Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.
Directory of Open Access Journals (Sweden)
Alka A Potdar
Full Text Available BACKGROUND: Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells that exist in multi-cellular organisms (humans follow a bimodal correlated random walk (BCRW. METHODOLOGY/PRINCIPAL FINDINGS: Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation. CONCLUSIONS/SIGNIFICANCE: Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.
Robustness analysis of bimodal networks in the whole range of degree correlation
Mizutaka, Shogo; Tanizawa, Toshihiro
2016-08-01
We present an exact analysis of the physical properties of bimodal networks specified by the two peak degree distribution fully incorporating the degree-degree correlation between node connections. The structure of the correlated bimodal network is uniquely determined by the Pearson coefficient of the degree correlation, keeping its degree distribution fixed. The percolation threshold and the giant component fraction of the correlated bimodal network are analytically calculated in the whole range of the Pearson coefficient from -1 to 1 against two major types of node removal, which are the random failure and the degree-based targeted attack. The Pearson coefficient for next-nearest-neighbor pairs is also calculated, which always takes a positive value even when the correlation between nearest-neighbor pairs is negative. From the results, it is confirmed that the percolation threshold is a monotonically decreasing function of the Pearson coefficient for the degrees of nearest-neighbor pairs increasing from -1 and 1 regardless of the types of node removal. In contrast, the node fraction of the giant component for bimodal networks with positive degree correlation rapidly decreases in the early stage of random failure, while that for bimodal networks with negative degree correlation remains relatively large until the removed node fraction reaches the threshold. In this sense, bimodal networks with negative degree correlation are more robust against random failure than those with positive degree correlation.
Robustness analysis of bimodal networks in the whole range of degree correlation
Mizutaka, Shogo
2016-01-01
We present exact analysis of the physical properties of bimodal networks specified by the two peak degree distribution fully incorporating the degree-degree correlation between node connection. The structure of the correlated bimodal network is uniquely determined by the Pearson coefficient of the degree correlation, keeping its degree distribution fixed. The percolation threshold and the giant component fraction of the correlated bimodal network are analytically calculated in the whole range of the Pearson coefficient from $-1$ to $1$ against two major types of node removal, which are the random failure and the degree-based targeted attack. The Pearson coefficient for next-nearest-neighbor pairs is also calculated, which always takes a positive value even when the correlation between nearest-neighbor pairs is negative. From the results, it is confirmed that the percolation threshold is a monotonically decreasing function of the Pearson coefficient for the degrees of nearest-neighbor pairs increasing from $-1...
Correlations between outcomes of random measurements
Tran, Minh Cong; Dakić, Borivoje; Laskowski, Wiesław; Paterek, Tomasz
2016-10-01
We recently showed that multipartite correlations between outcomes of random observables detect quantum entanglement in all pure and some mixed states. In this followup article we further develop this approach, derive a maximal amount of such correlations, and show that they are not monotonous under local operations and classical communication. Nevertheless, we demonstrate their usefulness in entanglement detection with a single random observable per party. Finally we study convex-roof extension of the correlations and provide a closed-form necessary and sufficient condition for entanglement in rank-2 mixed states and a witness in general.
Effect of noise correlations on randomized benchmarking
Ball, Harrison; Stace, Thomas M.; Flammia, Steven T.; Biercuk, Michael J.
2016-02-01
Among the most popular and well-studied quantum characterization, verification, and validation techniques is randomized benchmarking (RB), an important statistical tool used to characterize the performance of physical logic operations useful in quantum information processing. In this work we provide a detailed mathematical treatment of the effect of temporal noise correlations on the outcomes of RB protocols. We provide a fully analytic framework capturing the accumulation of error in RB expressed in terms of a three-dimensional random walk in "Pauli space." Using this framework we derive the probability density function describing RB outcomes (averaged over noise) for both Markovian and correlated errors, which we show is generally described by a Γ distribution with shape and scale parameters depending on the correlation structure. Long temporal correlations impart large nonvanishing variance and skew in the distribution towards high-fidelity outcomes—consistent with existing experimental data—highlighting potential finite-sampling pitfalls and the divergence of the mean RB outcome from worst-case errors in the presence of noise correlations. We use the filter-transfer function formalism to reveal the underlying reason for these differences in terms of effective coherent averaging of correlated errors in certain random sequences. We conclude by commenting on the impact of these calculations on the utility of single-metric approaches to quantum characterization, verification, and validation.
Fossati, L; Lanza, A F
2015-01-01
The chromospheric activity index logR'HK of stars hosting transiting hot Jupiters appears to be correlated with the planets' surface gravity. One of the possible explanations is based on the presence of condensations of planetary evaporated material located in a circumstellar cloud that absorbs the CaII H&K and MgII h&k resonance line emission flux, used to measure chromospheric activity. A larger column density in the condensations, or equivalently a stronger absorption in the chromospheric lines, is obtained when the evaporation rate of the planet is larger, which occurs for a lower gravity of the planet. We analyze here a sample of stars hosting transiting hot Jupiters tuned in order to minimize systematic effects (e.g., interstellar medium absorption). Using a mixture model, we find that the data are best fit by a two-linear-regression model. We interpret this result in terms of the Vaughan-Preston gap. We use a Monte Carlo approach to best take into account the uncertainties, finding that the two...
Field and intensity correlation in random media
Sebbah; Pnini; Genack
2000-11-01
We have obtained the spectral and spatial field correlation functions, C(E)(Deltaomega) and C(E)(Deltax), respectively, from measurement of the microwave field spectrum at a series of points along a line on the output of a random dielectric medium. C(E)(Deltaomega) and C(E)(Deltax) are shown to be the Fourier transforms, respectively, of the time of flight distribution, obtained from pulsed measurements, and of the specific intensity. Unlike C(E)(Deltaomega), the imaginary part of C(E)(Deltax) is shown to vanish as a result of the isotropy of the correlation function in the output plane. The complex square of the field correlation function gives the short-range or C1 contribution to the intensity correlation function C. Longer-range contributions to the intensity correlation function are obtained directly by subtracting C1 from C and are in good agreement with theory.
Action correlations and random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Smilansky, Uzy; Verdene, Basile [Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100 (Israel)
2003-03-28
The correlations in the spectra of quantum systems are intimately related to correlations which are of genuine classical origin, and which appear in the spectra of actions of the classical periodic orbits of the corresponding classical systems. We review this duality and the semiclassical theory which brings it about. The conjecture that the quantum spectral statistics are described in terms of random matrix theory, leads to the proposition that the classical two-point correlation function is also given in terms of a universal function. We study in detail the spectrum of actions of the Baker map, and use it to illustrate the steps needed to reveal the classical correlations, their origin and their relation to symbolic dynamics00.
Dynamical correlations among vicious random walkers
Energy Technology Data Exchange (ETDEWEB)
Nagao, Taro; Katori, Makoto; Tanemura, Hideki
2003-01-20
Nonintersecting motion of Brownian particles in one dimension is studied. The system is constructed as the diffusion scaling limit of Fisher's vicious random walk. N particles start from the origin at time t=0 and then undergo mutually avoiding Brownian motion until a finite time t=T. In the short time limit t<
Optimal paths as correlated random walks
Perlsman, E.; Havlin, S.
2006-01-01
A numerical study of optimal paths in the directed polymer model shows that the paths are similar to correlated random walks. It is shown that when a directed optimal path of length t is divided into 3 segments whose length is t/3, the correlation between the transversal movements along the first and last path segments is independent of the path length t. It is also shown that the transversal correlations along optimal paths decrease as the paths approach their endpoints. The numerical results obtained for optimal paths in 1+4 dimensions are qualitatively similar to those obtained for optimal paths in lower dimensions, and the data supplies a strong numerical indication that 1+4 is not the upper critical dimension of this model, and of the associated KPZ equation.
Estimation of Correlation Functions by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, Steen; Jensen, Jacob Laigaard
1991-01-01
The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on mod...
Time series, correlation matrices and random matrix models
Energy Technology Data Exchange (ETDEWEB)
Vinayak [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P. 62210 Cuernavaca (Mexico); Seligman, Thomas H. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P. 62210 Cuernavaca, México and Centro Internacional de Ciencias, C.P. 62210 Cuernavaca (Mexico)
2014-01-08
In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series. By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.
Garboś, Sławomir; Święcicka, Dorota
2015-11-01
The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake.
Inﬁnite range correlations of intensity in random media
Indian Academy of Sciences (India)
A Retzker; B Shapiro
2002-02-01
We study a new type of long-range correlations for waves propagating in a random medium. These correlations originate from scattering events which take place close to a point source. The scattered waves propagate by diffusion to distant regions. In this way long range correlations, between any pair of distant points, are established.
Random matrix theory analysis of cross correlations in financial markets.
Utsugi, Akihiko; Ino, Kazusumi; Oshikawa, Masaki
2004-08-01
We confirm universal behaviors such as eigenvalue distribution and spacings predicted by random matrix theory (RMT) for the cross correlation matrix of the daily stock prices of Tokyo Stock Exchange from 1993 to 2001, which have been reported for New York Stock Exchange in previous studies. It is shown that the random part of the eigenvalue distribution of the cross correlation matrix is stable even when deterministic correlations are present. Some deviations in the small eigenvalue statistics outside the bounds of the universality class of RMT are not completely explained with the deterministic correlations as proposed in previous studies. We study the effect of randomness on deterministic correlations and find that randomness causes a repulsion between deterministic eigenvalues and the random eigenvalues. This is interpreted as a reminiscent of "level repulsion" in RMT and explains some deviations from the previous studies observed in the market data. We also study correlated groups of issues in these markets and propose a refined method to identify correlated groups based on RMT. Some characteristic differences between properties of Tokyo Stock Exchange and New York Stock Exchange are found.
A Note on the Sum of Correlated Gamma Random Variables
Paris, Jose F
2011-01-01
The sum of correlated gamma random variables appears in the analysis of many wireless communications systems, e.g. in systems under Nakagami-m fading. In this Letter we obtain exact expressions for the probability density function (PDF) and the cumulative distribution function (CDF) of the sum of arbitrarily correlated gamma variables in terms of certain Lauricella functions.
Correlated randomness: Some examples of exotic statistical physics
Indian Academy of Sciences (India)
H Eugene Stanley
2005-05-01
One challenge of biology, medicine, and economics is that the systems treated by these sciences have no perfect metronome in time and no perfect spatial architecture – crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. To understand this `miracle', one might consider placing aside the human tendency to see the universe as a machine. Instead, one might address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at many spatial and temporal patterns in biology, medicine, and economics. Inspired by principles developed by statistical physics over the past 50 years – scale invariance and universality – we review some recent applications of correlated randomness to fields that might startle Boltzmann if he were alive today.
Random Matrix Theory of Dynamical Cross Correlations in Financial Data
Nakayama, Y.; Iyetomi, H.
A new method taking advantage of the random matrix theory is proposed to extract genuine dynamical correlations between price fluctuations of different stocks. One-day returns of 557 Japanese major stocks for the 11-year period from 1996 to 2006 are used for this study. We carry out the discrete Fourier transform of the returns to construct a correlation matrix at each frequency. Also we prepare series of random numbers which are mutually uncorrelated and hence serve as a reference. Comparison of the eigenvalues of the empirical correlation matrix with the reference results of the random one enables us to distinguish between information and noise involved in complicated behavior of the stock returns. It is thus demonstrated that there exist collective motions of the stock prices with periods well over days. Finally we indicate a possible application of the present finding to the risk evaluation of portfolios.
On the Power of Correlated Randomness in Secure Computation
DEFF Research Database (Denmark)
Ishai, Yuval; Kushilevitz, Eyal; Meldgaard, Sigurd Torkel
2013-01-01
We investigate the extent to which correlated secret randomness can help in secure computation with no honest majority. It is known that correlated randomness can be used to evaluate any circuit of size s with perfect security against semi-honest parties or statistical security against malicious...... positive and negative results on unconditionally secure computation with correlated randomness. Concretely, we obtain the following results. Minimizing communication. Any multiparty functionality can be realized, with perfect security against semi-honest parties or statistical security against malicious...... parties, where the communication complexity grows linearly with s. This leaves open two natural questions: (1) Can the communication complexity be made independent of the circuit size? (2) Is it possible to obtain perfect security against malicious parties? We settle the above questions, obtaining both...
Fully nonlocal, monogamous and random genuinely multipartite quantum correlations
Aolita, Leandro; Cabello, Adán; Acín, Antonio
2011-01-01
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and associated to fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality that appears in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy and full random outcomes are thus highly desired properties for multipartite correlations in intrinsically genuine-multipartite cryptographic scenarios. We prove that local measurements on Greenberger-Horne-Zeilinger states, for all local dimension and number of parts, can produce correlations that are fully genuine-multipartite nonlocal, monogamous and with fully random outcomes. A key ingredient in our proof is a multipartite chained Bell inequality detecting genuine-multipartite nonlocality, which we introduce. Finally, we discuss the applications of our results for intrinsically genuine-multipartite cryptographic pr...
Correlations between zeros of non-Gaussian random polynomials
Bleher, Pavel M.; Di, Xiaojun
2003-01-01
The existence of the scaling limit and its universality, for correlations between zeros of {\\it Gaussian} random polynomials, or more generally, {\\it Gaussian} random sections of powers of a line bundle over a compact manifold has been proved in a great generality in the works [BBL2], [Ha], [BD], [BSZ1]-[BSZ4], and others. In the present work we prove the existence of the scaling limit for a class of {\\it non-Gaussian} random polynomials. Our main result is that away from the origin the scali...
Universality of Correlation Functions in Random Matrix Models of QCD
Jackson, A D; Verbaarschot, J J M
1997-01-01
We demonstrate the universality of the spectral correlation functions of a QCD inspired random matrix model that consists of a random part having the chiral structure of the QCD Dirac operator and a deterministic part which describes a schematic temperature dependence. We calculate the correlation functions analytically using the technique of Itzykson-Zuber integrals for arbitrary complex super-matrices. An alternative exact calculation for arbitrary matrix size is given for the special case of zero temperature, and we reproduce the well-known Laguerre kernel. At finite temperature, the microscopic limit of the correlation functions are calculated in the saddle point approximation. The main result of this paper is that the microscopic universality of correlation functions is maintained even though unitary invariance is broken by the addition of a deterministic matrix to the ensemble.
Random matrix approach to cross correlations in financial data
Plerou, Vasiliki; Gopikrishnan, Parameswaran; Rosenow, Bernd; Amaral, Luís A.; Guhr, Thomas; Stanley, H. Eugene
2002-06-01
We analyze cross correlations between price fluctuations of different stocks using methods of random matrix theory (RMT). Using two large databases, we calculate cross-correlation matrices C of returns constructed from (i) 30-min returns of 1000 US stocks for the 2-yr period 1994-1995, (ii) 30-min returns of 881 US stocks for the 2-yr period 1996-1997, and (iii) 1-day returns of 422 US stocks for the 35-yr period 1962-1996. We test the statistics of the eigenvalues λi of C against a ``null hypothesis'' - a random correlation matrix constructed from mutually uncorrelated time series. We find that a majority of the eigenvalues of C fall within the RMT bounds [λ-,λ+] for the eigenvalues of random correlation matrices. We test the eigenvalues of C within the RMT bound for universal properties of random matrices and find good agreement with the results for the Gaussian orthogonal ensemble of random matrices-implying a large degree of randomness in the measured cross-correlation coefficients. Further, we find that the distribution of eigenvector components for the eigenvectors corresponding to the eigenvalues outside the RMT bound display systematic deviations from the RMT prediction. In addition, we find that these ``deviating eigenvectors'' are stable in time. We analyze the components of the deviating eigenvectors and find that the largest eigenvalue corresponds to an influence common to all stocks. Our analysis of the remaining deviating eigenvectors shows distinct groups, whose identities correspond to conventionally identified business sectors. Finally, we discuss applications to the construction of portfolios of stocks that have a stable ratio of risk to return.
Anomalous diffusion in correlated continuous time random walks
Energy Technology Data Exchange (ETDEWEB)
Tejedor, Vincent; Metzler, Ralf, E-mail: metz@ph.tum.d [Physics Department T30 g, Technical University of Munich, 85747 Garching (Germany)
2010-02-26
We demonstrate that continuous time random walks in which successive waiting times are correlated by Gaussian statistics lead to anomalous diffusion with the mean squared displacement (r{sup 2}(t)) {approx_equal} t{sup 2/3}. Long-ranged correlations of the waiting times with a power-law exponent alpha (0 < alpha <= 2) give rise to subdiffusion of the form (r{sup 2}(t)) {approx_equal} t{sup {alpha}/(1+{alpha})}. In contrast, correlations in the jump lengths are shown to produce superdiffusion. We show that in both cases weak ergodicity breaking occurs. Our results are in excellent agreement with simulations. (fast track communication)
No-signaling, perfect bipartite dichotomic correlations and local randomness
Seevinck, M P
2011-01-01
The no-signaling constraint on bi-partite correlations is reviewed. It is shown that in order to obtain non-trivial Bell-type inequalities that discern no-signaling correlations from more general ones, one must go beyond considering expectation values of products of observables only. A new set of nontrivial no-signaling inequalities is derived which have a remarkably close resemblance to the CHSH inequality, yet are fundamentally different. A set of inequalities by Roy and Singh and Avis et al., which is claimed to be useful for discerning no-signaling correlations, is shown to be trivially satisfied by any correlation whatsoever. Finally, using the set of newly derived no-signaling inequalities a result with potential cryptographic consequences is proven: if different parties use identical devices, then, once they have perfect correlations at spacelike separation between dichotomic observables, they know that because of no-signaling the local marginals cannot but be completely random.
Correlated multiplexity induces unusual connectivity in multiplex random networks
Lee, Kyu-Min; Cho, Won-kuk; Goh, K -I; Kim, I -M
2011-01-01
Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a node's degree for one type of links and that for the other are not randomly distributed but correlated, which we term correlated multiplexity. In this paper we study a simple model of multiplex random networks and show that the correlated multiplexity can induce unusual properties of giant component in the network. Specifically, when the degrees of a node for different interactions in a duplex Erdos-Renyi network are maximally correlated, the network contains the giant component for any nonzero link densities. On the contrary, when the degrees of a node are maximally anti-correlated, the emergence of giant component is significantly delayed, yet the entire network becomes connected into a single component at a finite link density. We also discuss the mixing patterns and the cases with imperfect correlated multiplexity.
Generation of correlated finite alphabet waveforms using gaussian random variables
Jardak, Seifallah
2014-09-01
Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.
Bose-Einstein Correlations from Random Walk Models
Tomasik, Boris; Pisút, J; Tomasik, Boris; Heinz, Ulrich; Pisut, Jan
1998-01-01
We argue that the recently suggested ``random walk models'' for the extrapolation of hadronic transverse mass spectra from pp or pA to AB collisions fail to describe existing data on Bose-Einstein correlations. In particular they are unable to reproduce the measured magnitude and K_\\perp-dependence of R_s in Pb+Pb collisions and the increase of R_l with increasing size of the collision system.
Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables
Jardak, Seifallah
2012-11-01
The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.
Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals
Directory of Open Access Journals (Sweden)
Sebastián Pantoja
2009-08-01
Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.
Generation of correlated finite alphabet waveforms using gaussian random variables
Ahmed, Sajid
2016-01-13
Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.
Liouville field theory and log-correlated Random Energy Models
Cao, Xiangyu; Rosso, Alberto; Santachiara, Raoul
2016-01-01
An exact mapping is established between the $c\\geq25$ Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian Free Field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry breaking methods. Operator product expansions in LFT allow to unveil novel universal behaviours of the log-correlated Random Energy class. High precision numerical tests are given.
Characterization of maximally random jammed sphere packings: Voronoi correlation functions.
Klatt, Michael A; Torquato, Salvatore
2014-11-01
We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a
Correlated continuous time random walk and option pricing
Lv, Longjin; Xiao, Jianbin; Fan, Liangzhong; Ren, Fuyao
2016-04-01
In this paper, we study a correlated continuous time random walk (CCTRW) with averaged waiting time, whose probability density function (PDF) is proved to follow stretched Gaussian distribution. Then, we apply this process into option pricing problem. Supposing the price of the underlying is driven by this CCTRW, we find this model captures the subdiffusive characteristic of financial markets. By using the mean self-financing hedging strategy, we obtain the closed-form pricing formulas for a European option with and without transaction costs, respectively. At last, comparing the obtained model with the classical Black-Scholes model, we find the price obtained in this paper is higher than that obtained from the Black-Scholes model. A empirical analysis is also introduced to confirm the obtained results can fit the real data well.
Sharp critical behavior for pinning model in random correlated environment
Berger, Quentin
2011-01-01
This article investigates the effect for random pinning models of long range power-law decaying correlations in the environment. For a particular type of environment based on a renewal construction, we are able to sharply describe the phase transition from the delocalized phase to the localized one, giving the critical exponent for the (quenched) free-energy, and proving that at the critical point the trajectories are fully delocalized. These results contrast with what happens both for the pure model (i.e. without disorder) and for the widely studied case of i.i.d. disorder, where the relevance or irrelevance of disorder on the critical properties is decided via the so-called Harris Criterion.
Correlated continuous-time random walks in external force fields
Magdziarz, Marcin; Metzler, Ralf; Szczotka, Wladyslaw; Zebrowski, Piotr
2012-05-01
We study the anomalous diffusion of a particle in an external force field whose motion is governed by nonrenewal continuous time random walks with correlated waiting times. In this model the current waiting time Ti is equal to the previous waiting time Ti-1 plus a small increment. Based on the associated coupled Langevin equations the force field is systematically introduced. We show that in a confining potential the relaxation dynamics follows power-law or stretched exponential pattern, depending on the model parameters. The process obeys a generalized Einstein-Stokes-Smoluchowski relation and observes the second Einstein relation. The stationary solution is of Boltzmann-Gibbs form. The case of an harmonic potential is discussed in some detail. We also show that the process exhibits aging and ergodicity breaking.
Cleaning large correlation matrices: Tools from Random Matrix Theory
Bun, Joël; Bouchaud, Jean-Philippe; Potters, Marc
2017-01-01
This review covers recent results concerning the estimation of large covariance matrices using tools from Random Matrix Theory (RMT). We introduce several RMT methods and analytical techniques, such as the Replica formalism and Free Probability, with an emphasis on the Marčenko-Pastur equation that provides information on the resolvent of multiplicatively corrupted noisy matrices. Special care is devoted to the statistics of the eigenvectors of the empirical correlation matrix, which turn out to be crucial for many applications. We show in particular how these results can be used to build consistent "Rotationally Invariant" estimators (RIE) for large correlation matrices when there is no prior on the structure of the underlying process. The last part of this review is dedicated to some real-world applications within financial markets as a case in point. We establish empirically the efficacy of the RIE framework, which is found to be superior in this case to all previously proposed methods. The case of additively (rather than multiplicatively) corrupted noisy matrices is also dealt with in a special Appendix. Several open problems and interesting technical developments are discussed throughout the paper.
Time-integrating acousto-optic correlator for wideband random noise radar
Kim, Sangtaek; Narayanan, Ram; Zhou, Wei; Wagner, Kelvin
2004-10-01
A time-integrating acousto-optic correlator (TIAOC) is a good candidate for imaging and target detection using a wideband random noise radar system. We have developed such a correlator for a random noise radar with a signal frequency range of 1-2 GHz. This system has demonstrated good wideband signal correlation performance with good dynamic range and fine tuning of delays.
Detecting bimodality in astronomical datasets
Ashman, Keith A.; Bird, Christina M.; Zepf, Stephen E.
1994-01-01
We discuss statistical techniques for detecting and quantifying bimodality in astronomical datasets. We concentrate on the KMM algorithm, which estimates the statistical significance of bimodality in such datasets and objectively partitions data into subpopulations. By simulating bimodal distributions with a range of properties we investigate the sensitivity of KMM to datasets with varying characteristics. Our results facilitate the planning of optimal observing strategies for systems where bimodality is suspected. Mixture-modeling algorithms similar to the KMM algorithm have been used in previous studies to partition the stellar population of the Milky Way into subsystems. We illustrate the broad applicability of KMM by analyzing published data on globular cluster metallicity distributions, velocity distributions of galaxies in clusters, and burst durations of gamma-ray sources. FORTRAN code for the KMM algorithm and directions for its use are available from the authors upon request.
Estimation of Correlation Functions by the Random DEC Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, Steen; Jensen, Jakob Laigaard
The Random Dec Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the most important properties of the technique is given. The review is mainly based on recently achieved results that are still unpublished, or that has just...... of the level trig condition on simulated data. The technique proves to be accurate and fast compared to traditional FFT analysis....... been published. In the review theoretical results are given, including results for general trig conditions, fundamental solutions for the case of Gaussian processes, and closed form solutions for the variance of the Random Dec signature. The potential of the technique is illustrated by application...
Auto-correlation Properties of Scattering Light in Ultrasound-modulated Random Media
Institute of Scientific and Technical Information of China (English)
ZHANG Xiqin; XING Da; LIU Ying; MA Shining
2001-01-01
In this paper, the auto-correlation properties of scattering light in random media modulated by ultrasound were studied. The expression of temporal auto-correlation function of scattering light amplitude in the ultrasound-modulated media was presented. The results show that the auto-correlation function is modulated as the ultrasound is introduced into the media and the modulation amplitude decays with correlation time. The influences of ultrasound amplitude, Brownian diffusion coefficient, scattering and absorption coefficients on auto-correlation function were discussed. The auto-correlation imaging of an object hidden in random media was also studied by the use of Monte Carlo simulations.
LARGE DEVIATION FOR THE EMPIRICAL CORRELATION COEFFICIENT OF TWO GAUSSIAN RANDOM VARIABLES
Institute of Scientific and Technical Information of China (English)
Shen Si
2007-01-01
In this article, the author obtains the large deviation principles for the empirical correlation coefficient of two Gaussian random variables X and Y. Especially, when considering two independent Gaussian random variables X, Y with the means EX, EY(both known), wherein the author gives two kinds of different proofs and gets the same results.
Electron correlation effects beyond the random phase approximation
Fan, J. D.; Malozovsky, Y. M.
2016-04-01
The methods that have been used to deal with a many-particle system can be basically sorted into three types: Hamiltonian, field theory and phenomenological method. The first two methods are more popular. Traditionally, the Hamiltonian method has been widely adopted in the conventional electronic theory for metals, alloys and semiconductors. Basically, the mean-field approximation (MFA) that has been working well for a weakly coupled system like a metal is employed to simplify a Hamiltonian corresponding to a particular electron system. However, for a strongly coupled many-particle system like a cuprate superconductor MFA should in principle not apply. Therefore, the field theory on the basis of Green’s function and the Feynman diagrams must be invoked. In this method, one is however more familiar with the random phase approximation (RPA) that gives rise to the same results as MFA because of being short of the information for higher-order terms of interaction. For a strongly coupled electron system, it is obvious that one has to deal with higher-order terms of a pair interaction to get a correct solution. Any ignorance of the higher-order terms implies that the more sophisticated information contained in those terms is discarded. However, to date one has not reached a consensus on how to deal with the higher-order terms beyond RPA. We preset here a method that is termed the diagrammatic iteration approach (DIA) and able to derive higher-order terms of the interaction from the information of lower-order ones on the basis of Feynman diagram, with which one is able to go beyond RPA step by step. It is in principle possible that all of higher-order terms can be obtained, and then sorted to groups of diagrams. It turns out that each of the groups can be replaced by an equivalent one, forming a diagrammatic Dyson-equation-like relation. The diagrammatic solution is eventually “translated” to a four-dimensional integral equation. The method can be applied to a
Basura, Gregory J; Koehler, Seth D; Shore, Susan E
2015-12-01
Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit.
Efficient generation of correlated random numbers using Chebyshev-optimal magnitude-only IIR filters
Rodríguez, A; Johnson, Steven G.; Rodriguez, Alejandro
2007-01-01
We compare several methods for the efficient generation of correlated random sequences (colored noise) by filtering white noise to achieve a desired correlation spectrum. We argue that a class of IIR filter-design techniques developed in the 1970s, which obtain the global Chebyshev-optimum minimum-phase filter with a desired magnitude and arbitrary phase, are uniquely suited for this problem but have seldom been used. The short filters that result from such techniques are crucial for applications of colored noise in physical simulations involving random processes, for which many long random sequences must be generated and computational time and memory are at a premium.
On the Bimodality of ENSO Cycle Extremes
Wilson, Robert M.
1999-01-01
On the basis of sea surface temperature in the Nino 3.4 region (5 deg N-5 deg S, 120 deg- 170 deg W) during the interval of 1950-1997, Kevin Trenberth previously has identified some 16 El Nino and 10 La Nina, these 26 events representing the extremes of the quasi-periodic El Nino-Southern Oscillation (ENSO) cycle. Runs testing shows that the duration and recurrence period associated with these extremes vary randomly, as does the sequencing of the extremes. Hence, the frequency of occurrence of these events during the 1990s, especially, for El Nino should not be construed as being significantly different from that of previous epochs. Additionally, the distribution of duration for both El Nino and La Nina looks bimodal, consisting of two preferred modes - about 8 and 16 months in length for El Nino and about 9 and 18 months in length for La Nina. Likewise, the distribution of recurrence period, especially, for El Nino looks bimodal, consisting of two preferred modes - about 21 and 50 months in length. Scatter plots of the recurrence period versus duration for El Nino strongly suggest preferential associations between them, linking shorter (longer) duration with shorter (longer) recurrence period. Because the last known onset of El Nino occurred in April 1997 and the event was of longer than average duration, one infers that the onset of the next expected El Nino will not occur until February 2000 or later.
Penetration in bimodal, polydisperse granular material
Kouraytem, N.
2016-11-07
We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.
Penetration in bimodal, polydisperse granular material
Kouraytem, N.; Thoroddsen, S. T.; Marston, J. O.
2016-11-01
We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between δ =0.5 D0 and δ =7 D0 , which, for mono-modal media only, could be correlated in terms of the total drop height, H =h +δ , as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [ds˜O (30 ) μ m ] were added to the larger particles [dl˜O (200 -500 ) μ m ] , with a size ratio, ɛ =dl/ds , larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.
Indian Academy of Sciences (India)
N Deo
2002-02-01
This paper summarizes some work that I have been doing on eigenvalue correlators of random matrix models which show some interesting behavior. First we consider matrix models with gaps in their spectrum or density of eigenvalues. The density–density correlators of these models depend on whether , where is the size of the matrix, takes even or odd values. The fact that this dependence persists in the large thermodynamic limit is an unusual property and may have consequences in the study of one electron effects in mesoscopic systems. Secondly, we study the parametric and cross correlators of the Harish Chandra–Itzykson–Zuber matrix model. The analytic expressions determine how the correlators change as a parameter (e.g. the strength of a perturbation in the Hamiltonian of the chaotic system or external magnetic ﬁeld on a sample of material) is varied. The results are relevant for the conductance ﬂuctuations in disordered mesoscopic systems.
Kim, Sangtaek; Wagner, Kelvin H.; Narayanan, Ram M.; Zhou, Wei
2005-10-01
We describe a time-integrating acousto-optic correlator (TIAOC) developed for imaging and target detection using a wideband random-noise radar system. This novel polarization interferometric in-line TIAOC uses an intensity-modulated laser diode for the random noise reference and a polarization-switching, self-collimating acoustic shear-mode gallium phosphide (GaP) acousto-optic device for traveling-wave modulation of the radar returns. The time-integrated correlation output is detected on a 1-D charge-coupled device (CCD) detector array and calibrated and demodulated in real time to produce the complex radar range profile. The complex radar reflectivity is measured in more than 150 radar range bins in parallel on the 3000 pixels of the CCD, improving target acquisition speeds and sensitivities by 150 over previous serial analog correlator approaches. The polarization interferometric detection of the correlation using the undiffracted light as the reference allows us to use the full acousto-optic device (AOD) bandwidth as the system bandwidth. Also, the experimental result shows the fully complex random-noise signal correlation and coherent demodulation without an explicit carrier, demonstrating that optically processed random-noise radars do not need a stable local oscillator.
Jain, S
1996-01-01
Random matrix theory (RMT) provides a common mathematical formulation of distinct physical questions in three different areas: quantum chaos, the 1-d integrable model with the $1/r^2$ interaction (the Calogero-Sutherland-Moser system), and 2-d quantum gravity. We review the connection of RMT with these areas. We also discuss the method of loop equations for determining correlation functions in RMT, and smoothed global eigenvalue correlators in the 2-matrix model for gaussian orthogonal, unitary and symplectic ensembles.
Wang, Gang-Jin; Xie, Chi; Chen, Shou; Yang, Jiao-Jiao; Yang, Ming-Yan
2013-09-01
In this study, we first build two empirical cross-correlation matrices in the US stock market by two different methods, namely the Pearson’s correlation coefficient and the detrended cross-correlation coefficient (DCCA coefficient). Then, combining the two matrices with the method of random matrix theory (RMT), we mainly investigate the statistical properties of cross-correlations in the US stock market. We choose the daily closing prices of 462 constituent stocks of S&P 500 index as the research objects and select the sample data from January 3, 2005 to August 31, 2012. In the empirical analysis, we examine the statistical properties of cross-correlation coefficients, the distribution of eigenvalues, the distribution of eigenvector components, and the inverse participation ratio. From the two methods, we find some new results of the cross-correlations in the US stock market in our study, which are different from the conclusions reached by previous studies. The empirical cross-correlation matrices constructed by the DCCA coefficient show several interesting properties at different time scales in the US stock market, which are useful to the risk management and optimal portfolio selection, especially to the diversity of the asset portfolio. It will be an interesting and meaningful work to find the theoretical eigenvalue distribution of a completely random matrix R for the DCCA coefficient because it does not obey the Marčenko-Pastur distribution.
Spectral density of the correlation matrix of factor models: a random matrix theory approach.
Lillo, F; Mantegna, R N
2005-07-01
We studied the eigenvalue spectral density of the correlation matrix of factor models of multivariate time series. By making use of the random matrix theory, we analytically quantified the effect of statistical uncertainty on the spectral density due to the finiteness of the sample. We considered a broad range of models, ranging from one-factor models to hierarchical multifactor models.
Laws of Large Numbers of Negatively Correlated Random Variables for Capacities
Institute of Scientific and Technical Information of China (English)
Wen-juan LI; Zeng-jing CHEN
2011-01-01
Our aim is to present some limit theorems for capacities.We consider a sequence of pairwise negatively correlated random variables.We obtain laws of large numbers for upper probabilities and 2-aiternating capacities,using some results in the classical probability theory and a non-additive version of Chebyshev's inequality and Borai-Contelli lemma for capacities.
Analysis of Inter-Domain Traffic Correlations: Random Matrix Theory Approach
Rojkova, Viktoria
2007-01-01
The traffic behavior of University of Louisville network with the interconnected backbone routers and the number of Virtual Local Area Network (VLAN) subnets is investigated using the Random Matrix Theory (RMT) approach. We employ the system of equal interval time series of traffic counts at all router to router and router to subnet connections as a representation of the inter-VLAN traffic. The cross-correlation matrix C of the traffic rate changes between different traffic time series is calculated and tested against null-hypothesis of random interactions. The majority of the eigenvalues \\lambda_{i} of matrix C fall within the bounds predicted by the RMT for the eigenvalues of random correlation matrices. The distribution of eigenvalues and eigenvectors outside of the RMT bounds displays prominent and systematic deviations from the RMT predictions. Moreover, these deviations are stable in time. The method we use provides a unique possibility to accomplish three concurrent tasks of traffic analysis. The metho...
Bimodal Galaxies and Bimodality in Globular Cluster Systems
Forbes, D A
2005-01-01
Various galaxy properties are not continuous over a large range in mass, but rather reveal a remarkable transition or `bimodality' at a stellar mass of 3 x 10^{10} Mo. These properties include colors, stellar populations, Xray emission and mass-to-light ratios. This behavior has been interpreted as the transition from hot to cold flows by Dekel & Birnboim (2005). Here we explore whether globular cluster (GC) systems also reveal a bimodal nature with regard to this critical mass scale. Globular clusters probe star formation at early epochs in the Universe and survive subsequent galaxy mergers and accretions. We use new data from the ACS Virgo Cluster Survey (Peng etal 2005), which provides a homogeneous sample of the GC systems around one hundred Virgo early-type galaxies covering a range of five hundred in galaxy mass. Their classification of the GC color distributions is taken to examine a key quantity -- the number of GCs per unit galaxy luminosity. Below the critical mass, this quantity (called the GC ...
Solitary Dunes under Bimodal Winds
Reffet, Erwan; Courrech du Pont, S.; Hersen, P.; Fulchignoni, M.; Douady, S.
2009-01-01
The high resolution and coverage achieved on Mars' surface have detailed lots of sand dunes of various types [1]. Many are reported as barchan or barchanoid dunes and present a diversity of shape ascribed to compound wind regimes, collisions or cementation. This diversity reminds us that aeolian structures are fairly complex. Although dunes have been extensively observed and documented, the conditions of their formation and evolution are still difficult to study because of the long time required for their development and their large length-scale. We developed a laboratory approach using underwater experiments to study the morphology of dunes. This method has been used successfully to reproduce various types of dunes downsized to a few centimeters. Barchan dunes are formed using a unidirectional wind-equivalent regime on a pile of ceramic sand-sized grains [2]. Changing the wind regime to a more complex one reveals other structures. In the case of multiple wind directions star dunes can be observed. A bimodal wind regime, e.g. switching between two distinct directions, over an homogeneous layer of sand leads to transverse, longitudinal or complex compound sandbeds depending on the angle between these wind directions [3]. Here, we apply bimodal wind regimes to isolated patches of sand in order to observe the variation of morphology of the resulting dunes. We present the barchanoid dunes obtained for various angles of bimodal wind and show the transition to the "chestnut” dunes type. We also investigate sudden variations in wind direction over a barchan dune. Therefore, we illustrate how the (not so) simple barchan shape can be affected by a more complex wind regime and give a new insight in understanding dunes on Mars. [1] http://www.mars-dunes.org/ . [2] Hersen et al. PRL, 2003. [3] Reffet et al. pldu.work 2008.
Institute of Scientific and Technical Information of China (English)
程传福; 刘曼; 滕树云; 宋洪胜; 陈建平; 徐至展
2003-01-01
A method for the extracting the correlation functions of random surfaces is proposed by using the image speckle intensity. Theoretically, we analyse the integral expression of average intensity of the image speckles, and compare it with the pair of Fourier-Bessel-transform-and-the-inversion of the exponential function of the height-height correlation function of the random surfaces. Then the algorithm is proposed numerically to complement the lacking Bessel function factor in the expression of the average speckle intensity, which changes the intensity data into the pair of the Fourier-Bessel-transform. Experimentally, we measure the average image speckle intensities versus the radius of the filtering aperture in the 4 f system and extract the height-height correlation function by using the proposed algorithm. The results of the practical measurements for three surface samples and the comparison with those by atomic force microscopy validate the feasibility of this method.
Yamanaka, Masanori
2013-08-01
We apply the random matrix theory to analyze the molecular dynamics simulation of macromolecules, such as proteins. The eigensystem of the cross-correlation matrix for the time series of the atomic coordinates is analyzed. We study a data set with seven different sampling intervals to observe the characteristic motion at each time scale. In all cases, the unfolded eigenvalue spacings are in agreement with the predictions of random matrix theory. In the short-time scale, the cross-correlation matrix has the universal properties of the Gaussian orthogonal ensemble. The eigenvalue distribution and inverse participation ratio have a crossover behavior between the universal and nonuniversal classes, which is distinct from the known results such as the financial time series. Analyzing the inverse participation ratio, we extract the correlated cluster of atoms and decompose it to subclusters.
Degree-correlation, omniscience, and randomized immunization protocols in finite networks
Alm, Jeremy F
2016-01-01
Many naturally occurring networks have a power-law degree distribution as well as a non-zero degree correlation. Despite this, most studies analyzing the efficiency of immunization strategies in networks have concentrated only on power-law degree distribution and ignored degree correlation. This study looks specifically at the effect degree-correlation has on the efficiency of several immunization strategies in scale-free networks. Generally, we found that positive degree correlation raises the number of immunized individuals needed to stop the spread of the infection. Importantly, we found that in networks with positive degree correlation, immunization strategies that utilize knowledge of initial popularity actually perform worse on average than random immunization strategies.
Dune formation under bimodal winds.
Parteli, Eric J R; Durán, Orencio; Tsoar, Haim; Schwämmle, Veit; Herrmann, Hans J
2009-12-29
The study of dune morphology represents a valuable tool in the investigation of planetary wind systems--the primary factor controlling the dune shape is the wind directionality. However, our understanding of dune formation is still limited to the simplest situation of unidirectional winds: There is no model that solves the equations of sand transport under the most common situation of seasonally varying wind directions. Here we present the calculation of sand transport under bimodal winds using a dune model that is extended to account for more than one wind direction. Our calculations show that dunes align longitudinally to the resultant wind trend if the angle(w) between the wind directions is larger than 90 degrees. Under high sand availability, linear seif dunes are obtained, the intriguing meandering shape of which is found to be controlled by the dune height and by the time the wind lasts at each one of the two wind directions. Unusual dune shapes including the "wedge dunes" observed on Mars appear within a wide spectrum of bimodal dune morphologies under low sand availability.
Geisseler, Olivia; Pflugshaupt, Tobias; Buchmann, Andreas; Bezzola, Ladina; Reuter, Katja; Schuknecht, Bernhard; Weller, David; Linnebank, Michael; Brugger, Peter
2016-09-01
Human subjects typically deviate systematically from randomness when attempting to produce a sequence of random numbers. Despite an increasing number of behavioral and functional neuroimaging studies on random number generation (RNG), its structural correlates have never been investigated. We set out to fill this gap in 44 patients with multiple sclerosis (MS), a disease whose impact on RNG has never been studied. The RNG task required the paced (1 Hz) generation of the numbers from 1 to 6 in a sequence as random as possible. The same task was administered in 39 matched healthy controls. To assess neuroanatomical correlates such as cortical thickness, lesion load and third ventricle width, all subjects underwent high-resolution structural MRI. Compared to controls, MS patients exhibited an enhanced tendency to arrange consecutive numbers in an ascending order ("forward counting"). Furthermore, patients showed a higher susceptibility to rule breaks (producing out-of-category digits like 7) and to skip beats of the metronome. Clinico-anatomical correlation analyses revealed two main findings: First, increased counting in MS patients was associated with higher cortical lesion load. Second, increased number of skipped beats was related to widespread cortical thinning. In conclusion, our test results illustrate a loss of behavioral complexity in the course of MS, while the imaging results suggest an association between this loss and cortical pathology.
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.
2015-02-01
In this paper, the optimal least-squares state estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems with state transition and measurement random parameter matrices and correlated noises. It is assumed that at any sampling time, as a consequence of possible failures during the transmission process, one-step delays with different delay characteristics may occur randomly in the received measurements. The random delay phenomenon is modelled by using a different sequence of Bernoulli random variables in each sensor. The process noise and all the sensor measurement noises are one-step autocorrelated and different sensor noises are one-step cross-correlated. Also, the process noise and each sensor measurement noise are two-step cross-correlated. Based on the proposed model and using an innovation approach, the optimal linear filter is designed by a recursive algorithm which is very simple computationally and suitable for online applications. A numerical simulation is exploited to illustrate the feasibility of the proposed filtering algorithm.
Correlation and volatility in an Indian stock market: A random matrix approach
Kulkarni, Varsha; Deo, Nivedita
2007-11-01
We examine the volatility of an Indian stock market in terms of correlation of stocks and quantify the volatility using the random matrix approach. First we discuss trends observed in the pattern of stock prices in the Bombay Stock Exchange for the three-year period 2000 2002. Random matrix analysis is then applied to study the relationship between the coupling of stocks and volatility. The study uses daily returns of 70 stocks for successive time windows of length 85 days for the year 2001. We compare the properties of matrix C of correlations between price fluctuations in time regimes characterized by different volatilities. Our analyses reveal that (i) the largest (deviating) eigenvalue of C correlates highly with the volatility of the index, (ii) there is a shift in the distribution of the components of the eigenvector corresponding to the largest eigenvalue across regimes of different volatilities, (iii) the inverse participation ratio for this eigenvector anti-correlates significantly with the market fluctuations and finally, (iv) this eigenvector of C can be used to set up a Correlation Index, CI whose temporal evolution is significantly correlated with the volatility of the overall market index.
Novaes, Marcel
2015-06-01
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = - iħS†dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
Energy Technology Data Exchange (ETDEWEB)
Novaes, Marcel [Instituto de Física, Universidade Federal de Uberlândia, Ave. João Naves de Ávila, 2121, Uberlândia, MG 38408-100 (Brazil)
2015-06-15
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
Bimodality: a possible experimental signature of the liquid-gas phase transition of nuclear matter
2006-01-01
We have observed a bimodal behaviour of the distribution of the asymmetry between the charges of the two heaviest products resulting from the decay of the quasi-projectile released in binary Xe+Sn and Au+Au collisions from 60 to 100 MeV/u. Event sorting has been achieved through the transverse energy of light charged particles emitted on the quasi-target side, thus avoiding artificial correlations between the bimodality signal and the sorting variable. Bimodality is observed for intermediate ...
Intensity correlations in metal films with periodic-on-average random nanohole arrays
Kumar, Randhir; Mujumdar, Sushil
2016-12-01
We report detailed numerical studies based on three-dimensional finite-difference time domain computations of the intensity-intensity correlations in deliberately randomized, periodic-on-average systems. Correlation analyses are carried out in plasmonic thin films with nanohole arrays as a function of strength of disorder. We find that the intensity at certain uncharacteristic wavelengths remains strongly correlated with that in the periodic system, and these wavelengths do not match the global maxima of the periodic transmission spectrum. The study indicates that the strength of correlations is related to the pinning of the intensity to the holes. Since the intensity pinning is special characteristic of metals, the effect is only applicable in plasmonic systems.
Mussard, Bastien; Jansen, Georg; Angyan, Janos
2016-01-01
Starting from the general expression for the ground state correlation energy in the adiabatic connection fluctuation dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the co...
Correlation functions of the one-dimensional random field Ising model at zero temperature
Farhi, E; Farhi, Edward; Gutmann, Sam
1993-01-01
We consider the one-dimensional random field Ising model, where the spin-spin coupling, $J$, is ferromagnetic and the external field is chosen to be $+h$ with probability $p$ and $-h$ with probability $1-p$. At zero temperature, we calculate an exact expression for the correlation length of the quenched average of the correlation function $\\langle s_0 s_n \\rangle - \\langle s_0 \\rangle \\langle s_n \\rangle$ in the case that $2J/h$ is not an integer. The result is a discontinuous function of $2J/h$. When $p = {1 \\over 2}$, we also place a bound on the correlation length of the quenched average of the correlation function $\\langle s_0 s_n \\rangle$.
BSA adsorption on bimodal PEO brushes
Bosker, WTE; Iakovlev, PA; Norde, W; Stuart, Martien A. Cohen
2005-01-01
BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N = 770) and short (N = 48) PEO chains and were prepared on PS surfaces, applying mixtures of PS29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodg
BSA adsorption on bimodal PEO brushes
Bosker, W.T.E.; Iakovlev, P.A.; Norde, W.; Cohen Stuart, M.A.
2005-01-01
BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS 29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodgett
Directory of Open Access Journals (Sweden)
R. Caballero-Águila
2014-01-01
Full Text Available The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms.
Karoui, Noureddine El
2009-01-01
We place ourselves in the setting of high-dimensional statistical inference, where the number of variables $p$ in a data set of interest is of the same order of magnitude as the number of observations $n$. More formally, we study the asymptotic properties of correlation and covariance matrices, in the setting where $p/n\\to\\rho\\in(0,\\infty),$ for general population covariance. We show that, for a large class of models studied in random matrix theory, spectral properties of large-dimensional correlation matrices are similar to those of large-dimensional covarance matrices. We also derive a Mar\\u{c}enko--Pastur-type system of equations for the limiting spectral distribution of covariance matrices computed from data with elliptical distributions and generalizations of this family. The motivation for this study comes partly from the possible relevance of such distributional assumptions to problems in econometrics and portfolio optimization, as well as robustness questions for certain classical random matrix result...
Kostinski, Alexander B.
2002-12-01
In response to comments by Borovoi [J. Opt. Soc. Am. A 19, 2517 (2002)] on my earlier work [J. Opt. Soc. Am. A 18, 1929 (2001)], the kinetic approach to extinction is compared with the traditional radiative transfer formalism and advantages of the former are illustrated with concrete examples. It is pointed out that the basic differential equation dI(l)=- cσI(l)dl already implies perfect randomness (absence of correlations) on small scales. One of the consequences is that the extinction of radiation in a negatively correlated random medium cannot be treated within the traditional framework. This limits the usefulness of the Jensen inequality. Also, simple counterexamples to theorems given in the first reference above and in Dokl. Akad. Nauk SSSR, 276, 1374 (1984) are presented.
Effects of 3D random correlated velocity perturbations on predicted ground motions
Hartzell, S.; Harmsen, S.; Frankel, A.
2010-01-01
Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.
Güven, Can; Hinczewski, Michael; Berker, A Nihat
2010-11-01
The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.
Probability distributions for directed polymers in random media with correlated noise
Chu, Sherry; Kardar, Mehran
2016-07-01
The probability distribution for the free energy of directed polymers in random media (DPRM) with uncorrelated noise in d =1 +1 dimensions satisfies the Tracy-Widom distribution. We inquire if and how this universal distribution is modified in the presence of spatially correlated noise. The width of the distribution scales as the DPRM length to an exponent β , in good (but not full) agreement with previous renormalization group and numerical results. The scaled probability is well described by the Tracy-Widom form for uncorrelated noise, but becomes symmetric with increasing correlation exponent. We thus find a class of distributions that continuously interpolates between Tracy-Widom and Gaussian forms.
Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo
2013-02-01
We analyzed cross-correlations between price fluctuations of global financial indices (20 daily stock indices over the world) and local indices (daily indices of 200 companies in the Korean stock market) by using random matrix theory (RMT). We compared eigenvalues and components of the largest and the second largest eigenvectors of the cross-correlation matrix before, during, and after the global financial the crisis in the year 2008. We find that the majority of its eigenvalues fall within the RMT bounds [ λ -, λ +], where λ - and λ + are the lower and the upper bounds of the eigenvalues of random correlation matrices. The components of the eigenvectors for the largest positive eigenvalues indicate the identical financial market mode dominating the global and local indices. On the other hand, the components of the eigenvector corresponding to the second largest eigenvalue are positive and negative values alternatively. The components before the crisis change sign during the crisis, and those during the crisis change sign after the crisis. The largest inverse participation ratio (IPR) corresponding to the smallest eigenvector is higher after the crisis than during any other periods in the global and local indices. During the global financial the crisis, the correlations among the global indices and among the local stock indices are perturbed significantly. However, the correlations between indices quickly recover the trends before the crisis.
Directory of Open Access Journals (Sweden)
Pretorius Albertus
2003-03-01
Full Text Available Abstract In the case of the mixed linear model the random effects are usually assumed to be normally distributed in both the Bayesian and classical frameworks. In this paper, the Dirichlet process prior was used to provide nonparametric Bayesian estimates for correlated random effects. This goal was achieved by providing a Gibbs sampler algorithm that allows these correlated random effects to have a nonparametric prior distribution. A sampling based method is illustrated. This method which is employed by transforming the genetic covariance matrix to an identity matrix so that the random effects are uncorrelated, is an extension of the theory and the results of previous researchers. Also by using Gibbs sampling and data augmentation a simulation procedure was derived for estimating the precision parameter M associated with the Dirichlet process prior. All needed conditional posterior distributions are given. To illustrate the application, data from the Elsenburg Dormer sheep stud were analysed. A total of 3325 weaning weight records from the progeny of 101 sires were used.
Directory of Open Access Journals (Sweden)
Raquel Caballero-Águila
2015-01-01
Full Text Available The distributed fusion state estimation problem is addressed for sensor network systems with random state transition matrix and random measurement matrices, which provide a unified framework to consider some network-induced random phenomena. The process noise and all the sensor measurement noises are assumed to be one-step autocorrelated and different sensor noises are one-step cross-correlated; also, the process noise and each sensor measurement noise are two-step cross-correlated. These correlation assumptions cover many practical situations, where the classical independence hypothesis is not realistic. Using an innovation methodology, local least-squares linear filtering estimators are recursively obtained at each sensor. The distributed fusion method is then used to form the optimal matrix-weighted sum of these local filters according to the mean squared error criterion. A numerical simulation example shows the accuracy of the proposed distributed fusion filtering algorithm and illustrates some of the network-induced stochastic uncertainties that can be dealt with in the current system model, such as sensor gain degradation, missing measurements, and multiplicative noise.
Kim, Jeong Phill; Jeong, Chi Hyun; Kim, Cheol Hoo
2011-06-01
A correlation processing algorithm in the spectral domain is proposed for detecting moving targets with random noise radar. AD converted reference and Rx signals are passed through FFT block, and they are multiplied after the reference signal is complex conjugated. Now inverse FFT yields the sub-correlation results, and range and velocity information can be accurately extracted by an additional FFT processing. In this design procedure, specific considerations have to be made for correlation length, averaging number, and number of sub-correlation data for Doppler processing. The proposed algorithm was verified by Simulink (Mathworks) simulation, and its logic was implemented with Xilinx FPGA device (Vertex5 series) by System Generator block sets (Xilinx) in the Simulink environment. A CW X-band random-FM noise radar prototype with an instantaneous bandwidth of 100 MHz was designed and implemented, and laboratory and field tests were conducted to detect moving targets, and the observed results showed the validity of the proposed algorithm and the operation of implemented FPGA logics.
A model for a correlated random walk based on the ordered extension of pseudopodia.
Directory of Open Access Journals (Sweden)
Peter J M Van Haastert
Full Text Available Cell migration in the absence of external cues is well described by a correlated random walk. Most single cells move by extending protrusions called pseudopodia. To deduce how cells walk, we have analyzed the formation of pseudopodia by Dictyostelium cells. We have observed that the formation of pseudopodia is highly ordered with two types of pseudopodia: First, de novo formation of pseudopodia at random positions on the cell body, and therefore in random directions. Second, pseudopod splitting near the tip of the current pseudopod in alternating right/left directions, leading to a persistent zig-zag trajectory. Here we analyzed the probability frequency distributions of the angles between pseudopodia and used this information to design a stochastic model for cell movement. Monte Carlo simulations show that the critical elements are the ratio of persistent splitting pseudopodia relative to random de novo pseudopodia, the Left/Right alternation, the angle between pseudopodia and the variance of this angle. Experiments confirm predictions of the model, showing reduced persistence in mutants that are defective in pseudopod splitting and in mutants with an irregular cell surface.
Alejos, Ana Vazques; Dawood, Muhammad
2012-06-01
In this contribution we examine the propagation of an ultrawideband (UWB) random noise signal through dispersive media such as soil, vegetation, and water, using Fourier-based analysis. For such media, the propagated signal undergoes medium-specific impairments which degrade the received signal in a different way than the non-dispersive propagation media. Theoretically, larger penetration depths into a dispersive medium can be achieved by identifying and detecting the precursors, thereby offering significantly better signal-to-noise ratio and enhanced imaging. For a random noise signal, well defined precursors in term of peak-amplitude don't occur. The phenomenon must therefore be studied in terms of energy evolution. Additionally, the distortion undergone by the UWB random noise signal through a dispersive medium can introduce frequency-dependent uncertainty or noise in the received signal. This leads to larger degradation of the cross-correlation function (CCF), mainly in terms of sidelobe levels and main peak deformation, and consequently making the information retrieval difficult. We would further analyze one method to restore the shape and carrier frequency of the input UWB random noise signal, thereby, improving the CCF estimation.
Evidence for a bimodal distribution in human communication.
Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim
2010-11-02
Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc.
The chiral phase transition in a random matrix model with molecular correlations
Wettig, T; Weidenmüller, H A; Wettig, Tilo
1995-01-01
The chiral phase transition of QCD is analyzed in a model combining random matrix elements of the Dirac operator with specially chosen non-random ones. The special form of the latter is motivated by the assumption that the fermionic quasi-zero modes associated with instanton and anti-instanton configurations determine the chiral properties of QCD. Our results show that the degree of correlation between these modes plays the decisive role. To reduce the value of the chiral condensate by more than a factor of 2 about 95 percent of the instantons and anti-instantons must form so-called molecules. This conclusion agrees with numerical results of the Stony Brook group.
Periodically correlated random processes: Application in early diagnostics of mechanical systems
Javorskyj, I.; Kravets, I.; Matsko, I.; Yuzefovych, R.
2017-01-01
The covariance and spectral characteristics of periodically correlated random processes (PCRP) are used to describe the state of rotary mechanical systems and in their fault detection. The methods for estimation of mean function, covariance function, instantaneous spectral density and their Fourier coefficients for a given class of non-stationary random processes on the basis of experimental data, namely: the synchronous averaging, component, least squares method and linear filtration methods are considered. The first and second order periodicity detection methods are used for vibration signals analysis. A method for mechanical system fault identification and classification based on a harmonic series representation is developed. Examples of fault detection in rolling/sliding bearings and gearboxes are given.
Gould, Tim
2012-01-01
The inhomogeneous Singwi, Tosi, Land and Sjolander (ISTLS) correlation energy functional of Dobson, Wang and Gould [PRB {\\bf 66} 081108(R) (2008)] has proved to be excellent at predicting correlation energies in semi-homogeneous systems, showing promise as a robust `next step' fifth-rung functional by using dynamic correlation to go beyond the limitations of the direct random-phase approximation (dRPA), but with similar numerical scaling with system size. In this work we test the functional on fourteen spherically symmetric, neutral and charged atomic systems and find it gives excellent results (within 2mHa/$e^-$ except Be) for the absolute correlation energies of the neutral atoms tested, and good results for the ions (within 4mHa/$e^-$). In all cases it performs better than the dRPA. When combined with the previous successes, these new results point to the ISTLS functional being a prime contender for high-accuracy, benchmark DFT correlation energy calculations.
Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G
2016-05-10
Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.
Bimodality: a possible experimental signature of the liquid-gas phase transition of nuclear matter
Pichon, M; Gulminelli, F; López, O; Tamain, B
2006-01-01
We have observed a bimodal behaviour of the distribution of the asymmetry between the charges of the two heaviest products resulting from the decay of the quasi-projectile released in binary Xe+Sn and Au+Au collisions from 60 to 100 MeV/u. Event sorting has been achieved through the transverse energy of light charged particles emitted on the quasi-target side, thus avoiding artificial correlations between the bimodality signal and the sorting variable. Bimodality is observed for intermediate impact parameters for which the quasi-projectile is identified. A simulation shows that the deexcitation step rather than the geometry of the collision appears responsible for the bimodal behaviour. The influence of mid-rapidity emission has been verified. The two bumps of the bimodal distribution correspond to different excitation energies and similar temperatures. It is also shown that it is possible to correlate the bimodality signal with a change in the distribution of the heaviest fragment charge and a peak in potent...
Scaled Correlations of Critical Points of Random Sections on Riemann Surfaces
Baber, John
2011-01-01
In this thesis we prove that as N goes to infinity, the scaling limit of the correlation between critical points z1 and z2 of random holomorphic sections of the N-th power of a positive line bundle over a compact Riemann surface tends to 2/(3pi^2) for small sqrt(N)|z1-z2|. The scaling limit is directly calculated using a general form of the Kac-Rice formula and formulas and theorems of Pavel Bleher, Bernard Shiffman, and Steve Zelditch.
Scaled Correlations of Critical Points of Random Sections on Riemann Surfaces
Baber, John
2012-08-01
In this paper we prove that as N goes to infinity, the scaling limit of the correlation between critical points z 1 and z 2 of random holomorphic sections of the N-th power of a positive line bundle over a compact Riemann surface tends to 2/(3 π 2) for small sqrt{N}|z1-nobreak z2|. The scaling limit is directly calculated using a general form of the Kac-Rice formula and formulas and theorems of Pavel Bleher, Bernard Shiffman, and Steve Zelditch.
Magnetic dynamo action in random flows with zero and finite correlation times
Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto
2011-01-01
Hydromagnetic dynamo theory provides the prevailing theoretical description for the origin of magnetic fields in the universe. Here we consider the problem of kinematic, small-scale dynamo action driven by a random, incompressible, non-helical, homogeneous and isotropic flow. In the Kazantsev dynamo model the statistics of the driving flow are assumed to be instantaneously correlated in time. Here we compare the results of the model with the dynamo properties of a simulated flow that has equivalent spatial characteristics as the Kazantsev flow but different temporal statistics. In particular, the simulated flow is a solution of the forced Navier-Stokes equations and hence has a finite correlation time. We find that the Kazantsev model typically predicts a larger magnetic growth rate and a magnetic spectrum that peaks at smaller scales. However, we show that by filtering the diffusivity spectrum at small scales it is possible to bring the growth rates into agreement and simultaneously align the magnetic spectr...
Irreducible complexity of iterated symmetric bimodal maps
Directory of Open Access Journals (Sweden)
J. P. Lampreia
2005-01-01
Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.
Directory of Open Access Journals (Sweden)
A. A. Adepoju
2009-01-01
Full Text Available Problem statement: All simultaneous equation estimation methods have some desirable asymptotic properties and these properties become effective in large samples. This study is relevant since samples available to researchers are mostly small in practice and are often plagued with the problem of mutual correlation between pairs of random deviates which is a violation of the assumption of mutual independence between pairs of such random deviates. The objective of this research was to study the small sample properties of these estimators when the errors are correlated to determine if the properties will still hold when available samples are relatively small and the errors were correlated. Approach: Most of the evidence on the small sample properties of the simultaneous equation estimators was studied from sampling (or Monte Carlo experiments. It is important to rank estimators on the merit they have when applied to small samples. This study examined the performances of five simultaneous estimation techniques using some of the basic characteristics of the sampling distributions rather than their full description. The characteristics considered here are the mean, the total absolute bias and the root mean square error. Results: The result revealed that the ranking of the five estimators in respect of the Average Total Absolute Bias (ATAB is invariant to the choice of the upper (P1 or lower (P2 triangular matrix. The result of the FIML using RMSE of estimates was outstandingly best in the open-ended intervals and outstandingly poor in the closed interval (-0.051 and P2 we re-combined. Conclusion: (i The ranking of the various simultaneous estimation methods considered based on their small sample properties differs according to the correlation status of the error term, the identifiability status of the equation and the assumed triangular matrix. (ii The nature of the relationship under study also determined which of the criteria for judging the
Institute of Scientific and Technical Information of China (English)
ZHANG; Yimin; (张义民); WANG; Shun; (王; 顺); LIU; Qiaoling; (刘巧伶); WEN; Bangchun; (闻邦椿)
2003-01-01
Based on the generalized probabilistic finite element method, this paper presents an approximate solution technique for general multi-degree-of-freedom nonlinear random vibration systems with random parameters. The fourth-moment technique, maximum entropy theory and incomplete probability information theory are employed to systematically develop a reliability analysis method for dynamic random structural systems with correlation failure modes under unavailable joint probability density functions of basic random variables. The first passage problem of multi-degree-of-freedom nonlinear random vibration systems is solved.
Khazaie, Shahram; Cottereau, Régis; Clouteau, Didier
2016-05-01
In the weakly heterogeneous regime of elastic wave propagation through a random medium, transport and diffusion models for the energy densities can be set up. In the isotropic case, the scattering cross sections are explicitly known as a function of the wavenumber and the correlations of the Lamé parameters and density. In this paper, we discuss the precise influence of the correlation structure on the scattering cross sections, mean free paths and diffusion parameter, and separate that influence from that of the correlation length and variance. We also analyze the convergence rates towards the low- and high-frequency ranges. For all analyses, we consider five different correlation structures that allow us to explore a wide range of behaviors. We identify that the controlling factors for the low-frequency behavior are the value of the Power Spectral Density Function (PSDF) and its first non-vanishing derivative at the origin. In the high frequency range, the controlling factor is the third moment of the PSDF (which may be unbounded).
Shi, F.; Lowe, M. J. S.; Craster, R. V.
2017-02-01
We propose an ultrasonic methodology to reconstruct the height correlation function of remotely inaccessible random rough surfaces in solids. The inverse method is based on the Kirchhoff approximation(KA), and it requires measuring the angular distribution of diffuse scattering intensities by sending in a narrow band incident pulse. Near field scattering effects are also included by considering the Fresnel assumption. The proposed approach is successfully verified by simulating the scattering from multiple realizations of rough surfaces whose correlation function is known, calculating the mean scattering intensities from these received signals, and then deploying the inverse method on these to reconstruct the original correlation function. Very good agreement between the reconstructed correlation function and the original is found, for a wide range of roughness parameters. In addition, the effect of reducing the number of realizations to approximate the mean intensity are investigated, providing confidence bounds for the experiment. An experiment on a corrugated rough surface is performed with a limited number of scans using a phased array, which further validates the proposed inversion algorithm.
First principle calculations of long range correlation effects within the random phase approximation
Lu, Deyu; Li, Yan; Wilson, Hugh; Galli, Giulia
2009-03-01
The local and semi-local approximations to Density Functional Theory fail to describe correctly certain types of weak interactions (e.g. van der Waals forces) due an incorrect account of long range correlation effects. Such effects may be described by computing correlation energies within the random phase approximation (RPA), using the fluctuation-dissipation theorem and the adiabatic connection. We present an approach to compute RPA correlation energies based on an eigenmode expansion of the dielectric matrix [1,2]. By solving the frequency dependent Sternheimer equation within linear response theory [3], we eliminate the need to compute single particle unoccupied states, which makes our approach more efficient than methods using the direct-summation technique. Furthermore, the use of a dielectric eigenmode representation allows for a physical interpretation of several, different contributions to correlation energies. Results for graphite and the benzene crystal will be discussed. [1] H. Wilson, F. Gygi and G. Galli, Phys. Rev. B, 78:113303, (2008). [2] D. Lu, F. Gygi and G. Galli, Phys. Rev. Lett., 100:147601(2008). [3] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73:515, (2001).
Random walks with fractally correlated traps: Stretched exponential and power-law survival kinetics
Plyukhin, Dan; Plyukhin, Alex V.
2016-10-01
We consider the survival probability f (t ) of a random walk with a constant hopping rate w on a host lattice of fractal dimension d and spectral dimension ds≤2 , with spatially correlated traps. The traps form a sublattice with fractal dimension dawa which may be finite (imperfect traps) or infinite (perfect traps). Initial coordinates are chosen randomly at or within a fixed distance of a trap. For weakly absorbing traps (wa≪w ), we find that f (t ) can be closely approximated by a stretched exponential function over the initial stage of relaxation, with stretching exponent α =1 -(d -da) /dw , where dw is the random walk dimension of the host lattice. At the end of this initial stage there occurs a crossover to power-law kinetics f (t ) ˜t-α with the same exponent α as for the stretched exponential regime. For strong absorption wa≳w , including the limit of perfect traps wa→∞ , the stretched exponential regime is absent and the decay of f (t ) follows, after a short transient, the aforementioned power law for all times.
Local randomness in Hardy's correlations: implications from the information causality principle
Energy Technology Data Exchange (ETDEWEB)
Gazi, MD. Rajjak [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B T Road, Kolkata-700 108 (India); Rai, Ashutosh [S N Bose National Center for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700 098 (India); Kunkri, Samir [Mahadevananda Mahavidyalaya, Monirampore, Barrackpore, North 24 Parganas 700 120 (India); Rahaman, Ramij, E-mail: rajjakgazimath@gmail.co, E-mail: arai@bose.res.i, E-mail: skunkri@yahoo.co, E-mail: ramij.rahaman@ii.uib.n [Selmer Center, Department of Informatics, University of Bergen, Bergen, PO Box-7803, N-5020 (Norway)
2010-11-12
Study of non-local correlations in terms of Hardy's argument has been quite popular in quantum mechanics. Hardy's non-locality argument depends on some kind of asymmetry, but a two-qubit maximally entangled state, being symmetric, does not exhibit this kind of non-locality. Here we ask the following question: can this feature be explained by some principle outside quantum mechanics? The no-signaling condition does not provide a solution. But, interestingly, the information causality principle (Pawlowski et al 2009 Nature 461 1101) offers an explanation. It shows that any generalized probability theory which gives completely random results for local dichotomic observable, cannot provide Hardy's non-local correlation if it is restricted by a necessary condition for respecting the information causality principle. In fact, the applied necessary condition imposes even more restrictions on the local randomness of measured observable. Still, there are some restrictions imposed by quantum mechanics that are not reproduced from the considered information causality condition. (fast track communication)
Directory of Open Access Journals (Sweden)
Clémence Isaac
2016-03-01
Full Text Available Background: Cognitive impairments are a core feature in schizophrenia and are linked to poor social functioning. Numerous studies have shown that cognitive remediation can enhance cognitive and functional abilities in patients with this pathology. The underlying mechanism of these behavioral improvements seems to be related to structural and functional changes in the brain. However, studies on neural correlates of such enhancement remain scarce. Objectives: We explored the neural correlates of cognitive enhancement following cognitive remediation interventions in schizophrenia and the differential effect between cognitive training and other therapeutic interventions or patients’ usual care. Method: We searched MEDLINE, PsycInfo, and ScienceDirect databases for studies on cognitive remediation therapy in schizophrenia that used neuroimaging techniques and a randomized design. Search terms included randomized controlled trial, cognitive remediation, cognitive training, rehabilitation, magnetic resonance imaging, positron emission tomography, electroencephalography, magnetoencephalography, near infrared spectroscopy, and diffusion tensor imaging. We selected randomized controlled trials that proposed multiple sessions of cognitive training to adult patients with a schizophrenia spectrum disorder and assessed its efficacy with imaging techniques. Results: In total, 15 reports involving 19 studies were included in the systematic review. They involved a total of 455 adult patients, 271 of whom received cognitive remediation. Cognitive remediation therapy seems to provide a neurobiological enhancing effect in schizophrenia. After therapy, increased activations are observed in various brain regions mainly in frontal – especially prefrontal – and also in occipital and anterior cingulate regions during working memory and executive tasks. Several studies provide evidence of an improved functional connectivity after cognitive training, suggesting a
Klatt, Michael A.; Torquato, Salvatore
2016-08-01
In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g2(r ) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the
Random matrix approach to group correlations in development country financial market
Qohar, Ulin Nuha Abdul; Lim, Kyuseong; Kim, Soo Yong; Liong, The Houw; Purqon, Acep
2015-12-01
Financial market is a borderless economic activity, everyone in this world has the right to participate in stock transactions. The movement of stocks is interesting to be discussed in various sciences, ranging from economists to mathe-maticians try to explain and predict the stock movement. Econophysics, as a discipline that studies the economic behavior using one of the methods in particle physics to explain stock movement. Stocks tend to be unpredictable probabilistic regarded as a probabilistic particle. Random Matrix Theory is one method used to analyze probabilistic particle is used to analyze the characteristics of the movement in the stock collection of developing country stock market shares of the correlation matrix. To obtain the characteristics of the developing country stock market and use characteristics of stock markets of developed countries as a parameter for comparison. The result shows market wide effect is not happened in Philipine market and weak in Indonesia market. Contrary, developed country (US) has strong market wide effect.
Hertog, Maarten L. A. T. M.; Scheerlinck, Nico; Nicolaï, Bart M.
2009-01-01
When modelling the behaviour of horticultural products, demonstrating large sources of biological variation, we often run into the issue of non-Gaussian distributed model parameters. This work presents an algorithm to reproduce such correlated non-Gaussian model parameters for use with Monte Carlo simulations. The algorithm works around the problem of non-Gaussian distributions by transforming the observed non-Gaussian probability distributions using a proposed SKN-distribution function before applying the covariance decomposition algorithm to generate Gaussian random co-varying parameter sets. The proposed SKN-distribution function is based on the standard Gaussian distribution function and can exhibit different degrees of both skewness and kurtosis. This technique is demonstrated using a case study on modelling the ripening of tomato fruit evaluating the propagation of biological variation with time.
van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.
Exploiting SNP correlations within random forest for genome-wide association studies.
Directory of Open Access Journals (Sweden)
Vincent Botta
Full Text Available The primary goal of genome-wide association studies (GWAS is to discover variants that could lead, in isolation or in combination, to a particular trait or disease. Standard approaches to GWAS, however, are usually based on univariate hypothesis tests and therefore can account neither for correlations due to linkage disequilibrium nor for combinations of several markers. To discover and leverage such potential multivariate interactions, we propose in this work an extension of the Random Forest algorithm tailored for structured GWAS data. In terms of risk prediction, we show empirically on several GWAS datasets that the proposed T-Trees method significantly outperforms both the original Random Forest algorithm and standard linear models, thereby suggesting the actual existence of multivariate non-linear effects due to the combinations of several SNPs. We also demonstrate that variable importances as derived from our method can help identify relevant loci. Finally, we highlight the strong impact that quality control procedures may have, both in terms of predictive power and loci identification. Variable importance results and T-Trees source code are all available at www.montefiore.ulg.ac.be/~botta/ttrees/ and github.com/0asa/TTree-source respectively.
Bimodal Nuclear Thermal Rocket Analysis Developments
Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark
2014-01-01
Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.
Language choice in bimodal bilingual development
Directory of Open Access Journals (Sweden)
Diane eLillo-Martin
2014-10-01
Full Text Available Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children.Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending – expressions in both speech and sign simultaneously – an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children’s language choices.This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult.Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant
Periodicity in bimodal atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Lai, Chia-Yun; Santos, Sergio, E-mail: santos-en@yahoo.com; Chiesa, Matteo [Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates); Barcons, Victor [Departament de Disseny i Programació de Sistemes Electrònics, UPC - Universitat Politècnica de Catalunya, Av. Bases, 61, 08242 Manresa (Barcelona) (Spain)
2015-07-28
Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.
Energy Technology Data Exchange (ETDEWEB)
Kasiviswanathan, Shiva [Los Alamos National Laboratory; Rudelson, Mark [UNIV OF MISSOURI; Smith, Adam [PENNSYLVANIA STATE U
2009-01-01
Contingency tables are the method of choice of government agencies for releasing statistical summaries of categorical data. In this paper, we consider lower bounds on how much distortion (noise) is necessary in these tables to provide privacy guarantees when the data being summarized is sensitive. We extend a line of recent work on lower bounds on noise for private data analysis [10, 13. 14, 15] to a natural and important class of functionalities. Our investigation also leads to new results on the spectra of random matrices with correlated rows. Consider a database D consisting of n rows (one per individual), each row comprising d binary attributes. For any subset of T attributes of size |T| = k, the marginal table for T has 2{sup k} entries; each entry counts how many times in the database a particular setting of these attributes occurs. Imagine an agency that wishes to release all (d/k) contingency tables for a given database. For constant k, previous work showed that distortion {tilde {Omicron}}(min{l_brace}n, (n{sup 2}d){sup 1/3}, {radical}d{sup k}{r_brace}) is sufficient for satisfying differential privacy, a rigorous definition of privacy that has received extensive recent study. Our main contributions are: (1) For {epsilon}- and ({epsilon}, {delta})-differential privacy (with {epsilon} constant and {delta} = 1/poly(n)), we give a lower bound of {tilde {Omega}}(min{l_brace}{radical}n, {radical}d{sup k}{r_brace}), which is tight for n = {tilde {Omega}}(d{sup k}). Moreover, for a natural and popular class of mechanisms based on additive noise, our bound can be strengthened to {Omega}({radical}d{sup k}), which is tight for all n. Our bounds extend even to non-constant k, losing roughly a factor of {radical}2{sup k} compared to the best known upper bounds for large n. (2) We give efficient polynomial time attacks which allow an adversary to reconstruct sensitive infonnation given insufficiently perturbed contingency table releases. For constant k, we obtain a
Deaf Children's Bimodal Bilingualism and Education
Swanwick, Ruth
2016-01-01
This paper provides an overview of the research into deaf children's bilingualism and bilingual education through a synthesis of studies published over the last 15 years. This review brings together the linguistic and pedagogical work on bimodal bilingualism to inform educational practice. The first section of the review provides a synthesis of…
Bimodal Networks as Candidates for Electroactive Polymers
DEFF Research Database (Denmark)
Bahrt, Frederikke; Daugaard, Anders Egede; Bejenariu, Anca Gabriela;
An alternative network formulation method was adopted in order to obtain a different type of silicone based elastomeric systems - the so-called bimodal networks - using two vinyl-terminated polydimethyl siloxanes (PDMS) of different molecular weight, a labelled crosslinker (3 or 4-functional), an...
Hedges, Larry V.; Hedberg, E. C.
2013-01-01
Background: Cluster-randomized experiments that assign intact groups such as schools or school districts to treatment conditions are increasingly common in educational research. Such experiments are inherently multilevel designs whose sensitivity (statistical power and precision of estimates) depends on the variance decomposition across levels.…
Hedges, Larry V.; Hedberg, Eric C.
2013-01-01
Background: Cluster randomized experiments that assign intact groups such as schools or school districts to treatment conditions are increasingly common in educational research. Such experiments are inherently multilevel designs whose sensitivity (statistical power and precision of estimates) depends on the variance decomposition across levels.…
Directory of Open Access Journals (Sweden)
Ming He
2015-11-01
Full Text Available We propose a random effects panel data model with both spatially correlated error components and spatially lagged dependent variables. We focus on diagnostic testing procedures and derive Lagrange multiplier (LM test statistics for a variety of hypotheses within this model. We first construct the joint LM test for both the individual random effects and the two spatial effects (spatial error correlation and spatial lag dependence. We then provide LM tests for the individual random effects and for the two spatial effects separately. In addition, in order to guard against local model misspecification, we derive locally adjusted (robust LM tests based on the Bera and Yoon principle (Bera and Yoon, 1993. We conduct a small Monte Carlo simulation to show the good finite sample performances of these LM test statistics and revisit the cigarette demand example in Baltagi and Levin (1992 to illustrate our testing procedures.
Duchesne, Thierry; Fortin, Daniel; Rivest, Louis-Paul
2015-01-01
Animal movement has a fundamental impact on population and community structure and dynamics. Biased correlated random walks (BCRW) and step selection functions (SSF) are commonly used to study movements. Because no studies have contrasted the parameters and the statistical properties of their estimators for models constructed under these two Lagrangian approaches, it remains unclear whether or not they allow for similar inference. First, we used the Weak Law of Large Numbers to demonstrate that the log-likelihood function for estimating the parameters of BCRW models can be approximated by the log-likelihood of SSFs. Second, we illustrated the link between the two approaches by fitting BCRW with maximum likelihood and with SSF to simulated movement data in virtual environments and to the trajectory of bison (Bison bison L.) trails in natural landscapes. Using simulated and empirical data, we found that the parameters of a BCRW estimated directly from maximum likelihood and by fitting an SSF were remarkably similar. Movement analysis is increasingly used as a tool for understanding the influence of landscape properties on animal distribution. In the rapidly developing field of movement ecology, management and conservation biologists must decide which method they should implement to accurately assess the determinants of animal movement. We showed that BCRW and SSF can provide similar insights into the environmental features influencing animal movements. Both techniques have advantages. BCRW has already been extended to allow for multi-state modeling. Unlike BCRW, however, SSF can be estimated using most statistical packages, it can simultaneously evaluate habitat selection and movement biases, and can easily integrate a large number of movement taxes at multiple scales. SSF thus offers a simple, yet effective, statistical technique to identify movement taxis.
Synthesis and Characterization of Bimodal Mesoporous Silica
Institute of Scientific and Technical Information of China (English)
ZHANG Xiaofang; GUO Cuili; WANG Xiaoli; WU Yuanyuan
2012-01-01
Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large mesopores.The structure of synthesized samples were characterized by Fourier transform infrared (FT-IR) spectroscopy,X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 adsorption-desorption measurements.The experimental results show that bimodal mesoporous silica consists of small mesopores of about 3 nm and large mesopores of about 45 nm.The small mesopores which were formed on the external surface and pore walls of the silica gel had similar characters with those of MCM-41,while large mesopores were inherited from parent silica gel material.The pore size distribution of the synthesized silica can be adjusted by changing the relative content of TEOS and silica gel or the feeding sequence of silica gel and NH4OH.
Bimodal representation of the tropical intraseasonal oscillation
Energy Technology Data Exchange (ETDEWEB)
Kikuchi, Kazuyoshi [University of Hawaii, International Pacific Research Center, School of Ocean and Earth Science and Technology, Manoa Honolulu, HI (United States); Wang, Bin [University of Hawaii, Department of Meteorology and International Pacific Research Center, School of Ocean and Earth Science and Technology, Manoa Honolulu, HI (United States); Kajikawa, Yoshiyuki [Nagoya University, Hydrospheric Atmospheric Research Center, Nagoya (Japan)
2012-05-15
The tropical intraseasonal oscillation (ISO) shows distinct variability centers and propagation patterns between boreal winter and summer. To accurately represent the state of the ISO at any particular time of a year, a bimodal ISO index was developed. It consists of Madden-Julian Oscillation (MJO) mode with predominant eastward propagation along the equator and Boreal Summer ISO (BSISO) mode with prominent northward propagation and large variability in off-equatorial monsoon trough regions. The spatial-temporal patterns of the MJO and BSISO modes are identified with the extended empirical orthogonal function analysis of 31 years (1979-2009) OLR data for the December-February and June-August period, respectively. The dominant mode of the ISO at any given time can be judged by the proportions of the OLR anomalies projected onto the two modes. The bimodal ISO index provides objective and quantitative measures on the annual and interannual variations of the predominant ISO modes. It is shown that from December to April the MJO mode dominates while from June to October the BSISO mode dominates. May and November are transitional months when the predominant mode changes from one to the other. It is also shown that the fractional variance reconstructed based on the bimodal index is significantly higher than the counterpart reconstructed based on the Wheeler and Hendon's index. The bimodal ISO index provides a reliable real time monitoring skill, too. The method and results provide critical information in assessing models' performance to reproduce the ISO and developing further research on predictability of the ISO and are also useful for a variety of scientific and practical purposes. (orig.)
The Efficiency of the Bimodal System Transportation
Directory of Open Access Journals (Sweden)
Nada Štrumberger
2012-10-01
Full Text Available The development of fast railway results in an increased applicationof Trailer Train bimodal system transportation. Thetraffic costs are multiply reduced, particularly the variablecosts. On the other hand the environmental pollution from exhaustgases is also reduced. Therefore, by the year 2010 cargotransport should be preponderant~v used which would be characterisedby fast electric trains producing less noise, at lowercosts and with clean environment.
Chatterjee, Koushik; Pastorczak, Ewa; Jawulski, Konrad; Pernal, Katarzyna
2016-06-01
A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples of systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.
Institute of Scientific and Technical Information of China (English)
Liu Yingan; Wei Bocheng
2008-01-01
Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (Kantz and Schreiber (1997)). Tsai (1986) introduced a composite test for autocorrelation and heteroscedasticity in linear models with AR(1) errors. Liu (2003) introduced a composite test for correlation and heteroscedasticity in nonlinear models with DBL(p, 0, 1) errors. Therefore, the important problems in regres- sion model are detections of bilinearity, correlation and heteroscedasticity. In this article, the authors discuss more general case of nonlinear models with DBL(p, q, 1) random errors by score test. Several statistics for the test of bilinearity, correlation, and heteroscedas-ticity are obtained, and expressed in simple matrix formulas. The results of regression models with linear errors are extended to those with bilinear errors. The simulation study is carried out to investigate the powers of the test statistics. All results of this article extend and develop results of Tsai (1986), Wei, et al (1995), and Liu, et al (2003).
Hibbard, Paul B; Scott-Brown, Kenneth C; Haigh, Emma C; Adrain, Melanie
2014-01-01
One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.
Directory of Open Access Journals (Sweden)
Paul B Hibbard
Full Text Available One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS. In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.
Albumin to creatinine ratio in a random urine sample: Correlation with severity of preeclampsia
Directory of Open Access Journals (Sweden)
Fady S. Moiety
2014-06-01
Conclusions: Random urine ACR may be a reliable method for prediction and assessment of severity of preeclampsia. Using the estimated cut-off may add to the predictive value of such a simple quick test.
Quantum random walks with multiphoton interference and high order correlation functions
Gard, Bryan T; Anisimov, Petr M; Lee, Hwang; Dowling, Jonathan P
2011-01-01
We show a simulation of quantum random walks with multiple photons using a staggered array of 50/50 beam splitters with a bank of detectors at any desired level. We discuss the multiphoton interference effects that are inherent to this setup, and introduce one, two, and threefold coincidence detection schemes. The use of Feynman diagrams are used to intuitively explain the unique multiphoton interference effects of these quantum random walks.
Directory of Open Access Journals (Sweden)
Zhizheng Wu
2012-01-01
Full Text Available Motivated by a class of contact vibration control problems in mechanical systems, this paper considers a regulation problem for discrete-time switched bimodal linear systems where it is desired to achieve output regulation against partially known deterministic and unknown random exogenous signals. First, a set of observer-based Youla parameterized stabilizing controllers is constructed, based on which the regulation conditions for the switched system against the deterministic signals along with an H2 performance constraint against the unknown random signals are derived. Then a corresponding regulator synthesis algorithm is developed based on solving properly formulated linear matrix inequalities. The proposed regulator is successfully evaluated on an experimental setup involving a switched bimodal mechanical system subject to contact vibrations, hence, demonstrating the effectiveness of the proposed regulation approach.
Phenotypic Diversity Using Bimodal and Unimodal Expression of Stress Response Proteins.
Garcia-Bernardo, Javier; Dunlop, Mary J
2016-05-24
Populations of cells need to express proteins to survive the sudden appearance of stressors. However, these mechanisms may be taxing. Populations can introduce diversity, allowing individual cells to stochastically switch between fast-growing and stress-tolerant states. One way to achieve this is to use genetic networks coupled with noise to generate bimodal distributions with two distinct subpopulations, each adapted to a stress condition. Another survival strategy is to rely on random fluctuations in gene expression to produce continuous, unimodal distributions of the stress response protein. To quantify the environmental conditions where bimodal versus unimodal expression is beneficial, we used a differential evolution algorithm to evolve optimal distributions of stress response proteins given environments with sudden fluctuations between low and high stress. We found that bimodality evolved for a large range of environmental conditions. However, we asked whether these findings were an artifact of considering two well-defined stress environments (low and high stress). As noise in the environment increases, or when there is an intermediate environment (medium stress), the benefits of bimodality decrease. Our results indicate that under realistic conditions, a continuum of resistance phenotypes generated through a unimodal distribution is sufficient to ensure survival without a high cost to the population.
Yan, Zidan; Perdew, John P.; Kurth, Stefan
2000-03-01
Within a density functional context, the random phase approximation (RPA) for the correlation emergy makes a short-range error which is well-suited for correction by a local spin density or generalized gradient approximation (GGA). Here we construct a GGA for the short-range correction, following the same reliable procedure used earlier to construct the GGA for the whole exchange-correlation energy: real-space cutoff of the spurious long-range contribution to the gradient expansion of the hole around an electron. The resulting density functional is nearly local, and predicts a substantial correction to the RPA correlation energy of an atom but \\underlinevery small corrections to the RPA atomization energy of a molecule, which may by itself come close to "chemical accuracy", and to the RPA surface energy of a metal. A by-product of this work is a density functional for the system-averaged correlation hole within RPA.
Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in a Random Field
Institute of Scientific and Technical Information of China (English)
LIANG Ya-Qiu; WEI Guo-Zhu; SONG Li-Li; SONG Guo-Li; ZANG Shu-Liang
2004-01-01
The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.
Stochastic resonance and chaotic resonance in bimodal maps: A case study
Indian Academy of Sciences (India)
G Ambika; N V Sujatha; K P Harikrishnan
2002-09-01
We present the results of an extensive numerical study on the phenomenon of stochastic resonance in a bimodal cubic map. Both Gaussian random noise as well as deterministic chaos are used as input to drive the system between the basins. Our main result is that when two identical systems capable of stochastic resonance are coupled, the SNR of either system is enhanced at an optimum coupling strength. Our results may be relevant for the study of stochastic resonance in biological systems.
Payne, Joshua L; Dodds, Peter Sheridan
2011-01-01
We derive analytic expressions for the probability and expected size of global spreading events starting from a single infected seed for a broad collection of contagion processes acting on random networks with both directed and undirected edges and arbitrary degree-degree correlations. Our work extends previous theoretical developments for the undirected case, and we provide numerical support for our findings by investigating an example class of networks for which we are able to obtain closed-form expressions.
Generalized Whittle-Matern random field as a model of correlated fluctuations
Energy Technology Data Exchange (ETDEWEB)
Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)], E-mail: sclim@mmu.edu.my, E-mail: lpteo@mmu.edu.my
2009-03-13
This paper considers a generalization of the Gaussian random field with covariance function of the Whittle-Matern family. Such a random field can be obtained as the solution to the fractional stochastic differential equation with two fractional orders. Asymptotic properties of the covariance functions belonging to this generalized Whittle-Matern family are studied, which are used to deduce the sample path properties of the random field. The Whittle-Matern field has been widely used in modeling geostatistical data such as sea beam data, wind speed, field temperature and soil data. In this paper we show that the generalized Whittle-Matern field provides a more flexible model for wind speed data.
Anomalous Fluctuations of Currents in Sinai-Type Random Chains with Strongly Correlated Disorder
Oshanin, Gleb; Rosso, Alberto; Schehr, Grégory
2013-03-01
We study properties of a random walk in a generalized Sinai model, in which a quenched random potential is a trajectory of a fractional Brownian motion with arbitrary Hurst parameter H, 0segment of length L of such a chain decay as L-(1-H), independently of k, which suggests that despite a logarithmic confinement the average current is much higher than its Fickian counterpart in homogeneous systems. Our results reveal a paradoxical behavior such that, for fixed n and L, the mean-square displacement decreases when one varies H from 0 to 1, while the average current increases. This counterintuitive behavior is explained via an analysis of representative realizations of disorder.
Shell model for time-correlated random advection of passive scalars
DEFF Research Database (Denmark)
Andersen, Ken Haste; Muratore-Ginanneschi, P.
1999-01-01
We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...
Structural Stability of Planar Bimodal Linear Systems
Directory of Open Access Journals (Sweden)
Josep Ferrer
2014-01-01
Full Text Available Structural stability ensures that the qualitative behavior of a system is preserved under small perturbations. We study it for planar bimodal linear dynamical systems, that is, systems consisting of two linear dynamics acting on each side of a given hyperplane and assuming continuity along the separating hyperplane. We describe which one of these systems is structurally stable when (real spiral does not appear and when it does we give necessary and sufficient conditions concerning finite periodic orbits and saddle connections. In particular, we study the finite periodic orbits and the homoclinic orbits in the saddle/spiral case.
Shen, M.; Touchard, F.; Bezine, G.; Brillaud, J.
2010-06-01
The work is to predict fracture behaviour of bio-composites from the tensile properties of its components. In this work, we have realized a direct numerical simulation of fracture behaviour for random short spruce fibers reinforced composites. For calculations, wood fibers have been considered as linear elastic bodies, polypropylene matrix as an elastic-plastic material. Then, numerical results have been compared with experimental results that have been obtained by digital image correlation. This comparison indicates that random fiber FE model of random short spruce fibers reinforced composites can be able to fairly reflect the influence of random fibers microstructure in the composite on its fracture behavior. The calculation of both random fiber and homogeneous FE model and their comparison with experiments show that the average values of J-integral in a region in the front of the crack tip from both numerical FE models are in good agreement with the average J value of DIC experiment in the same region when the numerical and experimental CT specimens of the short spruce fiber reinforced composite are subjected to the same extension at their loading point.
Directory of Open Access Journals (Sweden)
Brillaud J.
2010-06-01
Full Text Available The work is to predict fracture behaviour of bio-composites from the tensile properties of its components. In this work, we have realized a direct numerical simulation of fracture behaviour for random short spruce fibers reinforced composites. For calculations, wood fibers have been considered as linear elastic bodies, polypropylene matrix as an elastic-plastic material. Then, numerical results have been compared with experimental results that have been obtained by digital image correlation. This comparison indicates that random fiber FE model of random short spruce fibers reinforced composites can be able to fairly reflect the influence of random fibers microstructure in the composite on its fracture behavior. The calculation of both random fiber and homogeneous FE model and their comparison with experiments show that the average values of J-integral in a region in the front of the crack tip from both numerical FE models are in good agreement with the average J value of DIC experiment in the same region when the numerical and experimental CT specimens of the short spruce fiber reinforced composite are subjected to the same extension at their loading point.
Roerdink, J.B.T.M.
1981-01-01
The cumulant expansion for linear stochastic differential equations is extended to the general case in which the coefficient matrix, the inhomogeneous part and the initial condition are all random and, moreover, statistically interdependent. The expansion now involves not only the autocorrelation fu
Is walking a random walk? Evidence for long-range correlations in stride interval of human gait
Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.
1995-01-01
Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.
Bimodal Color Distribution in Hierarchical Galaxy Formation
Menci, N; Giallongo, E; Salimbeni, S
2005-01-01
We show how the observed bimodality in the color distribution of galaxies can be explained in the framework of the hierarchical clustering picture in terms of the interplay between the properties of the merging histories and the feedback/star-formation processes in the progenitors of local galaxies. Using a semi-analytic model of hierarchical galaxy formation, we compute the color distributions of galaxies with different luminosities and compare them with the observations. Our fiducial model matches the fundamental properties of the observed distributions, namely: 1) the distribution of objects brighter than M_r = -18 is clearly bimodal, with a fraction of red objects increasing with luminosity; 2) for objects brighter than M_r = -21 the color distribution is dominated by red objects with color u-r = 2.2-2.4; 3) the spread on the distribution of the red population is smaller than that of the blue population; 4) the fraction of red galaxies is larger in denser environments, even for low-luminosity objects; 5) ...
Transfer learning for bimodal biometrics recognition
Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao
2013-10-01
Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.
von Wegner, F; Tagliazucchi, E; Brodbeck, V; Laufs, H
2016-11-01
We analyze temporal autocorrelations and the scaling behaviour of EEG microstate sequences during wakeful rest. We use the recently introduced random walk approach and compute its fluctuation function analytically under the null hypothesis of a short-range correlated, first-order Markov process. The empirical fluctuation function and the Hurst parameter H as a surrogate parameter of long-range correlations are computed from 32 resting state EEG recordings and for a set of first-order Markov surrogate data sets with equilibrium distribution and transition matrices identical to the empirical data. In order to distinguish short-range correlations (H ≈ 0.5) from previously reported long-range correlations (H > 0.5) statistically, confidence intervals for H and the fluctuation functions are constructed under the null hypothesis. Comparing three different estimation methods for H, we find that only one data set consistently shows H > 0.5, compatible with long-range correlations, whereas the majority of experimental data sets cannot be consistently distinguished from Markovian scaling behaviour. Our analysis suggests that the scaling behaviour of resting state EEG microstate sequences, though markedly different from uncorrelated, zero-order Markov processes, can often not be distinguished from a short-range correlated, first-order Markov process. Our results do not prove the microstate process to be Markovian, but challenge the approach to parametrize resting state EEG by single parameter models.
Directory of Open Access Journals (Sweden)
Jing Wang
2009-01-01
Full Text Available Motivation: Identifying genes with bimodal expression patterns from large-scale expression profiling data is an important analytical task. Model-based clustering is popular for this purpose. That technique commonly uses the Bayesian information criterion (BIC for model selection. In practice, however, BIC appears to be overly sensitive and may lead to the identification of bimodally expressed genes that are unreliable or not clinically useful. We propose using a novel criterion, the bimodality index, not only to identify but also to rank meaningful and reliable bimodal patterns. The bimodality index can be computed using either a mixture model-based algorithm or Markov chain Monte Carlo techniques.Results: We carried out simulation studies and applied the method to real data from a cancer gene expression profiling study. Our findings suggest that BIC behaves like a lax cutoff based on the bimodality index, and that the bimodality index provides an objective measure to identify and rank meaningful and reliable bimodal patterns from large-scale gene expression datasets. R code to compute the bimodality index is included in the ClassDiscovery package of the Object-Oriented Microarray and Proteomic Analysis (OOMPA suite available at the web site http://bioinformatics.mdanderson.org/Software/OOMPA.
Liu, P.; Archuleta, R.J.; Hartzell, S.H.
2006-01-01
We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been
Correlation functions of XX0 Heisenberg chain, q-binomial determinants, and random walks
Energy Technology Data Exchange (ETDEWEB)
Bogoliubov, N.M.; Malyshev, C.
2014-02-15
The XX0 Heisenberg model on a cyclic chain is considered. The representation of the Bethe wave functions via the Schur functions allows to apply the well-developed theory of the symmetric functions to the calculation of the thermal correlation functions. The determinantal expressions of the form-factors and of the thermal correlation functions are obtained. The q-binomial determinants enable the connection of the form-factors with the generating functions both of boxed plane partitions and of self-avoiding lattice paths. The asymptotical behavior of the thermal correlation functions is studied in the limit of low temperature provided that the characteristic parameters of the system are large enough.
Correlation Functions of XX0 Heisenberg Chain, q-Binomial Determinants, and Random Walks
Bogoliubov, N M
2014-01-01
The XX0 Heisenberg model on a cyclic chain is considered. The representation of the Bethe wave functions via the Schur functions allows to apply the well-developed theory of the symmetric functions to the calculation of the thermal correlation functions. The determinantal expressions of the form-factors and of the thermal correlation functions are obtained. The q-binomial determinants enable the connection of the form-factors with the generating functions both of boxed plane partitions and of self-avoiding lattice paths. The asymptotical behavior of the thermal correlation functions is studied in the limit of low temperature provided that the characteristic parameters of the system are large enough.
Two-phase flow in correlated pore-throat random porous media
Institute of Scientific and Technical Information of China (English)
田巨平; 姚凯伦
2002-01-01
We have constructed a porous media model in which there are percolation clusters with varying percolation probability P and correlated site-bonds. Taking into account both the pore and the throat geometry, the viscous fingering (VF) in porous media has been investigated by using the standard over-relaxed Gauss-Seidel scheme. The simulation results show that the VF structure varies with the correlation parameter ε, the viscosity ratio M and the percolation probability P. The smaller the correlation parameter ε, the greater thedeviation of the normalized size distribution of the invaded throat Ninv(r) from the truncated Rayleigh distribution.For a larger viscosity ratio M,the VF pattern looks like a diffusion-limited-aggregation structure in percolation clusters. The fractal dimension D increases with the increase of the percolation probability P and the correlation parameter e. The velocity distribution f(α) of VF in percolation clusters is of a parabola-like curve. The tail of the distribution (large α) is longer for a larger correlation parameter ε. For a smaller ε, the distribution is very sharp. The sweep efficiency E decreases along with the decrease of the correlation parameter ε and the increase of the network size Lnz. E has a minimum as Lnz increases up to the maximum no matter what the values of P, M and ε. The E ～ Lnz curve has a frozen zone and an active zone. The geometry and the topology of the porous media have strong effects on the displacement processes and the structure of VF.
Energetic Argument for Bimodal Black Hole Accretion discs
Institute of Scientific and Technical Information of China (English)
林一清; 卢炬甫; 顾为民
2002-01-01
Based on simple energetic considerations, we show that two crucial ingredients of bimodal black hole accretiondiscs, namely the sonic point and the transition radius, can be determined from the disc constant parameters.Thus, we can further justify the model of bimodal discs containing thermal instability triggered transition.
Bimodal stimulation: benefits for music perception and sound quality.
Sucher, Catherine M; McDermott, Hugh J
2009-01-01
With recent expansions in cochlear implantation candidacy criteria, increasing numbers of implantees can exploit their remaining hearing by using bimodal stimulation (combining electrical stimulation via the implant with acoustic stimulation via hearing aids). This study examined the effect of bimodal stimulation on music perception and perceived sound quality. The perception of music and sound quality by nine post-lingually deafened adult implantees was examined in three conditions: implant alone, hearing aid alone and bimodal stimulation. On average, bimodal stimulation provided the best results for music perception and perceived sound quality when compared with results obtained with electrical stimulation alone. Thus, for implantees with usable acoustic hearing, bimodal stimulation may be advantageous when listening to music and other non-speech sounds.
Optimization of phase contrast in bimodal amplitude modulation AFM
Directory of Open Access Journals (Sweden)
Mehrnoosh Damircheli
2015-04-01
Full Text Available Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM. Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Optimization of phase contrast in bimodal amplitude modulation AFM.
Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo
2015-01-01
Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Emergence of bimodality in controlling complex networks
Jia, Tao; Csóka, Endre; Pósfai, Márton; Slotine, Jean-Jacques; Barabási, Albert-László
2015-01-01
Our ability to control complex systems is a fundamental challenge of contemporary science. Recently introduced tools to identify the driver nodes, nodes through which we can achieve full control, predict the existence of multiple control configurations, prompting us to classify each node in a network based on their role in control. Accordingly a node is critical, intermittent or redundant if it acts as a driver node in all, some or none of the control configurations. Here we develop an analytical framework to identify the category of each node, leading to the discovery of two distinct control modes in complex systems: centralized vs distributed control. We predict the control mode for an arbitrary network and show that one can alter it through small structural perturbations. The uncovered bimodality has implications from network security to organizational research and offers new insights into the dynamics and control of complex systems.
Correlation-based virtual source imaging in strongly scattering random media
Garnier, Josselin; Papanicolaou, George
2012-07-01
Array imaging in a strongly scattering medium is limited because coherent signals recorded at the array and coming from a reflector to be imaged are weak and dominated by incoherent signals coming from multiple scattering by the medium. If, however, an auxiliary passive array can be placed between the reflector to be imaged and the scattering medium then the cross correlations of the incoherent signals on this array can also be used to image the reflector. In this paper, we show both in the weakly scattering paraxial regime and in strongly scattering layered media that this cross-correlation approach produces images as if the medium between the sources and the passive array was homogeneous and the auxiliary passive array was an active one made up of both sources and receivers.
Noise-correlation-time-mediated localization in random nonlinear dynamical systems
Cabrera, J L; De la Rubia, F J; Cabrera, Juan L.
1999-01-01
We investigate the behavior of the residence times density function for different nonlinear dynamical systems with limit cycle behavior and perturbed parametrically with a colored noise. We present evidence that underlying the stochastic resonancelike behavior with the noise correlation time, there is an effect of optimal localization of the system trajectories in the phase space. This phenomenon is observed in systems with different nonlinearities, suggesting a degree of universality.
A Non-Simulation Based Method for Inducing Pearson’s Correlation Between Input Random Variables
2008-04-23
Thanks to Dr. Steven Book of MCR for his help in obtaining copies of several papers on correlation modules, without which this paper would not have been...risks, not estimating variation SWBS Description Upside Probable Downside 000 Administration 100 Hull 200 Propulsion 300 Electric Plant 400 Electonics ...Systems 500 Auxillary Systems 600 Outfit & Furnishings 700 Weapons 800 Integration & Engineering 900 Ship Assembly & Support Total SWBS Description
Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in aRandom Field
Institute of Scientific and Technical Information of China (English)
LIANGYa-Qiu; WEIGuo-Zhu; SONGLi-Li; SONGGuo-Li; ZANGShu-Liang
2004-01-01
The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.
Biased Random-Walk Learning A Neurobiological Correlate to Trial-and-Error
Anderson, R W
1993-01-01
Neural network models offer a theoretical testbed for the study of learning at the cellular level. The only experimentally verified learning rule, Hebb's rule, is extremely limited in its ability to train networks to perform complex tasks. An identified cellular mechanism responsible for Hebbian-type long-term potentiation, the NMDA receptor, is highly versatile. Its function and efficacy are modulated by a wide variety of compounds and conditions and are likely to be directed by non-local phenomena. Furthermore, it has been demonstrated that NMDA receptors are not essential for some types of learning. We have shown that another neural network learning rule, the chemotaxis algorithm, is theoretically much more powerful than Hebb's rule and is consistent with experimental data. A biased random-walk in synaptic weight space is a learning rule immanent in nervous activity and may account for some types of learning -- notably the acquisition of skilled movement.
Chen, Tianwen; Ryali, Srikanth; Qin, Shaozheng; Menon, Vinod
2013-11-15
Intrinsic functional connectivity analysis using resting-state functional magnetic resonance imaging (rsfMRI) has become a powerful tool for examining brain functional organization. Global artifacts such as physiological noise pose a significant problem in estimation of intrinsic functional connectivity. Here we develop and test a novel random subspace method for functional connectivity (RSMFC) that effectively removes global artifacts in rsfMRI data. RSMFC estimates the partial correlation between a seed region and each target brain voxel using multiple subsets of voxels sampled randomly across the whole brain. We evaluated RSMFC on both simulated and experimental rsfMRI data and compared its performance with standard methods that rely on global mean regression (GSReg) which are widely used to remove global artifacts. Using extensive simulations we demonstrate that RSMFC is effective in removing global artifacts in rsfMRI data. Critically, using a novel simulated dataset we demonstrate that, unlike GSReg, RSMFC does not artificially introduce anti-correlations between inherently uncorrelated networks, a result of paramount importance for reliably estimating functional connectivity. Furthermore, we show that the overall sensitivity, specificity and accuracy of RSMFC are superior to GSReg. Analysis of posterior cingulate cortex connectivity in experimental rsfMRI data from 22 healthy adults revealed strong functional connectivity in the default mode network, including more reliable identification of connectivity with left and right medial temporal lobe regions that were missed by GSReg. Notably, compared to GSReg, negative correlations with lateral fronto-parietal regions were significantly weaker in RSMFC. Our results suggest that RSMFC is an effective method for minimizing the effects of global artifacts and artificial negative correlations, while accurately recovering intrinsic functional brain networks.
Wu, Sheng; Crespi, Catherine M; Wong, Weng Kee
2012-09-01
The intraclass correlation coefficient (ICC) is a fundamental parameter of interest in cluster randomized trials as it can greatly affect statistical power. We compare common methods of estimating the ICC in cluster randomized trials with binary outcomes, with a specific focus on their application to community-based cancer prevention trials with primary outcome of self-reported cancer screening. Using three real data sets from cancer screening intervention trials with different numbers and types of clusters and cluster sizes, we obtained point estimates and 95% confidence intervals for the ICC using five methods: the analysis of variance estimator, the Fleiss-Cuzick estimator, the Pearson estimator, an estimator based on generalized estimating equations and an estimator from a random intercept logistic regression model. We compared estimates of the ICC for the overall sample and by study condition. Our results show that ICC estimates from different methods can be quite different, although confidence intervals generally overlap. The ICC varied substantially by study condition in two studies, suggesting that the common practice of assuming a common ICC across all clusters in the trial is questionable. A simulation study confirmed pitfalls of erroneously assuming a common ICC. Investigators should consider using sample size and analysis methods that allow the ICC to vary by study condition.
Theodorsen, Audun; Rypdal, Martin
2016-01-01
The filtered Poisson process is often used as a reference model for intermittent fluctuations in physical systems. Here, this process is extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The moments, probability density function, auto- correlation function and power spectral density are derived and used to compare the effects of the different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of parameter estimation and to identify methods for separating the noise types. It is shown that the probability density function and the three lowest moments provide accurate estimations of the parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of determining the noise type. The number of times the signal passes a prescribed threshold in t...
Directory of Open Access Journals (Sweden)
Zahra Basirat
2012-01-01
Full Text Available Background: Polycystic ovary syndrome (PCOS is a common, complex endocrinedisorder for women of productive age. A high incidence of ovulation failure in womenwith PCOS is related to insulin resistance. Some studies have assessed the effects ofhyperinsulinemia and insulin resistance in relationship with insulin sensitizing agentssuch as Metformin (Met. These medicines have been suggested new scope for ovulationstimulation enhancement with Clomiphene Citrate (CC in PCOs women. The aimof this study is to compare the effectiveness of adding Met to CC in women with PCOS.Materials and Methods: This multicenter, single-blind, randomized controlled trialstudy was performed on 334 PCOS patients from 2007 to 2009. Patients were randomlydivided into two groups and ovulation induction was performed with either CC alone orCC + Met. The treatment was continued for three cycles, then the mature follicle andpregnancy rates were evaluated.Results: In the CC + Met group, 68% had at least one dominant follicle in the first cyclethat was significant (p<0.001, and 31.7% had one in the second cycle. In the CC group54.5% in the first cycle, 31.7% second cycle, and 6.9% ovulated in the third cycle. Thepregnancy rate was 28.7% in CC + Met group and 24.6% in the CC group, with no significantdifferences between the two groups.
Roles of factorial noise in inducing bimodal gene expression
Liu, Peijiang; Yuan, Zhanjiang; Huang, Lifang; Zhou, Tianshou
2015-06-01
Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.
Bimodal score distributions and the Myers-Briggs Type Indicator: fact or artifact?
Bess, Tammy L; Harvey, Robert J
2002-02-01
We examined Myers-Briggs Type Indicator (MBTI) score distributions computed using item response theory (IRT) to assess the generalizability of earlier bimodality reports that have been cited in support of the "type" versus "trait" view of personality. Using the BILOG IRT program to score a sample of approximately 12,000 individuals who participated in leadership development programs, theta score distributions for the 4 dimensions of the MBTI computed using 10 (the BILOG default) versus 50 quadrature points were compared. Results indicated that past reports of bimodality were artifacts caused by BILOG's default use of a small number of quadrature points; when larger numbers of points were used, score distributions became strongly center-weighted. Although our findings are not supportive of the "type"-based hypothesis, the extremely high correlations between theta scores (rs > .996) suggest that no practical differences would be expected as a function of the number-of-quadrature-points decision.
Galaxy bimodality versus stellar mass and environment
Baldry, I; Bower, R; Glazebrook, K; Nichol, R; Bamford, S; Budavari, T
2006-01-01
We analyse a z<0.1 galaxy sample from the Sloan Digital Sky Survey focusing on the variation of the galaxy colour bimodality with stellar mass and projected neighbour density Sigma, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about 10^10.6 Msun to 10^10.9 Msun (Kroupa IMF, H_0=70) for Sigma in the range 0.1--10 per Mpc^2. The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour-mass and colour-concentration index not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in log Sigma and log mass (12 x 13 bins). The red fraction f_r generally increases continuously in both Sigma and mass such that there is a unified relation: f_r = F(Sigma,mass). Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N-body ...
Intelligent agents: adaptation of autonomous bimodal microsystems
Smith, Patrice; Terry, Theodore B.
2014-03-01
Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.
Directory of Open Access Journals (Sweden)
Olatunji K. A
2015-07-01
Full Text Available Various security challenges such as Boko Haram, theft, kidnapping, ISIL, abduction, and so on have been on a high rise as one of the major menace facing our society today. In order to overcome these challenges there is need for identification of the culprits to bring them to book. Uni-modal biometric is not enough to combat these security challenges because of its shortcomings which include- spoof attach, noise in the sensed data, inter class variation and so on. Combining two or more biometric features (bi-modal has been proved to provide better performance than uni-modal biometric approach for authentication and verification. This paper presents some literature on biometrics systems that can be employed in achieving a better accuracy in authentication and verification of biometric features. Different kind of fusion strategies to combine these characteristics, different available classifiers and fusion methodologies to achieve greater and accurate recognition performance were also discussed. It is hopeful that researchers in the area of biometrics will find this work very useful.
Audiovisual bimodal mutual compensation of Chinese
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The perception of human languages is inherently a multi-modalprocess, in which audio information can be compensated by visual information to improve the recognition performance. Such a phenomenon in English, German, Spanish and so on has been researched, but in Chinese it has not been reported yet. In our experiment, 14 syllables (/ba, bi, bian, biao, bin, de, di, dian, duo, dong, gai, gan, gen, gu/), extracted from Chinese audiovisual bimodal speech database CAVSR-1.0, were pronounced by 10 subjects. The audio-only stimuli, audiovisual stimuli, and visual-only stimuli were recognized by 20 observers. The audio-only stimuli and audiovisual stimuli both were presented under 5 conditions: no noise, SNR 0 dB, -8 dB, -12 dB, and -16 dB. The experimental result is studied and the following conclusions for Chinese speech are reached. Human beings can recognize visual-only stimuli rather well. The place of articulation determines the visual distinction. In noisy environment, audio information can remarkably be compensated by visual information and as a result the recognition performance is greatly improved.
Audiovisual bimodal mutual compensation of Chinese
Institute of Scientific and Technical Information of China (English)
ZHOU; Zhi
2001-01-01
［1］Richard, P., Schumeyer, Kenneth E. B., The effect of visual information on word initial consonant perception of dysarthric speech, in Proc. ICSLP'96 October 3-6 1996, Philadephia, Pennsylvania, USA.［2］Goff, B. L., Marigny, T. G., Benoit, C., Read my lips...and my jaw! How intelligible are the components of a speaker's face? Eurospeech'95, 4th European Conference on Speech Communication and Technology, Madrid, September 1995.［3］McGurk, H., MacDonald, J. Hearing lips and seeing voices, Nature, 1976, 264: 746.［4］Duran A. F., Mcgurk effect in Spanish and German listeners: Influences of visual cues in the perception of Spanish and German confliction audio-visual stimuli, Eurospeech'95. 4th European Conference on Speech Communication and Technology, Madrid, September 1995.［5］Luettin, J., Visual speech and speaker recognition, Ph.D thesis, University of Sheffield, 1997.［6］Xu Yanjun, Du Limin, Chinese audiovisual bimodal speech database CAVSR1.0, Chinese Journal of Acoustics, to appear.［7］Zhang Jialu, Speech corpora and language input/output methods' evaluation, Chinese Applied Acoustics, 1994, 13(3): 5.
Kao, Yun Feng; Hsieh, Wei Ting; Che Chen, Chun; King, Ya-Chin; Lin, Chrong Jung
2017-04-01
Variability has been one of the critical challenges in the implementation of large resistive random access memory (RRAM) arrays. Wide variations in set/reset, read and cycling characteristics can significantly reduce the design margin and feasibility of a memory array. Predicting the characteristics of RRAM cells is constructive to provide insights and to adjust the memory operations accordingly. In this study, a strong correlation between the cell performance and its initial state is found in contact RRAM (CRRAM) cells by 28 nm CMOS logic technology. Furthermore, a verify-reset operation is proposed to identify the type of conductive filament (CF) in a cell. Distinctive CRRAM characteristics are found to be linked directly to initial CFs, enabling preliminary screening and adaptive resets to address the large variability problems in sizable CRRAM arrays.
The non-random walk of stock prices: the long-term correlation between signs and sizes
La Spada, G.; Farmer, J. D.; Lillo, F.
2008-08-01
We investigate the random walk of prices by developing a simple model relating the properties of the signs and absolute values of individual price changes to the diffusion rate (volatility) of prices at longer time scales. We show that this benchmark model is unable to reproduce the diffusion properties of real prices. Specifically, we find that for one hour intervals this model consistently over-predicts the volatility of real price series by about 70%, and that this effect becomes stronger as the length of the intervals increases. By selectively shuffling some components of the data while preserving others we are able to show that this discrepancy is caused by a subtle but long-range non-contemporaneous correlation between the signs and sizes of individual returns. We conjecture that this is related to the long-memory of transaction signs and the need to enforce market efficiency.
Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite
Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P.; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M.; Ruiz-Martinez, Javier; Hensen, Emiel J. M.
2016-01-01
The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts
Bimode uninterruptible power supply compatibility in renewable hybrid energy systems
Energy Technology Data Exchange (ETDEWEB)
Bower, W. (Sandia National Labs., Albuquerque, NM (USA)); O' Sullivan, G. (Abacus Controls, Inc., Somerville, NJ (USA))
1990-08-01
Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.
Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery
Gao, Lin; Sun, Jihong; Li, Yuzhen
2011-08-01
The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.
Reactive Sintering of Bimodal WC-Co Hardmetals
Directory of Open Access Journals (Sweden)
Marek Tarraste
2015-09-01
Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511
Bonilla, Mauricio R; Bhatia, Suresh K
2012-01-10
Molecular transport in nanoconfined spaces plays a key role in many emerging technologies for gas separation and storage, as well as in nanofluidics. The infiltration of fluid mixtures into the voids of porous frameworks having complex topologies is common place to these technologies, and optimizing their performance entails developing a deeper understanding of how the flow of these mixtures is affected by the morphology of the pore space, particularly its pore size distribution and pore connectivity. Although several techniques have been developed for the estimation of the effective diffusivity characterizing the transport of single fluids through porous materials, this is not the case for fluid mixtures, where the only alternatives rely on a time-consuming solution of the pore network equations or adaptations of the single fluid theories which are useful for a limited type of systems. In this paper, a hybrid multicomponent effective medium-correlated random walk theory for the calculation of the effective transport coefficients matrix of fluid mixtures diffusing through porous materials is developed. The theory is suitable for those systems in which component fluxes at the single pore level can be related to the potential gradients of the different species through linear flux laws and corresponds to a generalization of the classical single fluid effective medium theory for the analysis of random resistor networks. Comparison with simulation of the diffusion of binary CO(2)/H(2)S and ternary CO(2)/H(2)S/C(3)H(8) gas mixtures in membranes modeled as large networks of randomly oriented pores with both continuous and discrete pore size distributions demonstrates the power of the theory, which was tested using the well-known generalized Maxwell-Stefan model for surface diffusion at the single pore level.
THE BIMODAL STRUCTURE OF THE SOLAR CYCLE
Energy Technology Data Exchange (ETDEWEB)
Du, Z. L., E-mail: zldu@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2015-05-01
Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.
Directory of Open Access Journals (Sweden)
Takahiko Sasaki
2012-05-01
Full Text Available The Mott-Anderson transition has been known as a metal-insulator (MI transition due to both strong electron-electron interaction and randomness of the electrons. For example, the MI transition in doped semiconductors and transition metal oxides has been investigated up to now as a typical example of the Mott-Anderson transition for changing electron correlations by carrier number control in concurrence with inevitable randomness. On the other hand, molecular conductors have been known as typical strongly correlated electron systems with bandwidth controlled Mott transition. In this paper, we demonstrate our recent studies on the randomness effect of the strongly correlated electrons of the BEDT-TTF molecule based organic conductors. X-ray irradiation on the crystals introduces molecular defects in the insulating anion layer, which cause random potential modulation of the correlated electrons in the conductive BEDT-TTF layer. In combination with hydrostatic pressure, we are able to control the parameters for randomness and correlations for electrons approaching the Mott-Anderson transition.
随机向量间的线性相关性度量%Linear Correlation Measure between the Random Vectors
Institute of Scientific and Technical Information of China (English)
努尔古丽·艾力
2012-01-01
相关分析是描述两个或两个以上变量间关系密切程度的统计方法.本文主要讨论随机向量间的相关性,重点地讨论了总体简单相关系数、复相关系数和典型相关系数的计算过程,以及广义相关系数与上三者之间的关系.%Correlation analysis is a statistical method to describe the intimate level of correlation between two or more variables. This paper mainly discusses the correlation between the random vectors, and emphasizes on dis- cussing the calculation processes of the population simple correlation coefficient, multiple correlation coefficient, canonical correlation coefficient, moreover, the relation of the generalized correlation coefficient and the above correlation coefficients.
On Random Correlation Matrices
1988-10-28
the spectral features of the resulting matrices are unknown. Method 2: Perturbation about a Mean This method is discussed by Marsaglia and Okin,10...complete regressor set. Finally, Marsaglia and Olkin (1984, Reference 10) give a rigorous mathematical description of Methods 2 through 4 described in the...short paper by Marsaglia 46 has a review of these early contributions, along with an improved method. More recent references are the pragmatic paper
Thermodynamical Properties of Spin-3／2 Ising Model in a Longitudinal Random Field with Crystal Field
Institute of Scientific and Technical Information of China (English)
LIANGYa-Qiu; WEIGuo-Zhu; ZHANGHong; SONGGuo-Li
2004-01-01
A theoretical study of a spin-3/2 Ising model in a longitudinal random field with crystal field is studied by using of the effective-field theory with correlations. The phase diagrams and the behavior of the tricritical point are investigated numerically for the honeycomb lattice when the random field is bimodal. In particular, the specific heat and the internal energy are examined in detail for the system with a crystal-field constant in the critical region where the ground-state configuration may change from the spin-3/2 state to the spin-1/2 state. We find many interesting phenomena in the system.
Perception of Sung Speech in Bimodal Cochlear Implant Users
Galvin, John J.; Fu, Qian-Jie
2016-01-01
Combined use of a hearing aid (HA) and cochlear implant (CI) has been shown to improve CI users’ speech and music performance. However, different hearing devices, test stimuli, and listening tasks may interact and obscure bimodal benefits. In this study, speech and music perception were measured in bimodal listeners for CI-only, HA-only, and CI + HA conditions, using the Sung Speech Corpus, a database of monosyllabic words produced at different fundamental frequencies. Sentence recognition was measured using sung speech in which pitch was held constant or varied across words, as well as for spoken speech. Melodic contour identification (MCI) was measured using sung speech in which the words were held constant or varied across notes. Results showed that sentence recognition was poorer with sung speech relative to spoken, with little difference between sung speech with a constant or variable pitch; mean performance was better with CI-only relative to HA-only, and best with CI + HA. MCI performance was better with constant words versus variable words; mean performance was better with HA-only than with CI-only and was best with CI + HA. Relative to CI-only, a strong bimodal benefit was observed for speech and music perception. Relative to the better ear, bimodal benefits remained strong for sentence recognition but were marginal for MCI. While variations in pitch and timbre may negatively affect CI users’ speech and music perception, bimodal listening may partially compensate for these deficits. PMID:27837051
Bimodal bilingualism and the frequency-lag hypothesis.
Emmorey, Karen; Petrich, Jennifer A F; Gollan, Tamar H
2013-01-01
The frequency-lag hypothesis proposes that bilinguals have slowed lexical retrieval relative to monolinguals and in their nondominant language relative to their dominant language, particularly for low-frequency words. These effects arise because bilinguals divide their language use between 2 languages and use their nondominant language less frequently. We conducted a picture-naming study with hearing American Sign Language (ASL)-English bilinguals (bimodal bilinguals), deaf signers, and English-speaking monolinguals. As predicted by the frequency-lag hypothesis, bimodal bilinguals were slower, less accurate, and exhibited a larger frequency effect when naming pictures in ASL as compared with English (their dominant language) and as compared with deaf signers. For English there was no difference in naming latencies, error rates, or frequency effects for bimodal bilinguals as compared with monolinguals. Neither age of ASL acquisition nor interpreting experience affected the results; picture-naming accuracy and frequency effects were equivalent for deaf signers and English monolinguals. Larger frequency effects in ASL relative to English for bimodal bilinguals suggests that they are affected by a frequency lag in ASL. The absence of a lag for English could reflect the use of mouthing and/or code-blending, which may shield bimodal bilinguals from the lexical slowing observed for spoken language bilinguals in the dominant language.
Indian Academy of Sciences (India)
Leena K Sahoo; R C Budhani; D Kanjilal; G K Mehta
2002-05-01
Understanding the dynamics of vortex matter subjected to random and correlated pinning disorders in layered superconductors remains a topic of considerable interest. The dynamical behavior of vortices in these systems shows a rich variety of effects due to many competing interactions. Here, we study the ac response of as-grown as well as heavy-ion-irradiated Tl2Ba2CaCu2O8 (Tl-2212) thin ﬁlms by using a micro Hall-probe susceptometer. We ﬁnd that the dynamics of vortices in the high-temperature, low-ﬁeld regime of the - phase diagram investigated here depends on the nature of pinning defects. While the decay of screening currents () indicates a glassy behavior in both types of samples, the nature of the glassy phase is different in the two cases. Samples with columnar defects show distinct signature of a Bose glass in the measurement of () and the angular dependence of the irreversibility ﬁeld (irr).
Institute of Scientific and Technical Information of China (English)
芦鹏飞; 刘锦超; 杨向东; 马晓光
2003-01-01
Using the many-body perturbation theory, we have calculated the photoionization cross section of 3p and 3d subshells of the neutral manganese, and discussed the second-order ground-state correlation and random-phase approximation correlations in detail. This is the first theoretical calculation for manganese as far as we know. Our calculated results are more consistent with the experimental results than those given by other methods in the literature.
A hypothesis for the color bimodality of Jupiter Trojans
Wong, Ian
2016-01-01
One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early Solar System evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H$_{2}$S ice...
Kleeorin, N; Sokoloff, D D
2002-01-01
Magnetic fluctuations with a zero mean field in a random flow with a finite correlation time and a small yet finite magnetic diffusion are studied. Equation for the second-order correlation function of a magnetic field is derived. This equation comprises spatial derivatives of high orders due to a non-local nature of magnetic field transport in a random velocity field with a finite correlation time. For a random Gaussian velocity field with a small correlation time the equation for the second-order correlation function of the magnetic field is a third-order partial differential equation. For this velocity field and a small magnetic diffusion with large magnetic Prandtl numbers the growth rate of the second moment of magnetic field is estimated. The finite correlation time of a turbulent velocity field causes an increase of the growth rate of magnetic fluctuations. It is demonstrated that the results obtained for the cases of a small yet finite magnetic diffusion and a zero magnetic diffusion are different. As...
Scheme for Generation of Entanglement among Bimodal Cavities
Institute of Scientific and Technical Information of China (English)
SONG Xin-Guo; FENG Xun-Li
2004-01-01
@@ We present a scheme for generation of an entangled state in many spatially separated bimodal cavity modes via cavity quantum electrodynamics. A V-type three-level atom, initially prepared in a coherent superposition of its excited states, successively passes through both the bimodal cavities. If the atom is measured in its ground state after leaving the last cavity, an entangled state of many cavity modes can be generated. The conditions to generate the maximally entangled state with unity probability are worked out.
Bimodal pattern in the fragmentation of Au quasi-projectiles
Bruno, M; D'Agostino, M; Gramegna, F; Gulminelli, F; Vannini, G
2006-01-01
Signals of bimodality have been investigated in experimental data of quasi-projectile decay produced in Au+Au collisions at 35 AMeV. This same data set was already shown to present several signals characteristic of a first order, liquid-gas-like phase transition. For the present analysis, events are sorted in bins of transverse energy of light charged particles emitted by the quasi-target source. A sudden change in the fragmentation pattern is observed from the distributions of the asymmetry of the two largest fragments, and the charge of the largest fragment. This latter distribution shows a bimodal behavior. The interpretation of this signal is discussed.
Bimodal behavior of the Kuroshio and the Gulf Stream
Schmeits, M.J.; Dijkstra, H.A.
2001-01-01
For a long time, observations have been pointing out that the Kuroshio in the North Paciffc Ocean displays bimodal meandering behavior of the southern coast of Japan. For the Gulf Stream in the North Atlantic Ocean, weakly and strongly deffected paths near the coast of South Carolina have been obser
On bimodality in warm season soil moisture observations
Teuling, A.J.; Uijlenhoet, R.; Troch, P.A.A.
2005-01-01
It has recently been suggested that the bimodality in warm season soil moisture observations in Illinois is evidence of a soil moisture-precipitation feedback. Other studies however provide little evidence for a strong feedback in this region. Here we show that seasonality in the meteorological cond
"Bi-modal" isoscalar giant dipole strength in Ni-58
Nayak, B. K.; Garg, U.; Hedden, M.; Koss, M.; Li, T.; Liu, Y.; Rao, P. V. Madhusudhana; Zhu, S.; Itoh, M.; Sakaguchi, H.; Takeda, H.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Fujimura, H.; Fujiwara, M.; Hara, K.; Kawabata, T.; Akimune, H.; Harakeh, M. N.
2006-01-01
The strength distribution of the isoscalar giant dipole resonance (ISGDR) in Ni-58 has been obtained over the energy range 10.5-49.5 MeV via extreme forward angle scattering (including 0 degrees) of 386 MeV alpha particles. We observe a "bi-modal" El strength distribution for the first time in an A
A nonlinear theory of the bimodality of the Kuroshio extension
Pierini, S.; Dijkstra, H.A.; Riccio, A.
2009-01-01
The Kuroshio Extension (KE) flow in the North Pacific Ocean displays a very distinctive decadal variability of bimodal character involving two completely different states (a large-meander “elongated” state and a small-meander “contracted” state) connected by very asymmetric temporal transitions. Alt
Bimodal Bilingual Language Development of Hearing Children of Deaf Parents
Hofmann, Kristin; Chilla, Solveig
2015-01-01
Adopting a bimodal bilingual language acquisition model, this qualitative case study is the first in Germany to investigate the spoken and sign language development of hearing children of deaf adults (codas). The spoken language competence of six codas within the age range of 3;10 to 6;4 is assessed by a series of standardised tests (SETK 3-5,…
Visualisation and characterisation of heterogeneous bimodal PDMS networks
DEFF Research Database (Denmark)
Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence;
2014-01-01
by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...
Does bimodal stimulus presentation increase ERP components usable in BCIs?
Thurlings, M.E.; Brouwer, A.M.; Erp, J.B.F. van; Blankertz, B.; Werkhoven, P.J.
2012-01-01
Event-related potential (ERP)-based brain–computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain
The bimodality of the Luzon Strait deep water
Institute of Scientific and Technical Information of China (English)
WU Qingsong; ZHAO Jianru; ZHANG Junbiao; SHI Weiyong; LIU Chunqiu
2014-01-01
Combined conductivity-temperature-depth (CTD) casts and Argo profiles, 3 086 historical hydrocasts were used to quantify the water column characteristics in the northern South China Sea (SCS) and its adjacent waters. Based on a two-dimensional“gravest empirical mode”(GEM), a gravitational potential (, a verti-cally integrated variable) was used as proxy for the vertical temperature profiles TG(p,).integrated from 8 MPa to the surface shows a close relationship with the temperature, except in the deep layer greater than 15 MPa, which was caused by the bimodal deep water in the region. The GEM temperature profiles successfully revealed the bimodality of the Luzon Strait deep water, that disparate hydrophic vertical profiles can pro-duce distinct specific volume anomaly (į) in the SCS and the western Philippine Sea (WPS), but failed in the Luzon Strait, where different temperature profiles may produce a sameį. A significant temperature diver-gence between the SCS water and the WPS water confirmed that the bimodal structure is strong. The deep-water bifurcation starts at about 15 MPa, and gets stronger with increasing depth . As the only deep channel connecting the bimodal-structure waters, water column characteristics in the Luzon Strait is in between, but much closer to the SCS water because of its better connectivity with the SCS. A bimodal temperature structure below 15 MPa reveals that there was a persistent baroclinic pressure gradient driving flow through the Luzon Strait. A volume flux predicted through the Bashi Channel with the hydraulic theory yields a value of 5.62×106 m3/s using all available profiles upstream and downstream of the overflow region, and 4.03×106 and 2.70×106 m3/s by exclusively using the profiles collected during spring and summer, respectively. No volume flux was calculated during autumn and winter because profiles are only available for the upstream of the Bashi Channel during the corresponding period.
A Hypothesis for the Color Bimodality of Jupiter Trojans
Wong, Ian; Brown, Michael E.
2016-10-01
One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H2S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H2S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.
Shimokawa, Tokuro; Watanabe, Ken; Kawamura, Hikaru
2015-10-01
Inspired by the recent theoretical suggestion that the random-bond S =1 /2 antiferromagnetic Heisenberg model on the triangular and the kagome lattices might exhibit a randomness-induced quantum spin liquid (QSL) behavior when the strength of the randomness exceeds a critical value, and that this "random-singlet state" might be relevant to the QSL behaviors experimentally observed in triangular organic salts κ -(ET) 2Cu2(CN) 3 and EtMe3Sb [Pd(dmit)2] 2 and in kagome herbertsmithite ZnCu3(OH) 6Cl2 , we further investigate the nature of the static and the dynamical spin correlations of these models. We compute the static and the dynamical spin structure factors, S (q ) and S (q ,ω ) , by means of an exact diagonalization method. In both triangular and kagome models, the computed S (q ,ω ) in the random-singlet state depends on the wave vector q only weakly, robustly exhibiting gapless behaviors accompanied by the broad distribution extending to higher energy ω . Especially in the strongly random kagome model, S (q ,ω ) hardly depends on q , and exhibits an almost flat distribution for a wide range of ω , together with a ω =0 peak. These features agree semiquantitatively with the recent neutron-scattering data on a single-crystal herbertsmithite. Furthermore, the computed magnetization curve agrees almost quantitatively with the experimental one recently measured on a single-crystal herbertsmithite. These results suggest that the QSL state observed in herbertsmithite might indeed be the randomness-induced QSL state, i.e., the random-singlet state.
Hanel, R.; Thurner, S.; Tsallis, C.
2009-11-01
Extremization of the Boltzmann-Gibbs (BG) entropy S_{BG}=-kint dx p(x) ln p(x) under appropriate norm and width constraints yields the Gaussian distribution pG(x) ∝e-βx. Also, the basic solutions of the standard Fokker-Planck (FP) equation (related to the Langevin equation with additive noise), as well as the Central Limit Theorem attractors, are Gaussians. The simplest stochastic model with such features is N ↦∞ independent binary random variables, as first proved by de Moivre and Laplace. What happens for strongly correlated random variables? Such correlations are often present in physical situations as e.g. systems with long range interactions or memory. Frequently q-Gaussians, pq(x) ∝[1-(1-q)βx2]1/(1-q) [p1(x)=pG(x)] become observed. This is typically so if the Langevin equation includes multiplicative noise, or the FP equation to be nonlinear. Scale-invariance, e.g. exchangeable binary stochastic processes, allow a systematical analysis of the relation between correlations and non-Gaussian distributions. In particular, a generalized stochastic model yielding q-Gaussians for all (q ≠ 1) was missing. This is achieved here by using the Laplace-de Finetti representation theorem, which embodies strict scale-invariance of interchangeable random variables. We demonstrate that strict scale invariance together with q-Gaussianity mandates the associated extensive entropy to be BG.
DEFF Research Database (Denmark)
Kjærgaard, Magnus; Poulsen, Flemming Martin
2011-01-01
Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...
Control of the differential interference contrast in reinjected bimode laser
Lacot, Eric; Hugon, Olivier; de Chatellus, Hugues Guillet
2016-01-01
We have demonstrated, both theoretically and experimentally, that it is possible to control (i.e., to enhance or cancel) the contrast of the interference pattern appearing in the intensity images obtained with a laser optical feedback imaging (LOFI) setup using a bimode laser. The laser is composed of two coupled orthogonally polarized states that interact (i.e., interfere) through the cross saturation laser dynamics. We created the contrast control by choosing the frequency shift (i.e., the beating frequency) between the feedback electric fields and the intracavity electric fields. We have shown that the interference contrast of the output power modulation of the laser total intensity is independent from the frequency shift and is always maximal. On the other hand, the interference contrast of each polarization state is frequency dependent. We obtained the maximal contrast when the frequency shift was equal to one of the resonance frequencies of the bimode dynamics, and was very low (and almost cancels) for ...
NERVA-Derived Concept for a Bimodal Nuclear Thermal Rocket
Fusselman, Steven P.; Borowski, Stanley K.; Frye, Patrick E.; Gunn, Stanley V.; Morrison, Calvin Q.
2005-02-01
The Nuclear Thermal Rocket is an enabling technology for human exploration missions. The "bimodal" NTR (BNTR) provides a novel approach to meeting both propulsion and power requirements of future manned and robotic missions. The purpose of this study was to evaluate tie-tube cooling configurations, NTR performance, Brayton cycle performance, and LOX-Augmented NTR (LANTR) feasibility to arrive at a point of departure BNTR configuration for subsequent system definition.
Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite.
Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M; Ruiz-Martínez, Javier; Hensen, Emiel J M
2016-02-21
The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts demonstrate enhanced diffusion through micropores at the grain boundaries of nanocrystals running through the zeolite particles. Fluoride-assisted SSZ-13 synthesis is a cheap and scalable approach to optimize the performance of MTO zeolite catalysts.
A Neonatal Bimodal MR-CT Head Template
Mohtasebi, Mehrana; Abrishami Moghaddam, Hamid; Grebe, Reinhard; Gity, Masoumeh; Wallois, Fabrice
2017-01-01
Neonatal MR templates are appropriate for brain structural analysis and spatial normalization. However, they do not provide the essential accurate details of cranial bones and fontanels-sutures. Distinctly, CT images provide the best contrast for bone definition and fontanels-sutures. In this paper, we present, for the first time, an approach to create a fully registered bimodal MR-CT head template for neonates with a gestational age of 39 to 42 weeks. Such a template is essential for structural and functional brain studies, which require precise geometry of the head including cranial bones and fontanels-sutures. Due to the special characteristics of the problem (which requires inter-subject inter-modality registration), a two-step intensity-based registration method is proposed to globally and locally align CT images with an available MR template. By applying groupwise registration, the new neonatal CT template is then created in full alignment with the MR template to build a bimodal MR-CT template. The mutual information value between the CT and the MR template is 1.17 which shows their perfect correspondence in the bimodal template. Moreover, the average mutual information value between normalized images and the CT template proposed in this study is 1.24±0.07. Comparing this value with the one reported in a previously published approach (0.63±0.07) demonstrates the better generalization properties of the new created template and the superiority of the proposed method for the creation of CT template in the standard space provided by MR neonatal head template. The neonatal bimodal MR-CT head template is freely downloadable from https://www.u-picardie.fr/labo/GRAMFC. PMID:28129340
Mobile Education: Towards Affective Bi-modal Interaction for Adaptivity
Directory of Open Access Journals (Sweden)
Efthymios Alepis
2009-04-01
Full Text Available One important field where mobile technology can make significant contributions is education. However one criticism in mobile education is that students receive impersonal teaching. Affective computing may give a solution to this problem. In this paper we describe an affective bi-modal educational system for mobile devices. In our research we describe a novel approach of combining information from two modalities namely the keyboard and the microphone through a multi-criteria decision making theory.
Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1.
Alpizar, Yeranddy A; Gees, Maarten; Sanchez, Alicia; Apetrei, Aurelia; Voets, Thomas; Nilius, Bernd; Talavera, Karel
2013-06-01
TRPA1 is a nonselective cation channel activated by a wide variety of noxious chemicals. Intriguingly, several TRPA1 modulators induce a bimodal effect, activating the channel at micromolar concentrations and inhibiting it at higher concentrations. Here we report the bimodal action of cinnamaldehyde (CA) and camphor, which are thus far reported as agonist and antagonist of TRPA1, respectively. Whole-cell patch-clamp experiments in TRPA1-expressing CHO cells revealed that, as previously reported, extracellular application of 100 μM CA strongly stimulates TRPA1 currents. However, subsequent application of 3 mM CA induced fast and reversible current inhibition. Application of 3 mM CA in basal conditions induced a rather small current increase, followed by current inhibition and a dramatic rebound of current amplitude upon washout. These observations are reminiscent of the effects of TRPA1 modulators having bimodal effects, e.g., menthol and nicotine. In line with previous reports, extracellular application of 1 mM camphor induced a decrease of basal TRPA1 currents. However, the current amplitude showed a significant overshoot upon washout. On the other hand, application of 100 μM camphor induced a 3-fold increase of the basal current amplitude measured at -75 mV. The bimodal effects of CA and camphor on TRPA1 were also observed in microfluorimetric measurements of intracellular Ca(2+) in intact TRPA1-expressing CHO cells and in primary cultures of mouse dorsal root ganglion neurons. These findings are essential for the understanding of the complex sensory properties of these compounds, as well as their utility when used to study the pathophysiological relevance of TRPA1.
Nonlinear response speedup in bimodal visual-olfactory object identification
Directory of Open Access Journals (Sweden)
Richard eHöchenberger
2015-09-01
Full Text Available Multisensory processes are vital in the perception of our environment. In the evaluation of foodstuff, redundant sensory inputs not only assist the identification of edible and nutritious substances, but also help avoiding the ingestion of possibly hazardous substances. While it is known that the non-chemical senses interact already at early processing levels, it remains unclear whether the visual and olfactory senses exhibit comparable interaction effects. To address this question, we tested whether the perception of congruent bimodal visual-olfactory objects is facilitated compared to unimodal stimulation. We measured response times (RT and accuracy during speeded object identification. The onset of the visual and olfactory constituents in bimodal trials was physically aligned in the first and perceptually aligned in the second experiment. We tested whether the data favored coactivation or parallel processing consistent with race models. A redundant-signals effect was observed for perceptually aligned redundant stimuli only, i.e. bimodal stimuli were identified faster than either of the unimodal components. Analysis of the RT distributions and accuracy data revealed that these observations could be explained by a race model. More specifically, visual and olfactory channels appeared to be operating in a parallel, positively dependent manner. While these results suggest the absence of early sensory interactions, future studies are needed to substantiate this interpretation.
Does bimodal stimulus presentation increase ERP components usable in BCIs?
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.
2012-08-01
Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.
Thermodynamical Properties of Spin-3/2 Ising Model in a Longitudinal Random Field with Crystal Field
Institute of Scientific and Technical Information of China (English)
LIANG Ya-Qiu; WEI Guo-Zhu; ZHANG Hong; SONG Guo-Li
2004-01-01
A theoretical study of a spin-3/2 Ising model in a longitudinal random field with crystal field is studiedby using of the effective-field theory with correlations. The phase diagrams and the behavior of the tricritical point areinvestigated numerically for the honeycomb lattice when the randorm field is bimodal. In particular, the specific heatand the internal energy are examined in detail for the system with a crystal-field constant in the critical region wherethe ground-state configuration may change from the spin-3/2 state to the spin-1/2 state. We find many interestingphenomena in the system.
Afonso, Marco Martins; Gama, Sílvio
2016-01-01
We analytically investigate the effective-diffusivity tensor of a tracer particle in a fluid flow endowed with a short correlation time. By means of functional calculus and a multiscale expansion, we write down the main contributions to the eddy diffusivity due to each single physical effect and to their interplays. Namely, besides molecular diffusivity and a constant uniform mean streaming, we take into account the possibility for the (incompressible, Gaussian, stationary, homogeneous, isotropic) turbulent fluctuations to break parity invariance. With respect to the classical turbulence-driven diffusivity amplification for delta-correlated flows, we find that the presence of a short temporal correlation induces a diminution even when coupled with such effects, with two principal exceptions. Notably, the diffusivity is --- perturbatively --- enlarged not only by the helical contribution itself, but also by the interference between molecular diffusion and mean flow.
Energy Technology Data Exchange (ETDEWEB)
Jemai, M
2004-07-01
In the present thesis we have applied the self consistent random phase approximation (SCRPA) to the Hubbard model with a small number of sites (a chain of 2, 4, 6,... sites). Earlier SCRPA had produced very good results in other models like the pairing model of Richardson. It was therefore interesting to see what kind of results the method is able to produce in the case of a more complex model like the Hubbard model. To our great satisfaction the case of two sites with two electrons (half-filling) is solved exactly by the SCRPA. This may seem a little trivial but the fact is that other respectable approximations like 'GW' or the approach with the Gutzwiller wave function yield results still far from exact. With this promising starting point, the case of 6 sites at half filling was considered next. For that case, evidently, SCRPA does not any longer give exact results. However, they are still excellent for a wide range of values of the coupling constant U, covering for instance the phase transition region towards a state with non zero magnetisation. We consider this as a good success of the theory. Non the less the case of 4 sites (a plaquette), as indeed all cases with 4n sites at half filling, turned out to have a problem because of degeneracies at the Hartree Fock level. A generalisation of the present method, including in addition to the pairs, quadruples of Fermions operators (called second RPA) is proposed to also include exactly the plaquette case in our approach. This is therefore a very interesting perspective of the present work. (author)
Directory of Open Access Journals (Sweden)
Rakesh Gupta
2010-01-01
Full Text Available The paper deals with the stochastic analysis of a two non-identical unit standbysystem model. The one unit is considered as priority (p unit and the other as ordinary (o unit.The p-unit gets priority in operation. A single repair facility appears in and disappears from thesystem randomly with constant rates. The repair discipline of units is FCFS. The joint distributionof failure and repair times for each unit is taken to be bivariate exponential. Using regenerativepoint technique various measures of system effectiveness useful to industrial managers areobtained.
Maćkowski, Sebastian; Czechowski, Nikodem; Ashraf, Khuram U; Szalkowski, Marcin; Lokstein, Heiko; Cogdell, Richard J; Kowalska, Dorota
2016-08-01
We focus on the spectral dependence of plasmon-induced enhancement of fluorescence of Chlorobaculum tepidum reaction centers. When deposited on silver island film, they exhibit up to a 60-fold increase in fluorescence. The dependence of enhancement factors on the excitation wavelength is not correlated with the absorption spectrum of the plasmonic structure. In particular, the presence of one (or multiple) trimers of the Fenna-Matthews-Olson (FMO) protein reveals itself in bimodal distribution of enhancement factors for the excitation at 589 nm, the wavelength corresponding to bacteriochlorophyll absorption of FMO and the core of the RC. We conclude that the structure of multichromophoric complexes can substantially affect the impact of plasmonic excitations, which is important in the context of assembling functional biohybrid systems.
Bimodal quasi-oscillatory and spectral behavior in Scorpius X-1
Priedhorsky, W.; Hasinger, G.; Lewin, W. H. G.; Middleditch, J.; Parmar, A.
1986-01-01
Exosat observations of Sco X-1 obtained using the Xe and/or Ar detectors for a total of about 80,000 s during four runs on August 24-27, 1985 are reported and analyzed. Two modes of quasi-periodic oscillations (QPOs) corresponding to the quiescent and active states of Sco X-1 and to two modes of spectral behavior are identified and characterized, confirming the findings of Priedhorsky (1985) and Middleditch and Priedhorsky (1986). In the quiescent state, the QPO frequency is about 6 Hz and is anticorrelated with intensity, and the spectral hardness ratio (14-21 vs 2-7 keV) varies steeply with intensity; in the active state, QPO frequency is correlated with intensity and varies from 10 to 20 Hz, and the spectral-hardness-ratio/intensity curve is flatter. Previous observations of bimodal behavior in other bands are summarized, and theoretical models proposed to explain them are discussed.
Williams, Joshua T; Darcy, Isabelle; Newman, Sharlene D
2016-02-15
The aim of the present study was to characterize effects of learning a sign language on the processing of a spoken language. Specifically, audiovisual phoneme comprehension was assessed before and after 13 weeks of sign language exposure. L2 ASL learners performed this task in the fMRI scanner. Results indicated that L2 American Sign Language (ASL) learners' behavioral classification of the speech sounds improved with time compared to hearing nonsigners. Results indicated increased activation in the supramarginal gyrus (SMG) after sign language exposure, which suggests concomitant increased phonological processing of speech. A multiple regression analysis indicated that learner's rating on co-sign speech use and lipreading ability was correlated with SMG activation. This pattern of results indicates that the increased use of mouthing and possibly lipreading during sign language acquisition may concurrently improve audiovisual speech processing in budding hearing bimodal bilinguals.
Garza, Alejandro J; Alencar, Ana G Sousa; Sun, Jianwei; Perdew, John P; Scuseria, Gustavo E
2015-01-01
Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add---without introducing double counting, self-interaction, or increase in cost---the missing correlation to these methods via meta-GGA density functionals (TPSS and SCAN). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with DFT and the direct random phase approximation (dRPA), respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing...
Bi-Modal and Mixture Distributions in Circular Data Analysis
Directory of Open Access Journals (Sweden)
Muhammet Burak KILIC
2016-10-01
Full Text Available Objective: Circular statistics is a special area which is analyzed by observed angular data on the unit circle. In many various studies, such as environment, biology or medicine, circular (angular data is an important part of the research. For illustration, to determine the secondary structure of the proteins by utilizing dihedral angles or to asses physical disorders such as gait disturbances between the bones in the geometric morphology or the organization of the beach after leaving the eggs of sea turtles, are the important applications of this area. The uses of linear statistical methods in this area lead to misleading results because of the geometric shape of the circular data. Therefore, when it is analyzing such angular data, circular statistical methods should be used. The objective of this study is compared with the bi-modal and mixture distributions in circular data analysis. Material and Methods: The bi-modal mixture von Mises, wrapped Normal, wrapped Cauchy and the generalisations of von Mises distributions were used and it was performed by iterative methods to obtain aximum likelihood estimators. These iterative methods were applied in R programming and the R codes were given for the circular distribution of the parameter estimation. These distributions were examined for analyzing dihedral angles in proteins and turtles rotations, and model selection was performed by using Akaike and Bayesian information criteria. Results: For dihedral angles in protein, two mixture wrapped Cauchy distribution was given the better fit. For turtle rotations, the generalizations of von Mises distribution and two mixture von Mises distribution were given the better fit. Conclusion: If there is observed an excessive concentration in one or more modes in analyzing circular data, the bimodal mixture von Mises and the generalisations of von Mises distribution for modeling may not be preferred. If there is not observed an excessive concentration in
Rocca, Dario
2014-05-14
A new ab initio approach is introduced to compute the correlation energy within the adiabatic connection fluctuation dissipation theorem in the random phase approximation. First, an optimally small basis set to represent the response functions is obtained by diagonalizing an approximate dielectric matrix containing the kinetic energy contribution only. Then, the Lanczos algorithm is used to compute the full dynamical dielectric matrix and the correlation energy. The convergence issues with respect to the number of empty states or the dimension of the basis set are avoided and the dynamical effects are easily kept into account. To demonstrate the accuracy and efficiency of this approach the binding curves for three different configurations of the benzene dimer are computed: T-shaped, sandwich, and slipped parallel.
Transition for Optimal Paths in Bimodal Directed Polymers
Institute of Scientific and Technical Information of China (English)
WANG Xiao-Hong
2005-01-01
@@ The problem for optimal paths in bimodal directed polymers is studied. It is shown that the distribution of the thermal average position of the endpoints of the optimal paths is discontinuous below the threshold p ＜ pc. The origin is that there is a finite possibility that only one endpoint takes the global minimum energy for p ＜ pc. Our results suggest that the percolation threshold for directed percolation is also the critical point of the transition for the possibility that the optimal paths converge to one endpoint.
Ferrer, Josep; Pacha, Juan R; Peña, Marta
2012-01-01
We consider the set of bimodal linear systems consisting of two linear dynamics acting on each side of a given hyperplane, assuming continuity along the separating hyperplane. Focusing on the unobservable planar ones, we obtain a simple explicit characterization of controllability. Moreover, we apply the canonical forms of these systems depending on two state variables to obtain explicitly miniversal deformations, to illustrate bifurcation diagrams and to prove that the unobservable controllable systems are stabilizable. Preprint of an article submitted for consideration in IJBC \\copyright 2011 copyright World Scientific Publishing Company http://www.worldscinet.com/ijbc/
Acelerômetro a fibra óptica bimodal
Fábio Avila de Castro
1994-01-01
Sensores interferométricos a fibra óptica vêm sendo largamente utilizados em aplicações que demandam elevado desempenho. Este trabalho apresenta um novo sensor interferométrico a fibra bimodal com núcleo elíptico que, numa configuração particular, pode ser convenientemente utilizado como acelerômetro. Testes elásticos e dinâmicos foram realizados de forma a caracterizarem-se parâmetros importantes desse sensor, tais como: sensibilidade estática, fator de escala, deriva, faixa dinâmica e freqü...
Liu, Baoshun; Li, Ziqiang; Zhao, Xiujian
2015-02-21
In this research, Monte-Carlo Continuity Random Walking (MC-RW) model was used to study the relation between electron transport and photocatalysis of nano-crystalline (nc) clusters. The effects of defect energy disorder, spatial disorder of material structure, electron density, and interfacial transfer/recombination on the electron transport and the photocatalysis were studied. Photocatalytic activity is defined as 1/τ from a statistical viewpoint with τ being the electron average lifetime. Based on the MC-RW simulation, a clear physical and chemical "picture" was given for the photocatalytic kinetic analysis of nc-clusters. It is shown that the increase of defect energy disorder and material spatial structural disorder, such as the decrease of defect trap number, the increase of crystallinity, the increase of particle size, and the increase of inter-particle connection, can enhance photocatalytic activity through increasing electron transport ability. The increase of electron density increases the electron Fermi level, which decreases the activation energy for electron de-trapping from traps to extending states, and correspondingly increases electron transport ability and photocatalytic activity. Reducing recombination of electrons and holes can increase electron transport through the increase of electron density and then increases the photocatalytic activity. In addition to the electron transport, the increase of probability for electrons to undergo photocatalysis can increase photocatalytic activity through the increase of the electron interfacial transfer speed.
Ip, Edward H; Wasserman, Richard; Barkin, Shari
2011-03-01
Designing cluster randomized trials in clinical studies often requires accurate estimates of intraclass correlation, which quantifies the strength of correlation between units, such as participants, within a cluster, such as a practice. Published ICC estimates, even when available, often suffer from the problem of wide confidence intervals. Using data from a national, randomized, controlled study concerning violence prevention for children--the Safety Check--we compare the ICC values derived from two approaches only baseline data and using both baseline and follow-up data. Using a variance component decomposition approach, the latter method allows flexibility in handling complex data sets. For example, it allows for shifts in the outcome variable over time and for an unbalanced cluster design. Furthermore, we evaluate the large-sample formula for ICC estimates and standard errors using the bootstrap method. Our findings suggest that ICC estimates range from 0.012 to 0.11 for providers within practice and range from 0.018 to 0.11 for families within provider. The estimates derived from the baseline-only and repeated-measurements approaches agree quite well except in cases in which variation over repeated measurements is large. The reductions in the widths of ICC confidence limits from using repeated measurement over baseline only are, respectively, 62% and 42% at the practice and provider levels. The contribution of this paper therefore includes two elements, which are a methodology for improving the accuracy of ICC, and the reporting of such quantities for pediatric and other researchers who are interested in designing clustered randomized trials similar to the current study.
Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets
Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.
2007-01-01
Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.
A Connection Between Bulge Properties and the Bimodality of Galaxies
Drory, Niv
2007-01-01
The global colors of galaxies have recently been shown to follow bimodal distributions. Galaxies separate into a ``red sequence'', populated prototypically by early-type galaxies, and a ``blue cloud'', whose typical objects are late-type disk galaxies. Intermediate-type (Sa-Sbc) galaxies populate both regions. It has been suggested that this bimodality reflects the two-component nature of disk-bulge galaxies. However, it has now been established that there are two types of bulges: ``classical bulges'' that are dynamically hot systems resembling (little) ellipticals, and ``pseudobulges'', dynamically cold, flattened, disk-like structures that could not have formed via violent relaxation. Therefore thee question is whether at types Sa-Sbc, where both bulge types are found, the red-blue dichotomy separates galaxies at some value of disk-to-bulge ratio, $B/T$, or, whether it separates galaxies of different bulge type, irrespective of their $B/T$. We identify classical bulges and pseudobulges morphologically with ...
Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles.
Chen, Cherry C; Borden, Mark A
2010-08-17
Using microbubbles as model systems, we examined molecular diffusion and binding to colloidal surfaces in bimodal poly(ethylene glycol) (PEG) brush layers. A microbubble is a gaseous colloidal particle with a diameter of less than 10 mum, of which the surface comprises amphiphilic phospholipids self-assembled to form a lipid monolayer shell. Due to the compressible gas core, microbubbles provide a sensitive acoustic response and are currently used as ultrasound contrast agents. Similar to the design of long circulating liposomes, PEG chains are typically incorporated into the shell of microbubbles to form a steric barrier against coalescence and adsorption of macromolecules to the microbubble surface. We introduced a buried-ligand architecture (BLA) design where the microbubble surface was coated with a bimodal PEG brush. After microbubbles were generated, fluorescent ligands with different molecular weights were conjugated to the tethered functional groups on the shorter PEG chains, while the longer PEG chains served as a shield to protect these ligands from exposure to the surrounding environment. BLA microbubbles reduced the binding of macromolecules (>10 kDa) to the tethers due to the steric hindrance of the PEG overbrush while allowing the uninhibited attachment of small molecules (microbubbles compared to exposed-ligand architecture (ELA) microbubbles. The binding of SA-FITC to BLA microbubbles suggested a possible phase separation between the lipid species on the surface leading to populations of revealed and concealed ligands. Ligand conjugation kinetics was independent of microbubble size, regardless of ligand size or microbubble architecture. We observed, for the first time, streptavidin-induced surface structure formation for ELA microbubbles and proposed that this phenomenon may be correlated to flow cytometry scattering measurements. We therefore demonstrated the feasibility of postlabeling for small-molecule ligands to BLA microbubbles to generate
Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli
Directory of Open Access Journals (Sweden)
Marieke Elise Thurlings
2014-09-01
Full Text Available Gaze-independent event-related potential (ERP based brain-computer interfaces (BCIs yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1 bimodal versus unimodal stimuli, (2 location-congruent versus location-incongruent bimodal stimuli, and (3 attending to both modalities versus to either one modality. We observed an enhanced bimodal (compared to unimodal P300 tAUC, which appeared to be positively affected by location-congruency (p=.056 and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance.
Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli.
Thurlings, Marieke E; Brouwer, Anne-Marie; Van Erp, Jan B F; Werkhoven, Peter
2014-01-01
Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components' tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance.
Progress in Bimodal Polyethylene Produced by Metallocene Catalyst
Institute of Scientific and Technical Information of China (English)
FENG; YuTao
2001-01-01
The external new ways, kinds and recant advances of bimodal Polyethylene produced by metallocene catalyst were reviewed. For example, U.S.Pat.No 4939217 discloses an olefin polymerization supported catalyst comprising at least two different metallocenes each having different olefin polymerization termination rate constants in the presence of hydrogen. U.S.Pat. No.5077255 discloses an olefin polymerization supported catalyst comprising at least one metallocene of a metal, a non-metallocene transition metal and an alumoxane. The supported product is highly useful for the polymerization of olefins especially ethylene and especially for the copolymerization of ethylene and other mono and diolefins. U.S.Pat.No.5986024 discloses a process is provided for preparing polymer compositions which are multimodal in nature. The process involves contacting, under polymerization conditions, a selected addition polymerizable monomer with a metallocene catalyst having two or more distinct and chemically different active sites, and a catalyst activator. ……
Progress in Bimodal Polyethylene Produced by Metallocene Catalyst
Institute of Scientific and Technical Information of China (English)
FENG YuTao
2001-01-01
@@ The external new ways, kinds and recant advances of bimodal Polyethylene produced by metallocene catalyst were reviewed. For example, U.S.Pat.No 4939217 discloses an olefin polymerization supported catalyst comprising at least two different metallocenes each having different olefin polymerization termination rate constants in the presence of hydrogen. U.S.Pat. No.5077255 discloses an olefin polymerization supported catalyst comprising at least one metallocene of a metal, a non-metallocene transition metal and an alumoxane. The supported product is highly useful for the polymerization of olefins especially ethylene and especially for the copolymerization of ethylene and other mono and diolefins. U.S.Pat.No.5986024 discloses a process is provided for preparing polymer compositions which are multimodal in nature. The process involves contacting, under polymerization conditions, a selected addition polymerizable monomer with a metallocene catalyst having two or more distinct and chemically different active sites, and a catalyst activator.
Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications
Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina
This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.
Institute of Scientific and Technical Information of China (English)
Yingmin Cai; Haitao Hu; Rongliang Xue; Pengbin Liu; Gaifeng Feng; Weijiang Dong; Bin Yu; Minggang Zhao
2009-01-01
BACKGROUND: Cognitive dysfunction occurs in elderly patients following general anesthesia, and this might be associated with genetics. Studies have shown that theε4 allele gene is closely associated with senile dementia.OBJECTIVE: To compare and analyze the correlations between cognitive dysfunction and single nucleotide polymorphism of apolipoprotein E (ApoE) following inhaJation or intravenous anesthesia.DESIGN, TIME AND SETTING: A randomized, controlled study was performed. The patients were recruited from the Department of Anesthesia, Second Affiliated Hospital, Medical College, Xi'an Jiaotong University, China between May 2005 and December 2008. Genetic analyses were conducted at the Departments of Neuroanatomy and Forensic Medicine, Medical College, Xi'an Jiaotong University, China.PARTICIPANTS: A total of 1 000 patients of ASA Ⅰ-Ⅱ grade, without genetic connection, were enrolled in this study, comprising 520 males and 480 females, aged (70.1±4.6) years and weighing (57.3±7.5) kg. No patients suffered from cognitive dysfunction.METHODS: The patients were equally and randomly divided into intravenous anesthesia and gas anesthesia groups. Total intravenous anesthesia and inhaled anesthesia were used. Genomic DNA from whole blood was extracted. The ApoE gene was amplified by PCR. Restriction fragment length polymorphism of ApoE gene was analyzed. Cognitive function was evaluated by Mini-Mental State Examination (MMSE). Patients scoring 0.05).CONCLUSION: Results demonstrated a correlation between cognitive dysfunction and ApoE single nucleotide polymorphism in elderly patients after gas anesthesia. However, no relationship between cognitive dysfunction and ApoE single nucleotide polymorphism was determined in elderly patients following intravenous anesthesia. Therefore, elderly patients, especially those expressing the ApoEε4 gene, should be cautiously exposed to gas anesthesia.
Ahn, Chul; Hu, Fan; Skinner, Celette Sugg; Ahn, Daniel
2009-07-01
In some cluster randomization trials, the number of clusters cannot exceed a specified maximum value due to cost constraints or other practical reasons. Donner and Klar [Donner A, and Klar N. Design and analysis of cluster randomization trials in health research. Oxford University Press 2000] provided the sample size formula for the number of subjects required per cluster when the number of clusters cannot exceed a specified maximum value. The sample size formula of Donner and Klar assumes that the number of subjects is the same in each cluster. In practical situations, the number of subjects may be different among clusters. We conducted simulation studies to investigate the effect of the cluster size variability (kappa) and the intracluster correlation coefficient (rho) on the power of the study in which the number of available clusters is fixed in advance. For the balanced case (kappa=1.0), i.e., equal cluster size among clusters, the sample size formula yielded empirical powers close to the nominal level even when the number of available clusters per group (k*) is as small as 10. The sample size formula yielded empirical powers close to the nominal level when the number of available clusters per group (k*) is at least 20 and the imbalance parameter (kappa) is at least 0.8. Empirical powers were close to the nominal level when (rho or =0.8, and k*=10) or (rho< or =0.02, kappa=0.8, and k*=20).
Globular Cluster Systems in Brightest Cluster Galaxies. III: Beyond Bimodality
Harris, William E.; Ciccone, Stephanie M.; Eadie, Gwendolyn M.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry; Bailin, Jeremy
2017-01-01
We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the Hubble Space Telescope (HST) ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12,000 to 23,000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ≃ 0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] ≃ ‑2.4 to solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive gas-rich halos. Last, the proportion of metal-poor GCs rises especially rapidly outside projected radii R≳ 4 {R}{eff}, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.
Parametric Analysis of Tensile Properties of Bimodal Al Alloys by Finite Element Method
Institute of Scientific and Technical Information of China (English)
W.L. Zhanga; S. Li; S.R. Nutt
2009-01-01
An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal Al alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG Al and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al.Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal Al alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal Al alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal Al alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UT5, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent.
An SZ take on cluster radio haloes -- I. Global scaling and bi-modality using Planck data
Basu, Kaustuv
2011-01-01
Giant radio haloes in galaxy clusters are the primary evidence for the existence of relativistic particles (cosmic rays) and magnetic fields over Mpc scales. Observational tests for the different theoretical models explaining their powering mechanism have so far been obtained through X-ray selection of clusters, e.g. by comparing cluster X-ray luminosities with radio halo power. Here we present the first global scaling relations between radio halo power and integrated Sunyaev-Zel'dovich (SZ) effect measurements, using the Planck all-sky cluster catalog and published radio data. The correlation agrees well with previous scaling measurements based on X-ray data, and offers a more direct probe into the mass dependence inside radio haloes. However, we find no strong indication for a bi-modal cluster population split between radio halo and radio quiet objects. We discuss the possible causes for this apparent lack of bi-modality, and compare the observed slope of the radio-SZ correlation with competing theoretical ...
Kim, Do Yun; Hänni, Simon; Schüttauf, Jan-Willem; van Swaaij, René A C M M; Zeman, Miro
2016-08-17
Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Voc and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130° (ρSi:H (ρdefect), which is obtained by fitting external photovoltaic parameters from experimental results and simulations. We confirm that when ρ<130 increases the Voc and FF significantly drops. It is also observed that ρdefect increases following a power law dependence of ρ<130. This result is attributed to more frequently formed defective regions for substrates having higher ρ<130.
Directory of Open Access Journals (Sweden)
Print Cristin G
2011-01-01
Full Text Available Abstract Background Identifying the functional importance of the millions of single nucleotide polymorphisms (SNPs in the human genome is a difficult challenge. Therefore, a reverse strategy, which identifies functionally important SNPs by virtue of the bimodal abundance across the human population of the SNP-related mRNAs will be useful. Those mRNA transcripts that are expressed at two distinct abundances in proportion to SNP allele frequency may warrant further study. Matrix metalloproteinase 1 (MMP1 is important in both normal development and in numerous pathologies. Although much research has been conducted to investigate the expression of MMP1 in many different cell types and conditions, the regulation of its expression is still not fully understood. Results In this study, we used a novel but straightforward method based on agglomerative hierarchical clustering to identify bimodally expressed transcripts in human umbilical vein endothelial cell (HUVEC microarray data from 15 individuals. We found that MMP1 mRNA abundance was bimodally distributed in un-treated HUVECs and showed a bimodal response to inflammatory mediator treatment. RT-PCR and MMP1 activity assays confirmed the bimodal regulation and DNA sequencing of 69 individuals identified an MMP1 gene promoter polymorphism that segregated precisely with the MMP1 bimodal expression. Chromatin immunoprecipation (ChIP experiments indicated that the transcription factors (TFs ETS1, ETS2 and GATA3, bind to the MMP1 promoter in the region of this polymorphism and may contribute to the bimodal expression. Conclusions We describe a simple method to identify putative bimodally expressed RNAs from transcriptome data that is effective yet easy for non-statisticans to understand and use. This method identified bimodal endothelial cell expression of MMP1, which appears to be biologically significant with implications for inflammatory disease. (271 Words
Bi-modal G\\"odel logic over [0,1]-valued Kripke frames
Caicedo, Xavier
2011-01-01
We consider the G\\"odel bi-modal logic determined by fuzzy Kripke models where both the propositions and the accessibility relation are infinitely valued over the standard G\\"odel algebra [0,1] and prove strong completeness of Fischer Servi intuitionistic modal logic IK plus the prelinearity axiom with respect to this semantics. We axiomatize also the bi-modal analogues of $T,$ $S4,$ and $S5$ obtained by restricting to models over frames satisfying the [0,1]-valued versions of the structural properties which characterize these logics. As application of the completeness theorems we obtain a representation theorem for bi-modal G\\"odel algebras.
Directory of Open Access Journals (Sweden)
Dave Walker
Full Text Available Zegerid (on demand immediate-release omeprazole and sodium bicarbonate combination therapy has demonstrated earlier absorption and more rapid pH change compared with Losec (standard enteric coated omeprazole, suggesting more rapid clinical relief of heartburn. This Phase III, multicenter, double-blind, double-dummy, randomized study assessed the clinical superiority of Zegerid versus Losec for rapid relief of heartburn associated with gastro-esophageal reflux disease (GERD.Patients with a history of frequent (2 3 days/week uncomplicated GERD, were randomized to receive Zegerid (20 mg or Losec (20 mg with corresponding placebo. Study medication was self-administered on the first episode of heartburn, and could be taken for up to 3 days within a 14 day study period. Heartburn severity was self assessed up to 180 minutes post dose (9 point Likert scale. Primary endpoint was median time to sustained response (≥3 point reduction in heartburn severity for ≥45 minutes.Of patients randomized to Zegerid (N=122 or Losec (N=117, 228/239 had recorded ≥1 evaluable heartburn episodes and were included in the modified intent-to-treat population. No significant between-group differences were observed for median time to sustained response (60.0 vs. 52.2 minutes, Zegerid [N=117] and Losec [N=111], respectively, sustained partial response (both, 37.5 minutes and sustained total relief (both, 105 minutes. Significantly more patients treated with Zegerid reached sustained total relief within 0-30 minutes post dose in all analysis sets (p<0.05. Both treatments were well tolerated and did not raise any safety concerns.Superiority of Zegerid over Losec for rapid heartburn relief was not demonstrated; both treatments were equally effective however the rapid onset of action of Losec was unexpected. Factors, including aspects of study design may have contributed to this. This study supports previously reported difficulty in correlating intra-gastric pH change with
Kulkarni, Vaishnavi M; Bodas, Dhananjay; Dhoble, Deepa; Ghormade, Vandana; Paknikar, Kishore
2016-09-01
Radio-frequency responsive nanomaterials combined with drugs for simultaneous hyperthermia and drug delivery are potential anti-cancer agents. In this study, chitosan coated La0.7Sr0.3MnO3 nanoparticles (C-LSMO NPs) were synthesized and characterized by X-ray diffraction, dynamic light scattering, Fourier transform infra red spectroscopy, vibrating sample magnetometer, scanning electron and atomic force microscopy. Under low radio-frequency (365kHz, RF), C-LSMO NPs (90nm) showed good colloidal stability (+22mV), superparamagnetic nature (15.4 emu/g) and heating capacity (57.4W/g SAR value). Chitosan facilitated doxorubicin entrapment (76%) resulted in DC-LSMO NPs that showed drug release upon a 5min RF exposure. MCF-7 and MDA-MB-231 cancer cells responded to a 5min RF exposure in the presence of bimodal DC-LSMO NPs with a significant decrease in viability to 73% and 88% (Pearson correlation, r=1, Pheat shock protein induction, and caspase production triggered apoptotic cell death. Moreover, DC-LSMO NPs successfully restricted the migration of metastatic MDA-MB-231 cancer cells. These data suggest that DC-LSMO NPs are potential bimodal therapeutic agents for cancer treatment and hold promise against disease recurrence and drug resistance.
The bimodal initial mass function in the Orion Nebula Cloud
Drass, H; Chini, R; Bayo, A; Hackstein, M; Hoffmeister, V; Godoy, N; Vogt, N
2016-01-01
Due to its youth, proximity and richness the Orion Nebula Cloud (ONC) is an ideal testbed to obtain a comprehensive view on the Initial Mass Function (IMF) down to the planetary mass regime. Using the HAWK-I camera at the VLT, we have obtained an unprecedented deep and wide near-infrared JHK mosaic of the ONC (90% completeness at K~19.0mag, 22'x28). Applying the most recent isochrones and accounting for the contamination of background stars and galaxies, we find that ONC's IMF is bimodal with distinct peaks at about 0.25 and 0.025 M_sun separated by a pronounced dip at the hydrogen burning limit (0.08 M_sun), with a depth of about a factor 2-3 below the log-normal distribution. Apart from ~920 low-mass stars (M 0.005 M_sun, hence about ten times more substellar candidates than known before. The substellar IMF peak at 0.025 M_sun could be caused by BDs and IPMOs which have been ejected from multiple systems during the early star-formation process or from circumstellar disks.
Effect of short range hydrodynamic on bimodal colloidal gel systems
Boromand, Arman; Jamali, Safa; Maia, Joao
2015-03-01
Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.
Bimodal activated carbons derived from resorcinol-formaldehyde cryogels
Energy Technology Data Exchange (ETDEWEB)
Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)
2011-06-15
Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.
Bimodal distribution of damage morphology generated by ion implantation
Energy Technology Data Exchange (ETDEWEB)
Mok, K.R.C. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain) and Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117576 (Singapore)]. E-mail: g0202446@nus.edu.sg; Jaraiz, M. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Martin-Bragado, I. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Synopsys, Karl-Hammerschmidt Strasse 34, D-85609 Aschheim/Dornach (Germany); Rubio, J.E. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Castrillo, P. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Pinacho, R. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117576 (Singapore); Benistant, F. [Chartered Semiconductor Manufacturing, 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)
2005-12-05
A nucleation and evolution model of damage based on amorphous pockets (APs) has recently been developed and implemented in an atomistic kinetic Monte Carlo simulator. In the model, APs are disordered structures (I {sub n}V {sub m}), which are agglomerates of interstitials (I) and vacancies (V). This model has been used to study the composition and size distribution of APs during different ion implantations. Depending strongly on the dose rate, ion mass and implant temperature, the APs can evolve to a defect population where the agglomerates have a similar number of I and V (n {approx} m), or to a defect population with pure I (m {approx} 0) and pure V (n {approx} 0) clusters, or a mixture of APs and clusters. This behaviour corresponds to a bimodal (APs/clusters) distribution of damage. As the AP have different thermal stability compared to the I and V clusters, the same damage concentration obtained through different implant conditions has a different damage morphology and, consequently, exhibit a different resistance to subsequent thermal treatments.
Utterance independent bimodal emotion recognition in spontaneous communication
Tao, Jianhua; Pan, Shifeng; Yang, Minghao; Li, Ya; Mu, Kaihui; Che, Jianfeng
2011-12-01
Emotion expressions sometimes are mixed with the utterance expression in spontaneous face-to-face communication, which makes difficulties for emotion recognition. This article introduces the methods of reducing the utterance influences in visual parameters for the audio-visual-based emotion recognition. The audio and visual channels are first combined under a Multistream Hidden Markov Model (MHMM). Then, the utterance reduction is finished by finding the residual between the real visual parameters and the outputs of the utterance related visual parameters. This article introduces the Fused Hidden Markov Model Inversion method which is trained in the neutral expressed audio-visual corpus to solve the problem. To reduce the computing complexity the inversion model is further simplified to a Gaussian Mixture Model (GMM) mapping. Compared with traditional bimodal emotion recognition methods (e.g., SVM, CART, Boosting), the utterance reduction method can give better results of emotion recognition. The experiments also show the effectiveness of our emotion recognition system when it was used in a live environment.
Magni, Annarita; Trancassini, Maria; Varesi, Paola; Iebba, Valerio; Curci, Anna; Pecoraro, Claudia; Cimino, Giuseppe; Schippa, Serena; Quattrucci, Serena
2010-04-01
Achromobacter xylosoxidans is an emerging pathogen increasingly being isolated from respiratory samples of cystic fibrosis (CF) patients. Its role and clinical significance in lung pathogenesis have not yet been clarified. The aim of the present study was to genetically characterize A. xylosoxidans strains isolated from CF patients by use of randomly amplified polymorphic DNA (RAPD) profiles and to look for a possible correlation between RAPD profiles and the patients' clinical features, such as their spirometry values, the presence of concomitant chronic bacterial flora at the time of isolation, and the persistent or intermittent presence of A. xylosoxidans strains. A set of 106 strains of A. xylosoxidans were typed by RAPD analysis, and their profiles were analyzed by agglomerative hierarchical classification (AHC) and associated with the patient characteristics mentioned above by factorial discriminant analysis (FDA). The overall results obtained in this study showed that (i) there is a marked genetic relationship between strains isolated from the same patients at different times, (ii) characteristic RAPD profiles are associated with different predicted classes for forced expiratory volume in 1 s (FEV1%), (iii) some characteristic RAPD profiles are associated with different concomitant chronic flora (CCF) profiles, and (iv) there is a significant division of RAPD profiles into "persistent strains" and "intermittent strains" of A. xylosoxidans. These findings seem to imply that the lung habitats found in CF patients are capable of shaping and selecting the colonizing bacterial flora, as seems to be the case for the A. xylosoxidans strains studied.
Impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease patients.
Simoes Loureiro, Isabelle; Lefebvre, Laurent
2015-01-01
The aim of this study was to generalize the positive impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease (AD) patients. In practice, the naming skills of healthy elderly persons improve when additional sensory signals are included. The hypothesis of this study was that the same influence would be observable in AD patients. Sixty elderly patients separated into three groups (healthy subjects, stage 1 AD patients, and stage 2 AD patients) were tested with a battery of naming tasks comprising three different modalities: a visual modality, an auditory modality, and a visual and auditory modality (bimodality). Our results reveal the positive influence of bimodality on the accuracy with which bimodal items are named (when compared with unimodal items) and their latency (when compared with unimodal auditory items). These results suggest that multisensory enrichment can improve lexical retrieval in AD patients.
Bi-Modal Authentication in Mobile Environments Using Session Variability Modelling
Motlicek, Petr; El Shafey, Laurent; Wallace, Roy; McCool, Chris; Marcel, Sébastien
2012-01-01
We present a state-of-the-art bi-modal authentication system for mobile environments, using session variability modelling. We examine inter-session variability modelling (ISV) and joint factor analysis (JFA) for both face and speaker authentication and evaluate our system on the largest bi-modal mobile authentication database available, the MOBIO database, with over 61 hours of audio-visual data captured by 150 people in uncontrolled environments on a mobile phone. Our system achieves 2.6% an...
Signals of bimodality in the fragmentation of Au quasi-projectiles
Bruno, M; Cannata, F; D'Agostino, M; Gramegna, F; Vannini, G
2008-01-01
Signals of bimodality have been investigated in experimental data of quasi-projectile decay produced in Au+Au collisions at 35 AMeV. This same data set was already shown to provide several signals characteristic of a first order, liquid-gas-like phase transition. Different event sortings proposed in the recent literature are analyzed. A sudden change in the fragmentation pattern is revealed by the distribution of the charge of the largest fragment, compatible with a bimodal behavior.
Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.
Kiracofe, Daniel; Raman, Arvind; Yablon, Dalia
2013-01-01
One of the key goals in atomic force microscopy (AFM) imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes). It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth), but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.
Fabián, Z. (Zdeněk)
2010-01-01
In this paper, we study a distribution-dependent correlation coefficient based on the concept of scalar score. This new measure of association of continuous random variables is compared by means of simulation experiments with the Pearson, Kendall and Spearman correlation coefficients.
Siegfried, Jeffrey Alan
The primary objective of the COnvective Precipitation Experiment - Microphysics and Entrainment Dependencies (COPE-MED) was part of a larger field campaign undertaken during July and August 2013 with the primary goal of improving quantitative precipitation forecasts for summertime convection over SW England, with a special emphasis on understanding microphysical processes that impact hydrometeor development. Understanding the interplay between the warm rain and ice processes is necessary to lead to better parameterizations for precipitation rates in numerical simulations so, to that end, a detailed survey of the liquid water content and total cloud droplet number concentrations measured during COPE-MED is undertaken. Additionally, a probe-by-probe comparison of the liquid water content was performed in order to ascertain their relative performance and consistency during COPE-MED and under certain conditions. These comparisons reveal generally good agreement between the in situ probes used during COPE-MED, but also reveals that there may be potential issues with certain probes under certain conditions. Secondly, observations from the University of Wyoming King Air research aircraft show occurrences of bimodal cloud droplet spectra, where there exist two distinct droplet diameter populations. An analysis of several COPE-MED cases, based on observations from in situ cloud microphysical probes, is presented. Several environmental factors are examined to look for evidence of entrainment events within regions containing bimodal spectra. Correlations between the adiabaticity and concentration in each mode are examined. While some of these analyses indicate evidence of entrainment, others are less clear. The theoretical super-saturation a parcel would experience when neglecting the small mode and the updraft speed required to achieve various levels of super-saturation are also calculated. Initial results show evidence that secondary activation could potentially explain the
Directory of Open Access Journals (Sweden)
Claudia Schillinger
Full Text Available The polymicrobial nature of periodontal diseases is reflected by the diversity of phylotypes detected in subgingival plaque and the finding that consortia of suspected pathogens rather than single species are associated with disease development. A number of these microorganisms have been demonstrated in vitro to interact and enhance biofilm integration, survival or even pathogenic features. To examine the in vivo relevance of these proposed interactions, we extended the spatial arrangement analysis tool of the software daime (digital image analysis in microbial ecology. This modification enabled the quantitative analysis of microbial co-localization in images of subgingival biofilm species, where the biomass was confined to fractions of the whole-image area, a situation common for medical samples. Selected representatives of the disease-associated red and orange complexes that were previously suggested to interact with each other in vitro (Tannerella forsythia with Fusobacterium nucleatum and Porphyromonas gingivalis with Prevotella intermedia were chosen for analysis and labeled with specific fluorescent probes via fluorescence in situ hybridization. Pair cross-correlation analysis of in vivo grown biofilms revealed tight clustering of F. nucleatum/periodonticum and T. forsythia at short distances (up to 6 µm with a pronounced peak at 1.5 µm. While these results confirmed previous in vitro observations for F. nucleatum and T. forsythia, random spatial distribution was detected between P. gingivalis and P. intermedia in the in vivo samples. In conclusion, we successfully employed spatial arrangement analysis on the single cell level in clinically relevant medical samples and demonstrated the utility of this approach for the in vivo validation of in vitro observations by analyzing statistically relevant numbers of different patients. More importantly, the culture-independent nature of this approach enables similar quantitative analyses for "as
On Gaussian random supergravity
Bachlechner, Thomas C.
2014-01-01
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial K\\"ahler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a nume...
Integrated propulsion and power modeling for bimodal nuclear thermal rockets
Clough, Joshua
Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube
Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River
Gran, K. B.
2015-12-01
Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a
Contributions of electric and acoustic hearing to bimodal speech and music perception.
Directory of Open Access Journals (Sweden)
Joseph D Crew
Full Text Available Cochlear implant (CI users have difficulty understanding speech in noisy listening conditions and perceiving music. Aided residual acoustic hearing in the contralateral ear can mitigate these limitations. The present study examined contributions of electric and acoustic hearing to speech understanding in noise and melodic pitch perception. Data was collected with the CI only, the hearing aid (HA only, and both devices together (CI+HA. Speech reception thresholds (SRTs were adaptively measured for simple sentences in speech babble. Melodic contour identification (MCI was measured with and without a masker instrument; the fundamental frequency of the masker was varied to be overlapping or non-overlapping with the target contour. Results showed that the CI contributes primarily to bimodal speech perception and that the HA contributes primarily to bimodal melodic pitch perception. In general, CI+HA performance was slightly improved relative to the better ear alone (CI-only for SRTs but not for MCI, with some subjects experiencing a decrease in bimodal MCI performance relative to the better ear alone (HA-only. Individual performance was highly variable, and the contribution of either device to bimodal perception was both subject- and task-dependent. The results suggest that individualized mapping of CIs and HAs may further improve bimodal speech and music perception.
Nittrouer, Susan; Chapman, Christopher
2009-09-01
There is no doubt that cochlear implants have improved the spoken language abilities of children with hearing loss, but delays persist. Consequently, it is imperative that new treatment options be explored. This study evaluated one aspect of treatment that might be modified, that having to do with bilateral implants and bimodal stimulation. A total of 58 children with at least one implant were tested at 42 months of age on four language measures spanning a continuum from basic to generative in nature. When children were grouped by the kind of stimulation they had at 42 months (one implant, bilateral implants, or bimodal stimulation), no differences across groups were observed. This was true even when groups were constrained to only children who had at least 12 months to acclimatize to their stimulation configuration. However, when children were grouped according to whether or not they had spent any time with bimodal stimulation (either consistently since their first implant or as an interlude to receiving a second) advantages were found for children who had some bimodal experience, but those advantages were restricted to language abilities that are generative in nature. Thus, previously reported benefits of simultaneous bilateral implantation early in a child's life may not extend to generative language. In fact, children may benefit from a period of bimodal stimulation early in childhood because low-frequency speech signals provide prosody and serve as an aid in learning how to perceptually organize the signal that is received through a cochlear implant.
Institute of Scientific and Technical Information of China (English)
李增志; 黄峰
2009-01-01
The theory of the pseudo random code modulated ultrasonic distance measurement is analyzed in this paper. A new method for finding correlation peak value based on three-step correlation approach is given, considering the characteristics of the ultrasonic pseudo random code. Compared with the direct correlation and the two-step correlation approach, the new method reduces the calculatedamount greatly, and is helpful to rapid measurement and reducing the hardware complexity.%本文分析了伪随机码超声波扩频测距的原理,针对超声波伪随机码的特点,提出了一种分三步快速确定伪随机码相关峰值的方法.相对直接相关和分两步相关大大减小了运算量,有利于快速测量和减小硬件复杂度.
Petrinovic, I. A.; Riller, U.; Brod, J. A.; Alvarado, G.; Arnosio, M.
2006-04-01
volcanic centres of the COT volcanic belt. This points to a close genetic relationship between bimodal volcanism and the upper-crustal deformation regime, whereby episodes of increased volcanic activity correlate with deformation episodes in the Central Andes.
Formulation And Evaluation Of Bilayer Tablet for Bimodal Release of Venlafaxine Hydrochloride
Directory of Open Access Journals (Sweden)
Munira eMomin
2015-07-01
Full Text Available The aim of the present research was to develop a bilayer tablet of venlafexine hydrochloride for bimodal drug release. In the present investigation authors have tried to explore Fenugreek Mucilage (FNM for bioadhesive sustained release layer. The attempt has been made to combine FNM with well studied bioahesive polymers like Hydroxy Propyl Methyl Cellulose, Carbopol and Xanthan Gum. The formulations were evaluated for swelling Index, ex-vivo bioadhesion, water uptake studies, in-vitro drug release and dissolution kinetics was studied. Substantial bioadhesion force (2.4±0.023 gms and tablet adhesion retention time (24±2 hrs was observed with FNM and HPMC combination at 80:20 ratio. The dissolution kinetics followed the Higuchi model (R2 =0.9913 via a non-Fickian diffusion controlled release mechanism after the initial burst. The 32 full factorial design was employed in the present study. The type of polymers used in combination with FNM (X1 and percent polymer replaced with FNM (X2 were taken as independent formulations variables. The selected responses, bioadhesion force (0.11-0.25±0.023gm, amount of drug released in 10 h, Y10 (78.20–95.78±1.24 % and bioadhesive strength, (19-24±2hrs presented good correlation with the selected independent variables. Statistical analysis (ANOVA of the optimized bilayer formulations showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p < 0.05 in the amount of drug released after 1 hr till 12 h from optimized formulations was observed. The natural mucilage like FNM could be successfully incorporated into tablet with only 20% replacement with HPMC and it showed good bioadhesiveness and sustained drug release.
Bimodal distribution of glucose is not universally useful for diagnosing diabetes
DEFF Research Database (Denmark)
Vistisen, Dorte; Colagiuri, Stephen; Borch-Johnsen, Knut;
2009-01-01
included participants with known diabetes. The aim of this study was to assess whether a bimodal structure is a general phenomenon in fasting plasma glucose (FPG) and 2-h plasma glucose that is useful for deriving a common cut point for diabetes in populations of different origin, both including......OBJECTIVE: Bimodality in the distribution of glucose has been used to define the cut point for the diagnosis of diabetes. Previous studies on bimodality have primarily been in populations with a high prevalence of type 2 diabetes, including one study in a white Caucasian population. All studies...... and excluding known diabetes. RESEARCH DESIGN AND METHODS: The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) project is an international collaboration pooling surveys from all continents. These studies include surveys in which plasma glucose...
From micro-correlations to macro-correlations
Eliazar, Iddo
2016-11-01
Random vectors with a symmetric correlation structure share a common value of pair-wise correlation between their different components. The symmetric correlation structure appears in a multitude of settings, e.g. mixture models. In a mixture model the components of the random vector are drawn independently from a general probability distribution that is determined by an underlying parameter, and the parameter itself is randomized. In this paper we study the overall correlation of high-dimensional random vectors with a symmetric correlation structure. Considering such a random vector, and terming its pair-wise correlation "micro-correlation", we use an asymptotic analysis to derive the random vector's "macro-correlation" : a score that takes values in the unit interval, and that quantifies the random vector's overall correlation. The method of obtaining macro-correlations from micro-correlations is then applied to a diverse collection of frameworks that demonstrate the method's wide applicability.
Evidence of bimodal crystallite size distribution in {mu}c-Si:H films
Energy Technology Data Exchange (ETDEWEB)
Ram, Sanjay K. [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)], E-mail: sanjayk.ram@gmail.com; Islam, Md. Nazrul [QAED-SRG, Space Application Centre (ISRO), Ahmedabad 380015 (India); Kumar, Satyendra [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France)
2009-03-15
We report on the microstructural characterization studies carried out on plasma deposited highly crystalline undoped microcrystalline silicon films to explore the crystallite size distribution present in this material. The modeling of results of spectroscopic ellipsometry using two different sized crystallites is corroborated by the deconvolution of experimental Raman profiles using a modeling method that incorporates a bimodal size distribution of crystallites. The presence of a bimodal size distribution of crystallites is demonstrated as well by the results of atomic force microscopy and X-ray diffraction studies. The qualitative agreement between the results of different studies is discussed.
Tension Control of a Bimodal Coiler System by Final-State Control
Hirata, Mitsuo; Eda, Akihiro
A bimodal coiler system is a system for winding the materials rolled in a tandem mill in a rolling plant. In the bimodal coiler system, the tension changes greatly when the tail end of materials being rolled emerge out of the final stand, and as a result, the winding process might be disturbed. In this study, we attempt to suppress the fluctuation in the tension by employing a feedforward method based on final-state control. The effectiveness of the proposed method is verified by performing simulations.
On Gaussian random supergravity
Energy Technology Data Exchange (ETDEWEB)
Bachlechner, Thomas C. [Department of Physics, Cornell University,Physical Sciences Building 428, Ithaca, NY 14853 (United States)
2014-04-08
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial Kähler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in N dimensional random supergravities are either approximately supersymmetric with |F|≪M{sub susy} or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log (P)∝−N. We argue that random supergravities lead to potentially interesting inflationary dynamics.
On Gaussian random supergravity
Bachlechner, Thomas C.
2014-04-01
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial Kähler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in N dimensional random supergravities are either approximately supersymmetric with | F| ≪ M susy or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log( P ) ∝ - N. We argue that random supergravities lead to potentially interesting inflationary dynamics.
On Gaussian Random Supergravity
Bachlechner, Thomas C
2014-01-01
We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial Kahler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in N dimensional random supergravities are either approximately supersymmetric with |F|<< M_{susy} or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log(P)\\propto -N. We argue that random supergravities lead to potentially interesting inflationary dynamics...
Unilateral Cochlear Implantation Reduces Tinnitus Loudness in Bimodal Hearing: A Prospective Study
Servais, Jérôme J.; Hörmann, Karl; Wallhäusser-Franke, Elisabeth
2017-01-01
Perceptive and receptive aspects of subjective tinnitus like loudness and tinnitus-related distress are partly independent. The high percentage of hearing loss in individuals with tinnitus suggests causality of hearing impairment particularly for the tinnitus percept, leading to the hypothesis that restoration of auditory input has a larger effect on tinnitus loudness than on tinnitus-related distress. Furthermore, it is assumed that high levels of depression or anxiety prevent reductions of tinnitus loudness and distress following restoration of activity in the cochlea. This prospective study investigated the influence of unilateral cochlear implant (CI) on tinnitus in 19 postlingually deafened adults during 6 months following implantation. All had bimodal provision with the other ear being continuously supported by a hearing aid. On the day before CI implantation (T1, T2), and at about 3 and 6 months postsurgery (T3, T4), participants were questioned about their current tinnitus. Loudness was rated on a Numeric Rating Scale, distress was assessed by the TQ12 Tinnitus Questionnaire, and depression and anxiety were recorded with the Hospital Anxiety and Depression Scale. At T2, 79% experienced tinnitus, one participant developed tinnitus after implantation. Following implantation, tinnitus loudness was reduced significantly by 42%, while reductions in tinnitus-related distress (−24%), depression (−20%), and anxiety (−20%) did not attain statistical significance. Significant correlations existed between tinnitus measures, and between postimplantation tinnitus-related distress and anxiety and depression scores. Moreover, improvement of hearing in the CI ear was significantly correlated with reduction in tinnitus loudness. A new aspect of this study is the particular influence of CI provision on perceptive aspects of preexisting tinnitus (hypothesis 1), with the effect size regarding postimplant reduction of perceived tinnitus loudness (1.40) being much
Edgington, Eugene
2007-01-01
Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani
DEFF Research Database (Denmark)
Wanscher, Jørgen Bundgaard; Sørensen, Majken Vildrik
2006-01-01
highly uniform multidimensional draws, which are highly relevant for todays traffic models. This paper shows among others combined shuffling and scrambling seems needless, that scrambling gives the lowest correlation and that there are detectable differences between random numbers, dependent...
The Bi-Modal Organization: Balancing Autopoiesis and Fluid Social Networks for Sustainability
Smith, Peter A. C.; Sharicz, Carol Ann
2013-01-01
Purpose: The purpose of this paper is to assist an organization to restructure as a bi-modal organization in order to achieve sustainability in today's highly complex business world. Design/methodology/approach: The paper is conceptual and is based on relevant literature and the authors' research and practice. Findings: Although fluid…
"Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions
Borowski, Stanley K.
2004-01-01
The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.
A Genealogy for Finite Kneading Sequences of Bimodal Maps on the Interval
Ringland, J; Ringland, John; Tresser, Charles
1993-01-01
We generate all the finite kneading sequences of one of the two kinds of bimodal map on the interval, building each sequence uniquely from a pair of shorter ones. There is a single pair at generation 0, with members of length 1. Concomitant with this genealogy of kneading sequences is a unified genealogy of all the periodic orbits. (6/93)
Bartov, Tamar; Most, Tova
2014-01-01
Purpose: To examine song identification by preschoolers with normal hearing (NH) versus preschoolers with cochlear implants (CIs). Method: Participants included 45 children ages 3;8-7;3 (years;months): 12 with NH and 33 with CIs, including 10 with unilateral CI, 14 with bilateral CIs, and 9 bimodal users (CI-HA) with unilateral CI and…
Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches.
Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey
2006-08-01
Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis measured between 1964 and 2005 on the island of Santa Cruz, Galápagos. Some populations of this species can display a resource-based bimodality in beak size, which mirrors the greater beak size differences among species. We first show that an historically bimodal population at one site, Academy Bay, has lost this property in concert with a marked increase in local human population density. We next show that a nearby site with lower human impacts, El Garrapatero, currently manifests strong bimodality. This comparison suggests that bimodality can persist when human densities are low (Academy Bay in the past, El Garrapatero in the present), but not when they are high (Academy Bay in the present). Human activities may negatively impact diversification in 'young' adaptive radiations, perhaps by altering adaptive landscapes.
Deaf Parents of Cochlear-Implanted Children: Beliefs on Bimodal Bilingualism
Mitchiner, Julie Cantrell
2015-01-01
This study investigated 17 Deaf families in North America with cochlear-implanted children about their attitudes, beliefs, and practices on bimodal bilingualism (defined as using both a visual/manual language and an aural/oral language) in American Sign Language (ASL) and English. A survey and follow-up interviews with 8 families were conducted.…
Gaze-independent ERP-BCIs : Augmenting performance through location-congruent bimodal stimuli
Thurlings, M.E.; Brouwer, A.M.; Erp, J.B.F. van; Werkhoven, P.J.
2014-01-01
Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bi
The Taylor-expansion method of moments for the particle system with bimodal distribution
Directory of Open Access Journals (Sweden)
Liu Yan-Hua
2013-01-01
Full Text Available This paper derives the multipoint Taylor expansion method of moments for the bimodal particle system. The collision effects are modeled by the internal and external coagulation terms. Simple theory and numerical tests are performed to prove the effect of the current model.
Parallel Bimodal Bilingual Acquisition: A Hearing Child Mediated in a Deaf Family
Cramér-Wolrath, Emelie
2013-01-01
The aim of this longitudinal case study was to describe bimodal and bilingual acquisition in a hearing child, Hugo, especially the role his Deaf family played in his linguistic education. Video observations of the family interactions were conducted from the time Hugo was 10 months of age until he was 40 months old. The family language was Swedish…
Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli
2015-06-23
Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.
DEFF Research Database (Denmark)
Lassen, Pernille; Overgaard, Jens; Eriksen, Jesper Grau
2013-01-01
EGFR and HPV-associated p16 are among the most investigated biomarkers in head and neck cancer. The aim was to investigate the correlation and interaction between these two markers and to evaluate their potential prognostic significance when combined.......EGFR and HPV-associated p16 are among the most investigated biomarkers in head and neck cancer. The aim was to investigate the correlation and interaction between these two markers and to evaluate their potential prognostic significance when combined....
Resolving the age bimodality of galaxy stellar populations on kpc scales
Zibetti, Stefano; Gallazzi, Anna R.; Ascasibar, Y.; Charlot, S.; Galbany, L.; García Benito, R.; Kehrig, C.; de Lorenzo-Cáceres, A.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.
2017-01-01
Galaxies in the local Universe are known to follow bimodal distributions in the global stellar populations properties. We analyze the distribution of the local average stellar-population ages of 654 053 sub-galactic regions resolved on ˜1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging. We find a bimodal local-age distribution, with an old and a young peak primarily due to regions in early-type galaxies and star-forming regions of spirals, respectively. Within spiral galaxies, the older ages of bulges and inter-arm regions relative to spiral arms support an internal age bimodality. Although regions of higher stellar-mass surface-density, μ★, are typically older, μ★ alone does not determine the stellar population age and a bimodal distribution is found at any fixed μ★. We identify an "old ridge" of regions of age ˜9 Gyr, independent of μ★, and a "young sequence" of regions with age increasing with μ★ from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as regions containing only old stars, and the latter as regions where the relative contamination of old stellar populations by young stars decreases as μ★ increases. The reason why this bimodal age distribution is not inconsistent with the unimodal shape of the cosmic-averaged star-formation history is that i) the dominating contribution by young stars biases the age low with respect to the average epoch of star formation, and ii) the use of a single average age per region is unable to represent the full time-extent of the star-formation history of "young-sequence" regions.
Richmond-Welty, E. Daylene; Siple, Patricia
1999-01-01
Gaze during utterance was examined in a set of bilingual-bimodal twins acquiring spoken English and American Sign Language (ASL) and a set of monolingual twins acquiring ASL. The bilingual-bimodal twins differentiated their languages by age 3. Like the monolingual twins, the bilingual-bimodal twins established mutual gaze at the beginning of their…
Institute of Scientific and Technical Information of China (English)
姜俊; 章晓燕; 林静; 滕杰; 丁小强
2013-01-01
目的:研究随机尿红细胞计数经不同方法校正后与尿红细胞Addis计数的相关性.方法:以1t5例慢性肾脏病患者为研究对象,测定随机尿红细胞/尿比重、随机尿红细胞/渗透压和随机尿红细胞/尿肌酐,并分析它们与3h尿红细胞Addis计数的相关性.结果:随机尿红细胞计数、随机尿红细胞/比重、随机尿红细胞/渗透压和随机尿红细胞/尿肌酐与尿红细胞Ad-dis计数呈正相关(r=0.66、0.66、0.54、0.68,均P＜0.01).当估算肾小球滤过率＜60mL/(min· 1.73m2)、尿比重≤1.012时,随机尿红细胞/尿肌酐与尿红细胞Addis计数的相关性明显提高(r=0.77、0.76,均P＜0.01).结论:随机尿红细胞/尿肌酐能较好地反映尿红细胞排泄量,尤其在低比重尿(尿比重≤1.012)和肾功能减退[(eGFR＜60mL/(min·1.73m2))]时,它是评价尿红细胞排泄率的较好指标.%Objective:To study the correlation between improved random urinary red blood cell count after using different methods of correction and the Addis count of urinary erythrocytes.Methods:The ratios of the random urinary red blood count to the specific gravity,osmolality,and concentration of urinary creatinine in 115 patients with chronic kidney disease were detected,and the correlations between each of them and the Addis count of 3 hours urinary red cells were analyzed.Results:The random urinary red blood count,the ratios of the random urinary red blood count to the specific gravity,osmolality,and the concentration of urinary creatinine were positively correlated with the Addis count of urinary red blood cells,and the correlation coefficients were 0.66,0.66,0.54,0.68,respectively,P＜ 0.01.When the estimated glomerular filtration rate (eGFR) ＜60mL/(min · 1.73m2),the specific gravity of urine≤ 1.012,random urine red blood cell / creatinine and urine red blood cell count of Addis had significant positive correlation,and the correlation coefficients were 0
基于特征参数的随机噪声雷达相关输出研究%Correlation output of random noise radar based on characteristic parameters
Institute of Scientific and Technical Information of China (English)
武昕; 李澍; 刘畅; 王岩飞
2012-01-01
As the basis of random wave design,numeric characteristic parameter of random signal is an important factor for signal analysis.Correlation coefficient and variance are two crucial characteristic parameters of random signal with decisive influence.A specific mathematic model expressed by correlation coefficient and variance is established on the basis of general correlation output representation of random noise radar.According to this model,the influence,which is caused by correlation coefficient and variance of noise source signal,to the correlation output and bandwidth is further analyzed.Correlation coefficient decides the form of correlation output;meanwhile,variance highly influences the mainlobe power and the sidelobe level of correlation output.With increasing value of variance,the sidelobes are depressed effectively,and the power of the mainlobe is concentrated well,so that the resolution of output is improved.The conclusions are demonstrated by simulation results.Furthermore,with different correlation coefficient functions,the relation between variance and bandwidth is obtained.This relation shows that the bandwidth of modulated signal is broadened when the variance of noise source signal increasing.%随机信号的数字特征参数是信号分析的重要因素,是随机信号波形设计的依据。相关系数和方差是随机信号的两项具有决定作用的特征参数。以随机噪声雷达的一般性相关输出模型为基础,建立了基于相关系数和方差表达的相关输出数学模型。依据该模型深入分析了噪声源信号的相关系数和方差对相关输出和带宽的影响。相关系数决定了相关输出的整体形式;方差影响相关输出的主瓣和旁瓣水平,方差的增大能够有效地抑制旁瓣,使主瓣变窄,主峰变尖锐,分辨率显著提高。仿真实验验证了结论的有效性。此外,建立了在不同形式相关系数情况下噪声源信号方差与调制信号带宽的关系,方
Particle-size distribution and packing fraction of geometric random packings
Brouwers, H.J.H.
2006-01-01
This paper addresses the geometric random packing and void fraction of polydisperse particles. It is demonstrated that the bimodal packing can be transformed into a continuous particle-size distribution of the power law type. It follows that a maximum packing fraction of particles is obtained when t
Gao, Jianbo; Hu, Jing; Mao, Xiang; Perc, Matjaz
2012-08-07
Culturomics was recently introduced as the application of high-throughput data collection and analysis to the study of human culture. Here, we make use of these data by investigating fluctuations in yearly usage frequencies of specific words that describe social and natural phenomena, as derived from books that were published over the course of the past two centuries. We show that the determination of the Hurst parameter by means of fractal analysis provides fundamental insights into the nature of long-range correlations contained in the culturomic trajectories, and by doing so offers new interpretations as to what might be the main driving forces behind the examined phenomena. Quite remarkably, we find that social and natural phenomena are governed by fundamentally different processes. While natural phenomena have properties that are typical for processes with persistent long-range correlations, social phenomena are better described as non-stationary, on-off intermittent or Lévy walk processes.
Super stellar clusters with a bimodal hydrodynamic solution: an Approximate Analytic Approach
Wünsch, R; Palous, J; Tenorio-Tagle, G
2007-01-01
We look for a simple analytic model to distinguish between stellar clusters undergoing a bimodal hydrodynamic solution from those able to drive only a stationary wind. Clusters in the bimodal regime undergo strong radiative cooling within their densest inner regions, which results in the accumulation of the matter injected by supernovae and stellar winds and eventually in the formation of further stellar generations, while their outer regions sustain a stationary wind. The analytic formulae are derived from the basic hydrodynamic equations. Our main assumption, that the density at the star cluster surface scales almost linearly with that at the stagnation radius, is based on results from semi-analytic and full numerical calculations. The analytic formulation allows for the determination of the threshold mechanical luminosity that separates clusters evolving in either of the two solutions. It is possible to fix the stagnation radius by simple analytic expressions and thus to determine the fractions of the depo...
Bimodal Distribution of Sulfuric Acid Aerosols in the Upper Haze of Venus
Gao, Peter; Crisp, David; Bardeen, Charles G; Yung, Yuk L
2013-01-01
The upper haze (UH) of Venus is variable on the order of days and it is populated by two particle modes. We use a 1D microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two size modes and whether their observed variability are due to cloud top vertical transient winds. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets that then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and cannot reproduce the observed bimodal size distribution. The mass transport enabled by cloud top transient winds are able to generate a bimodal size distribution in a time scale consistent with observations. Sedimentation and convection in the middle and lower...
Institute of Scientific and Technical Information of China (English)
CHENG Rongshi; HU Huizhen; JIANG Liansheng
1987-01-01
The variation of the molecular weight and molecular weight distribution of cis-polybutadiene in the course of polymerization catalyzed by lanthanide complex composed of triisobutyl aluminium or diisobutyl aluminium hydride was investigated by osmometry, viscometry and size exclusion chromatography. By analyzing the experimental data, the reasons of the appearance of bimodal molecular weight distribution were elucidated and the possible mechanisms of polymerization were discussed.
The Effects of Bilateral Electric and Bimodal Electric—Acoustic Stimulation on Language Development
2009-01-01
There is no doubt that cochlear implants have improved the spoken language abilities of children with hearing loss, but delays persist. Consequently, it is imperative that new treatment options be explored. This study evaluated one aspect of treatment that might be modified, that having to do with bilateral implants and bimodal stimulation. A total of 58 children with at least one implant were tested at 42 months of age on four language measures spanning a continuum from basic to generative i...
Brain deactivation in the outperformance in bimodal tasks: an FMRI study.
Directory of Open Access Journals (Sweden)
Tzu-Ching Chiang
Full Text Available While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot. How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of the two tasks simultaneously. The functional magnetic resonance imaging (fMRI results are compatible with previous studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF, lateral parietal lobe (BA7, and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the temporal lobes and Brodmann area 43 (BA43 were involved in processing of auditory unimodal tasks. These results lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in the bimodal task, these areas were not deactivated where the subject performed well in only one of the two simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as courses in how to perform multiple tasks simultaneously.
Formulation and evaluation of bilayer tablet for bimodal release of venlafaxine hydrochloride
2015-01-01
The aim of the present research was to develop a bilayer tablet of venlafaxine hydrochloride for bimodal drug release. In the present investigation authors have tried to explore fenugreek mucilage (FNM) for bioadhesive sustained release layer. The attempt has been made to combine FNM with well studied bioadhesive polymers like hydroxy propyl methyl cellulose (HPMC), Carbopol, and Xanthan Gum. The formulations were evaluated for swelling Index, ex vivo bioadhesion, water uptake studies, in vit...
Flatfoot diagnosis by a unique bimodal distribution of footprint index in children.
Directory of Open Access Journals (Sweden)
Chia-Hsieh Chang
Full Text Available BACKGROUND: More than 1000 scientific papers have been devoted to flatfoot issue. However, a bimodal distribution of flatfoot indices in school-aged children has never been discovered. The purposes of this study were to establish a new classification of flatfoot by characteristic in frequency distribution of footprint index and to endue the classification with discrepancy in physical fitness. METHODS/PRINCIPAL FINDINGS: In a longitudinal survey of physical fitness and body structure, weight bearing footprints and 3 physical fitness related tests were measured in 1228 school-aged children. Frequency distribution of initial data was tested by Kolmogorov-Smirnov test for normality and a unique bimodal distribution of footprint index was identified. The frequency distribution of footprint index manifests two distinct modes, flatfoot and non-flatfoot, by deconvolution and bootstrapping procedures. A constant intersection value of 1.0 in Staheli's arch index and 0.6 in Chippaux-Smirak index could distinguish the two modes of children, and the value was constant in different age, sex, and weight status. The performance of the one leg balance was inferior in flatfoot girls (median, 4.0 seconds in flatfoot girls vs. 4.3 seconds in non-flatfoot girls, p = 0.04, 95% CI 0.404-0.484. DISCUSSION: The natural bimodality lends itself to a flatfoot classification. Bimodality suggests development of the child's foot arch would be a leap from one state to another, rather than a continuous growth as body height and weight. The underlying dynamics of the human foot arch and motor development will trigger research prospects.
Flatfoot Diagnosis by a Unique Bimodal Distribution of Footprint Index in Children
Chia-Hsieh Chang; Yu-Chen Chen; Wen-Tien Yang; Pei-Chi Ho; Ai-Wen Hwang; Chien-Hung Chen; Jia-Hao Chang; Liang-Wey Chang
2014-01-01
BACKGROUND: More than 1000 scientific papers have been devoted to flatfoot issue. However, a bimodal distribution of flatfoot indices in school-aged children has never been discovered. The purposes of this study were to establish a new classification of flatfoot by characteristic in frequency distribution of footprint index and to endue the classification with discrepancy in physical fitness. METHODS/PRINCIPAL FINDINGS: In a longitudinal survey of physical fitness and body structure, weight b...
Competencia léxica en el currículum bimodal
2012-01-01
[EN] The society in which we live has changed and keeps on changing all the time. These changes are closely related to the incorporation of Internet as a kind of appendage to our persona. The obligatory education system cannot ignore such a fact and therefore should renew its curricular approach. This innovation involves the methodological differentiation suggested by the bimodal curriculum, which makes a distinction between practical abilities and conceptual knowledge. Among the latter, the ...
Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun
2016-06-01
Correction for `Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy' by Kyoung Sub Kim, et al., Nanoscale, 2016, DOI: 10.1039/c6nr02273a.
Physical Mechanism of Formation of the Bimodal Structure in the Meiyu Front System
Institute of Scientific and Technical Information of China (English)
CUI Xiao-Peng; GAO Shou-Ting; ZONG Zhi-Ping; LIU Wen-Ming; LI Xiao-Fan
2005-01-01
@@ The bimodal structure of the Meiyu front system is readdressed after Zhou et al.(2005). The physical mechanism of the formation of the bimodal distribution is discussed. The bimodal structure of the Meiyu front system considerably results from atmospheric moisture gradients, though atmospheric temperature gradients are also not negligible. According to the definition of equivalent potential temperature, and by scale analysis, we find that atmospheric equivalent potential temperature gradients, which could be regarded as an indicator of the Meiyu front system, could be mainly attributed to the variations of atmospheric potential temperature gradients with a scaling factor of 1 and moisture gradients multiplied by a scaling factor of an order of about 2.5 × 103,which means that small variations of atmospheric moisture gradients could lead to large variations of equivalent potential temperature gradients, and thus large variations of the Meiyu front system. Quantitative diagnostics with a mesoscale simulation data in the vicinity of the Meiyu front system show that moisture gradients contribute to equivalent potential temperature gradients more than potential temperature gradients.
A New Method of Moments for the Bimodal Particle System in the Stokes Regime
Directory of Open Access Journals (Sweden)
Yan-hua Liu
2013-01-01
Full Text Available The current paper studied the particle system in the Stokes regime with a bimodal distribution. In such a system, the particles tend to congregate around two major sizes. In order to investigate this system, the conventional method of moments (MOM should be extended to include the interaction between different particle clusters. The closure problem for MOM arises and can be solved by a multipoint Taylor-expansion technique. The exact expression is deduced to include the size effect between different particle clusters. The collision effects between different modals could also be modeled. The new model was simply tested and proved to be effective to treat the bimodal system. The results showed that, for single-modal particle system, the results from new model were the same as those from TEMOM. However, for the bimodal particle system, there was a distinct difference between the two models, especially for the zero-order moment. The current model generated fewer particles than TEMOM. The maximum deviation reached about 15% for m0 and 4% for m2. The detailed distribution of each submodal could also be investigated through current model.
Wind speed analysis in La Vainest, Mexico: a bimodal probability distribution case
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O.A.; Borja, M.A. [Energias No Convencionales, Morelos (Mexico). Instituto de Investigaciones Electricas
2004-08-01
The statistical characteristics of the wind speed in La Vainest, Oxoic, Mexico, have been analyzed by using wind speed data recorded by Instituto de Investigaciones Electricas (IIE). By grouping the observations by annual, seasonal and wind direction, we show that the wind speed distribution, with calms included, is not represented by the typical two-parameter Weibull function. A mathematical formulation by using a bimodal Weibull and Weibull probability distribution function (PDF) has been developed to analyse the wind speed frequency distribution in that region. The model developed here can be applied for similar regions where the wind speed distribution presents a bimodal PDF. The two-parameter Weibull wind speed distribution must not be generalised, since it is not accurate to represent some wind regimes as the case of La Ventosa, Mexico. The analysis of wind data shows that computing the capacity factor for wind power plants to be installed in La Ventosa must be carded out by means of a bimodal PDF instead of the typical Weibull PDF. Otherwise, the capacity factor will be underestimated. (author)
Tracing Outflows and Accretion: A Bimodal Azimuthal Dependence of MgII Absorption
Kacprzak, G G; Nielsen, N M
2012-01-01
We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by MgII absorption: Halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed MgII absorption-selected galaxies [W_r(2796)> 0.1A] and 35 spectroscopically confirmed non-absorbing galaxies [W_r(2796)<0.1A] imaged with HST and SDSS. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W_r(2796)<0.1A. We find that blue star-forming galaxies clearly drive the bimodality. We compute an azimuthal angle dependent MgII absorption covering fraction and find that it is enhanced by as much as 20-30% along the major and minor axes. The equivalent width distribution for gas along the major axis is likely skewed toward weaker MgII absorption than for gas along the projected minor axis. These combined results...
Comparison between wave generation methods for numerical simulation of bimodal seas
Directory of Open Access Journals (Sweden)
Daniel A. Thompson
2016-01-01
Full Text Available This paper describes an investigation of the generation of desired sea states in a numerical wave model. Bimodal sea states containing energetic swell components can be coastal hazards along coastlines exposed to large oceanic fetches. Investigating the effects of long-period bimodal seas requires large computational domains and increased running time to ensure the development of the desired sea state. Long computational runs can cause mass stability issues due to the Stokes drift and wave reflection, which in turn affect results through the variation of the water level. A numerical wave flume, NEWRANS, was used to investigate two wave generation methods: the wave paddle method, allowing for a smaller domain; and the internal mass source function method, providing an open boundary allowing reflected waves to leave the domain. The two wave generation methods were validated against experimental data by comparing the wave generation accuracy and the variance of mass in the model during simulations. Results show that the wave paddle method not only accurately generates the desired sea state but also provides a more stable simulation, in which mass fluctuation has less of an effect on the water depth during the long-duration simulations. As a result, it is suggested that the wave paddle method with active wave absorption is preferable to the internal wave maker option when investigating intermediate-depth long-period bimodal seas for long-duration simulations.
Zou, Lijuan; Abutalebi, Jubin; Zinszer, Benjamin; Yan, Xin; Shu, Hua; Peng, Danling; Ding, Guosheng
2012-09-01
The functional brain network of a bilingual's first language (L1) plays a crucial role in shaping that of his or her second language (L2). However, it is less clear how L2 acquisition changes the functional network of L1 processing in bilinguals. In this study, we demonstrate that in bimodal (Chinese spoken-sign) bilinguals, the functional network supporting L1 production (spoken language) has been reorganized to accommodate the network underlying L2 production (sign language). Using functional magnetic resonance imaging (fMRI) and a picture naming task, we find greater recruitment of the right supramarginal gyrus (RSMG), the right temporal gyrus (RSTG), and the right superior occipital gyrus (RSOG) for bilingual speakers versus monolingual speakers during L1 production. In addition, our second experiment reveals that these regions reflect either automatic activation of L2 (RSOG) or extra cognitive coordination (RSMG and RSTG) between both languages during L1 production. The functional connectivity between these regions, as well as between other regions that are L1- or L2-specific, is enhanced during L1 production in bimodal bilinguals as compared to their monolingual peers. These findings suggest that L1 production in bimodal bilinguals involves an interaction between L1 and L2, supporting the claim that learning a second language does, in fact, change the functional brain network of the first language.
Directory of Open Access Journals (Sweden)
Jun Yin
2016-03-01
Full Text Available Modern reverse osmosis (RO/nanofiltration (NF membranes are primarily made of thin-film composites (TFC fabricated through interfacial polymerization of m-phenylene diamine (MPD and trimesoyl chloride (TMC on a polysulfone (PSF supporting membrane. In this study, two types of bimodal silica nanoparticles (~80 nm with different internal pore structures were synthesized and incorporated into the polyamide (PA thin-film layer during interfacial polymerization at concentrations varying from 0 to 0.1 wt%. The as-prepared membranes were characterized by scanning electron microscopy (SEM, atomic force microscopy (AFM, and attenuated total reflection Fourier transform infrared (ATR FT-IR spectroscopy, and their performances were evaluated in terms of the water permeability and salt rejection. The results showed the water permeability increased with increasing BSN concentrations, reaching a maximum of 53.5 L m−2 h−1 at a bimodal silica nanoparticle (BSN concentration of 0.5 wt% (pressure at 300 psi, NaCl concentration: 2000 ppm. This represented a flux increase of approximately 40%, while a near constant salt rejection of 95% was maintained. The study demonstrated that the internal micro-mesoporous structures of bimodal silica nanoparticles contributed significantly to the membrane performance, which is consistent with previous studies with relatively uniform internal pores.
Institute of Scientific and Technical Information of China (English)
GUO TieXin; CHEN XinXiang
2009-01-01
The purpose of this paper is to provide a random duality theory for the further development of the theory of random conjugate spaces for random normed modules.First,the complicated stratification structure of a module over the algebra L(μ,K) frequently makes our investigations into random duality theory considerably different from the corresponding ones into classical duality theory,thus in this paper we have to first begin in overcoming several substantial obstacles to the study of stratification structure on random locally convex modules.Then,we give the representation theorem of weakly continuous canonical module homomorphisms,the theorem of existence of random Mackey structure,and the random bipolar theorem with respect to a regular random duality pair together with some important random compatible invariants.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The purpose of this paper is to provide a random duality theory for the further development of the theory of random conjugate spaces for random normed modules. First, the complicated stratification structure of a module over the algebra L(μ, K) frequently makes our investigations into random duality theory considerably difierent from the corresponding ones into classical duality theory, thus in this paper we have to first begin in overcoming several substantial obstacles to the study of stratification structure on random locally convex modules. Then, we give the representation theorem of weakly continuous canonical module homomorphisms, the theorem of existence of random Mackey structure, and the random bipolar theorem with respect to a regular random duality pair together with some important random compatible invariants.
Senno, Gabriel; Bendersky, Ariel; Figueira, Santiago
2016-07-01
The concepts of randomness and non-locality are intimately intertwined outcomes of randomly chosen measurements over entangled systems exhibiting non-local correlations are, if we preclude instantaneous influence between distant measurement choices and outcomes, random. In this paper, we survey some recent advances in the knowledge of the interplay between these two important notions from a quantum information science perspective.
Institute of Scientific and Technical Information of China (English)
周任军; 刘照; 陈彦秀; 张浩; 李莹莹; 范龙; 尹权
2016-01-01
Carbon price and electricity price are bound together under the influence of external factors. Thus,the price randomness of carbon and electricity along with their correlation should be taken into consideration to form the bidding model for generation compa-nies. The difference between actual profit and the expectation is defined as the risk and measured by multi-stochastic conditional risk method in this paper. Then,a CVaR-based bidding model which considers the price randomness of electricity and carbon along with their correlation is proposed. The Linear method is used to sample of the random variables concerning the correlation and to solve the conditional value at risk. Cases considering the correlation between electricity price and carbon price,carbon price cost,carbon price randomness and other risk measurement methods are tested respectively to evaluate their influences on the investment decision risk of generation companies. The results show that considering the price randomness of both electricity and carbon as well as their correlation is more in accordance with the generation companies’requirement of increasing revenue and reducing risk,and conditional risk method is able to describe the risk more accurately.%电价、碳价在外界因素的影响下具有某种相依关系，因此需要在发电商投标模型中考虑电价、碳价的随机性及其相关性对其决策的影响。本文将低于发电商预期收益部分的期望值定义为风险，采用多随机变量的条件风险方法对其进行度量，建立了考虑电价碳价随机性及其相关性影响的发电商投标决策模型，利用线性变换方法对相关性随机变量进行抽样并求解条件风险值。对电价碳价相关性、碳价成本、碳价随机性和不同风险度量方法对发电商投资决策风险的影响进行了仿真对比，结果表明考虑电价和碳价随机性及其相关性影响的投标模型更符合发电商提高收益降低
Institute of Scientific and Technical Information of China (English)
Jianping Chu; Xueli Shen; Jun Fan; Changhai Chen; Shuyang Lin
2008-01-01
BACKGROUND: Heart rate variability refers to the beat-to-beat alteration in heart rate. It is usually a slight periodic variation of R-R intervals. Much information of autonomic nerve system balance can be obtained by measuring the heart rate variability of patients. It remains to be shown whether heart rate variability can be used as an index for determining the severity of insomnia and cerebral infarction. OBJECTIVE: This study aimed to analyze the correlation for each frequency spectrum parameter of heart rate variability with an insomnia index, as well as the degree of neurological defects in patients with simple cerebral infarction and cerebral infarction complicated by insomnia. The goal was to verify the feasibility of frequency spectrum parameters for heart rate variability as a marker for insomnia and cerebral infarction. DESIGN: A case-control observation. SETTING: Department of Neurology, First Hospital Affiliated to China Medical University. PARTICIPANTS: Sixty inpatients, and/or outpatients, with cerebral infarction were admitted to the 202 Hospital of Chinese PLA between December 2005 and October 2006, confirmed by CT, and recruited to the study. According to the insomnia condition (insomnia is defined by a Pittsburgh Sleep Quality Index score > 7), the patients were assigned to a simple cerebral infarction group and a cerebral infarction complicated by insomnia group, with 30 subjects in each group. Thirty additional subjects, who concurrently received ex-aminations and were confirmed to not suffer from cerebral infarction and insomnia, were recruited into the control group. Written informed consent was obtained from each subject for laboratory specimens. The pro-tocol was approved by the Hospital's Ethics Committee. METHODS: Following admission, each subject's neurological impairment was assessed with the National Institutes of Health Stroke Scale and Pittsburgh Sleep Quality Index. Heart rate variability of each subject was measured with an
Directory of Open Access Journals (Sweden)
Albrecht W Popp
Full Text Available BACKGROUND: Areal bone mineral density is predictive for fracture risk. Microstructural bone parameters evaluated at the appendicular skeleton by high-resolution peripheral quantitative computed tomography (HR-pQCT display differences between healthy patients and fracture patients. With the simple geometry of the cortex at the distal tibial diaphysis, a cortical index of the tibia combining material and mechanical properties correlated highly with bone strength ex vivo. The trabecular bone score derived from the scan of the lumbar spine by dual-energy X-ray absorptiometry (DXA correlated ex vivo with the micro architectural parameters. It is unknown if these microstructural correlations could be made in healthy premenopausal women. METHODS: Randomly selected women between 20-40 years of age were examined by DXA and HR-pQCT at the standard regions of interest and at customized sub regions to focus on cortical and trabecular parameters of strength separately. For cortical strength, at the distal tibia the volumetric cortical index was calculated directly from HR-pQCT and the areal cortical index was derived from the DXA scan using a Canny threshold-based tool. For trabecular strength, the trabecular bone score was calculated based on the DXA scan of the lumbar spine and was compared with the corresponding parameters derived from the HR-pQCT measurements at radius and tibia. RESULTS: Seventy-two healthy women were included (average age 33.8 years, average BMI 23.2 kg/m(2. The areal cortical index correlated highly with the volumetric cortical index at the distal tibia (R = 0.798. The trabecular bone score correlated moderately with the microstructural parameters of the trabecular bone. CONCLUSION: This study in randomly selected premenopausal women demonstrated that microstructural parameters of the bone evaluated by HR-pQCT correlated with the DXA derived parameters of skeletal regions containing predominantly cortical or cancellous bone
Popp, Albrecht W.; Buffat, Helene; Eberli, Ursula; Lippuner, Kurt; Ernst, Manuela; Richards, R. Geoff; Stadelmann, Vincent A.; Windolf, Markus
2014-01-01
Background Areal bone mineral density is predictive for fracture risk. Microstructural bone parameters evaluated at the appendicular skeleton by high-resolution peripheral quantitative computed tomography (HR-pQCT) display differences between healthy patients and fracture patients. With the simple geometry of the cortex at the distal tibial diaphysis, a cortical index of the tibia combining material and mechanical properties correlated highly with bone strength ex vivo. The trabecular bone score derived from the scan of the lumbar spine by dual-energy X-ray absorptiometry (DXA) correlated ex vivo with the micro architectural parameters. It is unknown if these microstructural correlations could be made in healthy premenopausal women. Methods Randomly selected women between 20–40 years of age were examined by DXA and HR-pQCT at the standard regions of interest and at customized sub regions to focus on cortical and trabecular parameters of strength separately. For cortical strength, at the distal tibia the volumetric cortical index was calculated directly from HR-pQCT and the areal cortical index was derived from the DXA scan using a Canny threshold-based tool. For trabecular strength, the trabecular bone score was calculated based on the DXA scan of the lumbar spine and was compared with the corresponding parameters derived from the HR-pQCT measurements at radius and tibia. Results Seventy-two healthy women were included (average age 33.8 years, average BMI 23.2 kg/m2). The areal cortical index correlated highly with the volumetric cortical index at the distal tibia (R = 0.798). The trabecular bone score correlated moderately with the microstructural parameters of the trabecular bone. Conclusion This study in randomly selected premenopausal women demonstrated that microstructural parameters of the bone evaluated by HR-pQCT correlated with the DXA derived parameters of skeletal regions containing predominantly cortical or cancellous bone. Whether these indexes
Liu, Zhong-Xu; Lishak, Victoria; Tannock, Rosemary; Woltering, Steven
2017-01-27
Working memory and response control are conceptualized as functions that are part of a closely connected and integrated executive function system mediated by the prefrontal cortex and other related brain structures. In the present paper, we asked whether effects of intensive and adaptive computerized working memory training (CWMT) would generalize to enhancements in response control at behavioral and neural levels. A total of 135 postsecondary students with Attention-Deficit/Hyperactivity Disorder (ADHD), a condition associated with executive function impairments, were randomized into a Standard-length CWMT (45-min /session, 25 sessions), Shortened-length CWMT (15min/session, 25 sessions), and a waitlist group. Both training groups received CWMT for 5 days a week for 5 weeks long. All participants completed a Go-Nogo task while neural activity was measured using Electroencephalography (EEG), before and after CWMT. Behavioral results showed trend level evidence (p=0.061) for benefits of CWMT on response control (i.e., improved accuracy of Go responses). Among several neural measures results showed statistically significant changes after CWMT only for the Go trial ERP N2 and P3 in frontal electrodes (p=0.039 and 0.001, respectively). However, given the lack of relationship between behavioral and neural changes and especially the clear lack of predicted does effects (i.e., standard length > short length > control), we conclude that there is no convincing evidence that the working memory training per se changes neural activation patterns in untrained executive functions. The positive finding of general training related changes in this study should have no clinical implications, but may contribute to the literature in better understanding the relationship between neural plasticity and transfer.
Energy Technology Data Exchange (ETDEWEB)
Ortholan, Cecile [Department of Radiation Oncology, Antoine Lacassagne Cancer Center, Nice, UNSA (Universite de Nice Sophia-Antipolis) (France); Department of Oncology-Radiotherapy, Hopital Princesse Grace, Monaco (France); Romestaing, Pascale [Hopital Prive Jean Mermoz, Lyon (France); Chapet, Olivier [Department of Radiation Oncology, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon (France); Gerard, Jean Pierre, E-mail: jean-pierre.gerard@nice.unicancer.fr [Department of Radiation Oncology, Antoine Lacassagne Cancer Center, Nice, UNSA (Universite de Nice Sophia-Antipolis) (France)
2012-06-01
Purpose: To investigate, in rectal cancer, the benefit of a neoadjuvant radiation dose escalation with endocavitary contact radiotherapy (CXRT) in addition to external beam radiotherapy (EBRT). This article provides an update of the Lyon R96-02 Phase III trial. Methods and Materials: A total of 88 patients with T2 to T3 carcinoma of the lower rectum were randomly assigned to neoadjuvant EBRT 39 Gy in 13 fractions (43 patients) vs. the same EBRT with CXRT boost, 85 Gy in three fractions (45 patients). Median follow-up was 132 months. Results: The 10-year cumulated rate of permanent colostomy (CRPC) was 63% in the EBRT group vs. 29% in the EBRT+CXRT group (p < 0.001). The 10-year rate of local recurrence was 15% vs. 10% (p = 0.69); 10-year disease-free survival was 54% vs. 53% (p = 0.99); and 10-year overall survival was 56% vs. 55% (p = 0.85). Data of clinical response (CR) were available for 78 patients (36 in the EBRT group and 42 in the EBRT+CXRT group): 12 patients were in complete CR (1 patient vs. 11 patients), 53 patients had a CR {>=}50% (24 patients vs. 29 patients), and 13 patients had a CR <50% (11 patients vs. 2 patients) (p < 0.001). Of the 65 patients with CR {>=}50%, 9 had an organ preservation procedure (meaning no rectal resection) taking advantage of major CR. The 10-year CRPC was 17% for patients with complete CR, 42% for patients with CR {>=}50%, and 77% for patients with CR <50% (p = 0.014). Conclusion: In cancer of the lower rectum, CXRT increases the complete CR, turning in a significantly higher rate of long-term permanent sphincter and organ preservation.
Folate receptor-targeted fluorescent paramagnetic bimodal liposomes for tumor imaging
Directory of Open Access Journals (Sweden)
Ding N
2011-10-01
Full Text Available Nan Ding1,2, Yao Lu1, Robert J Lee3, Chang Yang1, Lei Huang1, Jian Liu1, Guangya Xiang1,41School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 2Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 3Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA; 4Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China The first three authors contributed equally to this work. Rationale and objective: Receptor-targeted delivery of imaging and therapeutic agents can lead to enhanced efficacy for both. Multimodality imaging offers unique advantages over traditional single modality imaging. Tumor marker folate receptor (FR-targeted fluorescent paramagnetic bimodal liposomes were synthesized to co-deliver paramagnetic and fluorescence agents for magnetic resonance (MR and optical bimodal imaging contrast enhancement. Materials and methods: Fluorescent and paramagnetic bimodal liposomes were synthesized with a mean diameter of 136 nm and a low polydispersity index. The liposomes incorporated folate-PEG3350-CHEMS for FR targeting, Gd(III[N,N-Bis-stearylamidomethyl-N’-amidomethyl]diethylenetriamine tetraacetic acid (Gd-DTPA-BSA for MR contrast, and calcein for fluorescence. To determine the specificity and efficiency of delivery, the liposomes were evaluated in FR-positive KB and HeLa cells and FR-negative A549 cells, which were analyzed by fluorescence microscopy, magnetic resonance imaging (MRI, and flow cytometry (FCM. Results: FR-specific and efficient cellular uptake of the FR-targeted bimodal liposomes was confirmed by fluorescence microscopy and by FCM. The mean fluorescence intensity (MFI of KB cells treated with FR
Institute of Scientific and Technical Information of China (English)
于浛; 张秀杰; 陈建伟; 宋申民; 李鹏
2016-01-01
经典高斯滤波算法存在量测信息实时获取，以及过程噪声和量测噪声相互独立的假设条件。然而，在工程实际应用中该假设条件有时难以满足。本文针对一类具有随机量测时滞和同步相关噪声的高斯系统的状态估计问题，设计了一种高斯滤波框架形式的最优估计算法，并给出了所设计算法的三阶球径容积法则的次优实现形式-考虑随机量测时滞和同步相关噪声的容积卡尔曼滤波器(CKF–RDSCN)。其借助Bernoulli随机序列，来描述系统中可能存在的量测时滞现象，并利用高斯条件分布性质来解决噪声相关问题，在此基础上构建所提出的最优估计算法。仿真结果表明，相比于扩展卡尔曼滤波(EKF)，无迹卡尔曼滤波(UKF)以及容积卡尔曼滤波(CKF)，在含有随机量测时滞和噪声同步相关的状态估计问题中， CKF–RDSCN具有更高的精度和更好的数值稳定性。%The classical Gaussian filters are based on the assumption that measurements are acquired in time and nois-es of process and measurement are independent of each other. However, this assumption is sometimes hard to satisfy in practical applications. In this paper, an optimal estimation algorithm in the form of Gaussian filter framework is designed to solve the problem of states estimation of a Gaussian system with randomly delayed measurements and synchronously correlated noises, and the rule of third-degree spherical-radial cubature is employed to deduced the suboptimal estimation implementation of the proposed algorithms which is named cubature Kalman filter with randomly delayed measurements and synchronously correlated noises(CKF–RDSCN). It takes random sequence of Bernoulli to describe the possible situ-ation with respect to random delay in observation measurement and the property of Gaussian conditional distribution is utilized to solve the problem of noises correlation. Simulation results
Random field distributed Heisenberg model on a thin film geometry
Energy Technology Data Exchange (ETDEWEB)
Akıncı, Ümit, E-mail: umit.akinci@deu.edu.tr
2014-11-15
The effects of the bimodal random field distribution on the thermal and magnetic properties of the Heisenberg thin film have been investigated by making use of a two spin cluster with the decoupling approximation. Particular attention has been devoted to the obtaining of phase diagrams and magnetization behaviors. The physical behaviors of special as well as tricritical points are discussed for a wide range of selected Hamiltonian parameters. For example, it is found that when the strength of a magnetic field increases, the locations of the special point (which is the ratio of the surface exchange interaction and the exchange interaction of the inner layers that makes the critical temperature of the film independent of the thickness) in the related plane decrease. Moreover, tricritical behavior has been obtained for higher values of the magnetic field, and influences of the varying Hamiltonian parameters on its behavior have been elucidated in detail in order to have a better understanding of the mechanism underlying the considered system. - Highlights: • Effect of bimodal random field distribution within the Heisenberg model is investigated. • Phase diagrams of the random field Heisenberg model in a thin film geometry are obtained. • Effect of the random field on the magnetic properties is obtained. • Variation of the special point with random field is determined. • Variation of the tricritical point with random field is determined.
Energy Technology Data Exchange (ETDEWEB)
Cappellini, Valerio [' Mark Kac' Complex Systems Research Centre, Uniwersytet Jagiellonski, ul. Reymonta 4, 30-059 Krakow (Poland); Sommers, Hans-Juergen [Fachbereich Physik, Universitaet Duisburg-Essen, Campus Duisburg, 47048 Duisburg (Germany); Bruzda, Wojciech; Zyczkowski, Karol [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, ul. Reymonta 4, 30-059 Krakow (Poland)], E-mail: valerio@ictp.it, E-mail: h.j.sommers@uni-due.de, E-mail: w.bruzda@uj.edu.pl, E-mail: karol@cft.edu.pl
2009-09-11
Ensembles of random stochastic and bistochastic matrices are investigated. While all columns of a random stochastic matrix can be chosen independently, the rows and columns of a bistochastic matrix have to be correlated. We evaluate the probability measure induced into the Birkhoff polytope of bistochastic matrices by applying the Sinkhorn algorithm to a given ensemble of random stochastic matrices. For matrices of order N = 2 we derive explicit formulae for the probability distributions induced by random stochastic matrices with columns distributed according to the Dirichlet distribution. For arbitrary N we construct an initial ensemble of stochastic matrices which allows one to generate random bistochastic matrices according to a distribution locally flat at the center of the Birkhoff polytope. The value of the probability density at this point enables us to obtain an estimation of the volume of the Birkhoff polytope, consistent with recent asymptotic results.
Cappellini, V; Bruzda, W; Zyczkowski, K
2009-01-01
Ensembles of random stochastic and bistochastic matrices are investigated. While all columns of a random stochastic matrix can be chosen independently, the rows and columns of a bistochastic matrix have to be correlated. We evaluate the probability measure induced into the Birkhoff polytope of bistochastic matrices by applying the Sinkhorn algorithm to a given ensemble of random stochastic matrices. For matrices of order N=2 we derive explicit formulae for the probability distributions induced by random stochastic matrices with columns distributed according to the Dirichlet distribution. For arbitrary $N$ we construct an initial ensemble of stochastic matrices which allows one to generate random bistochastic matrices according to a distribution locally flat at the center of the Birkhoff polytope. The value of the probability density at this point enables us to obtain an estimation of the volume of the Birkhoff polytope, consistent with recent asymptotic results.
On the relation between the echo-peak shift and Brownian-oscillator correlation function
de Boeij, W.P.; Pshenichnikov, M.S; Wiersma, D. A.
1996-01-01
We show that for systems that exhibit bimodal dynamics in their system-bath correlation function the shift of the stimulated photon-echo maximum as a function of waiting time reflects fairly well the long time part of the correlation function. For early times this correspondence breaks down due to a
``Bimodal'' NTR and LANTR propulsion for human missions to Mars/Phobos
Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.
1999-01-01
The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ~850-1000 s) and attractive engine thrust-to-weight ratio (~3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as ``bimodal'' operation) provide the basis for a robust, ``power-rich'' stage enabling propulsive Mars capture and reuse capability. A family of modular ``bimodal'' NTR (BNTR) vehicles are described which utilize a common ``core'' stage powered by three 66.7 kN (~15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, ``zero-boiloff'' liquid hydrogen (LH2) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the ``all LH2'' BNTR stage. The use of ``LOX-augmented'' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase ``bulk'' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ~80 t ``Magnum'' heavy lift launch vehicles (HLLVs).
Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness.
Li, Qing; Bohin, Natacha; Wen, Tiffany; Ng, Victor; Magee, Jeffrey; Chen, Shann-Ching; Shannon, Kevin; Morrison, Sean J
2013-12-05
'Pre-leukaemic' mutations are thought to promote clonal expansion of haematopoietic stem cells (HSCs) by increasing self-renewal and competitiveness; however, mutations that increase HSC proliferation tend to reduce competitiveness and self-renewal potential, raising the question of how a mutant HSC can sustainably outcompete wild-type HSCs. Activating mutations in NRAS are prevalent in human myeloproliferative neoplasms and leukaemia. Here we show that a single allele of oncogenic Nras(G12D) increases HSC proliferation but also increases reconstituting and self-renewal potential upon serial transplantation in irradiated mice, all prior to leukaemia initiation. Nras(G12D) also confers long-term self-renewal potential to multipotent progenitors. To explore the mechanism by which Nras(G12D) promotes HSC proliferation and self-renewal, we assessed cell-cycle kinetics using H2B-GFP label retention and 5-bromodeoxyuridine (BrdU) incorporation. Nras(G12D) had a bimodal effect on HSCs, increasing the frequency with which some HSCs divide and reducing the frequency with which others divide. This mirrored bimodal effects on reconstituting potential, as rarely dividing Nras(G12D) HSCs outcompeted wild-type HSCs, whereas frequently dividing Nras(G12D) HSCs did not. Nras(G12D) caused these effects by promoting STAT5 signalling, inducing different transcriptional responses in different subsets of HSCs. One signal can therefore increase HSC proliferation, competitiveness and self-renewal through bimodal effects on HSC gene expression, cycling and reconstituting potential.
Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.
2011-01-01
The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.
Acid-base and ion balance in fishes with bimodal respiration.
Shartau, R B; Brauner, C J
2014-03-01
The evolution of air breathing during the Devonian provided early fishes with bimodal respiration with a stable O2 supply from air. This was, however, probably associated with challenges and trade-offs in terms of acid-base balance and ionoregulation due to reduced gill:water interaction and changes in gill morphology associated with air breathing. While many aspects of acid-base and ionoregulation in air-breathing fishes are similar to water breathers, the specific cellular and molecular mechanisms involved remain largely unstudied. In general, reduced ionic permeability appears to be an important adaptation in the few bimodal fishes investigated but it is not known if this is a general characteristic. The kidney appears to play an important role in minimizing ion loss to the freshwater environment in the few species investigated, and while ion uptake across the gut is probably important, it has been largely unexplored. In general, air breathing in facultative air-breathing fishes is associated with an acid-base disturbance, resulting in an increased partial pressure of arterial CO2 and a reduction in extracellular pH (pHE ); however, several fishes appear to be capable of tightly regulating tissue intracellular pH (pHI ), despite a large sustained reduction in pHE , a trait termed preferential pHI regulation. Further studies are needed to determine whether preferential pHI regulation is a general trait among bimodal fishes and if this confers reduced sensitivity to acid-base disturbances, including those induced by hypercarbia, exhaustive exercise and hypoxia or anoxia. Additionally, elucidating the cellular and molecular mechanisms may yield insight into whether preferential pHI regulation is a trait ultimately associated with the early evolution of air breathing in vertebrates.
Oxygen-induced bi-modal failure phenomenon in SiOx-based resistive switching memory
Chang, Yao-Feng; Ji, Li; Wu, Zhuo-Jie; Zhou, Fei; Wang, Yanzhen; Xue, Fei; Fowler, Burt; Yu, Edward T.; Ho, Paul S.; Lee, Jack C.
2013-07-01
The ambient gas effect in SiOx-based resistive switching memory has been studied. After the electroforming process, resistive switching behavior functions in vacuum as well as in nitrogen without dramatic degradation. However, introducing an oxygen-nitrogen ambient suppresses resistive switching behavior at pressures above 1 Torr. Resistive switching is fully reestablished in oxygen-exposed devices after a vacuum recovery step. The failure phenomena can be described by Monte Carlo simulation using bi-modal statistics to enable feature distribution modeling of failure modes. Design criteria and guidelines are identified for packaging of future oxygen-sensor and of nonvolatile memory applications.
Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite.
Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem
2014-09-30
The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties.
Impact of Bimodal Traffic on Latency in Optical Burst Switching Networks
Directory of Open Access Journals (Sweden)
Yuhua Chen
2008-01-01
Full Text Available This paper analyzes the impact of bimodal traffic composition on latency in optical burst switching networks. In particular, it studies the performance degradation to short-length packets caused by longer packets, both of which are part of a heterogeneous traffic model. The paper defines a customer satisfaction index for each of the classes of traffic, and a composite satisfaction index. The impact of higher overall utilization of the network as well as that of the ratio of the traffic mix on each of the customer satisfaction indices is specifically addressed.
Bi-Modal Person Recognition on a Mobile Phone: using mobile phone data
McCool, Chris; Marcel, Sébastien; Hadid, Abdenour; Pietikainen, Matti; Matejka, Pavel; Cernocky, Jan; Poh, Norman; Kittler, J.; Larcher, Anthony; Levy, Christophe; Matrouf, Driss; Bonastre, Jean-François; Tresadern, Phil; Cootes, Timothy
2012-01-01
This paper presents a novel fully automatic bi-modal, face and speaker, recognition system which runs in real-time on a mobile phone. The implemented system runs in real-time on a Nokia N900 and demonstrates the feasibility of performing both automatic face and speaker recognition on a mobile phone. We evaluate this recognition system on a novel publicly-available mobile phone database and provide a well defined evaluation protocol. This database was captured almost exclusively using mobile p...
Engineering three-dimensional maximally entangled states for two modes in a bimodal cavity
Institute of Scientific and Technical Information of China (English)
Yang Zhen-Biao; Su Wan-Jun
2007-01-01
An alternative scheme is proposed for engineering three-dimensional maximally entangled states for two modes of a superconducting microwave cavity. In this scheme, an appropriately prepared four-level atom is sent through a bimodal cavity. During its passing through the cavity, the atom is coupled resonantly with two cavity modes simultaneously and addressed by a classical microwave pulse tuned to the required transition. Then the atomic states are detected to collapse two modes onto a three-dimensional maximally entangled state. The scheme is different from the previous one in which two nonlocal cavities are used. A comparison between them is also made.
Combustion of Bimodal Nano/Micro Aluminum Suspension with New Reaction Rate Model
M. Bidabadi; N. Moallemi; I. Shafieenejad; M. Jadidi
2008-01-01
In this study a mathematical model for combustion of bimodal particle in lean flow was developed. The difference between structure of flame in this work and previous ones was that, in those flame was divided by five zones and reaction rate was considered to be constant in reaction zones and also zero in post flame zone. In reality it was obvious with respect to shape and size of different particles in dust, reaction didn't end suddenly. In the present research the heat loss term, which was as...
Time shift in slope failure prediction between unimodal and bimodal modeling approaches
Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente
2016-04-01
Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function
La Competencia léxica en el Currículum Bimodal
2012-01-01
La sociedad en que vivimos ha cambiado y no para de hacerlo. Estos cambios están directamente relacionados con la incorporación de Internet como una especie de apéndice de nuestra persona. La enseñanza obligatoria no puede huir de este hecho y debe renovar su planteamiento curricular. Esta innovación pasa por la diferenciación metodológica que propone el Currículum bimodal, el cual distingue entre capacidades prácticas y saberes conceptuales. Dentro de estos últimos el léxico es un elemento c...
Institute of Scientific and Technical Information of China (English)
Wang Can-Jun; Chen Shi-Bo; Mei Dong-Cheng
2006-01-01
The steady-state properties of a bistable system are investigated when both the multiplicative noise and the coupling between additive and multiplicative noises are coloured with different values of noise correlation times τ1 and 72. After introducing a dimensionless parameter R(R = α/D, D is the intensity of the multiplicative noise and α is the intensity of the additive noise), and performing the numerical computations, we find the following points: (1) For the case ofR ＞ 1, λ (the intensity of correlation between additive and multiplicative noises), τ1 and τ2 can induce the stationary probability distribution (SPD) transition from bimodal to unimodal in structure, but for the cases of R ≤ 1,the bimodal structure is preserved; (2) α can also induce the SPD transition from bimodal to unimodal in structure;(3) the bimodal structure of the SPD exhibits a symmetrical structure as D increases.
Spectral statistics of random geometric graphs
Dettmann, Carl P; Knight, Georgie
2016-01-01
We study the spectrum of random geometric graphs using random matrix theory. We look at short range correlations in the level spacings via the nearest neighbour and next nearest neighbour spacing distribution and long range correlations via the spectral rigidity $\\Delta_3$ statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find that the spectral statistics of random geometric graphs fits the universality of random matrix theory. In particular, the short range correlations are very close to those found in the Gaussian orthogonal ensemble of random matrix theory. For long range correlations we find deviations from Gaussian orthogonal ensemble statistics towards Poisson. We compare with previous results for Erd\\H{o}s-R\\'{e}nyi, Barab{\\'a}si-Albert and Watts-Strogatz random graphs where similar random matrix theory universality has been found.
Randomness Of Amoeba Movements
Hashiguchi, S.; Khadijah, Siti; Kuwajima, T.; Ohki, M.; Tacano, M.; Sikula, J.
2005-11-01
Movements of amoebas were automatically traced using the difference between two successive frames of the microscopic movie. It was observed that the movements were almost random in that the directions and the magnitudes of the successive two steps are not correlated, and that the distance from the origin was proportional to the square root of the step number.
Stephanov, M A; Wettig, T
2005-01-01
We review elementary properties of random matrices and discuss widely used mathematical methods for both hermitian and nonhermitian random matrix ensembles. Applications to a wide range of physics problems are summarized. This paper originally appeared as an article in the Wiley Encyclopedia of Electrical and Electronics Engineering.
Directory of Open Access Journals (Sweden)
Guohong Wang
2012-01-01
Full Text Available Titania/carbon composite hollow microspheres with bimodal mesoporous shells are one-pot fabricated by hydrothermal treatment of the acidic (NH42TiF6 aqueous solution in the presence of glucose at 180∘C for 24 h and then calcined at 450∘C. The as-prepared samples were characterized by XRD, SEM, TEM, HRTEM, UV-visible spectroscopy, and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the as-prepared samples was evaluated by daylight-induced photocatalytic decolorization of methyl orange aqueous solution at ambient temperature. The effects of calcination time on the morphology, phase structure, crystallite size, specific surface area, pore structures, and photocatalytic activity of the microspheres were investigated. The results indicated that the as-obtained TiO2/C composite hollow spheres generally exhibit bimodal mesopore size distribution with their peak intra-aggregated mesopore size in the range of 2.3–4.5 nm and peak interaggregated mesopore size in the range of 5.7–12.7 nm, depending on specific calcination time. The daylight-induced photoactivity of as-obtained hollow TiO2/C microspheres generally exceeds that of Degussa P25. The influences of calcination time on the photoactivity are discussed in terms of carbon content, phase structures, and pore structures.
Huang, Yan; Cao, Juan; Zhang, Qi; Lu, Zheng-rong; Hua, Ming-qing; Zhang, Xiao-yan; Gao, Hu
2016-01-01
A new gadolinium diethylenetriamine pentaacetic acid (DTPA) complex (Gd-DTPA-DMABA-CS11) as a potential bimodal magnetic resonance imaging (MRI) contrast agent with fluorescence was synthesized. It was synthesized by the incorporation of 4-dimethylaminobenzaldehyde (DMABA) and chitosan oligosaccharide (CSn; n=11) with low polydispersity index to DTPA anhydride and then chelated with gadolinium chloride. The structure was characterized by Fourier transform infrared (FTIR), (1)H NMR, elemental analysis and size exclusion chromatography (SEC). MRI measurements in vitro were evaluated. The results indicated that Gd-DTPA-DMABA-CS11 provided higher molar longitudinal relaxivity (r1) (12.95mM(-1)·s(-1)) than that of commercial Gd-DTPA (3.63mM(-1)·s(-1)) at 0.5T. Gd-DTPA-DMABA-CS11 also emitted fluorescence, and the intensity was much stronger than that of Gd-DTPA. Therefore, it can be meanwhile used in fluorescent imaging for improving the sensitivity in clinic diagnosis. Gd-DTPA-DMABA-CS11 as a potential contrast agent is preliminarily stable in vitro. The results of thermodynamic action between Gd-DTPA-DMABA-CS11 and bovine serum albumin (BSA) illustrated that the binding process was exothermic and spontaneous, and the main force was van der Waals' interaction and hydrogen bond. The preliminary study suggested that Gd-DTPA-DMABA-CS11 could be used in both magnetic resonance and fluorescent imaging as a promising bimodal contrast agent.
Bimodality of light and s-elements in M4 (NGC 6121)
Villanova, Sandro
2011-01-01
All Globular Clusters (GCs) studied in detail so far host two or more populations of stars. Theoretical models suggest that the second population is formed from gas polluted by processed material produced by massive stars of the first generation. However the nature of the polluter is a matter of strong debate. Several candidates have been proposed: massive main-sequence stars (fast rotating or binaries), intermediate-mass AGB stars, or SNeII. We studied red giant branch (RGB) stars in the GC M4 (NGC 6121) to measure their chemical signature. We confirm the presence of a bimodal population, first discovered by Marino et al. (2008). The two groups have different C,$^{12}$C/$^{13}$C,N,O,Na content, but share the same Li,C+N+O,Mg,Al,Si,Ca,Ti,Cr,Fe,Ni,Zr,Ba and Eu abundance. Quite surprisingly the two groups differ also in their Y abundance. The absence of a spread in $\\alpha$-elements, Eu and Ba makes SNeII and AGB stars unlikely as polluters. On the other hand, massive main-sequence stars can explain the bimodal...
Timing of seed dispersal generates a bimodal seed bank depth distribution
Espinar, J.L.; Thompson, K.; Garcia, L.V.
2005-01-01
The density of soil seed banks is normally highest at the soil surface and declines monotonically with depth. Sometimes, for a variety of reasons, peak density occurs below the surface but, except in severely disturbed soils, it is generally true that deeper seeds are older. In seasonally dry habitats that develop deep soil cracks during the dry season, it is possible that some seeds fall down cracks and rapidly become deeply buried. We investigated this possibility for three dominant clonal perennials (Scirpus maritimus, S. litoralis, and Juncus subulatus) in the Don??ana salt marsh, a nontidal marsh with a Mediterranean climate located in southwest Spain. Two species, which shed most of their seed during the dry season and have seeds with low buoyancy, had bimodal viable seed depth distributions, with peak densities at the surface and at 16-20 cm. A third species, which shed most seeds after soil cracks had closed and had seeds with high buoyancy, had viable seeds only in surface soil. Bimodal seed bank depth distributions may be relatively common in seasonally dry habitats with fine-textured soils, but their ecological significance has not been investigated.
Sun, Lingpeng; Klecker, Berndt; Krucker, Saem; Droege, Wolfgang
2010-01-01
We report for several solar energetic particle events intensity and anisotropy measurements of energetic electrons in the energy range ~ 27 to ~ 500 keV as observed with the Wind and ACE spacecraft in June 2000. The observations onboard Wind show bimodal pitch angle distributions (PAD), whereas ACE shows PADs with one peak, as usually observed for impulsive injection of electrons at the Sun. During the time of observation Wind was located upstream of the Earth's bow shock, in the dawn - noon sector, at distances of ~ 40 to ~ 70 Earth radii away from the Earth, and magnetically well connected to the quasi-parallel bow shock, whereas ACE, located at the libration point L1, was not connected to the bow shock. The electron intensity-time profiles and energy spectra show that the backstreaming electrons observed at Wind are not of magnetospheric origin. The observations rather suggest that the bi-modal electron PADs are due to reflection or scattering at an obstacle located at a distance of less than ~ 150 Earth r...
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O.A.; Borja, M.A.
2004-07-01
The International Standard IEC 61400-12 and other international recommendations suggest the use of the two-parameter Weibull probability distribution function (PDF) to estimate the Annual Energy Production (AEP) of a wind turbine. Most of the commercial software uses the unimodal Weibull PDF as the default option to carry out estimations of AEP, which in turn, are used to optimise wind farm layouts. Furthermore, AEP is essential data to assess the economic feasibility of a wind power project. However, in some regions of the world, the use of these widely adopted and recommended methods lead to incorrect results. This is the case for the region of La Ventosa in Mexico, where the frequency of the wind speed shows a bimodal distribution. In this work, mathematical formulations by using a Weibull PDF and a bimodal distribution are established to compare the AEP, the capacity factor and the levelised production cost for a specific wind turbine. By combining one year of wind speed data with the hypothetic power performance of the Vestas V27-225 kW wind turbine, it was found that using the Weibull PDF underestimates AEP (and thus the Capacity Factor) by about 12%. (author)
The influence of grain size ratio upon the relative mobility in bimodal sediment mixtures
Dudill, Ashley; Frey, Philippe
2014-05-01
The behaviour of grain mixtures varies from that of uniform grain, which has implications for bedload sediment transport in gravel-bed rivers. In particular, sediment mixtures act to modify the level of mobility within the bed, leading to aggradation or degradation, which has significant implications for river stability. Previous work has reported upon this change in mobility within bimodal mixtures; however we do not know how far grain size ratio influences these results. We hypothesise that there is a link between the change in levels of mobility and the grain size ratio due to varying amounts of infiltration, which controls the hiding/exposure function. This poster will present experimental results from an investigation designed to isolate the influence of grain size ratio upon the change in levels of mobility in bimodal sediment mixtures. This experimental investigation was undertaken using various sizes of spherical particles in a relatively narrow flume. Using this arrangement, we are able to observe effects at the particle scale in order to understand the individual and bulk grain behaviour.
Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng
2015-05-01
Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing.
Bimodal regime in young massive clusters leading to subsequent stellar generations
Wünsch, Richard; Tenorio-Tagle, Guillermo; Muñoz-Tuñón, Casiana; Ehlerová, Soňa
2016-01-01
Massive stars in young massive clusters insert tremendous amounts of mass and energy into their surroundings in the form of stellar winds and supernova ejecta. Mutual shock-shock collisions lead to formation of hot gas, filling the volume of the cluster. The pressure of this gas then drives a powerful cluster wind. However, it has been shown that if the cluster is massive and dense enough, it can evolve in the so--called bimodal regime, in which the hot gas inside the cluster becomes thermally unstable and forms dense clumps which are trapped inside the cluster by its gravity. We will review works on the bimodal regime and discuss the implications for the formation of subsequent stellar generations. The mass accumulates inside the cluster and as soon as a high enough column density is reached, the interior of the clumps becomes self-shielded against the ionising radiation of stars and the clumps collapse and form new stars. The second stellar generation will be enriched by products of stellar evolution from t...
Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin
2015-11-01
Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications.
Zhao, Lei; Wang, Zengcai; Wang, Xiaojin; Qi, Yazhou; Liu, Qing; Zhang, Guoxin
2016-09-01
Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.
A mathematical model of bimodal epigenetic control of miR-193a in ovarian cancer stem cells.
Directory of Open Access Journals (Sweden)
Frank H C Cheng
Full Text Available Accumulating data indicate that cancer stem cells contribute to tumor chemoresistance and their persistence alters clinical outcome. Our previous study has shown that ovarian cancer may be initiated by ovarian cancer initiating cells (OCIC characterized by surface antigen CD44 and c-KIT (CD117. It has been experimentally demonstrated that a microRNA, namely miR-193a, targets c-KIT mRNA for degradation and could play a crucial role in ovarian cancer development. How miR-193a is regulated is poorly understood and the emerging picture is complex. To unravel this complexity, we propose a mathematical model to explore how estrogen-mediated up-regulation of another target of miR-193a, namely E2F6, can attenuate the function of miR-193a in two ways, one through a competition of E2F6 and c-KIT transcripts for miR-193a, and second by binding of E2F6 protein, in association with a polycomb complex, to the promoter of miR-193a to down-regulate its transcription. Our model predicts that this bimodal control increases the expression of c-KIT and that the second mode of epigenetic regulation is required to generate a switching behavior in c-KIT and E2F6 expressions. Additional analysis of the TCGA ovarian cancer dataset demonstrates that ovarian cancer patients with low expression of EZH2, a polycomb-group family protein, show positive correlation between E2F6 and c-KIT. We conjecture that a simultaneous EZH2 inhibition and anti-estrogen therapy can constitute an effective combined therapeutic strategy against ovarian cancer.
Ultra-fast Quantum Random Number Generator
Yicheng, Shi
We describe a series of Randomness Extractors for removing bias and residual correlations in random numbers generated from measurements on noisy physical systems. The structures of the randomness extractors are based on Linear Feedback Shift Registers (LFSR). This leads to a significant simplification in the implementation of randomness extractors.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Silica particles with lamellar and wormhole-like bi-modal mesopores have been synthesized using anionic surfactant (N-lauroylsarcosine sodium) as the template. The particles with diameters of 300―500 nm possess bi-modal mesopores with pore sizes of 3 nm and 12 nm, which were ascribed to the disordered wormhole-like mesophase and lamellar mesophase, respectively. The BET surface area of the particles was 536 m2/g and the pore volume was 0.83 cm3/g. The lamellar mesophase and cylindrical mesophase were formed due to the co-assembly of the anionic surfactant and its protonized polar oil.
Chakrabarti, Anindya S
2013-01-01
Many socio-economic phenomena are characterized by the appearance of a few "hit" products having a substantially higher popularity compared to their often equivalent competitors, reflected in a bimodal distribution of response (success). Using the example of box-office performance of movies, we show that the empirically observed bimodality can emerge via self-organization in a model where agents (theatres) independently decide whether to adapt a new movie. The response exhibits extreme variability even in the absence of learning or communication between agents and suggests that properly timing the release is a key determinant of box-office success.
Higher (2nd)-order polarization-Wigner function for `even' entangled bi-modal coherent states
Singh, Ravi S; Yadava, Lallan; Gupta, Gyaneshwar K
2012-01-01
Higher (2nd)-order Wigner distribution function in quantum phase space for entangled bi-modal coherent states, a representative of higher (2nd)-order optical-polarization, is introduced by generalizing kernel (transiting) operator in Cahill-Glauber C(s)-correspondence rule. The nature is analyzed which reveals the occurrence of oscillating three peaks: 'two' for individual bi-modes and third for interference between modes. Also, the graphics of 2nd-order polarization-Wigner distribution function, incisively, demonstrates that it is of non-Gaussian nature attaining non-negative values in quantum phase space.
ajansen; kwhitefoot; panteltje1; edprochak; sudhakar, the
2014-07-01
In reply to the physicsworld.com news story “How to make a quantum random-number generator from a mobile phone” (16 May, http://ow.ly/xFiYc, see also p5), which describes a way of delivering random numbers by counting the number of photons that impinge on each of the individual pixels in the camera of a Nokia N9 smartphone.
Authentically radiolabelled Mn(II) complexes as bimodal PET/MR tracers
Energy Technology Data Exchange (ETDEWEB)
Vanasschen, Christian; Brandt, Marie; Ermert, Johannes [Institute of Neuroscience and Medicine, INM-5 - Nuclear Chemistry, Forschungszentrum Jülich (Germany); Neumaier, Bernd [Institute for Radiochemistry and Experimental Molecular Imaging, Medical Clinics, University of Cologne (Germany); Coenen, Heinz H [Institute of Neuroscience and Medicine, INM-5 - Nuclear Chemistry, Forschungszentrum Jülich (Germany)
2015-05-18
The development of small molecule bimodal PET/MR tracers is mainly hampered by the lack of dedicated preparation methods. Authentic radiolabelling of MR contrast agents ensures easy access to such probes: a ligand, chelating a paramagnetic metal ion (e.g. Mn2+) and the corresponding PET isotope (e.g. 52gMn), leads to a “cocktail mixture” where both imaging reporters exhibit the same pharmacokinetics. Paramagnetic [55Mn(CDTA)]2- shows an excellent compromise between thermodynamic stability, kinetic inertness and MR contrast enhancement. Therefore, the aim of this study was to develop new PET/MR tracers by labelling CDTA ligands with paramagnetic manganese and the β+-emitter 52gMn. N.c.a. 52gMn (t1/2: 5.6 d; Eβ+: 575.8 keV (29.6%)) was produced by proton irradiation of a natCr target followed by cation-exchange chromatography. CDTA was radiolabelled with n.c.a. 52gMn2+ in NaOAc buffer (pH 6) at RT. The complex was purified by RP-HPLC and its stability tested in PBS and blood plasma at 37°C. The redox stability was assessed by monitoring the T1 relaxation (20 MHz) in HEPES buffer (pH 7.4). A functionalized CDTA ligand was synthesized in 5 steps. [52gMn(CDTA)]2- was quantitatively formed within 30 min at RT. The complex was stable for at least 6 days in PBS and blood plasma at 37°C and no oxidation occurred within 7 months storage at RT. Labelling CDTA with an isotopic 52g/55Mn2+ mixture led to the corresponding bimodal PET/MR tracer. Furthermore, a functionalized CDTA ligand was synthesized with an overall yield of 18-25%. [52g/55Mn(CDTA)]2-, the first manganese-based bimodal PET/MR tracer prepared, exhibits excellent stability towards decomplexation and oxidation. This makes the functionalized CDTA ligand highly suitable for designing PET/MR tracers with high relaxivity or targeting properties.
Randomness Testing of Compressed Data
Chang, Weiling; Yun, Xiaochun; Wang, Shupeng; Yu, Xiangzhan
2010-01-01
Random Number Generators play a critical role in a number of important applications. In practice, statistical testing is employed to gather evidence that a generator indeed produces numbers that appear to be random. In this paper, we reports on the studies that were conducted on the compressed data using 8 compression algorithms or compressors. The test results suggest that the output of compression algorithms or compressors has bad randomness, the compression algorithms or compressors are not suitable as random number generator. We also found that, for the same compression algorithm, there exists positive correlation relationship between compression ratio and randomness, increasing the compression ratio increases randomness of compressed data. As time permits, additional randomness testing efforts will be conducted.
Rarefaction effects in dilute granular Poiseuille flow: Knudsen minimum and temperature bimodality
Mahajan, Achal; Alam, Meheboob
2015-11-01
The gravity-driven flow of smooth inelastic hard-disks through a channel, analog of granular Poiseuille flow, is analysed using event-driven simulations. We find that the variation of the mass-flow rate (Q) with Knudsen number (Kn) can be non-monotonic in the elastic limit (i.e. the restitution coefficient en --> 1) in channels with very smooth walls. The Knudsen minimum effect (i.e. the minimum flow rate occurring at Kn ~ O (1) for the Poiseuille flow of a molecular gas) is found to be absent in a granular gas with en competition between dissipation and rarefaction seems to be responsible for the observed dependence of both mass-flow rate and temperature bimodality on Kn and en . [Alam etal. 2015, JFM (revised)].
Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket
Christie, Robert J.; Plachta, David W.
2006-01-01
Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.
Magnetic complexity as an explanation for bimodal rotation populations among young stars
Garraffo, Cecilia; Cohen, Ofer
2015-01-01
Observations of young open clusters have revealed a bimodal distribution of fast and slower rotation rates that has proven difficult to explain with predictive models of spin down that depend on rotation rates alone. The Metastable Dynamo Model proposed recently by Brown, employing a stochastic transition probability from slow to more rapid spin down regimes, appears to be more successful but lacks a physical basis for such duality. Using detailed 3D MHD wind models computed for idealized multipole magnetic fields, we show that surface magnetic field complexity can provide this basis. Both mass and angular momentum losses decline sharply with increasing field complexity. Combined with observation evidence for complex field morphologies in magnetically active stars, our results support a picture in which young, rapid rotators lose angular momentum in an inefficient way because of field complexity. During this slow spin-down phase, magnetic complexity is eroded, precipitating a rapid transition from weak to str...
Biodegradable microparticles with surface dimples as a bi-modal imaging contrast agent.
Kim, Mi Ri; Lim, Yong Taik; Cho, Kuk Young
2013-03-12
Fabrication of physically engineered colloids and their application to the biological fields is emerging importance because of their potential to provide an enhanced performance without altering the chemical properties of biomaterials used. A facile approach is reported to fabricate sub-10-μm-sized PLGA microparticle with small dimples covering the surface by droplet imprinting. Optical and magnetic resonance bioimaging agents are easily co-encapsulated inside the microparticles to obtain a bi-modal imaging agent. Cell internalization efficacy of dimpled particles in DC 2.4 cell is enhanced compared with conventional smooth round-shaped colloids. Our result indicates that morphology-controlled microparticles show promise as a cell labeling with improved cell interaction.
(Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence-MR imaging
Debasu, Mengistie L.; Ananias, Duarte; Pinho, Sonia L. C.; Geraldes, Carlos F. G. C.; Carlos, Luís D.; Rocha, João
2012-07-01
Up-conversion (Gd,Yb,Tb)PO4 materials and their potential for bimodal imaging have received little attention in the literature. Herein, we report the first study on the up-conversion emission of (Gd,Yb,Tb)PO4 nanocrystals synthesized via a hydrothermal method at 150 °C. These materials exhibit ultraviolet, blue and green up-conversion emissions upon excitation with a 980 nm continuous wave laser diode. The intensity of the blue-emission band at 479 nm, ascribed to the cooperative up-conversion emission of a pair of excited Yb3+ ions, depends on the Yb3+/Tb3+ concentration ratio, calcination temperature and particle size. Strong green up-conversion emission of Tb3+ is observed at 543 nm for the 5D4 --> 7F5 transition. Relaxometry measurements reveal that the nanocrystals are efficient T2-weighted (negative) contrast agents which, combined with visible-light emission generated by infrared excitation, affords them considerable potential for being used in bimodal, photoluminescence-magnetic resonance, imaging.Up-conversion (Gd,Yb,Tb)PO4 materials and their potential for bimodal imaging have received little attention in the literature. Herein, we report the first study on the up-conversion emission of (Gd,Yb,Tb)PO4 nanocrystals synthesized via a hydrothermal method at 150 °C. These materials exhibit ultraviolet, blue and green up-conversion emissions upon excitation with a 980 nm continuous wave laser diode. The intensity of the blue-emission band at 479 nm, ascribed to the cooperative up-conversion emission of a pair of excited Yb3+ ions, depends on the Yb3+/Tb3+ concentration ratio, calcination temperature and particle size. Strong green up-conversion emission of Tb3+ is observed at 543 nm for the 5D4 --> 7F5 transition. Relaxometry measurements reveal that the nanocrystals are efficient T2-weighted (negative) contrast agents which, combined with visible-light emission generated by infrared excitation, affords them considerable potential for being used in bimodal
Carboniferous Bimodal Volcanic Rocks and Their Plate Tectonic Setting,Hainan Island
Institute of Scientific and Technical Information of China (English)
夏邦栋; 施光宇; 等
1992-01-01
The Carboniferous volcanic rocks in western Hainan Island consist of a series of oceanic tholeite and rhyoporphyrite,showing bimodal nature.Similar geochemical characters,in terms of abun-daces and relative rations of incompatible elements and REE and the REE patterns,between the basalt and continental rift-associated tholeiite indicate the occurrence of Late Paleozoic rifting in the area.The basaltic magma,with a low degree of evolution,was originated from deep mantle,show-ing contamination by low crustal material.The rhyolite is thought to be formed from partial melting of the continental crust by higher thermal flow in a rift environment rather than from fractional crystallization of a basaltic magma.
Combustion of Bimodal Nano/Micro Aluminum Suspension with New Reaction Rate Model
Directory of Open Access Journals (Sweden)
M. Bidabadi
2008-01-01
Full Text Available In this study a mathematical model for combustion of bimodal particle in lean flow was developed. The difference between structure of flame in this work and previous ones was that, in those flame was divided by five zones and reaction rate was considered to be constant in reaction zones and also zero in post flame zone. In reality it was obvious with respect to shape and size of different particles in dust, reaction didn't end suddenly. In the present research the heat loss term, which was assumed to be linearly proportional to temperature difference, was added to the energy conservation equation and reaction rate was considered proportional to available amount of fuel, leading to exponentially decreasing of reaction rate. The flame speed and temperature distribution were obtained by solving the energy equation in each zone and matching the temperature and heat flux at the interfacial boundaries. Calculated values of flame speed were in good agreement with experimental data.
MAGNETIC COMPLEXITY AS AN EXPLANATION FOR BIMODAL ROTATION POPULATIONS AMONG YOUNG STARS
Energy Technology Data Exchange (ETDEWEB)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-07-01
Observations of young open clusters have revealed a bimodal distribution of fast and slower rotation rates that has proven difficult to explain with predictive models of spin down that depend on rotation rates alone. The Metastable Dynamo Model proposed recently by Brown, employing a stochastic transition probability from slow to more rapid spin down regimes, appears to be more successful but lacks a physical basis for such duality. Using detailed 3D MHD wind models computed for idealized multipole magnetic fields, we show that surface magnetic field complexity can provide this basis. Both mass and angular momentum losses decline sharply with increasing field complexity. Combined with observation evidence for complex field morphologies in magnetically active stars, our results support a picture in which young, rapid rotators lose angular momentum in an inefficient way because of field complexity. During this slow spin-down phase, magnetic complexity is eroded, precipitating a rapid transition from weak to strong wind coupling.
Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus
Directory of Open Access Journals (Sweden)
Elena T. Herruzo
2012-03-01
Full Text Available Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the cantilever. This method enables the simultaneous recording of several material properties and, at the same time, it also increases the sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of the fractional derivative of the interaction force. We show that this approximation is valid for situations in which the amplitude of the first mode is larger than the length of scale of the force, corresponding to the most common experimental case. We also show that this approximation is valid for very different types of tip–surface forces such as the Lennard-Jones and Derjaguin–Muller–Toporov forces.
Unimodular bimode gravity and the coherent scalar-graviton field as galaxy dark matter
Pirogov, Yu F
2011-01-01
The explicit violation of general relativity is adopted as an origin of dark matter and dark energy of the gravitational nature. The violation of the local scale invariance alone, with the residual unimodular invariance/relativity, is considered as a paradigm. Besides the four-volume preserving deformation mode -- the transverse-tensor graviton -- the metric comprises a compression mode -- the scalar graviton, or the {\\em systolon}. The unimodular invariant metric theory of the bimode gravity is worked out. Due to a non-dynamical scalar density -- the dark {\\em modulus} -- the theory is general covariant. To substantially reduce the primordial ambiguity of the effective Lagrangian a dynamical global symmetry -- the {\\em compression} one -- is superimposed at the classical level, with the subsequent spontaneous breaking of the symmetry displayed. The static spherically symmetric field configuration in the empty, but possibly for the origin, space is studied. A three-parameter solution describing a new static s...
Institute of Scientific and Technical Information of China (English)
Jian-Zhong Lin; Fu-Jun Gan
2012-01-01
The Brownian coagulation of nanoparticles with initial bimodal size distribution,i.e.,mode i and j,is numerically studied using the moment method.Evolutions of particle number concentration,geometric average diameter and geometric standard deviation are given in the free molecular regime,the continuum regime,the free molecular regimand transition regime,the free molecular regime and contin-uum regime,respectively.The results show that,both in the free molecular regime and the continuum regime,the number concentration of mode i and j decreases with increasing time.The evolutions of particle geometric average diameter with different initial size distribution are quite different.Both intra-modal and inter-modal coagulation finally make the polydispersed size distribution become monodispersed.As time goes by,the size distribution with initial bimodal turns to be unimodal and shifts to a larger particle size range.In the free molecular regime and transition regime,the intermodal coagulation becomes dominant when the number concentrations of mode i and j are of the same order.The effects of the number concentration of mode i and mode j on the evolution of geometric average diameter of mode j are negligible,while the effects of the number concentration of mode j on the evolution of geometric average diameter of mode j is distinct.In the free molecular regime and continuum regime,the higher the initial number concentration of mode j,the more obvious the variation of the number concentration of mode i.
Effect of meta-carborane on segmental dynamics in a bimodal Poly(dimethylsiloxane) network
Energy Technology Data Exchange (ETDEWEB)
Lewicki, J; Maxwell, R S; Patel, M; Herberg, J; Swain, A C; Liggat, J; Pethrick, R
2008-06-11
Bimodal networks of polydimethylsiloxane (PDMS) filled with varying amounts of icosahedral meta-carborane (m-CB) have been developed and characterized by broadband dielectric spectroscopy (BDS) and static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR). Both BDS and MQ NMR showed evidence for a decrease in the polymer chain dynamics. BDS spectra quantified a normal-mode relaxation near 40 Hz at 40 C. The frequency maximum observed for filled samples decreased with increasing m-CB content until contents greater than 5 wt. %. The width of the relaxation spectrum increased with the addition of small quantities of filler and decreased with filler contents greater that 5 wt. %. Agglomeration effects were observed at loadings greater than 5 wt % as manifest by the onset of low frequency Maxwell-Wagner-Sillars (MWS) processes. The MQ NMR data allowed the characterization of distributions of the residual dipolar couplings, <{Omega}{sub d}> and thus in the dynamic order parameter, Sb, consistent with the bimodal network architecture expected from the synthesis protocol used. Upon addition of less than 10 wt.% m-CB filler, the mean <{Omega}{sub d}> for the longer chains increased by 46% and the width of the distribution increased by 33%. The mean <{Omega}{sub d}> for the shorter chains increased by much less, indicative of preferential dispersion of the filler particles in the long chain domains of the network structure. We conclude that the mechanism of reinforcement is likely a free volume space filling at low loadings transitioning to complex molecular filler and polymer chain interaction phenomena at higher loadings.
A scheme for conditional quantum phase gate via bimodal cavity and a Λ-type three-level atom
Institute of Scientific and Technical Information of China (English)
Cai Jian-Wu; Fang Mao-Fa; Liao Xiang-Ping; Zheng Xiao-Juan
2006-01-01
We propose a scheme to implement a two-qubit conditional quantum phase gate for the intracavity field via a single three-level Λ-type atom driven by two modes in a high-Q cavity. The quantum information is encoded on the Fock states of the bimodal cavity. The gate's averaged fidelity is expected to reach 99.8%.
Kablukova, Evgeniya G.; Prigarin, Sergei M.; Rozhenko, Sergei A.
2015-11-01
In this paper we study the phase functions for water-droplet clouds and fogs computed by the Mie theory for specific bimodal and "mirror"- transformed droplet size gamma-distributions. In addition, we construct images of coronas, fogbows and glory that can occur for such cloud and fog models.
Le Quang, Thuan; Camlibel, M. K.
2014-01-01
In this paper, we deal with the well-posedness (in the sense of existence and uniqueness of solutions) and nature of solutions for discontinuous bimodal piecewise affine systems in a differential inclusion setting. First, we show that the conditions guaranteeing uniqueness of Filippov solutions in t
On the Kamke-Muller conditions, monotonicity and continuity for bi-modal piecewise-smooth systems
O'Donoghue, Yoann; Mason, Oliver; Middleton, Rick
2012-01-01
We show that the Kamke-Muller conditions for bimodal piecewise-smooth systems are equivalent to simple conditions on the vector elds dening the system. As a consequence, we show that for a specic class of such systems, monotonicity is equivalent to continuity. Furthermore, we apply our results to derive a stability condition for piecewise positive linear systems.
Energy Technology Data Exchange (ETDEWEB)
CARR,ROBERT D.; VEMPALA,SANTOSH
2000-01-25
The authors present a new technique for the design of approximation algorithms that can be viewed as a generalization of randomized rounding. They derive new or improved approximation guarantees for a class of generalized congestion problems such as multicast congestion, multiple TSP etc. Their main mathematical tool is a structural decomposition theorem related to the integrality gap of a relaxation.
Framework for testing random numbers in parallel calculations
DEFF Research Database (Denmark)
Vattulainen, Ilpo Tapio
1999-01-01
We propose a framework for testing the quality of random numbers in parallel calculations. The key idea. is to study cross-correlations between distinct sequences of random numbers via correlations between various diffusing random walkers, each of which is governed by a distinct random number seq...
Correlated Noise Effects on Gene Expression
Institute of Scientific and Technical Information of China (English)
王先菊; 艾保全; 刘国涛; 刘良钢
2003-01-01
Based on the model describing the regulation of the PRM operator region of λ phage proposed by Hasty et al.[Proc. Nat. Acad. Sci. 97(2000)2075], we study the steady-state probability distribution properties of the model in the presence of correlated Gaussian white noise. We find that the degree of correlation of the noises can affect the form of the steady-state probability distribution. When the degree of correlation of the noises increases, the form of the steady-state probability distribution changes from a bimodal into a unimodal structure.The steady-state probability distribution extrema have also been investigated. We find that noise correlation can change the positions of the extreme value of the steady-state probability distribution of the model greatly.
Tapiero, Charles S.; Vallois, Pierre
2016-11-01
The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.
Kharytonov, Oleksii M.; Kiforenko, Boris M.
2011-08-01
The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low
Can Sulfur Explain the Bimodal Color Distribution Observed in the Jupiter Trojans?
Blacksberg, Jordana; Mahjoub, Ahmed; Poston, Michael; Brown, Michael E.; Eiler, John; Ehlmann, Bethany; Hodyss, Robert; Hand, Kevin P.; Carlson, Robert W.; Wong, Ian
2016-10-01
We present a series of experiments aimed at exploring the hypothesis that the presence or absence of H2S ice on the surface of primitive icy bodies in the early solar system is responsible for the bimodal color distribution of the Jupiter Trojans.Central to our proposed hypothesis is a location-dependent sublimation of ices in the primordial trans-neptunian disk which would have divided objects according to whether they retained H2S on their surfaces for sufficient time to incorporate their constituents into irradiated organic crusts. The irradiated crusts of objects with and without H2S would have different chemistry and therefore different optical properties. Dynamical instability models of the early solar system (e.g. Morbidelli et al., 2005, Nesvorny et al., 2013) predict that Trojans, formed from this primordial population, were later emplaced inward to co-orbit with Jupiter during large-scale rearrangement events. According to our hypothesis, the Trojans today would show evidence of their primordial location with respect to the H2S sublimation line in the form of a bimodal distribution in surface chemistry, and thus color.We present laboratory spectroscopy experiments in support of this hypothesis. Numerous thin ice films composed of H2O, CH3OH, NH3, were produced both with and without H2S. Subsequent processing of these icy bodies was simulated using electron irradiation and heating. Visible reflectance spectra show significant reddening when H2S is present. Mid-infrared spectra confirm the formation of non-volatile sulfur-containing molecules in the products of H2S-containing ices. The infrared spectral properties of the organic residues remaining at room temperature show that sulfur significantly changes the chemistry of these irradiation-produced organics. These experiments suggest that the presence of specific sulfur-bearing chemical species may play an important role in the colors of both the KBOs and Trojans today. This testable hypothesis could feed
Design and Development of the MITEE-B Bi-Modal Nuclear Propulsion Engine
Paniagua, John C.; Powell, James R.; Maise, George
2003-01-01
Previous studies of compact, ultra-lightweight high performance nuclear thermal propulsion engines have concentrated on systems that only deliver high thrust. However, many potential missions also require substantial amounts of electric power. Studies of a new, very compact and lightweight bi-modal nuclear engine that provides both high propulsive thrust and high electric power for planetary science missions are described. The design is a modification of the MITEE nuclear thermal engine concept that provided only high propulsive thrust. In the new design, MITEE-B, separate closed cooling circuits are incorporated into the reactor, which transfers useful amounts of thermal energy to a small power conversion system that generates continuous electric power over the full life of the mission, even when the engine is not delivering propulsive thrust. Two versions of the MITEE-B design are described and analyzed. Version 1 generates 1 kW(e) of continuous power for control of the spacecraft, sensors, data transmission, etc. This power level eliminates the need for RTG's on missions to the outer planets, and allowing considerably greater operational capability for the spacecraft. This, plus its high thrust and high specific impulse propulsive capabilities, makes MITEE-B very attractive for such missions. In Version 2, of MITEE-B, a total of 20 kW(e) is generated, enabling the use of electric propulsion. The combination of high open cycle propulsion thrust (20,000 Newtons) with a specific impulse of ~1000 seconds for short impulse burns, and long term (months to years), electric propulsion greatly increases MITEE's ΔV capability. Version 2 of MITEE-B also enables the production and replenishment of H2 propellant using in-situ resources, such as electrolysis of water from the ice sheet on Europa and other Jovian moons. This capability would greatly increase the ΔV available for certain planetary science missions. The modifications to the MITEE multiple pressure tube
Energy Technology Data Exchange (ETDEWEB)
Pichon, M
2004-10-01
Nuclear matter must present a liquid-gas phase transition at intermediate energies. This thesis is a study of this transition with binary collisions of symmetrical systems Xe+Sn and Au+Au from 60 to 100 MeV/u, detected with INDRA multidetector. A possible signature of liquid-gas phase transition is the observation of a bimodal distribution for an order parameter. Bimodality is a robust signal and can differentiate two family of event: the liquid phase and the gas one. This study is made on the quasi-projectile source with an asymmetry variable between the two heaviest decay products. The sorting of the event is provided by the perpendicular energy of the light charged particles emitted on the quasi-target side. Delta-scaling and negative heat capacity are also interpreted as a possible signature of phase transition. For the first one, we observe scaling law of heaviest fragment distributions for each phase. For the second one, fluctuations of the sharing of the available energy in the system can lead to a negative branch of heat capacity which is a theoretical signature of the transition. Correlation between all this observables are clearly demonstrated. A possible contribution of dynamical effect is tested and quantified with the generator of event HIPSE. The conclusion reveals a definite coherence between all signals of a phase transition. (author)
Physical tests for random numbers in simulations
Vattulainen, I.; Ala-Nissila, T.; Kankaala, K.
1994-11-01
We propose three physical tests to measure correlations in random numbers used in Monte Carlo simulations. The first test uses autocorrelation times of certain physical quantities when the Ising model is simulated with the Wolff algorithm. The second test is based on random walks, and the third on blocks of n successive numbers. We apply the tests to show that recent errors in high precision Ising simulations using generalized feedback shift register algorithms are due to short range correlations in random number sequences.
Vajpai, Sanjay Kumar; Sawangrat, Choncharoen; Yamaguchi, Osamu; Ciuca, Octav Paul; Ameyama, Kei
2016-01-01
In the present work, Co-Cr-Mo alloy compacts with a unique bimodal microstructural design, harmonic structure design, were successfully prepared via a powder metallurgy route consisting of controlled mechanical milling of pre-alloyed powders followed by spark plasma sintering. The harmonic structured Co-Cr-Mo alloy with bimodal grain size distribution exhibited relatively higher strength together with higher ductility as compared to the coarse-grained specimens. The harmonic Co-Cr-Mo alloy exhibited a very complex deformation behavior wherein it was found that the higher strength and the high retained ductility are derived from fine-grained shell and coarse-grained core regions, respectively. Finally, it was observed that the peculiar spatial/topological arrangement of stronger fine-grained and ductile coarse-grained regions in the harmonic structure promotes uniformity of strain distribution, leading to improved mechanical properties by suppressing the localized plastic deformation during straining.
Directory of Open Access Journals (Sweden)
Shanka Walia
2015-02-01
Full Text Available Nano-theranostics offer remarkable potential for future biomedical technology with simultaneous applications for diagnosis and therapy of disease sites. Through smart and careful chemical modifications of the nanoparticle surface, these can be converted to multifunctional tiny objects which in turn can be used as vehicle for delivering multimodal imaging agents and therapeutic material to specific target sites in vivo. In this sense, bimodal imaging probes that simultaneously enable magnetic resonance imaging and fluorescence imaging have gained tremendous attention because disease sites can be characterized quick and precisely through synergistic multimodal imaging. But such hybrid nanocomposite materials have limitations such as low chemical stability (magnetic component and harsh cytotoxic effects (fluorescent component and, hence, require a biocompatible protecting agent. Silica micro/nanospheres have shown promise as protecting agent due to the high stability and low toxicity. This review will cover a full description of MRI-active and fluorescent multifunctional silica micro/nanospheres including the design of the probe, different characterization methods and their application in imaging and treatment in cancer.
Modeling an Elastic-Demand Bimodal Transport Network with Park-and-Ride Trips
Institute of Scientific and Technical Information of China (English)
William H.K.Lam; LI Zhichun; S.C.Wong; ZHU Daoli
2007-01-01
This paper presents a network equilibrium formulation for modeling commuters' travel choices in a bimodal transport system with park-and-ride (P&R) trips while the total demand is elastic to the congestion level of the network. A super-network approach is adopted in the proposed model. It is assumed that commuters' trips are categorized into two types, auto mode only and a combined mode with both auto and transit modes. The former is referred to as the pure mode trip and the latter as the P&R mode trip. The proposed model simultaneously considers the commuter's choice of the pure mode versus the P&R mode, the choice of parking location for the pure mode, the choice of transfer point for the P&R mode, as well as the route choice for each mode. The demand elasticity of transport system, the capacity constraints of transport facilities, and the congestion interaction throughout the super-network are also explicitly incorporated into the proposed model. The results of the numerical experiment show the following key findings: (i) traditional parking/P&R models may overestimate or underestimate travel demand distribution over network; (ii) parking/P&R, transit scheduling, and carpooling schemes bring significant impacts on commuters' travel behavior and network performance; and (iii) different transport policies may be to some extent mutually substituted.
Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor
Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen
2016-11-01
Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.
File, S E; Kenny, P J; Ouagazzal, A M
1998-12-01
In conditions generating moderate levels of anxiety in the social interaction test (low light, unfamiliar arena or high light, familiar arena), parenteral administration of nicotine had bimodal actions, low doses (0.01 and 0.1 mg/kg i.p.) had anxiolytic effects and high doses (0.5 and 1.0 mg/kg i.p.) had anxiogenic effects. In test conditions where anxiety was lowest (low light, familiar arena) and highest (high light, unfamiliar arena), nicotine was without effect after intraperitoneal or hippocampal administration. Thus, nicotine plays a modulatory role in which the activity of other neurotransmitters is crucial to its expression. After bilateral administration to the dorsal hippocampus, nicotine (0.1-8.0 microg) had anxiogenic effects in conditions of moderate anxiety; mecamylamine (30 ng) was silent in these conditions, indicating no intrinsic tone. Our results show that the dorsal hippocampus is one area that can mediate anxiogenic effects in the social interaction test, but the brain region mediating anxiolytic effects remains to be identified.
Energy Technology Data Exchange (ETDEWEB)
Yang, Chang-Tong [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Tao, He; Jackson, Alexander W [Institute of Chemical and Engineering Sciences, Agency for Science Technology and Research (Singapore); Chandrasekharan, Prashant [Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (Singapore); Padmanabhan, Parasuraman [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Gulyás, Balázs; Halldin, Christer [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden)
2015-05-18
Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.
Wetterskog, E; Castro, A; Zeng, L; Petronis, S; Heinke, D; Olsson, E; Nilsson, L; Gehrke, N; Svedlindh, P
2017-03-23
The widespread use of magnetic nanoparticles in the biotechnical sector puts new demands on fast and quantitative characterization techniques for nanoparticle dispersions. In this work, we report the use of asymmetric flow field-flow fractionation (AF4) and ferromagnetic resonance (FMR) to study the properties of a commercial magnetic nanoparticle dispersion. We demonstrate the effectiveness of both techniques when subjected to a dispersion with a bimodal size/magnetic property distribution: i.e., a small superparamagnetic fraction, and a larger blocked fraction of strongly coupled colloidal nanoclusters. We show that the oriented attachment of primary nanocrystals into colloidal nanoclusters drastically alters their static, dynamic, and magnetic resonance properties. Finally, we show how the FMR spectra are influenced by dynamical effects; agglomeration of the superparamagnetic fraction leads to reversible line-broadening; rotational alignment of the suspended nanoclusters results in shape-dependent resonance shifts. The AF4 and FMR measurements described herein are fast and simple, and therefore suitable for quality control procedures in commercial production of magnetic nanoparticles.
A Bi-modal Model for Chinese Cities: City Size, Car Use and Land Rent
Institute of Scientific and Technical Information of China (English)
DAI Teqi; WANG Liang; ZHOU Binxue
2016-01-01
China is experiencing rapid urbanization and motorization.Urban transport congestion poses a challenge to the cities of China.Policies have been made trying to control the car use and the land use in Chinese cities without sound modelling researches.The existing literature on monocentric city modelling has shown that the parameters are critical for the outcome of the modelling.Following the Alonso-type monocentric model,this paper introduces a bi-modal model to simulate the city size,the distribution of land rent and the modal substitution in Chinese cities.We set the key parameters according to the recent available data of China's cities,and re-explain the hypothesis of the model.Then we make a sensitivity analysis to reveal the impacts of key parameters on the Chinese cities.According to the results,we find that the wage,the price of car use and the agriculture rent have significant impacts on city size.The land supply for the private transport or the public transport has the strongest impacts on car use and the level of transport congestion.The total population of the city and the wage level have strong impacts on land rent.Some results are counter-intuitive,but explainable.We also discuss implication of these results for policy making.
McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza
2006-01-01
The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.
Parametric Weight Study of Cryogenic Metallic Tanks for the ``Bimodal'' NTR Mars Vehicle Concept
Kosareo, Daniel N.; Roche, Joseph M.
2006-01-01
A parametric weight assessment of large cryogenic metallic tanks was conducted using the design optimization capabilities in the ANSYS ® finite element analysis code. This analysis was performed to support the sizing of a ``bimodal'' nuclear thermal rocket (NTR) Mars vehicle concept developed at the NASA Glenn Research Center. The tank design study was driven by two load conditions: an in-line, ``Shuttle-derived'' heavy-lift launch with the tanks filled and pressurized, and a burst-test pressure. The main tank structural arrangement is a state-of-the art metallic construction which uses an aluminum-lithium alloy stiffened internally with a ring and stringer framework. The tanks must carry liquid hydrogen in separate launches to orbit where all vehicle components will dock and mate. All tank designs stayed within the available mass and payload volume limits of both the in-line heavy lift and Shuttle derived launch vehicles. Weight trends were developed over a range of tank lengths with varying stiffener cross-sections and tank wall thicknesses. The object of this parametric study was to verify that the proper mass was allocated for the tanks in the overall vehicle sizing model. This paper summarizes the tank weights over a range of tank lengths.
Parametric Sizing of Composite Metal Lined Tanks for Bimodal Nuclear Thermal Propulsion Applications
Abumeri, Galib H.; Roche, Joseph M.
2006-01-01
A computational method is described to evaluate the structural performance of composite over-wrapped metal lined LH2 tanks. This work was performed in support of the human space exploration initiative undertaken by NASA. The method is a judicious combination of available computer codes for finite elements, composite mechanics, durability, damage tracking, and damage tolerance. To illustrate the effectiveness of the analytical approach, composite over-wrapped LH2 core tanks of the Bimodal Nuclear Thermal Rocket (BNTR) were sized parametrically using launch loads and burst test requirements. The benefits and debits of inserting advanced composite technology into existing LH2 tank design concepts are evaluated in the paper. Results obtained indicate that LH2 tanks made from tape placement carbon fiber in a toughened epoxy matrix backed by a metallic liner for hermiticity are able to: (1) sustain micro-cracking in the matrix of the composite system prior to liner failure, (2) offer significant weight savings as compared to present technology (up to 31%), and (3) use unified design and weight configuration to support both launch loads and burst test requirements. The structural performance and sizing evaluation was performed for composite tanks varying in length from 10 m to 28 m. Weight calculations for the composite over-wrapped tanks show that the larger the tank length, the larger the weight savings (compared to those of traditional metallic tanks).
High-bandwidth multimode self-sensing in bimodal atomic force microscopy
Directory of Open Access Journals (Sweden)
Michael G. Ruppert
2016-02-01
Full Text Available Using standard microelectromechanical system (MEMS processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM, we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever deflection. This is achieved by a charge sensor with a bandwidth of 10 MHz and dual feedthrough cancellation to recover the resonant modes that are heavily buried in feedthrough originating from the piezoelectric capacitance. The setup enables the omission of the commonly used piezoelectric stack actuator and optical beam deflection sensor, alleviating limitations due to distorted frequency responses and instrumentation cost, respectively. The proposed method benefits from a more than two orders of magnitude increase in deflection to strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the fundamental mode, and phase imaging on the higher eigenmode.
Label-Free Biosensors Based on Bimodal Waveguide (BiMW) Interferometers.
Herranz, Sonia; Gavela, Adrián Fernández; Lechuga, Laura M
2017-01-01
The bimodal waveguide (BiMW) sensor is a novel common path interferometric transducer based on the evanescent field detection principle, which in combination with a bio-recognition element allows the direct detection of biomolecular interactions in a label-free scheme. Due to its inherent high sensitivity it has great potential to become a powerful analytical tool for monitoring substances of interest in areas such as environmental control, medical diagnostics and food safety, among others. The BiMW sensor is fabricated using standard silicon-based technology allowing cost-effective production, and meeting the requirements of portability and disposability necessary for implementation in a point-of-care (POC) setting.In this chapter we describe the design and fabrication of the BiMW transducer, as well as its application for bio-sensing purposes. We show as an example the biosensor capabilities two different applications: (1) the immunodetection of Irgarol 1051 biocide useful in the environmental field, and (2) the detection of human growth hormone as used in clinical diagnostics. The detection is performed in real time by monitoring changes in the intensity pattern of light exiting the BiMW transducer resulting from antigen-antibody interactions on the surface of the sensor.
Duval, Daphné; González-Guerrero, Ana Belén; Dante, Stefania; Osmond, Johann; Monge, Rosa; Fernández, Luis J; Zinoviev, Kirill E; Domínguez, Carlos; Lechuga, Laura M
2012-05-08
One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.
Vu, Huong T.; Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D.
2016-08-01
Fluctuations in the physical properties of biological machines are inextricably linked to their functions. Distributions of run lengths and velocities of processive molecular motors, like kinesin-1, are accessible through single-molecule techniques, but rigorous theoretical models for these probabilities are lacking. Here, we derive exact analytic results for a kinetic model to predict the resistive force (F )-dependent velocity [P (v )] and run length [P (n )] distribution functions of generic finitely processive molecular motors. Our theory quantitatively explains the zero force kinesin-1 data for both P (n ) and P (v ) using the detachment rate as the only parameter. In addition, we predict the F dependence of these quantities. At nonzero F , P (v ) is non-Gaussian and is bimodal with peaks at positive and negative values of v , which is due to the discrete step size of kinesin-1. Although the predictions are based on analyses of kinesin-1 data, our results are general and should hold for any processive motor, which walks on a track by taking discrete steps.
The structure of Abell 1351: a bimodal galaxy cluster with peculiar diffuse radio emission
Barrena, R; Boschin, W; De Grandi, S; Rossetti, M
2014-01-01
We aim to review the internal structure and dynamics of the Abell 1351 cluster, shown to host a radio halo with a quite irregular shape. Our analysis is based on radial velocity data for 135 galaxies obtained at the Telescopio Nazionale Galileo. We combine galaxy velocities and positions to select 95 cluster galaxy members and analyse the internal dynamics of the whole cluster. We also examine X-ray data retrieved from Chandra and XMM archives. We measure the cluster redshift, =0.325, the line-of-sight (LOS) velocity dispersion, \\sigma_v~1500 km/s, and the X-ray temperature, kT~9 keV. From both X-ray and optical data independently, we estimate a large cluster mass, in the 1--4 $10^{15}$ M$_\\odot$ range. We attribute the extremely high value of \\sigma_v to the bimodality in the velocity distribution. We find evidence of a significant velocity gradient and optical 3D substructure. The X-ray analysis also shows many features in favour of a complex cluster structure, probably supporting an ongoing merger of subst...
Globular Clusters as Tracers of Stellar Bimodality in Elliptical Galaxies: The Case of NGC 1399
Forte, J C; Geisler, D; Forte, Juan C.; Faifer, Favio; Geisler, Doug
2004-01-01
Globular cluster systems (GCS) frequently show a bi-modal distribution of the cluster integrated colours. This work explores the arguments to support the idea that the same feature is shared by the diffuse stellar population of the galaxy they are associated with. In the particular case of NGC 1399 the results show that the galaxy brightness profile and colour gradient as well as the behaviour of the cumulative globular cluster specific frequency, are compatible with the presence of two dominant stellar populations, associated with the so called "blue" and "red" globular cluster families. These globular families are characterized by different intrinsic specific frequencies (defined in terms of each stellar population): Sn=3.3 +/- 0.3 in the case of the red globulars and Sn=14.3 +/- 2.5 for the blue ones. We stress that this result is not necessarily conflicting with recent works that point out a clear difference between the metallicity distribution of (resolved) halo stars and globulars when comparing their n...
Electromagnetic and acoustic bimodality for the detection and localization of electrical arc faults
Vasile, C.; Ioana, C.; Digulescu, A.; Candel, I.
2016-12-01
Electrical arc faults pose an important problem to electrical installations worldwide, be it production facilities or distribution systems. In this context, it is easy to assess the economic repercussions of such a fault, when power supply is cut off downstream of its location, while also realizing that an early detection of the on-site smaller scale faults would be of great benefit. This articles serves as a review of the current state-of-the-art work that has been carried out on the subject of detection and localization of electrical arc faults, by exploiting the bimodality of this phenomenon, which generates simultaneously electromagnetic and acoustic waves, propagating in a free space path. En experimental setup has been defined, to demonstrate principles stated in previous works by the authors, and signal processing methods have been used in order to determine the DTOA (difference-of-time-of-arrival) of the acoustic signals, which allows localization of the transient fault. In the end there is a discussion regarding the results and further works, which aims to validate this approach in more real-life applications.
Bimodal Distribution of Area-Weighted Latitude of Sunspots And Solar North-South Asymmetry
Chang, Heon-Young
2011-01-01
We study the latitudinal distribution of sunspots observed from 1874 to 2009 using the center-of-latitude (COL). We calculate COL by taking the area-weighted mean latitude of sunspots for each calendar month. We then form the latitudinal distribution of COL for the sunspots appearing in the northern and southern hemispheres separately, and in both hemispheres with unsigned and signed latitudes, respectively. We repeat the analysis with subsets which are divided based on the criterion of which hemisphere is dominant for a given solar cycle. Our primary findings are as follows: (1) COL is not monotonically decreasing with time in each cycle. Small humps can be seen (or short plateaus) around every solar maxima. (2) The distribution of COL resulting from each hemisphere is bimodal, which can well be represented by the double Gaussian function. (3) As far as the primary component of the double Gaussian function is concerned, for a given data subset, the distributions due to the sunspots appearing in two different...
Bi-modal hetero-aggregation rate response to particle dosage.
Olsen, Aaron; Franks, George; Biggs, Simon; Jameson, Graeme J
2005-11-22
The rate of flocculation of cationic polystyrene latex (PSL) particles by smaller, anionic PSL particles has been measured using a low-angle static light scattering technique. The rate of aggregate growth has been investigated as a function of particle size ratio and relative concentration of each particle species (for a constant dose of cationic particles). Contrary to many previous reports, two peaks in the flocculation rate were observed as a function of dose. It is speculated that the peak observed at the lower particle concentration coincides with the dose yielding maximum constant collision efficiency in the steady-state regime, a condition which is attained only after complete adsorption of the smaller particles onto the larger particle species. The peak at the higher particle concentration is believed to be related to the maximum collision rate constant upon reaching the steady-state regime, the value of which corresponds to maximum degree of aggregation and therefore the maximum mean collision efficiency prior to reaching this condition. From classical collision kinetics, the rate of aggregate growth may be represented as being proportional to the product of the collision rate constant and collision efficiency at any given time. Given then that the maximum value of these two variables coincides with different particle concentrations, the product of the response of each to particle dosage can in some cases yield a net bi-modal aggregation rate response to particle dosage.
Quantum-dot-modified microbubbles with bi-mode imaging capabilities
Energy Technology Data Exchange (ETDEWEB)
Ke Hengte; Xing Zhanwen; Guo Caixin; Yue Xiuli; Liu Shaoqin; Dai Zhifei [Nanobiotechnology Division, Bio-X Center, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150001 (China); Zhao Bo; Wang Jinrui [Department of Ultrasonography, Peking University Third Hospital, Beijing 100083 (China); Liu Jibin [Ultrasound Research and Education Institute, Thomas Jefferson University Hospital, Philadelphia, PA 19107 (United States); Tang Zhiyong, E-mail: jinrui_wang@sina.co, E-mail: ji-bin.liu@jefferson.ed, E-mail: zhifei.dai@hit.edu.c [National Center of Nanoscience and Technology, Beijing 100190 (China)
2009-10-21
The aim of this paper was to develop a novel bi-mode ultrasound/fluorescent imaging agent through stepwise layer-by-layer deposition of poly(allylamine hydrochloride) (PAH) and CdTe quantum dots (QDs) onto ST68 microbubbles (MBs) produced by sonication of a mixture of surfactants (Span 60 and Tween 80). The experiments using photoluminescence spectroscopy and confocal laser scanning microscopy confirmed that CdTe nanoparticles were successfully adsorbed on the outer surface of the MBs. The static light scattering measurements showed that size distributions of MBs before and after QD deposition met the size requirements for clinical application. The in vitro and in vivo ultrasonography indicated that the QD-modified MBs maintained good contrast enhancement properties as the original MBs. Furthermore, the in vitro ultrasound-targeted microbubble destruction (UTMD) experiment of the QD-MB composites was carried out to validate the ability of MBs to deliver QDs for fluorescent imaging. The results showed that the QD-modified MBs not only maintained the capability of ultrasound imaging, but also could be used as a targeted-drug controlled-release system to deliver the QDs for cell and tissue fluorescent imaging by UTMD. The novel dual-functional imaging agent has potential for a variety of biological and medical applications.
Quantum-dot-modified microbubbles with bi-mode imaging capabilities
Ke, Hengte; Xing, Zhanwen; Zhao, Bo; Wang, Jinrui; Liu, Jibin; Guo, Caixin; Yue, Xiuli; Liu, Shaoqin; Tang, Zhiyong; Dai, Zhifei
2009-10-01
The aim of this paper was to develop a novel bi-mode ultrasound/fluorescent imaging agent through stepwise layer-by-layer deposition of poly(allylamine hydrochloride) (PAH) and CdTe quantum dots (QDs) onto ST68 microbubbles (MBs) produced by sonication of a mixture of surfactants (Span 60 and Tween 80). The experiments using photoluminescence spectroscopy and confocal laser scanning microscopy confirmed that CdTe nanoparticles were successfully adsorbed on the outer surface of the MBs. The static light scattering measurements showed that size distributions of MBs before and after QD deposition met the size requirements for clinical application. The in vitro and in vivo ultrasonography indicated that the QD-modified MBs maintained good contrast enhancement properties as the original MBs. Furthermore, the in vitro ultrasound-targeted microbubble destruction (UTMD) experiment of the QD-MB composites was carried out to validate the ability of MBs to deliver QDs for fluorescent imaging. The results showed that the QD-modified MBs not only maintained the capability of ultrasound imaging, but also could be used as a targeted-drug controlled-release system to deliver the QDs for cell and tissue fluorescent imaging by UTMD. The novel dual-functional imaging agent has potential for a variety of biological and medical applications.
The origin of bimodal grain-size distribution for aeolian deposits
Lin, Yongchong; Mu, Guijin; Xu, Lishuai; Zhao, Xue
2016-03-01
Atmospheric dust deposition is a common phenomenon in arid and semi-arid regions. Bimodal grain size distribution (BGSD) (including the fine component and coarse component) of aeolian deposits has been widely reported. But the origin of this pattern is still debated. Here, we focused on the sedimentary process of modern dust deposition, and analyzed the grain size distribution of modern dust deposition, foliar dust, and aggregation of the aeolian dust collected in Cele Oasis, southern margin of Tarim Basin. The results show that BGSD also appear in a dust deposition. The content of fine components (dust storm is significant less than that from subsequent floating dust. Fine component also varies with altitude. These indicate that modern dust deposition have experienced changing aerodynamic environment and be reworked during transportation and deposition, which is likely the main cause for BGSD. The dusts from different sources once being well-mixed in airflow are hard to form multiple peaks respectively corresponding with different sources. In addition, the dust deposition would appear BGSD whether aggregation or not. Modern dust deposition is the continuation of ancient dust deposition. They both may have the same cause of formation. Therefore, the origin of BGSD should provide a theoretical thinking for reconstructing the palaeo-environmental changes with the indicator of grain size.
Bimodal pollination system of the bromeliad Aechmea nudicaulis involving hummingbirds and bees.
Schmid, S; Schmid, V S; Zillikens, A; Harter-Marques, B; Steiner, J
2011-01-01
In order to compare the effectiveness of birds and insects as pollinators, we studied the floral biology of the bromeliad Aechmea nudicaulis (L.) Grisebach in the biome of the Atlantic rain forest, southern Brazil. On Santa Catarina Island, flowering extends from mid-September to the end of December, with diurnal anthesis. The reproductive system is obligatory xenogamy, thus pollinator-dependent. Flowers secrete 31.84 μl of nectar per day, with a mean sugar concentration of 23.2%. Highest nectar volume and sugar concentration occur at the beginning of anthesis. Most floral traits are characteristic for ornithophily, and nectar production appears to be adapted to the energy demand of hummingbirds. Continued secretion of the sucrose-dominated nectar attracts and binds visitors to inflorescences, strengthening trapline foraging behaviour. Experiments assessing seed set after single flower visits were performed with the most frequent visitors, revealing the hummingbird Thalurania glaucopis as the most effective pollen vector. In addition, bees are also functional pollinators, as substantiated by their high visitation frequency. We conclude that this pollination system is bimodal. Thus, there is redundancy in the pollination service provided by birds and bees, granting a high probability of successful reproduction in Ae. nudicaulis.
Bimodal behaviour of charge carriers in graphene induced by electric double layer
Tsai, Sing-Jyun; Yang, Ruey-Jen
2016-01-01
A theoretical investigation is performed into the electronic properties of graphene in the presence of liquid as a function of the contact area ratio. It is shown that the electric double layer (EDL) formed at the interface of the graphene and the liquid causes an overlap of the conduction bands and valance bands and increases the density of state (DOS) at the Fermi energy (EF). In other words, a greater number of charge carriers are induced for transport and the graphene changes from a semiconductor to a semimetal. In addition, it is shown that the dependence of the DOS at EF on the contact area ratio has a bimodal distribution which responses to the experimental observation, a pinnacle curve. The maximum number of induced carriers is expected to occur at contact area ratios of 40% and 60%. In general, the present results indicate that modulating the EDL provides an effective means of tuning the electronic properties of graphene in the presence of liquid. PMID:27464986
Self-similar growth of an alluvial fan fed with bimodal sediment
Delorme, Pauline; Voller, Vaughan; Paola, Chris; Devauchelle, Olivier; Lajeunesse, Eric; Barrier, Laurie; Métivier, François
2016-04-01
At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. We carried out a series of experiments to investigate the growth of alluvial fans fed with mixed sediments. The density difference between silica and coal sediments mimics a bimodal grain-size distribution in nature. The sediment and water discharges are constant during an experiment. During the run, we track the evolution of the surface pattern by digital imaging. At the end of each run, we acquire the fan topography using a scanning laser. Finally, we cut a radial cross section to visualize the sedimentary deposit. We observe there is a distinct slope break at the transition that dominates the overall curvature of the fan surface. Based on mass conservation and observations, we propose that this alluvial fan grows in a self-similar way, thus causing the transition between silica and coal deposits to be a straight line. The shape of the experimental transition accords with this prediction.
Antoniadis, John; Ozel, Feryal; Barr, Ewan; Champion, David J; Freire, Paulo C C
2016-01-01
The mass function of neutron stars (NSs) contains information about the late evolution of massive stars, the supernova explosion mechanism, and the equation-of-state of cold, nuclear matter beyond the nuclear saturation density. A number of recent NS mass measurements in binary millisecond pulsar (MSP) systems increase the fraction of massive NSs (with $M > 1.8$ M$_{\\odot}$) to $\\sim 20\\% $ of the observed population. In light of these results, we employ a Bayesian framework to revisit the MSP mass distribution. We find that a single Gaussian model does not sufficiently describe the observed population. We test alternative empirical models and infer that the MSP mass distribution is strongly asymmetric. The diversity in spin and orbital properties of high-mass NSs suggests that this is most likely not a result of the recycling process, but rather reflects differences in the NS birth masses. The asymmetry is best accounted for by a bimodal distribution with a low mass component centred at $1.393_{-0.029}^{+0.0...
Bimodal Control of Heat Transport at Graphene–Metal Interfaces Using Disorder in Graphene
Kim, Jaehyeon; Khan, Muhammad Ejaz; Ko, Jae-Hyeon; Kim, Jong Hun; Lee, Eui-Sup; Suh, Joonki; Wu, Junqiao; Kim, Yong-Hyun; Park, Jeong Young; Lyeo, Ho-Ki
2016-01-01
Thermal energy transport across the interfaces of physically and chemically modified graphene with two metals, Al and Cu, was investigated by measuring thermal conductance using the time-domain thermoreflectance method. Graphene was processed using a He2+ ion-beam with a Gaussian distribution or by exposure to ultraviolet/O3, which generates structural or chemical disorder, respectively. Hereby, we could monitor changes in the thermal conductance in response to varying degrees of disorder. We find that the measured conductance increases as the density of the physical disorder increases, but undergoes an abrupt modulation with increasing degrees of chemical modification, which decreases at first and then increases considerably. Moreover, we find that the conductance varies inverse proportionally to the average distance between the structural defects in the graphene, implying a strong in-plane influence of phonon kinetics on interfacial heat flow. We attribute the bimodal results to an interplay between the distinct effects on graphene’s vibrational modes exerted by graphene modification and by the scattering of modes. PMID:27698372
Chung, Hye-Seung; Kim, Jae-Gon; Kim, Jae-Won; Kim, Hyung-Wook; Yoon, Bong-June
2014-11-01
Orexin plays diverse roles in regulating behaviors, such as sleep and wake, reward processing, arousal, and stress and anxiety. The orexin system may accomplish these multiple tasks through its complex innervations throughout the brain. The emerging evidence indicates a role of orexin in emotional behaviors; however, most of the previous studies have investigated the function of orexin in naïve animals. Here, we examined a functional role of orexin in mice that had been exposed to repeated stress. Chronic social defeat stress produced differential social interaction behaviors in mice (susceptible versus resilient) and these two groups of mice displayed different levels of prepro-orexin in the hypothalamus. Exogenously added orexin A to the brain induced an antidepressant-like effect in only the susceptible mice but not in the resilient mice. In contrast, orexin A and orexin B infused together produced an anxiogenic effect in only the resilient mice and not in the susceptible mice. Furthermore, we found that the antidepressant-like effect of orexin A is mediated by the bed nucleus of the stria terminalis (BNST) after exposure to chronic restraint stress. These findings reveal a bimodal effect of the orexin system in regulating emotional behavior that depends on stress susceptibility.
Quantum entanglement from random measurements
Tran, Minh Cong; Dakić, Borivoje; Arnault, François; Laskowski, Wiesław; Paterek, Tomasz
2015-11-01
We show that the expectation value of squared correlations measured along random local directions is an identifier of quantum entanglement in pure states, which can be directly experimentally assessed if two copies of the state are available. Entanglement can therefore be detected by parties who do not share a common reference frame and whose local reference frames, such as polarizers or Stern-Gerlach magnets, remain unknown. Furthermore, we also show that in every experimental run, access to only one qubit from the macroscopic reference is sufficient to identify entanglement, violate a Bell inequality, and, in fact, observe all phenomena observable with macroscopic references. Finally, we provide a state-independent entanglement witness solely in terms of random correlations and emphasize how data gathered for a single random measurement setting per party reliably detects entanglement. This is only possible due to utilized randomness and should find practical applications in experimental confirmation of multiphoton entanglement or space experiments.
Directory of Open Access Journals (Sweden)
Richard I Bailey
Full Text Available Understanding why some hybrid zones are bimodal and others unimodal can aid in identifying barriers to gene exchange following secondary contact. The hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi contains a mix of allopatric parental populations and inter-mingled bimodal and unimodal sympatric populations, and provides an ideal system to examine the roles of local selection and gene flow between populations in maintaining bimodality. However, it is first necessary to confirm, over a larger spatial scale, previously identified associations between population composition and season and habitat. Here we use cline-fitting of one morphological and one song trait along two valley transects, and intervening mountains, to confirm previously identified habitat associations (mountain versus valley and seasonal changes in population composition. As expected from previous findings of studies on a smaller spatial scale, C. jacobsi dominated mountain habitats and mixed populations dominated valleys, and C. brunneus became more prevalent in August. Controlling for habitat and incorporating into the analysis seasonal changes in cline parameters and the standard errors of parental trait values revealed wider clines than previous studies (best estimates of 6.4 to 24.5 km in our study versus 2.8 to 4.7 km in previous studies and increased percentage of trait variance explained (52.7% and 61.5% for transects 1 and 2 respectively, versus 17.6%. Revealing such strong and consistent patterns within a complex hybrid zone will allow more focused examination of the causes of variation in bimodality in mixed populations, in particular the roles of local selection versus habitat heterogeneity and gene flow between differentiated populations.
Energy Technology Data Exchange (ETDEWEB)
Hwang, Gi Suk [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering; Kaviany, Massoud [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering; Gostick, Jeffrey T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Kientiz, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Kim, Moo Hwan [Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of). Dept. of Mechanical Engineering
2011-04-07
In this paper, using molecular simulations and a bimodal-domain network, the role of water state on Nafion water uptake and water and proton transport is investigated. Although the smaller domains provide moderate transport pathways, their effectiveness remains low due to strong, resistive water molecules/domain surface interactions. Finally, the water occupancy of the larger domains yields bulk-like water, and causes the observed transition in the water uptake and significant increases in transport properties.
Marsella, P; Giannantonio, S; Scorpecci, A; Pianesi, F; Micardi, M; Resca, A
2015-12-01
This is a prospective randomised study that evaluated the differences arising from a bimodal stimulation compared to a monaural electrical stimulation in deaf children, particularly in terms of auditory-perceptual skills development. We enrolled 39 children aged 12 to 36 months, suffering from severe-to-profound bilateral sensorineural hearing loss with residual hearing on at least one side. All were unilaterally implanted: 21 wore only the cochlear implant (CI) (unilateral CI group), while the other 18 used the CI and a contralateral hearing aid at the same time (bimodal group). They were assessed with a test battery designed to appraise preverbal and verbal auditory-perceptual skills immediately before and 6 and 12 months after implantation. No statistically significant differences were observed between groups at time 0, while at 6 and 12 months children in the bimodal group had better scores in each test than peers in the unilateral CI group. Therefore, although unilateral deafness/hearing does not undermine hearing acuity in normal listening, the simultaneous use of a CI and a contralateral hearing aid (binaural hearing through a bimodal stimulation) provides an advantage in terms of acquisition of auditory-perceptual skills, allowing children to achieve the basic milestones of auditory perception faster and in greater number than children with only one CI. Thus, "keeping awake" the contralateral auditory pathway, albeit not crucial in determining auditory acuity, guarantees benefits compared with the use of the implant alone. These findings provide initial evidence to establish shared guidelines for better rehabilitation of patients undergoing unilateral cochlear implantation, and add more evidence regarding the correct indications for bilateral cochlear implantation.
Learning efficient correlated equilibria
Borowski, Holly P.
2014-12-15
The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents\\' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.
Luz, André; Santos, Mário; Magalhães, Rui; Oliveira, José Carlos; Pacheco, Ana; Silveira, João; Cabral, Sofia; Torres, Severo; Leite-Moreira, Adelino F; Carvalho, Henrique
2017-02-01
Low levels of Soluble TNF-related apoptosis induced ligand (sTRAIL) seem to be related to worse prognosis after an acute coronary syndrome. PostConditioning (PostCond) may protect the heart from reperfusion injury. We sought to evaluate the impact of PostCond on sTRAIL in relationship to infarct size (area under the curve of Troponin T, AUCTnT) and left ventricle ejection fraction (LVEF) in a series of patients undergoing primary coronary intervention for ST-segment elevation myocardial infarction (STEMI). In a substudy of a randomized trial that tested the effects of PostCond in STEMI-patients, sTRAIL was measured 24 h after reperfusion (PostCond n = 39, Control n = 39). Correlations between sTRAIL and both AUCTnT and LVEF were studied for each study arm. At 24 h, sTRAIL was higher for PostCond vs Controls (46.4 ± 30.6 vs 32.9 ± 23.4, p = 0.031), was negatively related to AUCTnT [B = -0.09, 95 % CI (-0.15 to -0.30), p = 0.005] and was positively related to both in-hospital [B = 0.10, 95 % CI (0.02-0.17), p = 0.018], and follow-up LVEF [B = 0.21, 95 % (0.10-0.32), p = 0.001]. No significant relationship was found for Controls. On multivariate analysis, PostCond was an independent predictor for sTRAIL [B = 12.13 95 % CI (0.40-23.87), p = 0.043]. In conclusion, PostCond positively influenced sTRAIL, which was related to reduced infarct size and better LVEF. Further studies are needed to understand potential mechanisms elicited by PostCond in infarct size reduction.
Gurau, Razvan
2017-01-01
Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....
Energy Technology Data Exchange (ETDEWEB)
Casas, C.; Tejedor, R. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Rodríguez-baracaldo, R. [Department of Mechanical Engineering, Universidad Nacional de Colombia, Bogotá. Colombia (Colombia); Benito, J.A., E-mail: Josep.a.benito@upc.edu [Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain)
2015-03-11
The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity.
The Information Of The Milky Way From 2MASS Whole Sky Star Count: The Bimodal Color Distributions
Chang, Chan-Kao; Ko, Chung-Ming; Peng, Ting-Hung
2012-01-01
The J-Ks color distribution (CD) with a bin size of 0.05 magnitude for the entire Milky Way has been carried out by using the Two Micron All Sky Survey Point Source Catalog (2MASS PSC). The CDs are bimodal, which has a red peak at 0.8 < J-Ks < 0.85 and a blue peak at 0.3 < J-Ks < 0.4. The colors of the red peak are more or less the same for the whole sky, but that of the blue peak depend on Galactic latitude, (J-Ks ~ 0.35 at low Galactic latitudes and 0.35 < J-Ks < 0.4 for other sky areas). The blue peak dominates the bimodal CDs at low Galactic latitudes and becomes comparable with the red peak in other sky regions. In order to explain the bimodal distribution and the global trend shown by the all sky 2MASS CDs, we assemble an empirical HR diagram, which is composed by observational-based near infrared HR diagrams and color magnitude diagrams, and incorporate a Milky Way model. In the empirical HR diagram, the main sequence stars turnoff the thin disk is relatively bluer, (J-Ks)0 = 0.31, wh...
Energy Technology Data Exchange (ETDEWEB)
Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
2015-06-11
In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample.
High speed optical quantum random number generation.
Fürst, Martin; Weier, Henning; Nauerth, Sebastian; Marangon, Davide G; Kurtsiefer, Christian; Weinfurter, Harald
2010-06-07
We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.
Pamic, J.; Belak, M.; Bullen, T.D.; Lanphere, M.A.; McKee, E.H.
2000-01-01
In this paper we present petrological and geochemical information on a bimodal basaltrhyolite suite associated with A-type granites of Late Cretaceous age from the South Pannonian Basin in Slavonija (Croatia). Basalts and alkali-feldspar rhyolites, associated in some places with ignimbrites, occur in volcanic bodies that are interlayered with pyroclastic and fossiliferous Upper Cretaceus sedimentary rocks. The petrology and geochemistry of the basalts and alkali-feldspar rhyolites are constrained by microprobe analyses, major and trace element analyses including REE, and radiogenic and stable isotope data. Basalts that are mostly transformed into metabasalts (mainly spilites), are alkalic to subalkalic and their geochemical signatures, particularly trace element and REE patterns, are similar to recent back-arc basalts. Alkali-feldspar rhyolites have similar geochemical features to the associated cogenetic A-type granites, as shown by their large variation of Na2O and K2O (total 8-9%), very low MgO and CaO, and very high Zr contents ranging between 710 and 149ppm. Geochemical data indicate an amphibole lherzolite source within a metasomatized upper mantle wedge, with the influence of upper mantle diapir with MORB signatures and continental crust contamination. Sr incorporated in the primary basalt melt had an initial 87Sr/86Sr ratio of 0.7039 indicating an upper mantle origin, whereas the 87Sr/86Sr ratio for the alkalifeldspar rhyolites and associated A-type granites is 0.7073 indicating an apparent continental crust origin. However, some other geochemical data favour the idea that they might have mainly originated by fractionation of primary mafic melt coupled with contamination of continental crust. Only one rhyolite sample appears to be the product of melting of continental crust. Geological and geodynamic data indicate that the basalt-rhyolite association was probably related to Alpine subduction processes in the Dinaridic Tethys which can be correlated with
Heinrich, Hartmut; Hoegl, Thomas; Moll, Gunther H; Kratz, Oliver
2014-04-01
Knowledge about the core neural mechanisms of attention-deficit hyperactivity disorder, a pathophysiologically heterogeneous psychiatric disorder starting in childhood, is still limited. Progress may be achieved by combining different methods and levels of investigation. In the present study, we investigated neural mechanisms of motor control in 19 children with attention-deficit hyperactivity disorder (aged 9-14 years) and 21 age-matched typically developing children by relating neural markers of attention and response control (using event-related potentials) and measures of motor excitability/inhibition (evoked by transcranial magnetic stimulation). Thus, an interplay of processes at a subsecond scale could be studied. Using a monetary incentives-based cued Go/No-Go task, parameters that are well-known to be reduced in attention-deficit hyperactivity disorder were analysed: event-related potential components P3 (following cue stimuli; in Go and No-Go trials) and contingent negative variation as well as the transcranial magnetic stimulation-based short-interval intracortical inhibition measured at different latencies in Go and No-Go trials. For patient and control groups, different associations were obtained between performance, event-related potential and transcranial magnetic stimulation measures. In children with attention-deficit hyperactivity disorder, the P3 amplitude in Go trials was not correlated with reaction time measures but with short-interval intracortical inhibition at rest (r=0.56, P=0.01). In No-Go trials, P3 and short-interval intracortical inhibition after inhibiting the response (at 500 ms post-stimulus) were correlated in these children only (r=0.62; P=0.008). A classification rate of 90% was achieved when using short-interval intracortical inhibition (measured shortly before the occurrence of a Go or No-Go stimulus) and the amplitude of the P3 in cue trials as input features in a linear discriminant analysis. Findings indicate deviant neural
DEFF Research Database (Denmark)
Hjorthøj, Carsten Rygaard; Fohlmann, Allan; Larsen, Anne-Mette
2012-01-01
-performance liquid chromatography with tandem mass spectrometry detection. Self-report of cannabis-use last month by TLFB. Pearson's r, sensitivity and specificity calculated as measures of correlation or agreement. Findings Correlations were strong; r = 0.75 for number of days and r = 0.83 for number of standard......Aims To assess correlations and agreement between timeline follow-back (TLFB)-assisted self-report and blood samples for cannabis use. Design Secondary analysis of a randomized trial. Setting Copenhagen, Denmark. Participants One hundred and three patients from the CapOpus trial with cannabis use.......96. Conclusions Timeline follow-back (TLFB)-assisted self-report of cannabis use correlates highly with plasma-delta-9-tetrahydrocannabinol in patients with comorbid cannabis use disorder and psychosis. Sensitivity and specificity of timeline follow-back appear to be optimized with 19 days as the cut-off point...
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2016-01-01
A variety of countermeasures have been developed to address the debilitating physiological effects of zero-gravity (0-g) experienced by cosmonauts and astronauts during their approximately 0.5 to 1.2 year long stays in low Earth orbit (LEO). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity (AG) spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced bimodal nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of approximately 900 s-twice that of today's best chemical rockets. The AG/MTV concepts using conventional Nuclear Thermal Propulsion (NTP) carry twin cylindrical International Space Station (ISS)- type habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own closed secondary helium(He)-xenon (Xe) gas loop and Brayton Rotating Unit (BRU) that can generate 10s of kilowatts (kWe) of spacecraft electrical power during the mission coast phase
Possibility of star (pyramid) dune development in the area of bimodal wind regime
Biejat, K.
2012-04-01
Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star
Random functions and turbulence
Panchev, S
1971-01-01
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random
THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z {approx}< 1
Energy Technology Data Exchange (ETDEWEB)
Lehner, N.; Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Tumlinson, J.; Thom, C.; Fox, A. J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Prochaska, J. X.; Werk, J. K. [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); O' Meara, J. M. [Department of Physics, Saint Michael' s College, Vermont, One Winooski Park, Colchester, VT 05439 (United States); Ribaudo, J. [Department of Physics, Utica College, 1600 Burrstone Road, Utica, New York 13502 (United States)
2013-06-20
We assess the metal content of the cool ({approx}10{sup 4} K) circumgalactic medium (CGM) about galaxies at z {approx}< 1 using an H I-selected sample of 28 Lyman limit systems (LLS; defined here as absorbers with 16.2 {approx}< log N{sub H{sub I}} {approx}< 18.5) observed in absorption against background QSOs by the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The N{sub H{sub I}} selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N{sub H{sub I}} in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H] {approx_equal} -1.6 and -0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z {approx}< 1 galaxies.
Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M
2016-11-15
Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis.
Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.
2014-01-01
A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.
Lefevre, Sjannie; Huong, Do Thi Thanh; Wang, Tobias; Phuong, Nguyen Thanh; Bayley, Mark
2011-02-01
Air-breathing fish are common in the tropics, and their importance in Asian aquaculture is increasing, but the respiratory physiology of some of the key species such as the striped catfish, Pangasianodon hypophthalmus Sauvage 1878 is unstudied. P. hypophthalmus is an interesting species as it appears to possess both well-developed gills and a modified swim bladder that functions as an air-breathing organ indicating a high capacity for both aquatic and aerial respiration. Using newly developed bimodal intermittent-closed respirometry, the partitioning of oxygen consumption in normoxia and hypoxia was investigated in P. hypophthalmus. In addition the capacity for aquatic breathing was studied through measurements of oxygen consumption when access to air was denied, both in normoxia and hypoxia, and the critical oxygen tension, Pcrit, was also determined during these experiments. Finally, gill ventilation and air-breathing frequency were measured in a separate experiment with pressure measurements from the buccal cavity. The data showed that P. hypophthalmus is able to maintain standard metabolic rate (SMR) through aquatic breathing alone in normoxia, but that air-breathing is important during hypoxia. Gill ventilation was reduced during air-breathing, which occurred at oxygen levels below 8 kPa, coinciding with the measured Pcrit of 7.7 kPa. The findings in this study indicate that the introduction of aeration into the aquaculture of P. hypophthalmus could potentially reduce the need to air-breathe. The possibility of reducing air-breathing frequency may be energetically beneficial for the fish, leaving more of the aerobic scope for growth and other activities, due to the proposed energetic costs of surfacing behavior.
Bimodal effect of oxidative stress in internal anal sphincter smooth muscle.
Singh, Jagmohan; Kumar, Sumit; Rattan, Satish
2015-09-01
Changes in oxidative stress may affect basal tone and relaxation of the internal anal sphincter (IAS) smooth muscle in aging. We examined this issue by investigating the effects of the oxidative stress inducer 6-anilino-5,8-quinolinedione (LY-83583) in basal as well as U-46619-stimulated tone, and nonadrenergic, noncholinergic (NANC) relaxation in rat IAS. LY-83583, which works via generation of reactive oxygen species in living cells, produced a bimodal effect in IAS tone: lower concentrations (0.1 nM to 10 μM) produced a concentration-dependent increase, while higher concentrations (50-100 μM) produced a decrease in IAS tone. An increase in IAS tone by lower concentrations was associated with an increase in RhoA/Rho kinase (ROCK) activity. This was evident by the increase in RhoA/ROCK in the particulate fractions, in ROCK activity, and in the levels of phosphorylated (p) (Thr696)-myosin phosphatase target subunit 1 and p(Thr18/Ser19)-20-kDa myosin light chain. Conversely, higher concentrations of LY-83583 produced inhibitory effects on RhoA/ROCK. Interestingly, both the excitatory and inhibitory effects of LY-83583 in the IAS were reversed by superoxide dismutase. The excitatory effects of LY-83583 were found to resemble those with neuronal nitric oxide synthase (nNOS) inhibition by l-NNA, since it produced a significant increase in the IAS tone and attenuated NANC relaxation. These effects of LY-83583 and l-NNA were reversible by l-arginine. This suggests the role of nNOS inhibition and RhoA/ROCK activation in the increase in IAS tone by LY-83583. These data have important implications in the pathophysiology and therapeutic targeting of rectoanal disorders, especially associated with IAS dysfunction.
Split-and-merge Procedure for Image Segmentation using Bimodality Detection Approach
Directory of Open Access Journals (Sweden)
Debasis Chaudhuri
2010-04-01
Full Text Available Image segmentation, the division of a multi-dimensional image into groups of associated pixels, is an essential step for many advanced imaging applications. Image segmentation can be performed by recursively splitting the whole image or by merging together a large number of minute regions until a specified condition is satisfied. The split-and-merge procedure of image segmentation takes an intermediate level in an image description as the starting cutest, and thereby achieves a compromise between merging small primitive regions and recursively splitting the whole images to reach the desired final cutest. The proposed segmentation approach is a split-andmerge technique. The conventional split-and-merge algorithm is lacking in adaptability to the image semantics because of its stiff quadtree-based structure. In this paper, an automatic thresholding technique based on bimodality detection approach with non-homogeneity criterion is employed in the splitting phase of the split-and-merge segmentation scheme to directly reflect the image semantics to the image segmentation results. Since the proposed splitting technique depends upon homogeneity factor, some of the split regions may or may not split properly. There should be rechecking through merging technique between the two adjacent regions to overcome the drawback of the splitting technique. A sequential-arrange-based or a minimal spanning-tree based approach, that depends on data dimensionality of the weighted centroids of all split regions for finding the pair wise adjacent regions, is introduced. Finally, to overcome the problems caused by the splitting technique, a novel merging technique based on the density ratio of the adjacent pair regions is proposed. The algorithm has been tested on several synthetic as well as real life data and the results show the efficiency of the segmentation technique.Defence Science Journal, 2010, 60(3, pp.290-301, DOI:http://dx.doi.org/10.14429/dsj.60.356
A random matrix approach to credit risk.
Münnix, Michael C; Schäfer, Rudi; Guhr, Thomas
2014-01-01
We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.
A random matrix approach to credit risk.
Directory of Open Access Journals (Sweden)
Michael C Münnix
Full Text Available We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.
Totality of Subquantum Nonlocal Correlations
Khrennikov, Andrei
2011-01-01
In a series of previous papers we developed a purely field model of microphenomena, so called prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of QM including correlations for entangled systems, but it also gives a possibility to go beyond quantum mechanics (QM), i.e., to make predictions of phenomena which could be observed at the subquantum level. In this paper we discuss one of such predictions - existence of nonlocal correlations between prequantum random fields corresponding to {\\it all} quantum systems. (And by PCSFT quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are "entangled", but in the sense of classical signal theory. On one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random back...
Directory of Open Access Journals (Sweden)
Won Seok Jang
2014-04-01
Full Text Available The Korea Railroad Research Institute (KRRI has developed a bimodal tram and advanced bus rapid transit (BRT system which is an optimized public transit system created by mixing the railway’s punctual operation and the bus’ easy and convenient access. The bimodal tram system provides mass-transportation service with an eco-friendly and human-centered approach. Natural disasters have been increasing worldwide in recent years, including floods, snow, and typhoons disasters. Flooding is the most frequent natural disaster in many countries and is increasingly a concern with climate change; it seriously affects people’s lives and productivity, causing considerable economic loss and significant damage. Enhanced conventional disaster management systems are needed to support comprehensive actions to secure safety and convenience. The objective of this study is to develop a prototype version of a Web GIS-based bimodal tram disaster management system (BTDMS using the Storm Water Management Model (SWMM 5.0 to enhance on-time operation and safety of the bimodal tram system. The BTDMS was tested at the bimodal tram test railroad by simulating probable maximum flood (PMF and snow melting for forecasting flooding and snow covered roads. This result could provide the basis for plans to protect against flooding disasters and snow covered roads in operating the bimodal tram system. The BTDMS will be used to assess and predict weather impacts on roadway conditions and operations and thus has the potential to influence economic growth. The methodology presented in this paper makes it possible to manage impacts of flooding and snowfall on urban transportation and enhance operation of the bimodal tram system. Such a methodology based on modeling could be created for most metropolitan areas in Korea and in many other countries.
Applying Free Random Variables to Random Matrix Analysis of Financial Data
Burda, Z; Jurkiewicz, J; Nowak, M A; Papp, G; Zahed, I
2006-01-01
We apply the concept of free random variables to correlated Wishart random matrix models. We give a comprehensive rederivation of various spectral densities for a number of financial covariance matrices involving stocks returns without and with exponentially weighted moving averages. We show through simple models how to identify the pertinent underlying correlations. We extend our results to Levy-Wishart random matrix models whereby the risk factors are heavy tailed.
Beyond the random phase approximation
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2013-01-01
We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...
Random fixed points and random differential inclusions
Directory of Open Access Journals (Sweden)
Nikolaos S. Papageorgiou
1988-01-01
Full Text Available In this paper, first, we study random best approximations to random sets, using fixed point techniques, obtaining this way stochastic analogues of earlier deterministic results by Browder-Petryshyn, KyFan and Reich. Then we prove two fixed point theorems for random multifunctions with stochastic domain that satisfy certain tangential conditions. Finally we consider a random differential inclusion with upper semicontinuous orientor field and establish the existence of random solutions.
Wang, Ruili; Zhang, Maolin; Liu, Fengwei; Bao, Shuang; Wu, Tiantian; Jiang, Xiaoze; Zhang, Qinghong; Zhu, Meifang
2015-05-01
The aim of this study was to investigate the influence of bimodal silica nanostructures comprising of SiO2 nanoparticles (SiO2 NPs, ~70 nm) and SiO2 nanoclusters (SiO2 NCs, 0.07-2.70 μm) on physical-mechanical properties of resin-based composites (RBCs). SiO2 NPs and SiO2 NCs were prepared with the Stöber method and the coupling reaction, respectively, then silanized and employed as fillers to construct RBCs using a mixture of bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri(ethylene glycol) dimethacrylate (TEGDMA) as the organic matrix. Results showed that the properties of RBCs were influenced by the filler ratios of bimodal silica nanostructures, and the appropriate amount of SiO2 NPs could effectively increase the activating light efficiency and filler packing density of RBCs. Among all experimental RBCs, RBC 50-20 (SiO2 NPs:SiO2 NCs=50:20, wt/wt) presented the highest degree of conversion (71.6±1.1%), the lowest polymerization shrinkage (2.6±0.1%), and the enhanced flexural strength (104.8±4.4 MPa), flexural modulus (6.2±0.3 GPa), and compressive strength (205.8±14.3 MPa), which were improved by 44%, 19%, 28%, 48%, and 42% in comparison with those of RBC 0-60 (SiO2 NPs:SiO2 NCs=0:60, wt/wt), respectively. Besides, in vitro cytotoxicity evaluation of RBC 50-20 indicated its acceptable cytotoxicity. Although the best performance was achieved by commercial Z350 XT, the introduction of bimodal silica nanostructures might provide the enhanced physical-mechanical properties of RBCs, compared with those of RBC 0-60 reinforced with unimodal SiO2 NCs.
Calantoni, J.; Landry, B. J.
2010-12-01
The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the
Gas flux measurements of episodic bimodal eruptive activity at Karymsky volcano (Kamchatka, Russia)
Arellano, S.; Galle, B.; Melnikov, D.
2012-04-01
Volcanoes of intermediate magmatic composition commonly exhibit episodes of intermittent gas and ash emission of variable duration. Due to the multiple conditions present at each system, different mechanisms have been proposed to account for the observed activity, and without key measurements at hand, a definite understanding of the situation might not be singled out. Karymsky, the most active volcano of Central Kamchatka, has presented a remarkably stable pattern of bimodal eruption since a few weeks after its violent reactivation in 1996. Periods of quasi-periodic explosive emissions with typical recurrence intervals of 3-10 min are alternated with episodes of semi-continuous discharge which intensity has a typical modulation at a frequency of 1 Hz. Geophysical studies at Karymsky have identified the main visual, seismic and acoustic features of these two eruption modalities. From these observations, the time scales of the processes have been defined and relevant models have been formulated, according to which the two modes are controlled by the rheological properties of an intruding gas-saturated magma batch and a shallow gas-depleted magma plug. Explosions are explained as the consequence of the formation of temporary sealing, overpressure buildup and vent clearance. Clearly, direct measurements of the gas emission rate are the key parameter to test such models. In this work, we report on the results of a field campaign for SO2 gas measurements carried out at Karymsky during 10-14 September 2011. We deployed 2 NOVAC-type, scanning DOAS systems as well as 1 rapid wide-Field of View mini-DOAS plume tracker. With this setup, we derived time-resolved SO2 flux, plume height, direction and speed, and detected pulses of increasing emission with high temporal resolution. We observed phases of explosive and quiescent degassing with variable amounts of ash emission and detected intensity changes of the associated acoustic signals. The repose time intervals between these
The Quantum Information of Cosmological Correlations
Lim, Eugene A
2014-01-01
It has been shown that the primordial perturbations sourced by inflation are driven to classicality by unitary evolution alone. However, their coupling with the environment such as photons and subsequent decoherence renders the cosmological correlations quantum, losing primordial information in the process. We argue that the quantumness of the resulting cosmological correlations is given by quantum discord, which captures non-classical behavior beyond quantum entanglement. By considering the environment as a quantum channel in which primordial information contained in the perturbations is transmitted to us, we can then ask how much of this information is inaccessible. We show that this amount of information is given by the discord of the joint primordial perturbations-environment system. To illustrate these points, we model the joint system as a mixed bi-modal Gaussian state, and show that quantum discord is dependent on the basis which decoherence occurs.
Quantifying randomness in real networks.
Orsini, Chiara; Dankulov, Marija M; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri
2015-10-20
Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.
Wu, Zhizheng
This paper considers a regulation problem for discrete-time switched bimodal linear systems where it is desired to achieve regulation against partially known disturbance or reference signals. First, a set of observer-based Q - parameterized stabilizing controllers for the switched system is constructed. Then a sufficient regulation condition for the switched system is obtained, and a regulator synthesis method is derived based on solving a set of properly formulated linear matrix inequalities. Finally, the proposed regulator design method is evaluated on an experimental setup motivated by the flying height regulation problem in data storage devices.
Energy Technology Data Exchange (ETDEWEB)
Santos, Sergio [Departament de Disseny i Programació de Sistemes Electrònics, UPC-Universitat Politècnica de Catalunya Av. Bases, 61, 08242 Manresa (Barcelona) (Spain)
2013-12-02
Here, we introduce bimodal atomic force microscopy operated with sub-nm and ultra-small, i.e., sub-angstrom, first and second mode amplitudes in ambient conditions. We show how the tip can be made to oscillate in the proximity of the surface and in perpetual contact with the adsorbed water layers while the second mode amplitude and phase provide enhanced contrast and sensitivity. Nonlinear and nonmonotonic behavior of the experimental observables is discussed theoretically with a view to high resolution, enhanced contrast, and minimally invasive mapping. Fractions of meV of energy dissipation are shown to provide contrast above the noise level.
Directory of Open Access Journals (Sweden)
Ioulia eKovelman
2014-08-01
Full Text Available Early bilingual exposure, especially exposure to two languages in different modalities such as speech and sign, can profoundly affect an individual’s language, culture and cognition. Here we explore the hypothesis that bimodal dual language exposure can also affect the brain’s organization for language. These changes occur across brain regions universally important for language and parietal regions especially critical for sign language (Newman et al., Nature Neuroscience, 2002. We investigated three groups of participants (N=29 that completed a word repetition task in American Sign Language (ASL during fNIRS brain imaging. Those groups were (i hearing ASL-English bimodal bilinguals (n=5, (ii deaf American Sign Language (ASL signers (n=7, and (iii English monolinguals naïve to sign language (n=17. The key finding of the present study is that bimodal bilinguals showed reduced activation in left parietal regions relative to deaf ASL signers when asked to use only ASL. In contrast, this group of bimodal signers showed greater activation in left temporo-parietal regions relative to English monolinguals when asked to switch between their two languages (Kovelman, Petitto et al., 2009. Converging evidence now suggest that bimodal bilingual experience changes the brain bases of language, including the left temporo-parietal regions known to be critical for sign language processing (Emmorey et al., 2007. The results provide insight into the resilience and constraints of neural plasticity for language and bilingualism.
Snake representation of a superprocess in random environment
Mytnik, Leonid; Zeitouni, Ofer
2011-01-01
We consider (discrete time) branching particles in a random environment which is i.i.d. in time and possibly spatially correlated. We prove a representation of the limit process by means of a Brownian snake in random environment.
Institute of Scientific and Technical Information of China (English)
XING Wen; HUANG Fei
2013-01-01
influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index.The annual cycle of cyclogenesis frequency over the BoB shows an asymmetric bimodal pattern with the maximum genesis number appearing in late October and the second largest in early May.The two peaks correspond to the withdrawal and onset of the BoB summer monsoon,respectively.The semimonthly GP index calculated without TC days over the BoB is consistent with TC genesis frequency,indicating that the index captures the monsoon-induced changes in the environment that are responsible for the seasonal variation of TC genesis frequency.Of the four environmental variables (i.e.,low-level vorticity,mid-level relative humidity,potential intensity,and vertical wind shear) that enter into the GP index,the potential intensity makes the largest contribution to the bimodal distribution,followed by vertical wind shear due to small wind speed during the summer monsoon onset and withdrawal.The difference in TC genesis frequency between autumn and late spring is mainly owing to the relative humidity difference because a divergence (convergence) of horizontal moisture flux associated with cold dry northerlies (warm wet westerlies) dominates the BoB in late spring (autumn).
Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning
2016-08-26
The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing.
Directory of Open Access Journals (Sweden)
Uwe Seibold
2014-01-01
Full Text Available Molecular imaging—and especially positron emission tomography (PET—has gained increasing importance for diagnosis of various diseases and thus experiences an increasing dissemination. Therefore, there is also a growing demand for highly affine PET tracers specifically accumulating and visualizing target structures in the human body. Beyond the development of agents suitable for PET alone, recent tendencies aim at the synthesis of bimodal imaging probes applicable in PET as well as optical imaging (OI, as this combination of modalities can provide clinical advantages. PET, due to the high tissue penetration of the γ-radiation emitted by PET nuclides, allows a quantitative imaging able to identify and visualize tumors and metastases in the whole body. OI on the contrary visualizes photons exhibiting only a limited tissue penetration but enables the identification of tumor margins and infected lymph nodes during surgery without bearing a radiation burden for the surgeon. Thus, there is an emerging interest in bimodal agents for PET and OI in order to exploit the potential of both imaging techniques for the imaging and treatment of tumor diseases. This short review summarizes the available hybrid probes developed for dual PET and OI and discusses future directions for hybrid agent development.
Valente, Daniel L; Braasch, Jonas; Myrbeck, Shane A
2012-01-01
Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene.
Non-Hermitian Euclidean random matrix theory.
Goetschy, A; Skipetrov, S E
2011-07-01
We develop a theory for the eigenvalue density of arbitrary non-Hermitian Euclidean matrices. Closed equations for the resolvent and the eigenvector correlator are derived. The theory is applied to the random Green's matrix relevant to wave propagation in an ensemble of pointlike scattering centers. This opens a new perspective in the study of wave diffusion, Anderson localization, and random lasing.
Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.
2015-06-01
Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.
Directory of Open Access Journals (Sweden)
M. Gačić
2012-07-01
Full Text Available Previous studies have demonstrated that the salinity in the Levantine depends on the intensity of the Atlantic Water inflow. Moreover, its spreading eastward or northward in the Ionian is determined by the Ionian circulation pattern, i.e. by the Adriatic–Ionian Bimodal Oscillating System mechanism. The aim of this paper is to relate salinity variations in the core of the Levantine Intermediate Water flowing through the Sicily Channel to the salt content in the Levantine and its possible impact on the Western Mediterranean Transition (i.e. the sudden salinity increase in the bottom layer of the Algero-Provençal sub-basin occurring since 2004. From the historical dataset MEDAR/MEDATLAS in the Levantine and Northern Ionian, we present evidence of decadal occurrences of extreme salinities associated with the varying flow pattern of Atlantic Water over the last 60 yr. Furthermore, we show that the salinity variations in the two sub-basins are out of phase. High-salinity events in the Levantine are a pre-conditioning for the potential occurrence of the Eastern Mediterranean Transient (EMT. However, there is no firm evidence of occurrences of EMT-like phenomenon prior to the one in the early 1990s. Cross-correlation between the salinity time series in the Levantine and in the Sicily Channel suggests that the travel time of the salinity signal is between 16 and 18 yr. From the timing of the Western Mediterranean Transition and the salinity maximum in the Levantine Intermediate Water core in the Sicily Channel we also conclude that the time interval needed for the signal propagating from the Levantine to reach the bottom of the Algero-Provençal sub-basin is about 27 yr.
Abellán, G.; Carrillo, A. I.; Linares, N.; Serrano, E.; García-Martínez, J.
2009-08-01
Bimodal macro-mesoporous silica networks have been prepared in a simple one-pot synthesis using an inexpensive tetramine surfactant and tetraethoxysilane as a silica precursor. These novel materials show high pore volumes and templated mesopores (average pore size 3.0 nm) embedded in 20 nm thick walls forming interparticle large meso/macropores. The judicious control of the pH during the silica formation allows for the precise control of the interparticle condensation, likely due to the change in the interaction between the tetramine surfactant and the silica precursors. Finally, a highly porous carbon replica with bimodal porosity was prepared by using the bimodal silica as a hard sacrificial template. The microstructure of the silica template was accurately transferred to the carbon material obtaining high surface areas (up to 1300 m 2 g -1) and total pore volumes ≥2 cm 3 g -1.
Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.
2016-12-01
We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.
Bimodal distribution of risk for childhood obesity in urban Baja California, Mexico.
Wojcicki, Janet M; Jimenez-Cruz, Arturo; Bacardi-Gascon, Montserrat; Schwartz, Norah; Heyman, Melvin B
2012-08-01
In Mexico, higher socioeconomic status (SES) has been found to be associated with increased risk for obesity in children. Within developed urban areas, however, there may be increased risk among lower SES children. Students in grades 4-6 from five public schools in Tijuana and Tecate, Mexico, were interviewed and weight, height and waist circumference (WC) measurements were taken. Interviews consisted of questions on food frequency, food insecurity, acculturation, physical activity and lifestyle practices. Multivariate logistic models were used to assess risk factors for obesity (having a body mass index [BMI] ≥95th percentile) and abdominal obesity (a WC >90th percentile) using Stata 11.0. Five hundred and ninety students were enrolled; 43.7% were overweight or obese, and 24.3% were obese and 20.2% had abdominal obesity. Independent risk factors for obesity included watching TV in English (odds ratio [OR] 1.60, 95% confidence interval [CI] 1.06-2.41) and perceived child food insecurity (OR 1.57, 95% CI 1.05-2.36). Decreased risk for obesity was associated with female sex (OR 0.64, 95% CI 0.43-0.96), as was regular multivitamin use (OR 0.63, 95% CI 0.42-0.94). Risk obesity was also decreased with increased taco consumption (≥1×/week; OR 0.64, 95% CI 0.43-0.96). Independent risk factors for abdominal obesity included playing video games ≥1×/week (OR 1.18, 95% CI 1.11-2.96) and older age group (10-11 years, OR 2.47, 95% CI 1.29-4.73 and ≥12 years, OR 2.21, 95% CI 1.09-4.49). Increased consumption of tacos was also associated with decreased risk for abdominal obesity (≥1×/week; OR 0.56, 95% CI 0.40-1.00). We found a bimodal distribution for risk of obesity and abdominal obesity in school aged children on the Mexican border with the United States. Increased risk for obesity and abdominal obesity were associated with factors indicative of lower and higher SES including watching TV in English, increased video game playing and perceived food insecurity
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2014-01-01
A variety of countermeasures have been developed to address the debilitating physiological effects of "zero-gravity" (0-g) experienced by cosmonauts and astronauts during their approximately 0.5-1.2 year long stays in LEO (Low Earth Orbit). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity (AG) Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced "bimodal" nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (I (sub sp)) capability of approximately 900 s - twice that of today's best chemical rockets. The AG/MTV concepts using conventional NTP carry twin cylindrical "ISS-type" habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own "closed" secondary helium-xenon gas loop and Brayton rotating unit that can generate tens of kilowatts (kW (sub e)) of spacecraft electrical power during the mission coast phase eliminating the need for large PVAs. A single inflatable
Truncations of random unitary matrices
Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Juergen
1999-01-01
We analyze properties of non-hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N>M, distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ratio M/N. For the truncated CUE we derive analytically the joint density of eigenvalues from which easily all correlation functions are obtained. For N-M fixed and N--> infinity the universal resonance-width distribution with N-M open channels is recovered.
Random matrix theory within superstatistics.
Abul-Magd, A Y
2005-12-01
We propose a generalization of the random matrix theory following the basic prescription of the recently suggested concept of superstatistics. Spectral characteristics of systems with mixed regular-chaotic dynamics are expressed as weighted averages of the corresponding quantities in the standard theory assuming that the mean level spacing itself is a stochastic variable. We illustrate the method by calculating the level density, the nearest-neighbor-spacing distributions, and the two-level correlation functions for systems in transition from order to chaos. The calculated spacing distribution fits the resonance statistics of random binary networks obtained in a recent numerical experiment.
Operational conditions for random-number generation
Compagner, A.
1995-11-01
Ensemble theory is used to describe arbitrary sequences of integers, whether formed by the decimals of π or produced by a roulette or by any other means. Correlation coefficients of any range and order are defined as Fourier transforms of the ensemble weights. Competing definitions of random sequences are considered. Special attention is given to sequences of random numbers needed for Monte Carlo calculations. Different recipes for those sequences lead to correlations that vary in range and order, but the total amount of correlation is the same for all sequences of a given length (without internal periodicities). For maximum-length sequences produced by linear algorithms, most correlation coefficients are zero, but the remaining ones are of absolute value 1. In well-tempered sequences, these complete correlations are of high order or of very long range. General conditions to be obeyed by random-number generators are discussed and a qualitative method for comparing different recipes is given.
Nonclassicality of local bipartite correlations
Jebaratnam, C.; Aravinda, S.; Srikanth, R.
2017-03-01
Simulating quantum nonlocality and steering requires augmenting preshared randomness with nonvanishing communication cost. This prompts the question of how one may provide such an operational characterization for the quantumness of correlations due to even unentangled states. Here we show that for a certain class of states, such quantumness can be pointed out by superlocality, the requirement for a larger dimension of the preshared randomness to simulate the correlations than that of the quantum state that generates them. This provides an approach to define the nonclassicality of local multipartite correlations in convex operational theories.
Malarz, K; Szekfu, B; Kulakowski, K
2006-01-01
We consider the average probability X of being informed on a gossip in a given social network. The network is modeled within the random graph theory of Erdos and Renyi. In this theory, a network is characterized by two parameters: the size N and the link probability p. Our experimental data suggest three levels of social inclusion of friendship. The critical value p_c, for which half of agents are informed, scales with the system size as N^{-\\gamma} with \\gamma\\approx 0.68. Computer simulations show that the probability X varies with p as a sigmoidal curve. Influence of the correlations between neighbors is also evaluated: with increasing clustering coefficient C, X decreases.
The Dynamics of Nonequilibrium Transitions Induced By the Cross-Correlated Noises: Numerical Results
Directory of Open Access Journals (Sweden)
A.N. Vitrenko
2010-01-01
Full Text Available The dynamic system described by the Langevin equation with two cross-correlated Gaussian white noises is considered. The non-equilibrium probability distribution function of the system is calculated by the numerical methods. The time of change of the initially unimodal distribution to the bimodal one is determined for different values of the control parameter. A critical slowing down in the transition dynamics is demonstrated.
Physical tests for random numbers in simulations
Energy Technology Data Exchange (ETDEWEB)
Vattulainen, I.; Ala-Nissila, T.; Kankaala, K. (Research Institute for Theoretical Physics, P.O. Box 9 (Siltavuorenpenger 20 C), FIN-00014 University of Helsinki (Finland) Department of Electrical Engineering, Tampere University of Technology, P.O. Box 692, FIN-3310, Tampere (Finland) Center for Scientific Computing, P.O. Box 405, FIN-02101 Espoo (Finland))
1994-11-07
We propose three physical tests to measure correlations in random numbers used in Monte Carlo simulations. The first test uses autocorrelation times of certain physical quantities when the Ising model is simulated with the Wolff algorithm. The second test is based on random walks, and the third on blocks of [ital n] successive numbers. We apply the tests to show that recent errors in high precision Ising simulations using generalized feedback shift register algorithms are due to short range correlations in random number sequences.
Kutílek, M; Jendele, L; Krejca, M
2009-02-16
The accelerated flow in soil pores is responsible for a rapid transport of pollutants from the soil surface to deeper layers up to groundwater. The term preferential flow is used for this type of transport. Our study was aimed at the preferential flow realized in the structural porous domain in bi-modal soils. We compared equations describing the soil water retention function h(theta) and unsaturated hydraulic conductivity K(h), eventually K(theta) modified for bi-modal soils, where theta is the soil water content and h is the pressure head. The analytical description of a curve passing experimental data sets of the soil hydraulic function is typical for the empirical equation characterized by fitting parameters only. If the measured data are described by the equation derived by the physical model without using fitting parameters, we speak about a physically based model. There exist several transitional subtypes between empirical and physically based models. They are denoted as semi-empirical, or semi-physical. We tested 3 models of soil water retention function and 3 models of unsaturated conductivity using experimental data sets of sand, silt, silt loam and loam. All used soils are typical by their bi-modality of the soil porous system. The model efficiency was estimated by RMSE (Root mean square error) and by RSE (Relative square error). The semi-empirical equation of the soil water retention function had the lowest values of RMSE and RSE and was qualified as "optimal" for the formal description of the shape of the water retention function. With this equation, the fit of the modelled data to experiments was the closest one. The fitting parameters smoothed the difference between the model and the physical reality of the soil porous media. The physical equation based upon the model of the pore size distribution did not allow exact fitting of the modelled data to the experimental data due to the rigidity and simplicity of the physical model when compared to the
How random are complex networks
Orsini, Chiara; Jamakovic, Almerima; Mahadevan, Priya; Colomer-de-Simón, Pol; Vahdat, Amin; Bassler, Kevin E; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri
2015-01-01
Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the $dk$-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks---the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain---and find that many important local and global structural properties of these networks are closely reproduced by $dk$-random graphs whose degree distributions, degree correlations, and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness.
Allometric Exponent and Randomness
Yi, Su Do; Minnhagen, Petter; 10.1088/1367-2630/15/4/043001
2013-01-01
An allometric height-mass exponent $\\gamma$ gives an approximative power-law relation $ \\propto H^\\gamma$ between the average mass $$ and the height $H$, for a sample of individuals. The individuals in the present study are humans but could be any biological organism. The sampling can be for a specific age of the individuals or for an age-interval. The body-mass index (BMI) is often used for practical purposes when characterizing humans and it is based on the allometric exponent $\\gamma=2$. It is here shown that the actual value of $\\gamma$ is to large extent determined by the degree of correlation between mass and height within the sample studied: no correlation between mass and height means $\\gamma=0$, whereas if there was a precise relation between mass and height such that all individuals had the same shape and density then $\\gamma=3$. The connection is demonstrated by showing that the value of $\\gamma$ can be obtained directly from three numbers characterizing the spreads of the relevant random Gaussian ...
Random broadcast on random geometric graphs
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Elsasser, Robert [UNIV OF PADERBORN; Friedrich, Tobias [ICSI/BERKELEY; Sauerwald, Tomas [ICSI/BERKELEY
2009-01-01
In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.
Directory of Open Access Journals (Sweden)
Matthias Ceulemans
2015-11-01
Full Text Available The synthesis and characterization of a novel gadolinium(III DOTA complex functionalized with a boron-dipyrromethene derivative (BODIPY is described. The assembly of the complex relies on azide diazotransfer chemistry in a copper tube flow reactor. The azide thus formed is coupled directly with an alkyne via click chemistry, resulting into a paramagnetic and luminescent gadolinium(III complex. Luminescent data and relaxometric properties of the complex have been evaluated, suggesting the potential applicability of the complexes as a bimodal contrast agent for magnetic resonance and optical imaging. The complex displays a bright emission at 523 nm with an absorption maximum of 507 nm and high quantum yields of up to 83% in water. The proton relaxivity of the complex measured at 310 K and at frequencies of 20 and 60 MHz had the values of 3.9 and 3.6 s−1·mM−1, respectively.
Insight into the structural mechanism of the bi-modal action of an NCAM mimetic, the C3 peptide
DEFF Research Database (Denmark)
Kiselyov, Vladislav V; Li, Shizhong; Berezin, Vladimir;
2009-01-01
C3, a synthetic peptide binding to the Ig1 module of the neural cell adhesion molecule (NCAM) has previously been identified and shown to inhibit NCAM homophilic binding and NCAM-mediated activation of the fibroblast growth factor (FGF) receptor (FGFR). However, C3 can also stimulate signalling...... on its own in a way similar to NCAM. Here we show that in the absence of NCAM, C3 can bind and activate FGFR, whereas in the presence of NCAM, C3 inhibits the NCAM-stimulated FGFR activation without activating FGFR on its own. Several competing models of FGFR activation by NCAM have been previously...... proposed. In one of them, the FGFR Ig2-Ig3 modules are involved in binding to NCAM, whereas in another - the FGFR "acid box" region mediates the interaction. The bi-modal effect of C3 can be explained in the context of the former model and is not consistent with the latter, thus providing evidence...
Hasegawa, Kiyoshi; Funatsu, Kimito
2014-12-01
Chemogenomics is a new strategy in drug discovery for interrogating all molecules capable of interacting with all biological targets. Because of the almost infinite number of drug-like organic molecules, bench-based experimental chemogenomics methods are not generally feasible. Several in silico chemogenomics models have therefore been developed for high-throughput screening of large numbers of drug candidate compounds and target proteins. In previous studies, we described two novel bi-modal PLS approaches. These methods provide a significant advantage in that they enable direct connections to be made between biological activities and ligand and protein descriptors. In this special issue, we review these two PLS-based approaches using two different chemogenomics datasets for illustration. We then compare the predictive and interpretive performance of the two methods using the same congeneric data set.
Carron, Sophie; Bloemen, Maarten; Vander Elst, Luce; Laurent, Sophie; Verbiest, Thierry; Parac-Vogt, Tatjana N
2016-03-18
A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mM(-1) Fes(-1) at 60 MHz, which is nearly double the r2 relaxivity of Sinerem(®).
Institute of Scientific and Technical Information of China (English)
Zhi-jie Zhang; Zhong-yuan Lu; Ze-sheng Li
2009-01-01
The phase behavior of bimodal molecular weight high density polyethylene (BHDPE) in solid state was investigated. Hildebrand solubility parameters (δ) were calculated for the models of blends of higher molecular weight branch polyethylene (HBPE) with different branch contents and lower molecular weight linear polyethylene (LLPE), by using molecular dynamics (MD) simulations. These δ values were then used to calculate the corresponding Flory-Huggins interaction parameter (χ) between HBPE and LLPE models. In order to better understand the compatibility between LLPE and various HBPE, Mesodyn simulations were used to show the density profiles of the blends of LLPE with various HBPE at different compositions. The results indicated that the phase behavior of BHDPE was influenced by both the global branch content of the system and the local branch content, I.e., the branch content of HBPE.
Aydin, Faruk; Schmitt, Axel K.; Siebel, Wolfgang; Sönmez, Mustafa; Ersoy, Yalçın; Lermi, Abdurrahman; Dirik, Kadir; Duncan, Robert
2014-11-01
The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr-Nd-Pb and δ18O isotopes) and geochronological (U-Pb zircon and Ar-Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Niğde Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038-0.7053) and felsic (0.7040-0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization
Kawai, Shigeki; Pina, Carlos M; Bubendorf, Alexander; Fessler, Gregor; Glatzel, Thilo; Gnecco, Enrico; Meyer, Ernst
2013-02-08
We have investigated the morphology and structure of dolomite MgCa(CO(3))(2)(104) surfaces by bimodal dynamic force microscopy with flexural and torsional resonance modes in ultra-high vacuum at room temperature. We found that the surface slowly decomposes by degassing CO(2) in a vacuum and becomes covered by amorphous clusters, presumably MgO and CaO. By choosing an optimal sample preparation procedure (i.e. cleaving in a vacuum and mild annealing for stabilizing clusters for a short time), atomically clean surfaces were obtained. The complex tip-sample interaction, arising from carbonate groups and Mg and Ca atoms of the surface, induces a large variety of atomic-scale imaging features.
Wu, Zhanghan; Elgart, Vlad; Qian, Hong; Xing, Jianhua
2009-09-10
A protein undergoes conformational dynamics with multiple time scales, which results in fluctuating enzyme activities. Recent studies in single-molecule enzymology have observe this "age-old" dynamic disorder phenomenon directly. However, the single-molecule technique has its limitation. To be able to observe this molecular effect with real biochemical functions in situ, we propose to couple the fluctuations in enzymatic activity to noise propagations in small protein interaction networks such as a zeroth-order ultrasensitive phosphorylation-dephosphorylation cycle. We show that enzyme fluctuations can indeed be amplified by orders of magnitude into fluctuations in the level of substrate phosphorylation, a quantity of wide interest in cellular biology. Enzyme conformational fluctuations sufficiently slower than the catalytic reaction turnover rate result in a bimodal concentration distribution of the phosphorylated substrate. In return, this network-amplified single-enzyme fluctuation can be used as a novel biochemical "reporter" for measuring single-enzyme conformational fluctuation rates.
GMASS Ultradeep Spectroscopy of Galaxies at z~2. III: The emergence of the color bimodality at z~2
Cassata, P; Kurk, J; Rodighiero, G; Pozzetti, L; Bolzonella, M; Daddi, E; Mignoli, M; Berta, S; Dickinson, M; Franceschini, A; Halliday, C; Renzini, A; Rosati, P; Zamorani, G
2008-01-01
The aim of this work is to study the evolution of the rest frame color distribution of galaxies with the redshift, in particular in the critical interval 1.410.1, and we study their morphological and spectro-photometric properties. We show that the contribution to this sample of early-type galaxies, defined as galaxies with a spheroidal morphology and no star formation, decreases from 60-70% at z2 we still find red galaxies in the mass complete sample, even if the bimodality is not seen any more. About 25% of these red galaxies at z>2 are passively evolving, with the bulk of their stars formed at redshift z>`3.
Mignoli, M; Scodeggio, M; Cimatti, A; Halliday, C; Lilly, S J; Pozzetti, L; Vergani, D; Carollo, C M; Contini, T; Le Fèvre, O; Mainieri, V; Renzini, A; Bardelli, S; Bolzonella, M; Bongiorno, A; Caputi, K; Coppa, G; Cucciati, O; De la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Iovino, A; Kampczyk, P; Kneib, J -P; Knobel, C; Kovac, K; Lamareille, F; Le Borgne, J F; Le Brun, V; Maier, C; Pellò, R; Peng, Y; Montero, E Perez; Ricciardelli, E; Scarlata, C; Silverman, J D; Tanaka, M; Tasca, L; Tresse, L; Zucca, E; Abbas, U; Bottini, D; Capak, P; Cappi, A; Cassata, P; Fumana, M; Guzzo, L; Leauthaud, A; MacCagni, D; Marinoni, C; McCracken, H J; Memeo, P; Meneux, B; Oesch, P; Porciani, C; Scaramella, R; Scoville, N
2008-01-01
Aims. We investigate the relationships between three main optical galaxy observables (spectral properties, colours, and morphology), exploiting the data set provided by the COSMOS/zCOSMOS survey. The purpose of this paper is to define a simple galaxy classification cube, using a carefully selected sample of around 1000 galaxies. Methods. Using medium resolution spectra of the first 1k zCOSMOS-bright sample, optical photometry from the Subaru/COSMOS observations, and morphological measurements derived from ACS imaging, we analyze the properties of the galaxy population out to z~1. Applying three straightforward classification schemes (spectral, photometric, and morphological), we identify two main galaxy types, which appear to be linked to the bimodality of galaxy population. The three parametric classifications constitute the axes of a "classification cube". Results. A very good agreement exists between the classification from spectral data (quiescent/star-forming galaxies) and that based on colours (red/blue...
Directory of Open Access Journals (Sweden)
Alufelwi M. Tshavhungwe
2010-07-01
Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.
Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.
Larsen, Curtis E.
1988-01-01
A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.
Completely random signed measures
DEFF Research Database (Denmark)
Hellmund, Gunnar
Completely random signed measures are defined, characterized and related to Lévy random measures and Lévy bases.......Completely random signed measures are defined, characterized and related to Lévy random measures and Lévy bases....
Zhang, Jing; Hao, Guangyu; Yao, Chenfei; Yu, Jiani; Wang, Jun; Yang, Weitao; Hu, Chunhong; Zhang, Bingbo
2016-07-06
Bimodal imaging has captured increasing interests due to its complementary characteristics of two kinds of imaging modalities. Among the various dual-modal imaging techniques, MR/fluorescence imaging has been widely studied owing to its high 3D resolution and sensitivity. There is, however, still a strong demand to construct biocompatible MR/fluorescence contrast agents with near-infrared (NIR) fluorescent emissions and high relaxivities. In this study, BSA-DTPA(Gd) derived from bovine serum albumin (BSA) as a novel kind of biotemplate is employed for biomineralization of paramagnetic NIR Ag2S quantum dots (denoted as Ag2S@BSA-DTPA(Gd) pQDs). This synthetic strategy is found to be bioinspired, environmentally benign, and straightforward. The obtained Ag2S@BSA-DTPA(Gd) pQDs have fine sizes (ca. 6 nm) and good colloidal stability. They exhibit unabated NIR fluorescent emission (ca. 790 nm) as well as high longitudinal relaxivity (r1 = 12.6 mM(-1) s(-1)) compared to that of commercial Magnevist (r1 = 3.13 mM(-1) s(-1)). In vivo tumor-bearing MR and fluorescence imaging both demonstrate that Ag2S@BSA-DTPA(Gd) pQDs have pronounced tiny tumor targeting capability. In vitro and in vivo toxicity study show Ag2S@BSA-DTPA(Gd) pQDs are biocompatible. Also, biodistribution analysis indicates they can be cleared from body mainly via liver metabolism. This protein-mediated biomineralized Ag2S@BSA-DTPA(Gd) pQDs presents great potential as a novel bimodal imaging contrast agent for tiny tumor diagnosis.
Directory of Open Access Journals (Sweden)
Michael eZehetleitner
2015-03-01
Full Text Available The redundant-signals paradigm (RSP is designed to investigate response behavior in perceptual tasks in which response-relevant targets are defined by either one or two features, or modalities. The common finding is that responses are speeded for redundantly compared to singly defined targets. This redundant-signals effect (RSE can be accounted for by race models if the response times do not violate the race model inequality (RMI. When there are violations of the RMI, race models are effectively excluded as a viable account of the RSE. The common alternative is provided by co-activation accounts, which assume that redundant target signals are integrated at some processing stage. However, ‘co-activation’ has mostly been only indirectly inferred and the accounts have only rarely been explicitly modeled; if they were modeled, the RSE has typically been assumed to have a decisional locus. Yet, there are also indications in the literature that the RSE might originate, at least in part, at a non-decisional or motor stage. In the present study, using a distribution analysis of sequential-sampling models (ex-Wald and Ratcliff Diffusion model, the locus of the RSE was investigated for two bimodal (audio-visual detection tasks that strongly violated the RMI, indicative of substantial co-activation. Three model variants assuming different loci of the RSE were fitted to the quantile reaction time proportions: a decision, a non-decision, and a combined variant both to vincentized group as well as individual data. The results suggest that for the two bimodal detection tasks, co-activation has a shared decisional and non-decisional locus. These findings point to the possibility that the mechanisms underlying the RSE depend on the specifics (task, stimulus, conditions, etc. of the experimental paradigm.
A self-assembled complex with a titanium(IV) catecholate core as a potential bimodal contrast agent.
Dehaen, Geert; Eliseeva, Svetlana V; Kimpe, Kristof; Laurent, Sophie; Vander Elst, Luce; Muller, Robert N; Dehaen, Wim; Binnemans, Koen; Parac-Vogt, Tatjana N
2012-01-01
A ditopic chelating ligand (H(6)4) that bears catechol and diethylenetriamine-N,N,N',N'',N''-pentaacetate (DTPA) has been designed and shown to specifically bind lanthanide(III) ions at the DTPA core ([Ln(H(2)4)(H(2)O)](-)) and further self-assemble with titanium(IV), thereby giving rise to the formation of a supramolecular metallostar complex with a lanthanide(III)-to-titanium(IV) ratio of 3:1, [(Ln4)(3)Ti(H(2)O)(3)](5-) (Ln=La, Eu, Gd). The efficacy of the metallostar complex as a potential bimodal optical/magnetic resonance imaging (MRI) agent has been evaluated. Nuclear magnetic relaxation dispersion (NMRD) measurements for the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex have demonstrated an enhanced r(1) relaxivity that corresponds to 36.9 s(-1) mM(-1) per metallostar molecule at 20 MHz and 310 K, which is a result of a decreased tumbling rate. The ability of the complex to bind to human serum albumin (HSA) was also examined by relaxometric measurements. In addition, upon UV irradiation the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex exhibits broad-band green emission in the range 400-750 nm with a maximum at 490 nm. Taking into account the high relaxivity and luminescence properties, the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex is a good lead compound for the development of efficient bimodal contrast agents.
Zehetleitner, Michael; Ratko-Dehnert, Emil; Müller, Hermann J
2015-01-01
The redundant-signals paradigm (RSP) is designed to investigate response behavior in perceptual tasks in which response-relevant targets are defined by either one or two features, or modalities. The common finding is that responses are speeded for redundantly compared to singly defined targets. This redundant-signals effect (RSE) can be accounted for by race models if the response times do not violate the race model inequality (RMI). When there are violations of the RMI, race models are effectively excluded as a viable account of the RSE. The common alternative is provided by co-activation accounts, which assume that redundant target signals are integrated at some processing stage. However, "co-activation" has mostly been only indirectly inferred and the accounts have only rarely been explicitly modeled; if they were modeled, the RSE has typically been assumed to have a decisional locus. Yet, there are also indications in the literature that the RSE might originate, at least in part, at a non-decisional or motor stage. In the present study, using a distribution analysis of sequential-sampling models (ex-Wald and Ratcliff Diffusion model), the locus of the RSE was investigated for two bimodal (audio-visual) detection tasks that strongly violated the RMI, indicative of substantial co-activation. Three model variants assuming different loci of the RSE were fitted to the quantile reaction time proportions: a decision, a non-decision, and a combined variant both to vincentized group as well as individual data. The results suggest that for the two bimodal detection tasks, co-activation has a shared decisional and non-decisional locus. These findings point to the possibility that the mechanisms underlying the RSE depend on the specifics (task, stimulus, conditions, etc.) of the experimental paradigm.
ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...
Fusi, Marco
2016-01-13
The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism\\'s thermal niche are equivalent to the upper limits of the organism\\'s functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab\\'s aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.
Richmond-Welty, E D; Siple, P
1999-06-01
Signed languages make unique demands on gaze during communication. Bilingual children acquiring both a spoken and a signed language must learn to differentiate gaze use for their two languages. Gaze during utterances was examined for a set of bilingual-bimodal twins acquiring spoken English and American Sign Language (ASL) and a set of monolingual twins acquiring ASL when the twins were aged 2;0, 3;0 and 4;0. The bilingual-bimodal twins differentiated their languages by age 3;0. Like the monolingual ASL twins, the bilingual-bimodal twins established mutual gaze at the beginning of their ASL utterances and either maintained gaze to the end or alternated gaze to include a terminal look. In contrast, like children acquiring spoken English monolingually, the bilingual-bimodal twins established mutual gaze infrequently for their spoken English utterances. When they did establish mutual gaze, it occurred later in their spoken utterances and they tended to look away before the end.
Otero, R; Gutiérrez, J M; Rojas, G; Núñez, V; Díaz, A; Miranda, E; Uribe, A F; Silva, J F; Ospina, J G; Medina, Y; Toro, M F; García, M E; León, G; García, M; Lizano, S; De La Torre, J; Márquez, J; Mena, Y; González, N; Arenas, L C; Puzón, A; Blanco, N; Sierra, A; Espinal, M E; Lozano, R
1999-06-01
A randomized blinded clinical trial was performed in 53 patients bitten by Bothrops sp. and Porthidium sp. in Antioquia and Chocó, Colombia, in order to compare the efficacy and safety of two antivenoms made of whole IgG obtained by either ammonium sulphate (monovalent anti-B. atrox) or caprylic acid (polyvalent) fractionation. Additionally, antivenoms were compared by electrophoretic and chromatographic analyses and anticomplementary activity in vitro. With a protocol of 2, 4 and 6 antivenom vials for the treatment of mild, moderate and severe envenomings, respectively, both antivenoms were equally efficient to neutralize the most relevant signs of envenoming and to clear serum venom levels in patients from the first hour and later on. Three patients with severe envenoming and initially treated with less than six vials on admission had persistent or recurrent venom antigenemia within 12-48 h. Monovalent antivenom fractionated by ammonium sulphate precipitation had higher amounts of protein aggregates and nonimmunoglobulin proteins than polyvalent antivenom fractionated by caprylic acid precipitation. Both antivenoms presented anticomplementary activity in vitro, being higher in the monovalent product. In agreement, monovalent antivenom induced a significantly higher incidence of early antivenom reactions (52%) than polyvalent antivenom (25%).
Phase diagram of the classical Heisenberg model in a trimodal random field distribution
Santos-Filho, A.; Albuquerque, D. F. de; Santos-Filho, J. B.; Batista, T. S. Araujo
2016-11-01
The classical spin 1 / 2 Heisenberg model on a simple cubic lattice, with fluctuating bond interactions between nearest neighbors and in the presence of a random magnetic field, is investigated by effective field theory based on two-spin cluster. The random field is drawn from the asymmetric and anisotropic trimodal probability distribution. The fluctuating bond is extracted from the symmetric and anisotropic bimodal probability. We estimate the transition temperatures, and the phase diagram in the Tc- h, Tc- p and Tc - α planes. We observe that the temperature of the tricritical point decreases with the increase of disorder in exchange interactions until the system ceases to display tricritical behavior. The disorder of the interactions and reentrant phenomena depends on the trimodal distribution of the random field.
Destruction of first-order phase transition in a random-field Ising model
Energy Technology Data Exchange (ETDEWEB)
Crokidakis, Nuno; Nobre, Fernando D [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ (Brazil)], E-mail: nuno@if.uff.br, E-mail: fdnobre@cbpf.br
2008-04-09
The phase transitions that occur in an infinite-range-interaction Ising ferromagnet in the presence of a double Gaussian random magnetic field are analyzed. Such random fields are defined as a superposition of two Gaussian distributions, presenting the same width {sigma}. It is argued that this distribution is more appropriate for a theoretical description of real systems than other simpler cases, i.e. the bimodal ({sigma} = 0) and single Gaussian distributions. It is shown that a low-temperature first-order phase transition may be destroyed for increasing values of {sigma}, similarly to what happens in the compound Fe{sub x}Mg{sub 1-x}Cl{sub 2}, whose finite-temperature first-order phase transition is presumably destroyed by an increase in the field randomness.
RANDOM: A Computer Program for Evaluating Pseudo-Uniform RANDOM Number Generators.
1982-08-01
correlation employed in RANDOM is taken from Wald and Wolfowitz (1943) and is performed using both the circular and noncircular definitions. The theory behind...Addison-Wesley, 1962). Wald , A. and J. Wolfowitz , "An Exact Test for Randomness in the Non-Parametric Case Based on Serial Correlation," Annals of...measures the interdependence between these two variables. If p = q, the covariance between R and Rq is equivalent to the variance of Rp. Wolfowitz (1944
Matricially free random variables
Lenczewski, Romuald
2008-01-01
We show that the operatorial framework developed by Voiculescu for free random variables can be extended to arrays of random variables whose multiplication imitates matricial multiplication. The associated notion of independence, called matricial freeness, can be viewed as a generalization of both freeness and monotone independence. At the same time, the sums of matricially free random variables, called random pseudomatrices, are closely related to Gaussian random matrices. The main results presented in this paper concern the standard and tracial central limit theorems for random pseudomatrices and the corresponding limit distributions which can be viewed as matricial generalizations of semicirle laws.
Avena, L
2012-01-01
We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamic setup too. Such anomalous fluctuations emerge in a new phase diagram. Further we discuss possible consequences for general static and dynamic random environments.
Energy Technology Data Exchange (ETDEWEB)
Pozdniakov, Sergey; Tsang, Chin-Fu
2004-01-02
In this paper, we consider an approach for estimating the effective hydraulic conductivity of a 3D medium with a binary distribution of local hydraulic conductivities. The medium heterogeneity is represented by a combination of matrix medium conductivity with spatially distributed sets of inclusions. Estimation of effective conductivity is based on a self-consistent approach introduced by Shvidler (1985). The tensor of effective hydraulic conductivity is calculated numerically by using a simple system of equations for the main diagonal elements. Verification of the method is done by comparison with theoretical results for special cases and numerical results of Desbarats (1987) and our own numerical modeling. The method was applied to estimating the effective hydraulic conductivity of a 2D and 3D fractured porous medium. The medium heterogeneity is represented by a combination of matrix conductivity and a spatially distributed set of highly conductive fractures. The tensor of effective hydraulic conductivity is calculated for parallel- and random-oriented sets of fractures. The obtained effective conductivity values coincide with Romm's (1966) and Snow's (1969) theories for infinite fracture length. These values are also physically acceptable for the sparsely-fractured-medium case with low fracture spatial density and finite fracture length. Verification of the effective hydraulic conductivity obtained for a fractured porous medium is done by comparison with our own numerical modeling for a 3D case and with Malkovsky and Pek's (1995) results for a 2D case.
Quantum Random Number Generators
Herrero-Collantes, Miguel; Garcia-Escartin, Juan Carlos
2016-01-01
Random numbers are a fundamental resource in science and engineering with important applications in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes quantum systems a perfect source of entropy. Quantum random number generation is one of the most mature quantum technologies with many alternative generation methods. We discuss the different technologies in quantum random number generation from the early devices based on radioactive decay to the multipl...