transportation exerted by the colloids and nano-sized particles. More stormwater than previously is separated from wastewater and drained to stormwater treatment.......Since little is known about the colloids and nano-sized particle-enhanced transportation of pollutants in stormwater, it has been difficult to determine their quantitative role in the total release of pollutants into receiving waters.Therefore the main purpose of this thesis has been to document the presence...... and size distribution of colloids and nano-sized particles in stormwater, as well as quantify the particle-enhanced transportation of polycyclic aromatic hydrocarbons (PAHs) in stormwater. Stormwater from five sites in Europe was collected to characterise the particulate matter, colloids and nano...

  18. Effect of particle size on laser-induced breakdown spectroscopy analysis of alumina suspension in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rosado, Jose Carlos [CEA, DEN, SEARS, LANIE, 91191 Gif-sur-Yvette (France); Univ. Paris Sud, Faculty of Pharmaceutical Sciences, Public Health and Environment UMR 8079, 5 rue J.B. Clement, 92296 Chatenay-Malabry (France); National University of Engineering, Faculty of Science, P.O. Box 31-139, Av. Tupac Amaru 210, Lima (Peru); L' hermite, Daniel, E-mail: daniel.lhermite@cea.fr [CEA, DEN, SEARS, LANIE, 91191 Gif-sur-Yvette (France); Levi, Yves [Univ. Paris Sud, Faculty of Pharmaceutical Sciences, Public Health and Environment UMR 8079, 5 rue J.B. Clement, 92296 Chatenay-Malabry (France)

    2012-08-15

    The analysis by Laser Induced Breakdown Spectroscopy (LIBS) was proposed for the detection and the quantification of different elements in water even when the analyte is composed of particles in suspension. We have studied the effect of particle size on the LIBS signal during liquid analysis. In our study we used different particle sizes (from 2 {mu}m to 90 {mu}m) of Al{sub 2}O{sub 3} in suspension in water. The results were compared to the signal obtained in the case of dissolved aluminum. In the case of particles, a linear correlation between the LIBS signal versus concentration was found but a significant decrease in the slope of the calibration curve was found when the particle size increased. Several hypotheses have been tested and only a partial ablation of the particles might explain this decrease in signal intensity. This effect probably does not occur at smaller particle size. We estimated 860 nm/pulse as ablated thickness from the top of the particle. A statistical analysis over all data obtained allowed us to calculate 100 {mu}m as ablated water column depth. - Highlights: Black-Right-Pointing-Pointer We have identified a decrease of calibration curve when particle size increases. Black-Right-Pointing-Pointer Partial particle ablation has been identified as the origin of this effect. Black-Right-Pointing-Pointer The ablation rate on Al{sub 2}O{sub 3} particles in suspension in water has been estimated. Black-Right-Pointing-Pointer We can determine the deepness of the interaction volume into the liquid.

  19. Development of an ejecta particle size measurement diagnostic based on Mie scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, Martin Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buttler, William Tillman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Frayer, Daniel K. [National Security Tech, Inc., Los Alamos, NM (United States); Grover, Michael [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.; Monfared, Shabnam Kalighi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Gerald D. [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.; Stone, Benjamin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turley, William Dale [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.

    2017-09-27

    The goal of this work is to determine the feasibility of extracting the size of particles ejected from shocked metal surfaces (ejecta) from the angular distribution of light scattered by a cloud of such particles. The basis of the technique is the Mie theory of scattering, and implicit in this approach are the assumptions that the scattering particles are spherical and that single scattering conditions prevail. The meaning of this latter assumption, as far as experimental conditions are concerned, will become clear later. The solution to Maxwell’s equations for spherical particles illuminated by a plane electromagnetic wave was derived by Gustav Mie more than 100 years ago, but several modern treatises discuss this solution in great detail. The solution is a complicated series expansion of the scattered electric field, as well as the field within the particle, from which the total scattering and absorption cross sections as well as the angular distribution of scattered intensity can be calculated numerically. The detailed nature of the scattering is determined by the complex index of refraction of the particle material as well as the particle size parameter, x, which is the product of the wavenumber of the incident light and the particle radius, i.e. x = 2rπ= λ. Figure 1 shows the angular distribution of scattered light for different particle size parameters and two orthogonal incident light polarizations as calculated using the Mie solution. It is obvious that the scattering pattern is strongly dependent on the particle size parameter, becoming more forward-directed and less polarizationdependent as the particle size parameter increases. This trend forms the basis for the diagnostic design.

  20. Dependency of tissue necrosis on gelatin sponge particle size after canine hepatic artery embolization

    International Nuclear Information System (INIS)

    Sonomura, Tetsuo; Yamada, Ryusaku; Kishi, Kazushi; Nishida, Norifumi; Yang, Ren J.; Sato, Morio

    1997-01-01

    Purpose. To determine the optimal size of gelatin sponge particles (GSPs) to produce maximum tumor necrosis with minimum side effects after canine hepatic artery embolization (HAE). Methods. GSPs were separated into four size ranges: A, up to 200 μm (mean 152) as Gelfoam powder; B, 200-500 μm (mean 336) as Gelfoam powder; C, 500-1000 μm (mean 649) as Spongel; and D, 1000-2000 μm (mean 1382) as Spongel. Three mongrel dogs were assigned randomly to HAE with each particle size. On day 7 after HAE, the livers were removed and subjected to pathological examination. Results. The mean volume of liver necrosis was 11% after embolization, with particle size A, 36.3% with B, 0% with C, and 1% with D. Coagulation necrosis was found in all livers with particles of sizes A and B, and in 1 of 6 with sizes C and D. Bile duct injury was found in five of six dogs with sizes A and B and in none with sizes C and D. Gallbladder necrosis was found in one dog with size B and pancreas necrosis in one with size A. Conclusion. GSPs of 500 μm are considered optimally effective for tissue necrosis according to this model

  1. Effect of corn silage particle size and level of soybean oil on ruminal ...

    African Journals Online (AJOL)

    To determine the effects of two corn silage particle size (coarse particle with geometric mean of 5.83 ± 2.47 mm and fine particle with geometric mean of 4.74 ± 2.74 mm) and two levels of soybean oil (0 and 4% of DM) on ruminal mat composition, distribution and consistency, four two years fistulated ruminant Zel ewes (BW ...

  2. Damping of Mechanical Waves with Styrene/Butadiene Rubber Filled with Polystyrene Particle: Effects of Particles Size and Wave Frequency

    Directory of Open Access Journals (Sweden)

    M. Haghgo

    2007-08-01

    Full Text Available Utilizing polymeric materials for damping mechanical waves is of great importance in various fields of applications such as military camouflage, prevention of structural vibrational energy transfer, and noise attenuation. This ability originates from segmental dynamics of chain-like polymer molecules. Damping properties of styrene-butadiene rubbercontaining 10 wt% of monosize polystyrene particles with different diameters (from 80 nm to 500 μm was investigated in the frequency range of vibration, sound, and ultrasound via dynamic mechanical thermal analysis, normalsound adsorption test, and ultrasound attenuation coefficient measurement. The obtained results indicated that for different systems, containing different sizes of polystyrene particles, the area under the damping curve does not show significant change comparing to the neat SBR in the frequency range studied. However, addition of polystyrene particles, specifically nanosized particles, resulted in emergence of a secondary glass transition temperature which could be attributed to the modified dynamics of a layer of matrix molecules near the surface of PS particles. In the range of sound frequency, 0.5 to 6.3 kHz, the maximum damping was observed for the system containing polystyrene nanoparticles. However the single damping curve of neat SBR was separated into two or even three distinct curves owing to the presence of the particles. The maximum damping in the ultrasound frequency range was found for the system containing 0.5 mm polystyrene particles. This is attributed to different contributions from matrix chains dynamics and the reflection of mechanical waves from particles-matrix interface at different frequency ranges. On other words, the increase in the glass transition temperature of the elastomeric matrix phase with increasing the mechanical wave frequency causes a reduction in the contribution from matrix chains dynamics while the contribution due to diffraction from dispersed

  3. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence

    2014-01-01

    The existence of short-chain domains in heterogeneous bimodal PDMS networks has been confirmed visually, for the first time, through confocal fluorescence microscopy. The networks were prepared using a controlled reaction scheme where short PDMS chains were reacted below the gelation point...... bimodal networks with short-chain domains within a long-chain network. The average sizes of the short-chain domains were found to vary from 2.1 to 5.7 mm depending on the short-chain content. The visualised network structure could be correlated thereafter to the elastic properties, which were determined...... by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  4. Intercomparison of Numerical Inversion Algorithms for Particle Size Determination of Polystyrene Suspensions Using Spectral Turbidimetry

    OpenAIRE

    Glasse, Benjamin; Riefler, Norbert; Fritsching, Udo

    2015-01-01

    The continuous monitoring of the particle size distribution in particulate processes with suspensions or emulsions requires measurement techniques that can be used as in situ devices in contrast to ex situ or laboratory methods. In this context, for the evaluation of turbidimetric spectral measurements, the application of different numerical inversion algorithms is investigated with respect to the particle size distribution determination of polystyrene suspensions. A modified regularization c...

  5. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  6. Faecal particle-size distribution from ewes fed grass silages harvested at different stages of maturity

    DEFF Research Database (Denmark)

    Jalali, Alireza; Nørgaard, Peder; Nadeau, E.

    2008-01-01

    The aim of this experiment was to study the effect of maturity stage of grass at harvest on particle size in faeces from ewes fed grass silage ad libitum. Eighteen pregnant Swedish ewes bearing two foetuses were given one of three treatments as their only feed. The treatments were early (ECS...... pore size. The proportions of particles in the B, C, D, S and O fractions were affected by cutting time of the silaage (P ewes fed grass silages....

  7. Effects of Particle Size on Palm Kernel Oil Yield under Uniaxial ...

    African Journals Online (AJOL)

    The effects of coarse and fine particle size on oil yield were studied at heating temperatures of 70, 90, 110 and 130°C and applied pressures of 6.0, 9.0, 12.0 and 15.0 MPA, respectively. The results obtained were subjected to statistical analysis using Analysis of Variance (ANOVA) and T-test. Particle size had significant ...

  8. Effects of two alfalfa preparations with different particle sizes on the gastric mucosa in weanlings

    OpenAIRE

    Vondran, Sarah; Venner, Monica; Vervuert, Ingrid

    2016-01-01

    Background: Feeding alfalfa hay is often recommended for its buffering components, like protein and calcium, to prevent lesions of the gastric mucosa in horses. Until now, there has been no information regarding the influence of alfalfa particle size on the gastric mucosa. The aim of this study was to investigate the effects of feeding two alfalfa preparations with different particle sizes (alfalfa chaff vs alfalfa pellets) in comparison with grass hay on the gastric mucosa in weanling horses...

  9. Surface particle sizes on armoured gravel streambeds: Effects of supply and hydraulics

    Science.gov (United States)

    Peter J. Whiting; John G. King

    2003-01-01

    Most gravel-bed streams exhibit a surface armour in which the median grain size of the surface particles is coarser than that of the subsurface particles. This armour has been interpreted to result when the supply of sediment is less than the ability of the stream to move sediment. While there may be certain sizes in the bed for which the supply is less than the...

  10. Effects of Variation of Particle Size and Weight Fraction on the ...

    African Journals Online (AJOL)

    The effects of variation of particle size and weight fraction on the tensile strength and Young's modulus of periwinkle shell reinforced polyester composite have been investigated. Particulate reinforced polyester composites incorporating varying amounts of periwinkle shell particles (10, 20, 30, 35, 40 and 45wt %) of different ...

  11. Size and chemical characterization of individual particles resulting from biomass burning of local southern California species

    Science.gov (United States)

    Philip J. Silva; Don-Yuan Liu; Christopher A. Noble; Kimberly A. Prather

    1999-01-01

    The chemical composition and size of individual particles derived from combustion products of several species found in Southern California were obtained using aerosol time-of-flight mass spectrometry. The major inorganic species observed in >90% of all biomass burning particles is potassium, indicated by the atomic ion, as well as clusters containing chloride,...

  12. Sintering of Spherical Particles of Equal and Different Size Arranged in a Body Centered Cubic Structure

    DEFF Research Database (Denmark)

    Redanz, Pia; McMeeking, R. M.

    2003-01-01

    Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif...

  13. Preparation of controlled particle size U3O8 by uranyl formate precipitation and calcination

    International Nuclear Information System (INIS)

    Johnson, D.R.

    1978-11-01

    A conceptual process flowsheet for preparation of U 3 O 8 by precipitating uranyl formate monohydrate with excess formic acid and calcining it was developed and demonstrated on a laboratory scale. The product U 3 O 8 has a particle size distribution apropriate for fabrication of U 3 O 8 -Al fuel by powder metallurgy. The U 3 O 8 particles are crystalline, do not exceed 150 μm in diameter, and have a narrow particle size distribution with most particles within the range of 44 to 150 μm. A ten-fold decontamination of uranium from low-level fission products during uranyl formate precipitation was demonstrated. Minimal variations in U 3 O 8 particle size distribution as a function of various uranyl formate precipitation conditions were observed. Preliminary tests demonstrated that calcination of uranyl formate monohydrate recovered from solution by evaporation to dryness did not produce U 3 O 8 with the desired particle size distribution. Calcination of uranyl oxalate, uranous oxalate, or uranous formate also did not produce U 3 O 8 with the appropriate particle size distribution

  14. Standard Test Methods for Microscopical Sizing and Counting Particles from Aerospace Fluids on Membrane Filters

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the size distribution and quantity of particulate matter contamination from aerospace fluids isolated on a membrane filter. The microscopical techniques described may also be applied to other properly prepared samples of small particles. Two test methods are described for sizing particles as follows: 1.1.1 Test Method A—Particle sizes are measured as the diameter of a circle whose area is equal to the projected area of the particle. 1.1.2 Test Method B—Particle sizes are measured by their longest dimension. 1.2 The test methods are intended for application to particle contamination determination of aerospace fluids, gases, surfaces, and environments. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 These test methods do not provide for sizing particles smaller than 5 μm. Note 1—Results of these methods are subject to variables inherent in any statistical method. The...

  15. Permeability Evolution and Particle Size Distribution of Saturated Crushed Sandstone under Compression

    Directory of Open Access Journals (Sweden)

    Yanlong Chen

    2018-01-01

    Full Text Available In this research, the particle size distribution and permeability of saturated crushed sandstone under variable axial stresses (0, 2, 4, 8, 12, and 16 MPa were studied. X-ray Computed Tomography results revealed that particle crushing is likely to occur considerably as the axial stress is approaching 4 MPa, which results in the change of pore structure greatly. During compression, the particle size distribution satisfies the fractal condition well, and the fractal dimension of particle size distribution is an effective method for describing the particle crushing state of saturated crushed sandstone. When the axial stress increases from 0 MPa to 4 MPa, the fractal dimension of the particle size distribution increases rapidly by over 60% of the total increase (0–16 MPa, and the permeability decreases sharply by about 85% of the total decrease. These results indicate that 4 MPa is a key value in controlling the particle size distribution and the permeability of the saturated crushed sandstone under axial compression. The permeability is influenced by the initial gradation of the specimens, and a larger Talbot exponent corresponds to a larger permeability.

  16. Determination of optimum particle size in black coal flotation

    Directory of Open Access Journals (Sweden)

    Øepka Vlastimil

    2003-09-01

    Full Text Available The work deals with the preparation of bituminous coal with focus on fine grains. An increasing share of fine grains arises during mechanized mining which needs to be processed. The most widespread separation technology for processing of fine grains around the world is foam floatation. This physicochemical method of separation is used in the Czech Republic for processing coking coal with a high coalification level. Based on the coalification level, it is possible to determine the floatability of coal grains. Generally it can be said that floatability improves with increasing coalification. In this work we have tested two samples of coking coal with various coalification levels. Two mixtures of floatation agents were also used: commercial Flotakol NX and the second floatation agent - a mixture of dodecane as a collector and cyclohexanol as a frother. Both samples were classified into eight grain size groups and they were floated under the equal conditions

  17. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    Science.gov (United States)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  18. Variation of Particle Size and Pretreatment Temperature to the Crystallinity of Leucaena Leucocephala

    Directory of Open Access Journals (Sweden)

    Mohd Safaai Nor Sharliza

    2016-01-01

    Full Text Available This study was conducted in order to determine the effect of different particle size and pretreatment temperature to the crystallinity of leucaena leucocephala. The leucaena was pretreated by ionic liquid [1-ethyl-3 methylimidazolium acetate [Emim]Ac. There were three different particle sizes that have been tested in this experiment; less than 0.3 mm, 0.5 mm and 0.7 mm. In the other hand, the pretreatment temperature tested were 30°C, 60°C and 90°C. The effect of particle size and pretreatment temperature to the crystallinity of leucaena was investigated by using X-Ray Diffraction (XRD and Scanning Electron Microscopy (SEM. The crystallinity index of the sample represents the percentage of crystalline materials. A lower in the cristallinity index indicated that the material has lower crystillinity, hence give more benefit to the cellulose hydrolysis. From XRD analysis, it shows that the cristallinity index of leucaena decreased with decreasing particle size and increasing pretreatment temperature. SEM analysis also shows that the structure of leucaena has more irregular, porous and destroyed structure with decreasing particle size and increasing pretreatment temperature. Thus, the result from this experiment shows that the smaller particle size and higher pretreatment temperature would provide a more accessible surface area to enhance the cellulose hydrolysis.

  19. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour.

    Science.gov (United States)

    Savlak, Nazlı; Türker, Burcu; Yeşilkanat, Nazlıcan

    2016-12-15

    The objective of this study was to examine the effect of particle size distribution on physical, chemical and functional properties of unripe banana flour for the first time. A pure triploid (AAA group) of Musa acuminata subgroup Cavendish (°Brix;0.2, pH;4.73, titratable acidity; 0.56g/100g malic acid, total solids; 27.42%) which was supplied from Gazipaşa, Antalya, Turkey from October 2014 to October 2015 was used. Size fractions of <212, 212-315, 316-500 and 501-700μm were characterized for their physical, functional and antioxidant properties. Particle size significantly effected color, water absorbtion index and wettability. L(∗) value decreased, a(∗) and b(∗) values decreased by increasing particle size (r(2)=-0.94, r(2)=0.72, r(2)=0.73 respectively). Particles under 212μm had the lowest rate of wettability (83.40s). A negative correlation between particle size and wettability (r(2)=-0.75) and positive correlation between particle size and water absorption index (r(2)=0.94) was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of particle size distribution on the rheology of oil-coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hao, L.; Wang, Y.; Xiong, C. [China University of Mining and Technology, Beijing (China)

    2007-02-15

    The rheological behaviour of Shenhua coal-oil slurry was studied as a function of solids concentration, particle size and size distribution. At a certain particle size distribution the apparent viscosity of coal slurry increases with the increase of solid concentration. Coal slurries were found to exhibit a wide spectrum of flow behaviour ranging from Newtonian at low concentrations to shear-thinning and pseudoplastic with a yield stress at higher concentrations. By adding a narrow-sized coarse coal fraction to the finer coal slurry, a flow characteristics optimum coarse-to-fine particle ratio of 40:60 exists at which the slurry is Newtonian. The significant improvement in the rheological behavior with changing the particle size distribution may be explained in terms of spatial rearrangement of the particles and apparent dilution effect. The results indicate that, with a careful control of the particle size distribution, it is possible to prepare an optimum oil-coal slurry which has a low viscosity but with high solids loadings. 10 refs., 4 figs., 3 tabs.

  1. Influence of particle size on non-Darcy seepage of water and sediment in fractured rock.

    Science.gov (United States)

    Liu, Yu; Li, Shuncai

    2016-01-01

    Surface water, groundwater and sand can flow into mine goaf through the fractured rock, which often leads to water inrush and quicksand movement. It is important to study the mechanical properties of water and sand in excavations sites under different conditions and the influencing factors of the water and sand seepage system. The viscosity of water-sand mixtures under different particle sizes, different concentration was tested based on the relationship between the shear strain rate and the surface viscosity. Using the self-designed seepage circuit, we tested permeability of water and sand in fractured rock. The results showed that (1) effective fluidity is in 10 -8 -10 -5  m n+2  s 2-n /kg, while the non-Darcy coefficient ranges from 10 5 to 10 8  m -1 with the change of particle size of sand; (2) effective fluidity decreases as the particle size of sand increased; (3) the non-Darcy coefficient ranges from 10 5 to 10 8  m -1 depending on particle size and showed contrary results. Moreover, the relationship between effective fluidity and the particle size of sand is fitted by the exponential function. The relationship between the non-Darcy coefficient and the particle size of sand is also fitted by the exponential function.

  2. Estimation of particle size and initial growth kinetics of asphaltene particles using spectral analysis of reservoir fluid

    Energy Technology Data Exchange (ETDEWEB)

    Jamaluddin, A.; Joshi, N.; Mullins, O. [Schlumberger Canada Ltd., Calgary, AB (Canada); Creek, J. [Chevron Canada Resources, Calgary, AB (Canada); McFadden, J. [BHD Petroleum, Calgary, AB (Canada)

    2002-06-01

    One of the challenges facing heavy oil reservoir management and production operations is to minimize the impact of asphaltene deposition, the most aromatic and heaviest fraction of a crude oil. A study was conducted in which both fixed wavelength near infrared (NIR) and variable wavelength spectral analysis methods were applied to two individual crude oil samples obtained from one reservoir. The objective was to assess asphaltene properties. The samples were collected using 2 different sampling chambers and techniques. Both were homogenized and treated identically. The macroscopic properties of both samples were similar, but the microscopic asphaltene particle properties varied significantly in the asphaltene particle size, as did the formation kinetics between the 2 samples. The paper also presented estimates of asphaltene particle size and initial growth kinetics from the acquired data. The properties were used to determine the basic differences between fluid samples collected using different techniques. 14 refs., 1 tab., 9 figs.

  3. Estimation of Drug Particle Size in Intact Tablets by 2-Dimensional X-Ray Diffractometry.

    Science.gov (United States)

    Thakral, Seema; Thakral, Naveen K; Suryanarayanan, Raj

    2018-01-01

    The average grain size of a crystalline material can be determined from the γ-profile of Debye rings in 2-dimensional X-ray diffraction frames. Our objectives were to: (1) validate the method for organic powders and use it to determine the grain size in intact tablets, and (2) demonstrate the pharmaceutical application of this technique by determining the grain size of the active pharmaceutical ingredient in marketed formulations. Six sieve fractions of sucrose were prepared and the particle size distribution was confirmed by laser diffraction. Their average grain size was determined from the 2-dimensional X-ray diffraction frames by the γ-profile method. For particles size determined by the 3 methods were in good agreement. When these particles were compressed, there was no discernible change in the sucrose grain size in tablets. When the particles were >250 μm, compression resulted in a mixture of large grains and fine powder. The grain size of acetaminophen in 11 marketed tablet formulations was determined to be either ∼35 μm or ∼80 μm. This nondestructive technique can therefore be potentially useful to estimate the grain size of crystalline formulation components in intact tablets. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Particle size distribution and gas-particle partitioning of polychlorinated biphenyls in the atmosphere in Beijing, China.

    Science.gov (United States)

    Zhu, Qingqing; Zheng, Minghui; Liu, Guorui; Zhang, Xian; Dong, Shujun; Gao, Lirong; Liang, Yong

    2017-01-01

    Size-fractionated samples of urban particulate matter (PM; ≤1.0, 1.0-2.5, 2.5-10, and >10 μm) and gaseous samples were simultaneously obtained to study the distribution of polychlorinated biphenyls (PCBs) in the atmosphere in Beijing, China. Most recent investigations focused on the analysis of gaseous PCBs, and much less attention has been paid to the occurrence of PCBs among different PM fractions. In the present study, the gas-particle partitioning and size-specific distribution of PCBs in atmosphere were investigated. The total concentrations (gas + particle phase fractions) of Σ 12 dioxin-like PCBs, Σ 7 indicator PCBs, and ΣPCBs were 1.68, 42.1, and 345 pg/m 3 , respectively. PCBs were predominantly in the gas phase (86.8-99.0 % of the total concentrations). The gas-particle partition coefficients (K p ) of PCBs were found to be a significant linear correlated with the subcooled liquid vapor pressures (P L 0 ) (R 2  = 0.83, P gas-particle partitioning of PCBs was affected both by the mechanisms of adsorption and absorption. In addition, the concentrations of PCBs increased as the particle size decreased (>10, 2.5-10, 1.0-2.5, and ≤1.0 μm), with most of the PCBs contained in the fraction of ≤1.0 μm (53.4 % of the total particulate concentrations). Tetra-CBs were the main homolog in the air samples in the gas phase and PM fractions, followed by tri-CBs. This work will contribute to the knowledge of PCBs among different PM fractions and fill the gap of the size distribution of particle-bound dioxin-like PCBs in the air.

  5. Gas-solute dispersivity ratio in granular porous media as related to particle size distribution and particle shape

    DEFF Research Database (Denmark)

    Pugliese, Lorenzo; Poulsen, Tjalfe; Straface, Salvatore

    2013-01-01

    Measurements of solute dispersion in porous media is generally much more time consuming than gas dispersion measurements performed under equivalent conditions. Significant time savings may therefore, be achieved if solute dispersion coefficients can be estimated based on measured gas dispersion...... data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O2 and NaCl as gas and solute tracers, respectively. Three...... different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined...

  6. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.

    Science.gov (United States)

    Fujii, Syuji; Matsuzawa, Soichiro; Hamasaki, Hiroyuki; Nakamura, Yoshinobu; Bouleghlimat, Azzedine; Buurma, Niklaas J

    2012-02-07

    A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully

  7. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    Science.gov (United States)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  8. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  9. Synthesis and study of properties of dental resin composites with different nanosilica particles size.

    Science.gov (United States)

    Karabela, Maria M; Sideridou, Irini D

    2011-08-01

    The aim of this work was the synthesis of light-cured resin nanocomposites using nanosilica particles with different particle size and the study of some physical-mechanical properties of the composites. Various types of silica nanoparticles (Aerosil) with average particle size of 40, 20, 16, 14, and 7 nm, used as filler were silanized with the silane 3-methacryloxypropyl-trimethoxysilane (MPS). The total amount of silane used was kept constant at 10 wt% relative to the filler weight to ensure the complete silanization of nanoparticles. The silanizated silica nanoparticles were identified by FT-IR spectroscopy and thermogravimetric analysis (TGA). Then the silanized nanoparticles (55 wt%) were mixed with a photoactivated Bis-GMA/TEGDMA (50/50 wt/wt) matrix. Degree of conversion of composites was determined by FT-IR analysis. The static flexural strength and flexural modulus were measured using a three-point bending set up. The dynamic thermomechanical properties were determined by dynamic mechanical analyzer (DMA). Sorption, solubility and volumetric change were determined after storage of composites in water or ethanol/water solution 75 vol% for 30 days. The TGA for composites was performed in nitrogen atmosphere from 30 to 700 °C. As the average silica particle size decreases, the percentage amount of MPS attached on the silica surface increases. However, the number of MPS molecules attached on the silica surface area of 1 nm(2) is independent of filler particle size. As the average filler particles size decreases a progressive increase in the degree of conversion of composites and an increase in the amount of sorbed water is observed. The prepared composites containing different amount of silica filler, with different particle size, but with the same amount of silanized silica and organic matrix showed similar flexural strength and flexural modulus, except composite with the lowest filler particle size, which showed lower flexural modulus. Copyright © 2011

  10. Reconstruction of particle size distributions and anisometry in polydisperse systems by the small-angle scattering method

    International Nuclear Information System (INIS)

    Plavnik, G.M.

    1986-01-01

    A technique to obtain particle size distributions from small-angle scattering data is suggested. It is applicable to systems of particles of arbitrary but identical shape, roughly equiaxial particles of various shapes, and particles of unknown shape. The procedure involved in the determination of the micropore sizes in Pt+Al 2 O 3 catalysts is demonstrated. (author)

  11. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    Science.gov (United States)

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  12. Saturn's rings through a microscope - Particle size constraints from the Voyager PPS scan

    Science.gov (United States)

    Showalter, Mark R.; Nicholson, Philip D.

    1990-01-01

    The Voyager-2 photopolarimeter PPS experiment obtained the highest resolution of any ring observation of Saturn, profiling the variation of optical depth in radial steps of about 100 meters. A detailed treatment of the PPS statistics is presented here, and it is shown how these statistics can be related to the particle size distribution. An expression for the excess noise in the scan due to large particles is obtained, and the observed noise is used to constrain the upper end of the size distribution through the rings. It is shown that the Cassini Division and the C Ring have the smallest proportion of large particles, while the A ring has the largest proportion.

  13. Influence of removal time and particle size on the particle substrate adhesion force

    Directory of Open Access Journals (Sweden)

    M. A. Felicetti

    2008-03-01

    Full Text Available An investigation was conducted on influence of removal time on the particle substrate adhesive force. The centrifuge technique was used to determine the adhesion force at different compression and removal rates. A microcentrifuge with a maximum rotation of 14000 rpm was used to both compress upon particles and remove them from the surface of the substrate. An image analysis program (Image-Pro Plus 4.5 was employed to monitor the number of particles adhering to and removed from the surface of the substrate after each increase in angular speed. The influence of removal time on the adhesion force was investigated, using removal times of 1, 3 and 5 minutes, which indicated that removal time does not interfere with the adhesion force within the diameter range analyzed here.

  14. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  15. Compressibility and tablet forming ability of bimodal granule mixtures: Experiments and DEM simulations.

    Science.gov (United States)

    Nordström, Josefina; Alderborn, Göran; Frenning, Göran

    2018-04-05

    Compressibility and tablet forming ability (compactibility) of bimodal mixtures of differently sized granules formed from microcrystalline cellulose were studied experimentally and numerically with the discrete element method (DEM). Compression data was analysed using the Kawakita equation. A multi-body contact law that accounts for contact dependence resulting from plastic incompressibility/geometric hardening was used in the DEM simulations. The experimental Kawakita a and 1/b parameters both depended non-monotonically on composition (weight fraction of large particles). For the a parameter, this dependence was explained by variations in the porosity of the initial granule beds; for the 1/b parameter, other factors were found to be of importance as well. The numerical results generally compared favourably with the experiments, demonstrating the usefulness of the DEM at high relative densities, provided that a suitable multi-particle contact model is used. For all mixtures, the tensile strength of the formed tablets increased with increasing applied pressure. The tensile strength generally decreased with increasing fraction of large particle, and this decrease was more rapid for large differences in particle size. A possible interpretation of these findings was proposed, in terms of differences in lateral support of small particles in the vicinity of large particles. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. [Size distribution of particle and polycyclic aromatic hydrocarbons in particle emissions from simulated emission sources].

    Science.gov (United States)

    Fu, Hai-Huan; Tian, Na; Shang, Hui-Bin; Zhang, Bin; Ye, Su-Fen; Chen, Xiao-Qiu; Wu, Shui-Ping

    2014-01-01

    Particles from cooking lampblack, biomass and plastics burning smoke, gasoline vehicular exhausts and gasoline generator exhausts were prepared in a resuspension test chamber and collected using a cascade MOUDI impactor. A total of 18 polycyclic aromatic hydrocarbons (PAHs) associated with particles were analyzed by GC-MS. The results showed that there were two peaks in the range of 0.44-1.0 microm and 2.5-10 microm for cooking lampblack, and only one peak in the range of 0.44-1.0 microm for straw and wood burning smoke. But there were no clear peak for plastics burning smoke. The peak for gasoline vehicular exhausts was found in the range of 2.5-10 microm due to the influence of water vapor associated with particles, while the particles from gasoline generator exhausts were mainly in the range of < or = 2.5 microm (accounting for 93% of the total mass). The peak in 2.5-10 microm was clear for cooking lampblack and gasoline vehicular exhausts. The peak in the range of 0.44-1.0 microm became more and more apparent with the increase of PAHs molecular weight. The fraction of PAH on particles less than 1.0 microm to that on the total particles increased along with PAH's molecular weight. Phenanthrene was the dominant compound for cooking lampblack and combustion smoke, while gasoline vehicular exhausts and generator exhausts were characterized with significantly high levels of naphthalene and benzo[g, h, i] perylene, respectively. The distribution of source characteristic ratios indicated that PAHs from cooking lampblack and biomass burning were close and they were different from those of vehicular exhausts and generator exhausts.

  17. Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process

    Directory of Open Access Journals (Sweden)

    Nicolas Vogel

    2011-08-01

    Full Text Available The benefits of miniemulsion and emulsion polymerization are combined in a seeded emulsion polymerization process with functional seed particles synthesized by miniemulsion polymerization. A systematic study on the influence of different reaction parameters on the reaction pathway is conducted, including variations of the amount of monomer fed, the ratio of initiator to monomer and the choice of surfactant and composition of the continuous phase. Critical parameters affecting the control of the reaction are determined. If carefully controlled, the seeded emulsion polymerization with functional seed particles yields monodisperse particles with adjustable size and functionalities. Size-adjusted platinum-acetylacetonate containing latex particles with identical seed particles and varied shell thicknesses are used to produce arrays of highly ordered platinum nanoparticles with different interparticle distances but identical particle sizes. For that, a self-assembled monolayer of functional colloids is prepared on a solid substrate and subsequently treated by oxygen plasma processing in order to remove the organic constituents. This step, however, leads to a saturated state of a residual mix of materials. In order to determine parameters influencing this saturation state, the type of surfactant, the amount of precursor loading and the size of the colloids are varied. By short annealing at high temperatures platinum nanoparticles are generated from the saturated state particles. Typically, the present fabrication method delivers a maximum interparticle distance of about 260 nm for well-defined crystalline platinum nanoparticles limited by deformation processes due to softening of the organic material during the plasma applications.

  18. [Experimental study on the size spectra and emission factor of ultrafine particle from coal combustion].

    Science.gov (United States)

    Sun, Zai; Yang, Wen-jun; Xie, Xiao-fang; Chen, Qiu-fang; Cai, Zhi-liang

    2014-12-01

    The emission characteristics of ultrafine particles released from pulverized coal combustion were studied, the size spectra of ultrafine particles (5.6-560 nm) were measured with FMPS (fast mobility particle sizer) on a self-built aerosol experiment platform. Meanwhile, a particle dynamic evolution model was established to obtain the particle deposition rate and the emission rate through the optimized algorithm. Finally, the emission factor was calculated. The results showed that at the beginning of particle generation, the size spectra were polydisperse and complex, the initial size spectra was mainly composed of three modes including 10 nm, 30-40 nm and 100-200 nm. Among them, the number concentration of mode around 10 nm was higher than those of other modes, the size spectrum of around 100-200 nm was lognormal distributed, with a CMD (count median diameter) of around 16 nm. Then, as time went on, the total number concentration was decayed by exponential law, the CMD first increased and then tended to be stable gradually. The calculation results showed that the emission factor of particles from coal combustion under laboratory condition was (5.54 x 10(12) ± 2.18 x 10(12)) unit x g(-1).

  19. Intermethod comparison of the particle size distributions of colloidal silica nanoparticles.

    Science.gov (United States)

    Tuoriniemi, Jani; Johnsson, Ann-Cathrin J H; Holmberg, Jenny Perez; Gustafsson, Stefan; Gallego-Urrea, Julián A; Olsson, Eva; Pettersson, Jan B C; Hassellöv, Martin

    2014-06-01

    There can be a large variation in the measured diameter of nanoparticles depending on which method is used. In this work, we have strived to accurately determine the mean particle diameter of 30-40 nm colloidal silica particles by using six different techniques. A quantitative agreement between the particle size distributions was obtained by scanning electron microscopy (SEM), and electrospray-scanning mobility particle sizer (ES-SMPS). However, transmission electron microscopy gave a distribution shifted to smaller sizes. After confirming that the magnification calibration was consistent, this was attributed to sample preparation artifacts. The hydrodynamic diameter, d h , was determined by dynamic light scattering (DLS) both in batch mode, and hyphenated with sedimentation field flow fractionation. Surprisingly the d h were smaller than the SEM, and ES-SMPS diameters. A plausible explanation for the smaller sizes found with DLS is that a permeable gel layer forms on the particle surface. Results from nanoparticle tracking analysis were strongly biased towards larger diameters, most likely because the silica particles provide low refractive index contrast. Calculations confirmed that the sensitivity is, depending on the shape of the laser beam, strongly size dependent for particles with diameters close to the visualization limit.

  20. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  1. Trends in the evolution of particle morphology with size in colluvial deposits overlying channel iron deposits

    Directory of Open Access Journals (Sweden)

    Linero Sandra

    2017-01-01

    Full Text Available Size limitations of testing equipment often impliy that samples of coarse granular materials must be scalped or scaled, to reduce the size of the constitutive particles, before they can be tested either by triaxial or direct shear in the laboratory. The objective of the investigation is to evaluate the particle shapes in a natural sample of colluvial sediments, to identify potential correlation(s between shape and size, that could impact shear strength of scaled samples. The material investigated is derived from eroded ancient sedimentary rocks from the Pilbara region of Australia. The fragments have a particle shape ranging from slabs to sub-equant blocks. The observation indicates that there is an increase in the tendency for slabshapes in larger particles. Therefore, scaling inevitably alters the characteristic shapes of the material particles as it implies substituting larger (slabs particles by smaller (sub-equant particles. Changes in particle shape distribution may induce changes in material fabric and shear strength and therefore may need to be considered when scaling samples.

  2. LDL particle number and size and cardiovascular risk: anything new under the sun?

    Science.gov (United States)

    Allaire, Janie; Vors, Cécile; Couture, Patrick; Lamarche, Benoît

    2017-06-01

    We provide here an up-to-date perspective on the potential use of LDL particle number and size as complementary risk factors to predict and manage cardiovascular disease (CVD) risk in the clinical realm. Studies show that a significant proportion of the population has discordant LDL particle number and cholesterol indices [non-HDL cholesterol (HDL-C)]. Data also show that risk prediction may be improved when using information on LDL particle number in patients with discordant particle number and cholesterol data. Yet, most of the current CVD guidelines conclude that LDL particle number is not superior to cholesterol indices, including non-HDL-C concentrations, in predicting CVD risk. LDL particle size, on the other hand, has not been independently associated with CVD risk after adjustment for other risk factors such as LDL cholesterol, triglycerides, and HDL-C and that routine use of information pertaining to particle size to determine and manage patients' risk is not yet justified. Additional studies are required to settle the debate on which of cholesterol indices and LDL particle number is the best predictor of CVD risk, and if such measures should be integrated in clinical practice.

  3. Particle size distribution in ambient air of Delhi and its statistical analysis.

    Science.gov (United States)

    Chelani, A B; Gajghate, D G; Chalapatirao, C V; Devotta, S

    2010-07-01

    Particle size distribution in ambient air has been studied in an urban city, Delhi. Different activity sites namely; kerbside, industrial and residential were selected for the study. The statistical analysis was carried out to study the frequency distribution and sources of different particle size fractions. The dominance of coarse particles attributed to local activities was observed at all the sites. It was observed that at kerbside sites, up to 52% of the particles were lower respiratory tract and up to 47% of the particles were upper respiratory tract particles. At residential and industrial sites, up to 40% and 31% were lower and upper respiratory tract particles, respectively. Factor analysis results indicated auto-exhaust as the dominant source of particulate matter at two of the kerbside sites. Resuspended dust was dominant at remaining two kerbside and residential sites. It was inferred using geometric standard deviation of particle size fractions that these were from different sources at residential and industrial site and from similar sources at three of the kerbside sites.

  4. Trends in the evolution of particle morphology with size in colluvial deposits overlying channel iron deposits

    Science.gov (United States)

    Linero, Sandra; Fityus, Stephen; Simmons, John; Lizcano, Arcesio; Cassidy, Jessica

    2017-06-01

    Size limitations of testing equipment often impliy that samples of coarse granular materials must be scalped or scaled, to reduce the size of the constitutive particles, before they can be tested either by triaxial or direct shear in the laboratory. The objective of the investigation is to evaluate the particle shapes in a natural sample of colluvial sediments, to identify potential correlation(s) between shape and size, that could impact shear strength of scaled samples. The material investigated is derived from eroded ancient sedimentary rocks from the Pilbara region of Australia. The fragments have a particle shape ranging from slabs to sub-equant blocks. The observation indicates that there is an increase in the tendency for slabshapes in larger particles. Therefore, scaling inevitably alters the characteristic shapes of the material particles as it implies substituting larger (slabs) particles by smaller (sub-equant) particles. Changes in particle shape distribution may induce changes in material fabric and shear strength and therefore may need to be considered when scaling samples.

  5. The effect of particles in different sizes on the mechanical properties of spray formed steel composites

    DEFF Research Database (Denmark)

    Petersen, Kenneth; Pedersen, A. S.; Pryds, N.

    2000-01-01

    National Laboratory, Denmark, where composites with a low alloyed boron steel (0.2 wt.% carbon) matrix containing alumina particles were produced. A comparison between cast hot-rolled material without particles, spray formed material without particles and the spray formed composites with an average ceramic......The main objective of the work was to investigate the effect of addition of ceramic particles with different size distributions on the mechanical properties, e.g. wear resistance and tensile strength, of spray formed materials. The experiments were carried out in a spray-forming unit at Risø...

  6. The IBAS image analyser and its use in particle size measurement

    International Nuclear Information System (INIS)

    Snelling, K.W.

    1984-10-01

    The Kontron image analyser (IBAS) is used at Winfrith primarily for size analysis of aerosol particles. The system incorporates two computers, IBAS 1 for system communication and control, and IBAS 2 containing the main image memories. The first is accessed via a keyboard or digitiser tablet, and output can be displayed on a monitor or in printed form. The contents of the image memories are displayed on a colour monitor. Automatic image analysis is described, with typical applications, including the measurement of monodisperse particles, sodium fire aerosols, reactor crud particles and cadmium-silver aerosol particles. (U.K.)

  7. Optimization of solid state fermentation of sugar cane by Aspergillus niger considering particles size effect

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, J.; Rodriguez, L.J.A.; Delgado, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba)); Espinosa, M.E. (Centro Nacional de Investigaciones Cientificas, La Habana (Cuba))

    1991-01-01

    The protein enrichment of sugar cane by solid state fermentation employing Aspergillus niger was optimized in a packed bed column using a two Factor Central Composit Design {alpha} = 2, considering as independent factors the particle diameter corresponding to different times of grinding for a sample and the air flow rate. It was significative for the air flow rate (optimum 4.34 VKgM) and the particle diameter (optimum 0.136 cm). The average particle size distribution, shape factor, specific surface, volume-surface mean diameter, number of particles, real and apparent density and holloweness for the different times of grinding were determined, in order to characterize the samples. (orig.).

  8. Determination of particle size distribution of salt crystals in aqueous slurries

    International Nuclear Information System (INIS)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 μm size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 μm in size. 19 figures

  9. Limestone particle size and artificial light for laying hens in the second laying cycle

    Directory of Open Access Journals (Sweden)

    Alexsandro Nunes de Oliveira

    2013-07-01

    Full Text Available The experiment was conducted to evaluate the effects of limestone particle size and the use of artificial light for laying hens in the second laying cycle. We used 240 Hisex White laying hens at 82 weeks of age in a completely randomized design in a 5 × 2 factorial arrangement, resulting in 10 treatments with 4 replicates of 6 birds. The variables were the five particle sizes obtained by increasing the proportion of thick limestone (0, 25, 50, 75 and 100% compared with thin limestone and two lighting programs: with and without artificial light. Limestone particle size and light did not affect performance or egg quality. However, there were changes in bird feeding schedule throughout the day as a response to the lighting program. Bone quality, density and mineral content of the tibia were not affected by the treatments, but limestone particle size had a quadratic effect of on bone deformity and strength, obtaining maximum inclusion points with 63% and 59% of thick limestone, respectively. The use of large particles of limestone in the diet and the use of a lighting program does not influence the performance and quality of the eggs of laying hens in the second production cycle, but the use of a proportion of 63.3 g of average particle size (0.60 mm replacing the fine limestone (0.23 mm per 100 g of total limestone added to the diet improves bone quality in these birds.

  10. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  11. Fabrication and Application of Mono-sized Spherical Micro Particles by Pulsated Orifice Ejection Method

    Directory of Open Access Journals (Sweden)

    DONG Wei

    2018-02-01

    Full Text Available A novel technology called pulsated orifice ejection method(POEM and used for preparing mono-sized and high-precision spherical micro particles was introduced in this article. The working principle of the technique was illustrated and it was in two modes:low-melting point diaphragm mode and high-melting point rod mode, depending on the different melting points of materials. The particles prepared by POEM have the advantages of mono-sized, uniform and controllable particle size, high sphericity, and consistent thermal history. By introducing the application of particles prepared by this method, showing the huge application prospects of this technology in electronic packaging, bioengineering, micro-fabrication, rapid solidification analysis of metal droplets, additive manufacturing and so on.With the development of POEM, this technology is predicted to have wider prospects due to its unique characteristics.

  12. The effect of abrasive particle size on the wear behaviour of metal matrix composites

    International Nuclear Information System (INIS)

    Sahin, Y.; Ozdin, K.

    2004-01-01

    The effect of abrasive particle size on the wear behavior of the SiC particle-reinforced aluminium composites produced by liquid metallurgy was investigated under different sizes of SiC grits at a fixed speed. The results show that the wear loss of composite was considerably lower than that of aluminium alloy. The wear loss increased linearly with sliding distance for both materials, but indicating a considerable difference. It increased with increasing SiC abrasive particles. Moreover, SEM examination indicates that abrasive wear observed for the matrix alloy. The depth of wear grooves decreased with decreasing the abrasive particle size and load. For the composites, wear surfaces were found to be a quite smooth indicating that no abrasive grooves appeared

  13. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, H.P.

    1992-10-01

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  14. Size controlled hydroxyapatite and calcium carbonate particles: synthesis and their application as templates for SERS platform.

    Science.gov (United States)

    Parakhonskiy, B V; Svenskaya, Yu I; Yashchenok, A М; Fattah, H A; Inozemtseva, O A; Tessarolo, F; Antolini, R; Gorin, D A

    2014-06-01

    An elegant route for hydroxyapatite (HA) particle synthesis via ionic exchange reaction is reported. Calcium carbonate particles (CaCO3) were recrystallized into HA beads in water solution with phosphate ions. The size of initial CaCO3 particles was controlled upon the synthesis by varying the amount of ethylene glycol (EG) in aqueous solution. The average size of HA beads ranged from 0.6±0.1 to 4.3±1.1μm. Silver nanoparticles were deposited on the surface of HA and CaCO3 particles via silver mirror reaction. Surface enhanced Raman scattering of silver functionalized beads was demonstrated by detecting Rhodamine B. CaCO3 and HA particles have a great potential for design of carrier which can provide diagnostic and therapeutic functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of fuel particles' size variations on multiplication factor in pebble-bed nuclear reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2005-01-01

    The pebble-bed reactor (Pbr) spherical fuel element consists of two radial zones: the inner zone, in which the fissile material in form of the so-called TRISO particles is uniformly dispersed in graphite matrix and the outer zone, a shell of pure graphite. A TRISO particle is composed of a fissile kernel (UO 2 ) and several layers of carbon composites. The effect of TRISO particles' size variations and distance between them on PBR multiplication factor is studied using MCNP code. Fuel element is modelled in approximation of a cubical unit cell with periodic boundary condition. The multiplication factor of the fuel element depends on the size of the TRISO particles due to resonance self-shielding effect and on the inter-particle distance due to inter-kernel shadowing. (author)

  16. A simple algorithm for measuring particle size distributions on an uneven background from TEM images

    DEFF Research Database (Denmark)

    Gontard, Lionel Cervera; Ozkaya, Dogan; Dunin-Borkowski, Rafal E.

    2011-01-01

    Nanoparticles have a wide range of applications in science and technology. Their sizes are often measured using transmission electron microscopy (TEM) or X-ray diffraction. Here, we describe a simple computer algorithm for measuring particle size distributions from TEM images in the presence...... application to images of heterogeneous catalysts is presented....

  17. Variations in Tropospheric Submicron Particle Size Distributions Across the European Continent 2008–2009

    Czech Academy of Sciences Publication Activity Database

    Beddows, D.C.S.; Dall’Osto, M.; Harrison, R.M.; Kulmala, M.; Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.M.; Sellegri, K.; Birmili, W.; Bukowiecki, N.; Weingartner, E.; Baltensperger, U.; Ždímal, Vladimír; Zíková, Naděžda; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Feibig, M.; Kivekäs, N.; Swietlicki, E.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P.P.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; O'Dowd, C.; Jennings, S.G.; Flentje, H.; Meinhardt, F.; Ries, L.; Denier van der Gon19, H.A.C.; Visschedijk, A.J.H.; Swietlicki, E.

    2014-01-01

    Roč. 14, č. 8 (2014), s. 4327-4348 ISSN 1680-7316 EU Projects: European Commission(XE) 36833 - EUCAARI; European Commission(XE) 26140 - EUSAAR Institutional support: RVO:67985858 Keywords : particle size distribution * clusters * aerosol size distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.053, year: 2014

  18. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements

    NARCIS (Netherlands)

    Nicolet, Anais; Meli, Felix; van der Pol, Edwin; Yuana, Yuana; Gollwitzer, Christian; Krumrey, Michael; Cizmar, Petr; Buhr, Egbert; Petry, Jasmine; Sebaihi, Noham; de Boeck, Bert; Fokkema, Vincent; Bergmans, Rob; Nieuwland, Rienk

    2016-01-01

    In future, measurements of extracellular vesicles in body fluids could become a standard diagnostic tool in medicine. For this purpose, reliable and traceable methods, which can be easily applied in hospitals, have to be established. Within the European Metrological Research Project (EMRP)

  19. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Mantlíková, Alice; Nižňanský, D.; Kubíčková, Simona; Vejpravová, Jana

    2016-01-01

    Roč. 28, č. 20 (2016), 1-11, č. článku 206004. ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : magnetic nanoparticles * single-particle anisotropy * dipolar energy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016

  20. Systematical investigation of a combinative particle size reduction technology for production of resveratrol nanosuspensions.

    Science.gov (United States)

    Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P

    2017-07-01

    Nanosizing is frequently used as formulation approach to increase the bioavailability of poorly water-soluble drugs. However, standard size reduction processes can be relatively time-consuming. It was found that the modification of the physical properties of a starting material by means of spray-drying can be used to improve the effectiveness of a subsequently performed high pressure homogenization. Such a process belongs to the combinative particle size reduction methods and is also referred to as H 42 process. Based on previous studies, it was hypothesized that the improved efficiency was a result of reduced crystallinity of the modified drug. The present study was conducted in order to asses this hypothesis in a systematical manner by applying design of experiment (DoE) principles. Resveratrol was selected as model compound for this study. It was processed by both standard high pressure homogenization and by a combinative particle size reduction process (the H42 process). An optimized resveratrol/surfactant ratio for the spray-dried intermediate was identified by using the response-surface methodology. The optimization led to a nanosuspension with a mean particle size of 192 nm, which is much smaller than the mean particle size of 569 nm when standard high pressure homogenization was used. Both predominately crystalline and predominately amorphous solids resulted from the spray-drying process. In contrast to the initial hypothesis, the smallest particle sizes were achieved by processing predominately crystalline intermediate with high pressure homogenization.

  1. Effect of size polydispersity versus particle shape in dense granular media.

    Science.gov (United States)

    Nguyen, Duc-Hanh; Azéma, Emilien; Radjai, Farhang; Sornay, Philippe

    2014-07-01

    We present a detailed analysis of the morphology of granular systems composed of frictionless pentagonal particles by varying systematically both the size span and particle shape irregularity, which represent two polydispersity parameters of the system. The microstructure is characterized in terms of various statistical descriptors such as global and local packing fractions, radial distribution functions, coordination number, and fraction of floating particles. We find that the packing fraction increases with the two parameters of polydispersity, but the effect of shape polydispersity for all the investigated structural properties is significant only at low size polydispersity where the positional and/or orientational ordering of the particles prevail. We focus in more detail on the class of side/side contacts, which is the interesting feature of our system as compared to a packing of disks. We show that the proportion of such contacts has weak dependence on the polydispersity parameters. The side- side contacts do not percolate but they define clusters of increasing size as a function of size polydispersity and decreasing size as a function of shape polydispersity. The clusters have anisotropic shapes but with a decreasing aspect ratio as polydispersity increases. This feature is argued to be a consequence of strong force chains (forces above the mean), which are mainly captured by side-side contacts. Finally, the force transmission is intrinsically multiscale, with a mean force increasing linearly with particle size.

  2. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.

    Science.gov (United States)

    Singh, P; Nanda, A

    2014-06-01

    A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Reduced Particle size of plant material does not stimulate decomposition but affects the microbivorous microfauna

    DEFF Research Database (Denmark)

    Vestergaard, Peter; Rønn, Regin; Christensen, Søren

    2001-01-01

    The influence of the size of plant litter particles on substrate induced respiration (SIR), inorganic N, respiration activity, protozoa and nematodes in soil was analysed. Finely ground (... in soils amended with the large pieces on nine out of 10 occasions. Microbial biomass measured as SIR was significantly higher in soils with maize than in those amended with barley, but no effect of particle size was observed (three-way ANOVA, P... barley (three-way ANOVA, Pparticle size can be related to their life strategies: protozoa are numerous and have restricted mobility whereas nematodes are larger, with more mobility towards resources....

  4. Aerosol concentration and particle size distributions in underground excavations of a hard coal mine.

    Science.gov (United States)

    Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł

    2017-09-01

    Deposition of aerosols in the respiratory system depends inter alia on their size and the respiratory tract deposition is appreciable for nanometer-sized particles. This article presents the results of measurements of size distributions of aerosols in the range of several nanometers up to about 20 μm in the underground mine excavations of an active hard coal mine. The study included practically all particles of a respirable fraction. The results showed that a high concentration of fine and ultrafine aerosols occurs in key underground workplaces especially during mining machine operations, although their contribution to total mass concentration is usually negligible.

  5. Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations

    Science.gov (United States)

    Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio

    2018-03-01

    We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.

  6. Effect of particle size of rice flour on physical and sensory properties of Sel-roti.

    Science.gov (United States)

    Subba, Dilip; Katawal, Surendra Bahadur

    2013-02-01

    Sel-roti is a delicious, deep-fat fried, puffed, ring shaped spongy doughnut like Nepalese indigenous food prepared from the batter of rice flour, ghee and sugar. A study was conducted to determine the effect of particle size of rice flour on bulk density, oil uptake and texture of Sel-roti. Rice was soaked in water and ground with the help of iron mortar and pestle and the flour was analyzed for particle size distribution by using standard sieves and separated into three particle size categories as coarse (> 890 u), medium (120-890 u) and fine (rice flour of different particle sizes were mixed in different proportions and Sel-roti was prepared from these flours. Bulk density and oil uptake were determined and sensory test was carried out. The results showed significant good positive correlation between mean particle size and bulk density (r = 0.97, p ≤ 0.05) and a good negative correlation between mean particle size and oil-uptake (r = 0.90, p ≤ 0.05). Good positive correlation of mean particle size with texture attributes like hardness (r = 0.99, p ≤ 0.05) and fracturability (r = 0.96, p ≤ 0.05) and good negative correlation with smoothness (r  = -0.97, p ≤ 0.05), cohesiveness (r = -0.92, p ≤ 0.05), stickiness (r = -0.76, p ≤ 0.05) and oily mouth feel (r = -0.85, p ≤ 0.05) and fair positive correlation with chewiness (r = 0.65, p > 0.05) were found.

  7. Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; van der Mei, HC; Busscher, HJ

    2001-01-01

    Particle size was found to be an important factor in air bubble-induced detachment of colloidal particles from collector surfaces in a parallel plate flow chamber and generally polystyrene particles with a diameter of 806 nm detached less than particles with a diameter of 1400 nm. Particle

  8. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: Size distribution characteristics and size-resolved gas-particle partitioning

    Science.gov (United States)

    Yu, Huan; Yu, Jian Zhen

    2012-07-01

    Size distributions of thirteen polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and organic carbon (OC) in the range of 0.01-18 μm were measured using a nano Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) in an urban location in Guangzhou, China in July 2006. PAH size distributions were fit with five modes and the respective mass median aerodynamic diameters (MMAD) are: Aitken mode (MMAD: ˜0.05 μm), three accumulation modes AMI, AMII, AMIII (MMAD: 0.13-0.17 μm, 0.4-0.45 μm, and 0.9-1.2 μm, respectively), and coarse mode (MMAD: 4-6 μm). Seven-ring PAH was mainly in AMII and AMIII. Five- and six-ring PAHs were found to be abundant in all the three AM. Three- and four-ring PAHs had a significant presence in the coarse mode in addition to the three AM. Size-resolved gas-particle partition coefficients of PAHs (Kp) were estimated using measured EC and OC data. The Kp values of a given PAH could differ by a factor of up to ˜7 on particles in different size modes, with the highest Kp associated with the AMI particles and the lowest Kp associated with the coarse mode particles. Comparison of calculated overall Kp with measured Kp values in Guangzhou by Yang et al. (2010) shows that adsorption on EC appeared to be the dominant mechanism driving the gas-particle partitioning of three- and four-ring PAHs while absorption in OM played a dominant role for five- and six-ring PAHs. The calculated equilibrium timescales of repartitioning indicate that five- to seven-ring PAHs could not achieve equilibrium partitioning within their typical residence time in urban atmospheres, while three- and four-ring PAHs could readily reach new equilibrium states in particles of all sizes. A partitioning flux is therefore proposed to replace the equilibrium assumption in modeling PAH transport and fate.

  9. The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Zia-ul-Mustafa M.

    2014-07-01

    Full Text Available Intumescent Fire retardant coatings (IFRC’s are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP as acid source, expandable graphite (EG as carbon source, melamine (MEL as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm.

  10. Mean size among the particles of short-lived radon daughter products in the atmosphere

    International Nuclear Information System (INIS)

    Nakatani, S.

    1980-01-01

    The diffusion-battery method is used to classify the radioactive particles according to their sizes. The diffusion coefficient is determined from the fractional penetration of the particles through the battery. Particle radii are derived from the diffusion coefficients with the Stokes-Cunningham-Millikan formula. At the exit and entrance of the battery, individual concentrations of radon daughter products 218 Po, 214 Pb, 214 Bi are determined. Thus the mean sizes of individual radon daughters can be obtained from the fractional penetration of individual nuclides through the diffusion battery. Despite large statistical fluctuations the mean size of 214 Bi is always shifted toward the larger size region as compared with those of other radionuclides

  11. Modification of cotton fabric with temperature/pH responsive hydrogel: influence of particles size

    Science.gov (United States)

    Štular, D.; Tomšič, B.; Simončič, B.; Jerman, I.; Mihelčič, M.; Čolović, M.

    2017-10-01

    In this study, smart stimuli responsive cotton fabric was tailored by incorporation of temperature and pH responsive hydrogel with two different hydrogel particle size ranges, namely microgel and nanogel. Both hydrogels were based on temperature responsive poly(N-isopropylacrylamide) (poly-NiPAAm) and pH responsive chitosan (PNCS hydrogel). Hydrogels were incorporated onto cotton fabric, in order to study the influence of hydrogel particle size on the stimuli responsive properties, as well as morphological and chemical changes. Regardless of hydrogel particle size, improved air and moisture management activity of the functionalised fabric was achieved. Reduced size of nanogel somewhat influenced swelling ability of the functionalised fabric, although regardless of 4-times smaller concentration of applied hydrogel, comparable responsiveness and great decrease of stiffness was achieved.

  12. Analysis of tecniques for measurement of the size distribution of solid particles

    Directory of Open Access Journals (Sweden)

    F. O. Arouca

    2005-03-01

    Full Text Available Determination of the size distribution of solid particles is fundamental for analysis of the performance several pieces of equipment used for solid-fluid separation. The main objective of this work is to compare the results obtained with two traditional methods for determination of the size grade distribution of powdery solids: the gamma-ray attenuation technique (GRAT and the LADEQ test tube technique. The effect of draining the suspension in the two techniques used was also analyzed. The GRAT can supply the particle size distribution of solids through the monitoring of solid concentration in experiments on batch settling of diluted suspensions. The results show that use of the peristaltic pump in the GRAT and the LADEQ methods produced a significant difference between the values obtained for the parameters of the particle size model.

  13. Gas/particle partitioning, particle-size distribution of atmospheric polybrominated diphenyl ethers in southeast Shanghai rural area and size-resolved predicting model.

    Science.gov (United States)

    Su, Peng-Hao; Tomy, Gregg T; Hou, Chun-Yan; Yin, Fang; Feng, Dao-Lun; Ding, Yong-Sheng; Li, Yi-Fan

    2018-04-01

    A size-segregated gas/particle partitioning coefficient K Pi was proposed and evaluated in the predicting models on the basis of atmospheric polybrominated diphenyl ether (PBDE) field data comparing with the bulk coefficient K P . Results revealed that the characteristics of atmospheric PBDEs in southeast Shanghai rural area were generally consistent with previous investigations, suggesting that this investigation was representative to the present pollution status of atmospheric PBDEs. K Pi was generally greater than bulk K P , indicating an overestimate of TSP (the mass concentration of total suspended particles) in the expression of bulk K P . In predicting models, K Pi led to a significant shift in regression lines as compared to K P , thus it should be more cautious to investigate sorption mechanisms using the regression lines. The differences between the performances of K Pi and K P were helpful to explain some phenomenon in predicting investigations, such as P L 0 and K OA models overestimate the particle fractions of PBDEs and the models work better at high temperature than at low temperature. Our findings are important because they enabled an insight into the influence of particle size on predicting models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Monika; Hirt, Ann M., E-mail: ann.hirt@erdw.ethz.ch [Department of Earth Sciences, Institute of Geophysics, ETH-Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Widdrat, Marc; Faivre, Damien [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam (Germany); Tompa, Éva; Pósfai, Mihály [Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprém (Hungary); Uebe, Rene; Schüler, Dirk [Department Biologie I, LMU Munich, Großhaderner Str. 2, D-82152 Martinsried (Germany)

    2014-09-28

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  15. Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan.

    Science.gov (United States)

    Fujitani, Yuji; Kumar, Prashant; Tamura, Kenji; Fushimi, Akihiro; Hasegawa, Shuich; Takahashi, Katsuyuki; Tanabe, Kiyoshi; Kobayashi, Shinji; Hirano, Seishiro

    2012-10-15

    We compared the effect of ambient temperature observed in two different seasons on the size distribution and particle number concentration (PNC) as a function of distance (up to ~250 m) from a major traffic road (25% of the vehicles are heavy-duty diesel vehicles). The modal particle diameter was found between 10 and 30 nm at the roadside in the winter. However, there was no peak for this size range in the summer, even at the roadside. Ambient temperature affects both the atmospheric dilution ratio (DR) and the evaporation rate of particles, thus it affects the decay rate of PNC. We corrected the DR effect in order to focus on the effect of particle evaporation on PNC decay. The decay rate of PNC with DR was found to depend on the season and particle diameter. During the winter, the decay rate for smaller particles (30 nm in diameter, the decay rate was nearly the same during both seasons. This distinction between particles less than or greater than 30 nm in diameter reflects differences in particle volatility properties. Mass-transfer theory was used to estimate evaporation rates of C20-C36 n-alkane particles, which are the major n-alkanes in diesel exhaust particles. The C20-C28 n-alkanes of 30-nm particles completely evaporate at 31.2 °C (summer), and their lifetime is shorter than the transport time of air masses in our region of interest. Absence of the peak at 10-30 nm and the low decay rate of PNC us to conclude that these particles show distinctly different spatial distributions depending on the season. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A novel method for determination of particle size distribution in-process

    Science.gov (United States)

    Salaoru, Tiberiu A.; Li, Mingzhong; Wilkinson, Derek

    2009-07-01

    The pharmaceutical and fine chemicals industries are strongly concerned with the manufacture of high value-added speciality products, often in solid form. On-line measurement of solid particle size is vital for reliable control of product properties. The established techniques, such as laser diffraction or spectral extinction, require dilution of the process suspension when measuring from typical manufacturing streams because of their high concentration. Dilution to facilitate measurement can result in changes of both size and form of particles, especially during production processes such as crystallisation. In spectral extinction, the degree of light scattering and absorption by a suspension is measured. However, for concentrated suspensions the interpretation of light extinction measurements is difficult because of multiple scattering and inter-particle interaction effects and at higher concentrations extinction is essentially total so the technique can no longer be applied. At the same time, scattering by a dispersion also causes a change of phase which affects the real component of the suspension's effective refractive index which is a function of particle size and particle and dispersant refractive indices. In this work, a novel prototype instrument has been developed to measure particle size distribution in concentrated suspensions in-process by measuring suspension refractive index at incidence angles near the onset of total internal reflection. Using this technique, the light beam does not pass through the suspension being measured so suspension turbidity does not impair the measurement.

  17. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley

    2017-02-21

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  18. The influence of attrition and cyclone performance on the particle size distribution in a CFB system

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis Klett; Ernst-Ulrich Hartge; Joachim Werther [Technical University Hamburg-Harburg, Hamburg (Germany)

    2005-07-01

    Based on previous investigations in the authors' group on attrition mechanisms in fluidized bed systems a model has been developed which allows the simulation of the influences of particle attrition and cyclone performance on the time-dependent development of the particle size distribution in a circulating fluidized bed system consisting of a riser, a cyclone and a solids return leg. In an extension of previous work it was now possible to include the effect of the residence time of the particles in the system. The model takes account of the fact that fresh particles have a higher attrition rate than particles which have stayed for some time already in the system. The model is able to describe the dynamic adjustment of the particle size distribution in a given system. The model was validated with coal combustion experiments in a pilot-scale CFB combustion unit. Ash samples were taken from the bottom part of the riser and compared with the theoretical predictions. The model was used in simulation runs to study the effects of changes in the operating conditions on the steady-state solids particle size distribution and solids mass fluxes. 9 refs., 9 figs., 2 tabs.

  19. Estimation of particle size based on LDV measurements in a de-accelerating flow field

    Science.gov (United States)

    Meyers, J. F.

    1985-01-01

    The accuracy of velocity measurements made with a laser velocimeter is strongly dependent upon the response of the seeding particles to the dynamics of the flow field. The smaller the particle the better the response to flow fluctuations and gradients and therefore the more accurate velocity measurement. In direct conflict is the requirement of light scattering efficiency to obtain signals with the laser velocimeter which, in general, is better as the particle size is increased. In low speed flow fields these two requirements on particle size overlap and accurate measurements may be obtained. However in high speed flows, where the velocity gradients may be severe, very small particles are required to maintain sufficient dynamic response characteristics to follow the flow. Therefore if velocity measurements are to be made in these flows, the laser velocimeter must be designed with sufficient sensitivity to obtain signals from these small particles. An insitu determination of the size distribution of kaolin particles (Al2O3, .2 + or - SiO2 . 2H2O) in the 16-foot Transonic Tunnel and the sensitivity characteristics of the laser velocimeter system is described.

  20. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation

    Science.gov (United States)

    Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg

    2017-04-01

    The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%

  1. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    J. Rissler

    2006-01-01

    Full Text Available Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia. The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate, and cover the later part of the dry season (with heavy biomass burning, a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850nm and an APS (Aerodynamic Particle Sizer, extending the distributions up to 3.3 µm in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer measured the hygroscopic diameter growth factors (Gf at 90% relative humidity (RH, for particles with dry diameters (dp between 20-440 nm, and at several occasions RH scans (30-90% RH were performed for 165nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD of ~12 nm, an Aitken mode (GMD=61-92 nm and an accumulation mode (GMD=128-190 nm. The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf~1.09 for 100 nm particles and moderately hygroscopic (Gf~1.26. While the hygroscopic growth factors were surprisingly similar over the

  2. Cluster analysis of rural, urban, and curbside atmospheric particle size data.

    Science.gov (United States)

    Beddows, David C S; Dall'Osto, Manuel; Harrison, Roy M

    2009-07-01

    Particle size is a key determinant of the hazard posed by airborne particles. Continuous multivariate particle size data have been collected using aerosol particle size spectrometers sited at four locations within the UK: Harwell (Oxfordshire); Regents Park (London); British Telecom Tower (London); and Marylebone Road (London). These data have been analyzed using k-means cluster analysis, deduced to be the preferred cluster analysis technique, selected from an option of four partitional cluster packages, namelythe following: Fuzzy; k-means; k-median; and Model-Based clustering. Using cluster validation indices k-means clustering was shown to produce clusters with the smallest size, furthest separation, and importantly the highest degree of similarity between the elements within each partition. Using k-means clustering, the complexity of the data set is reduced allowing characterization of the data according to the temporal and spatial trends of the clusters. At Harwell, the rural background measurement site, the cluster analysis showed that the spectra may be differentiated by their modal-diameters and average temporal trends showing either high counts during the day-time or night-time hours. Likewise for the urban sites, the cluster analysis differentiated the spectra into a small number of size distributions according their modal-diameter, the location of the measurement site, and time of day. The responsible aerosol emission, formation, and dynamic processes can be inferred according to the cluster characteristics and correlation to concurrently measured meteorological, gas phase, and particle phase measurements.

  3. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    Science.gov (United States)

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  4. Shock Reactivity Study on Standard and Reduced Sensitivity Rdx of Different Particle Size Distributions

    Science.gov (United States)

    McGregor, N. M.; Lindfors, A. J.

    2007-12-01

    Embedded gauge experiments have been performed using a three inch high velocity powder gun to assess the effects of RDX particle size and crystal quality on shock induced reactivity in support of the Combat Safe Insensitive Munitions (CSIM) program. Four monomodal experimental compositions containing 73% solids loading by weight and 27% HTPB binder were tested. The compositions were made using either standard or reduced sensitivity grades of RDX in Class 5 or Class 1 150-300 micron sieve cut particle size classes. Results have shown marked changes in the mode of reaction between the two particle size classes. Both RDX grades at the Class 1 sieve cut particle size distribution showed significant reaction at the shock front as well as behind the front. The Class 5 RDX compositions however showed little reaction at the shock front with rapid growth behind the front. Reaction modes were similar but occurring at greater input pressures for the reduced sensitivity grade of RDX compared to the corresponding particle size distribution standard grade RDX counterpart.

  5. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Siti Sarah Omar Zaki

    2015-01-01

    Full Text Available Chitosan nanoparticles (CSNPs have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs. CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential. Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW. Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  6. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  7. Analytical transform techniques to retrieve non-spherical particle size distribution

    International Nuclear Information System (INIS)

    Zhao, Jian-Qi; Li, Jiangnan

    2013-01-01

    The measurement of particle size distribution (PSD) from the extinction spectra is a challenging problem, especially for non-spherical particles. In this work, the analytical transform techniques are developed to retrieve PSD from the measured scattering data for a variety of shapes of non-spherical particle including spheroids, cuboids, triangular prisms, hexagonal prisms and elliptical cylinders. In the retrieve calculation, all particles have aligned orientations and their extinction cross sections can be adequately calculated by using the anomalous diffraction theory (ADT). It is shown that for each type of the considered non-spherical particles, there exists an ADT transform pair between the size distribution and the extinction spectrum. The inverse formula of PSD from the related ADT transform is therefore established. This result provides a new approach to the solution of the inversion problem and has the potential to be used in finding solutions for more complicated particle shapes. It is found that the solution of inverse scattering for absorbing particles can be simplified to a particular solution in which the character of absorption becomes no longer present. For spheroids, triangular prisms, and elliptical cylinders, the retrieved PSD and the corresponding true PSD always belong to one family of function, due to the scaling relation. Therefore an improper choice of inversion parameters does not significantly affect the type of mode of PSD in a retrieval process. -- Highlights: •Analytical schemes for inversion of non-spherical particle size distribution. •Intuitive inverse formulas and novel ADT transform fairs for non-spherical particles. •Useful scaling relations in retrievals for non-spherical particles

  8. Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment

    Directory of Open Access Journals (Sweden)

    Wang Leilei

    2008-06-01

    Full Text Available The quantitative change and size distribution of particles in the effluents from a sand filter and a granular activated carbon (GAC filter in a drinking water treatment plant were investigated. The average total concentration of particles in the sand filter effluent during a filter cycle was 148 particles/mL, 27 of which were larger than 2 µm in size. The concentration in the GAC effluent (561 particles/mL was significantly greater than that in the sand filter effluent. The concentration of particles larger than 2 µm in the GAC filter effluent reached 201 particles/mL, with the amount of particles with sizes between 2 µm and 15 µm increasing. The most probable number (MPN of carbon fines reached 43 unit/L after six hours and fines between 0.45 µm and 8.0 µm accounted for more than 50%. The total concentration of outflowing bacteria in the GAC filter effluent, 350 CFU (colony-forming units/mL, was greater than that in the sand filter effluent, 210 CFU/mL. The desorbed bacteria concentration reached an average of 310 CFU/mg fines. The disinfection efficiency of desorbed bacteria was lower than 40% with 1.5 mg/L of chlorine. The disinfection effect showed that the inactivation rate with 2.0 mg/L of chloramine (90% was higher than that with chlorine (70%. Experimental results indicated that the high particle concentration in raw water and sedimentation effluent led to high levels of outflowing particles in the sand filter effluent. The activated carbon fines in the effluent accounted for a small proportion of the total particle amount, but the existing bacteria attached to carbon fines may influence the drinking water safety. The disinfection efficiency of desorbed bacteria was lower than that of free bacteria with chlorine, and the disinfection effect on bacteria attached to carbon fines with chloramine was better than that with only chlorine.

  9. Methods for obtaining true particle size distributions from cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Kristina Alyse [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  10. Effects of digestion protocols on the isolation and characterization of metal-metal wear particles. I. Analysis of particle size and shape.

    Science.gov (United States)

    Catelas, I; Bobyn, J D; Medley, J B; Krygier, J J; Zukor, D J; Petit, A; Huk, O L

    2001-06-05

    Isolation of metal wear particles from hip simulator lubricants or tissues surrounding implants is a challenging problem because of small particle size, their tendency to agglomerate, and their potential for chemical degradation by digestion reagents. To provide realistic measurements of size, shape, and composition of metal wear particles, it is important to optimize particle isolation and minimize particle changes due to the effects of the reagents. In this study (Part I of II), transmission electron microscopy (TEM) was used to examine and compare the effects of different isolation protocols, using enzymes or alkaline solutions, on the size and shape of three different types of cobalt-based alloy particles produced from metal-metal bearings. The effect on particle composition was examined in a subsequent study (Part II). Large particles (particles (particle size and to a lesser extent particle shape. For both large particles and small particles generated in water, the changes in size were more extensive after alkaline than after enzymatic protocols and increased with alkaline concentration and time in solution, up to twofold at 2 h and threefold at 48 h. However, when isolating particles from 95% serum, an initial protective effect of serum proteins and/or lipids was observed. Because of this protective effect, there was no significant difference in particle size and shape for both oval and needle-shaped particles after 2 h in 2N KOH and after enzymatic treatments. However, round particles were significantly smaller after 2 h in 2N KOH than after enzymatic treatments. Particle composition may also have been affected by the 2N KOH treatment, as suggested by a difference in particle contrast under TEM, an issue examined in detail in Part II. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 55: 320-329, 2001

  11. Characterization of road runoff with regard to seasonal variations, particle size distribution and the correlation of fine particles and pollutants.

    Science.gov (United States)

    Hilliges, R; Endres, M; Tiffert, A; Brenner, E; Marks, T

    2017-03-01

    Urban runoff is known to transport a significant pollutant load consisting of e.g. heavy metals, salts and hydrocarbons. Interactions between solid and dissolved compounds, proper understanding of particle size distribution, dissolved pollutant fractions and seasonal variations is crucial for the selection and development of appropriate road runoff treatment devices. Road runoff at an arterial road in Augsburg, Germany, has been studied for 3.5 years. A strong seasonal variation was observed, with increased heavy metal concentrations with doubled and tripled median concentrations for heavy metals during the cold season. Correlation analysis showed that de-icing salt is not the only factor responsible for increased pollutant concentrations in winter. During the cold period, the fraction of dissolved metals was lower compared to the warm season. In road dust, the highest metal concentrations were measured for fine particles. Metals in road runoff were found to show a significant correlation to fine particles SS63 (removal rates.

  12. How does dietary particle size affect carnivore gastrointestinal transit: A dog model.

    Science.gov (United States)

    De Cuyper, A; Hesta, M; Tibosch, S; Wanke, C; Clauss, M; Janssens, G P J

    2018-04-01

    The effect of dietary particle size on gastrointestinal transit in carnivores has not been studied and might offer more insight into their digestive physiology. This study evaluated the effect of two dietary particle sizes (fine = 7.8 mm vs. coarse = 13 mm) of chunked day-old chicks on transit parameters in dogs. Six beagle dogs were fed both dietary treatments in a crossover design of 7 days with transit testing on the fifth day. Transit parameters were assessed using two markers, that is a wireless motility capsule (IntelliCap ® ) and titanium oxide (TiO 2 ). Dietary particle size did not affect gastric emptying time (GRT), small bowel transit time (SBTT), colonic transit time (CTT) and total transit time (aTTT) of the capsule (p > .05). There was no effect of dietary particle size on TiO 2 mean retention time (MRT) (p > .05). The time of last TiO 2 excretion (MaxRT) differed (p = .013) between diets, being later for the coarse diet. Both MRT (R = 0.617, p = .032) and MaxRT (R = 0.814; p = .001) were positively correlated to aTTT. The ratio MRT/aTTT tended towards a difference between diets (p = .059) with the coarse diet exceeding fine diet values. Results show that the difference between capsule measurements and TiO 2 is larger for the fine than the coarse diet suggesting that the capsule becomes more accurate when dietary particle size approaches marker size. Dietary particle size might have affected transit parameters but differences are too small to claim major physiological consequences. © 2017 Blackwell Verlag GmbH.

  13. 'Bi-modal' isoscalar giant dipole strength in 58Ni

    International Nuclear Information System (INIS)

    Nayak, B.K.; Garg, U.; Hedden, M.; Koss, M.; Li, T.; Liu, Y.; Madhusudhana Rao, P.V.; Zhu, S.; Itoh, M.; Sakaguchi, H.; Takeda, H.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Fujimura, H.; Fujiwara, M.; Hara, K.; Kawabata, T.; Akimune, H.; Harakeh, M.N.

    2006-01-01

    The strength distribution of the isoscalar giant dipole resonance (ISGDR) in 58 Ni has been obtained over the energy range 10.5-49.5 MeV via extreme forward angle scattering (including 0 deg.) of 386 MeV α particles. We observe a 'bi-modal' E1 strength distribution for the first time in an A<90 nucleus. The observed ISGDR strength distribution is in reasonable agreement with the predictions of a recent RPA calculation

  14. An experimental study of asphaltene particle sizes in n-heptane-toluene mixtures by light scattering

    Directory of Open Access Journals (Sweden)

    Rajagopal K.

    2004-01-01

    Full Text Available The particle size of asphaltene flocculates has been the subject of many recent studies because of its importance in the control of deposition in petroleum production and processing. We measured the size of asphaltene flocculates in toluene and toluene - n-heptane mixtures, using the light-scattering technique. The asphaltenes had been extracted from Brazilian oil from the Campos Basin, according to British Standards Method IP-143/82. The asphaltene concentration in solution ranged between 10-6 g/ml and 10-7 g/ml. Sizes was measured for a period of about 10000 minutes at a constant temperature of 20°C. We found that the average size of the particles remained constant with time and increase with an increase in amount of n-heptane. The correlation obtained for size with concentration will be useful in asphaltene precipitation models.

  15. On the size distribution of collision fragments of NLC dust particles and their relevance to meteoric smoke particles

    Science.gov (United States)

    Havnes, O.; Gumbel, J.; Antonsen, T.; Hedin, J.; La Hoz, C.

    2014-10-01

    We present the results from a new dust probe MUDD on the PHOCUS payload which was launched in July 2011. In the interior of MUDD all the incoming NLC/PMSE icy dust particles will collide, at an impact angle ~70° to the surface normal, with a grid constructed such that no dust particles can directly hit the bottom plate of the probe. Only collision fragments will continue down towards the bottom plate. We determine an energy distribution of the charged fragments by applying a variable electric field between the impact grid and the bottom plate of MUDD. We find that ~30% of the charged fragments have kinetic energies less than 10 eV, ~20% have energies between 10 and 20 eV while ~50% have energies above 20 eV. The transformation of limits in kinetic energy for ice or meteoric smoke particles (MSP) to radius is dependent on many assumptions, the most crucial being fragment velocity. We find, however, that the sizes of the charged fragments most probably are in the range of 1 to 2 nm if meteoric smoke particles (MSP), and slightly higher if ice particles. The observed high charging fraction and the dominance of fragment sizes below a few nm makes it very unlikely that the fragments can consist mainly of ice but that they must be predominantly MSP as predicted by Havnes and Næsheim (2007) and recently observed by Hervig et al. (2012). The MUDD results indicate that MSP are embedded in NLC/PMSE ice particles with a minimum volume filling factor of ~.05% in the unlikely case that all embedded MSP are released and charged. A few % volume filling factor (Hervig et al., 2012) can easily be reached if ~10% of the MSP are released and that their charging probability is ~0.1.

  16. Estimation of LDL Particle Size Using Lipid Indices: A Population-Based Study of 1578 Schoolchildren.

    Science.gov (United States)

    Watabe, Yaeko; Arisaka, Osamu; Miyake, Noriko; Ichikawa, Go; Koyama, Satomi; Shimura, Naoto

    2015-12-01

    Low-density lipoprotein (LDL) is atherogenic and LDL particles are reduced in diameter in the presence of insulin resistance, forming small, dense LDL. This study was conducted to assess the relationship between commonly used lipid indices and LDL particle size and furthermore to clarify the best surrogate lipid markers that could conveniently be used to estimate LDL particle size in children. We determined LDL particle diameter by gradient gel electrophoresis in 1578 children aged 10-12 years. At the fasting state, the relationships between measured LDL particle size and lipid variables [total cholesterol (TC), triglycerides (TG), LDL-cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), atherogenic index [(TC-HDL-C)/HDL-C, TG/HDL-C, LDL-C/HDL-C, and LDL-C/apolipoprotein B (Apo B) and non-HDL-C (TC-HDL-C)] were analyzed. The LDL particle diameter was 26.64 (mean) ± 0.48 (SD) nm in boys (n = 820) and 26.66 ± 0.49 nm in girls (n = 758); there was not a statistically significant difference. There were statistically significant correlations between LDL particle size and TG or HDL-C concentrations (r = 0.28∼0.37), but the correlations with LDL-C and ApoB were very weak. The combined lipid measures, such as atherogenic index, TC/HDL-C, TG/HDL-C, and LDL-C/HDL-C showed moderate correlations (r = 0.33∼0.38) with LDL particle size; however, the correlation of non-HDL-C with LDL particle size was weak (r = 0.18∼0.19). Simple HDL-C measure appeared to be of comparable value to combined lipid measures. Our data indicate that various lipid indices are not superior to HDL-C levels alone as a clinical tool for estimating LDL particle size. Non-HDL-C was less valuable in this aspect.

  17. Solid Particle Erosion of Nanocrystalline Nickel Coatings: Influence of Grain Size and Adiabatic Shear Bands

    Science.gov (United States)

    Wasekar, Nitin P.; Haridoss, Prathap; Sundararajan, G.

    2018-02-01

    The primary objective of the present study is to investigate the influence of nanocrystalline grain size on the solid particle erosion behavior of nickel. For the above purpose, 450- μm-thick nanocrystalline Ni coatings having the average grain sizes of 21, 42, 70, and 195 nm were obtained using pulsed electrodeposition (PED). All these samples along with bulk annealed Ni samples (43 μm grain size) were subjected to solid particle erosion using SiO2 particles as an erodent at a constant impact velocity of 45 m/s and two impact angles (30 and 90 deg). Erosion results indicate that bulk Ni and PED Ni coatings of grain sizes 195 and 70 nm exhibit the same erosion rate, while PED Ni coatings of 42 and 21 nm grain size exhibit marginally higher erosion rates with a clear trend of increasing erosion rate with decreasing grain size. It was also observed that the higher erosion rates exhibited by 21- and 42-nm-grain size PED Ni samples were associated with the formation of adiabatic shear bands (ASBs) originating from the eroded surface and propagating into the eroded sample. The experimental observations have been understood on the basis of a transition from a localization model for erosion for coarse-grained Ni (> 70 nm) to an ASB-induced erosion model for grain sizes less than 70 nm.

  18. Effect of particle size on structural, magnetic and dielectric properties of manganese substituted nickel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Ranjith, E-mail: ranjueaswar@gmail.com [Sri Ramakrishna Mission Vidyalaya, Swami Shivananda Higher Secondary School, Coimbatore- 641020, Tamil Nadu (India); Kamzin, Aleksandr S. [Ioffe Physical–Technical Institute of RAS, St.-Petersburg 194026 (Russian Federation); Prakash, T. [Department of Science and Humanities, Tamilnadu College of Engineering, Karumathampatti, Coimbatore-641 659, Tamil Nadu (India)

    2015-03-15

    Mn substituted NiFe{sub 2}O{sub 4} ferrite nanoparticles (Mn–NiFe{sub 2}O{sub 4}) were synthesized by the auto-combustion method. Their actions were carried out at different fuel ratios (50%, 75% and 100%). The nanoparticles have been investigated by X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. The average crystallite size of the synthesized and annealed samples was between 25 and 75 nm, which were found to be dependent on both fuel ratio and annealing temperatures. However, lattice parameters, interplanar spacing and grain size were controlled by varying the fuel ratio. Magnetic characterizations of the nanoparticles were carried out using a vibrating sample magnetometer at room temperature. The saturation magnetization was computed and found to lie between 6 emu/g and 57 emu/g depending on the particle size of the studied sample. The coercivity was found to exhibit non-monotonic behavior with the particle size. Such behavior can be accounted for by the combination between surface anisotropy and thermal energies. The value of dielectric constant and dielectric loss was found to exhibit almost linear dependence on the particle size. - Highlights: • An auto-combustion method support to prepare less size of particles. • The excellent magnetic properties obtained by as-burnt samples. • Nature of the ferrite was affected with increasing annealing temperature.

  19. Isolation, characterization, and stability of discretely-sized nanolipoprotein particles assembled with apolipophorin-III.

    Directory of Open Access Journals (Sweden)

    Nicholas O Fischer

    Full Text Available BACKGROUND: Nanolipoprotein particles (NLPs are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs. METHODOLOGY: Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to >25 nm and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4 degrees C was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes. CONCLUSIONS: ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utility for biotechnological applications.

  20. Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat

    DEFF Research Database (Denmark)

    Mari, X.; Kiørboe, Thomas

    1996-01-01

    The abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) were monitored in the Kattegat (Denmark) at weekly intervals throughout the spring (February-May) encompassing the spring diatom bloom. These recently discovered particles are believed to be fo......The abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) were monitored in the Kattegat (Denmark) at weekly intervals throughout the spring (February-May) encompassing the spring diatom bloom. These recently discovered particles are believed...... of beta differed significantly from three, probably because TEP are fractal. All TEP were colonized by bacteria, and bacteria were both attached to the surface of and embedded in TEP. Yet the number of attached bacteria per TEP was related neither to the surface area nor the volume, but rather scaled...

  1. Significance of composition and particle size on the shear flow properties of wheat flour.

    Science.gov (United States)

    Siliveru, Kaliramesh; Ambrose, Rp Kingsly; Vadlani, Praveen V

    2017-06-01

    Size-based fractionation of flour particles is an important process in wheat milling. Inter-particle cohesion could affect the dynamic separation process and result in loss in throughput. This study quantifies the effect of particle properties that includes physical and chemical characteristics on the shear flow behavior of wheat flour. The cohesion and flow function values of wheat flour at three moisture contents (10%, 12%, and 14%), three particle sizes (75-106, 45-75, and flours. In addition, fat composition had a significant effect on the differences in flowability of wheat flours due to the increased inter-particulate cohesion. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Controlling particle size in the Stöber process and incorporation of calcium.

    Science.gov (United States)

    Greasley, Sarah L; Page, Samuel J; Sirovica, Slobodan; Chen, Shu; Martin, Richard A; Riveiro, Antonio; Hanna, John V; Porter, Alexandra E; Jones, Julian R

    2016-05-01

    The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20-500 nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, whilst maintaining monodispersity, is desirable. Here, whilst calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10 mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  4. Improved electronic gate technique, for particle counting and sizing in liquids.

    Science.gov (United States)

    De Bisschop, F; Lambert, H; De Mey, G

    1991-11-01

    Particle counting and measurements of particle size distributions in liquids can be based on pulse height analysis of signals obtained from a changing gate impedance, upon particle transition. Signal-to-noise ratio is markedly improved, making use of a four-electrode detector. An instrumentation amplifier with a high-pass filter is used as a preamplifier. Cylindrical electrodes and a coaxial aperture location result in a decreased detector capacitance, lowering the signal detection level and contributing to improved pulse shape. Volume sampling is flexible and accurate, making use of a stepping motor actuated digital sampling system. A newly developed baseline restorer, combined with a log-antilog amplifier circuit, allows for linearisation of the pulse height/particle size relationship.

  5. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases.

    Science.gov (United States)

    Ta, Hang T; Truong, Nghia P; Whittaker, Andrew K; Davis, Thomas P; Peter, Karlheinz

    2018-01-01

    Vascular-targeted drug delivery is a promising approach for the treatment of atherosclerosis, due to the vast involvement of endothelium in the initiation and growth of plaque, a characteristic of atherosclerosis. One of the major challenges in carrier design for targeting cardiovascular diseases (CVD) is that carriers must be able to navigate the circulation system and efficiently marginate to the endothelium in order to interact with the target receptors. Areas covered: This review draws on studies that have focused on the role of particle size, shape, and density (along with flow hemodynamics and hemorheology) on the localization of the particles to activated endothelial cell surfaces and vascular walls under different flow conditions, especially those relevant to atherosclerosis. Expert opinion: Generally, the size, shape, and density of a particle affect its adhesion to vascular walls synergistically, and these three factors should be considered simultaneously when designing an optimal carrier for targeting CVD. Available preliminary data should encourage more studies to be conducted to investigate the use of nano-constructs, characterized by a sub-micrometer size, a non-spherical shape, and a high material density to maximize vascular wall margination and minimize capillary entrapment, as carriers for targeting CVD.

  6. Development of mesoporosity in scandia-stabilized zirconia: particle size, solvent, and calcination effects.

    Science.gov (United States)

    Cahill, James T; Ruppert, Jesse N; Wallis, Bryce; Liu, Yanming; Graeve, Olivia A

    2014-05-20

    We present the mechanisms of formation of mesoporous scandia-stabilized zirconia using a surfactant-assisted process and the effects of solvent and thermal treatments on the resulting particle size of the powders. We determined that cleaning the powders with water resulted in better formation of a mesoporous structure because higher amounts of surfactant were preserved on the powders after washing. Nonetheless, this resulted in agglomerate sizes that were larger. The water-washed powders had particle sizes of >5 μm in the as-synthesized state. Calcination at 450 and 600 °C reduced the particle size to ∼1-2 and 0.5 μm, respectively. Cleaning with ethanol resulted in a mesoporous morphology that was less well-defined compared to the water-washed powders, but the agglomerate size was smaller and had an average size of ∼250 nm that did not vary with calcination temperature. Our analysis showed that surfactant-assisted formation of mesoporous structures can be a compromise between achieving a stable mesoporous architecture and material purity. We contend that removal of the surfactant in many mesoporous materials presented in the literature is not completely achieved, and the presence of these organics has to be considered during subsequent processing of the powders and/or for their use in industrial applications. The issue of material purity in mesoporous materials is one that has not been fully explored. In addition, knowledge of the particle (agglomerate) size is essential for powder handling during a variety of manufacturing techniques. Thus, the use of dynamic light scattering or any other technique that can elucidate particle size is essential if a full characterization of the powders is needed for achieving postprocessing effectiveness.

  7. Mineralogical, optical, geochemical, and particle size properties of four sediment samples for optical physics research

    Science.gov (United States)

    Bice, K.; Clement, S. C.

    1981-01-01

    X-ray diffraction and spectroscopy were used to investigate the mineralogical and chemical properties of the Calvert, Ball Old Mine, Ball Martin, and Jordan Sediments. The particle size distribution and index of refraction of each sample were determined. The samples are composed primarily of quartz, kaolinite, and illite. The clay minerals are most abundant in the finer particle size fractions. The chemical properties of the four samples are similar. The Calvert sample is most notably different in that it contains a relatively high amount of iron. The dominant particle size fraction in each sample is silt, with lesser amounts of clay and sand. The indices of refraction of the sediments are the same with the exception of the Calvert sample which has a slightly higher value.

  8. Mathematical modeling of pigment dispersion taking into account the full agglomerate particle size distribution

    DEFF Research Database (Denmark)

    Kiil, Søren

    2017-01-01

    . The only adjustable parameter used was an apparent rate constant for the linear agglomerate erosion rate. Model simulations, at selected values of time, for the full agglomerate particle size distribution were in good qualitative agreement with the measured values. A quantitative match of the experimental...... particle size distribution was simulated. Data from two previous experimental investigations were used for model validation. The first concerns two different yellow organic pigments dispersed in nitrocellulose/ethanol vehicles in a ball mill and the second a red organic pigment dispersed in a solvent...... particle size distributions could be obtained using time-dependent fragment distributions, but this resulted in a very slight improvement in the simulated transient mean diameter only. The model provides a mechanistic understanding of the agglomerate breakage process that can be used, e...

  9. Dissolution Effects on Specific Surface Area, Particle Size, and Porosity of Pentelic Marble.

    Science.gov (United States)

    Orkoula, Malvina G.; Koutsoukos, Petros G.

    2001-07-15

    Dissolution of natural stone such as marble is not limited to its surface. The porous structure, known to play an important role in stone decay, is also affected by the conditions of dissolution. In the present work, the changes in pore size distribution of Pentelic marble particles accompanying chemical dissolution in undersaturated solutions and at alkaline pH 8.25 were investigated. The specific surface area and the mesopore distribution of the Pentelic marble tested showed a pronounced decrease to very low values. On the other hand, the sizes of macropores exhibited a tendency to increase with the extent of dissolution due either to dissolution in the interior of the pores or to fusion of small pores into larger. Furthermore, the number of small particles decreased significantly, reaching complete disappearance, depending on the extent of dissolution. At the same time, the relative number of particles of intermediate size increased. Copyright 2001 Academic Press.

  10. Influences of food hardness on the particle size distribution of food boluses.

    Science.gov (United States)

    Chen, Jianshe; Khandelwal, Niharika; Liu, Zhenyu; Funami, Takahiro

    2013-03-01

    Bolus swallowing or deglutition is a vital oral action which transports orally processed food from the oral cavity to the stomach for further digestion. Swallowing is routine to most health individuals, but it could be highly hazardous to many elderly and dysphagia patients. In order to provide proper food for safe consumption by these disadvantaged populations, a fundamental understanding of how bolus swallowing is triggered and is based on what criteria is urgently needed. Main objective of this work was to understand the physical properties of food boluses, in particular the bolus particle size distribution in relation to the hardness of the food. Food samples were chewed in free style by subjects and boluses were expectorated when subjects felt they were ready to be swallowed. Altogether seven different types of food were used and 10 health subjects participated in this study. Bolus particles were carefully washed and spread out on a flat surface. Images of bolus particles were taken using a digital camera and analysed using Image Pro Plus software for particle size quantification. Food hardness was measured using a Texture Analyser by a puncture test. It was observed that bolus particle size decreased with the increase of food hardness. The correlation between the two properties can be described by a power-law relationship. This relationship was also found applicable to literature results reported by Peyron et al. and Jalabert-Malbos et al. Food hardness has a direct influence on its bolus particle size. The harder the food, the smaller the bolus particle size. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Actinide transport in Topopah Spring Tuff: Pore size, particle size, and diffusion

    International Nuclear Information System (INIS)

    Buchholtz ten Brink, M.; Phinney, D.L.; Smith, D.K.

    1991-04-01

    Diffusive transport rates for aqueous species in a porous medium are a function of sorption, molecular diffusion, and sample tortuosity. With heterogeneous natural samples, an understanding of the effect of multiple transport paths and sorption mechanisms is particularly important since a small amount of radioisotope traveling via a faster-than-anticipated transport path may invalidate the predictions of transport codes which assume average behavior. Static-diffusion experiments using aqueous 238 U tracer in tuff indicated that U transport was faster in regions of greater porosity and that apparent diffusion coefficients depended on the scale (m or μm) over which concentration gradients were measured in Topopah Spring Tuff. If a significant fraction of actinides in high-level waste are released to the environment in forms that do not sorb to the matrix, they may be similarly transported along fast paths in porous regions of the tuff. To test this, aqueous diffusion rates in tuff were measured for 238 U and 239 Pu leached from doped glass. Measured transport rates and patterns were consistent in both systems with a dual-porosity transported moeld. In addition, filtration or channelling of actinides associated with colloidal particles may significantly affect the radionuclide transport rate in Topopah Spring tuff. 9 refs., 7 figs

  12. Particle Size Characteristics of Fluvial Suspended Sediment in Proglacial Streams, King George Island, South Shetland Island

    Science.gov (United States)

    Szymczak, Ewa

    2017-12-01

    In this study, the characterization of particle size distribution of suspended sediment that is transported by streams (Ornithologist Creek, Ecology Glacier Creeks, Petrified Forest Creek, Czech Creek, Vanishing Creek, Italian Creek) in the area of the Arctowski Polish Antarctic Station is presented. During the first period of the summer season, the aforementioned streams are supplied by the melting snow fields, while later on, by thawing permafrost. The water samples were collected from the streams at monthly intervals during the Antarctic summer season (January - March) of 2016. The particle size distribution was measured in the laboratory with a LISST-25X laser diffraction particle size analyser. According to Sequoia Scientific Inc., LISST-25X can measure particle sizes (Sauter Mean Diameter) between 2.50 and 500 μm. The results of particle size measurements were analysed in relation to flow velocity (0.18–0.89 m/s), the cross-sectional parameters of the streams, suspended sediment concentration (0.06–167.22 mg/dm3) and the content of particulate organic matter (9.8–84.85%). Overall, the mean particle size ranged from 28.8 to 136 μm. The grain size of well-sorted sediments ranged from 0.076 to 0.57, with the skewness and kurtosis values varying from -0.1 to 0.4, and from 0.67 to 1.3, respectively. Based on the particle size characteristics of suspended sediment, the streams were divided into two groups. For most of the streams, the sediment was very well sorted, while fine sand and very fine sand were dominant fractions displaying symmetric and platykurtic distributions, respectively. Only in two streams, the suspended sediment consisted of silt-size grains, well or moderately well sorted, with coarse-skewness and mostly mesokurtic distribution. The C-M chart suggested that the transportation processes of suspended sediment included the suspended mode only. The grain-size distribution of suspended sediment was mainly influenced by the stream runoff

  13. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Science.gov (United States)

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  14. Separation of plastics by froth flotation. The role of size, shape and density of the particles.

    Science.gov (United States)

    Pita, Fernando; Castilho, Ana

    2017-02-01

    Over the last few years, new methods for plastic separation in mining have been developed. Froth flotation is one of these techniques, which is based on hydrophobicity differences between particles. Unlike minerals, most of the plastics are naturally hydrophobic, thus requiring the addition of chemicals that promote the selective wettability of one of its components, for a flotation separation. The floatability of six granulated post-consumer plastic - Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D) - in the presence of tannic acid (wetting agent), and the performance of the flotation separation of five bi-component plastic mixtures - PS/PMMA, PS/PET-S, PS/PET-D, PS/PVC-M and PS/PVC-D - were evaluated. Moreover, the effect of the contact angle, density, size and shape of the particles was also analysed. Results showed that all plastics were naturally hydrophobic, with PS exhibiting the highest floatability. The contact angle and the flotation recovery of six plastics decreased with increasing tannic acid concentration, occurring depression of plastics at very low concentrations. Floatability differed also with the size and shape of plastic particles. For regular-shaped plastics (PS, PMMA and PVC-D) floatability decreased with the increase of particle size, while for lamellar-shaped particles (PET-D) floatability was slightly greater for coarser particles. Thus, plastic particles with small size, lamellar shape and low density present a greater floatability. The quality of separation varied with the mixture type, depending not only on the plastics hydrophobicity, but also on the size, density and shape of the particles, i.e. the particle weight. Flotation separation of plastics can be enhanced by differences in hydrophobicity. In addition, flotation separation improves if the most hydrophobic plastic, that floats, has a lamellar shape and lower density and if the most hydrophilic

  15. Aluminum-assisted dispersion of magnetic powders for particle size characterization

    International Nuclear Information System (INIS)

    Zheng Qingjun; Zhai Tongguang; Effgen, Michael P.; Whillhite, Jeff

    2006-01-01

    A new dispersion technique was developed to disperse magnetic powders for quantitative characterization of their particle sizes using scanning electron microscopy (SEM). In this technique, the magnetic particles/powders were dispersed effectively by non-magnetic aluminum powders, cold pressed, polished, and finally analyzed with SEM, combined with an image analysis software. It has been a challenge to disperse the magnetic powders for quantitative characterization of their particle size distribution due to the particle agglomeration resulting from their intrinsic magnetic attractions. By means of the aluminum assisted dispersion technique developed in this work and SEM, SmCo 5 magnetic powders were characterized quantitatively regarding their particle size distribution. The SmCo 5 magnet particles were distinguished in aluminum matrix in SEM backscattered images due to the z-contrast caused by the difference in atomic number between aluminum and SmCo 5 alloy. With the method, two SmCo powder preparation techniques, ball milling and jet milling, were also evaluated

  16. On the time-averaging of ultrafine particle number size spectra in vehicular plumes

    Directory of Open Access Journals (Sweden)

    X. H. Yao

    2006-01-01

    Full Text Available Ultrafine vehicular particle (<100 nm number size distributions presented in the literature are mostly averages of long scan-time (~30 s or more spectra mainly due to the non-availability of commercial instruments that can measure particle distributions in the <10 nm to 100 nm range faster than 30 s even though individual researchers have built faster (1–2.5 s scanning instruments. With the introduction of the Engine Exhaust Particle Sizer (EEPS in 2004, high time-resolution (1 full 32-channel spectrum per second particle size distribution data become possible and allow atmospheric researchers to study the characteristics of ultrafine vehicular particles in rapidly and perhaps randomly varying high concentration environments such as roadside, on-road and tunnel. In this study, particle size distributions in these environments were found to vary as rapidly as one second frequently. This poses the question on the generality of using averages of long scan-time spectra for dynamic and/or mechanistic studies in rapidly and perhaps randomly varying high concentration environments. One-second EEPS data taken at roadside, on roads and in tunnels by a mobile platform are time-averaged to yield 5, 10, 30 and 120 s distributions to answer this question.

  17. Effects of particle size and chain length on flotation of quaternary ammonium salts onto kaolinite

    Science.gov (United States)

    Longhua, Xu; Yuehua, Hu; Faqin, Dong; Hao, Jiang; Houqin, Wu; Zhen, Wang; Ruohua, Liu

    2015-06-01

    Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by flotation tests. Dodecyltrimethylammonium chloride (DTAC) and cetyltrimethylammonium chloride (CTAC) were used as collectors for kaolinite in different particle size fractions (0.075 ~ 0.01 mm, 0.045 ~ 0.075 mm, 0 ~ 0.045 mm). The anomalous flotation behavior of kaolinite have been further explained based on crystal structure considerations by adsorption tests and molecular dynamics (MD) simulation. The results show that the flotation recovery of kaolinite in all different particle size fractions decreases with an increase in pH. As the concentration of collectors increases, the flotation recovery increases. The longer the carbon chain of QAS is, the higher the recoveries of coarse kaolinite (0.075 ~ 0.01 mm and 0.045 ~ 0.075 mm) are. But the flotation recovery of the finest kaolinite (0 ~ 0.045 mm) decreases with chain lengths of QAS collectors increasing, which is consistent with the flotation results of unscreened kaolinite (0 ~ 0.075 mm). It is explained by the froth stability related to the residual concentration of QAS collector in mineral pulp. In lower residual concentration, the froth stability becomes worse. Within the range of flotation collector concentration, it's easy of CTAC to be completely adsorbed by kaolinite in the particle size fraction (0-0.045 mm), which led to lower flotation recovery. Moreover, it is interesting that the coarser particle size of kaolinite is, the higher flotation recovery is. The anomalous flotation behavior of kaolinite is rationalized based on crystal structure considerations. The results of MD simulations show that the (001) kaolinite surface has the strongest interaction with DTAC, compared with the (00 1) face, (010) and (110) edges. On the other hand, when particle size of kaolinite is altered, the number of basal planes and edge planes is changed. It is observed that the finer kaolinite

  18. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    Directory of Open Access Journals (Sweden)

    Mallika Gummalla

    2015-05-01

    Full Text Available The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with the smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s, the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA of the decayed membrane-electrode assembly (MEA showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.

  19. Particle sizes in Saturn's rings from UVIS stellar occultations 1. Variations with ring region

    Science.gov (United States)

    Colwell, J. E.; Esposito, L. W.; Cooney, J. H.

    2018-01-01

    The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high speed photometer (HSP) that has observed stellar occultations by Saturn's rings with a radial resolution of ∼10 m. In the absence of intervening ring material, the time series of measurements by the HSP is described by Poisson statistics in which the variance equals the mean. The finite sizes of the ring particles occulting the star lead to a variance that is larger than the mean due to correlations in the blocking of photons due to finite particle size and due to random variations in the number of individual particles in each measurement area. This effect was first exploited by Showalter and Nicholson (1990) with the stellar occultation observed by Voyager 2. At a given optical depth, a larger excess variance corresponds to larger particles or clumps that results in greater variation of the signal from measurement to measurement. Here we present analysis of the excess variance in occultations observed by Cassini UVIS. We observe differences in the best-fitting particle size in different ring regions. The C ring plateaus show a distinctly smaller effective particle size, R, than the background C ring, while the background C ring itself shows a positive correlation between R and optical depth. The innermost 700 km of the B ring has a distribution of excess variance with optical depth that is consistent with the C ring ramp and C ring but not with the remainder of the B1 region. The Cassini Division, while similar to the C ring in spectral and structural properties, has different trends in effective particle size with optical depth. There are discrete jumps in R on either side of the Cassini Division ramp, while the C ring ramp shows a smooth transition in R from the C ring to the B ring. The A ring is dominated by self-gravity wakes whose shadow size depends on the occultation geometry. The spectral ;halo; regions around the strongest density waves in the A ring correspond to

  20. ANAEROBIC DIGESTION OF MUNICIPAL BIOWASTE FOR THE PRODUCTION OF RENEWABLE ENERGY: EFFECT OF PARTICLE SIZE

    Directory of Open Access Journals (Sweden)

    Brayan Alexis Parra-Orobio

    Full Text Available Abstract In recent years, Anaerobic Digestion (AD has become an important technological alternative for the management of municipal biowaste (MBW for both pollution control and obtaining renewable energy such as methane. One of the factors that most affects the AD of MBW is the particle size, particularly in the hydrolysis and lag phases, this last being in general the limiting stage of solid waste AD. This research evaluated on a laboratory scale the AD of MBW by evaluating Biochemical Methan