WorldWideScience

Sample records for bimodal nuclear thermal

  1. Bimodal Nuclear Thermal Rocket Analysis Developments

    Science.gov (United States)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  2. NERVA-Derived Concept for a Bimodal Nuclear Thermal Rocket

    International Nuclear Information System (INIS)

    Fusselman, Steven P.; Frye, Patrick E.; Gunn, Stanley V.; Morrison, Calvin Q.; Borowski, Stanley K.

    2005-01-01

    The Nuclear Thermal Rocket is an enabling technology for human exploration missions. The 'bimodal' NTR (BNTR) provides a novel approach to meeting both propulsion and power requirements of future manned and robotic missions. The purpose of this study was to evaluate tie-tube cooling configurations, NTR performance, Brayton cycle performance, and LOX-Augmented NTR (LANTR) feasibility to arrive at a point of departure BNTR configuration for subsequent system definition

  3. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Science.gov (United States)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  4. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2016-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of zero-gravity (0-g) experienced by cosmonauts and astronauts during their approximately 0.5 to 1.2 year long stays in low Earth orbit (LEO). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity (AG) spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced bimodal nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of approximately 900 s-twice that of today's best chemical rockets. The AG/MTV concepts using conventional Nuclear Thermal Propulsion (NTP) carry twin cylindrical International Space Station (ISS)- type habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own closed secondary helium(He)-xenon (Xe) gas loop and Brayton Rotating Unit (BRU) that can generate 10s of kilowatts (kWe) of spacecraft electrical power during the mission coast phase

  5. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  6. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    Science.gov (United States)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  7. Dynamical and statistical bimodality in nuclear fragmentation

    Science.gov (United States)

    Mallik, S.; Chaudhuri, G.; Gulminelli, F.

    2018-02-01

    The origin of bimodal behavior in the residue distribution experimentally measured in heavy ion reactions is reexamined using Boltzmann-Uehling-Uhlenbeck simulations. We suggest that, depending on the incident energy and impact parameter of the reaction, both entrance channel and exit channel effects can be at the origin of the observed behavior. Specifically, fluctuations in the reaction mechanism induced by fluctuations in the collision rate, as well as thermal bimodality directly linked to the nuclear liquid-gas phase transition, are observed in our simulations. Both phenomenologies were previously proposed in the literature but presented as incompatible and contradictory interpretations of the experimental measurements. These results indicate that heavy ion collisions at intermediate energies can be viewed as a powerful tool to study both bifurcations induced by out-of-equilibrium critical phenomena, as well as finite-size precursors of thermal phase transitions.

  8. 'Bimodal' Nuclear Thermal Rocket (BNTR) propulsion for an artificial gravity HOPE mission to Callisto

    International Nuclear Information System (INIS)

    Borowski, Stanley K.; McGuire, Melissa L.; Mason, Lee M.; Gilland, James H.; Packard, Thomas W.

    2003-01-01

    This paper summarizes the results of a year long, multi-center NASA study which examined the viability of nuclear fission propulsion systems for Human Outer Planet Exploration (HOPE). The HOPE mission assumes a crew of six is sent to Callisto. Jupiter's outermost large moon, to establish a surface base and propellant production facility. The Asgard asteroid formation, a region potentially rich in water-ice, is selected as the landing site. High thrust BNTR propulsion is used to transport the crew from the Earth-Moon L1 staging node to Callisto then back to Earth in less than 5 years. Cargo and LH2 'return' propellant for the piloted Callisto transfer vehicle (PCTV) is pre-deployed at the moon (before the crew's departure) using low thrust, high power, nuclear electric propulsion (NEP) cargo and tanker vehicles powered by hydrogen magnetoplasmadynamic (MPD) thrusters. The PCTV is powered by three 25 klbf BNTR engines which also produce 50 kWe of power for crew life support and spacecraft operational needs. To counter the debilitating effects of long duration space flight (∼855 days out and ∼836 days back) under '0-gE' conditions, the PCTV generates an artificial gravity environment of '1-gE' via rotation of the vehicle about its center-of-mass at a rate of ∼4 rpm. After ∼123 days at Callisto, the 'refueled' PCTV leaves orbit for the trip home. Direct capsule re-entry of the crew at mission end is assumed. Dynamic Brayton power conversion and high temperature uranium dioxide (UO2) in tungsten metal ''cermet'' fuel is used in both the BNTR and NEP vehicles to maximize hardware commonality. Technology performance levels and vehicle characteristics are presented, and requirements for PCTV reusability are also discussed

  9. Bimodality in macroscopic dynamics of nuclear fission

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Salamatin, V.S.; Strteltsova, O.I.; Molodtsova, I.V.; Podgainy, D.V.; )

    2000-01-01

    The elastodynamic collective model of nuclear fission is outlined whose underlying idea is that the stiff structure of nuclear shells imparts to nucleus properties typical of a small piece of an elastic solid. Emphasis is placed on the macroscopic dynamics of nuclear deformations resulting in fission by two energetically different modes. The low-energy S-mode is the fission due to disruption of elongated quadrupole spheroidal shape. The characteristic features of the high-energy T-mode of division by means of torsional shear deformations is the compact scission configuration. Analytic and numerical estimates for the macroscopic fission-barrier heights are presented, followed by discussion of fingerprints of the above dynamical bimodality in the available data [ru

  10. Pluto/Charon exploration utilizing a bi-modal PBR nuclear propulsion/power system

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The paper describes a Pluto/Charon orbiter utilizing a bi-modal nuclear propulsion and power system based on the Particle Bed Reactor. The orbiter is sized for launch to Nuclear-Safe orbit atop a Titan IV or equivalent launch veicle. The bi-modal system provides thermal propulsion for Earth orbital departure and Pluto orbital capture, and 10 kWe of electric power for payload functions and for in-system maneuvering with ion thrusters. Ion thrusters are used to perform inclination changes about Pluto, a transfer from low Pluto orbit to low Charon orbit, and inclination changes about charon. A nominal payload can be deliverd in as little as 15 years, 1000 kg in 17 years, and close to 2000 kg in 20 years. Scientific return is enormously aided by the availability of up to 10 kWe, due to greater data transfer rates and more/better instruments. The bi-modal system can provide power at Pluto/Charon for 10 or more years, enabling an extremely robust, scientifically rewarding, and cost-effective exploration mission.

  11. Design and development of the MITEE-B bi-modal nuclear propulsion engine

    International Nuclear Information System (INIS)

    Paniagua, John C.; Powell, James R.; Maise, George

    2003-01-01

    Previous studies of compact, ultra-lightweight high performance nuclear thermal propulsion engines have concentrated on systems that only deliver high thrust. However, many potential missions also require substantial amounts of electric power. Studies of a new, very compact and lightweight bi-modal nuclear engine that provides both high propulsive thrust and high electric power for planetary science missions are described. The design is a modification of the MITEE nuclear thermal engine concept that provided only high propulsive thrust. In the new design, MITEE-B, separate closed cooling circuits are incorporated into the reactor, which transfers useful amounts of thermal energy to a small power conversion system that generates continuous electric power over the full life of the mission, even when the engine is not delivering propulsive thrust. Two versions of the MITEE-B design are described and analyzed. Version 1 generates 1 kW(e) of continuous power for control of the spacecraft, sensors, data transmission, etc. This power level eliminates the need for RTG's on missions to the outer planets, and allowing considerably greater operational capability for the spacecraft. This, plus its high thrust and high specific impulse propulsive capabilities, makes MITEE-B very attractive for such missions. In Version 2, of MITEE-B, a total of 20 kW(e) is generated, enabling the use of electric propulsion. The combination of high open cycle propulsion thrust (20,000 Newtons) with a specific impulse of ∼1000 seconds for short impulse burns, and long term (months to years), electric propulsion greatly increases MITEE's ΔV capability. Version 2 of MITEE-B also enables the production and replenishment of H2 propellant using in-situ resources, such as electrolysis of water from the ice sheet on Europa and other Jovian moons. This capability would greatly increase the ΔV available for certain planetary science missions. The modifications to the MITEE multiple pressure tube

  12. Bimodality: A Sign of Critical Behavior in Nuclear Reactions

    International Nuclear Information System (INIS)

    Le Fevre, A.; Aichelin, J.

    2008-01-01

    The recently discovered coexistence of multifragmentation and residue production for the same total transverse energy of light charged particles, which has been dubbed bimodality like it has been introduced in the framework of equilibrium thermodynamics, can be well reproduced in numerical simulations of heavy ion reactions. A detailed analysis shows that fluctuations (introduced by elementary nucleon-nucleon collisions) determine which of the exit states is realized. Thus, we can identify bifurcation in heavy ion reactions as a critical phenomenon. Also the scaling of the coexistence region with beam energy is well reproduced in these results from the quantum molecular dynamics simulation program

  13. Thermal Super-Pixels for Bimodal Stress Recognition

    DEFF Research Database (Denmark)

    Irani, Ramin; Nasrollahi, Kamal; Dhall, Abhinav

    2016-01-01

    to be in touch with the body which is not always practical. Contact-free monitoring of the stress by a camera [1, 2] can be an alternative. These systems usually utilize only an RGB or a thermal camera to recognize stress. To the best of our knowledge, the only work on fusion of these two modalities for stress......Stress is a response to time pressure or negative environmental conditions. If its stimulus iterates or stays for a long time, it affects health conditions. Thus, stress recognition is an important issue. Traditional systems for this purpose are mostly contact-based, i.e., they require a sensor...

  14. Application of a bi-modal PBR nuclear propulsion and power system to military missions

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The rapid proliferation of arms technology and space access combined with current economic realities in the United States are creating ever greater demands for more capable space-based military assets. The paper illustrates that bi-modal nuclear propulsion and power based on the Particle Bed Reactor (PBR) is a high-leverage tehcnology that can maximize utility while minimizing cost. Mission benefits offered by the bi-modal PBR, including enhanced maneuverability, lifetime, survivability, payload power, and operational flexibility, are discussed. The ability to deliver desired payloads on smaller boosters is also illustrated. System descriptions and parameters for 10 kWe and 100 kWe power output levels are summarized. It is demonstrated via design exercise that bi-modal PBR dramtically enhances performance of a military satellite in geosynchronous orbit, increasing payload mass, payload power, and maneuverability.

  15. Thermal induced carrier's transfer in bimodal size distribution InAs/GaAs quantum dots

    Science.gov (United States)

    Ilahi, B.; Alshehri, K.; Madhar, N. A.; Sfaxi, L.; Maaref, H.

    2018-06-01

    This work reports on the investigation of the thermal induced carriers' transfer mechanism in vertically stacked bimodal size distribution InAs/GaAs quantum dots (QD). A model treating the QD as a localized states ensemble (LSE) has been employed to fit the atypical temperature dependence of the photoluminescence (PL) emission energies and linewidth. The results suggest that thermally activated carriers transfer within the large size QD family occurs through the neighboring smaller size QD as an intermediate channel before direct carriers redistribution. The obtained activation energy suggests also the possible contribution of the wetting layer (WL) continuum states as a second mediator channel for carriers transfer.

  16. MITEE-B: A compact ultra lightweight bi-modal nuclear propulsion engine for robotic planetary science missions

    International Nuclear Information System (INIS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources

  17. On the use of a pulsed nuclear thermal rocket for interplanetary travel

    OpenAIRE

    Arias Montenegro, Francisco Javier

    2016-01-01

    The object of this work is a first assessment of the use of a pulsed nuclear thermal rocket for thrust and specific impulse (Isp) augmentation with particular reference to interplanetary travel. The basis of the novel space propulsion idea is the possibility of working in a bimodal fashion where the classical stationary nuclear thermal rocket (NTR) could be switch on or switch off as a pulsed reactor as desired by the mission planners. It was found that the key factor for Isp augmentation ...

  18. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion (Briefing Charts)

    Science.gov (United States)

    2014-07-01

    handled by the “enthalpy method” ** Movie File to Be Added Here** DISTRIBUTION STATEMENT A: Approved for public release; distribution is...irreparable damage to quartz chamber window • Gradually increase power until thermal equilibrium is achieved • Use “shutter curtain” to quickly cut...274 0.4 289 0.8 312 1 322 • Incomplete dissociation will lower performance • Equilibrium calculations for 1500 K solar thermal thruster

  19. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  20. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    Energy Technology Data Exchange (ETDEWEB)

    D’Auria, F; Rohatgi, Upendra S.

    2017-01-12

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  1. Nuclear thermal propulsion workshop overview

    International Nuclear Information System (INIS)

    Clark, J.S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning

  2. The Next Generation Fornax Survey (NGFS). IV. Mass and Age Bimodality of Nuclear Clusters in the Fornax Core Region

    Science.gov (United States)

    Ordenes-Briceño, Yasna; Puzia, Thomas H.; Eigenthaler, Paul; Taylor, Matthew A.; Muñoz, Roberto P.; Zhang, Hongxin; Alamo-Martínez, Karla; Ribbeck, Karen X.; Grebel, Eva K.; Ángel, Simón; Côté, Patrick; Ferrarese, Laura; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan W.; Rong, Yu; Sánchez-Janssen, Ruben

    2018-06-01

    We present the analysis of 61 nucleated dwarf galaxies in the central regions (≲R vir/4) of the Fornax galaxy cluster. The galaxies and their nuclei are studied as part of the Next Generation Fornax Survey using optical imaging obtained with the Dark Energy Camera mounted at Blanco/Cerro Tololo Inter-American Observatory and near-infrared data obtained with VIRCam at VISTA/ESO. We decompose the nucleated dwarfs in nucleus and spheroid, after subtracting the surface brightness profile of the spheroid component and studying the nucleus using point source photometry. In general, nuclei are consistent with colors of confirmed metal-poor globular clusters, but with significantly smaller dispersion than other confirmed compact stellar systems in Fornax. We find a bimodal nucleus mass distribution with peaks located at {log}({{ \\mathcal M }}* /{M}ȯ )≃ 5.4 and ∼6.3. These two nucleus subpopulations have different stellar population properties: the more massive nuclei are older than ∼2 Gyr and have metal-poor stellar populations (Z ≤ 0.02 Z ⊙), while the less massive nuclei are younger than ∼2 Gyr with metallicities in the range 0.02 < Z/Z ⊙ ≤ 1. We find that the nucleus mass ({{ \\mathcal M }}nuc}) versus galaxy mass ({{ \\mathcal M }}gal}) relation becomes shallower for less massive galaxies starting around 108 M ⊙, and the mass ratio {η }n={{ \\mathcal M }}nuc}/{{ \\mathcal M }}gal} shows a clear anticorrelation with {{ \\mathcal M }}gal} for the lowest masses, reaching 10%. We test current theoretical models of nuclear cluster formation and find that they cannot fully reproduce the observed trends. A likely mixture of in situ star formation and star cluster mergers seems to be acting during nucleus growth over cosmic time.

  3. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  4. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  5. Philosophy for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.; Redd, L.

    1993-01-01

    The philosophy used for development of nuclear thermal propulsion will determine the cost, schedule and risk associated with the activities. As important is the impression of the decision makers. If the development cost is higher than the product value, it is doubtful that funding will ever be available. On the other hand, if the development supports the economic welfare of the country with a high rate of return, the probability of funding greatly increases. The philosophy is divided into: realism, design, operations and qualification. ''Realism'' addresses such items as political acceptability, potential customers, robustness-flexibility, public acceptance, decisions as needed, concurrent engineering, and the possible role of the CIS. ''Design'' addresses ''minimum requirement,'' built in safety and reliability redundancy, emphasize on eliminating risk at lowest levels, and the possible inclusion of electric generation. ''Operations'' addresses sately, environment, operations, design margins and degradation modes. ''Qualification'' addresses testing needs and test facilities

  6. Thermal hydraulics in undergraduate nuclear engineering education

    International Nuclear Information System (INIS)

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future

  7. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  8. A development approach for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.

    1992-01-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ''acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering

  9. Nuclear thermal rockets using indigenous Martian propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs

  10. Macroscopic dynamics of thermal nuclear excitations

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-11-01

    The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs

  11. Preliminary Thermo-hydraulic Core Design Analysis of Korea Advanced Nuclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Lee, Jeong Ik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Nclear rockets improve the propellant efficiency more than twice compared to CRs and thus significantly reduce the propellant requirement. The superior efficiency of nuclear rockets is due to the combination of the huge energy density and a single low molecular weight propellant utilization. Nuclear Thermal Rockets (NTRs) are particularly suitable for manned missions to Mars because it satisfies a relatively high thrust as well as a high propellant efficiency. NTRs use thermal energy released from a nuclear fission reactor to heat a single low molecular weight propellant, i. e., Hydrogen (H{sub 2}) and then exhausted the extremely heated propellant through a thermodynamic nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub sp}) which represents the ratio of the thrust over the rate of propellant consumption. The difference of I{sub sp} makes over three times propellant savings of NTRs for a manned Mars mission compared to CRs. NTRs can also be configured to operate bimodally by converting the surplus nuclear energy to auxiliary electric power required for the operation of a spacecraft. Moreover, the concept and technology of NTRs are very simple, already proven, and safe. Thus, NTRs can be applied to various space missions such as solar system exploration, International Space Station (ISS) transport support, Near Earth Objects (NEOs) interception, etc. Nuclear propulsion is the most promising and viable option to achieve challenging deep space missions. Particularly, the attractions of a NTR include excellent thrust and propellant efficiency, bimodal capability, proven technology, and safe and reliable performance. The ROK has also begun the research for space nuclear systems as a volunteer of the international space race and a major world nuclear energy country. KANUTER is one of the advanced NTR engines currently under development at KAIST. This bimodal engine is operated in two modes of propulsion with 100 MW

  12. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    International Nuclear Information System (INIS)

    Emrich, William J. Jr.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts

  13. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  14. Bimodality and negative heat capacity in multifragmentation

    International Nuclear Information System (INIS)

    Tamain, B.; Bougault, R.; Lopez, O.; Pichon, M.

    2003-01-01

    This contribution addresses the question of the possible link between multifragmentation and the liquid-gas phase transition of nuclear matter. Bi-modality seems to be a robust signal of this link in the sense that theoretical calculations indicate that it is preserved even if a sizeable fraction of the available energy has not been shared among all the degrees of freedom. The corresponding measured properties are coherent with what is expected in a liquid-gas phase transition picture. Moreover, bi-modality and negative heat capacity are observed for the same set of events. (authors)

  15. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    International Nuclear Information System (INIS)

    Ramsthaler, J.H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs

  16. Nuclear thermal propulsion engine cost trade studies

    International Nuclear Information System (INIS)

    Paschall, R.K.

    1993-01-01

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp>870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified

  17. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  18. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  19. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  20. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Directory of Open Access Journals (Sweden)

    Seung Hyun Nam

    2015-10-01

    Full Text Available Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER, for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MWth and an electricity generation mode of 100 kWth, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  1. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW{sub th} and an electricity generation mode of 100 kW{sub th}, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  2. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon

    2015-01-01

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW th and an electricity generation mode of 100 kW th , equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics

  3. Nuclear thermal rockets using indigenous extraterrestrial propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1990-01-01

    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS

  4. Applied mathematical methods in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1983-01-01

    Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated

  5. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  6. The Space Nuclear Thermal Propulsion Program: Propulsion for the twenty first century

    International Nuclear Information System (INIS)

    Bleeker, G.; Moody, J.; Kesaree, M.

    1993-01-01

    As mission requirements approach the limits of the chemical propulsion systems, new engines must be investigated that can meet the advanced mission requirements of higher payload fractions, higher velocities, and consequently higher specific Impulses (Isp). The propulsion system that can meet these high demands is a nuclear thermal rocket engine. This engine generates the thrust by expanding/existing the hydrogen, heated from the energy derived from the fission process in a reactor, through a nozzle. The Department of Defense (DoD), however, initiated a new nuclear rocket development program in 1987 for ballistic missile defense application. The Space Nuclear Thermal Propulsion (SNTP) Program that seeks to improve on the technology of ROVER/NERVA grew out of this beginning and has been managed by the Air Force, with the involvement of DoE and NASA. The goal of the SNTP Program is to develop an engine to meet potential Air Force requirements for upper stage engine, bimodal propulsion/power applications, and orbital transfer vehicles, as well as the NASA requirements for possible missions to the Moon and Mars. During the entire life of the program, the DoD has considered safety to be of paramount importance, and is following all national environmental policies

  7. Proceedings of the third nuclear thermal hydraulics meeting

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains the proceedings of the Thermal Hydraulics Division of the American Nuclear Society. The papers presented include: Simulator qualification using engineering codes and Development of thermal hydraulic analysis capabilities for Oyster Creek

  8. Thermal phenomenae in nuclear fuel rods

    International Nuclear Information System (INIS)

    Baigorria, Carlos.

    1983-12-01

    Thermal phenomenae occurring in a nuclear fuel rod under irradiation are studied. The most important parameters of either steady or transient thermal states are determined. The validity of applying the Fourier's approximation equations to these problems is also studied. A computer program TRANS is developed in order to study the transient cases. This program solves a system of coupled, non-linear partial differential equations, of parabolic type, in cylindrical coordinates with various boundary conditions. The benchmarking of the TRANS program is done by comparing its predictions with the analytical solution of some simplified transient cases. Complex transient cases such as those corresponding to characteristic reactor accidents are studied, in particular for typical pressurized heavy water reactor (PHWR) fuel rods, such as those of Atucha I. The Stefan problem emerging in the case of melting of the fuel element is solved. Qualitative differences between the classical Stefan problem, without inner sources, and that one, which includes sources are discussed. The MSA program, for solving the Stefan problem with inner sources is presented; and furthermore, it serves to predict thermal evolution, when the fuel element melts. Finally a model for fuel phase change under irradiation is developed. The model is based on the dimensional invariants of the percolation theory when applied to the connectivity of liquid spires nucleated around each fission fragment track. Suggestions for future research into the subject are also presented. (autor) [es

  9. Oxygen Containment System Options for Nuclear Thermal Propulsion Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — All nuclear thermal propulsion (NTP) ground testing conducted in the 1950s and 1960s during the ROVER/(Nuclear Engine Rocket Vehicle Application (NERVA) program...

  10. Nuclear vapor thermal reactor propulsion technology

    International Nuclear Information System (INIS)

    Maya, I.; Diaz, N.J.; Dugan, E.T.; Watanabe, Y.; McClanahan, J.A.; Wen-Hsiung Tu; Carman, R.L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF 4 ) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF 4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (∼100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development

  11. Corredor Bimodal Cafetero

    OpenAIRE

    Duque Escobar, Gonzalo

    2015-01-01

    El Corredor Bimodal Cafetero es un proyecto de infraestructura estratégica que articula la Hidrovía del Magdalena con el Corredor Férreo del río Cauca, inscrito en el Plan Nacional de Desarrollo 2014/2018 y financiable con la salida de 30 mil toneladas diarias de carbón andino a la cuenca del Pacífico. Incluye el Túnel Cumanday para cruzar la Cordillera Central, el Ferrocarril Cafetero de 150 km y 3% de pendiente entre La Dorada y el Km 41, y la Transversal Cafetera de 108 km para una vía de...

  12. Lunar mission design using nuclear thermal rockets

    International Nuclear Information System (INIS)

    Stancati, M.L.; Collins, J.T.; Borowski, S.K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits

  13. Thermally-insulating layer for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The thermally-insulating layer has been designed both for insulating surfaces within the core of a nuclear reactor and transmitting loads such as the core-weight. Said layer comprises a layer of bricks and a layer of tiles with smaller clearance between the tiles than between the bricks, the latter having a reduced cross-section against the tiles so as to be surrounded by relatively large interconnected ducts forming a continuous chamber behind the tile-layer in order to induce a substantial decreases in the transverse flow of the reactor-core coolant. The core preferably comprises hexagonal columns supported by rhomb-shaped plates, with channels distributed so as to mix the coolant of twelve columns. The plates are separated from support-tiles by means of pillars [fr

  14. NASA's nuclear thermal propulsion technology project

    International Nuclear Information System (INIS)

    Peecook, K.M.; Stone, J.R.

    1992-07-01

    The nonnuclear subsystem technologies required for incorporating nuclear thermal propulsion (NTP) into space-exploration missions are discussed. Of particular interest to planned missions are such technologies as materials, instrumentation and controls, turbomachinery, CFD modeling, nozzle extension designs and models, and analyses of exhaust plumes. NASA studies are described and/or proposed for refractory metals and alloys, robotic NTP controls, and turbopump materials candidates. Alternative nozzle concepts such as aerospikes and truncated plugs are proposed, and numerical simulations are set forth for studying heavy molecules and the backstreaming of highly reactive free-radical hydrogen in the exhaust plume. The critical technologies described in the paper are central to the development of NTP, and NTP has the potential to facilitate a range of space exploration activities. 3 refs

  15. System model development for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented

  16. Thermal analyses of spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Ikonen, K.

    2003-06-01

    This report contains the temperature dimensioning of the KBS-3V type 1- or 2-panel repository based on the rock properties measured from the Olkiluoto investigations. The report describes first the development of a calculation methodology for the thermal analysis of a repository for nuclear fuel. The disposed canisters produce residual heat due to decay (or disintegration) of radioactive products. The decay heat is conducted to surrounding rock mass. The methods were applied to determine the effect of different parameters on the highest canister temperature and to support the planning, dimensioning and operation of the repository. The thermal diffusivity of the rock is low and the heat released from the canisters is spread into the surrounding rock volume quite slowly causing thermal gradient in the rock close to canisters and the canister temperature is increased remarkably. The maximum temperature on the canister surface is limited to the design temperature of +100 deg C. However, due to uncertainties in thermal analysis parameters (like scattering in rock conductivity) the allowable calculated maximum canister temperature is set to 90 deg C causing a safety margin of 10 deg C. The allowable temperature is controlled by the spacing between adjacent canisters, adjacent tunnels and the distance between separate panels of the repository and the pre-cooling time affecting power of the canisters. Because of the fact that the disposal operation takes several decades, the moment of disposal of an individual canister in addition to the location has an influence on the maximum temperature in the canister. Also, a second disposal panel in the repository has a thermal interaction with the other panel. This interaction is expressed after a few decades at the strongest. It became apparent that the temperature of canister surfaces can be determined by analytic line heat source model much more efficiently than by numerical analysis, if the analytic model is first verified and

  17. Tribological properties and morphology of bimodal elastomeric nitrile butadiene rubber networks

    International Nuclear Information System (INIS)

    Guo, Yin; Wang, Jiaxu; Li, Kang; Ding, Xingwu

    2013-01-01

    Highlights: • Bimodal elastomeric NBR as a new material was developed. • The structure of bimodal elastomeric NBR networks was determined. • The relationship between structure and mechanical properties was investigated. • The tribological properties and mechanisms of bimodal NBR were analyzed. • The benefits of bimodal NBR in the field of tribology were discussed. - Abstract: Bimodal nitrile butadiene rubber (NBR) was examined in this study. The molecular structure was determined by dynamic mechanical analysis and transmission electron microscopy. The relationship between the structure and the mechanical properties related to elastomeric tribological properties was investigated. The properties and the mechanisms of friction and wear of bimodal elastomeric NBR networks were also analyzed. The lubricating characteristics of bimodal NBR networks were revealed based on the mechanisms of friction and wear. Results show that bimodal NBR networks are similar to bimodal polydimethylsiloxane networks. The form and density of the network structure can be controlled from elastomeric networks to thermosetting resin networks. The mechanical properties of bimodal NBR networks, such as elasticity, elongation at break, fatigue characteristic, tensile strength, elastic modulus, and thermal stability can be precisely controlled following the variation in network structure. The friction, wear, and lubrication of bimodal NBR networks can be clearly described according to the principles of tribology. Common elastomers cannot simultaneously reduce friction and wear because of the different mechanisms of friction and wear; however, bimodal elastomer networks can efficiently address this problem

  18. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  19. Nuclear Thermal Rocket Simulation in NPSS

    Science.gov (United States)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  20. Nuclear Thermal Rocket (NTR) Development Risk Communication

    Science.gov (United States)

    Kim, Tony

    2014-01-01

    There are clear advantages of development of a Nuclear Thermal Rocket (NTR) for a crewed mission to Mars. NTR for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse (approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration. However, "NUCLEAR" is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. Communication of nuclear safety will be critical to the success of the development of the NTR. Why is there a fear of nuclear? A bomb that can level a city is a scary weapon. The first and only times the Nuclear Bomb was used in a war was on Hiroshima and Nagasaki during World War 2. The "Little Boy" atomic bomb was dropped on Hiroshima on August 6, 1945 and the "Fat Man" on Nagasaki 3 days later on August 9th. Within the first 4 months of bombings, 90- 166 thousand people died in Hiroshima and 60-80 thousand died in Nagasaki. It is important to note for comparison that over 500 thousand people died and 5 million made homeless due to strategic bombing (approximately 150 thousand tons) of Japanese cities and war assets with conventional non-nuclear weapons between 1942- 1945. A major bombing campaign of "firebombing" of Tokyo called "Operation Meetinghouse" on March 9 and 10 consisting of 334 B-29's dropped approximately1,700 tons of bombs around 16 square mile area and over 100 thousand people have been estimated to have died. The declaration of death is very

  1. Thermal efficiency improvements - an imperative for nuclear generating stations

    International Nuclear Information System (INIS)

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  2. Advanced Filter Technology For Nuclear Thermal Propulsion

    Science.gov (United States)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  3. Turbopump options for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Bissell, W.R.; Gunn, S.V.

    1992-07-01

    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range. 10 refs

  4. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  5. The thermal curve of nuclear matter

    International Nuclear Information System (INIS)

    Ma, Y.G.; Peter, J.; Siwek, A.; Bocage, F.; Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Gulminelli, F.; Lecolley, J.F.; Lefort, T.; Le Neindre, N.; Lopez, O.; Louvel, M.; Nguyen, A.D.; Steckmeyer, J.C.; Tamain, B.; Vient, E.

    1997-01-01

    Earlier measurements of nuclear matter thermal curve of liquid to gas phase transition presented two limitation: only one temperature measuring method was available and the mass number of the formed nuclei decreased from 190 to 50 when the excitation energy increased. To avoid these limitations experiments with the multidetector INDRA at GANIL were carried-out. Among the quasi-projectiles issued from the 36 Ar collisions at 52, 74, 95 A.MeV on the 58 Ni, nuclei of close masses were selected. The excitation energy was determined by the calorimetry of the charged products emitted by quasi-projectiles while the temperature was measured by three different methods. Very different apparent temperatures were obtained for the same excitation energy/nucleon. Only one curve displays a slope variation but no indication of plateau. With the quasi-projectiles obtained from the collisions of 129 Xe at 50 MeV/u on a 119 Sn target behaviors similar to those of 36 Ar were observed in the covered domain of excitation energy. To solve this puzzle and recover the initial temperatures of interest the only mean was to do a theoretical simulation in which one follows the de-excitation of the nuclei formed at different excitation energies and look for the thermal curve able to reproduce the observed temperatures. Two extreme possibilities were taken into account concerning the de-excitation process: either a sequential process established at E * /A≤ 3 MeV/u or a sudden multifragmentation in several hot fragments, most probably at E * /A≥ 10 MeV/u. In both cases it was possible to reproduce the whole set of experimental results concerning the 36 Ar projectile. The initial temperature increases steadily as a function of excitation energy showing no plateau or singular points. The results indicate that, being a system without external pressure, in its passage from the liquid phase to the gas phase the nucleus does not display necessarily a temperature plateau. Discussions on

  6. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  7. Thermal analysis of transportation packaging for nuclear spent fuel

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki

    1989-01-01

    Safety analysis of transportation packaging for nuclear spent fuel comprises structural, thermal, containment, shielding and criticality factors, and the safety of a packaging is verified by these analyses. In thermal analysis, the temperature of each part of the packaging is calculated under normal and accident test conditions. As an example of thermal analysis, the temperature distribution of a packaging being subjected to a normal test was calculated by the TRUMP code and compared with measured data. (author)

  8. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  9. On the spin saturation and thermal properties of nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-12-01

    The binding energy and the incompressibility of nuclear matter with degree of spin saturation D is calculated using the Skyrme interaction and two forms of a velocity dependent effective potential. The effect of the degree of spin saturation D on the thermal properties of nuclear matter is also discussed. It is found that generally the pressure decreases with increasing D. (author)

  10. Application of thermal-hydraulic codes in the nuclear sector

    International Nuclear Information System (INIS)

    Queral, C.; Coriso, M.; Garcia Sedano, P. J.; Ruiz, J. A.; Posada, J. M.; Jimenez Varas, G.; Sol, I.; Herranz, L. E.

    2011-01-01

    Use of thermal-hydraulic codes is extended all over many different aspects of nuclear engineering. This article groups and briefly describes the main features of some of the well known codes as an introduction to their recent applications in the Spain nuclear sector. the broad range and quality of applications highlight the maturity achieved both in industry and research organizations and universities within the Spanish nuclear sector. (Author)

  11. Preliminary development of thermal nuclear cell homogenization code

    International Nuclear Information System (INIS)

    Su'ud, Z.; Shafii, M. A.; Yudha, S. P.; Waris, A.; Rijal, K.

    2012-01-01

    Nuclear fuel cell homogenization for thermal reactors usually include three main parts, i.e., fast energy resonance part which usually adopt narrow resonance approximation to treat the resonance, low (intermediate) energy region in which the resonance can not be treated accurately using NR approximation and therefore we should use intermediate resonance treatment, and thermal energy region (very low) in which the effect of thermal must be treated properly. In n this study the application of the intermediate resonance approximation treatment for low energy nuclear resonance is discussed. The method is iterative based. As a sample the method is applied in U-235 low lying resonance and the result is presented and discussed.

  12. Innovative nuclear thermal rocket concept utilizing LEU fuel for space application

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Venneri, Paolo; Choi, Jae Young; Jeong, Yong Hoon; Chang, Soon Heung

    2015-01-01

    Space is one of the best places for humanity to turn to keep learning and exploiting. A Nuclear Thermal Rocket (NTR) is a viable and more efficient option for human space exploration than the existing Chemical Rockets (CRs) which are highly inefficient for long-term manned missions such as to Mars and its satellites. NERVA derived NTR engines have been studied for the human missions as a mainstream in the United States of America (USA). Actually, the NERVA technology has already been developed and successfully tested since 1950s. The state-of-the-art technology is based on a Hydrogen gas (H_2) cooled high temperature reactor with solid core utilizing High-Enriched Uranium (HEU) fuel to reduce heavy metal mass and to use fast or epithermal neutron spectrums enabling simple core designs. However, even though the NTR designs utilizing HEU is the best option in terms of rocket performance, they inevitably provoke nuclear proliferation obstacles on all Research and Development (R and D) activities by civilians and non-nuclear weapon states, and its eventual commercialization. To surmount the security issue to use HEU fuel for a NTR, a concept of the innovative NTR engine, Korea Advanced NUclear Thermal Engine Rocket utilizing Low-Enriched Uranium fuel (KANUTER-LEU) is presented in this paper. The design goal of KANUTER-LEU is to make use of a LEU fuel for its compact reactor, but does not sacrifice the rocket performance relative to the traditional NTRs utilizing HEU. KANUTER-LEU mainly consists of a fission reactor utilizing H_2 propellant, a propulsion system and an optional Electricity Generation System as a bimodal engine. To implement LEU fuel for the reactor, the innovative engine adopts W-UO_2 CERMET fuel to drastically increase uranium density and thermal neutron spectrum to improve neutron economy in the core. The moderator and structural material selections also consider neutronic and thermo-physical characteristics to reduce non-fission neutron loss and

  13. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  14. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  15. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  16. Performance testing of thermal analysis codes for nuclear fuel casks

    International Nuclear Information System (INIS)

    Sanchez, L.C.

    1987-01-01

    In 1982 Sandia National Laboratories held the First Industry/Government Joint Thermal and Structural Codes Information Exchange and presented the initial stages of an investigation of thermal analysis computer codes for use in the design of nuclear fuel shipping casks. The objective of the investigation was to (1) document publicly available computer codes, (2) assess code capabilities as determined from their user's manuals, and (3) assess code performance on cask-like model problems. Computer codes are required to handle the thermal phenomena of conduction, convection and radiation. Several of the available thermal computer codes were tested on a set of model problems to assess performance on cask-like problems. Solutions obtained with the computer codes for steady-state thermal analysis were in good agreement and the solutions for transient thermal analysis differed slightly among the computer codes due to modeling differences

  17. Bimodality in heavy ions collisions: systematic and comparisons

    International Nuclear Information System (INIS)

    Mercier, D.

    2008-11-01

    During the last few years, bi-modality in heavy ions collisions has been observed for different systems, on large energy scale (from 35 MeV/u up to 1 GeV/u). In this thesis, the bimodal behaviour of the largest fragment distribution (Zmax) is studied for different INDRA data sets. For peripheral collisions (Au+Au from 60 to 150 MeV/u, Xe+Sn 80-100 MeV/u), the influence of sorting and selections on bi-modality is tested. Then, two different approaches based on models are considered. In the first one (ELIE), bi-modality would reflect mainly the collision geometry and the Fermi motion of the nucleon. In the second one (SMM), bi-modality would reflect a phase transition of nuclear matter. The data are in favour of the second model. Zmax can then be considered as an order parameter of the transition. A re-weighting procedure producing a flat excitation energy distribution is used to achieve comparisons between various bombarding energies and theoretical predictions based on a canonical approach. A latent heat of the transition is extracted. For central collisions (Ni+Ni from 32 to 74 MeV/u and Xe+Sn from 25 to 50 MeV/u) single source events are isolated by a Discriminant Factor Analysis. Bi-modality is then looked for, in cumulating the different incident energies and in applying the re-weighting procedure of the corresponding excitation energy as done for peripheral collisions. The bi-modality behaviour is less manifest for central collisions than for peripheral ones. The possible reasons of this difference are discussed. (author)

  18. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  19. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  20. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  1. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  2. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  3. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  4. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  5. Thermal hydraulic feasibility assessment of the spent nuclear fuel project

    International Nuclear Information System (INIS)

    Heard, F.J.

    1996-01-01

    A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The goal was to develop a series of thermal-hydraulic models that could respond to all process and safety related issues that may arise pertaining to the SNFP, as well as provide a basis for validation of the results. Results show that there is a reasonable envelope for process conditions and requirements that are thermally and hydraulically acceptable

  6. Tutorial on nuclear thermal propulsion safety for Mars

    International Nuclear Information System (INIS)

    Buden, D.

    1992-01-01

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments

  7. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    Energy Technology Data Exchange (ETDEWEB)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  8. Some perspectives in nuclear astrophysics on non-thermal phenomena

    International Nuclear Information System (INIS)

    Tatischeff, V.

    2012-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author presents and comments his research activities on nuclear phenomena in stellar eruptions (solar eruptions, lithium nucleosynthesis in stellar eruptions), on particle acceleration in shock waves of stellar explosions (diffusive acceleration by shock wave, particle acceleration in symbiotic novae, particle acceleration in radio-detected supernovae), of research on low energy cosmic rays (galactic emission of nuclear gamma rays, non thermal soft X rays as new tracer of accelerated particles), and on the origin of short period radioactivities in the primitive solar system (extinguished radio-activities and formation of the solar system, origin of berylium-10 in the primitive solar system). The author concludes with some perspectives on non thermal phenomena in nuclear astrophysics, and on research and development for the future of medium-energy gamma astronomy [fr

  9. A bimodal biometric identification system

    Science.gov (United States)

    Laghari, Mohammad S.; Khuwaja, Gulzar A.

    2013-03-01

    Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. Physicals are related to the shape of the body. Behavioral are related to the behavior of a person. However, biometric authentication systems suffer from imprecision and difficulty in person recognition due to a number of reasons and no single biometrics is expected to effectively satisfy the requirements of all verification and/or identification applications. Bimodal biometric systems are expected to be more reliable due to the presence of two pieces of evidence and also be able to meet the severe performance requirements imposed by various applications. This paper presents a neural network based bimodal biometric identification system by using human face and handwritten signature features.

  10. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  11. maximum neutron flux at thermal nuclear reactors

    International Nuclear Information System (INIS)

    Strugar, P.

    1968-10-01

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr

  12. Thermal performance and efficiency of supercritical nuclear reactors

    International Nuclear Information System (INIS)

    Romney Duffey; Tracy Zhou; Hussam Khartabil

    2009-01-01

    The paper reviews the major advances and innovative aspects of the thermal performance of recent concepts for super-critical water-cooled nuclear reactors (SCWR). The concepts are based on the extensive experience in the thermal power industry with super and ultra-supercritical boilers and turbines. The challenges and goals of increased efficiency, reduced cost, enhanced safety and co-generation have been pursued over the last ten years, and have resulted both in viable concepts and a vibrant defined R and D effort. The supercritical concept has wide acceptance among industry, as it reflects standard engineering practices and current thermal plant technology that is being already deployed. The SCWR concept represents a continuous development of water-cooled reactor technology, which utilizes the best and latest advances made in the thermal power industry. (author)

  13. An historical collection of papers on nuclear thermal propulsion

    Science.gov (United States)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  14. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  15. Thermal performance test for steam turbine of nuclear power plants

    International Nuclear Information System (INIS)

    Bu Yubing; Xu Zongfu; Wang Shiyong

    2014-01-01

    Through study of steam turbine thermal performance test of CPR1000 nuclear power plant, we solve the enthalpy calculation problems of the steam turbine in wet steam zone using heat balance method which can help to figure out the real overall heat balance diagram for the first time, and we develop a useful software for thermal heat balance calculation. Ling'ao phase II as an example, this paper includes test instrument layout, system isolation, risk control, data acquisition, wetness measurement, heat balance calculation, etc. (authors)

  16. Interim report on nuclear waste depository thermal analysis

    International Nuclear Information System (INIS)

    Altenbach, T.J.

    1978-01-01

    A thermal analysis of a deep geologic depository for spent nuclear fuel is being conducted. The TRUMP finite difference heat transfer code is used to analyze a 3-dimensional model of the depository. The model uses a unit cell consisting of one spent fuel canister buried in salt beneath a ventilated room in the depository. A base case was studied along with several parametric variations. It is concluded that this method is appropriate for analyzing the thermal response of the system, and that the most important parameter in determining the maximum temperatures is the canister heat generation rate. The effects of room ventilation and different depository media are secondary

  17. Thermal properties of nuclear matter under the periodic boundary condition

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    1999-01-01

    We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)

  18. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    Science.gov (United States)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  19. Nuclear thermal rocket workshop reference system Rover/NERVA

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed

  20. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Chang, Soon Heung

    2013-01-01

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application

  1. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application.

  2. Thermal effluents from nuclear power plant influences species distribution and thermal tolerance of fishes in reservoirs

    International Nuclear Information System (INIS)

    Pal, A.K.; Das, T.; Dalvi, R.S.; Bagchi, S.; Manush, S.M.; Ayyappan, S.; Chandrachoodan, P.P.; Apte, S.K.; Ravi, P.M.

    2007-01-01

    During electricity generation water bodies like reservoir act as a heat sink for thermal effluent discharges from nuclear power plant. We hypothesized that the fish fauna gets distributed according to their temperature preference in the thermal gradient. In a simulated environment using critical thermal methodology (CTM), we assessed thermal tolerance and metabolic profile of fishes (Puntius filamentosus, Parluciosoma daniconius, Ompok malabaricus, Mastacembelus armatus, Labeo calbasu, Horabragrus brachysoma, Etroplus suratensis, Danio aequipinnatus and Gonoproktopterus curmuca) collected from Kadra reservoir in Karnataka state. Results of CTM tests agrees with the species abundance as per the temperature gradient formed in the reservoir due to thermal effluent discharge. E. suratensis and H. brachysoma) appear to be adapted to high temperature (with high CTMax and CTMin values) and are in abundance at point of thermal discharge. Similarly, P. daniconius, appear to be adapted to cold (low CTM values) is in abundance in lower stretches of Kadra reservoir. Overall results indicate that discharge form nuclear power plant influences the species biodiversity in enclosed water bodies. (author)

  3. Nuclear thermal rocket nozzle testing and evaluation program

    International Nuclear Information System (INIS)

    Davidian, K.O.; Kacynski, K.J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within plus or minus 1.17%

  4. Spent nuclear fuel storage pool thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Gay, R.R.

    1984-01-01

    Storage methods and requirements for spent nuclear fuel at U.S. commercial light water reactors are reviewed in Section 1. Methods of increasing current at-reactor storage capabilities are also outlined. In Section 2 the development of analytical methods for the thermal-hydraulic analysis of spent fuel pools is chronicled, leading up to a discussion of the GFLOW code which is described in Section 3. In Section 4 the verification of GFLOW by comparisons of the code's predictions to experimental data taken inside the fuel storage pool at the Maine Yankee nuclear power plant is presented. The predictions of GFLOW using 72, 224, and 1584 node models of the storage pool are compared to each other and to the experimental data. An example of thermal licensing analysis for Maine Yankee using the GFLOW code is given in Section 5. The GFLOW licensing analysis is compared to previous licensing analysis performed by Yankee Atomic using the RELAP-4 computer code

  5. Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code

    International Nuclear Information System (INIS)

    Hall, M.L.; Rider, W.J.; Cappiello, M.W.

    1992-01-01

    The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper

  6. 'Bimodal' NTR and LANTR propulsion for human missions to Mars/Phobos

    International Nuclear Information System (INIS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1999-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ∼850-1000 s) and attractive engine thrust-to-weight ratio (∼3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, 'power-rich' stage enabling propulsive Mars capture and reuse capability. A family of modular 'bimodal' NTR (BNTR) vehicles are described which utilize a common 'core' stage powered by three 66.7 kN (∼15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, 'zero-boiloff' liquid hydrogen (LH 2 ) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the 'all LH 2 ' BNTR stage. The use of ''LOX-augmented' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase 'bulk' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH 2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ∼80 t 'Magnum' heavy lift launch vehicles (HLLVs)

  7. Nuclear power plant thermal-hydraulic performance research program plan

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this program plan is to present a more detailed description of the thermal-hydraulic research program than that provided in the NRC Five-Year Plan so that the research plan and objectives can be better understood and evaluated by the offices concerned. The plan is prepared by the Office of Nuclear Regulatory Research (RES) with input from the Office of Nuclear Reactor Regulation (NRR) and updated periodically. The plan covers the research sponsored by the Reactor and Plant Systems Branch and defines the major issues (related to thermal-hydraulic behavior in nuclear power plants) the NRC is seeking to resolve and provides plans for their resolution; relates the proposed research to these issues; defines the products needed to resolve these issues; provides a context that shows both the historical perspective and the relationship of individual projects to the overall objectives; and defines major interfaces with other disciplines (e.g., structural, risk, human factors, accident management, severe accident) needed for total resolution of some issues. This plan addresses the types of thermal-hydraulic transients that are normally considered in the regulatory process of licensing the current generation of light water reactors. This process is influenced by the regulatory requirements imposed by NRC and the consequent need for technical information that is supplied by RES through its contractors. Thus, most contractor programmatic work is administered by RES. Regulatory requirements involve the normal review of industry analyses of design basis accidents, as well as the understanding of abnormal occurrences in operating reactors. Since such transients often involve complex thermal-hydraulic interactions, a well-planned thermal-hydraulic research plan is needed

  8. Nuclear data for the calculation of thermal reactor reactivity coefficients

    International Nuclear Information System (INIS)

    1989-01-01

    On its 15th meeting in Vienna, 16-20 June 1986, the International Nuclear Data Committee (INDC) considered it important to review the accuracy with which changes in thermal reactor reactivity resulting from changes in temperature and coolant density can be predicted. It was noted that reactor physicists in several countries had to adjust the thermal neutron cross-section data base in order to reproduce measured reactivity coefficients. Consequently, it appeared to be essential to examine the consistency of the integral and differential cross-section data and to make all the information available which has a bearing on reactivity coefficient prediction. Following the recommendation of the INDC, the Nuclear Data Section of the International Atomic Energy Agency, therefore, convened the Advisory Group Meeting on Nuclear Data for the Calculation of Thermal Reaction Reactivity Coefficients, in Vienna, Austria, 7-10 Dec. 1987. The Conclusions and Recommendations of the meeting together with the papers presented, are submitted in the present document. A separate abstract was prepared for each of these 12 papers. Refs, figs and tabs

  9. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    International Nuclear Information System (INIS)

    Petrosky, L.J.; Disney, R.K.; Mangus, J.D.; Gunn, S.A.; Zweig, H.R.

    1993-01-01

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements

  10. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    NTR engines have continued as a main stream based on the mature technology. The typical core design of the NERVA derived engines uses hexagonal shaped fuel elements with circular cooling channels and structural tie-tube elements for supporting the fuel elements, housing moderator and regeneratively cooling the moderator. The state-of-the-art NTR designs mostly use a fast or epithermal neutron spectrum core utilizing a HEU fuel to make a high power reactor with small and simple core geometry. Nuclear propulsion is the most promising and viable option to achieve challenging deep space missions. Particularly, the attractions of a NTR include excellent thrust and propellant efficiency, bimodal capability, proven technology, and safe and reliable performance. The KANUTER-HEU and -LEU are the innovative and futuristic NTR engines to reduce the reactor size and to implement a LEU fuel in the reactor by using thermal neutron spectrum. The KANUTERs have some features in the reactor design such as the integrated fuel element and the regeneratively cooling channels to increase room for moderator and heat transfer in the core, and ensuing rocket performance. To study feasible design points in terms of thermo-hydraulics and to estimate rocket performance of the KANUTERs, the NSES is under development. The model of the NSES currently focuses on thermo-hydraulic analysis of the peculiar and complex EHTGR design during the propulsion mode in steady-state. The results indicate comparable performance for future applications, even though it uses the heavier LEU fuel. In future, the NSES will be modified to obtain temperature distribution of the entire reactor components and then more extensive design analysis of neutronics, thermohydraulics and their coupling will be conducted to validate design feasibility and to optimize the reactor design enhancing the rocket performance.

  11. Thermal hydraulic feasibility assessment for the Spent Nuclear Fuel Project

    International Nuclear Information System (INIS)

    Heard, F.J.; Cramer, E.R.; Beaver, T.R.; Thurgood, M.J.

    1996-01-01

    A series of scoping analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The SNFP was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy's Hanford Site in Richland, Washington. The subject efforts focused on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms for each of the IPS operations and configurations, obtaining preliminary results for comparison with and verification of other analyses, and providing technology-based recommendations for consideration and incorporation into the design bases for the SNFP. The goal was to develop a series fo thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the SNFP. A series of sensitivity analyses were also performed to help identify those parameters that have the greatest impact on energy transfer and hence, temperature control. It is anticipated that the subject thermal-hydraulic models will form the basis for a series of advanced and more detailed models that will more accurately reflect the thermal performance of the IPS and alleviate the necessity for some of the more conservative assumptions and oversimplifications, as well as form the basis for the final process and safety analyses

  12. Thermal-hydraulics associated with nuclear education and research

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2011-01-01

    This article was the rerecording of the author's lecture at the fourth 'Future Energy Forum' (aiming at improving nuclear safety and economics) held in December 2010. The lecture focused on (1) importance of thermal hydraulics associated with nuclear education and research (critical heat flux, two-phase flow and multiphase flow), (2) emerging trend of maintenance engineering (fluid induced vibration, flow accelerated corrosion and stress corrosion cracks), (3) fostering sensible nuclear engineer with common engineering sense, (4) balanced curriculum of basics and advanced research, (5) computerized simulation and fluid mechanics, (6) crucial point of thermo hydraulics education (viscosity, flux, steam and power generation), (7) safety education and human resources development (indispensable technologies such as defence in depth) and (8) topics of thermo hydraulics research (vortices of curbed pipes and visualization of two-phase flow). (T. Tanaka)

  13. Thermal and statistical properties of nuclei and nuclear systems

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1989-07-01

    The term statistical decay, statistical or thermodynamic equilibrium, thermalization, temperature, etc., have been used in nuclear physics since the introduction of the compound nucleus (CN) concept, and they are still used, perhaps even more frequently, in the context of intermediate- and high-energy heavy-ion reactions. Unfortunately, the increased popularity of these terms has not made them any clearer, and more often than not one encounters sweeping statements about the alleged statisticity of a nuclear process where the ''statistical'' connotation is a more apt description of the state of the speaker's mind than of the nuclear reaction. It is our goal, in this short set of lectures, to set at least some ideas straight on this broad and beautiful subject, on the one hand by clarifying some fundamental concepts, on the other by presenting some interesting applications to actual physical cases. 74 refs., 38 figs

  14. Design considerations for Mars transfer vehicles using nuclear thermal propulsion

    Science.gov (United States)

    Emrich, William J.

    1995-01-01

    The design of a Mars Transfer Vehicle (MTV) utilizing nuclear propulsion will require that careful consideration be given to the nuclear radiation environment in which it will operate. The extremely high neutron and gamma fluxes characteristic of nuclear thermal propulsion systems will cause significant heating of the fluid systems in close proximity to the reactor, especially in the lower propellant tanks. Crew radiation doses are also a concern particularly late in a mission when there is less shielding from the propellant tanks. In this study, various vehicle configuration and shielding strategies were examined and the resulting time dependent radiation fields evaluated. A common cluster of three particle bed reactor (PBR) engines were used in all configurations examined. In general, it appears that long, relatively narrow vehicles perform the best from a radiation standpoint, however, good shield optimization will be critical in maintaining a low radiation environment while minimizing the shield weight penalty.

  15. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235 U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klb f engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH 2 ) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions

  16. Transmutation of Thermocouples in Thermal and Fast Nuclear Reactors

    International Nuclear Information System (INIS)

    Scervini, M.; Rae, C.; Lindley, B.

    2013-06-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. Their role is fundamental for the control of current nuclear reactors and for the development of the nuclear technology needed for the implementation of GEN IV nuclear reactors. When used for in-core measurements thermocouples are strongly affected not only by high temperatures, but also by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition in the thermoelements and, as a consequence, a time dependent drift in the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. In this work, undertaken as part of the European project METROFISSION, the change in composition occurring in irradiated thermocouples has been calculated using the software ORIGEN 2.2. Several thermocouples have been considered, including Nickel based thermocouples (type K and type N), Tungsten based thermocouples (W-5%Re vs W-26%Re and W- 3%Re vs W-25%Re), Platinum based thermocouples (type S and Platinum vs Palladium) and Molybdenum vs Niobium thermocouples. The transmutation induced by both thermal flux and fast flux has been calculated. Thermocouples undergo more pronounced transmutation in thermal fluxes rather than in fast fluxes, as the neutron cross section of an element is higher for thermal energies. Nickel based thermocouples have a minimal change in composition, while Platinum based and Tungsten based thermocouples experience a very significant transmutation. The use of coatings deposited on the sheath of a thermocouple has been considered as a mean to reduce the neutron flux the thermoelements inside the thermocouple sheath

  17. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    International Nuclear Information System (INIS)

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  18. Thermal barrier and support for nuclear reactor fuel core

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Pickering, J.L.; Black, W.E.

    1987-01-01

    A nuclear reactor is described having a thermal barrier for supporting a fuel column of a nuclear reactor core within a reactor vessel having a fixed rigid metal liner. The fuel column has a refractory post extending downward. The thermal barrier comprises, in combination, a metallic core support having an interior chamber secured to the metal liner; fibrous thermal insulation material covering the metal liner and surrounding the metallic core support; means associated with the metallic core support and resting on the top for locating and supporting the full column post; and a column of ceramic material located within the interior chamber of the metallic core support, the height of the column is less than the height of the metallic core support so that the ceramic column will engage the means for locating and supporting the fuel column post only upon plastic deformation of the metallic core support; the core support comprises a metallic cylinder and the ceramic column comprises coaxially aligned ceramic pads. Each pad has a hole located within the metallic cylinder by means of a ceramic post passing through the holes in the pads

  19. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Clark, J.S.; Borowski, S.K.; Mcilwain, M.C.; Pellaccio, D.G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  20. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  1. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    Science.gov (United States)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  2. Need for nuclear data for thermal neutron reactors

    International Nuclear Information System (INIS)

    Bouchard, J.; Golinelli, C.; Tellier, H.

    1983-01-01

    The need for nuclear data for thermal neutron reactors is conditioned by the persisting lack of agreement between the calculation and measurement of certain parameters, by the benefit that can be drawn from reduction of the marginal areas and by envisaged modifications. Three particular fields are delineated. Reduction of the deviation in temperature coefficients by modification of the shape of the effective capture cross sections of uranium-238 and -235 in the thermal range. The increase in precision of kinetic measurements by a better knowledge of data connected to slowed-down neutrons. Improvement in predicting the neutron activity of the fuels used in measuring the effective capture cross sections of plutonium-242 and americium-243. (Auth.)

  3. Shear viscosity and thermal conductivity of nuclear 'pasta'

    International Nuclear Information System (INIS)

    Horowitz, C. J.; Berry, D. K.

    2008-01-01

    We calculate the shear viscosity η and thermal conductivity κ of a nuclear pasta phase in neutron star crusts. This involves complex nonspherical shapes. We use semiclassical molecular dynamics simulations involving 40, 000 to 100, 000 nucleons. The viscosity η can be simply expressed in terms of the height Z* and width Δq of the peak in the static structure factor S p (q). We find that η increases somewhat, compared to a lower density phase involving spherical nuclei, because Z* decreases from form factor and ion screening effects. However, we do not find a dramatic increase in η from nonspherical shapes, as may occur in conventional complex fluids

  4. Smart built-in test for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Lombrozo, P.C.

    1992-03-01

    Smart built-in test (BIT) technologies are envisioned for nuclear thermal propulsion spacecraft components which undergo constant irradiation and are therefore unsafe for manual testing. Smart BIT systems of automated/remote type allow component and system tests to be conducted; failure detections are directly followed by reconfiguration of the components affected. The 'smartness' of the BIT system in question involves the reduction of sensor counts via the use of multifunction sensors, the use of components as integral sensors, and the use of system design techniques which allow the verification of system function beyond component connectivity

  5. New water intake systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Ishchuk, T.B.; Samodel'nikov, B.T.

    1989-01-01

    Problems arising during design of water intake and spillway structures for the auxiliary water supply system of thermal and nuclear power plants connected with the provision of their reliable operation and with the effect on the temperature condition of reservoirs and their ecology are investigated. Design providing for the connection of intake channel and catch drain for a through (transition) channel and supplying a water transition flow by ejecting water outputs is suggested. The variant considered is effective for seas, lakes and reservoirs with adverse conditions for natural cooling and it is suitable for regions with seismicity up to 5-6 balls

  6. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  7. A cermet fuel reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Kruger, G.

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk

  8. Thermal radiation in gas core nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J.

    1994-01-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs

  9. Scaling in nuclear reactor system thermal-hydraulics

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.

    2010-01-01

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  10. Scaling in nuclear reactor system thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    D' Auria, F., E-mail: dauria@ing.unipi.i [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Galassi, G.M. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  11. Transient thermal creep of nuclear reactor pressure vessel type concretes

    International Nuclear Information System (INIS)

    Khoury, G.A.

    1983-01-01

    The immediate aim of the research was to study the transient thermal strain behaviour of four AGR type nuclear reactor concretes during first time heating in an unsealed condition to 600 deg. C. The work being also relevant to applications of fire exposed concrete structures. The programme was, however, expanded to serve a second more theoretical purpose, namely the further investigation of the strain development of unsealed concrete under constant, transient and cyclic thermal states in particular and the effect of elevated temperatures on concrete in general. The range of materials investigated included seven different concretes and three types of cement paste. Limestone, basalt, gravel and lightweight aggregates were employed as well as OPC and SRC cements. Cement replacements included pfa and slag. Test variables comprised two rates of heating (0.2 and 1 deg. C/minute), three initial moisture contents (moist as cast, air-dry and oven dry at 105 deg. C), two curing regimes (bulk of tests represented mass cured concrete), five stress levels (0, 10, 20, 30 and a few tests at 60% of the cold strength), two thermal cycles and levels of test temperature up to 720 deg. C. Supplementary, dilatometry, TGA and DTA tests were performed at CERL on individual samples of aggregate and cement paste which helped towards explaining the observed trends in the concretes. A simple formula was developed which relates the elastic thermal stresses generated from radial temperature gradients to the solution obtained from the transient heat conduction equation. Thermal stresses can, therefore, be minimized by reductions in the radius of the specimen and the rate of heating The results were confirmed by finite element analysis which indicate( tensile stresses in the central region and compressive stresses near the surf ace during heating which are reversed during cooling. It is shown that the temperature gradients, pore pressures and tensile thermal stresses during both heating and

  12. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.

  13. Thermal conductivity thermal diffusivity of UO{sub 2}-BeO nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Fábio A.; Camarano, Denise M.; Santos, Ana M. M.; Ferraz, Wilmar B.; Silva, Mayra A.; Ferreira, Ricardo A.N., E-mail: fam@cdtn.br, E-mail: dmc@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: mayra.silva@cdtn.br, E-mail: ricardoanf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The temperature distribution in nuclear fuel pellets is of vital importance for the performance of the reactor, as it affects the heat transfer, the mechanical behavior and the release of fission gas during irradiation, reducing safety margins in possible accident scenarios. One of the main limitation for the current uranium dioxide nuclear fuel (UO{sub 2}) is its low thermal conductivity, responsible for the higher temperature of the pellet center and, consequently, for a higher radial temperature gradient. Thus, the addition of another material to increase the UO{sub 2} fuel thermal conductivity has been considered. Among the additives that are being investigated, beryllium oxide (BeO) has been chosen due to its high thermal conductivity, with potential to optimize power generation in pressurized light water reactors (PWR). In this work, UO{sub 2}-BeO pellets were obtained by the physical mixing of the powders with additions of 2wt% and 3wt% of BeO. The thermal diffusivity and conductivity of the pellets were determined from room temperature up to 500 °C. The results were normalized to 95% of the theoretical density (TD) of the pellets and varied according to the BeO content. The range of the values of thermal diffusivity and conductivity were 1.22 mm{sup 2}∙s{sup -1} to 3.69 mm{sup 2}∙s{sup -1} and 3.80 W∙m{sup -}'1∙K{sup -1} to 9.36 W∙m{sup -1}∙K{sup -1}, respectively. (author)

  14. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed

  15. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Staedtke, H.

    2001-01-01

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  16. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  17. Engineering thermal engine rocket adventurer for space nuclear application

    International Nuclear Information System (INIS)

    Nam, Seung H.; Suh, Kune Y.; Kang, Seong G.

    2008-01-01

    The conceptual design for the first-of-a-kind engineering of Thermal Engine Rocket Adventure (TERA) is described. TERA comprising the Battery Omnibus Reactor Integral System (BORIS) as the heat resource and the Space Propulsion Reactor Integral System (SPRIS) as the propulsion system, is one of the advanced Nuclear Thermal Rocket (NTR) engine utilizing hydrogen (H 2 ) propellant being developed at present time. BORIS in this application is an open cycle high temperature gas cooled reactor that has eighteen fuel elements for propulsion and one fuel element for electricity generation and propellant pumping. Each fuel element for propulsion has its own small nozzle. The nineteen fuel elements are arranged into hexagonal prism shape in the core and surrounded by outer Be reflector. The TERA maximum power is 1,000 MW th , specific impulse 1,000 s, thrust 250,000 N, and the total mass is 550 kg including the reactor, turbo pump and auxiliaries. Each fuel element comprises the fuel assembly, moderators, pressure tube and small nozzle. The TERA fuel assembly is fabricated of 93% enriched 1.5 mm (U, Zr, Nb)C wafers in 25.3% voided Square Lattice Honeycomb (SLHC). The H 2 propellant passes through these flow channels. This study is concerned with thermohydrodynamic analysis of the fuel element for propulsion with hypothetical axial power distribution because nuclear analysis of TERA has not been performed yet. As a result, when the power distribution of INSPI's M-SLHC is applied to the fuel assembly, the local heat concentration of fuel is more serious and the pressure of the initial inlet H 2 is higher than those of constant average power distribution applied. This means the fuel assembly geometry of 1.5 mm fuel wafers and 25.3% voided SLHC needs to be changed in order to reduce thermal and mechanical shocks. (author)

  18. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  19. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  20. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — Key steps to ensure identification of relevant effluent treatment technologies for Nuclear Thermal Propulsion (NTP) testing include the following. 1. Review of...

  1. Uncertainty and sensitivity analysis of the nuclear fuel thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Boulore, A., E-mail: antoine.boulore@cea.fr [Commissariat a l' Energie Atomique (CEA), DEN, Fuel Research Department, 13108 Saint-Paul-lez-Durance (France); Struzik, C. [Commissariat a l' Energie Atomique (CEA), DEN, Fuel Research Department, 13108 Saint-Paul-lez-Durance (France); Gaudier, F. [Commissariat a l' Energie Atomique (CEA), DEN, Systems and Structure Modeling Department, 91191 Gif-sur-Yvette (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A complete quantitative method for uncertainty propagation and sensitivity analysis is applied. Black-Right-Pointing-Pointer The thermal conductivity of UO{sub 2} is modeled as a random variable. Black-Right-Pointing-Pointer The first source of uncertainty is the linear heat rate. Black-Right-Pointing-Pointer The second source of uncertainty is the thermal conductivity of the fuel. - Abstract: In the global framework of nuclear fuel behavior simulation, the response of the models describing the physical phenomena occurring during the irradiation in reactor is mainly conditioned by the confidence in the calculated temperature of the fuel. Amongst all parameters influencing the temperature calculation in our fuel rod simulation code (METEOR V2), several sources of uncertainty have been identified as being the most sensitive: thermal conductivity of UO{sub 2}, radial distribution of power in the fuel pellet, local linear heat rate in the fuel rod, geometry of the pellet and thermal transfer in the gap. Expert judgment and inverse methods have been used to model the uncertainty of these parameters using theoretical distributions and correlation matrices. Propagation of these uncertainties in the METEOR V2 code using the URANIE framework and a Monte-Carlo technique has been performed in different experimental irradiations of UO{sub 2} fuel. At every time step of the simulated experiments, we get a temperature statistical distribution which results from the initial distributions of the uncertain parameters. We then can estimate confidence intervals of the calculated temperature. In order to quantify the sensitivity of the calculated temperature to each of the uncertain input parameters and data, we have also performed a sensitivity analysis using the Sobol' indices at first order.

  2. The 75 years Anniversary of Thermal and Nuclear Energy Department at KTU

    International Nuclear Information System (INIS)

    Gylys, J.

    1997-01-01

    The Thermal and Nuclear Energy Department of Kaunas University of Technology is the only institution educating qualified engineers in thermal and nuclear energy in Lithuania. The first stage of education is a bachelor studies program. The program educates experts for work in thermal and nuclear power plants, steam boiler plants, heat consuming industries, food, chemical, oil processing industries. The bachelors of nuclear engineering are seeking their master degree in the Russian institutes, like Obninsk Institute of Nuclear Power Engineering or in western countries like Sweden and Finland

  3. Method for limiting movement of a thermal shield for a nuclear reactor, and thermal shield displacement limiter therefor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Boyd, C.H.

    1989-01-01

    This patent describes a method of limiting the movement of a thermal shield of a nuclear reactor. It comprises: machining at least four (4) pockets in upper portions of a thermal shield circumferentially about a core barrel of a nuclear reactor to receive key-wave inserts; tapping bolt holes in the pockets of the thermal shield to receive bolts; positioning key-wave inserts into the pockets of the thermal shield to be bolted in place with the bolt holes; machining dowel holes at least partially through the positioned key-way inserts and the thermal shield to receive dowel pins; positioning dowel pins in the dowel holes in the key-way insert and thermal shield to tangentially restrain movement of the thermal shield relative to the core barrel; sliding limiter keys into the key-way inserts and bolting the limiter keys to the core barrel to tangentially restrain movement of the thermal shield relative and the core barrel while allowing radial and axial movement of the thermal shield relative to the core barrel; machining dowel holes through the limiter key and at least partially through the core barrel to receive dowel pins; positioning dowel pins in the dowel holes in the limiter key and core barrel to restrain tangential movement of the thermal shield relative to the core barrel of the nuclear reactor

  4. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  5. Potential impact of thermal effluents from Chongqing Fuling nuclear power plant to the Three Gorges Reservoir

    International Nuclear Information System (INIS)

    Han Baohua; Li Jianguo; Ma Binghui; Zhang Yue; Sun Qunli; Hu Yuping

    2012-01-01

    This study is based on the hydrological data near Chongqing Fuling Nuclear Power Plant along the Yangtze River, the present situation of the ecological environment of the Three Gorges Reservoir and the predicted results of thermal effluents from Chongqing Fuling Nuclear Power Plant. The standards of cooling water and the thermal tolerances indexes of aquatic organisms were investigated. The effects of thermal effluents on aquatic organisms were analyzed. The potential impact of Chongqing Fuling nuclear power plant to the Three Gorges Reservoir was explained. The results show that in the most adverse working conditions, the surface temperature near the outfall area is not more than 1℃, the temperature of thermal effluents do not exceed the suitable thermal range of fish breeding, growth and other thermal tolerances indexes. Thermal effluents from nuclear power plant have no influence about fish, plankton and benthic organisms in the Three Gorges Reservoir. (authors)

  6. Thermal pollution of rivers and reservoirs by discharges of heated water from thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Makarov, I.

    1974-12-01

    The problems are discussed of the thermal pollution of rivers and water reservoirs by discharges of heated water from thermal and nuclear power plants. The problems concerned are quantitative and qualitative changes in biocenoses, the disturbance or extinction of flora and fauna, physiological changes in organisms and changes in the hydrochemical regime. (Z.M.)

  7. Contributions to thermal and fluid dynamic problems in nuclear technology

    International Nuclear Information System (INIS)

    Mueller, U.; Krebs, L.; Rust, K.

    1984-02-01

    The majority of contributions compiled in this report deals with thermal and fluid dynamic problems in nuclear engineering. Especially problems of heat transfer and cooling are represented which may arise during and afer a loss-of-coolant accident both in light water reactors and in liquid metal cooled fast breeder reactors. Papers on the mass transfer in pressurized water, tribological problems in sodium cooled reactors, the fluid dynamics of pulsed column, and fundamental investigations of convective flows supplement these contributions on problems connected with accidents. Furthermore, a keynote paper presents the individual activities relating to the reliability of reactor components, a field recently included in our research program. Technical solutions to special problems are closely connected to the investigations based on experiments. Therefore, several contributions deal with new developments in technology and measuring techniques. (orig.) [de

  8. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  9. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  10. Thermal hydraulic analysis of the encapsulated nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J.J.; Wade, D.C. [Argonne National Lab., IL (United States)

    2001-07-01

    An analysis has been carried out of the steady state thermal hydraulic performance of the Encapsulated Nuclear Heat Source (ENHS) 125 MWt, heavy liquid metal coolant (HLMC) reactor concept at nominal operating power and shutdown decay heat levels. The analysis includes the development and application of correlation-type analytical solutions based upon first principles modeling of the ENHS concept that encompass both pure as well as gas injection augmented natural circulation conditions, and primary-to-intermediate coolant heat transfer. The results indicate that natural circulation of the primary coolant is effective in removing heat from the core and transferring it to the intermediate coolant without the attainment of excessive coolant temperatures. (authors)

  11. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  12. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  13. Center of thermal-physical data for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, V P; Blokhin, A I; Ivashkevich, A A; Katan, I B; Peskov, O L; Pan' kov, V M; Savanin, N K; Sal' nikova, O V; Khrushcheva, E N; Kirova, T S

    1982-09-01

    The specific features of a specialized Center of thermal-physical data (CTD) are considered. The center has been created for data acquisition, storage and analysis and working out recommendations on the following NPP thermal physics sections: hydrodynamics of channel flows (monophase laminar and turbulent, and two-phase flows, hydrodynamic vibrations) heat exchange in NPP elements, thermohydraulic calculations of nuclear reactor cores, heat exchangers, steam generators and NPP cooling system elements, coolant properties (water and steam, liquid metals and gases). On the CTD data base an automated system ASKhOD, oriented to EC computer, is created. The ASKhoD software ensures data allocation on magnetic tapes or other carriers, automated renewal and data relocation, data search in compliance with a specified set of signs, data processing for the purpose of their estimation or obtaining optimized model constants. Different publications in home and foreign magazines, conference, seminar materials, organization preprints serve as the data sources used for the formation of the ASKhOD data base.

  14. Center of thermal-physical data for nuclear power plants

    International Nuclear Information System (INIS)

    Bobkov, V.P.; Blokhin, A.I.; Ivashkevich, A.A.; Katan, I.B.; Peskov, O.L.; Pan'kov, V.M.; Savanin, N.K.; Sal'nikova, O.V.; Khrushcheva, E.N.; Kirova, T.S.

    1982-01-01

    The specific features of a specialized Center of thermal-physical data (CTD) are considered. The center has been created for data acquisition, storage and analysis and working out recommendations on the following NPP thermal physics sections: hydrodynamics of channel flows (monophase laminar and turbulent, and two-phase flows, hydrodynamic vibrations) heat exchange in NPP elements, thermohydraulic calculations of nuclear reactor cores, heat exchangers, steam generators and NPP cooling system elements, coolant properties (water and steam, liquid metals and gases). On the CTD data base an automated system ASKhOD, oriented to EC computer, is created. The ASKhoD software ensures data allocation on magnetic tapes or other carriers, automated renewal and data relocation, data search in compliance with a specified set of signs, data processing for the purpose of their estimation or obtaining optimized model constants. Different publications in home and foreign magazines, conference, seminar materials, organization preprints serve as the data sources used for the formation of the ASKhOD data base

  15. Nuclear thermal rocket propulsion application to Mars missions

    International Nuclear Information System (INIS)

    Emrich, W.J. Jr.; Young, A.C.; Mulqueen, J.A.

    1991-01-01

    Options for vehicle configurations are reviewed in which nuclear thermal rocket (NTR) propulsion is used for a reference mission to Mars. The scenario assumes an opposition-class Mars transfer trajectory, a 435-day mission, and the use of a single nuclear engine with 75,000 lbs of thrust. Engine parameters are examined by calculating mission variables for a range of specific impulses and thrust/weight ratios. The reference mission is found to have optimal values of 925 s for the specific impulse and thrust/weight ratios of 4.0 and 0.06 for the engine and total stage ratios respectively. When the engine thrust/weight ratio is at least 4/1 the most critical engine parameter is engine specific impulse for reducing overall stage weight. In the context of this trans-Mars three-burn maneuver the NTR engine with an expander engine cycle is considered a more effective alternative than chemical/aerobrake and other propulsion options

  16. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  17. Comparative analysis of thermal behavior in hollow nuclear fuel pellets

    International Nuclear Information System (INIS)

    Santos, Beatriz M. dos; Alvim, Antonio C.M.

    2017-01-01

    The increase in energy demand in Brazil and in the world is a real problem and several solutions are being considered to mitigate it. Maximization of energy generation, within the safety standards of fuel resources already known, is one of them. In this respect, nuclear energy is a crucial technology to sustain energy demand on several countries. Performances of a solid cylindrical and an annular rod have been verified and compared; where it has been proven that the annular rod can reach a higher nominal power in relation to the solid one. In this paper, the temperature profiles of two distinct nuclear fuel pellets, one of them annular and the other in the shape of a hollow biconcave disc (like the cross section of a red blood cell), were compared to analyze the efficiency and safety of both. The finite differences method allowed the evaluation of the thermal behavior of these pellets, where one specific physical condition was analyzed, regarding convection and conduction at the lateral edges. The results show that the temperature profile of the hollow biconcave disc pellet is lower, about 70 deg C below, when compared to the temperature profile of the annular pellet, considering the same simulation parameters for both pellets. (author)

  18. Comparative analysis of thermal behavior in hollow nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Beatriz M. dos; Alvim, Antonio C.M., E-mail: bmachado@nuclear.ufrj.br, E-mail: aalvim@gmail.com [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-11-01

    The increase in energy demand in Brazil and in the world is a real problem and several solutions are being considered to mitigate it. Maximization of energy generation, within the safety standards of fuel resources already known, is one of them. In this respect, nuclear energy is a crucial technology to sustain energy demand on several countries. Performances of a solid cylindrical and an annular rod have been verified and compared; where it has been proven that the annular rod can reach a higher nominal power in relation to the solid one. In this paper, the temperature profiles of two distinct nuclear fuel pellets, one of them annular and the other in the shape of a hollow biconcave disc (like the cross section of a red blood cell), were compared to analyze the efficiency and safety of both. The finite differences method allowed the evaluation of the thermal behavior of these pellets, where one specific physical condition was analyzed, regarding convection and conduction at the lateral edges. The results show that the temperature profile of the hollow biconcave disc pellet is lower, about 70 deg C below, when compared to the temperature profile of the annular pellet, considering the same simulation parameters for both pellets. (author)

  19. High-temperature turbopump assembly for space nuclear thermal propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  20. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications.

  1. High-temperature turbopump assembly for space nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Overholt, D.M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications

  2. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Overholt, D.M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications. 3 refs

  3. Pressurized thermal shock analysis in German nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Stefan; Braun, Michael [TUEV NORD Nuclear, Hannover (Germany)

    2015-03-15

    For more than 30 years TUeV NORD is a competent consultant in nuclear safety is-sues giving expert third party opinion to our clients. According to the German regulations the safety against brittle fracture has to be proved for the reactor pressure vessel (RPV) and with a new level of knowledge the proof has to be continuously updated with the development in international codes and standards like ASME, BS and RCC-M. The load of the RPV is a very complex transient pressure and temperature situation. Today these loading conditions can be modeled by thermal hydraulic calculations and new experimental results much more detailed than in the construction phase of German Nuclear Power Plants in the 1980s. Therefore, the proof against brittle fracture from the construction phase had to be updated for all German Nuclear Power Plants with the new findings of the loading conditions especially for a postulated small leakage in the main coolant line. The RPV consists of ferritic base material (about 250 mm) and austenitic cladding (about 6 mm) at the inner side. The base material and the cladding have different physical properties which have to be considered temperature dependently in the cal-culations. Radiation-embrittlement effects on the material are to be respected in the fracture mechanics assessment. The regions of the RPV of special interest are the core weld, the inlet and outlet nozzle region and the flange connecting weld zone. The fracture mechanics assessment is performed for normal and abnormal operating conditions and for accidents like LOCA (Loss of Coolant Accident). In this paper the German approach to fracture mechanics assessment to brittle fracture will be discussed from the point of view of a third party organization.

  4. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  5. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  6. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  7. Equivalent thermal conductivity of the storage basket with spent nuclear fuel of VVER-1000 reactors

    International Nuclear Information System (INIS)

    Alyokhina, Svitlana; Kostikov, Andriy

    2014-01-01

    Due to limitation of computation resources and/or computation time many thermal problems require to use simplified geometrical models with equivalent thermal properties. A new method for definition of equivalent thermal conductivity of spent nuclear fuel storage casks is proposed. It is based on solving the inverse heat conduction problem. For the proposed method two approaches for equivalent thermal conductivity definition were considered. In the first approach a simplified model in conjugate formulation is used, in the second approach a simplified model of solid body which allows an analytical solution is used. For safety ensuring during all time of spent nuclear fuel storage the equivalent thermal conductivity was calculated for different storage years. The calculated equivalent thermal conductivities can be used in thermal researches for dry spent nuclear fuel storage safety.

  8. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  9. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  10. Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    Science.gov (United States)

    Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.

    2013-01-01

    Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability

  11. Nuclear reactor thermal hydraulics safety analysis and thoughts on FUKUSHIMA

    International Nuclear Information System (INIS)

    Ninokata, Hisashi

    2012-01-01

    The first part of this article is to show my thoughts on the accident at Fukushima Daiichi Nuclear Power Station. It is cited from a summary of my lecture talk in Indonesia, in the beginning of the last December, 2011. This talk was based on my previous lecture and seminar talks including those delivered at MIT, June 16, at the ANS Annual Meeting in Hollywood, Florida, June 28 at NURETH-13 in Toronto, September 27, and others. The content is based on the open and latest information available to date in Japan. It may contain some erroneous or uncertain information. I tried to minimize it to my best capability. Also I tried to eliminate any critical issues or opinions that may jeopardize some people who were involved in. The latter half of this article will be excerpts of my recent R and D activities related to the safety-by-design for sodium cooled fast reactors and light water reactors, thermal hydraulics analysis focusing on the simulation-based technology, in particular subchannel analysis and computational fluid dynamics. (J.P.N.)

  12. Nuclear thermal rocket plume interactions with spacecraft. Final report

    International Nuclear Information System (INIS)

    Mauk, B.H.; Gatsonis, N.A.; Buzby, J.; Yin, X.

    1997-01-01

    This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions

  13. In-place thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-04-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. The Amry SM-1A test reactor vessel was wet annealed in 1967 at less than 343 0 C (650 0 F), and wet annealing of the Belgian BR-3 reactor vessel at 343 0 C (650 0 F) has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place at temperatures as high as 454 0 C (850 0 F) is feasible, but solvable engineering problems do exist. Economic considerations have not been totally evaluated in assessing the cost-effectiveness of in-place annealing of commercial nuclear vessels. An American Society for Testing and Materials (ASTM) task group is upgrading and revising guide ASTM E 509-74 with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (e.g., the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  14. Social assessment and location of nuclear and thermal power plants

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu; Nishio, Mitsuo.

    1979-01-01

    Most of the locations of nuclear and thermal power plants in Japan are depopulated villages with remote rural character, but for the development of such districts, the policy is not yet clearly established, and the appropriate measures are not taken. The living regions of residents and the production regions of enterprises are more and more estranged. Social assessment is the scientific method to perceive the future change due to the installation of power stations. The features particular to the assessment of natural environment and social environment related to the location of power stations are considered, and the technical problems involved in the method of assessment of natural environment are solved, and the actual method of assessment of social environment is developed. Then, the possibility of establishing this method and the problems in its application are investigated. The plan of developing the surroundings of power generation facilities is criticized, and the coordination of the location plan of power companies and the regional projects of municipalities is discussed. Finally, the mechanism of consensus formation concerning the location of power stations is considered, dividing into regional consensus formation and administrative consensus formation, and the possibility of instituting social assessment is examined. (Kako, I.)

  15. Beta-binomial regression and bimodal utilization.

    Science.gov (United States)

    Liu, Chuan-Fen; Burgess, James F; Manning, Willard G; Maciejewski, Matthew L

    2013-10-01

    To illustrate how the analysis of bimodal U-shaped distributed utilization can be modeled with beta-binomial regression, which is rarely used in health services research. Veterans Affairs (VA) administrative data and Medicare claims in 2001-2004 for 11,123 Medicare-eligible VA primary care users in 2000. We compared means and distributions of VA reliance (the proportion of all VA/Medicare primary care visits occurring in VA) predicted from beta-binomial, binomial, and ordinary least-squares (OLS) models. Beta-binomial model fits the bimodal distribution of VA reliance better than binomial and OLS models due to the nondependence on normality and the greater flexibility in shape parameters. Increased awareness of beta-binomial regression may help analysts apply appropriate methods to outcomes with bimodal or U-shaped distributions. © Health Research and Educational Trust.

  16. Language choice in bimodal bilingual development

    Directory of Open Access Journals (Sweden)

    Diane eLillo-Martin

    2014-10-01

    Full Text Available Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children.Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending – expressions in both speech and sign simultaneously – an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children’s language choices.This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult.Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant

  17. A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

    International Nuclear Information System (INIS)

    Polansky, G.F.; Gunther, N.A.; Rochow, R.F.; Bixler, C.H.

    1995-01-01

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies

  18. Nuclear grade cable thermal life model by time temperature superposition algorithm based on Matlab GUI

    International Nuclear Information System (INIS)

    Lu Yanyun; Gu Shenjie; Lou Tianyang

    2014-01-01

    Background: As nuclear grade cable must endure harsh environment within design life, it is critical to predict cable thermal life accurately owing to thermal aging, which is one of dominant factors of aging mechanism. Purpose: Using time temperature superposition (TTS) method, the aim is to construct nuclear grade cable thermal life model, predict cable residual life and develop life model interactive interface under Matlab GUI. Methods: According to TTS, nuclear grade cable thermal life model can be constructed by shifting data groups at various temperatures to preset reference temperature with translation factor which is determined by non linear programming optimization. Interactive interface of cable thermal life model developed under Matlab GUI consists of superposition mode and standard mode which include features such as optimization of translation factor, calculation of activation energy, construction of thermal aging curve and analysis of aging mechanism., Results: With calculation result comparison between superposition and standard method, the result with TTS has better accuracy than that with standard method. Furthermore, confidence level of nuclear grade cable thermal life with TTS is higher than that with standard method. Conclusion: The results show that TTS methodology is applicable to thermal life prediction of nuclear grade cable. Interactive Interface under Matlab GUI achieves anticipated functionalities. (authors)

  19. Refining Bimodal Microstructure of Materials with MSTRUCT

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Kadlecová, A.; Janeček, M.; Matějová, Lenka; Dopita, M.; Kužel, R.

    2014-01-01

    Roč. 29, S2 (2014), S35-S41 ISSN 0885-7156 R&D Projects: GA ČR GA14-23274S Grant - others:UK(CZ) UNCE 204023/2012 Institutional support: RVO:67985858 Keywords : XRD * bimodal * crystallite size Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.636, year: 2014

  20. A course in bimodal provability logic

    NARCIS (Netherlands)

    Visser, A.

    The aim of the present paper is twofold: first I am somewhat dissatisfied with current treatments of Bimodal Provability Logic: the models employed there are singled out by certain syntactical conditions, moreover they validate the logics under consideration only locally. In this paper I give a

  1. Deaf Children's Bimodal Bilingualism and Education

    Science.gov (United States)

    Swanwick, Ruth

    2016-01-01

    This paper provides an overview of the research into deaf children's bilingualism and bilingual education through a synthesis of studies published over the last 15 years. This review brings together the linguistic and pedagogical work on bimodal bilingualism to inform educational practice. The first section of the review provides a synthesis of…

  2. NEPTUNE: A new software platform for advanced nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Guelfi, A.; Boucker, M.; Herard, J.M.; Peturaud, P.; Bestion, D.; Boudier, P.; Hervieu, E.; Fillion, P.; Grandotto, M.

    2007-01-01

    The NEPTUNE project constitutes the thermal-hydraulic part of the long-term Electricite de France and Commissariat a l'Energie Atomique joint research and development program for the next generation of nuclear reactor simulation tools. This program is also financially supported by the Institut de Radioprotection et Surete Nucleaire and AREVA NP. The project aims at developing a new software platform for advanced two-phase flow thermal hydraulics covering the whole range of modeling scales and allowing easy multi-scale and multidisciplinary calculations. NEPTUNE is a fully integrated project that covers the following fields: software development, research in physical modeling and numerical methods, development of advanced instrumentation techniques, and performance of new experimental programs. The analysis of the industrial needs points out that three main simulation scales are involved. The system scale is dedicated to the overall description of the reactor. The component or subchannel scale allows three-dimensional computations of the main components of the reactors: cores, steam generators, condensers, and heat exchangers. The current generation of system and component codes has reached a very high level of maturity for industrial applications. The third scale, computational fluid dynamics (CFD) in open medium, allows one to go beyond the limits of the component scale for a finer description of the flows. This scale opens promising perspectives for industrial simulations, and the development and validation of the NEPTUNE CFD module have been a priority since the beginning of the project. It is based on advanced physical models (two-fluid or multi field model combined with interfacial area transport and two-phase turbulence) and modern numerical methods (fully unstructured finite volume solvers). For the system and component scales, prototype developments have also started, including new physical models and numerical methods. In addition to scale

  3. Several aspects of the effect of nuclear power engineering and thermal power engineering on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F

    1979-01-01

    A survey is made of the comparative effect of nuclear power engineering and thermal power engineering on environment and man. The most significant approaches to solution of radio-ecological problems of APS are found.

  4. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle. The...

  5. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as an approach that can provide the fastest trip times to Mars and as the preferred concept for human space...

  6. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  7. Improved CVD Coatings for Carbide Based Nuclear Thermal Propulsion Fuel Elements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the great hurdles to further development and evaluation of nuclear thermal propulsion systems is the issue surrounding the release of radioactive material...

  8. Extreme Temperature Radiation Tolerant Instrumentation for Nuclear Thermal Propulsion Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop and commercialize a high reliability, high temperature smart neutron flux sensor for NASA Nuclear Thermal Propulsion...

  9. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  10. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    Science.gov (United States)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  11. Some application of the thermal analysis technique to nuclear material process

    International Nuclear Information System (INIS)

    Xi Chongpu.

    1987-01-01

    This paper briefly described the thermal stability and phase transformation of Uranium Compounds as UF 4 , UO 2 F 2 , UO 2 -(NO 3 ) 2 , ADU, AUC, UO 3 and UO 2 . It proved that the thermal analysis finds extensive application in nuclear materials prodcution

  12. Simulation of Thermal, Neutronic and Radiation Characteristics in Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Bartkus, G.

    1999-01-01

    The overview of the activities in the Division of Thermo hydro-mechanics related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Also some new data about radiation characteristics of the RBMK-1500 spent nuclear fuel are presented. (author)

  13. Meso-meteorological effect of thermal releases from nuclear power plants in the GW range

    International Nuclear Information System (INIS)

    Bahloul, C.; Le Berre, P.

    1975-01-01

    A comparison is made between the energy released by nuclear power plants into the environment and the energy brought into action by meso-meteorological phenomena. Observations on the occasion of important heat release (forest fires) are made and compared with the thermal effluents generated by nuclear power plants [fr

  14. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    International Nuclear Information System (INIS)

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-01-01

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF 6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  15. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    International Nuclear Information System (INIS)

    Clark, J.S.; Mcdaniel, P.; Howe, S.; Helms, I.; Stanley, M.

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  16. Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms

    International Nuclear Information System (INIS)

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2011-01-01

    This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

  17. Cost estimation of thermal and nuclear power using annual securities report

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Nagatomi, Yu; Murakami, Tomoko

    2011-01-01

    Cost estimation of generation cost derived from various power sources was widely conducted using model plant or annual securities report of electric utilities. Although annual securities report method was subjected to some limitation in methodology itself, useful information was obtained for cost comparison of thermal and nuclear power. Studies on generation cost evaluation of thermal and nuclear power based on this method during past five years showed that nuclear power cost was almost stable 7 Yen/kWh and thermal power cost was varying 9 - 12 Yen/kWh dependent on violent fluctuations of primary energy cost. Nuclear power was expected cost increase due to enhanced safety requirements or damage compensation of accidents as well as decommissioning and back-end cost, which were difficult to evaluate accurately with annual securities report. Further comprehensive and accurate cost estimation should be encouraged including these items. (T. Tanaka)

  18. Preliminary design study for a carbide LEU-nuclear thermal rocket

    International Nuclear Information System (INIS)

    Venneri, P.F.; Kim, Y.

    2014-01-01

    Nuclear space propulsion is a requirement for the successful exploration of the solar system. It offers the possibility of having both a high specific impulse and a relatively high thrust, allowing rapid transit times with a minimum usage of fuel. This paper proposes a nuclear thermal rocket design based on heritage NERVA rockets that makes use of Low Enriched Uranium (LEU) fuel. The Carbide LEU Nuclear Thermal Rocket (C-LEU-NTR) is designed to fulfill the rocket requirements as set forth in the NASA 2009 Mars Mission Design Reference Architecture 5.0, that is provide 25,000 lbf of thrust, operate at full power condition for at least two hours, and have a specific impulse close to 900 s. The neutronics analysis was done using MCNP5 with the ENDF/B-VII.1 neutron library. The thermal hydraulic calculations and size optimization were completed with a finite difference code being developed at the Center for Space Nuclear Research. (authors)

  19. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.H., E-mail: k175ash@kins.re.kr [Korea Institute of Nuclear Safety (KINS) (Korea, Republic of); Aksan, N., E-mail: nusr.aksan@gmail.com [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Austregesilo, H., E-mail: henrique.austregesilo@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Bestion, D., E-mail: dominique.bestion@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Chung, B.D., E-mail: bdchung@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); D’Auria, F., E-mail: f.dauria@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Emonot, P., E-mail: philippe.emonot@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA NP (France); Hanninen, M., E-mail: markku.hanninen@vtt.fi [VTT Technical Research Centre of Finland (VTT) (Finland); Horvatović, I., E-mail: i.horvatovic@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Kim, K.D., E-mail: kdkim@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); Kovtonyuk, A., E-mail: a.kovtonyuk@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy)

    2015-01-15

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes.

  20. Thermal analysis of cold vacuum drying of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G.

    1998-07-20

    The thermal analysis examined transient thermal and chemical behavior of the Multi canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with Mark IV N, Reactor spent fuel in four fuel baskets and one scrap basket. This analysis provides the basis for the MCO thermal behavior at the CVD Facility for its Phase 2 Safety Analysis Report (revision 4).

  1. The Efficiency of the Bimodal System Transportation

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger

    2012-10-01

    Full Text Available The development of fast railway results in an increased applicationof Trailer Train bimodal system transportation. Thetraffic costs are multiply reduced, particularly the variablecosts. On the other hand the environmental pollution from exhaustgases is also reduced. Therefore, by the year 2010 cargotransport should be preponderant~v used which would be characterisedby fast electric trains producing less noise, at lowercosts and with clean environment.

  2. A bimodal flexible distribution for lifetime data

    OpenAIRE

    Ramires, Thiago G.; Ortega, Edwin M. M.; Cordeiro, Gauss M.; Hens, Niel

    2016-01-01

    A four-parameter extended bimodal lifetime model called the exponentiated log-sinh Cauchy distribution is proposed. It extends the log-sinh Cauchy and folded Cauchy distributions. We derive some of its mathematical properties including explicit expressions for the ordinary moments and generating and quantile functions. The method of maximum likelihood is used to estimate the model parameters. We implement the fit of the model in the GAMLSS package and provide the codes. The flexibility of the...

  3. Design of a bolted flange subjected to severe nuclear system thermal transients - A case study

    International Nuclear Information System (INIS)

    Palmer, W.J.; Tomawski, R.J.; Ezekoye, L.I.; Lacey, M.L.

    1986-01-01

    Flange design standards recognize that flanged joints may develop leakage should they be exposed to severe thermal gradients and recommend that such operating conditions be avoided. In nuclear power plants, severe thermal transients may be encountered in many plant and system operating and test conditions. In such applications, conformance with standard design practice may not ensure a leak-tight joint. This paper describes the proper consideration of thermal effects on flanged joints and how that can lead to the development of a successful leak-tight design. Similar procedures may be applied generally to evaluate and upgrade flanged joints in thermal shock applications

  4. Nuclear and thermal power plants and the environment

    International Nuclear Information System (INIS)

    Mejstrik, V.

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared. (Z.M.)

  5. Nuclear and thermal power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Mejstrik, V [Ceskoslovenska Akademie Ved, Pruhonice. Ustav Krajinne Ekologie

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower than in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared.

  6. Research on technology of evaluating thermal property data of nuclear power materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1997-01-01

    For the materials of first wall and diverter of nuclear fusion reactor, in order to withstand steady and unsteady high heat flux load, excellent thermal characteristics are required. It is strongly demanded to measure such thermal property values as heat conductivity, heat diffusivity, specific heat capacity, emissivity and so using small test pieces up to higher than 2000degC. As the materials of nuclear reactors are subjected to neutron irradiation, in order to secure the long term reliability of the materials, it is very important to establish the techniques for forecasting the change of the thermal property values due to irradiation effect. Also the establishment of the techniques for estimating the thermal property values of new materials like low radioactivation material is important. In National Research Laboratory of Metrology, the research on the advancement of the measuring technology for high temperature thermal properties has resulted in the considerably successful development of such technologies. In this research, the rapid measurement of thermal property values up to superhigh temperature with highest accuracy, the making of thermal property data set of high level, the analysis and evaluation of the correlation of material characters and thermal property values, and the development of the basic techniques for estimating the thermal property values of solid materials are aimed at and advanced. These are explained. (K.I.)

  7. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    International Nuclear Information System (INIS)

    Alameri, Saeed A.; King, Jeffrey C.

    2013-01-01

    Nuclear power plants operate most economically at a constant power level, providing base load electric power. In an energy grid containing a high fraction of renewable power sources, nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling a nuclear reactor to a large thermal energy storage block will allow the reactor to better respond to variable power demands. In the system described in this paper, a Prismatic core Advanced High Temperature Reactor supplies constant power to a lithium chloride molten salt thermal energy storage block that provides thermal power as needed to a closed Brayton cycle energy conversion system. During normal operation, the thermal energy storage block stores thermal energy during the night for use in the times of peak demand during the day. In this case, the nuclear reactor stays at a constant thermal power level. After a loss of forced circulation, the reactor reaches a shut down state in less than half an hour and the average fuel, graphite and coolant temperatures remain well within the design limits over the duration of the transient, demonstrating the inherent safety of the coupled system. (author)

  8. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  9. Metallography and thermal analysis of ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Tebaldi, V.

    1988-01-01

    The book contains two parts: the ceramography laboratory and the thermal treatment laboratory. After general remarks on sintering the first part includes sample preparation for ceramography (grinding, polishing, etching), microscopic examination and quantitative image analysis. The second part deals with temperature measurement, oxide/metal ratio determination, thermogravimetry, differential thermal analysis (DTA), melting point determination and constitution of phase diagrams. Installation of a Pu laboratory, sample decontamination, and research with a microprobe are described. 188 photomicrographs present the microstructure of ceramics based on U, Pu and higher actinides

  10. Areal thermal loading recommendations for nuclear waste repositories in salt

    International Nuclear Information System (INIS)

    Russell, J.E.

    1979-06-01

    This document gives a wider understanding of the history of the recommended thermal loadings in salt for both high-level waste (HLW) from fresh UO 2 -fueled, light-water reactors (LWR) with no recycle and spent unreprocessed fuel (SURF) from LWRs. Aspects of the current recommendations that need further study are identified. Finally, an interim set of design thermal-loading recommendations are given that have a common rationale of satisfying performance limits within our current state of knowledge. These recommendations are made on a generic rather than a site-specific basis. 11 figures, 5 tables

  11. Origin of low thermal conductivity in nuclear fuels.

    Science.gov (United States)

    Yin, Quan; Savrasov, Sergey Y

    2008-06-06

    Using a novel many-body approach, we report lattice dynamical properties of UO2 and PuO2 and uncover various contributions to their thermal conductivities. Via calculated Grüneisen constants, we show that only longitudinal acoustic modes having large phonon group velocities are efficient heat carriers. Despite the fact that some optical modes also show their velocities which are extremely large, they do not participate in the heat transfer due to their unusual anharmonicity. Ways to improve thermal conductivity in these materials are discussed.

  12. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  13. A Review of Carbide Fuel Corrosion for Nuclear Thermal Propulsion Applications

    Science.gov (United States)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1994-07-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  14. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelaccio, D.G.; El-Genk, M.S. [Univ. of New Mexico, Albuquerque, NM (United States). Inst. for Space Nuclear Power Studies; Butt, D.P. [Los Alamos National Lab., NM (United States)

    1993-12-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico`s Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  15. Uranium dioxide and beryllium oxide enhanced thermal conductivity nuclear fuel development

    International Nuclear Information System (INIS)

    Andrade, Antonio Santos; Ferreira, Ricardo Alberto Neto

    2007-01-01

    The uranium dioxide is the most used substance as nuclear reactor fuel for presenting many advantages such as: high stability even when it is in contact with water in high temperatures, high fusion point, and high capacity to retain fission products. The conventional fuel is made with ceramic sintered pellets of uranium dioxide stacked inside fuel rods, and presents disadvantages because its low thermal conductivity causes large and dangerous temperature gradients. Besides, the thermal conductivity decreases further as the fuel burns, what limits a pellet operational lifetime. This research developed a new kind of fuel pellets fabricated with uranium dioxide kernels and beryllium oxide filling the empty spaces between them. This fuel has a great advantage because of its higher thermal conductivity in relation to the conventional fuel. Pellets of this kind were produced, and had their thermophysical properties measured by the flash laser method, to compare with the thermal conductivity of the conventional uranium dioxide nuclear fuel. (author) (author)

  16. A study on the ocean circulation and thermal diffusion near a nuclear power plant

    International Nuclear Information System (INIS)

    Shu, Kyung Suk; Han, Moon Hee; Kim, Eun Han; Hwang, Won Tae

    1994-08-01

    The thermal discharge used with cooling water at nuclear power plant is released to a neighbour sea and it is influenced on marine environment. The thermal discharge released from power plant is mainly transported and diffused by ocean circulation of neighbour sea. So the evaluation for characteristics of ocean circulation around neighbour sea is firstly performed. The purpose of this research is primarily analyzed the thermal diffusion in sea around Yongkwang nuclear power plant. For this viewpoint, fundamental oceanographic data sets are collected and analyzed in Yellow sea, west sea of Korea, sea around Yongkwang. The ocean circulation and the effects of temperature increase by thermal discharge are evaluated using these data. The characteristics of tide is interpreted by the analysis of observed tidal elevation and tidal currents. The characteristics of temperature and salinity is investigated by the long-term observation of Korea Fisheries Research and Development Agency and the short-term observation around Yongkwang. (Author)

  17. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  18. Monitoring device for the thermal margin of nuclear reactors

    International Nuclear Information System (INIS)

    Yoshikawa, Tatsuo

    1984-01-01

    Purpose: To extend the operation region and insure the stability thereby significantly improve the operation performance of a nuclear reactor by properly calculating a limited value for the minimum critical power ratio (OLMCPR) reflecting the actual reactor core state. Constitution: The device comprises a nuclear constant calculator, an abnormal transient analyzer and a transient critical power calculator. The abnormal transient analyzer performs analysis for the abnormal transient phenomena with a large variation amount of the minimum critical power ratio using the nuclear constants calculated by the nuclear constant calculator, to thereby determine transient changes such as the flow rate, power, pressure and entrance enthalpy of the reactor core. The transient critical power calculator determines the limited value for the minimum critical power ratio reflecting the state of the reactor core at the time to be monitored based on the thus determined transient change and display the same. Even if the value of MCPR determined by the process computer is smaller than the value for the designed OLMCPR, if it is greater than the displayed OLMCPR, procession such as power distribution control is unnecessary. (Nakamoto, H.)

  19. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    International Nuclear Information System (INIS)

    Novelli, A.

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)

  20. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    More than 100 papers were presented. The meeting was divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling.

  1. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 1

    International Nuclear Information System (INIS)

    2004-01-01

    More than 100 papers were presented. The meeting was divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling

  2. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    More than 100 papers presented at the meeting were divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling.

  3. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 2

    International Nuclear Information System (INIS)

    2004-01-01

    More than 100 papers presented at the meeting were divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling

  4. Bimodal Networks as Candidates for Electroactive Polymers

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Bejenariu, Anca Gabriela

    An alternative network formulation method was adopted in order to obtain a different type of silicone based elastomeric systems - the so-called bimodal networks - using two vinyl-terminated polydimethyl siloxanes (PDMS) of different molecular weight, a labelled crosslinker (3 or 4-functional), an...... themselves between the long chains and show how this leads to unexpectedly good properties for DEAP purposes due both to the low extensibility of the short chains that attach strongly the long chains and to the extensibility of the last ones that retards the rupture process....

  5. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    OpenAIRE

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resis...

  6. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    International Nuclear Information System (INIS)

    1983-02-01

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications

  7. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-02-01

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  8. Thermal hydraulic simulation of the CANDU nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Athos M.S.S. de; Ramos, Mario C.; Costa, Antonella L.; Fernandes, Gustavo H.N., E-mail: athos1495@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Rio de janeiro, RJ (Brazil)

    2017-07-01

    The CANDU (Canada Deuterium Uranium) is a Canadian-designed power reactor of PHWR type (Pressurized Heavy Water Reactor) that uses heavy water (deuterium oxide) for moderator and coolant, and natural uranium for fuel. There are about 47 reactors of this type in operation around the world generating more than 23 GWe, highlighting the importance of this kind of device. In this way, the main purpose of this study is to develop a thermal hydraulic model for a CANDU reactor to aggregate knowledge in this line of research. In this way, a core modeling was performed using RELAP5-3D code. Results were compared with reference data to verify the model behavior in steady state operation. Thermal hydraulic parameters as temperature, pressure and mass flow rate were verified and the results are in good agreement with reference data, as it is being presented in this work. (author)

  9. Application of thermal analysis in nuclear waste management

    International Nuclear Information System (INIS)

    Raje, Naina; Kalekar, Bhupesh; Acharekar, Darshana; Reddy, A.V.R.

    2009-01-01

    Thermal decomposition of zirconium raffinate and ammonium nitrate has been studied using simultaneous TG - DTA - MS/FTIR measurements. Based on non-isothermal analysis, isothermal measurements have been carried out at different temperatures to fix the calcination temperature/s. Decomposition of ammonium nitrate was studied in inert, oxidizing and reducing environments and the results suggest that the decomposition mechanism is same in inert/oxidizing atmosphere but is different in reducing environment. (author)

  10. Nuclear Thermal Propulsion: Past, Present, and a Look Ahead

    Science.gov (United States)

    Borowski, Stanley K.

    2014-01-01

    NTR: High thrust high specific impulse (2 x LOXLH2 chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2 propellant which is then exhausted to produce thrust. Conventional chemical engine LH2 tanks, turbo pumps, regenerative nozzles and radiation-cooled shirt extensions used -- NTR is next evolutionary step in high performance liquid rocket engines.

  11. Alert-derivative bimodal space power and propulsion systems

    International Nuclear Information System (INIS)

    Houts, M.G.; Ranken, W.A.; Buksa, J.J.

    1994-01-01

    Safe, reliable, low-mass bimodal space power and propulsion systems could have numerous civilian and military applications. This paper discusses potential bimodal systems that could be derived from the ALERT space fission power supply concept. These bimodal concepts have the potential for providing 5 to 10 kW of electrical power and a total impulse of 100 MN-s at an average specific impulse of 770 s. System mass is on the order of 1000 kg

  12. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  13. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    Science.gov (United States)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  14. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  15. Radiation and Thermal Ageing of Nuclear Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  16. Thermal stratification in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Byeongnam, E-mail: jo@vis.t.u-tokyo.ac.jp [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Erkan, Nejdet [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Takahashi, Shinji [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Song, Daehun [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Hyundai and Kia Corporate R& D Division, Hyundai Motors, 772-1, Jangduk-dong, Hwaseong-Si, Gyeonggi-Do 445-706 (Korea, Republic of); Sagawa, Wataru; Okamoto, Koji [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan)

    2016-08-15

    Highlights: • Thermal stratification was reproduced in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants. • Horizontal temperature profiles were uniform in the toroidal suppression pool. • Subcooling-steam flow rate map of thermal stratification was obtained. • Steam bubble-induced flow model in suppression pool was suggested. • Bubble frequency strongly depends on the steam flow rate. - Abstract: Thermal stratification in the suppression pool of the Fukushima Daiichi nuclear power plants was experimentally investigated in sub-atmospheric pressure conditions using a 1/20 scale torus shaped setup. The thermal stratification was reproduced in the scaled-down suppression pool and the effect of the steam flow rate on different thermal stratification behaviors was examined for a wide range of steam flow rates. A sparger-type steam injection pipe that emulated Fukushima Daiichi Unit 3 (F1U3) was used. The steam was injected horizontally through 132 holes. The development (formation and disappearance) of thermal stratification was significantly affected by the steam flow rate. Interestingly, the thermal stratification in the suppression pool vanished when subcooling became lower than approximately 5 °C. This occurred because steam bubbles are not well condensed at low subcooling temperatures; therefore, those bubbles generate significant upward momentum, leading to mixing of the water in the suppression pool.

  17. Thermal-work strain in law enforcement personnel during chemical, biological, radiological, and nuclear (CBRN) training

    Science.gov (United States)

    Yokota, M; Karis, A J; Tharion, W J

    2014-01-01

    Background: Thermal safety standards for the use of chemical, biological, radiological, and nuclear (CBRN) ensembles have been established for various US occupations, but not for law enforcement personnel. Objectives: We examined thermal strain levels of 30 male US law enforcement personnel who participated in CBRN field training in Arizona, Florida, and Massachusetts. Methods: Physiological responses were examined using unobtrusive heart rate (HR) monitors and a simple thermoregulatory model to predict core temperature (Tc) using HR and environment. Results: Thermal strain levels varied by environments, activity levels, and type of CBRN ensemble. Arizona and Florida volunteers working in hot-dry and hot-humid environment indicated high heat strain (predicted max Tc>38.5°C). The cool environment of Massachusetts reduced thermal strain although thermal strains were occasionally moderate. Conclusions: The non-invasive method of using physiological monitoring and thermoregulatory modeling could improve law enforcement mission to reduce the risk of heat illness or injury. PMID:24999847

  18. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-01-01

    The age of nuclear waste - the length of time between its removal from the reactor cores and its emplacement in a repository - is a significant factor in determining the thermal loading of a repository. The surface cooling period as well as the density and sequence of waste emplacement affects both the near-field repository structure and the far-field geologic environment. To investigate these issues, a comprehensive review was made of the available literature pertaining to thermal effects and thermal properties of mined geologic repositories. This included a careful evaluation of the effects of different surface cooling periods of the wastes, which is important for understanding the optimal thermal loading of a repository. The results led to a clearer understanding of the importance of surface cooling in evaluating the overall thermal effects of a radioactive waste repository. The principal findings from these investigations are summarized in this paper

  19. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    International Nuclear Information System (INIS)

    Schnitzler, Bruce G.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse (∼900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as

  20. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, Nadia; Thoroddsen, Sigurdur T; Marston, J. O.

    2016-01-01

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  1. Transfer learning for bimodal biometrics recognition

    Science.gov (United States)

    Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao

    2013-10-01

    Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.

  2. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  3. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, N.

    2016-11-07

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  4. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    Science.gov (United States)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  5. Effects of simulated nuclear thermal pulses on fiber optic cables

    International Nuclear Information System (INIS)

    Baba, A.J.; Share, S.; Wasilik, J.H.

    1979-01-01

    The effects of pulsed thermal radiation on fiber optic cables with a variety of jackets (polyurethane, PVC, fluorocarbon) are presented. Exposure between 27 and 85 cal/cm 2 did not sever the optical fibers, but the radiation did cause disintegration of the jackets and the Kevlar strength members, which resulted in a significant reduction of the cable's ability to survive mechanical stress. Hardening techniques are discussed. The addition of low absorptance materials (white Teflon tape and aluminum foil) under clear or white Teflon jackets prevented some types of cables from being affected at fluences up to 110 cal/cm 2

  6. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  7. Nuclear Thermal Rocket Design Using LEU Tungsten Fuel

    International Nuclear Information System (INIS)

    Venneri, Paolo; Kim, Yonghee; Husemeyer, Peter and others

    2013-01-01

    This would then open the possibility for the commercial development and implementation of an NTR. The result was a design for a 114.66 kN thrust rocket engine, with an optimized specific impulse of 801 second, and a thrust-to-weight ratio 5.08. The development and analysis of the reactor was done using an integrated neutronics and thermal hydraulics code that combines MCNP5 using ENDF-B/VI cross sections with a purpose-built thermal hydraulics code. A proof of concept has been proposed for W LEU-NTR design. The current design is built upon traditional NTR design work and implements many of the proven design characteristics and materials from previous designs. Despite the current reactor design being preliminary, it already shows promise in being able to have similar, if not better performance characteristics than current and previous NTR designs. Future work will involve the flattening of radial power profile, optimization of the axial power profile, researching methods to address the full water immersion accident scenario, and further studies regarding the breeding potential in the reactor

  8. Nuclear Thermal Rocket Design Using LEU Tungsten Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yonghee; Husemeyer, Peter and others

    2013-10-15

    This would then open the possibility for the commercial development and implementation of an NTR. The result was a design for a 114.66 kN thrust rocket engine, with an optimized specific impulse of 801 second, and a thrust-to-weight ratio 5.08. The development and analysis of the reactor was done using an integrated neutronics and thermal hydraulics code that combines MCNP5 using ENDF-B/VI cross sections with a purpose-built thermal hydraulics code. A proof of concept has been proposed for W LEU-NTR design. The current design is built upon traditional NTR design work and implements many of the proven design characteristics and materials from previous designs. Despite the current reactor design being preliminary, it already shows promise in being able to have similar, if not better performance characteristics than current and previous NTR designs. Future work will involve the flattening of radial power profile, optimization of the axial power profile, researching methods to address the full water immersion accident scenario, and further studies regarding the breeding potential in the reactor.

  9. 'Crud' detection and evaluation during the Embalse nuclear power plant's thermal cycle for powers of 100%

    International Nuclear Information System (INIS)

    Fernandez, A.; Rosales, A.H.; Mura, V.R.; Sentupery, C.; Rascon, H.

    1987-01-01

    This paper describes the 'crud' measurements performed during the Embalse nuclear power plant's thermal cycle for a power of 100% (645 MWe) under different purification conditions. The aim of this work is to optimize the four steam generators' tube plate cleaning in function of the sweeping produced by their purification. (Author)

  10. Trend analysis of troubles caused by thermal-hydraulic phenomena at nuclear power plants

    International Nuclear Information System (INIS)

    Komatsu, Teruo

    2010-01-01

    The Institute of Nuclear Safety System (INSS) is promoting researches to improve the safety and reliability of nuclear power plants. In the present study, our attention was focused on troubles attributed to thermal-hydraulic phenomena in particular, trend analysis were carried out to learn lessons from these troubles and to prevent their recurrence. Through our survey, we found the following two points. First, many thermal-hydraulics related troubles can be attributed to design faults, since we found some events in foreign countries took place after inadequate facility renovation. To ensure appropriate design verification, it is important to take account of state-of-the-art science and technology and at the same time to pay attention to the compatibility with the initial design concept. Second point, thermal-hydraulic related troubles are common and recurrent to nuclear power plants worldwide. Japanese utilities are planning to introduce some of overseas experiences to their plants, such as power uprate and renovations of aged facilities. It is important to learn lessons from experiences paying close attention continuously to overseas trouble events, including thermal-hydraulics related events, and to use them to improve safety and reliability of nuclear power plants. (author)

  11. Survey of thermal-hydraulic models of commercial nuclear power plants

    International Nuclear Information System (INIS)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described

  12. Preparation of processed nuclear data libraries for thermal, fast and fusion research and power reactor applications

    International Nuclear Information System (INIS)

    Ganesan, S.

    1994-03-01

    A Consultants Meeting on ''Preparation of Processed Nuclear Data Libraries for Thermal, Fast and Fusion Research and Power Reactor Applications'' was convened by the International Atomic Energy Agency and held during December 13-16, 1993 December 8-10, 1993 at the IAEA Headquarters, Vienna. The detailed agenda, the complete list of participants and the recommendations are presented in this report. (author)

  13. Thermal-hydraulic calculation and analysis for QNPP (Qinshan Nuclear Power Plant) containment

    International Nuclear Information System (INIS)

    Xie Hui; Zhou Jie; He Yingchao

    1993-01-01

    Three containment thermal-hydraulic codes CONTEMPT-LT/028, CONTEMPT-4/MOD3 and COMPARE are used to compute and analyse the Qinshan Nuclear Power Plant (QNPP) containment response under LOCA or MSLB conditions. An evaluation of the capability of containment of QNPP is given

  14. Bimodal distribution of damage morphology generated by ion implantation

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A nucleation and evolution model of damage based on amorphous pockets (APs) has recently been developed and implemented in an atomistic kinetic Monte Carlo simulator. In the model, APs are disordered structures (I n V m ), which are agglomerates of interstitials (I) and vacancies (V). This model has been used to study the composition and size distribution of APs during different ion implantations. Depending strongly on the dose rate, ion mass and implant temperature, the APs can evolve to a defect population where the agglomerates have a similar number of I and V (n ∼ m), or to a defect population with pure I (m ∼ 0) and pure V (n ∼ 0) clusters, or a mixture of APs and clusters. This behaviour corresponds to a bimodal (APs/clusters) distribution of damage. As the AP have different thermal stability compared to the I and V clusters, the same damage concentration obtained through different implant conditions has a different damage morphology and, consequently, exhibit a different resistance to subsequent thermal treatments

  15. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    International Nuclear Information System (INIS)

    O'Brien, Robert C.

    2001-01-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  16. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    D'Enterria, D.G.

    2000-05-01

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E γ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar 36 + Au 197 , Ag 107 , Ni 58 , C 12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  17. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  18. Thermal hydraulic stability in a pressure tube nuclear reactor

    International Nuclear Information System (INIS)

    Villani, A.; Ravetta, R.; Mansani, L.

    1986-01-01

    The CIRENE plant which will undergo preoperational tests in the near future is equipped with a 40 MW(e) Heavy Water moderated Boiling Light Water cooled Reactor (HWBLWR); at the start-up and up to about 30 % of nominal power, the necessary low coolant density is obtained injecting into the core a mixture of liquid and steam. To verify the thermal-hydraulic stability of the plant in this situation, tests have been carried out in a facility simulating two full scale power channels; the system stability has been confirmed in the reference conditions, and is not reduced by even a significant reduction of the liquid flowrate, where a decrease in liquid temperature has some negative effect and steam flowrate has a small influence. (author)

  19. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    International Nuclear Information System (INIS)

    Howe, S.; Borowski, S.; Helms, I.; Diaz, N.; Anghaie, S.; Latham, T.

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a ''level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs

  20. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X., E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Batta, A. [Karlsruhe Institute of Technology (KIT) (Germany); Bandini, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Roelofs, F. [Nuclear Research and Consultancy Group (NRG) (Netherlands); Van Tichelen, K. [Studiecentrum voor Kernenergie – Centre d’étude de l’Energie Nucléaire (SCK-CEN) (Belgium); Gerschenfeld, A. [Commissariat à l’Energie Atomique (CEA) (France); Prasser, M. [Paul Scherrer Institute (PSI) (Switzerland); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) (Germany); Ma, W.M. [Kungliga Tekniska Högskolan (KTH) (Sweden)

    2015-08-15

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue.

  1. Application of thermal analysis in quality assurance of nuclear materials

    International Nuclear Information System (INIS)

    Raje, N.; Ghonge, D.K.; Reddy, A.V.R.

    2010-01-01

    Uranium finds its application as nuclear fuel and has stringent specifications regarding the presence of certain impurities. Magnesium diuranate (yellow cake) is the intermediate product in the hydrometallurgy of uranium. It is prepared by leaching of uranium ore using dilute sulphuric acid and subsequent ion-exchange separation of trace impurities from the leach solution followed by magnesium diuranate precipitation using magnesia. Determination of U, Mg, Na, K, Fe, Mn, Si, Al, Cd, Cr, Cu,Co, V, Mo, B, Cd, REEs, Th, chloride, sulphate and phosphate is required in yellow cake to examine whether their levels are in permissible limits. Currently, due to the processing of low-grade ores, higher levels of impurities are being encountered in the leach solution that affect the properties of magnesium diuranate (MDU). In order to meet the fuel specifications, quality assurance of MDU is essential

  2. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are discussed. The authors demonstrated success in reaching desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and define a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  3. Speech Recognition and Cognitive Skills in Bimodal Cochlear Implant Users

    Science.gov (United States)

    Hua, Håkan; Johansson, Björn; Magnusson, Lennart; Lyxell, Björn; Ellis, Rachel J.

    2017-01-01

    Purpose: To examine the relation between speech recognition and cognitive skills in bimodal cochlear implant (CI) and hearing aid users. Method: Seventeen bimodal CI users (28-74 years) were recruited to the study. Speech recognition tests were carried out in quiet and in noise. The cognitive tests employed included the Reading Span Test and the…

  4. Disentangling internal and external factors in bimodal acquisition

    NARCIS (Netherlands)

    Hulk, A.; Van den Bogaerde, B.

    2016-01-01

    In this commentary we address some of the internal and external factors which are generally found to interact with purely linguistic factors in the languages of bimodal children, and which we think should be taken into account while analysing the bimodal data.

  5. Bimodal magmatism produced by progressively inhibited crustal assimilation 2 (PICA)

    NARCIS (Netherlands)

    Meade, F.C.; Troll, V.R.; Ellam, R.M.; Freda, C.; Font Morales, L.; Donaldson, C.H.; Klonowska, I.

    2014-01-01

    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous

  6. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  7. Failure at Zainsk thermal power station: lesson for thermal and nuclear power stations

    International Nuclear Information System (INIS)

    Derkach, A.L.; Klyuchnikov, A.A.; Fedorenko, G.M.; Kuz'min, V.V.

    2007-01-01

    An account of system failure at Zainsk Thermal PS on January 1-st, 1979 is given. The cause of failure - sudden unauthorized energizing of block transformer which led to a direct asynchronous start of 200 MW turbine generator from grid. The failure resulted in the explosion and fire in generator, shaft destruction, and the damage of the machine hall's roof. The core roots of the failure have been scrutinised

  8. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  9. Pellet bed reactor for nuclear thermal propelled vehicles

    International Nuclear Information System (INIS)

    El-Genk, M.; Morley, N.J.; Haloulakos, V.E.

    1991-01-01

    The Pellet Bed Reactor (PeBR) concept is capable of operating at a high power density of up to 3.0 kWt/cu cm and an exit hydrogen gas temperature of 3000 K. The nominal reactor thermal power is 1500 MW and the reactor core is 0.80 m in diameter and 1.3 m high. The nominal PeBR engine generates a thrust of approximately 315 kN at a specific impulse of 1000 s for a mission duration to Mars of 250 days requiring a total firing time of 170 minutes. Because of its low diameter-to-height ratio, PeBR has enough surface area for passive removal of the decay heat from the reactor core. The reactor is equipped with two independent shutdown mechanisms; 8-B4C safety rods and 26 BeO/B4C control drums; each system is capable of operating and scraming the reactor safely. Due to the absence of core internal support structures, the PeBR can be fueled and refueled in orbit using the vacuum of space. These unique features of the PeBR provide for safety during launch, simplicity of handling, deployment, and end-of-life disposal, and vehicle extended lifetime. 11 refs

  10. Stochastic modelling of thermal fatigue crack growth for applying in the structural reliability of nuclear piping

    International Nuclear Information System (INIS)

    Radu, V.

    2016-01-01

    The problem of thermal fatigue in mixing areas arises in nuclear piping where a turbulent mixing or vortices produce rapid fluid temperature fluctuations with random frequencies. The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. To apply the Stochastic approach of thermal fatigue, a frequency temperature response function is proposed. For the elastic thermal stresses distribution solutions, the magnitude of the frequency response function is first derived and checked against the prediction by FEA. The connection between SIF.s power spectral density (PSD) and temperature.s PSD is assured with SIF frequency response function modulus. The frequency of the peaks of each magnitude for KI is supposed to be a stationary narrow-band Gaussian process. The probabilities of failure are estimated by means of the Monte Carlo methods considering a limit state function. (authors)

  11. CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1989-02-01

    A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  12. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  13. Application of thermal comfort theory in probabilistic safety assessment of a nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Tao; Sun Canhui; Li Zhenyang; Wang Zenghui

    2011-01-01

    Human factor errors in probabilistic safety assessment (PSA) of a nuclear power plant (NPP) can be prevented using thermal comfort analysis. In this paper, the THERP + HCR model is modified by using PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) index system, so as to obtain the operator cognitive reliability,and to reflect and analyze human perception, thermal comfort status,and cognitive ability in a specific NPP environment. The mechanism of human factors in the PSA is analyzed by operators of skill, rule and knowledge types. The THERP + HCR model modified by thermal comfort theory can reflect the conditions in actual environment, and optimize reliability analysis of human factors. Improving human thermal comfort for different types of operators reduces adverse factors due to human errors, and provides a safe and optimum decision-making for NPPs. (authors)

  14. Thermal fatigue crack growth in mixing tees nuclear piping - An analytical approach

    International Nuclear Information System (INIS)

    Radu, V.

    2009-01-01

    The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. So-called sinusoidal methods represent a simplified approach in which the entire spectrum is replaced by a sine-wave variation of the temperature at the inner pipe surface. The need for multiple calculations in this process has lead to the development of analytical solutions for thermal stresses in a pipe subject to sinusoidal thermal loading, described in previous work performed at JRC IE Petten, The Netherlands, during the author's stage as seconded national expert. Based on these stress distributions solutions, the paper presents a methodology for assessment of thermal fatigue crack growth life in mixing tees nuclear piping. (author)

  15. Transient bimodality in interacting particle systems

    International Nuclear Information System (INIS)

    Calderoni, P.; Pellegrinotti, A.; Presutti, E.; Vares, M.E.

    1989-01-01

    The authors consider a system of spins which have values ± 1 and evolve according to a jump Markov process whose generator is the sum of two generators, one describing a spin-flip Glauber process, the other a Kawasaki (stirring) evolution. It was proven elsewhere that if the Kawasaki dynamics is speeded up by a factor var-epsilon -2 , then, in the limit var-epsilon → 0 (continuum limit), propagation of chaos holds and the local magnetization solves a reaction-diffusion equation. They choose the parameters of the Glauber interaction so that the potential of the reaction term in the reaction-diffusion equation is a double-well potential with quartic maximum at the origin. They assume further that for each var-epsilon the system is in a finite interval of Z with var-epsilon -1 sites and periodic boundary conditions. They specify the initial measure as the product measure with 0 spin average, thus obtaining, in the continuum limit, a constant magnetic profile equal to 0, which is a stationary unstable solution to the reaction-diffusion equation. They prove that at times of the order var-epsilon -1/2 propagation of chaos does not hold any more and, in the limit as var-epsilon → 0, the state becomes a nontrivial superposition of Bernoulli measures with parameters corresponding to the minima of the reaction potential. The coefficients of such a superposition depend on time (on the scale var-epsilon -1/2 ) and at large times (on this scale) the coefficient of the term corresponding to the initial magnetization vanishes (transient bimodality). This differs from what was observed by De Masi, Presutti, and Vares, who considered a reaction potential with quadratic maximum and no bimodal effect was seen, as predicted by Broggi, Lugiato, and Colombo

  16. Thermal integration of SCWR nuclear and thermochemical hydrogen plants

    International Nuclear Information System (INIS)

    Wang, Z.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the intermediate heat exchange between a Generation IV supercritical water-cooled nuclear reactor (SCWR) and a thermochemical hydrogen production cycle is discussed. It is found that the maximum and range of temperatures of a thermochemical cycle are the dominant parameters that affect the design of its coupling with SCWR. The copper-chlorine (Cu-Cl) thermochemical cycle is a promising cycle that can link with SCWRs. The location of extracting heat from a SCWR to a thermochemical cycle is investigated in this paper. Steam bypass lines downstream of the SCWR core are suggested for supplying heat to the Cu-Cl hydrogen production cycle. The stream extraction location is strongly dependent on the temperature requirements of the chemical steps of the thermochemical cycle. The available quantity of heat exchange at different hours of a day is also studied. It is found that the available heat at most hours of power demand in a day can support an industrial scale steam methane reforming plant if the SCWR power station is operating at full design capacity. (author)

  17. Two-phase flow and thermal response from nuclear excursions in tuff

    International Nuclear Information System (INIS)

    Rath, J.S.; Sanchez, L.C.; Taylor, L.L.

    1998-05-01

    Thermal hydrology calculations were performed to predict the geologic thermal and saturation response of a far-field nuclear criticality. The thermal hydrology (THX) calculations used an experimental version of a transient multi-phase fluid and energy simulator, BRAGFLO T. A total of 45 THX calculations were completed using various combinations of initial saturation S 0 , input heat generation zone (HGZ) radii r 0 , input energies E 0 , and input space power density functions (SPDFs). The thermal hydrology calculations were performed as a part the nuclear dynamics consequence analysis (NDCA) study for potential criticality consequences associated with disposal of high-level waste (HLW) and spent nuclear fuel (SNF) in an underground geologic repository. In the NDCA study it was identified that total fission energy E 0 , integrated from the power-time history, has an expected range of 10 17 --10 20 total fissions per excursion. This range of values is comparable to those reported for aqueous criticality accidents that had occurred in processing plants. The THX results show (using the conservative temperature recycle times) that a criticality frequency between 3 and 30 criticalities/yr is possible. Probability frequencies (generated by probabilistic risk analysis and the THX model) for these consequences indicate that any additional fissions are minor contributions to the biological hazards caused by the disposed fissile materials

  18. Thermal and nuclear power generation cost estimates using corporate financial statements

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Nagatomi, Yu; Murakami, Tomoko

    2012-01-01

    There are two generally accepted methods for estimating power generation costs: so-called 'model plant' method and the method using corporate financial statements. The method using corporate financial statements, though under some constraints, can provide useful information for comparing thermal and nuclear power generation costs. This study used this method for estimating thermal and nuclear power generation costs in Japan for the past five years, finding that the nuclear power generation cost remained stable at around 7 yen per kilowatt-hour (kWh) while the thermal power generation cost moved within a wide range of 9 to 12 yen/kWh in line with wild fluctuations in primary energy prices. The cost of nuclear power generation is expected to increase due to the enhancement of safety measures and accident damage compensation in the future, while there are reactor decommissioning, backend and many other costs that the financial statement-using approach cannot accurately estimate. In the future, efforts should be continued to comprehensively and accurately estimate total costs. (author)

  19. Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel

    Science.gov (United States)

    Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.

    2018-01-01

    Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.

  20. Air quality assessment in the vicinity of nuclear and thermal power stations

    International Nuclear Information System (INIS)

    Sivaramasundaram, K.; Vijay Bhaskar, B.; Muthusubramanian, P.; Rajan, M.P.; Hegde, A.G.

    2007-01-01

    The status and ranking of any country, in the context of globalisation, is decided by its economic progress, which is directly linked into power generation. The power is generated by many routes and the nuclear and thermal routes are noteworthy among them. As the power production and its associated activities may cause qualitative deterioration, it is essential to study the impact of power production on atmospheric environment. In this connection, a comparative study has been carried out to assess the air quality with special reference to criteria pollutants in the vicinity of nuclear and thermal power stations. In the present investigation, the air samples are collected on weekly basis and the pollutants such as sulphur dioxide (SO 2 ), nitrogen oxides (NOx), carbon monoxide (CO), suspended particulate matter (SPM) and respirable particulate matter (RPM) are estimated by adopting standard procedures set by United States-Environmental Protection Agency (US-EPA) and Central Pollution Control Board (CPCB). As the micro meteorological parameters influence on the status of air quality, simultaneous measurements of these parameters are also carried, out during sampling. It is studied that estimated concentrations of all criteria pollutants in the vicinity of these power stations are within the permissible limits set by CPCB. On the basis of the generated database pertaining to the concentrations of criteria air pollutants in the vicinity of nuclear and thermal power stations, it is concluded that nuclear power production may be considered as a viable option in terms of environmental protection in our country. (author)

  1. Strategic and policy issues raised by the transition from thermal to fast nuclear systems

    International Nuclear Information System (INIS)

    2009-01-01

    The renewed interest in nuclear energy triggered by concerns about global climate change and security of supply, which could lead to substantial growth in nuclear electricity generation, enhances the attractiveness of fast neutron reactors with closed fuel cycles. Moving from the current fleet of thermal neutron reactors to fast neutron systems will require many decades and extensive RD-D efforts. This book identifies and analyses key strategic and policy issues raised by such a transition, aiming at providing guidance to decision makers on the best approaches for implementing transition scenarios. The topics covered in this book will be of interest to government and nuclear industry policy makers as well as to specialists working on nuclear energy system analyses and advanced fuel cycle issues. (author)

  2. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    International Nuclear Information System (INIS)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations

  3. Current Ground Test Options for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2014-01-01

    About 20 different NTP engines/ reactors were tested from 1959 to 1972 as part of the Rover and Nuclear Engine for Rocket Vehicle Application (NERVA) program. Most were tested in open air at test cell A or test cell C, at the Nevada Test Site (NTS). Even after serious engine breakdowns of the reactor (e.g., Phoebus 1A), the test cells were cleaned up for other engine tests. The engine test stand (ETS) was made for high altitude (approximately 1 psia) testing of an NTP engine with a flight configuration, but still had the exhaust released to open air. The Rover/NERVA program became aware of new environmental regulations which would prohibit the release of any significant quantity of radioactive particulates and noble gases into the open air. The nuclear furnace (NF-1) was the last reactor tested before the program was cancelled in 1973, but successfully demonstrated a scrubber concept on how to filter the NTP exhaust. The NF-1 was demonstrated in the summer of 1972. The NF-1 used a 44MW reactor and operated each run for approximately 90 minutes. The system cooled the hot hydrogen exhaust from the engine with a water spray before entering a particle filter. The exhaust then passed through a series of heat exchangers and water separators to help remove water from the exhaust and further reduce the exhaust temperatures. The exhaust was next prepared for the charcoal trap by passing through a dryer and effluent cooler to bring exhaust temperatures close to liquid nitrogen. At those low temperatures, most of the noble gases (e.g., Xe and Kr made from fission products) get captured in the charcoal trap. The filtered hydrogen is finally passed through a flare stack and released to the air. The concept was overall successful but did show a La plating on some surfaces and had multiple recommendations for improvement. The most recent detailed study on the NTP scrubber concept was performed by the ARES Corporation in 2006. The concept is based on a 50,000 lbf thrust engine

  4. BEPU-FSAR: establishing a background for extension of nuclear thermal hydraulic principles to non thermal-hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Francine; Sabundjian, Gaianê, E-mail: franmenzel@gmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); D’Auria, Francesco, E-mail: f.dauria@ing.unipi.it [University of Pisa, San Piero a Grado Nuclear Research Group (Italy)

    2017-07-01

    Nuclear thermal hydraulic and accident analysis are based in three pillar activities, which consists in: Scaling, Coupling and V and V. Each of them are established technology, with key documents to describe and widely used. The final goal of this work is to apply the BEPU methodology in all parts of FSAR where analytical techniques are needed (BEPU-FSAR) and for that the crucial step is the transfer of the BEPU concepts into the other areas. In this sense, the issue is how to adapt to other disciplines the pillar activities presented in the thermal hydraulic area. For that we need to identify which elements can be applied in the other areas, to show that the proposed methodology is feasible. This work aims to discuss the first steps towards a BEPU-FSAR methodology and to show that the Scaling, Coupling and V and V elements, currently done for thermal-hydraulic codes, can be also done for different codes, which are used to perform different analysis included on a FSAR of a generic plant. (author)

  5. Use of Emanation Thermal Analysis in the characterization of nuclear waste forms and their alteration products

    International Nuclear Information System (INIS)

    Balek, V; Malek, Z.; Banba, T.; Mitamura, H.; Vance, E.R.

    1999-01-01

    Emanation Thermal Analysis (ETA) was used for the characterization of thermal behavior of two nuclear waste glasses, basalt volcanic glass and perovskite ceramics before and after hydrolytic treatment. The release of radon, formed by the spontaneous α-decay of 228 Th and 224 Ra and incorporated into samples to a maximum depth of 100 nm from the surface due to the recoil, was measured during heating of the samples from 20 to 1200degC and subsequent cooling. Temperatures of the annealing of surface roughness, micro-cracks and other defects, produced by manufacture and/or by subsequent treatment of glass and ceramic samples, were determined using the ETA. Microstructure changes of glass corrosion accompanying their dehydration and thermal decomposition were characterized by the radon release rate changes. The effect of hydrolytic alteration on the thermal behavior of the nuclear waste glass was revealed by ETA in an early corrosion stage. In the alteration product of the perovskite ceramics the diffusion mobility of radon was assessed in the temperature range 1000-1200degC. The thermal stability of radiation-induced defects in perovskite ceramic powder bombarded by He + ions to doses of 10 14 and 10 16 ions/cm 2 was determined by means of ETA. (author)

  6. Econometric modelling of certain nuclear power systems based on thermal and fast breeder reactors

    International Nuclear Information System (INIS)

    Pavelescu, M.; Pioaru, C.; Ursu, I.

    1988-01-01

    Certain known economic analysis models for a LMFBR fast breeder and CANDU thermal solitary reactors are presented, based on the concepts of discounting and levelization. These models are subsequently utilized as a basis for establishing an original model for the econometric analysis of certain thermal reactor systems or/and fast breeder reactors. Case studies are subsequently conducted with the systems: 1-CANDU, 2-LMFBR, 3-CANDU + LMFBR which enables us to draw certain interesting conclusions for a long range nuclear power policy. (author)

  7. MCNP benchmark analyses of critical experiments for space nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.

    1993-01-01

    The particle-bed reactor (PBR) system is being developed for use in the Space Nuclear Thermal Propulsion (SNTP) Program. This reactor system is characterized by a highly heterogeneous, compact configuration with many streaming pathways. The neutronics analyses performed for this system must be able to accurately predict reactor criticality, kinetics parameters, material worths at various temperatures, feedback coefficients, and detailed fission power and heating distributions. The latter includes coupled axial, radial, and azimuthal profiles. These responses constitute critical inputs and interfaces with the thermal-hydraulics design and safety analyses of the system

  8. Sensitivity of control times in function of core parameters and oscillations control in thermal nuclear systems

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Galvao, O.B.; Oyama, K.

    1981-03-01

    Sensitivity of control times to variation of a thermal reactor core parameters is defined by suitable changes in the power coefficient, core size and fuel enrichment. A control strategy is developed based on control theory concepts and on considerations of the physics of the problem. Digital diffusion theory simulation is described which tends to verify the control concepts considered, face dumped oscillations introduced in one thermal nuclear power system. The effectivity of the control actions, in terms of eliminating oscillations, provided guidelines for the working-group engaged in the analysis of the control rods and its optimal performance. (Author) [pt

  9. NUMERICAL MULTIGROUP TRANSIENT ANALYSIS OF SLAB NUCLEAR REACTOR WITH THERMAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Filip Osuský

    2016-12-01

    Full Text Available The paper describes a new numerical code for multigroup transient analyses with thermal feedback. The code is developed at Institute of Nuclear and Physical Engineering. It is necessary to carefully investigate transient states of fast neutron reactors, due to recriticality issues after accident scenarios. The code solves numerical diffusion equation for 1D problem with possible neutron source incorporation. Crank-Nicholson numerical method is used for the transient states. The investigated cases are describing behavior of PWR fuel assembly inside of spent fuel pool and with the incorporated neutron source for better illustration of thermal feedback.

  10. Review of turbulence modelling for numerical simulation of nuclear reactor thermal-hydraulics

    International Nuclear Information System (INIS)

    Bernard, J.P.; Haapalehto, T.

    1996-01-01

    The report deals with the modelling of turbulent flows in nuclear reactor thermal-hydraulic applications. The goal is to give tools and knowledge about turbulent flows and their modelling in practical applications for engineers, and especially nuclear engineers. The emphasize is on the theory of turbulence, the existing different turbulence models, the state-of-art of turbulence in research centres, the available models in the commercial code CFD-FLOW3D, and the latest applications of turbulence modelling in nuclear reactor thermal-hydraulics. It turns out that it is difficult to elaborate an universal turbulence model and each model has its advantages and drawbacks in each application. However, the increasing power of computers can permit the emergence of new methods of turbulence modelling such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) which open new horizons in this field. These latter methods are beginning to be available in commercial codes and are used in different nuclear applications such as 3-D modelling of the nuclear reactor cores and the steam generators. (orig.) (22 refs.)

  11. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    Science.gov (United States)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required

  12. Benchmark study of some thermal and structural computer codes for nuclear shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Kanae, Yoshioki; Shimada, Hirohisa; Shimoda, Atsumu; Halliquist, J.O.

    1984-01-01

    There are many computer codes which could be applied to the design and analysis of nuclear material shipping casks. One of problems which the designer of shipping cask faces is the decision regarding the choice of the computer codes to be used. For this situation, the thermal and structural benchmark tests for nuclear shipping casks are carried out to clarify adequacy of the calculation results. The calculation results are compared with the experimental ones. This report describes the results and discussion of the benchmark test. (author)

  13. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    Science.gov (United States)

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  14. Proceedings of the 10th international topical meeting on nuclear thermal hydraulics, operation and safety (NUTHOS-10)

    International Nuclear Information System (INIS)

    2014-01-01

    The 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-10) in Okinawa, Japan is sponsored by Atomic Energy Society of Japan, in cooperation with the International Atomic Energy Agency, and co-sponsored by American Nuclear Society Thermal Hydraulics Division among others. Enhanced safety and reducing cost are going together, which can be achieved through continued research and development efforts. NUTHOS keeps you abreast of the most updated information in the advancement of science and technology in nuclear thermal hydraulics, operations and safety, and provides you insights into the future. (J.P.N.)

  15. Main research results in the field of nuclear power engineering of the Nuclear Reactors and Thermal Physics Institute in 2014

    International Nuclear Information System (INIS)

    Trufanov, A.A.; Orlov, Yu.I.; Sorokin, A.P.; Chernonog, V.L.

    2015-01-01

    The main results of scientific and technological activities for last years of the Nuclear Reactors and Thermal Physics Institute FSUE SSC RF - IPPE in solving problems of nuclear power engineering are presented. The work have been carried out on the following problems: justification of research and development solutions and safety of NPPs with fast reactors of new generation with sodium (BN-1200, MBIR) and lead (BREST-OD-300) coolants, justification of safety of operating and advanced NPPs with WWER reactor facilities (WWER-1000, AEhS 2006, WWER-TOI), development and benchmarking of computational codes, research and development support of Beloyarsk-3 (BN-600) and Bilibino (BN-800) NPPs operation, decommissioning of AM and BR-10 research reactors, pilot scientific studies (WWER-SKD, ITER), international scientific and technical cooperation. Problems for further investigations are charted [ru

  16. 11. international topical meeting on nuclear reactor thermal-hydraulics (NURETH-11)

    International Nuclear Information System (INIS)

    Lemonnier, H.

    2005-01-01

    The main topics covered by the NURETH 11 meeting are the thermal-hydraulics of existing and future nuclear power plants as foreseen by the Generation IV worldwide initiative. Normal operation and accidental situations are also relevant topics of the Conference. The topics cover modeling, experiments, instrumentation and numerical simulations related to flow and heat transfer in nuclear reactors with a special emphasis on the advances of multiphase CFD methods. The first part of this Book of Abstracts enumerates the Organizing Scientific Societies, the Sponsors of the Conference, the Conference Chairs, and the members of the Steering Committee and of the Technical Program Committee. The second part of this Book of Abstracts contains the list of the titles of the contributed papers. Each item includes the log number of the paper, the abstract of which can therefore be easily located in the next section of this book. The titles of the papers have been sorted out by topics to provide a synthetic view of the contributions in a selected domain. The last section of this Book includes an index of authors and co-authors with a reference to the log number(s) of their contributed paper(s). Finally, the CD-Rom of the Conference Proceedings containing the full-length papers is inserted at the inside back cover. Sessions content: A - two-phase flow and heat transfer fundamentals: computational and mathematical techniques (numerical schemes, LBM, BEM, mesh-less, etc.); contact angle and wettability phenomena; experiments and data bases for the assessment and the verification of 3D models; flow regime identification and modelling; heat transfer near critical pressure and supercritical water reactors; interfacial area (data base, modeling, measurement techniques); instrumentation techniques; micro-scale basic phenomena, fluid flow and heat transfer; scaling methods; counter current flow; B - code developments: containment analysis; core thermal-hydraulics and subchannel analysis

  17. Water chemistry control in thermal and nuclear power plants. 9. Nuclear fuel management

    International Nuclear Information System (INIS)

    2008-01-01

    The chemical management of fuels in nuclear power plants aims at maintenance of the soundness of nuclear fuels and at reduction of the radiation exposure of the working employees. With regard to the former, particular attention should be paid to the fabrication process of fuel assembly, mainly for chemical management for fuel cladding tubes together with fuel pellet-clad chemical interactions, and to the outer tubes in the power plants. With regard to the latter, the fabrication process should be carefully controlled to prevent radioactive impurity increase in primary cooling water systems by maintaining cleaning level and decreasing surface contamination. Reactions of zircalloy with water or hydrogen forming ZrH 2 , sintered density of UO 2 pellet controlling water content, pellet-clad interactions, stress corrosion cracking, crud induced fuel failure, behaviors of such fission products as I, Xe, Kr, and Cs in plants are also important to water and chemical management of nuclear fuels. (S. Ohno)

  18. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Directory of Open Access Journals (Sweden)

    Ten-See Wang

    Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing

  19. Certification of temperature measuring techniques at thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Preobrazhenskij, V.P.; Strigina, L.A.

    1980-01-01

    Necessity for metrological certification of temperature measurement techniques (TMT) at thermal and nuclear energy plants is grounded. An order of TMT certification is stated and formulae for determining the accuracy of temperature measurements by the thermoelectric method are given. It is concluded that through there are also statistical characteristics of errors of a number of measurement properties, it is necessary to carry on statistical investigations into errors of thermoelectrode extending wires, planimeters, measurement conditions. Such kind investigation technigues have been developed. Besides, it is necessary to regulate a uniform approach to the usage of statistical characteristics of errors of means and conditions of measurements to minimize volume of work for the personnel of thermal and nuclear energy plants and provide reliable estimates of temperature measurement errors

  20. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  1. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    International Nuclear Information System (INIS)

    Nam, S. H.; Suh, K. Y.; Kang, S. G.

    2008-01-01

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H 2 ) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I sp ) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H 2 /O 2 rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance

  2. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  3. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  4. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    OpenAIRE

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    2016-01-01

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze ...

  5. Thermal control of high energy nuclear waste, space option. [mathematical models

    Science.gov (United States)

    Peoples, J. A.

    1979-01-01

    Problems related to the temperature and packaging of nuclear waste material for disposal in space are explored. An approach is suggested for solving both problems with emphasis on high energy density waste material. A passive cooling concept is presented which utilized conduction rods that penetrate the inner core. Data are presented to illustrate the effectiveness of the rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

  6. Thermal modeling of nuclear waste package designs for disposal in tuff

    International Nuclear Information System (INIS)

    Hockman, J.N.; O'Neal, W.C.

    1983-09-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This paper discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 6 references, 6 figures, 3 tables

  7. Thermal modeling of nuclear waste package designs for disposal in tuff

    International Nuclear Information System (INIS)

    Hockman, J.N.; O'Neal, W.C.

    1984-02-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This paper discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 6 references, 6 figures, 4 tables

  8. Nuclear thermal rocket clustering: 1, A summary of previous work and relevant issues

    International Nuclear Information System (INIS)

    Buksa, J.J.; Houts, M.G.

    1991-01-01

    A general review of the technical merits of nuclear thermal rocket clustering is presented. A summary of previous analyses performed during the Rover program is presented and used to assess clustering in the context of projected Space Exploration Initiative missions. A number of technical issues are discussed including cluster reliability, engine-out operation, neutronic coupling, shutdown core power generation, shutdown reactivity requirements, reactor kinetics, and radiation shielding. 7 refs., 3 figs., 2 tabs

  9. Nuclear thermal propulsion engine based on particle bed reactor using light water steam as a propellant

    Science.gov (United States)

    Powell, James R.; Ludewig, Hans; Maise, George

    1993-01-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified.

  10. Nuclear thermal propulsion engine based on particle bed reactor using light water steam as a propellant

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Maise, G.

    1993-01-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified

  11. Thermal characterization of tubular SiC/SiC composite structures for nuclear applications

    International Nuclear Information System (INIS)

    Duquesne, Loys

    2015-01-01

    Researches on the development on SiCf/SiC refractory composites for generation IV nuclear fuel cladding led the CEA to focus on the thermal behavior of these materials. In particular, knowledge of the thermal properties is essential for designing the components. Regarding the development of the 'sandwich' cladding concept, for which the complexity and the geometry differ from the conventionally used flat tubes, usual measurement methods are unsuitable. This study reports on the characterization and modeling of the thermal behavior of these structures. The first part deals with the identification of the global thermal parameters for the different layers of a 'sandwich' cladding. For this purpose, a flash method is used and an experimental device suitable for tubular geometries was developed. A new estimation method based on the combination of both collected signals in front and rear faces allows the identification of the thermal diffusivity of tubular composites using infrared thermography. The second part focuses on a virtual material approach, established to describe the thermal behavior of a 'sandwich' cladding, starting from the measured properties of the elementary components (fibers and matrix). They are then used as input data for the heat transfer modeling. Confrontations between experimental measurements and numerical results finally allow us to understand the importance of the various key parameters governing the heat transfer. (author) [fr

  12. The elevated temperature and thermal shock fracture toughnesses of nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kobayashi, Hideo; Nakazawa, Hajime; Nara, Atsushi.

    1979-01-01

    Thermal shock experiments were conducted on nuclear pressure vessel steel A533 Grade B Class 1. Elastic-plastic fracture toughness tests were carried out within the same high temperature range of the thermal shock experiment and the relation between stretched zone width, SZW and J-integral was clarified. An elastic-plastic thermal shock fracture toughness value. J sub(tsc) was evaluated from a critical value of stretched zone width, SZW sub(tsc) at the initiation of thermal shock fracture by using the relation between SZW and J. The J sub(tsc) value was compared with elastic-plastic fracture toughness values, J sub( ic), and the difference between the J sub(tsc) and J sub( ic) values was discussed. The results obtained are summarized as follows; (1) The relation between SZW and J before the initiation of stable crack growth in fracture toughness test at a high temperature can be expressed by the following equation regardless of test temperature, SZW = 95(J/E), where E is Young's modulus. (2) Elevated temperature fracture toughness values ranging from room temperature to 400 0 C are nearly constant regardless of test temperature. It is confirmed that upper shelf fracture toughness exists. (3) Thermal shock fracture toughness is smaller than elevated temperature fracture toughness within the same high temperature range of thermal shock experiment. (author)

  13. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    Science.gov (United States)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  14. Measurement and evaluation of thermal effects in the intermixing zone at low power nuclear station outfall

    International Nuclear Information System (INIS)

    Kamath, P.R.; Gurg, R.P.; Bhat, I.S.; Vyas, P.V.

    1978-01-01

    Observations and evaluations of thermal effects in the lake near the RAPS-1 REACTOR, are reported. The coolant waters are drawn from the lake at a depth of 8-10 m below the surface and discharged through an open channel with a temperature rise of 10deg C. Temperature profiles and spread in the velocity of the outfall are mapped using in situ monitors. These studies show evidence of thermal stratification in the period following winter and the existence of a well established thermocline. Parasitism and eutrophication are also observed. The thermal effects are found to be accentuated by photosynthetic effects. Proposal to utilise waste heat for algal culture in the Kalpakkam nuclear site in South and mariculture (lobsters, prawns) in the heated effluents canal at the Tarapur Atomic Power Station near Bombay are discussed. (K.B.)

  15. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    International Nuclear Information System (INIS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants

  16. FX2-TH: a two-dimensional nuclear reactor kinetics code with thermal-hydraulic feedback

    International Nuclear Information System (INIS)

    Shober, R.A.; Daly, T.A.; Ferguson, D.R.

    1978-10-01

    FX2-TH is a two-dimensional, time-dependent nuclear reactor kinetics program with thermal and hydraulic feedback. The neutronics model used is multigroup neutron diffusion theory. The following geometry options are available: x, r, x-y, r-z, theta-r, and triangular. FX2-TH contains two basic thermal and hydraulic models: a simple adiabatic fuel temperature calculation, and a more detailed model consisting of an explicit representation of a fuel pin, gap, clad, and coolant. FX2-TH allows feedback effects from both fuel temperature (Doppler) and coolant temperature (density) changes. FX2-TH will calculate a consistent set of steady state conditions by iterating between the neutronics and thermal-hydraulics until convergence is reached. The time-dependent calculation is performed by the use of the improved quasistatic method. A disk editing capability is available. FX2-TH is operational on IBM system 360 or 370 computers and on the CDC 7600

  17. Nuclear future: thinking for building. Proceedings of the 12. Brazilian national meeting on reactor physics and thermal hydraulics; 8. General congress on nuclear energy; 5. Brazilian national meeting on nuclear applications

    International Nuclear Information System (INIS)

    2000-01-01

    These proceedings, for the first time, present jointly the 12. Brazilian national meeting on reactor physics and thermal hydraulics (12 ENFIR), 8. General congress on nuclear energy (8. CGEN), and 5. Brazilian national meeting on nuclear applications (5. ENAN). The main theme of discussion was: 'Nuclear Future: thinking for building'. The papers have analysed the progresses of peaceful utilization of nuclear technology and its forecasting for the beginning of the new millennium. The construction of Angra-3 nuclear power plant have been discussed

  18. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data

    Science.gov (United States)

    Zoran, M. A.; Nicolae, D. N.; Talianu, C. L.; Ciobanu, M.; Ciuciu, J. G.

    2005-10-01

    The synergistic use of multi-temporal and multi-spectral remote sensing data offers the possibility of monitoring of environment quality in the vicinity of nuclear power plants (NPP). Advanced digital processing techniques applied to several LANDSAT, MODIS and ASTER data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air for NPP Cernavoda , Romania . Cernavoda Unit 1 power plant, using CANDU technology, having 706.5 MW power, is successfully in operation since 1996. Cernavoda Unit 2 which is currently under construction will be operational in 2007. Thermal discharge from nuclear reactor cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube river. Water temperature distributions captured in thermal IR imagery are correlated with meteorological parameters. Additional information regarding flooding events and earthquake risks is considered . During the winter, the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall, there is a larger thermal plume extending 5-6 km far along Danube Black Sea Canal, and the temperature change is about 1.0 oC. Variation of surface water temperature in the thermal plume is analyzed. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Hydrodynamic simulation leads to better understanding of the mechanisms by which waste heat from NPP Cernavoda is dissipated in the environment.

  19. Increase of thermal conductivity of uranium dioxide nuclear fuel pellets with beryllium oxide addition

    International Nuclear Information System (INIS)

    Camarano, D.M.; Mansur, F.A.; Santos, A.M.M. dos; Ferraz, W.B.

    2016-01-01

    The UO_2 fuel is one of the most used nuclear fuel in thermal reactors and has many advantages such as high melting point, chemical compatibility with cladding, etc. However, its thermal conductivity is relatively low, which leads to a premature degradation of the fuel pellets due to a high radial temperature gradient during reactor operation. An alternative to avoid this problem is to increase the thermal conductivity of the fuel pellets, by adding beryllium oxide (BeO). Pellets of UO_2 and UO_2-BeO were obtained from a homogenized mixture of powders of UO_2 and BeO, containing 2% and 3% by weight of BeO and sintering at 1750 °C for 3 h under H_2 atmosphere after uniaxial pressing at 400 MPa. The pellet densities were obtained by xylol penetration-immersion method and the thermal diffusivity, specific heat and thermal conductivity were determined according to ASTM E-1461 at room temperature (25 deg C) and 100 deg C. The thermal diffusivity measurements were carried out employing the laser flash method. The thermal conductivity obtained at 25 deg C showed an increase with the addition of 2% and 3% of BeO corresponding to 19% and 28%, respectively. As for the measurements carried out at 100 deg C, there was an increase in the thermal conductivity for the same BeO contents of 20% and 31%. These values as a percentage of increased conductivity were obtained in relation to the UO_2 pellets. (author)

  20. Intelligent agents: adaptation of autonomous bimodal microsystems

    Science.gov (United States)

    Smith, Patrice; Terry, Theodore B.

    2014-03-01

    Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.

  1. Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu Jun; Ma Hongru; Chen Liewen; Li Baoan

    2008-01-01

    Thermal properties of asymmetric nuclear matter are studied within a self-consistent thermal model using an isospin and momentum-dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, a momentum-independent interaction (MID), and an isoscalar momentum-dependent interaction (eMDYI). In particular, we study the temperature dependence of the isospin-dependent bulk and single-particle properties, the mechanical and chemical instabilities, and liquid-gas phase transition in hot asymmetric nuclear matter. Our results indicate that the temperature dependence of the equation of state and the symmetry energy are not so sensitive to the momentum dependence of the interaction. The symmetry energy at fixed density is found to generally decrease with temperature and for the MDI interaction the decrement is essentially due to the potential part. It is further shown that only the low momentum part of the single-particle potential and the nucleon effective mass increases significantly with temperature for the momentum-dependent interactions. For the MDI interaction, the low momentum part of the symmetry potential is significantly reduced with increasing temperature. For the mechanical and chemical instabilities as well as the liquid-gas phase transition in hot asymmetric nuclear matter, our results indicate that the boundaries of these instabilities and the phase-coexistence region generally shrink with increasing temperature and are sensitive to the density dependence of the symmetry energy and the isospin and momentum dependence of the nuclear interaction, especially at higher temperatures

  2. Certain aspects of the environmental impact of nuclear power engineering and thermal power engineering

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F [AN Belorusskoj SSR, Minsk. Inst. Yadernoj Ehnergetiki

    1979-01-01

    A review is made of the both environmental impact and hazard to man resulting from nuclear power engineering as compared with those of thermal power engineering. At present, in addition to such criteria, as physical-chemical characteristic of energy sources, their efficiency and accessibility for exploitation, new requirements were substantiated in relation to safety of their utilization for environment. So, one of essential problems of nuclear power engineering development consists in assessment and prediction of radioecological consequence. The analysis and operating experience of more than 1000 reactor/years with no accidents and harm for pupulation show, that in respect to impact on environment and man nuclear power engineering is much more safe in comparison with energy sources using tradidional fossile fuel.

  3. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L [ed.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  4. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Abbott, L.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures

  5. Steady-state thermal-hydraulic analysis of the pellet-bed reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Morley, N.J.; Yang, J.Y.

    1992-01-01

    The pellet-bed reactor (PBR) for nuclear thermal propulsion is a hydrogen-cooled, BeO-reflected, fast reactor, consisting of an annular core region filled with randomly packed, spherical fuel pellets. The fuel pellets in the PBR are self-supported, eliminating the need for internal core structure, which simplifies the core design and reduces the size and mass of the reactor. Each spherical fuel pellet is composed of hundreds of fuel microspheres embedded in a zirconium carbide (ZrC) matrix. Each fuel microsphere is composed of a UC-NbC fuel kernel surrounded by two consecutive layers of the NbC and ZrC. Gaseous hydrogen serves both as core coolant and as the propellant for the PBR rocket engine. The cold hydrogen flows axially down the inlet channel situated between the core and the external BeO reflector and radially through the orifices in the cold frit, the core, and the orifices in the hot frit. Finally, the hot hydrogen flows axially out the central channel and exits through converging-diverging nozzle. A thermal-hydraulic analysis of the PBR core was performed with an emphasis on optimizing the size and axial distribution of the orifices in the hot and cold frits to ensure that hot spots would not develop in the core during full-power operation. Also investigated was the validity of the assumptions of neglecting the axial conduction and axial cross flow in the core

  6. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  7. Establishment of International Cooperative Network and Cooperative Research Strategy Between Korea and USA on Nuclear Thermal Hydraulics

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, Chul Hwa; Jeong, Jae Jun; Choi, Ki Yong; Kang, Kyoung Ho

    2004-07-01

    1. Scope and Objectives of the Project - Successful holding of the NURETH-10 - Analysis of the international trends in technology development and applications for nuclear thermal-hydraulics - Establishment of the international cooperative network and cooperative research strategy between Korea and USA on nuclear thermal-hydraulics 2. Research Results - Successful holding of the NURETH-10 - Analysis of the international trends in technology development and applications for nuclear thermal-hydraulics: - Establishment of international cooperative network and cooperative research strategy focused between Korea and USA on nuclear thermal-hydraulics: 3. Application Plan of the Research Results - Utilization as the basic data/information in establishing the domestic R and D directions and the international cooperative research strategy, - Application of the relevant experiences and data bases of NURETH-10 for holding future international conferences, - Promote more effective and productive research cooperation between Korea and USA

  8. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  9. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  10. Uncertainty-driven nuclear data evaluation including thermal (n,α) applied to 59Ni

    Science.gov (United States)

    Helgesson, P.; Sjöstrand, H.; Rochman, D.

    2017-11-01

    This paper presents a novel approach to the evaluation of nuclear data (ND), combining experimental data for thermal cross sections with resonance parameters and nuclear reaction modeling. The method involves sampling of various uncertain parameters, in particular uncertain components in experimental setups, and provides extensive covariance information, including consistent cross-channel correlations over the whole energy spectrum. The method is developed for, and applied to, 59Ni, but may be used as a whole, or in part, for other nuclides. 59Ni is particularly interesting since a substantial amount of 59Ni is produced in thermal nuclear reactors by neutron capture in 58Ni and since it has a non-threshold (n,α) cross section. Therefore, 59Ni gives a very important contribution to the helium production in stainless steel in a thermal reactor. However, current evaluated ND libraries contain old information for 59Ni, without any uncertainty information. The work includes a study of thermal cross section experiments and a novel combination of this experimental information, giving the full multivariate distribution of the thermal cross sections. In particular, the thermal (n,α) cross section is found to be 12.7 ± . 7 b. This is consistent with, but yet different from, current established values. Further, the distribution of thermal cross sections is combined with reported resonance parameters, and with TENDL-2015 data, to provide full random ENDF files; all of this is done in a novel way, keeping uncertainties and correlations in mind. The random files are also condensed into one single ENDF file with covariance information, which is now part of a beta version of JEFF 3.3. Finally, the random ENDF files have been processed and used in an MCNP model to study the helium production in stainless steel. The increase in the (n,α) rate due to 59Ni compared to fresh stainless steel is found to be a factor of 5.2 at a certain time in the reactor vessel, with a relative

  11. Gamma irradiation effects on the thermal, optical and structural properties of Cr-39 nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.; Said, A.F.; Atta, M.R.; EL-Mellegy, W.M.; EL-Meniawi, S.

    2006-01-01

    A study of the effect of gamma irradiation on the thermal, optical and structural properties of CR-39 diglycol carbonate solid state nuclear track detector (SSNTD) has been carried out. Samples from CR-39 polymer were irradiated with gamma doses at levels between 20 and 300 KGy. Non-isothermal studies were carried out using thermo-gravimetry (TG), differential thermo-gravimetry (DTG) and differential thermal analysis (DTA) to obtain the activation energy of decomposition and the transition temperatures for the non-irradiated and irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. The variation of onset temperature of decomposition (To) thermal activation energy of decomposition (Ea) melting temperature (Tm) refractive index (n) and the mass fraction of the amorphous phase with the gamma dose were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via the degradation and cross linking mechanisms. Also, the gamma dose gave an advantage for increasing the correlation between the thermal stability of CR-39 polymer and the bond formation created by the ionizing effect of gamma radiation

  12. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    International Nuclear Information System (INIS)

    Li, Jia; Jiang, Kecheng; Zhang, Xiaokang; Nie, Xingchen; Zhu, Qinjun; Liu, Songlin

    2016-01-01

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  13. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  14. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro, E-mail: duvan.castellanos@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: pedro.rossi@ufabc.edu.br, E-mail: pedro.carajilescov10@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharias, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  15. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    International Nuclear Information System (INIS)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro

    2017-01-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  16. The underground as a storage facility. Modelling of nuclear waste repositories and aquifer thermal energy stores

    International Nuclear Information System (INIS)

    Probert, T.

    1998-06-01

    This thesis, which consists of eleven papers and reports, deals with nuclear waste repositories in solid rock and with aquifer thermal energy storage systems. All these storage systems induce multidimensional, time-variable thermo-hydro-elastic processes in the ground in and around the storage region. The partial differential equations that govern the physical processes are solved analytically in some cases, and in other cases numerical models are developed. Many methods of classical mathematical physics are employed for the solution. The analytical approach provides a deeper physical understanding of the processes and their interactions. At large depths, the salinity of groundwater, and hence its density, often increases downwards. In the first study, the upward buoyancy flow of groundwater in fracture planes due to heat release from the nuclear waste is studied considering the added effect of a salt gradient. The aim of the study is to determine the natural barrier effect caused by the salt. A simple formula for the largest upward displacement from the repository is derived. There may be a strong natural barrier, which is independent of fracture permeabilities. In two papers, the temperature field in rock due to a large rectangular grid of heat-releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. A complete analytical solution is presented. In the next set of papers, the thermoelastic response from the rectangular field of nuclear waste is analysed. Another study concerns the use of heat as a tracer to investigate flow in a fracture plane. Two papers deal with the thermohydraulic evaluations of two aquifer thermal energy storage projects in southern Sweden. Both plants have been successfully simulated using models based on conformal flow and entropy

  17. Bimodal Programming: A Survey of Current Clinical Practice.

    Science.gov (United States)

    Siburt, Hannah W; Holmes, Alice E

    2015-06-01

    The purpose of this study was to determine the current clinical practice in approaches to bimodal programming in the United States. To be specific, if clinicians are recommending bimodal stimulation, who programs the hearing aid in the bimodal condition, and what method is used for programming the hearing aid? An 11-question online survey was created and sent via email to a comprehensive list of cochlear implant programming centers in the United States. The survey was sent to 360 recipients. Respondents in this study represented a diverse group of clinical settings (response rate: 26%). Results indicate little agreement about who programs the hearing aids, when they are programmed, and how they are programmed in the bimodal condition. Analysis of small versus large implant centers indicated small centers are less likely to add a device to the contralateral ear. Although a growing number of cochlear implant recipients choose to wear a hearing aid on the contralateral ear, there is inconsistency in the current clinical approach to bimodal programming. These survey results provide evidence of large variability in the current bimodal programming practices and indicate a need for more structured clinical recommendations and programming approaches.

  18. Anharmonic thermal vibrations of be metal found in the MEM nuclear density map

    International Nuclear Information System (INIS)

    Takata, Masaki; Sakata, Makoto; Larsen, F.K.; Kumazawa, Shintaro; Iversen, B.B.

    1993-01-01

    A direct observation of the thermal vibrations of Be metal was performed by the Maximum Entropy Method (MEM) using neutron single crystal data. In the previous study, the existence of the small but significant cubic anharmonicity of Be has been found by the conventional least squares refinement of the observed structure factors [Larsen, Lehmann and Merisalo (1980) Acta Cryst. A36, 159-163]. In the present study, the same data were used for the MEM analysis which are comprised of 48 reflections up to sinθ/λ = 1.41A -1 in order to obtain the high resolution nuclear density of Be without using any thermal vibrational model. It was directly visible in the MEM map that not only the cubic terms but also quartic anharmonicities exist in the thermal vibrations of Be nuclei. In order to evaluate thermal parameters of Be including anharmonic terms quantitatively, the least squares refinement of the effective one-particle potential (OPP) parameters up to quartic term was carried out by using the MEM nuclear densities around atomic sites as the data set to be fitted. It was found that the present treatment has a great advantage to decide the most appropriate model of OPP by visually comparing the model with MEM density map. As a result of the least squares refinement, the anharmonic thermal parameters are obtained as α 33 = -0.340(5)[eV/A 3 ], α 40 = 0, β 20 = 9.89(1)[eV/A 4 ] and γ 00 = 0. No other anharmonic term was significant. (author)

  19. Studying the processes relating to oxidation of organic substances contained in the coolant of thermal and nuclear power stations

    Science.gov (United States)

    Khodyrev, B. N.; Krichevtsov, A. L.; Sokolyuk, A. A.

    2010-07-01

    A radical-chain mechanism governing thermal-oxidation destruction of organic substances contained in the coolant of thermal and nuclear power stations is considered. Hypotheses on the chemical nature of antioxidation properties of amines are presented. Theoretical conjectures about the fundamental processes through which protective amine films are formed on the surface of metals are suggested.

  20. THE BIMODAL STRUCTURE OF THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. L., E-mail: zldu@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-05-01

    Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.

  1. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Clark, J.S.; Walton, J.T.; Mcguire, M.L.

    1992-07-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines. 11 refs

  2. The analysis of thermal-hydraulic performances of nuclear ship reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Shinshichi; Hamada, Masao

    1975-01-01

    Thermal-hydraulic performances in the core of nuclear ship reactor was analysed by thermal-hydraulic analyser codes, AMRTC and COBRA-11+DNBCAL. This reactor is of a pressurized water type and incorporates the steam generator within the reactor vessel with the rated power of 330 MWt, which is developed by Nuclear Ship Research Panel Seven (NSR-7) in The Shipbuilding Research Association of Japan. Fuel temperature distributions, coolant temperature distributions, void fractions in coolant and minimum burn out ratio etc. were calculated. Results are as follows; a) The maximum temperature of fuel center is 1,472 0 C that corresponds to 53% as small as the melting point (2,800 0 C). b) Subcooled boiling exists in the core and the maximum void fraction is less than 4%. c) The minimum burn out ratio is not less than the minimum allowable limit of 1.25. It was found from the results of analysis that this reactor was able to be operated wide margin with respect to thermal-hydraulic design limits at the rated power. (auth.)

  3. Thermal analysis of the drywell for the Nuclear Material Storage Facility

    International Nuclear Information System (INIS)

    Steinke, R.G.

    1997-01-01

    The Nuclear Materials Storage Facility Renovation Project has a conceptual design for the facility to store nuclear materials in containers inside drywells with passive cooling for long-term storage. The CFX thermal-hydraulic computer program was used to analyze internal heat-transfer processes by conduction, convection, and radiation with natural circulation of air by hydraulic buoyancy with turbulence and thermal stratification (TS) evaluated. A vertical drywell was modeled with 14 containers on support plates at 12-in. intervals. The TS of bay air outside the drywell increased the container maximum temperature by 0.728 F for each 1.0 F of bay-air TS from the bottom to the top of the drywell. The drywell outer-surface peak heat flux was shifted downward because of the effect of bay-air TS. An equivalent model was evaluated by the nodal-network conduction, convection, and radiation heat-transfer computer program (Thermal System Analysis Program) TSAP. The TSAP results are in good agreement with the CFX-model results, with the difference in results understood based on the approximations of each model

  4. Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock

    Science.gov (United States)

    Hadgu, T.; Gomez, S. P.; Matteo, E. N.

    2017-12-01

    Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  5. General theory for thermal pulses of finite amplitude in nuclear shell-burnings

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Fujimoto, M Y

    1978-09-01

    Theory for thermal pulses of nuclear shell-burning is advanced to include the case of finite amplitude. The aims are to predict the progress of thermal pulse quantitatively and to obtain the peak values of the temperature and nuclear energy generation rate without making detailed numerical computation of stellar structure. In order to attain them the physical processes involved in the progress of the pulse are clarified using the concepts of the flatness of the shell source, which destabilizes nuclear burning, and the effect of radiation pressure, which stabilizes it. It is shown that the progress of the pulse can be predicted quantitatively when the pressure and the gravitational potential of the burning shell are specified for the onset stage of the pulse. The pulse height is determined mainly by the initial pressure; the higher initial pressure results in the higher pulse. Mass dependence is also obtained by approximating the gravitational potential by that of white dwarfs. The initial pressure is the quantity which is determined in the course of evolution preceding the pulse. The theory is shown to give a satisfactory agreement with numerical computations for a wide variety of the preceding evolutions, i.e., both for the case of the core in red giant stars and of the accreting white dwarfs.

  6. Effects of Magnetite Aggregate and Steel Powder on Thermal Conductivity and Porosity in Concrete for Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-01-01

    Full Text Available Among many engineering advantages in concrete, low thermal conductivity is an attractive property. Concrete has been widely used for nuclear vessels and plant facilities for its excellent radiation shielding. The heat isolation through low thermal conductivity is actually positive for nuclear power plant concrete; however the property may cause adverse effect when fires and melt-down occur in nuclear vessel since cooling down from outer surface is almost impossible due to very low thermal conductivity. If concrete containing atomic reactor has higher thermal conductivity, the explosion risk of conductive may be partially reduced. This paper presents high thermally conductive concrete development. For the work, magnetite with varying replacements of normal aggregates and steel powder of 1.5% of volume are considered, and the equivalent thermal conductivity is evaluated. Only when the replacement ratio goes up to 30%, thermal conductivity increases rapidly to 2.5 times. Addition of steel powder is evaluated to be effective by 1.08~1.15 times. In order to evaluate the improvement of thermal conductivity, several models like ACI, DEMM, and MEM are studied, and their results are compared with test results. In the present work, the effects of steel powder and magnetite aggregate are studied not only for strength development but also for thermal behavior based on porosity.

  7. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    KAUST Repository

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pö rtner, Hans-Otto; Giomi, Folco

    2016-01-01

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  8. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    KAUST Repository

    Fusi, Marco

    2016-01-13

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism\\'s thermal niche are equivalent to the upper limits of the organism\\'s functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab\\'s aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  9. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  10. Stochastic modelling of fusion-product transport and thermalization with nuclear elastic scattering

    International Nuclear Information System (INIS)

    Deveaux, J.C.

    1983-01-01

    Monte Carlo methods are developed to model fusion-product (fp) transport and thermalization with both Rutherford scattering and nuclear elastic scattering (NES) in high-temperature (T/sub i/, T/sub e-/ > 50 keV), advanced-fuel (e.g. Cat-D, D- 3 He) plasmas. A discrete-event model is used to superimpose NES collisions on a Rutherford scattering model that contains the Spitzer coefficients of drag, velocity diffusion (VD), and pith-angle scattering (PAS). The effects of NES on fp transport and thermalization are investigated for advanced-fuel, Field-Reversed Mirror (FRM) plasmas that have a significant Hamiltonian-canonical angular momentum (H-Ptheta) space loss cone which scales with the characteristic size (S identical with R/sub HV//3p/sub i/) and applied vacuum magnetic field (B 0 )

  11. Review of the nuclear reactor thermal hydraulic research in ocean motions

    International Nuclear Information System (INIS)

    Yan, B.H.

    2017-01-01

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  12. Review of the nuclear reactor thermal hydraulic research in ocean motions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn

    2017-03-15

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  13. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.; Mughabghab, S.F.; Schmidt, E.; Todosow, M.; Parma, E.J.; Ball, R.M.; Hoovler, G.S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors

  14. FLICA-4 (version 1). A computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.; Caruge, D.; Gramont, T. de; Toumi, I.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code, developed at the French Atomic Energy Commission (CEA) for three-dimensional steady-state or transient two-phase flow, and aimed at design and safety thermal analysis of nuclear reactor cores. It is available for various UNIX workstations and CRAY computers under UNICOS.It is based on four balance equations which include three balance equations for the mixture and a mass balance equation for the less concentrated phase which allows for the calculation of non equilibrium flows such as sub-cooled boiling and superheated steam. A drift velocity model takes into account the velocity unbalance between phases. The equations are solved using a finite volume numerical scheme. Typical running time, specific features (coupling with other codes) and auxiliary programs are presented. 1 tab., 9 refs

  15. Development of general-purpose software to analyze the static thermal characteristic of nuclear power plant

    International Nuclear Information System (INIS)

    Nakao, Yoshinobu; Koda, Eiichi; Takahashi, Toru

    2009-01-01

    We have developed the general-purpose software by which static thermal characteristic of the power generation system is analyzed easily. This software has the notable features as follows. It has the new algorithm to solve non-linear simultaneous equations to analyze the static thermal characteristics such as heat and mass balance, efficiencies, etc. of various power generation systems. It has the flexibility for setting calculation conditions. It is able to be executed on the personal computer easily and quickly. We ensured that it is able to construct heat and mass balance diagrams of main steam system of nuclear power plant and calculate the power output and efficiencies of the system. Furthermore, we evaluated various heat recovery measures of steam generator blowdown water and found that this software could be a useful operation aid for planning effective changes in support of power stretch. (author)

  16. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  17. Thermal stresses at nozzles of nuclear steel containments under LOCA-conditions

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Bergmann, A.N.

    1986-01-01

    During a loss of coolant accident (LOCA) of a PWR-nuclear power plant, a considerable heating of the containment atmosphere is expected to occur. Transient thermal stresses will appear at the containment as a consequence of a non-uniform rise of its temperature. Applying computer codes based on the finite element method, dimensionless general thermal stresses at nozzles of spherical steel containment have been calculated, varying the principal geometrical parameters and the Biot number for the containment internal surface. Atmosphere temperature and Biot number are assumed constant after the accident. Several plots of the maximum principal stresses are provided, which constitute general results applicable to stress analysis of any particular containment of this kind. (orig.)

  18. The Choice of thermal reactor systems. A report by the National Nuclear Corporation Limited

    International Nuclear Information System (INIS)

    1977-01-01

    The report to the Secretary of State in Great Britain by the National Nuclear Corporation following their assessment of the three thermal reactor systems, the AGR, PWR and SGHWR type reactors, which was performed in order to assist in the decision on the choice of thermal reactors for the U.K., is in three parts. Part I is an assessment of the three systems. It comprises: a description of the general method of assessment; a commentary in which are summarised discussions on the most important issues influencing reactor choice, i.e. safety, component failure, operational characteristics, development programme, construction programme; implications for the U.K. industry; costs; and reference design of each system. Part II consists of related questions and answers accompanied by commentaries on public acceptability and views from industry. Part III contains some conclusions including an analysis on the implications of the choices open and a summary of the main features of the assessment. (U.K.)

  19. Thermal-hydraulic software development for nuclear waste transportation cask design and analysis

    International Nuclear Information System (INIS)

    Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.

    1991-01-01

    This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs

  20. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    Science.gov (United States)

    Selcow, Elizabeth C.; Cerbone, Ralph J.; Ludewig, Hans; Mughabghab, Said F.; Schmidt, Eldon; Todosow, Michael; Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors.

  1. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors

    International Nuclear Information System (INIS)

    Cabrero, J.

    2009-11-01

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  2. Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

    Directory of Open Access Journals (Sweden)

    Hyung Gyun Noh

    2017-04-01

    Full Text Available The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  3. Effective thermal conductivity and diffusivity of containment wall for nuclear power plant OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun; Park, Hyun Sun [Div. of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Mechanical Engineering Div., Kunsan National University (KNU), Gunsan (Korea, Republic of)

    2017-04-15

    The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  4. Mathematical modelling of thermal-plume interaction at Waterford Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsai, S.Y.H.

    1981-01-01

    The Waldrop plume model was used to analyze the mixing and interaction of thermal effluents in the Mississippi River resulting from heated-water discharges from the Waterford Nuclear Power Station Unit 3 and from two nearby fossil-fueled power stations. The computer program of the model was modified and expanded to accommodate the multiple intake and discharge boundary conditions at the Waterford site. Numerical results of thermal-plume temperatures for individual and combined operation of the three power stations were obtained for typical low river flow (200,000 cfs) and maximum station operating conditions. The predicted temperature distributions indicated that the surface jet discharge from Waterford Unit 3 would interact with the thermal plumes produced by the two fossil-fueled stations. The results also showed that heat recirculation between the discharge of an upstream fossil-fueled plant and the intake of Waterford Unit 3 is to be expected. However, the resulting combined temperature distributions were found to be well within the thermal standards established by the state of Louisiana

  5. The development of monitoring techniques for thermal stratification in nuclear plant piping

    International Nuclear Information System (INIS)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho.

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs

  6. Thermal hydraulic aspects of uncertainty in power measurement of nuclear reactors

    International Nuclear Information System (INIS)

    Gupta, S.K.; Kumar, Rajesh; Gaikwad, A.J.; Majumdar, P.; Agrawal, R.A.

    2004-01-01

    Power measurement in Nuclear Reactors is carried out through in-core and ex-core neutron monitors which are continuously calibrated against thermal power. In Indian Pressurized Heavy Water Reactors (220 MWe) the temperature difference across steam generator hot and cold legs is taken to be a measure of thermal power as the flow through the primary heat transport system is assumed to be constant through out is operation. Gross flow is not measured directly. However, the flow depends on the characteristics of the primary heat transport pumps, which are centrifugal type and are affected by the grid frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable high grid frequency. This uncertainty is in addition to instrument inaccuracy and should be accounted for in safety analysis. In some reactors thermal power is calculated from stem flow rate and pressure, here the location of steam flow measurement is important to avoid leakage related error in thermal power. Neutron absorption cross section in the power measurement instruments and the power production in the fuel varies with neutron energy levels, these aspects are also discussed in the paper. (author)

  7. The development of monitoring techniques for thermal stratification in nuclear plant piping

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs.

  8. Thermal Lens Spectroscopy as a 'new' analytical tool for actinide determination in nuclear reprocessing processes

    International Nuclear Information System (INIS)

    Canto, Fabrice; Couston, Laurent; Magnaldo, Alastair; Broquin, Jean-Emmanuel; Signoret, Philippe

    2008-01-01

    Thermal Lens Spectroscopy (TLS) consists of measuring the effects induced by the relaxation of molecules excited by photons. Twenty years ago, the Cea already worked on TLS. Technologic reasons impeded. But, needs in sensitive analytical methods coupled with very low sample volumes (for example, traces of Np in the COEX TM process) and also the reduction of the nuclear wastes encourage us to revisit this method thanks to the improvement of optoelectronic technologies. We can also imagine coupling TLS with micro-fluidic technologies, decreasing significantly the experiments cost. Generally two laser beams are used for TLS: one for the selective excitation by molecular absorption (inducing the thermal lens) and one for probing the thermal lens. They can be coupled with different geometries, collinear or perpendicular, depending on the application and on the laser mode. Also, many possibilities of measurement have been studied to detect the thermal lens signal: interferometry, direct intensities variations, deflection etc... In this paper, one geometrical configuration and two measurements have been theoretically evaluated. For a single photodiode detection (z-scan) the limit of detection is calculated to be near 5*10 -6 mol*L -1 for Np(IV) in dodecane. (authors)

  9. Hydrothermal modeling for the efficient design of thermal loading in a nuclear waste repository

    International Nuclear Information System (INIS)

    Cho, Won-Jin; Kim, Jin-Seop; Choi, Heui-Joo

    2014-01-01

    Highlights: • Three-dimensional hydrothermal modeling for HLW repository is performed. • The model reduces the peak temperature in the repository by about 10 °C. • Decreasing the tunnel distance is more efficient to improve the disposal density. • The EDZ surrounding the deposition hole increases the peak temperature. • The peak temperature for the double-layer repository remains below the limit. - Abstract: The thermal analysis of a geological repository for nuclear waste using the three-dimensional hydrothermal model is performed. The hydrothermal model reduces the maximum peak temperature in the repository by about 10 °C compared to the heat conduction model with constant thermal conductivities. Decreasing the tunnel distance is more efficient than decreasing the deposition hole spacing to improve the disposal density for a given thermal load. The annular excavation damaged zone surrounding the deposition hole has a considerable effect on the peak temperature. The possibility of double-layer repository is analyzed from the viewpoint of the thermal constraints of the repository. The maximum peak temperature for the double-layer repository is slightly higher than that for the single-layer repository, but remains below the temperature limit

  10. A numerical simulation package for analysis of neutronics and thermal fluids of space nuclear power and propulsion systems

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A system of computer codes for engineering simulation and in-depth analysis of nuclear and thermal fluid design of nuclear thermal rockets is developed. The computational system includes a neutronic solver package, a thermal fluid solver package and a propellant and materials property package. The Rocket Engine Transient Simulation (ROCETS) system code is incorporated with computational modules specific to nuclear powered engines. ROCETS features a component based performance architecture that interfaces component modules into the user designed configuration, interprets user commands, creates an executable FORTRAN computer program, and executes the program to provide output to the user. Basic design features of the Pratt ampersand Whitney XNR2000 nuclear rocket concept and its operational performance are analyzed and simulated

  11. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  12. Properties of gallium arsenide alloyed with Ge and Se by irradiation in nuclear reactor thermal column

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskij, V.B.; Tokarevskij, V.V.; Kharchenko, V.A.; Ievlev, S.M.

    1985-01-01

    Dependences of electrophysical properties as well as lattice unit spacing and density of nuclear-alloyed gallium arsenide on the fluence of reactor neutrons and heat treatment are investigated. Neutron radiation of gallium arsenide with different energy spectra is shown to differently affect material properties. Fast neutrons make the main contribution to defect formation. Concentration of compensating acceptor defects formed under GaAs radiation in a thermal column practically equals concentration of introduced donor impurities. Radiation defects of acceptor type are not annealed in the material completely even at 900-1000 deg C

  13. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics and Thermal-Hydraulics

    International Nuclear Information System (INIS)

    Anderson, Mark; Corradini, M.L.; Sridharan, K.; Wilson, P.; Cho, D.; Kim, T.K.; Lomperski, S.

    2004-01-01

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers

  14. Validation studies of thermal-hydraulic code for safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Haapalehto, T.

    1995-01-01

    The thesis gives an overview of the validation process for thermal-hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. Large part of the work has been performed in cooperation with the CATHARE-team in Grenoble, France. (41 refs., 11 figs., 8 tabs.)

  15. Experience gained in titanium uses for thermal and nuclear power plants of Electricite de France

    International Nuclear Information System (INIS)

    Boyer, R.

    1982-01-01

    Thermal and nuclear power plants are using titanium for tube bundles in steam turbine condensers and water-water heat exchangers, for electrodes in electrolysis cells used in cooling water treatment and for cathodic protection. Titanium is very satisfactory due to good mechanical properties, excellent corrosion resistance (chemicals, sea water and ammoniac) and erosion by sea water or steam. Unfortunately titanium is rare, expensive and France is strongly dependent of foreign countries. For some uses it could be replaced by ferritic stainless steels, testing will take several years before a definitive conclusion [fr

  16. Design of particle bed reactors for the space nuclear thermal propulsion program

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G.

    1996-01-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author)

  17. Online ICPMS detection of the thermal release of fission products from nuclear fuel samples

    International Nuclear Information System (INIS)

    Guenther-Leopold, I.; Svedkauskaite-Le Gore, J.; Kivel, N.

    2009-01-01

    Full text: The release of volatile and semi-volatile fission products (like Cs, Tc, Mo etc.) from spent nuclear fuel by thermal and thermochemical treatment (oxidative or reductive conditions) as a head-end step for advanced reprocessing scenarios is studied in the Hot Laboratory of the Paul Scherrer Institut. For this purpose, a heated sampling cell online connected to an ICPMS (Element 2, Thermo Fisher Scientific) was designed and tested on simulated fuel samples up to 650 o C. The results of this study as well as technical perspectives for heating experiments up to 2000 o C will be presented. (author)

  18. Recent advances in modeling and validation of nuclear thermal-hydraulics applications with NEPTUNE CFD - 15471

    International Nuclear Information System (INIS)

    Guingo, M.; Baudry, C.; Hassanaly, M.; Lavieville, J.; Mechitouna, N.; Merigoux, N.; Mimouni, S.; Bestion, D.; Coste, P.; Morel, C.

    2015-01-01

    NEPTUNE CFD is a Computational Multi-(Fluid) Dynamics code dedicated to the simulation of multiphase flows, primarily targeting nuclear thermo-hydraulics applications, such as the departure from nuclear boiling (DNB) or the two-phase Pressurized Thermal Shock (PTS). It is co-developed within the joint research/development project NEPTUNE (AREVA, CEA, EDF, IRSN) since 2001. Over the years, to address the aforementioned applications, dedicated physical models and numerical methods have been developed and implemented in the code, including specific sets of models for turbulent boiling flows and two-phase non-adiabatic stratified flows. This paper aims at summarizing the current main modeling capabilities of the code, and gives an overview of the associated validation database. A brief summary of emerging applications of the code, such as containment simulation during a potential severe accident or in-vessel retention, is also provided. (authors)

  19. Uncertainty propagation in a 3-D thermal code for performance assessment of a nuclear waste disposal

    International Nuclear Information System (INIS)

    Dutfoy, A.; Ritz, J.B.

    2001-01-01

    Given the very large time scale involved, the performance assessment of a nuclear waste repository requires numerical modelling. Because we are uncertain of the exact value of the input parameters, we have to analyse the impact of these uncertainties on the outcome of the physical models. The EDF Division Research and Development has set a reliability method to propagate these uncertainties or variability through models which requires much less physical simulations than the usual simulation methods. We apply the reliability method MEFISTO to a base case modelling the heat transfers in a virtual disposal in the future site of the French underground research laboratory, in the East of France. This study is led in collaboration with ANDRA which is the French Nuclear Waste Management Agency. With this exercise, we want to evaluate the thermal behaviour of a concept related to the variation of physical parameters and their uncertainty. (author)

  20. A model selection support system for numerical simulations of nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1990-01-01

    In order to execute efficiently a dynamic simulation of a large-scaled engineering system such as a nuclear power plant, it is necessary to develop intelligent simulation support system for all phases of the simulation. This study is concerned with the intelligent support for the program development phase and is engaged in the adequate model selection support method by applying AI (Artificial Intelligence) techniques to execute a simulation consistent with its purpose and conditions. A proto-type expert system to support the model selection for numerical simulations of nuclear thermal-hydraulics in the case of cold leg small break loss-of-coolant accident of PWR plant is now under development on a personal computer. The steps to support the selection of both fluid model and constitutive equations for the drift flux model have been developed. Several cases of model selection were carried out and reasonable model selection results were obtained. (author)

  1. Merging history of three bimodal clusters

    Science.gov (United States)

    Maurogordato, S.; Sauvageot, J. L.; Bourdin, H.; Cappi, A.; Benoist, C.; Ferrari, C.; Mars, G.; Houairi, K.

    2011-01-01

    We present a combined X-ray and optical analysis of three bimodal galaxy clusters selected as merging candidates at z ~ 0.1. These targets are part of MUSIC (MUlti-Wavelength Sample of Interacting Clusters), which is a general project designed to study the physics of merging clusters by means of multi-wavelength observations. Observations include spectro-imaging with XMM-Newton EPIC camera, multi-object spectroscopy (260 new redshifts), and wide-field imaging at the ESO 3.6 m and 2.2 m telescopes. We build a global picture of these clusters using X-ray luminosity and temperature maps together with galaxy density and velocity distributions. Idealized numerical simulations were used to constrain the merging scenario for each system. We show that A2933 is very likely an equal-mass advanced pre-merger ~200 Myr before the core collapse, while A2440 and A2384 are post-merger systems (~450 Myr and ~1.5 Gyr after core collapse, respectively). In the case of A2384, we detect a spectacular filament of galaxies and gas spreading over more than 1 h-1 Mpc, which we infer to have been stripped during the previous collision. The analysis of the MUSIC sample allows us to outline some general properties of merging clusters: a strong luminosity segregation of galaxies in recent post-mergers; the existence of preferential axes - corresponding to the merging directions - along which the BCGs and structures on various scales are aligned; the concomitance, in most major merger cases, of secondary merging or accretion events, with groups infalling onto the main cluster, and in some cases the evidence of previous merging episodes in one of the main components. These results are in good agreement with the hierarchical scenario of structure formation, in which clusters are expected to form by successive merging events, and matter is accreted along large-scale filaments. Based on data obtained with the European Southern Observatory, Chile (programs 072.A-0595, 075.A-0264, and 079.A-0425

  2. Diagnosis of Thermal Efficiency of Nuclear Power Plants Using Optical Torque Sensors

    International Nuclear Information System (INIS)

    Shuichi Umezawa; Jun Adachi

    2006-01-01

    A new optical torque measuring method was applied to diagnosis of thermal efficiency of nuclear power plants. The sensor allows torque deformation of the rotor caused by power transmission to be measured without contact. Semiconductor laser beams and small pieces of stainless reflector that have bar-code patterns are employed. The intensity of the reflected laser beam is measured and then input into a computer through an APD and an A/D converter having high frequency sampling rates. The correlation analysis technique can translate these data into the torque deformation angle. This angle allows us to obtain the turbine output along with the torsional rigidity and the rotating speed of the rotor. The sensor was applied to a nuclear plant of Tokyo Electric Power Company, TEPCO, following its application success to the early combined cycle plants and the advanced combined cycle plants of TEPCO. As the turbine rotor of the nuclear power plant is less exposed than that of the combined cycle plants, the measurement position is confined to a narrow gap. In order to overcome the difficulty in installation, the shape of the sensor is modified to be long and thin. Sensor performance of the nuclear power plant was inspected over a year. The value of the torsional rigidity was analyzed by the finite element method at first. Accuracy was improved by correcting the torsional rigidity so that the value was consistent with the generator output. As a result, it is considered that the sensor performance has reached a practical use level. (authors)

  3. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dolbow, John E. [Duke Univ., Durham, NC (United States); Hales, Jason D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  4. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    International Nuclear Information System (INIS)

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  5. The promise and challenges of cermet fueled nuclear thermal propulsion reactors

    International Nuclear Information System (INIS)

    Brengle, R.G.; Harty, R.B.; Bhattacharyya, S.K.

    1993-06-01

    The use of cermet fuels in nuclear thermal propulsion systems was examined and the characteristics of systems using these fuel forms is discussed in terms of current mission and safety requirements. For use at high temperatures cermet fueled reactors utilize ceramic fuels with refractory metals as the matrix material. Cermet fueled reactors tend to be heavy when compared to concepts that utilize graphite as the fuel matrix because of the high density of the refractory metal matrix which makes up 20-40 percent of the total volume. On the positive side the metal matrix is strong and more resistant to loads from either the launch or flow induced vibration. The compatibility of the tungsten cermet with hydrogen is excellent and lifetimes of several hours is certainly achievable. Probably the biggest drawback to cermet nuclear thermal propulsion concepts is that the amount of actual data to support the theoretical conclusions is small. In fact there is no data under representative conditions of temperature, propellant and flux for the required fuel burnup. Although cermet systems appear to be attractive, the lack of fuel data at representative conditions does not allow reliable comparisons of cermet systems to systems where fuel data is available. 10 refs

  6. Thermal-Hydraulic Sensitivity Study of Intermediate Loop Parameters for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwa; Lee, Heung Nae; Park, Jea Ho [KONES Corp., Seoul (Korea, Republic of); Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Co., Seoul (Korea, Republic of)

    2016-10-15

    The heat generated from the VHTR is transferred to the intermediate loop through Intermediate Heat Exchanger (IHX). It is further passed on to the Sulfur-Iodine (SI) hydrogen production system (HPS) through Process Heat Exchanger (PHX). The IL provides the safety distance between the VHTR and HPS. Since the IL performance affects the overall nuclear HPS efficiency, it is required to optimize its design and operation parameters. In this study, the thermal-hydraulic sensitivity of IL parameters with various coolant options has been examined by using MARS-GCR code, which was already applied for the case of steam generator. Sensitivity study of the IL and PHX parameters has been carried out based on their thermal-hydraulic performance. Several parameters for design and operation, such as the pipe diameter, safety distance and surface area, are considered for different coolant options, He, CO{sub 2} and He-CO{sub 2} (2:8). It was found that the circulator work is the major factor affecting on the overall nuclear hydrogen production system efficiency. Circulator work increases with the safety distance, and decreases with the operation pressure and loop pipe diameter. Sensitivity results obtained from this study will contribute to the optimization of the IL design and operation parameters and the optimal coolant selection.

  7. Nuclear thermal source transfer unit, post-blast soil sample drying system

    International Nuclear Information System (INIS)

    Wiser, Ralph S.; Valencia, Matthew J

    2017-01-01

    Los Alamos National Laboratory states that its mission is ''To solve national security challenges through scientific excellence.'' The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in tool design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.

  8. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, S. H.; Suh, K. Y. [Seoul National University, Seoul (Korea, Republic of); Kang, S. G. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of)

    2008-10-15

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H{sub 2}) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I{sub sp}) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H{sub 2}/O{sub 2} rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance.

  9. Nuclear thermal source transfer unit, post-blast soil sample drying system

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ralph S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valencia, Matthew J [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-03

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in tool design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.

  10. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vishal Patel

    2015-02-01

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predicted carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.

  11. Valves for condenser-cooling-water circulating piping in thermal power station and nuclear power station

    International Nuclear Information System (INIS)

    Kondo, Sumio

    1977-01-01

    Sea water is mostly used as condenser cooling water in thermal and nuclear power stations in Japan. The quantity of cooling water is 6 to 7 t/sec per 100,000 kW output in nuclear power stations, and 3 to 4 t/sec in thermal power stations. The pipe diameter is 900 to 2,700 mm for the power output of 75,000 to 1,100,000 kW. The valves used are mostly butterfly valves, and the reliability, economy and maintainability must be examined sufficiently because of their important role. The construction, number and arrangement of the valves around a condenser are different according to the types of a turbine and the condenser and reverse flow washing method. Three types are illustrated. The valves for sea water are subjected to the electrochemical corrosion due to sea water, the local corrosion due to stagnant water, the fouling by marine organisms, the cavitation due to valve operation, and the erosion by earth and sand. The fundamental construction, use and features of butterfly valves are described. The cases of the failure and repair of the valves after their delivery are shown, and they are the corrosion of valve bodies and valve seats, and the separation of coating and lining. The newly developed butterfly valve with overall water-tight rubber lining is introduced. (Kako, I.)

  12. Validation experiments of nuclear characteristics of the fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Pesic, M.; Zavaljevski, N.; Marinkovic, P.; Stefanovis, D.; Nikolic, D.; Avdic, S.

    1992-01-01

    In 1988/90 a coupled fast-thermal system HERBE at RB reactor, based on similar facilities, is designed and realized. Fast core of HERBE is built of natural U fuel in RB reactor center surrounded by the neutron filter and neutron converter located in an independent Al tank. Fast zone is surrounded by thermal neutron core driver. Designed nuclear characteristics of HERBE core are validated in the experiments described in the paper. HERBE cell parameters were calculated with developed computer codes: VESNA and DENEB. HERBE system criticality calculation are performed with 4G 2D RZ computer codes GALER and TWENTY GRAND, 1D multi-group AVERY code and 3D XYZ few-group TRITON computer code. The experiments for determination of critical level, dρ/dH, and reactivity of safety rods are accomplished in order to validate calculation results. Specific safety experiment is performed in aim to determine reactivity of flooded fast zone in possible accident. A very good agreements with calculation results are obtained and the validation procedures are presented. It is expected that HERBE will offer qualitative new opportunities for work with fast neutrons at RB reactor including nuclear data determination. (author)

  13. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  14. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Éloïse C Déaux

    Full Text Available Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual or bimodal (audio-visual stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

  15. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence

    2014-01-01

    The existence of short-chain domains in heterogeneous bimodal PDMS networks has been confirmed visually, for the first time, through confocal fluorescence microscopy. The networks were prepared using a controlled reaction scheme where short PDMS chains were reacted below the gelation point...... bimodal networks with short-chain domains within a long-chain network. The average sizes of the short-chain domains were found to vary from 2.1 to 5.7 mm depending on the short-chain content. The visualised network structure could be correlated thereafter to the elastic properties, which were determined...... by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  16. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    Science.gov (United States)

    Déaux, Éloïse C; Clarke, Jennifer A; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

  17. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    Science.gov (United States)

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  18. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    Directory of Open Access Journals (Sweden)

    Alex Theodosiou

    Full Text Available This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF. Particulate samples of Magnox Reactor Pile Grade-A (PGA graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  19. Three-dimensional FE analysis of the thermal-mechanical behaviors in the nuclear fuel rods

    International Nuclear Information System (INIS)

    Jiang Yijie; Cui Yi; Huo Yongzhong; Ding Shurong

    2011-01-01

    Highlights: → We establish three-dimensional finite element models for nuclear fuel rods. → The thermal-mechanical behaviors at the initial stage of burnup are obtained. → Several parameters on the in-pile performances are investigated. → The parameters have remarkable effects on the in-pile behaviors. → This study lays a foundation for optimal design and irradiation safety. - Abstract: In order to implement numerical simulation of the thermal-mechanical behaviors in the nuclear fuel rods, a three-dimensional finite element model is established. The thermal-mechanical behaviors at the initial stage of burnup in both the pellet and the cladding are obtained. Comparison of the obtained numerical results with those from experiments validates the developed finite element model. The effects of the constraint conditions, several operation and structural parameters on the thermal-mechanical performances of the fuel rod are investigated. The research results indicate that: (1) with increasing the heat generation rates from 0.15 to 0.6 W/mm 3 , the maximum temperature within the pellet increases by 99.3% and the maximum radial displacement at the outer surface of the pellet increases by 94.3%. And the maximum Mises stresses in the cladding all increase; while the maximum values of the first principal stresses within the pellet decrease as a whole; (2) with increasing the heat transfer coefficients between the cladding and the coolant, the internal temperatures reduce and the temperature gradient remains similar; when the heat transfer coefficient is lower than a critical value, the temperature change is sensitive to the heat transfer coefficient. The maximum temperature increases only 7.13% when h changes from 0.5 W/mm 2 K to 0.01 W/mm 2 K, while increases up to 54.7% when h decreases from 0.01 W/mm 2 K to 0.005 W/mm 2 K; (3) the initial gap sizes between the pellet and the cladding significantly affect the thermal-mechanical behaviors in the fuel rod; when the

  20. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  1. Thermophillic and thermotolerant fungi isolated from the thermal effluent of nuclear power generating reactors

    International Nuclear Information System (INIS)

    Rippon, J.W.; Gerhold, R.; Heath, M.

    1980-01-01

    Over a period of a year, samples of water, foam, microbial mat, soil and air were obtained from areas associated with the cooling canal of a nuclear power station. The seventeen sample sites included water in the cooling canal that was thermally enriched and soil and water adjacent to, up-stream, downstream and at a distance from the generator. Air samples were taken at the plant and at various disstances from the plant. Fifty-two species of thermotolerant and thermophilic fungi were isolated. Of these, eleven species are grouped as opportunistic Mucorales or opportunistic Aspergillus sp. One veterinary pathogen was also isolated (Dactylaria gallopara). The opportunistic/pathogenic fungi were found primarily in the intake bay, the discharge bay and the cooling canal. Smaller numbers were obtained at both upstream and downstream locations. Soil samples near the cooling canal reflected an enrichment of thermophilous organisms, the previously mentioned opportunistic Mucorales and Aspergillus spp. Their numbers were found to be greater than that usually encountered in a mesophilic environment. However, air and soil samples taken at various distances from the power station indicated no greater abundance of these thermophilous fungi than would be expected from a thermal enriched environment. Our results indicate that there was no significant dissemination of thermophilous fungi from the thermal enriched effluents to the adjacent environment. These findings are consistent with the results of other investigators. (orig.)

  2. FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties

  3. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  4. Preliminary study on acceptability of scope of thermal discharge mixing zone for nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongye; Yang Yang; Wang Liang; Chen Xiaoqiu; Liu Senlin

    2012-01-01

    Based on the situation that the existing domestic temperature control standards are not performable, the preliminary study on the acceptability of the mixing zone scope of thermal discharge for nuclear power plant was conducted in this paper, taking a coastal power station SNP as a case. The following preliminary conclusions could be drawn from the results of cluster analysis of the SNP site under different results of mathematical modeling and physical model test: 1) The influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable under SNP-1 (Unit 1 and 2) operating condition; 2) the influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable in spring under SNP-1 (Unit 1 and 2) and SNP-2 (Unit 3 and 4) operating condition, while the influence intensity of ecological function of the SNP site seawater is large and the scope of mixing zone is unacceptable in autumn under the same operating condition. (authors)

  5. Thermal aspects of mixed oxide fuel in application to supercritical water-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grande, L.; Peiman, W.; Rodriguez-Prado, A.; Villamere, B.; Mikhael, S.; Allison, L.; Pioro, I., E-mail: lisa.grande@mycampus.uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)

    2010-07-01

    SuperCritical Water-cooled nuclear Reactors (SCWRs) are a renewed technology being developed as one of the Generation IV reactor concepts. This reactor type uses a light water coolant at temperatures and pressures above its critical point. These elevated operating conditions will improve Nuclear Power Plant (NPP) thermal efficiencies by 10 - 15% compared to those of current NPPs. Also, SCWRs will have the ability to utilize a direct cycle, thus decreasing NPP capital and operational costs. The SCWR core has 2 configurations: 1) Pressure Vessel (PV) -type enclosing a fuel assembly and 2) Pressure Tube (PT) -type consisting of individual pressurized channels containing fuel bundles. Canada and Russia are developing PT-type SCWRs. In particular, the Canadian SCWR reactor has an output of 1200 MW{sub el} and will operate at a pressure of 25 MPa with inlet and outlet fuel-channel temperatures of 350 and 625°C, respectively. These extreme operating conditions require alternative fuels and materials to be investigated. Current CANadian Deuterium Uranium (CANDU) nuclear reactor fuel-channel design is based on the use of uranium dioxide (UO{sub 2}) fuel; zirconium alloy sheath (clad) bundle, pressure and calandria tubes. Alternative fuels should be considered to supplement depleting world uranium reserves. This paper studies general thermal aspects of using Mixed OXide (MOX) fuel in an Inconel-600 sheath in a generic PT-type SCWR. The bulk fluid, sheath and fuel centerline temperatures along with the Heat Transfer Coefficient (HTC) profiles were calculated at uniform and non-uniform Axial Heat Flux Profiles (AHFPs). (author)

  6. A Novel Method To On-Line Monitor Reactor Nuclear Power And In-Core Thermal Environments

    International Nuclear Information System (INIS)

    Liu, Hanying; Miller, Don W.; Li, Dongxu; Radcliff, Thomas D.

    2002-01-01

    For current nuclear power plants, nuclear power can not be directly measured and in-core fuel thermal environments can not be monitored due to the unavailability of an appropriate measurement technology and the inaccessibility of the fuel. If the nuclear deposited power and the in-core thermal conditions (i.e. fuel or coolant temperature and heat transfer coefficient) can be monitored in-situ, then it would play a valuable and critical role in increasing nuclear power, predicting abnormal reactor operation, improving core physical models and reducing core thermal margin so as to implement higher fuel burn-up. Furthermore, the management of core thermal margin and fuel operation may be easier during reactor operation, post-accident or spent fuel storage. On the other hand, for some advanced Generation IV reactors, the sealed and long-lived reactor core design challenges traditional measurement techniques while conventional ex-core detectors and current in-core detectors can not monitor details of the in-core fuel conditions. A method is introduced in this paper that responds to the challenge to measure nuclear power and to monitor the in-core thermal environments, for example, local fuel pin or coolant heat convection coefficient and temperature. In summary, the method, which has been designed for online in-core measurement and surveillance, will be beneficial to advanced plant safety, efficiency and economics by decreasing thermal margin or increasing nuclear power. The method was originally developed for a constant temperature power sensor (CTPS). The CTPS is undergoing design and development for an advanced reactor core to measure in-core nuclear power in measurement mode and to monitor thermal environments in compensation mode. The sensor dynamics was analyzed in compensation mode to determine the environmental temperature and the heat transfer coefficient. Previous research demonstrated that a first order dynamic model is not sufficient to simulate sensor

  7. Bimodal SLD Ice Accretion on a NACA 0012 Airfoil Model

    Science.gov (United States)

    Potapczuk, Mark; Tsao, Jen-Ching; King-Steen, Laura

    2016-01-01

    This presentation describes the results of ice accretion measurements on a NACA 0012 airfoil model, from the NASA Icing Research Tunnel, using an icing cloud composed of a bimodal distribution of Supercooled Large Droplets. The data consists of photographs, laser scans of the ice surface, and measurements of the mass of ice for each icing condition. The results of ice shapes accumulated as a result of exposure to an icing cloud with a bimodal droplet distribution were compared to the ice shapes resulting from an equivalent cloud composed of a droplet distribution with a standard bell curve shape.

  8. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  9. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  10. Comparison of the Thermal Response of Two Calorimetric Cells Dedicated to Nuclear Heating Measurements during Calibration

    International Nuclear Information System (INIS)

    Brun, J.; Reynard, C.; De-Vita, C.; Carette, M.; Muraglia, M.; Lyoussi, A.; Fourmentel, D.; Guimbal, P.; Villard, J-F.

    2013-06-01

    Nuclear heating is a key parameter which contributes to the thermal design and the quality of in-pile experiments performed in Material Testing Reactors (MTRs) for the study of nuclear materials and fuels under irradiation. Nuclear heating is typically measured in MTRs by radiometric calorimeters. However this kind of sensor has to be suited and improved in perspective of the new experimental conditions inside the channels of Jules Horowitz Reactor (JHR). In this paper, we study the responses of two non adiabatic differential calorimeter cells having the same geometric design, but different dimensions. These experimental works are carried out during a preliminary out-of-pile calibration operating procedure of these sensors which consists in simulating the sample heating by Joule effect. The influence of the imposed electrical power and of the forced cooling flow is determined on the sensor calibration curves. A more sensitive sensor leads to a quadratic calibration curve. This behavior difference of the two calorimetric configurations is explained by means of temperature and heat flux measurements performed with a new instrumented jacket. (authors)

  11. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rader, Jordan D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examination facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.

  12. Development of RETRAN-03/MOV code for thermal-hydraulic analysis of nuclear reactor under moving conditions

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Park, Goon Cherl

    1996-01-01

    Nuclear ship reactors have several; features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been performed under rolling,heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removed to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions. 7 refs., 11 figs. (author)

  13. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-12-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power

  14. Contribution to the study of thermal-hydraulic problems in nuclear reactors

    International Nuclear Information System (INIS)

    Cognet, G.

    1998-01-01

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in 'in-situ' thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  15. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  16. Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2014-12-15

    As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  17. Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Hyeong Min; Heo, Gyun Young; Na, Man Gyun

    2014-01-01

    As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  18. Development of thermal scanning probe microscopy for the determination of thin films thermal conductivity: application to ceramic materials for nuclear industry

    International Nuclear Information System (INIS)

    David, L.

    2006-10-01

    Since the 1980's, various thermal metrologies have been developed to understand and characterize the phenomena of transport of thermal energy at microscopic and submicroscopic scales. Thermal Scanning Probe Microscopy (SThM) is promising. Based on the analysis of the thermal interaction between an heated probe and a sample, it permits to probe the matter at the level of micrometric size in volumes. Performed in the framework of the development of this technique, this work more particularly relates to the study of thin films thermal conductivity. We propose a new modelling of the prediction of measurement with SThM. This model allows not only the calibration of the method for the measurement of bulk material thermal conductivity but also to specify and to better describe the probe - sample thermal coupling and to estimate, from its inversion, thin films thermal conductivity. This new approach of measurement has allowed the determination of the thermal conductivity of micrometric and sub-micrometric thicknesses of meso-porous silicon thin film in particular. Our estimates for the micrometric thicknesses are in agreement with those obtained by the use of Raman spectrometry. For the lower thicknesses of film, we give new data. Our model has, moreover, allowed a better definition of the in-depth resolution of the apparatus. This one is strongly linked to the sensitivity of SThM and strongly depends on the probe-sample thermal coupling area and on the geometry of the probe used. We also developed the technique by the vacuum setting of SThM. Our first results under this environment of measurement are encouraging and validate the description of the coupling used in our model. Our method was applied to the study of ceramics (SiC, TiN, TiC and ZrC) under consideration in the composition of future nuclear fuels. Because of the limitations of SThM in terms of sensitivity to thermal conductivity and in-depth resolution, measurements were also undertaken with a modulated thermo

  19. Nuclear future: thinking for building. Proceedings of the 5. Brazilian national meeting on nuclear applications; 8. General congress on nuclear energy; 12. Brazilian national meeting on reactor physics and thermal hydraulics

    International Nuclear Information System (INIS)

    2000-01-01

    These proceedings, for the first time, present jointly the 12. Brazilian national meeting on reactor physics and thermal hydraulics (12. ENFIR), the 8. General congress on nuclear energy (8. CGEN), and the 5. Brazilian national meeting on nuclear applications (5. ENAN). The main theme of discussion was: 'Nuclear Future: thinking for building'. The papers have analysed the progresses of peaceful utilization of nuclear technology and its forecasting for the beginning of the new millennium. The construction of Angra-3 nuclear power plant have been discussed

  20. Nuclear fuel element design and thermal-hydraulic analysis of Wolsung-1, 600 MWe CANDU-PHWR (Part II)

    International Nuclear Information System (INIS)

    Suk, H.C; Lee, J.C.; Suh, K.S.; Yuk, K.E.; Whang, W.; Park, J.S.; Eim, J.S.; Bang, K.H.; Eim, M.S.; Rim, C.S.

    1982-01-01

    The main objective of the present thermal hydraulic analysis is to determine the thermal hydraulic characteristics of Wolsung-1 600 MWe CANDU-PHW reactor under normal operation. This is to verify and expedite the development of the nuclear fuel design and fabrication as well as the management. The computer program package developed for the stated objective are DOD81, CANREPP, PLOC81 and COBRA-CANDU. (Author)

  1. Thermal analysis of the modified Hallum Nuclear Power Facility cask using experimentally obtained thermal boundary conditions corresponding to an engulfing open pool fire

    International Nuclear Information System (INIS)

    Longenbaugh, R.S.; Sanchez, L.C.; Gregory, J.J.

    1987-08-01

    This report presents the two-dimensional heat transfer analysis of an open pool fire surrounding a modified radioactive materials transport cask. The cask is an older cask that was used by the Hallum Nuclear Power Facility (HNPF). The HNPF cask did not have a neutron shielding region but was modified to include one for testing purposes. Analysis of the thermal effects of an engulfing open pool fire was performed with the use of the heat transfer code Q/TRAN, which had previously been used in thermal benchmarking problems for spent nuclear fuel casks. Boundary condition data for the analysis were derived from experimental open pool fire tests of large-scale calorimeter test articles performed at SNL that produced information about cask surface heat flux versus surface temperature relationships. Data analysis was directed toward a determination of the thermal response of the cask, particularly the extent of lead melt since lead is used within the HNPF cask's gamma-shielding region. Parameters, such as surface emissivity and internal heat generation rate, can affect the results of the thermal analysis which control the amount of lead melt. A parameter sensitivity analysis was performed using a one-dimensional model to describe how surface emissivity and internal heat generation rates affect the temperature distribution within the cask. The information from this analysis was used to determine the range of parameters for the two-dimensional thermal analysis. 13 refs., 57 figs., 8 tabs

  2. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor

    International Nuclear Information System (INIS)

    Ramirez G, T.

    1976-01-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  3. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, A. (Politecnico di Milano (Italy). Centro Studi Nucleari E. Fermi)

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer.

  4. Modeling Transients and Designing a Passive Safety System for a Nuclear Thermal Rocket Using Relap5

    Science.gov (United States)

    Khatry, Jivan

    Long-term high payload missions necessitate the need for nuclear space propulsion. Several nuclear reactor types were investigated by the Nuclear Engine for Rocket Vehicle Application (NERVA) program of National Aeronautics and Space Administration (NASA). Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. A NERVA design known as the Pewee I was selected for this purpose. The following transients were run: (i) modeling of corrosion-induced blockages on the peripheral fuel element coolant channels and their impact on radiation heat transfer in the core, and (ii) modeling of loss-of-flow-accidents (LOFAs) and their impact on radiation heat transfer in the core. For part (i), the radiation heat transfer rate of blocked channels increases while their neighbors' decreases. For part (ii), the core radiation heat transfer rate increases while the flow rate through the rocket system is decreased. However, the radiation heat transfer decreased while there was a complete LOFA. In this situation, the peripheral fuel element coolant channels handle the majority of the radiation heat transfer. Recognizing the LOFA as the most severe design basis accident, a passive safety system was designed in order to respond to such a transient. This design utilizes the already existing tie rod tubes and connects them to a radiator in a closed loop. Hence, this is basically a secondary loop. The size of the core is unchanged. During normal steady-state operation, this secondary loop keeps the moderator cool. Results show that the safety system is able to remove the decay heat and prevent the fuel elements from melting, in response to a LOFA and subsequent SCRAM.

  5. Nuclear future: thinking for building. Proceedings of the 5. Brazilian national meeting on nuclear applications; 8. General congress on nuclear energy; 12. Brazilian national meeting on reactor physics and thermal hydraulics; Futuro nuclear: refletindo para construir. Anais do 5. Encontro nacional de aplicacoes nucleares; 8. Congresso geral de energia nuclear; 12. Encontro nacional de fisica de reatores e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    These proceedings, for the first time, present jointly the 12. Brazilian national meeting on reactor physics and thermal hydraulics (12. ENFIR), the 8. General congress on nuclear energy (8. CGEN), and the 5. Brazilian national meeting on nuclear applications (5. ENAN). The main theme of discussion was: 'Nuclear Future: thinking for building'. The papers have analysed the progresses of peaceful utilization of nuclear technology and its forecasting for the beginning of the new millennium. The construction of Angra-3 nuclear power plant have been discussed.

  6. Nuclear future: thinking for building. Proceedings of the 12. Brazilian national meeting on reactor physics and thermal hydraulics; 8. General congress on nuclear energy; 5. Brazilian national meeting on nuclear applications; Futuro nuclear: refletindo para construir. Anais do 12. Encontro nacional de fisica de reatores e termo-hidraulica; 8. Congresso geral de energia nuclear; 5. Encontro nacional de aplicacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    These proceedings, for the first time, present jointly the 12. Brazilian national meeting on reactor physics and thermal hydraulics (12 ENFIR), 8. General congress on nuclear energy (8. CGEN), and 5. Brazilian national meeting on nuclear applications (5. ENAN). The main theme of discussion was: 'Nuclear Future: thinking for building'. The papers have analysed the progresses of peaceful utilization of nuclear technology and its forecasting for the beginning of the new millennium. The construction of Angra-3 nuclear power plant have been discussed.

  7. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was

  8. Application of neural network technology to nuclear plant thermal efficiency improvement

    International Nuclear Information System (INIS)

    Doremus, Rick; Allen Ho, S.; Bailey, James V.; Roman, Harry

    2004-01-01

    Due to the tremendous cost of building new nuclear power plants, it has become increasingly attractive to increase the power output from the existing operating power plants. There are two options that may be available to accomplish this goal. One option is to uprate the plant through licensing modification for a comfortably achievable goal of 4% to 6%. However, the licensing efforts required are no small task, vary from plant to plant, and may take years to accomplish. Some nuclear power plants may not have this option because of design, environmental, political, or geographical limitations. A second option exists that is simpler and more immediate. It focuses on improving the plant operating conditions using adaptive software that could increase the total plant output by approximately one-half percent by adjusting certain key operating parameters. No design basis analyses, hardware modifications, or licensing changes are required. In fact, this technique can be used on a plant that has already obtained licensing modification to obtain an additional one-half percent on top of the 4% to 6% increase. Public Service Electric and Gas and ARD Corporation are jointly investigating the creation of a Plant Optimization System, called POSITIVE. POSITIVE is an adaptive software tool that enables a user to analyze current plant data to identify potential problem areas and to obtain recommendations for increasing the plant's electric output. POSITIVE uses a combination of expert systems and adaptive software to analyze the thermal performance of a nuclear power plant. Historical data, obtained while the plant was above 93% power, is used to train neural networks to determine the current electric output of the plant. Once sufficiently trained, new data can be processed through the neural network. The neural network first determines the electric output associated with the current data. If the actual power matches the power predicted by the network, the neural network can be used

  9. Proceedings of fifth international topical meeting on nuclear thermal hydraulics, operations and safety

    International Nuclear Information System (INIS)

    1997-01-01

    The fifth international topical meeting on nuclear thermohydraulics, operations and safety was convened in Beijing in April 14-18, 1997. The topical meeting was sponsored by the Chinese Nuclear Society and cosponsored by American Nuclear Society, Atomic Energy Society of Japan, American Society of Mechanical Engineers, Canada Nuclear Society, Korean Nuclear Society, Mexican Nuclear Society, Nuclear Society of Slovenia and Spanish Nuclear Society. There were 262 articles were published in the meeting. They are related nuclear power thermohydraulics, operations and safety

  10. Does bimodal stimulus presentation increase ERP components usable in BCIs?

    NARCIS (Netherlands)

    Thurlings, M.E.; Brouwer, A.M.; Erp, J.B.F. van; Blankertz, B.; Werkhoven, P.J.

    2012-01-01

    Event-related potential (ERP)-based brain–computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain

  11. Bimodal Bilingual Language Development of Hearing Children of Deaf Parents

    Science.gov (United States)

    Hofmann, Kristin; Chilla, Solveig

    2015-01-01

    Adopting a bimodal bilingual language acquisition model, this qualitative case study is the first in Germany to investigate the spoken and sign language development of hearing children of deaf adults (codas). The spoken language competence of six codas within the age range of 3;10 to 6;4 is assessed by a series of standardised tests (SETK 3-5,…

  12. Asymmetric Bimodal Exponential Power Distribution on the Real Line

    Directory of Open Access Journals (Sweden)

    Mehmet Niyazi Çankaya

    2018-01-01

    Full Text Available The asymmetric bimodal exponential power (ABEP distribution is an extension of the generalized gamma distribution to the real line via adding two parameters that fit the shape of peakedness in bimodality on the real line. The special values of peakedness parameters of the distribution are a combination of half Laplace and half normal distributions on the real line. The distribution has two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using these parameters. Adding a skewness parameter is considered to model asymmetry in data. The location-scale form of this distribution is proposed. The Fisher information matrix of these parameters in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood estimates of parameters of ABEP and other distributions having an algorithm for artificial data generation procedure are provided to test the similarity with real data. A brief simulation study is presented.

  13. Measuring oxygen uptake in fishes with bimodal respiration.

    Science.gov (United States)

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. © 2015 The Fisheries Society of the British Isles.

  14. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    International Nuclear Information System (INIS)

    Seo, Kwi Hyun; Byun, Choong Sup; Song, Dong Soo

    2006-01-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information

  15. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwi Hyun [ENERGEO Inc., Sungnam (Korea, Republic of); Byun, Choong Sup; Song, Dong Soo [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information.

  16. Thermal insulation product for insulation, especially in nuclear power engineering, and method of its production

    International Nuclear Information System (INIS)

    Veselovsky, P.; Zink, S.; Balacek, P.; Mares, I.

    1989-01-01

    The insulation consists of a sewn fabric cover made of inorganic fibers, in which the fiber filling is reinforced mechanically by dense point interweaving. The inorganic fibers, 1 to 5 μm in diameter, consist of min. 97 wt.% mixture of aluminium and silicon oxides in the vitreous state. The fibers making up the cover consist of min. 95% silicon, aluminium, calcium, magnesium and boron oxides in the vitreous state; the rest can consist of alloy steel fibres. The bulk density of the insulation is 70 to 150 kg/m 3 . The product is highly resistant to temperature and to the action of chemicals, water, and acid and alkaline deactivation solutions. Its manufacture is fast and undemanding. It is designed for thermal insulation of pipes, tanks and valves in nuclear power plants. (M.D.). 2 figs

  17. Comparison of the effects of nuclear power plants and thermal power plants on the environment

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.; Teverovskij, E.N.

    1976-01-01

    A comparison of ecological effects produced by a thermal power station (TPS) and a nuclear power plant (NPP) of similar electric capacity has been made. The ecological advantages of NPP over TPS are revealed in analysis of aerosol and gas blow-out and its danger for the environment. From the above data it follows that TPS as compared with NPP of similar electric capacity produces a 100 and 1000 fold higher air pollution effect than the latter. The dose of TPS radiation effect is minimum 500 times higher than that of NPP at normal operation. Large-scale construction of NPP is one of the most perfect means of atmosphere protection against harmful industrial discharges

  18. Effect of thermal and radioactive waste waters from nuclear power plant on recipient biocenosis

    Energy Technology Data Exchange (ETDEWEB)

    Veresikova, M; Csupka, S; Tomanova, E [Krajska Hygienicka Stanica, Bratislava (Czechoslovakia)

    1979-01-01

    During the years 1974 to 1976 the effect was studied of thermal and radioactive effluents from the A-1 nuclear power plant on aquatic microorganisms. The values obtained from the waste water canal and the river Dudvah after the canal discharged into the river were compared with the values found in the Dudvah before the discharge. The correlation between aquatic microorganisms and water temperature was found to be closest in the waste water canal and between microorganisms and /sup 137/Cs content in the Dudvah after sewer emptying. With increasing water temperature the populations of aquatic microorganisms decrease, with the exception of producers whose numbers will increase with rising water temperature. The content of /sup 137/Cs in water had an effect similar to that of water temperature.

  19. Laser-induced time-resolved spectrofluorometry and thermal lensing: applications in the nuclear industry

    International Nuclear Information System (INIS)

    Decambox, P.; Delorme, N.; Mauchien, P.; Moulin, C.

    1989-01-01

    Sensitive spectroscopic methods for the determination of actinides and lanthanides in various media are required in the nuclear industry. Laser-Induced Time-Resolved Spectrofluorometry (LITRS) for several actinides and lanthanides at very low levels and thermal lensing (TL) for oxidation state characterization allow these determinations. The set-up of LITRS is presented. Spectra, limit of detections and lifetimes obtained for U, Cm, Am, Eu, Gd, Tb, Dy, Ce, Sm, Tm are shown. Detection limit as low as 5.10 -12 M can be achieved. Examples of matrices encountered for the determination of uranium are given as well as comparison with mass spectrometry and alpha counting. The set-up of TL and performances obtained on plutonium as well as future developments are presented

  20. An integrity evaluation method of the pressure vessel of nuclear reactors under pressurized thermal shock

    International Nuclear Information System (INIS)

    Matsubara, Masaaki; Okamura, Hiroyuki.

    1987-01-01

    Present paper proposes a new algorithm of the integrity evaluation of the pressure vessel of nuclear reactors under pressurized thermal shock, PTS. This method enables us to do an effective evaluation by superimposing proposed ''PTS state-transient curves'' and ''toughness transient curves'', and is superior to a conventional one in the following points; (1) easy to get an overall view of the result of PTS event for the variations of several parameters, (2) possible to evaluate a safety margin for irradiation embrittlement, and (3) enable to construct an Expert-friendly evaluation system. In addition, the paper shows that we can execute a safety assurance test by using a flat plate model with the same thickness as that of real plant. (author)

  1. Evidence for radial flow of thermal dileptons in high-energy nuclear collisions

    CERN Document Server

    Arnaldi, R; Castor, J; Chaurand, B; Cicalò, C; Colla, A; Cortese, P; Damjanovic, S; David, A; De Falco, A; Devaux, A; Ducroux, L; Enyo, H; Fargeix, J; Ferretti, A; Floris, M; Förster, A; Force, P; Guettet, N; Guichard, A; Gulkanian, H R; Heuser, J M; Keil, M; Kluberg, L; Lourenço, C; Lozano, J; Manso, F; Martins, P; Masoni, A; Neves, A; Ohnishi, H; Oppedisano, C; Parracho, P; Pillot, P; Poghosyan, T; Puddu, G; Radermacher, E; Ramalhete, P; Rosinsky, P; Scomparin, E; Seixas, J; Serci, S; Shahoyan, R; Sonderegger, P; Specht, H J; Tieulent, R; Usai, G; Veenhof, R; Wöhri, H K

    2008-01-01

    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158 AGeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter Teff extracted from the spectra rises with dimuon mass up to the rho, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

  2. Kinetic---a system code for analyzing nuclear thermal propulsion rocket engine transients

    International Nuclear Information System (INIS)

    Schmidt, E.; Lazareth, O.; Ludewig, H.

    1993-01-01

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel, coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of controls element (drums or rods). The worth of the control element and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode

  3. Kinetic—a system code for analyzing nuclear thermal propulsion rocket engine transients

    Science.gov (United States)

    Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans

    1993-01-01

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel, coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of controls element (drums or rods). The worth of the control element and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  4. A unique nuclear thermal rocket engine using a particle bed reactor

    Science.gov (United States)

    Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.

    1992-01-01

    Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.

  5. KINETIC: A system code for analyzing Nuclear thermal propulsion rocket engine transients

    Science.gov (United States)

    Schmidt, E.; Lazareth, O.; Ludewig, H.

    1993-07-01

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of control elements (drums or rods). The worth of the control clement and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  6. Distribution of the thermal neutron field around the graphite reflector of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Thermal neutron flux distributions around the graphite reflector of the Dalat Nuclear Research Reactor are determined by the method for neutron activating Cu foils. The major results are as follows: a/The axial distributions at the inner and outer margins of the graphite reflector have unsymmetrical shapes, similar to axial distributions in the core. There is a dissimilarity between the distribution curves at the inner margin and those at the outer margin of the reflector. b/ The radial distribution on the upper surface of the graphite reflector is measured and is described by the two-group neutron diffusion theory. The maximal value of the curve lies at the position of R{sub m}ax = 22.5 cm. c/ The distribution in the twenty water irradiation holes around the rotary specimen rack is obtained. (author). 3 refs., 5 figs., 1 tab.

  7. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  8. Reactor physics analysis of the pin-cell Doppler effect in a thermal nuclear reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de.

    1995-01-01

    This report has also been published as a PhD thesis. It deals with the Doppler effect in thermal nuclear reactors. Especially the behaviour of the reactor in transient conditions is an important issue. During such a transient the radial temperature profile in a fuel pin changes. In this PhD research effective fuel temperatures have been calculated for arbitrary temperature profiles in the fuel pin with the improved slowing-down code ROLAIDS-CPM. A general expression for the effective fuel temperature in a specific fuel pin is found by defining this effective fuel temperature as a weighted sum of the temperatures in different radial fuel zones. Also, the radial power profile in a fuel pin has been calculated by performing detailed burnup calculations, which agree very well with experimental data. (orig.)

  9. Simulation study of multi-step model algorithmic control of the nuclear reactor thermal power tracking system

    International Nuclear Information System (INIS)

    Shi Xiaoping; Xu Tianshu

    2001-01-01

    The classical control method is usually hard to ensure the thermal power tracking accuracy, because the nuclear reactor system is a complex nonlinear system with uncertain parameters and disturbances. A sort of non-parameter model is constructed with the open-loop impulse response of the system. Furthermore, a sort of thermal power tracking digital control law is presented using the multi-step model algorithmic control principle. The control method presented had good tracking performance and robustness. It can work despite the existence of unmeasurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method. The high accuracy matching between the thermal power and the referenced load is achieved

  10. A study of the coefficient of thermal expansion of nuclear graphites

    International Nuclear Information System (INIS)

    Hacker, P.J.

    2001-02-01

    This thesis presents the results of a study of the Coefficient of Thermal Expansion (CTE) of two grades of nuclear graphite that are used as the moderator in the Magnox and Advanced Gas-Cooled reactors operated in the UK. This work has two main aims, the first is to characterise those elements of the graphite microstructure that control CTE within these materials and to relate these to the effects induced within the reactor. The second is to develop a microstructural model, of general applicability, that can initially be applied to model the CTE changes within the graphites under reactor conditions (neutron irradiation and radiolytic oxidation). These aims have been met by study in three interlinked areas, theoretical, experimental and modelling. Previous to this study, a loose assembly of single crystals together with changes in small scale nanometric porosity (Mrozowski cracks) were used to describe CTE behaviour of nuclear graphite both as-received and under reactor conditions. Within the experimental part of this thesis the graphite nanostructure was studied using, primarily, Transmission Electron Microscopy (TEM). This work concluded that structure on this scale was complex and that the loose assembly of single crystals was a poor microstructural approximation for modelling the CTE of these materials. Other experimental programmes measured the CTE of highly oxidised samples and simulated the effects of irradiation. The former discovered that CTE remained largely unaffected to high weight losses. This insensitivity was explained by ''The Continuous Network Hypothesis'' that was also related to classical percolation theory. The final part of the thesis modelled an abstraction of the key microstructural features identified in the previous parts of the thesis. This approach has been applied to AGR moderator graphite where it has successfully modelled the thermal expansion behaviour of the as-received, irradiated and oxidised material. (author)

  11. Development of CFD software for the simulation of thermal hydraulics in advanced nuclear reactors. Final report

    International Nuclear Information System (INIS)

    Bachar, Abdelaziz; Haslinger, Wolfgang; Scheuerer, Georg; Theodoridis, Georgios

    2015-01-01

    The objectives of the project were: Improvement of the simulation accuracy for nuclear reactor thermo-hydraulics by coupling system codes with three-dimensional CFD software; Extension of CFD software to predict thermo-hydraulics in advanced reactor concepts; Validation of the CFD software by simulation different UPTF TRAM-C test cases and development of best practice guidelines. The CFD module was based on the ANSYS CFD software and the system code ATHLET of GRS. All three objectives were met: The coupled ATHLET-ANSYS CFD software is in use at GRS and TU Muenchen. Besides the test cases described in the report, it has been used for other applications, for instance the TALL-3D experiment of KTH Stockholm. The CFD software was extended with material properties for liquid metals, and validated using existing data. Several new concepts were tested when applying the CFD software to the UPTF test cases: Simulations with Conjugate Heat Transfer (CHT) were performed for the first time. This led to better agreement between predictions and data and reduced uncertainties when applying temperature boundary conditions. The meshes for the CHT simulation were also used for a coupled fluid-structure-thermal analysis which was another novelty. The results of the multi-physics analysis showed plausible results for the mechanical and thermal stresses. The workflow developed as part of the current project can be directly used for industrial nuclear reactor simulations. Finally, simulations for two-phase flows with and without interfacial mass transfer were performed. These showed good agreement with data. However, a persisting problem for the simulation of multi-phase flows are the long simulation times which make use for industrial applications difficult.

  12. Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses

    International Nuclear Information System (INIS)

    Vernaz, E.; Matzke, H.J.

    1992-01-01

    High level nuclear waste from reprocessing of spent nuclear fuel has to be solidified in a stable matrix for safe long-time storage. Vitrification in borosilicate glasses is the technique accepted worldwide. A number of different glasses was developed in different national programs. The criteria and the reasons for selecting the final compositions are briefly described. Emphasis is placed on the French product R7T7 and on thermal and physicochemical properties though glasses developed in other national projects (e.g. the German product GP 98/12 etc.) are also treated. The basic physical and mechanical properties and the chemical durability of the glass in contact with water or other aqueous solutions are described. The basic mechanisms of aqueous corrosion are discussed and the evolving modelling of the leaching process is dealt with, as well as effects of container material, backfill, etc. The thermal behavior has also been studied and extensive data exist on diffusion of glass constituents (Na) and of interesting elements of the waste such as the alkalis Rb and Cs or the actinides U and Pu, as well as on crystallization processes in the glass during storage at elevated temperatures. Emphasis is placed on the radiation stability of the glasses, based on extensive studies using short-lived actinides (e.g. Cm-244) or ion-implantation to produce the damage expected during long storage at an accelerated rate. The radiation stability is shown to be very good, if realistic damage conditions are used. The knowledge accumulated in the past years is used to evaluate and predict the long-term evolution of the glass under storage conditions

  13. Multi-scale analysis of nuclear reactor thermal-hydraulics-first applications using the NEPTUNE platform

    International Nuclear Information System (INIS)

    Guelfi, A.; Boucker, M.; Mimouni, S.; Bestion, D.; Boudier, P.

    2005-01-01

    The NEPTUNE project aims at building a new two-phase flow thermal-hydraulics platform for nuclear reactor simulation. EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) with the co-sponsorship of IRSN (Institut de Radioprotection et Surete Nucleaire) and FRAMATOME-ANP, are jointly developing the NEPTUNE multi-scale platform that includes new physical models and numerical methods for each of the computing scales. One usually distinguishes three different scales for industrial simulations: the 'system' scale, the 'component' scale (subchannel analysis) and CFD (Computational Fluid Dynamics). In addition DNS (Direct Numerical Simulation) can provide information at a smaller scale that can be useful for the development of the averaged scales. The NEPTUNE project also includes work on software architecture and research on new numerical methods for coupling codes since both are required to improve industrial calculations. All these R and D challenges have been defined in order to meet industrial needs and the underlying stakes (mainly the competitiveness and the safety of Nuclear Power Plants). This paper focuses on three high priority needs: DNB (Departure from Nucleate Boiling) prediction, directly linked to fuel performance; PTS (Pressurized Thermal Shock), a key issue when studying the lifespan of critical components and LBLOCA (Large Break Loss of Coolant Accident), a reference accident for safety studies. For each of these industrial applications, we provide a review of the last developments within the NEPTUNE platform and we present the first results. A particular attention is also given to physical validation and the needs for further experimental data. (authors)

  14. A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Ian; Brown, Michael E., E-mail: iwong@caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-10-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H{sub 2}S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H{sub 2}S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.

  15. A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS

    International Nuclear Information System (INIS)

    Wong, Ian; Brown, Michael E.

    2016-01-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H 2 S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H 2 S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.

  16. Lanthanide oxide and phosphate nanoparticles for thermometry and bimodal imaging =

    Science.gov (United States)

    Debasu, Mengistie Leweyehu

    . Finalmente, estudam-se as propriedades de fotoluminescencia correspondentes as conversoes ascendente e descendente de energia em nanocristais de (Gd,Yb,Tb)PO4 sintetizados por via hidrotermica. A relaxividade (ressonancia magnetica) do 1H destes materiais sao investigadas, tendo em vista possiveis aplicacoes em imagem bimodal (luminescencia e ressonancia magnetica nuclear).

  17. The Thermal Hydraulics of Tube Support Fouling in Nuclear Steam Generators

    International Nuclear Information System (INIS)

    Rummens, Helena E.C.; Rogers, J.T.; Turner, C.W.

    2004-01-01

    It is hypothesized that the thermal-hydraulic environment plays a role in the fouling of tube supports in nuclear steam generators. Experiments were performed to simulate the thermal-hydraulic environment near various designs of supports. Pressure loss, local velocity, turbulence intensity, and local void fraction were measured to characterize the effect of the support. Fouling mechanisms specific to supports were inferred from these experimental data and from actual steam generator inspection results. An analytical model was developed to predict the rate of particulate deposition on the supports, to better understand the complex processes involved.This paper presents the following set of tools for assessing the fouling propensity of a given support design: (1) proposed fouling mechanisms, (2) criteria for support fouling propensity, (3) correlation of fouling with parameters such as mass flux and quality, (4) descriptions of experimental tools such as flow visualization and measurement of pressure-loss profiles, and (5) analytical tools.An important conclusion from this and our previous work is that the fouling propensity is greater with broached support plates, both trefoil and quatrefoil, than with lattice bar supports and formed bar supports, in which significant cross flows occur

  18. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    International Nuclear Information System (INIS)

    Labib, Satira; King, Jeffrey

    2015-01-01

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort

  19. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  20. 3D thermal-hydraulic analysis on core of PWR nuclear power station

    International Nuclear Information System (INIS)

    Yao Zhaohui; Wang Xuefang; Shen Mengyu

    1997-01-01

    Thermal hydraulic analysis of core is of great importance in reactor safety analysis. A computer code, thermal hydraulic analysis porous medium analysis (THAPMA), has been developed to simulate the flow and heat transfer characteristics of reactor components. It has been proved reliable by several numerical tests. In the THAPMA code, a new difference scheme and solution method have been studied in developing the computer software. For the difference scheme, a second order accurate, high resolution scheme, called WSUC scheme, has been proposed. This scheme is total variation bounded and unconditionally stable in convective numeral stability. Numerical tests show that the WSUC is better in accuracy and resolution than the 1-st order upwind, 2-nd order upwind, SOUCUP by Zhu and Rodi. In solution method, a modified PISO algorithm is used, which is not only simpler but also more accurate and more rapid in convergence than the original PISO algorithm. Moreover, the modified PISO algorithm can effectively solve steady and transient state problem. Besides, with the THAPMA code, the flow and heat transfer phenomena in reactor core have been numerically simulated in the light of the design condition of Qinshan PWR nuclear power station (the second-term project). The simulation results supply a theoretical basis for the core design

  1. Nuclear and thermal analyses of supercritical-water-cooled solid breeder blanket for fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Yoshihiko; Sato, Satoshi; Enoeda, Mikio; Hatano, Toshihisa; Kikuchi, Shigeto; Kuroda, Toshimasa; Kosaku, Yasuo; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-11-01

    Within a design study of a fusion DEMO reactor aiming at demonstrating technologies of fusion power plant, supercritical water is applied as a coolant of solid breeder blanket to attain high thermal efficiency. The blanket has multi-layer composed of solid breeder pebbles (Li{sub 2}O) and neutron multiplier pebbles (Be) which are radially separated by cooling panels. The first wall and the breeding region are cooled by supercritical water below and above the pseudo-critical temperature, respectively. Temperature distribution and tritium breeding ratio (TBR) have been estimated by one-dimensional nuclear and thermal calculations. The local TBR as high as 1.47 has been obtained after optimization of temperature distribution in the breeder region under the following conditions: neutron wall loading of 5 MW/m{sup 2}, {sup 6}Li enrichment of 30% and coolant temperature at inlet of breeder region of 380degC. In the case of the higher coolant temperature 430degC of the breeder region the local TBR was reduced to be 1.40. This means that the net TBR higher than 1.0 could be expected with the supercritical-water-cooled blanket, whose temperature distribution in the breeder region would be optimized by following the coolant temperature, and where a coverage of the breeder region is assumed to be 70%. (author)

  2. Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository

    International Nuclear Information System (INIS)

    Davis, B.W.

    1979-01-01

    Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric and 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables

  3. Optimum voltage of auxiliary systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Segawa, Motomichi

    1979-01-01

    In the power plants in Japan, their unit power output has been greatly enhanced since the introduction of new powerful thermal power plants from 1950's to 1960's. In both thermal and nuclear power plants, 1,000 MW machines have been already in operation. The increase of unit power output results in the increase of in-plant load capacity. Of these the voltage adopted for in-plant low voltage systems is now mainly 440 V at load terminals, and the voltage for in-plant high voltage systems has been changing to 6 kV level via 3 kV and 4 kV levels. As plant capacity increases, the load of low voltage systems significantly increases, and it is required to raise the voltage of 400 V level. By the way, the low voltage in AC is specified to be not higher than 600 V. This makes the change within the above range comparatively easy. Considering these conditions, it is recommended to change the voltage for low voltage systems to 575 V at power source terminals and 550 V at load terminals. Some merits in constructing power systems and in economy by raising the voltage were examined. Though demerits are also found, they are only about 15% of total merits. The most advantageous point in raising the voltage is to be capable of increasing the supplying range to low voltage system loads. (Wakatsuki, Y.)

  4. Thermal tests of large recirculation cooling installations for nuclear power plants

    Science.gov (United States)

    Balunov, B. F.; Lychakov, V. D.; Il'in, V. A.; Shcheglov, A. A.; Maslov, O. P.; Rasskazova, N. A.; Rakhimov, R. Z.; Boyarov, R. A.

    2017-11-01

    The article presents the results from thermal tests of some recirculation installations for cooling air in nuclear power plant premises, including the volume under the containment. The cooling effect in such installations is produced by pumping water through their heat-transfer tubes. Air from the cooled room is blown by a fan through a bundle of transversely finned tubes and is removed to the same room after having been cooled. The finning of tubes used in the tested installations was made of Grade 08Kh18N10T and Grade 08Kh18N10 stainless steels or Grade AD1 aluminum. Steel fins were attached to the tube over their entire length by means of high-frequency welding. Aluminum fins were extruded on a lathe from the external tube sheath into which a steel tube had preliminarily been placed. Although the fin extrusion operation was accompanied by pressing the sheath inner part to the steel tube, tight contact between them over the entire surface was not fully achieved. In view of this, the air gap's thermal resistance coefficient was introduced in calculating the heat transfer between the heat-transferring media. The air gap average thickness was determined from the test results taking into account the gap variation with temperature due to different linear expansion coefficients of steel and aluminum. These tests, which are part of the acceptance tests of the considered installations, were carried out at the NPO TsKTI test facility and were mainly aimed at checking if the obtained thermal characteristics were consistent with the values calculated according to the standard recommendations with introduction, if necessary, of modifications to those recommendations.

  5. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    Science.gov (United States)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  6. Thermal behaviour of chlorine in nuclear graphite at a microscopic scale

    Energy Technology Data Exchange (ETDEWEB)

    Vaudey, C.E., E-mail: vaudey@ipnl.in2p3.f [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucleaire de Lyon (IPNL), 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.f [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucleaire de Lyon (IPNL), 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Commissariat a l' Energie Atomique CEA/DEN, Centre de Saclay, F-91191 Gif sur Yvette cedex (France); Moncoffre, N. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucleaire de Lyon (IPNL), 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Bererd, N. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucleaire de Lyon (IPNL), 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Universite de Lyon, UCBL-IUT A, departement chimie, 43 Bd du 11 novembre 1918, F-69622 Villeurbanne cedex (France); Raimbault, L. [Ecole des Mines de Paris, Centre de Geosciences, 35 rue Saint Honore, F-77305 Fontainebleau cedex (France); Sainsot, P. [Universite de Lyon, Universite Lyon 1, LaMCoS, INSA-Lyon, CNRS UMR5259, F-69621 Villeurbanne cedex (France); Rouzaud, J.N. [Laboratoire de Geologie de l' Ecole Normale Superieure, UMR CNRS-ENS 8538, 24 rue Lhomond, F-75231 Paris cedex 5 (France); Perrat-Mabilon, A. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucleaire de Lyon (IPNL), 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France)

    2009-12-15

    In this paper, we present the study of thermal behaviour of {sup 36}Cl in nuclear graphite used in the St. Laurent A2 UNGG reactor (graphite moderated and CO{sub 2} cooled reactor). {sup 37}Cl, used to simulate {sup 36}Cl displaced from its original structural site by recoil, has been implanted into nuclear graphite samples (energy = 250 keV, fluence = 5 x 10{sup 13} at cm{sup -2}). The samples have been annealed in the 200-800 deg. C temperature range and analysed by SIMS. Structural modifications have been controlled by Raman microspectroscopy. This study shows that, in the considered temperature range and for a short annealing duration (4 h), chlorine is released almost athermally. At 500 deg. C, around 20% of the initial {sup 37}Cl content is released. At 800 deg. C, the release reaches a plateau and the loss of {sup 37}Cl is around 30%. Raman microspectroscopy shows that {sup 37}Cl implantation induces a structural disorder and that during annealing, the original structure is not completely recovered.

  7. Experimental and analytical studies of the thermal aspects of deep geologic disposal of commercial nuclear wastes

    International Nuclear Information System (INIS)

    Christensen, R.N.; Kulacki, F.A.; Keyhani, M.; Hsieh, S.S.; Osborne, R.; Keyhani, V.

    1987-11-01

    Effects of smooth and rough surfaces on an underground nuclear waste repository were studied using a rectangular duct to simulate thermal and hydraulic conditions at a nuclear waste repository. Experiments performed on smooth walls revealed that increasing the aspect ratio increases the air velocity, which leads to an increase in convective heat transfer coefficients and a decrease in the temperature difference between the air stream and the heated wall. The heated length required for fully developed heat transfer was also determined for various aspect ratios. In experiments involving rough walls, two surface roughnesses were characterized by the average height and the pitch-to-height ratio. A combination of two roughness heights and three pitches was constructed covering the ranges 0.088 to 0.12 and 2.0 to 4.7, respectively. A friction factor correlation was developed based on the velocity distribution and pressure drop measurements. Heat transfer data at the downstream end of the test section were correlated as a function of the Reynolds number. A heat momentum analogy was correlated using temperature and velocity distribution measurements. An approximate analytical solution through numerical analysis for correlating the Nusselt numbers at the downstream end of the test section was compared with corresponding experimental results. 47 refs., 105 figs., 33 tabs

  8. Adaptability of Brayton cycle conversion systems to fast, epithermal and thermal spectrum space nuclear reactors

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1988-01-01

    The two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) are carrying out joint preliminary studies on space nuclear power systems for future ARIANE 5 launch vehicle applications. The Brayton cycle is the reference conversion system, whether the heat source is a liquid metal-cooled (NaK, Na or Li) reactor or a gas-cooled direct cycle concept. The search for an adequate utilization of this energy conversion means has prompted additional evaluations featuring the definition of satisfactory cycle conditions for these various kinds of reactor concepts. In addition to firstly studied fast and epithermal spectrum ones, thermal spectrum reactors can offer an opportunity of bringing out some distinctive features of the Brayton cycle, in particular for the temperature conditioning of the efficient metal hydrides (ZrH, Li/sub 7/H) moderators. One of the purposes of the paper is to confirm the potential of long lifetime ZrH moderated reactors associated with a gas cycle and to assess the thermodynamical consequences for both Nak(Na)-cooled or gas-cooled nuclear heat sources. This investigation is complemented by the definition of appropriate reactor arrangements which could be presented on a further occasion

  9. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1991-01-01

    The following paper reports on a design study of a novel space transportation concept known as a ''NIMF'' (Nuclear rocket using Indigenous Martian Fuel.) The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO 2 . This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface

  10. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    Science.gov (United States)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  11. Detailed channel thermal-hydraulic calculation of nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sorokin, A.P.; Ushakov, P.A.; Yur'ev, Yu.S.

    1981-01-01

    The system of equations of mass balance, quantity of motion and energy used in calculation of nuclear reactor fuel assemblies is obtained. The equation system is obtained on the base of integral equations of hydrodynamics interaction in assemblies of smooth fuel elements and fuel elements with wire packing. The calculation results of coolant heating distributions by the fast reactor assembly channels are presented. The analysis of the results obtained shows that interchannel exchange essentially uniforms the coolant heating distribution in the peripheral range of the assembly but it does not remove non-uniformity caused by power distribution non-uniformity in the cross section. Geometry of the peripheral assembly range plays an essential role in the heating distribution. Change of the calculation gap between the peripheral fuel elements and assembly shells can result either in superheating or in subcooling in the peripheral channels relatively to joint internal channels of the assembly. Heat supply to the coolant passing through interassembly gaps decreases temperature in the assembly periphery and results in the increase of temperature non-uniformity by the perimeter of peripheral fuel elements. It is concluded that the applied method of the channel-by-channel calculation is ef-- fective in thermal-physical calculation of nuclear reactor fuel assemblies and it permits to solve a wide range of problems [ru

  12. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    Science.gov (United States)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for

  13. Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Catana, Alexandru [RAAN, Institute for Nuclear Research, Str. Campului Nr. 1, Pitesti, Arges (Romania); Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel [University POLITEHNICA of Bucharest (Romania)

    2008-07-01

    Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D{sub 2}O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D{sub 2}O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)

  14. Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors

    International Nuclear Information System (INIS)

    Catana, Alexandru; Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2008-01-01

    Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D 2 O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D 2 O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)

  15. Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI

    Energy Technology Data Exchange (ETDEWEB)

    Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

    2012-10-01

    As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

  16. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Sessions 17-24

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.C.; Feiner, F. [American Nuclear Society, La Grange Park, IL (United States)

    1995-09-01

    Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers deal with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately.

  17. Thermal Aging Effect Analysis of 17-4PH Martensitic Stainless Steel Valves for Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    BAI; Bing; ZHANG; Chang-yi; TONG; Zhen-feng; YANG; Wen

    2015-01-01

    The valve stem used in the main steam system of nuclear power plant is usually martensitic stainless steel(such as 17.4ph16.4Mo etc.).When served in high temperature for a long time,the thermal aging embrittlement of valve stem will be significant,and even lead to the fracture.

  18. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Sessions 17-24

    International Nuclear Information System (INIS)

    Block, R.C.; Feiner, F.

    1995-09-01

    Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers deal with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately

  19. Thermal energy storage in rock chambers - a complement to nuclear power

    International Nuclear Information System (INIS)

    Margen, P.H.

    1971-01-01

    Within about a decade from now, the nuclear capacity on several generation systems will have become larger than the night load, thus increasing the incentive to exploit cheap night energy for daily storage schemes. In Sweden, energy storage schemes using rock cavities have been studied for a number of years. These include pumped storage schemes with lower magazines well below ground surface and gas turbine schemes with compressed air magazines. Recently preliminary studies have been made of a third form - that of storing hot high pressure water in rock cavities with a simple thermal insulation. One method of utilizing this water is as feed water for a nuclear power station, the water in the store being heated from about 73 ° C to 21 7°C at night, and the stored hot water being fed directly to the Nuclear Steam Supply System (NSSS) during the day. An increase in turbine output by about 25% can then be achieved at peak periods due to the elimination of the h.p. steam bleeding for unchanged reactor power. About 35 kWh of electricity can be recovered per m 3 of storage volume, i.e. 30 times as much as if one m 3 of cold water had been allowed to descend 450 m under gravity to the lower magazine of a pumped storage plant. This illustrates how much more effective hot water storage utilizes the space of a rock cavity than does cold water storage for a pumped storage plant even at very great depths. The paper describes the circuit proposed and the design of the accumulator to meet the requirements concerning thermal insulation (to avoid exposing the rock walls to daily temperature cycles), avoidance of risk of leakage of slightly active feed water to the surrounding ground water even under severe accident conditions such as pipe and tank ruptures, and water chemistry to avoid water containing impurities or dissolved gases from reaching the feed water circuit. A preliminary cost analysis is given which shows that the proposal allows the generation of additional blocks of

  20. Auxiliary System Load Schemes in Large Thermal and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kuzle, I.; Bosnjak, D.; Pandzic, H.

    2010-01-01

    Uninterrupted auxiliary system power supply in large power plants is a key factor for normal operation, transient states, start-ups and shutdowns and particularly during fault conditions. Therefore, there are many challenges in designing the main electrical system as well as the auxiliary systems power supply. Depending upon the type of fuel used and the environmental control system required, a thermal power plant may consume as much as 10% of its total generation for auxiliary power, while a nuclear power plant may require only 4 - 6% auxiliaries. In general, the larger the power generating plant, the higher the voltage selected for the AC auxiliary electric system. Most stations in the 75 to 500 MW range utilize 4,2 kV as the base auxiliary system voltage. Large generating stations 500 - 1000 MW and more use voltage levels of 6,9 kV and more. Some single dedicated loads such as electric driven boiler feed pumps are supplied ba a 13,8 kV bus. While designing the auxiliary electric system, the following areas must be considered: motor starting requirements, voltage regulation requirements, short-circuit duty requirements, economic considerations, reliability and alternate sources. Auxiliary power supply can't be completely generalized and each situation should be studied on its own merits to determine the optimal solution. Naturally, nuclear power plants have more reliability requirements and safety design criteria. Main coolant-pump power supply and continuity of service to other vital loads deserve special attention. This paper presents an overview of some up-to-date power plant auxiliary load system concepts. The main types of auxiliary loads are described and the electric diagrams of the modern auxiliary system supply concepts are given. Various alternative sources of auxiliary electrical supply are considered, the advantages and disadvantages of these are compared and proposals are made for high voltage distribution systems around the thermal and nuclear plant

  1. IAEA activities to prepare safety codes and guides for thermal neutron nuclear power plants

    International Nuclear Information System (INIS)

    Iansiti, E.

    1977-01-01

    programme is directed towards the safety of thermal nuclear power reactors; however, many of the documents can be very well applied to fast reactors. The first five codes have already completed the procedure and about ten to twelve safety guides will be ready in the course of 1977; the work will proceed then at the rate of about twelve safety guides a year, in the following years. On the basis of the experience gained in the preparation of these documents, and when a substantial part of the documents included in the programme of nuclear power plant safety have been published, it is foreseen that the programme be extended to include other nuclear facilities such as fabrication and reprocessing plants

  2. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  3. Proceedings of the ANS/ASME/NRC international topical meeting on nuclear reactor thermal-hydraulics: LMFBR and HTGR advanced reactor concepts and analysis methods

    International Nuclear Information System (INIS)

    1980-01-01

    Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base

  4. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  5. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law

    Science.gov (United States)

    Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.

    2018-05-01

    Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.

  6. The Development of Bimodal Bilingualism: Implications for Linguistic Theory.

    Science.gov (United States)

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2016-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and 'transfer' as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair.

  7. Qualification of code-Saturne for thermal-hydraulics single phase nuclear applications

    International Nuclear Information System (INIS)

    Archambeau, F.; Bechaud, C.; Gest, B.; Martin, A.; Sakiz, M.

    2003-01-01

    Code-Saturne is a general finite volume CFD (computational fluid dynamics) code developed by Electricite de France (EDF) under quality assurance for 2- and 3-dimensional simulations, laminar and turbulent flows, conjugate heat transfer (coupling with thermal code SYRTHES), including combustion modelling and a Lagrangian module. A very large range of meshes can be used. The solver relies on a finite volume method on arbitrary meshes (hybrid, with hanging nodes, any type of element). All variables are located at the cell centres. The solver is time marching, with a predictor-corrector scheme for Navier-Stokes equations. Standard Reynolds Average Navier-Stokes modelling (RANS) is included (k-epsilon, RSM). Code-Saturne is used by EDF in various industrial fields such as process engineering, aeraulics, combustion and nuclear applications. The present paper describes the qualification phase carried out during 2001 for single-phase nuclear applications. Indeed, once an industrial product has been released and validated, it is of major importance, especially in this particular field related to safety matters, to demonstrate the ability of the code to help engineers produce satisfactory conclusions to industrial problems. In coherence with analyses and best practice guidelines such as those published by the ERCOFTAC Special Interest Group, it seemed important to base the qualification phase on well defined and documented experimental facilities, sufficiently complex to be representative of industrial studies. Much attention has been devoted to evaluating sensitivity to numerical parameters such as grid refinement, time step... Moreover, the qualification studies have been carried out in real-life conditions, that is in limited time, with industrial limitations on the number of grid cells, and by the teams usually producing such studies, so as to integrate a real industrial process in the qualification phase. Two test cases chosen to assess certain types of flows in PWR

  8. 900 MW CP1 nuclear steam turbine retrofit thermal effects on low pressure diaphragms

    International Nuclear Information System (INIS)

    Buguin, A.; Gruau, P.; Lamarque, F.; Huggett, J.

    2015-01-01

    The steam turbines of the Koeberg units 1 and 2 operated by ESKOM in South Africa have been retrofitted in order to mitigate the generic problems of stress corrosion cracking of the original shrunk-on disk rotor design. As already done in Belgium and France, the implementation of welded rotors improves the turbine reliability and availability. Moreover, the new technology implemented associated with a new steam path allows a significant performance improvement. With a wealth of experience in CP1 retrofit, ALSTOM has put in place new technical features in the steam path in order to further improve the heat rate. Among them, steam balance holes drilled in the rotor disks have exacerbated the thermal sensitivity of the LP diaphragms. During the commissioning of the Unit 1 LP turbines following the retrofit, the load increase led to unacceptable vibrations. An investigation program was launched to determine the root causes of the problem. This paper presents the findings following the turbine inspection, as well as the recommendations and modifications to allow a smooth return to service of the unit. In addition, the results of the root cause analysis of the vibration incident are explained. Based on finite element calculations and site measurements, ALSTOM has established that the diaphragm thermal behavior, intensified by the steam balance holes, has led to radial rubbing. It was also established that the phenomena had no effect on the diaphragms mechanical integrity. Design changes have been proposed to ensure a safe and reliable long term operation of the units. These modifications have been successfully implemented onto the Koeberg Unit 2 Nuclear Steam Turbine commissioned in November 2012. (authors)

  9. Review of in-service thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1984-01-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper-shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. A test reactor pressure vessel has been wet annealed at less than 343 0 C (650 0 F), and annealing of the Belgian BR-3 reactor vessel has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place is feasible, but solvable engineering problems do exist. The materials with highest radiation sensitivity in the older reactor vessels are submerged-arc weld metals with high copper and nickel concentrations. The limited Charpy V-notch and fracture toughness data available for five such welds were reviewed. The review suggested that significant recovery results from annealing at 454 0 C (850 0 F) for one week. Two of the main concerns with a localized heat treatment at 454 0 C (850 0 F) are the degree of distortion that may occur after the annealing cycle and the extent of residual stresses. A thermal and structural analysis of a reactor vessel for distortions and residual stresses found no problems with the reactor vessel itself but did indicate a rotation at the nozzle region of the vessel that would plastically deform the attached primary piping. Further analytical studies are needed. An American Society for Testing and Materials (ASTM) task group is upgrading and revising the ASTM Recommended Guide for In-Service Annealing of WaterCooled Nuclear Reactor Vessels (E 509-74) with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (for example, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  10. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcation occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.

  11. Decontamination of nuclear graphite by thermal processing; Dekontamination von Nukleargraphit durch thermische Behandlung

    Energy Technology Data Exchange (ETDEWEB)

    Florjan, Monika W.

    2010-04-15

    The main problem in view of the direct disposal of the nuclear graphite is its large volume. This waste contains long-lived and short-lived radionuclides which determine the waste strategy. The irradiated graphite possess high amount of the {sup 14}C isotope. The main object of the present work was the selective separation of {sup 14}C isotope from the isotope {sup 12}C by thermal treatment (pyrolysis, partial oxidation). A successful separation could reduce the radiotoxicity and offer a different disposal strategy. Three different graphite types were investigated. The samples originate from the reflector and from the flaking of spherical fuel elements of the high-temperature reactor (AVR) Juelich. The samples from the thermal column of the research reactor (Merlin, Juelich) were also investigated. The maximum tritium releases were obtained both in inert gas atmosphere (N{sub 2}) and under water vapour-oxidizing conditions at 1280 C and 900 C. Furthermore it could be shown that 28% of {sup 14}C could be released under inert gas conditions at a 1280 C. By additive of oxidizing agent such as water vapour and oxygen the {sup 14}C release could be increased. Under water vapour-oxidizing conditions at a temperature of 1280 C up to 93% of the {sup 14}C was separated from the graphite. The matrix corrosion of 5.4% was obtained. The selective separation of the {sup 14}C is possible, because a substantial part of the radiocarbon is bound near the grain boundary surfaces. (orig.)

  12. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril

    2016-04-01

    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  13. Immobilization of high level nuclear wastes in sintered glasses. Devitrification evaluation produced with different thermal treatments

    International Nuclear Information System (INIS)

    Messi de Bernasconi, N.B.; Russo, D.O.; Bevilacqua, M.E.; Sterba, M.E.; Heredia, A.D.; Audero, M.A.

    1990-01-01

    This work describes immobilization of high level nuclear wastes in sintered glass, as alternative way to melting glass. Different chemical compositions of borosilicate glass with simulate waste were utilized and satisfactory results were obtained at laboratory scale. As another contribution to the materials studies by X ray powder diffraction analysis, the devitrification produced with different thermal treatments, was evaluated. The effect of the thermal history on the behaviour of fission products containing glasses has been studied by several working groups in the field of high level waste fixation. When the glass is cooled through the temperature range from 800 deg C down to less than 400 deg C (these temperatures are approximates) nucleation and crystal growth can take place. The rate of crystallization will be maximum near the transformation point but through this rate may be low at lower temperatures, devitrification can still occur over long periods of time, depending on the glass composition. It was verified that there can be an appreciable increase in leaching in some waste glass compositions owing to the presence of crystalline phases. On the other hand, other compositions show very little change in leachability and the devitrified product is often preferable as there is less tendency to cracking, particularly in massive blocks of glass. A borosilicate glass, named SG7, which was developed specially in the KfK for the hot pressing of HLW with glass frit was studied. It presents a much enhanced chemical durability than borosolicate glass developed for the melting process. The crystallization behaviour of SG7 glass products was investigated in our own experiments by annealing sintered samples up to 3000 h at temperatures between 675 and 825 deg C. The samples had contained simulated waste with noble metals, since these might act as foreign nuclei for crystallization. Results on the extent of devitrification and time- temperature- transformation curves are

  14. Consideration of a design optimization method for advanced nuclear power plant thermal-hydraulic components

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira; Manic, Milos; Patterson, Michael; Danchus, William

    2009-01-01

    In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)

  15. Initial risk assessment for a single stage to orbit nuclear thermal rocket

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Highlights: • The risks posed by the surface launch of a nuclear thermal rocket are considered. • Radiation exposure at the public viewing distance is insignificant. • Production of fission products and actinides during launch is limited. • The production of activated argon around the rocket may be a significant concern. - Abstract: In order to consider the possibility of a nuclear thermal rocket (NTR) ground launch, it is necessary to evaluate the risks from such a launch. This includes analysis of the radiation dose rate around the rocket, determining the rate of activation of the materials near the launch, and considering the radionuclides present in the core after the launch. This paper evaluates the potential risk of the NTR ground launch for a range of payloads from 1 to 15 metric tons (MT) using three NTR reactor cores (40, 80, and 120 cm in length) designed in a previous study, based on data produced by MCNP5 and MCNPX models. At the same power level, the 40 cm core length reactor results in the lowest radiation dose rate of the three reactors. Radiation dose rates decrease to background levels 3.5 km from the launch site. After a 1-year decay time, all of the activated materials produced by an NTR launch would be classified as Class A low-level waste. The activation of air produces significant amounts of argon-41 and nitrogen-16 within 100 m of the launch. The derived air concentration (DAC) ratio of the activation products decays to less than unity within 2 days, with only argon-41 remaining. After 10 min of full power operation, the 120 cm core for a 15 MT payload contains 2.5 × 10{sup 13}, 1.4 × 10{sup 12} and 1.5 × 10{sup 12} Bq of {sup 131}I, {sup 137}Cs, and {sup 90}Sr, respectively. The decay heat after shutdown increases with increasing reactor power with a maximum decay heat of 108 kW immediately after shutdown for the 15 MT payload.

  16. Mobile Education: Towards Affective Bi-modal Interaction for Adaptivity

    Directory of Open Access Journals (Sweden)

    Efthymios Alepis

    2009-04-01

    Full Text Available One important field where mobile technology can make significant contributions is education. However one criticism in mobile education is that students receive impersonal teaching. Affective computing may give a solution to this problem. In this paper we describe an affective bi-modal educational system for mobile devices. In our research we describe a novel approach of combining information from two modalities namely the keyboard and the microphone through a multi-criteria decision making theory.

  17. 'Bi-modal' isoscalar giant dipole strength in 58Ni

    International Nuclear Information System (INIS)

    Nayak, B.K.; Garg, U.; Hedden, M.; Koss, M.; Li, T.; Liu, Y.; Madhusudhana Rao, P.V.; Zhu, S.; Itoh, M.; Sakaguchi, H.; Takeda, H.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Fujimura, H.; Fujiwara, M.; Hara, K.; Kawabata, T.; Akimune, H.; Harakeh, M.N.

    2006-01-01

    The strength distribution of the isoscalar giant dipole resonance (ISGDR) in 58 Ni has been obtained over the energy range 10.5-49.5 MeV via extreme forward angle scattering (including 0 deg.) of 386 MeV α particles. We observe a 'bi-modal' E1 strength distribution for the first time in an A<90 nucleus. The observed ISGDR strength distribution is in reasonable agreement with the predictions of a recent RPA calculation

  18. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    Science.gov (United States)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  19. How to effectively compute the reliability of a thermal-hydraulic nuclear passive system

    International Nuclear Information System (INIS)

    Zio, E.; Pedroni, N.

    2011-01-01

    Research highlights: → Optimized LS is the preferred choice for failure probability estimation. → Two alternative options are suggested for uncertainty and sensitivity analyses. → SS for simulation codes requiring seconds or minutes to run. → Regression models (e.g., ANNs) for simulation codes requiring hours or days to run. - Abstract: The computation of the reliability of a thermal-hydraulic (T-H) passive system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T-H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T-H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure. The objective of this work is to provide operative guidelines to effectively handle the computation of the reliability of a nuclear passive system. Two directions of computation efficiency are considered: from one side, efficient Monte Carlo Simulation (MCS) techniques are indicated as a means to performing robust estimations with a limited number of samples: in particular, the Subset Simulation (SS) and Line Sampling (LS) methods are identified as most valuable; from the other side, fast-running, surrogate regression models (also called response surfaces or meta-models) are indicated as a valid replacement of the long-running T-H model codes: in particular, the use of bootstrapped Artificial Neural Networks (ANNs) is shown to have interesting potentials, including for uncertainty propagation. The recommendations drawn are supported by the results obtained in an illustrative application of literature.

  20. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.