WorldWideScience

Sample records for bimetallic dispersed catalysts

  1. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  2. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  3. Surface structure and reaction performances of highly dispersed and supported bimetallic catalysts

    Institute of Scientific and Technical Information of China (English)

    林励吾; 杨维慎; 贾继飞; 徐竹生; 张涛; 范以宁; 寇元; 沈俭一

    1999-01-01

    Surface structures of Pt-Sn and Pt-Fe bimetallic catalysts have been investigated by means of Mssbauer spectroscopy, Pt-LⅢ-edge EXAFS and H2-adsorption. The results showed that the second component, such as Sn or Fe, remained in the oxidative state and dispersed on the γ-Al2O3 surface after reduction, while Pt was completely reduced to the metallic state and dispersed on either the metal oxide surface or the γ-Al2O3 surface. By correlating the distribution of Pt species on different surfaces with the reaction and adsorption performances, it is proposed that two kinds of active Pt species existed on the surfaces of both catalysts, named M1 sites and M2 sites. M1 sites are the sites in which Pt directly anchored on the γ-Al2O3 surface, while M2 sites are those in which Pt anchored on the metal oxide surface. M1 sites are favorable for low temperature H2 adsorption, and responsible for the hydrogenolysis reaction and carbon deposition, while M2 sites which adsorb more H2 at higher tem

  4. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.; Song, C.; Schobert, H.H.

    1994-01-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. The primary objective of this research is to explore novel bimetallic dispersed catalysts from heterometallic molecular precursors, that can be used in low concentrations but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. This quarterly report describes the preparation of two precursors. The first is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule synthesized. The second is a thiocubane type cluster consisting of iron and sulfur.

  5. Catalysis on singly dispersed bimetallic sites

    Science.gov (United States)

    Zhang, Shiran; Nguyen, Luan; Liang, Jin-Xia; Shan, Junjun; Liu, Jingyue; Frenkel, Anatoly I.; Patlolla, Anitha; Huang, Weixin; Li, Jun; Tao, Franklin

    2015-08-01

    A catalytic site typically consists of one or more atoms of a catalyst surface that arrange into a configuration offering a specific electronic structure for adsorbing or dissociating reactant molecules. The catalytic activity of adjacent bimetallic sites of metallic nanoparticles has been studied previously. An isolated bimetallic site supported on a non-metallic surface could exhibit a distinctly different catalytic performance owing to the cationic state of the singly dispersed bimetallic site and the minimized choices of binding configurations of a reactant molecule compared with continuously packed bimetallic sites. Here we report that isolated Rh1Co3 bimetallic sites exhibit a distinctly different catalytic performance in reduction of nitric oxide with carbon monoxide at low temperature, resulting from strong adsorption of two nitric oxide molecules and a nitrous oxide intermediate on Rh1Co3 sites and following a low-barrier pathway dissociation to dinitrogen and an oxygen atom. This observation suggests a method to develop catalysts with high selectivity.

  6. Preparation of highly dispersed Ru-Sn bimetallic supported catalysts from the single source precursors Cp(PPh32Ru-SnX3 (X = Cl or Br

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Bernardes Silva

    2003-06-01

    Full Text Available In this work highly dispersed Ru-Sn bimetallic catalysts have been prepared from organobimetallic Cp(PPh32Ru-SnX3 (X = Cl or Br complexes. These single source precursors can be easily impregnated in high surface area supports, such as activated carbon and sol-gel SiO2, and upon controlled thermal treatment the ligands are released as volatile products resulting in the formation of the bimetallic system Ru-Sn. Catalytic reactions, such as hydrodechlorination of CCl4 and chlorobenzene and TPR (Temperature Programmed Reduction experiments carried out with these RuSn catalysts suggested a strong interaction between Ruthenium and Tin. Mössbauer measurements showed that these materials when exposed to air are immediately oxidized to form Sn (IV. It was shown that upon controlled reduction conditions with H2 it is possible to reduce selectively Sn to different oxidation states and different phases. The Sn oxidation state showed significant effect on the catalytic hydrogenation of 1,5-cyclooctadiene. The use of these single source precursors with a controlled decomposition/reduction procedure allows the preparation of unique catalysts with an intimate interaction between the components ruthenium and tin and the possibility of varying the Sn oxidation state around the Ru metal.

  7. High pressure CO hydrogenation over bimetallic Pt-Co catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Medford, Andrew James; Studt, Felix

    2014-01-01

    The potential of bimetallic Pt-Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt-Co catalysts was reviewed. It is found that the catalyst...

  8. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pudukudy, Manoj, E-mail: manojpudukudy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Yaakob, Zahira, E-mail: zahirayaakob65@gmail.com [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Akmal, Zubair Shamsul [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Synthesis and characterization of Ni, Co and Fe based bimetallic catalysts supported over SBA-15. • Thermocatalytic decomposition of methane over the SBA-15 supported bimetallic catalysts. • Enhanced catalytic efficiency of the bimetallic catalysts for the production of CO{sub x} free hydrogen and nanocarbon. • Production of value added open tip hollow multi-walled carbon nanotubes. • Crystalline characterization of carbon nanotubes by XRD, Raman and thermogravimetric analysis. - Abstract: Thermocatalytic decomposition of methane is an alternative route for the production of CO{sub x}-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow

  9. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    Science.gov (United States)

    Pudukudy, Manoj; Yaakob, Zahira; Akmal, Zubair Shamsul

    2015-03-01

    Thermocatalytic decomposition of methane is an alternative route for the production of COx-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow multi-walled nanotubes with open tips, indicating a base growth mechanism, which confirm the selectivity of SBA-15 supported bimetallic catalysts for the formation of open tip carbon nanotubes. The Raman spectroscopic and thermogravimetric analysis of the deposited carbon nanotubes over the bimetallic catalysts indicated their higher graphitization degree and oxidation stability.

  10. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. He...

  11. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  12. Controlled Surface Segregation Leads to Efficient Coke-Resistant Nickel/Platinum Bimetallic Catalysts for the Dry Reforming of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lidong [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Zhou, Lu [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Ould-Chikh, Samy [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Anjum, Dalaver H. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Kanoun, Mohammed B. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Scaranto, Jessica [SABIC Corporate Research and Innovation Center, Thuwal (Saudi Arabia); Hedhili, Mohamed N. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Khalid, Syed [Brookhaven National Lab. (BNL), Upton, NY (United States); Laveille, Paco V. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); D' Souza, Lawrence [SABIC Corporate Research and Innovation Center, Thuwal (Saudi Arabia); Clo, Alain [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Basset, Jean-Marie [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia)

    2015-02-03

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  13. PROPERTIES OF POLYMER SUPPORTED Ni-Cu BIMETALLIC CATALYSTS PREPARED BY SOLVATED METAL ATOM IMPREGNATION

    Institute of Scientific and Technical Information of China (English)

    WU Shihua; ZHU Changying; HUANG Wenqiang

    1996-01-01

    D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.

  14. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    Directory of Open Access Journals (Sweden)

    Magda Blosi

    2016-07-01

    Full Text Available This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF to 2,5-furandicarboxylic acid (FDCA. The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated.

  15. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    Directory of Open Access Journals (Sweden)

    F. V. Barsi

    2009-06-01

    Full Text Available Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt and bimetallic catalysts (Pt-Ni, using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH36]Cl2 and [Pt(NH34]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.

  16. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    OpenAIRE

    John Meynard M. Tengco; Bahareh Alsadat Tavakoli Mehrabadi; Yunya Zhang; Akkarat Wongkaew; John R. Regalbuto; Weidner, John W.; John R. Monnier

    2016-01-01

    Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED) of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) characterization of the base catalyst showed highly dispersed particles. A basic E...

  17. Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions

    Directory of Open Access Journals (Sweden)

    Ahmad Alshammari

    2016-07-01

    Full Text Available Supported bimetallic nanoparticles (SBN are extensively used as efficient redox catalysts. This kind of catalysis particularly using SBN has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The primary objective of this contribution is to provide comprehensive overview about SBN and their application as promising catalysts. The present review contains four sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of SBN as promising catalysts for different applications. Section 2 reviews the preparation and characterization methods of SBN for a wide range of catalytic reactions. Section 3 concentrates on our own results related to the application of SBN in heterogeneous catalysis. In this section, the oxidation of cyclohexane to adipic acid (an eco-friendly and novel approach will be discussed. In addition, the application of bimetallic Pd catalysts for vapor phase toluene acetoxylation in a fixed bed reactor will also be highlighted. Acetoxylation of toluene to benzyl acetate is another green route to synthesize benzyl acetate in one step. Finally, Section 4 describes the summary of the main points and also presents an outlook on the application of SBN as promising catalysts for the production of valuable products.

  18. The selective hydrogenation of crotonaldehyde over bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schoeb, Ann M. [Iowa State Univ., Ames, IA (United States)

    1997-10-17

    The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO2 catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO2 system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, 1H NMR and microcalorimetry. The Pt-Ag/SiO2 and Pt-Cu/SiO2 catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO2 catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO2 catalysts for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO2, Pt-Ag/SiO2 and Pt-Cu/SiO2 catalysts produced only butyraldehyde. Initial heats of adsorption (~90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the 1H NMR Knight shift.

  19. Exploration of Nanotube Structure Selectivity Using Bimetallic Catalysts

    Science.gov (United States)

    Pfefferle, Lisa

    2007-10-01

    Achieving selectivity for nanotube chirality is one of the holy grails for single-walled carbon nanotube research. One approach we are following is based on the ability to engineer the size and state of the initiating metal particle to constrain the type of cap formed. The chirality/structure of a nanotube is controlled by carbon cap formation on the metal particle during the nucleation step. It has been proposed that varying the carbon-metal catalyst binding energy could help lead to structure selectivity. One reason theoretically proposed for the favoring of armchair nanotubes, for example, is the proximity of low energy binding locations for two carbon atoms. Thus blocking sites or perturbing the binding energy on adjacent sites could in theory affect the structure of the carbon cap formed in the nucleation step. Our goal is to demonstrate structure selectivity in the growth of single wall carbon nanotubes (SWNT) using a bimetallic catalyst. The catalyst used was a bimetallic CoCr-MCM 41 and the effect of different molecular ratios between the two metals on the SWNT diameter distribution was studied. We have found that by adding Cr to the Co-MCM 41 monometallic catalyst the diameter distribution shifted in a systematic manner correlated to the development of a bimetallic phase as characterized by X-Ray absorption spectroscopy (XAS). We have also found that the shift is accompanied by suppression of metallic SWNT, particularly those with diameter over 0.9 nm. We are also currently exploring the possibility of a further narrowing of the distribution by lowering the reaction temperatures.

  20. Regeneration of sulfur-fouled bimetallic Pd-based catalysts.

    Science.gov (United States)

    Chaplin, Brian P; Shapley, John R; Werth, Charles J

    2007-08-01

    Pd-based catalysts provide efficient and selective reduction of several drinking water contaminants, but their long-term application requires effective treatments for catalyst regeneration following fouling by constituents in natural waters. This studytested alumina-supported Pd-Cu and Pd-In bimetallic catalysts for nitrate reduction with H2 after sulfide fouling and oxidative regeneration procedures. Both catalysts were severely deactivated after treatment with microM levels of sulfide. Regeneration was attempted with dissolved oxygen, hydrogen peroxide, sodium hypochlorite, and heated air. Only sodium hypochlorite and heated air were effective regenerants, specifically restoring nitrate reduction rates for a Pd-In/gamma-Al2O3 catalyst from 20% to between 39 and 60% of original levels. Results from ICP-MS revealed that sodium hypochlorite caused dissolution of Cu from the Pd-Cu catalyst but that the Pd-In catalyst was chemically stable over a range of sulfide fouling and oxidative regenerative conditions. Analysis byXPS indicated that PdS and In2S3 complexes form during sulfide fouling, where sulfur is present as S2-, and that regeneration with sodium hypochlorite converts a portion of the S2- to S6+, with a corresponding increase in reduction rates. These results indicate that Pd-In catalysts show exceptional promise for being robust under fouling and regeneration conditions that may occur when treating natural waters.

  1. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Yang, Hui; Huang, Peiyan; Song, Huiyu [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China)

    2014-10-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  2. Highly dispersed metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  3. Nanocrystalline MgO supported nickel-based bimetallic catalysts for carbon dioxide reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Meshkani, Fereshteh [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran); Rezaei, Mehran [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran)

    2010-10-15

    Nanocrystalline magnesium oxide with high surface area and plate-like shape was employed as catalyst support for preparation of nickel-based bimetallic catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N{sub 2} adsorption (BET), Temperature programmed oxidation and desorption (TPO-TPD), Thermal gravimetric and differential thermal gravimetric (TGA-DTG), H{sub 2} chemisorption and Transmission and electron microscopies (TEM and SEM) analyses. CO{sub 2}-TPD data showed the high CO{sub 2} adsorption capacity of catalysts which improves the resistance of catalysts against the carbon formation. The H{sub 2} chemisorption results also indicated that the addition of Pt to nickel catalyst improved the nickel dispersion. The obtained results revealed that the prepared catalysts showed a high activity and stability during the reaction with a low amount of deposited carbon. Addition of Pt to nickel catalyst improved both the activity and resistivity against carbon formation. (author)

  4. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Juan [School of the Environment, Donghua University, Shanghai 201620 (China); Chen, Huan, E-mail: hchen404@njust.edu.cn [Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen, Quanyuan; Huang, Zhaolu [School of the Environment, Donghua University, Shanghai 201620 (China)

    2016-11-30

    Graphical abstract: 2,4-Dichlorophenol can be converted to phenol via the catalytic HDC method over Pd-Au/CNTs and the catalytic activity first increased and then decreased with Au content. - Highlights: • Bimetallic catalysts had smaller metal particles and larger number of exposed active site than the monometallic catalysts. • The cationization of Pd particles increased with Au content in the bimetallic catalysts. • The bimetallic catalysts exhibited higher catalytic activities for HDC of 2,4-DCP than the monometallic counterparts. • The concerted pathway for HDC of 2,4-DCP was more predominant with increasing Au content in the bimetallic catalyst. - Abstract: Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N{sub 2} adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H{sub 2} chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d{sub 5/2} shifted to higher positions while that of Au 4f{sub 7/2} had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest

  5. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Science.gov (United States)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  6. thesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts

    Directory of Open Access Journals (Sweden)

    Sanja Ratković

    2009-10-01

    Full Text Available Carbon nanotubes (CNTs were synthesized by a catalytic chemical vapor deposition method (CCVD of ethylene over alumina and silica supported bimetallic catalysts based on Fe, Co and Ni. The catalysts were prepared by a precipitation method, calcined at 600 °C and in situ reduced in hydrogen flow at 700 °C. The CNTs growth was carried out by a flow the mixture of C2H4 and nitrogen over the catalyst powder in a horizontal oven. The structure and morphology of as-synthesized CNTs were characterized using SEM. The as-synthesized nanotubes were purified by acid and basic treatments in order to remove impurities such as amorphous carbon, graphite nanoparticles and metal catalysts. XRD and DTA/TG analyses showed that the amounts of by-products in the purified CNTs samples were reduced significantly. According to the observed results, ethylene is an active carbon source for growing high-density CNTs with high yield but more on alumina-supported catalysts than on their silica- supported counterparts. The last might be explained by SMSI formed in the case of alumina-supported catalysts, resulting in higher active phase dispersion.

  7. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  8. Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, S.

    1993-12-07

    The thesis is divided into 3 parts: interaction of H with silica supported Ru catalysts (high pressure in situ NMR), in situ NMR study of H interaction with supported Ru-group IB bimetallic catalysts, and in-situ NMR study of H effects on silica-supported Pt, Rh and Ru catalysts.

  9. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    Science.gov (United States)

    Zhou, Juan; Chen, Huan; Chen, Quanyuan; Huang, Zhaolu

    2016-11-01

    Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N2 adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2 chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d5/2 shifted to higher positions while that of Au 4f7/2 had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest catalytic activity. For the bimetallic catalysts, a disproportional increase of turnover frequency (TOF) was observed with increasing Au content due to the enhanced cationization of Pd particles. Moreover, the dechlorination of 2,4-DCP over the supported monometallic and bimetallic catalysts proceeded via both the stepwise and concerted pathway, and the concerted pathway became predominant with Au decoration amount in the catalyst.

  10. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.

    Science.gov (United States)

    Liao, Xin; Gerdts, Rihards; Parker, Stewart F; Chi, Lina; Zhao, Yongxiang; Hill, Martyn; Guo, Junqiu; Jones, Martin O; Jiang, Zheng

    2016-06-29

    Ni/Al2O3, Co/Al2O3 and bimetallic Ni(Co)/Al2O3 catalysts were prepared using an impregnation method and employed in CO2 dry reforming of methane under coking-favored conditions. The spent catalysts were carefully characterized using typical characterization technologies and inelastic neutron scattering spectroscopy. The bimetallic catalyst exhibited a superior activity and anti-coking performance compared to Ni/Al2O3, while the most resistant to coking behavior was Co/Al2O3. The enhanced activity of the Ni(Co)/Al2O3 bimetallic catalyst is attributed to the reduced particle size of metallic species and resistance to forming stable filamentous carbon. The overall carbon deposition on the spent bimetallic catalyst is comparable to that of the spent Ni/Al2O3 catalyst, whereas the carbon deposited on the bimetallic catalyst is mainly less-stable carbonaceous species as confirmed by SEM, TPO, Raman and INS characterization. This study provides an in depth understanding of alloy effects in catalysts, the chemical nature of coked carbon on spent Ni-based catalysts and, hopefully, inspires the creative design of a new bimetallic catalyst for dry reforming reactions.

  11. Enhancement of bimetallic Fe-Mn/CNTs nano catalyst activity and product selectivity using microemulsion technique

    Institute of Scientific and Technical Information of China (English)

    Zahra; Zolfaghari; Ahmad; Tavasoli; Saber; Tabyar; Ali; Nakhaei; Pour

    2014-01-01

    Bimetallic Fe-Mn nano catalysts supported on carbon nanotubes(CNTs) were prepared using microemulsion technique with water-to-surfactant ratios of 0.4-1.6. The nano catalysts were extensively characterized by different methods and their activity and selectivity in Fischer-Tropsch synthesis(FTS) have been assessed in a fixed-bed microreactor. The physicochemical properties and performance of the nanocatalysts were compared with the catalyst prepared by impregnation method. Very narrow particle size distribution has been produced by the microemulsion technique at relatively high loading of active metal. TEM images showed that small metal nano particles in the range of 3–7 nm were not only confined inside the CNTs but also located on the outer surface of the CNTs. Using microemulsion technique with water to surfactant ratio of0.4 decreased the average iron particle sizes to 5.1 nm. The reduction percentage and dispersion percentage were almost doubled. Activity and selectivity were found to be dependent on the catalyst preparation method and average iron particle size. CO conversion and FTS rate increased from 49.1% to 71.0% and 0.144 to 0.289 gHC/(gcat h), respectively. While the WGS rate decreased from 0.097 to 0.056 gCO2/(gcat h). C5+liquid hydrocarbons selectivity decreased slightly and olefins selectivity almost doubled.

  12. Characterization and reactivity of Pd Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy

    Science.gov (United States)

    Rousset, J. L.; Cadete Santos Aires, F. J.; Bornette, F.; Cattenot, M.; Pellarin, M.; Stievano, L.; Renouprez, A. J.

    2000-09-01

    Bimetallic Pd-Pt clusters produced by laser vaporization of bulk alloy have been deposited on high surface alumina. Energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM) show that they have a perfectly well-defined stoichiometry and a narrow range of size. Therefore, they constitute ideal systems to investigate alloying effects towards reactivity. Pd-Pt alloys are already known for their applications in the hydrogenation of unsaturated hydrocarbons, especially aromatics, because this system is highly resistant to sulfur and nitrogen poisoning. In this context, the catalytic properties of this system have been investigated in the hydrogenation of tetralin in the presence of hydrogen sulfide. Preliminary results show that this model catalyst is more sulfur-resistant than each of the pure supported metals prepared by chemical methods.

  13. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam

    2015-07-06

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

  14. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  15. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  16. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-04-28

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  17. Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts

    Institute of Scientific and Technical Information of China (English)

    Iker Obregón; Eriz Corro; Urko Izquierdo; Jesus Requies; Pedro L. Arias

    2014-01-01

    Inexpensive γ-alumina-based nickel-copper bimetallic catalysts were studied for the hydrogenolysis of levulinic acid, a key platform molecule for biomass conversion to biofuels and other valued chemicals, into γ-valerolactone as a first step towards the production of 2-methyltetrahydrofurane. The activities of both monometallic and bimetallic catalysts were tested. Their textural and chemical characteristics were determined by nitrogen physisorption, elemental analysis, temperature-pro-grammed ammonia desorption, and temperature-programmed reduction. The monometallic nickel catalyst showed high activity but the highest by-product production and significant amounts of carbon deposited on the catalyst surface. The copper monometallic catalyst showed the lowest activity but the lowest carbon deposition. The incorporation of the two metals generated a bimetal-lic catalyst that displayed a similar activity to that of the Ni monometallic catalyst and significantly low by-product and carbon contents, indicating the occurrence of important synergetic effects. The influence of the preparation method was also examined by studying impregnated- and sol-gel-derived bimetallic catalysts. A strong dependency on the preparation procedure and calcina-tion temperature was observed. The highest activity per metal atom was achieved using the sol-gel-derived catalyst that was calcined at 450 °C. High reaction rates were achieved;the total levulinic acid conversion was obtained in less than 2 h of reaction time, yielding up to 96%γ-valerolactone, at operating temperature and pressure of 250 °C and 6.5 MPa hydrogen, respec-tively.

  18. A Highly Efifcient and Selective Water-Soluble Bimetallic Catalyst for Hydrogenation of Chloronitrobenzene to Chloroaniline

    Institute of Scientific and Technical Information of China (English)

    Zhou Yafen; Yang Wenjuan; Zhou Limei; Wang Manman; Ma Xiaoyan

    2015-01-01

    Selective hydrogenation of chloronitrobenzene (CNB) to chloroaniline (CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased ob-viously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene (p-CNB) reached 99.9%, with the selectivity to p-chloroaniline (p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogena-tion of other chloro-and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled ifve times without signiifcant loss of activity.

  19. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    OpenAIRE

    F. V. Barsi; Cardoso,D.

    2009-01-01

    Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt) and bimetallic catalysts (Pt-Ni), using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on th...

  20. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Science.gov (United States)

    Erdelyi, B.; Oriňak, A.; Oriňaková, R.; Lorinčík, J.; Jerigová, M.; Velič, D.; Mičušík, M.; Omastová, M.; Smith, R. M.; Girman, V.

    2017-02-01

    Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  1. Using Mechanical Alloying to Create Bimetallic Catalysts for Vapor-Phase Carbon Nanofiber Synthesis

    Directory of Open Access Journals (Sweden)

    Laura Guevara

    2015-10-01

    Full Text Available Carbon nanofibers were generated over bimetallic catalysts in an atmospheric pressure chemical vapor deposition (APCVD reactor. Catalyst compositions of Fe 30 at%, Cu and Ni 30 at% and Cu were mechanically alloyed using high-energy ball milling over durations of 4, 8, 12, 16, and 20 h. The catalyst powders were then used to produce carbon nanofibers in ethylene and hydrogen (4:1 at temperatures of 500, 550, and 600 °C. The microstructures of the catalysts were characterized as a function of milling time as well as at deposition temperature. The corresponding carbon deposition rates were assessed and are correlated to the microstructural features of each catalyst. The milling process directly determines the performance of each catalyst toward carbon deposition, and both catalysts performed comparably to those made by traditional co-precipitation methods. Considerations in miscible and immiscible nanostructured alloy systems are discussed.

  2. Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer

    Science.gov (United States)

    Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram

    2016-08-23

    A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.

  3. STUDY ON POLYMER- Ru- Co BIMETALLIC COMPLEXES CATALYSTS Ⅱ. X-RAY PHOTOELECTRON SPECTROSCOPIC ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    ZONG Huijuan; TANG Qi; CHEN Zonghan; JIANG Yingyan

    1991-01-01

    Polymer-Ru-Co bimetallic complexes have been examined by X-ray photoelectron spectroscopy.The catalyst is highly active only when the mole ratio of Co/Ru is 4:3. The activity of catalysts does not depend on the total Co/Ru ratio, but on the surface stoichiometry of Co and Ru. When the relative intensities of Co2p and Ru3d of XP S peaks are close to each other and both are high, the catalyst exhibits its maximum activity.The mechanism of catalytic hydroformylation has been discussed.

  4. SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd-M/Y bimetallic catalysts, where M is non-noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd-M/Y catalysts were evaluated under the following conditions: H2 pressure 4.2 MPa, MHSV 4.0 h-1, sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.

  5. Selective hydrogenation of citral over Au-based bimetallic catalysts in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Selective hydrogenation of citral was investigated over Au-based bimetallic catalysts in the environmentally benign supercritical carbon dioxide (scCO2) medium.The catalytic performances were different in citral hydrogenation when Pd or Ru was mixed (physically and chemically) with Au.Compared with the corresponding monometallic catalyst,the total conversion and the selectivity to citronellal (CAL) were significantly enhanced over TiO2 supported Pd and Au bimetallic catalysts (physically and chemically mixed);however,the conversion and selectivity did not change when Ru was physically mixed with Au catalyst compared to the monometallic Ru/TiO2,and the chemically mixed Ru-Au/TiO2 catalyst did not show any activity.The effect of CO2 pressure on the conversion of citral and product selectivity was significantly different over the Au/TiO2,Pd-Au/TiO2,and Pd/TiO2 catalysts.It was assumed to be ascribed to the difference in the interactions between Au,Pd nanoparticles and CO2 under different CO2 pressures.

  6. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt-Cu nanocrystals catalysts

    Science.gov (United States)

    Wang, Ying-Xia; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2014-01-01

    PtCux (x = 1, 2 and 3) bimetallic nanocrystals with concave surface and dendritic morphology were prepared and used as electrocatalysts in methanol oxidation reaction (MOR) for polymer electrolyte membrane fuel cells. The bimetallic nanocrystals were synthesized via one-pot co-reduction of H2PtCl6 and Cu(acac)2 by oleylamine and polyvinyl pyrrolidone (PVP) in an autoclave at 180 °C. The concave dendritic bimetallic nanostructure consisted of a core rich in Cu and nanodendrites rich in Pt, which was formed via galvanic replacement of Cu by Pt. It was found that PVP played an important role in initiating, facilitating, and directing the replacement reaction. The electrochemical properties of the PtCux were characterized by cyclic voltammetry (CV) and chronoamperometry (CA). The concave dendritic PtCu2/C nanocrystals exhibited exceptionally high activity and strong poisoning resistance in MOR. At 0.75 V (vs. reversible hydrogen electrode, RHE) the mass activity and specific activity of PtCu2/C were 3.3 and 4.1 times higher than those of the commercial Pt/C catalysts, respectively. The enhanced catalytic activity could be attributed to the unique concave dendritic morphology of the bimetallic nanocrystals.

  7. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  8. STUDY ON POLYMER-Ru-Co-BIMETALLIC COMPLEXES CATALYSTS I. SYNTHESIS OF CATALYSTS AND THEIR USE FOR THE HYDROFORMYLATION

    Institute of Scientific and Technical Information of China (English)

    TANG Qi; ZONG Huijuan; CHEN Zonghan; JIANG Yingyan

    1991-01-01

    Six kinds of polymer ligands, supported on SiO2, containing coordinating atoms P, S and N respectively, have been synthesized. The Ru(Ⅲ)-Co(Ⅱ) bimetallic complexes of these polymer ligands have been obtained and examined as catalysts for the hydroformylation of cyclohexene. The effects of reaction temperature, pressure and Co/Ru ratio etc. on the activities of catalysts were investigated in detail. The catalysts are all polymer-noncarbonyl-metal complexes, easily to be prepared, active and stable. From the experimental results it can be suggested that under reaction conditions such polymer-noncarbonyl-metal complexes convert "in situ" to polymer-carbonyl-metal complexes, thus become active catalysts. The course of this conversion is supposed as a preliminary approach.

  9. Effects of bimetallic catalysts on synthesis of nitrogen-doped carbon nanotubes as nanoscale energetic materials

    Institute of Scientific and Technical Information of China (English)

    Hao Liu; Yong Zhang; Ruying Li; Xueliang Sun; Hakima Abou-Rachid

    2011-01-01

    Well aligned nitrogen-doped carbon nanotubes (CNx-NTs),as energetic materials,are synthesized on a silicon substrate by aerosol-assisted chemical vapor deposition.Tungsten (W) and molybdenum (Mo) metals are respectively introduced to combine with iron (Fe) to act as a bimetallic co-catalyst layer.Correlations between the composition and shape of the co-catalyst and morphology,size,growth rate and nitrogen doping amount of the synthesized CNx-NTs are investigated by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and X-ray photoelectron spectrometer (XPS).Compared to pure iron catalyst.W-Fe co-catalyst can result in lower growth rate,larger diameter and wider size distribution of the CNx-NTs; while incorporation of molybdenum into the iron catalyst layer can reduce the diameter and size distribution of the nanotubes.Compared to the sole iron catalyst,Fe-W catalyst impedes nitrogen doping while Fe-Mo catalyst promotes the incorporation of nitrogen into the nanotubes.The present work indicates that CNx-NTs with modulated size,growth rate and nitrogen doping concentration are expected to be synthesized by tuning the size and composition of co-catalysts,which may find great potential in producing CNx-NTs with controlled structure and properties.

  10. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Alberto [Universita di Milano, Italy; Prati, Laura [Universita di Milano, Italy; Su, Dangshen [Fritz Haber Institute of the Max Planck Society, Berlin, Germany; Wang, Di [Fritz Haber Institute of the Max Planck Society, Berlin, Germany; Veith, Gabriel M [ORNL

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  11. Final technical report. Bimetallic complexes as methanol oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    McElwee-White, Lisa

    2002-01-21

    Our work on the electrocatalyzed oxidation of methanol was initially motivated by the interest in methanol as an anodic reactant in fuel cells. The literature on electrochemical oxidation of alcohols can be roughly grouped into two sets: fuel cell studies and inorganic chemistry studies. Work on fuel cells primarily focuses on surface-catalyzed oxidation at bulk metal anodes, usually Pt or Pt/Ru alloys. In the surface science/electrochemistry approach to these studies, single molecule catalysts are generally not considered. In contrast, the inorganic community investigates the electrooxidation of alcohols in homogeneous systems. Ruthenium complexes have been the most common catalysts in these studies. The alcohol substrates are typically either secondary alcohols (e.g., isopropanol) such that the reaction stops after 2 e{sup -} oxidation to the aldehyde and 4 e{sup -} oxidation to the carboxylic acid can be observed. Methanol, which can also undergo 6 e{sup -} oxidation to CO{sub 2}, rarely appears in the homogeneous catalysis studies. Surface studies have shown that two types of metal centers with different functions result in more effective catalysts than a single metal; however, application of this concept to homogeneous systems has not been demonstrated. The major thrust of the work is to apply this insight from the surface studies to homogeneous catalysis. Even though homogeneous systems would not be appropriate models for active sites on Pt/Ru anodes, it is possible that heterobimetallic catalysts could also utilize two metal centers for different roles. Starting from that perspective, this work involves the preparation and investigation of heterobinuclear catalysts for the electrochemical oxidation of methanol.

  12. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hong [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Ye, Xiaoliang [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2015-07-05

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k{sub app}) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes.

  13. Glycerol conversion into value added chemicals over bimetallic catalysts in supercritical carbon dioxide

    Science.gov (United States)

    Hidayati, Luthfiana N.; Sudiyarmanto, Adilina, Indri B.

    2017-01-01

    Development of alternative energy from biomass encourage the experiments and production of biodiesel lately. Biodiesel industries widely expand because biodiesel as substitute of fossil fuel recognized as promising renewable energy. Glycerol is a byproduct of biodiesel production, which is resulted 10% wt average every production. Meanwhile, carbon dioxide is a gas that is very abundant amount in the atmosphere. Glycerol and carbon dioxide can be regarded as waste, possibly will produce value-added chemical compounds through chemically treated. In this preliminary study, conversion of glycerol and carbon dioxide using bimetallic catalyst Ni-Sn with various catalyst supports : MgO, γ-Al2O3, and hydrotalcite. Catalysts which have been prepared, then physically characterized by XRD, surface area and porosity analysis, and thermal gravity analysis. Catalytic test performance using supercritical carbon dioxide conditions. Furthermore, the products were analyzed by GC. The final product mostly contained of propylene glycol and glycerol carbonate.

  14. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  15. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-01-08

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature-programmed reduction, and BET analysis demonstrates that the excellent performance of this catalyst is ascribed to the synergy of various parameters, including metal-nanoparticle size, metal-support interaction, catalyst structure, ensemble size, and alloy effects.

  16. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.

    Science.gov (United States)

    Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang

    2017-05-01

    Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH)2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells.

  17. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    John Meynard M. Tengco

    2016-06-01

    Full Text Available Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD and scanning transmission electron microscopy (STEM characterization of the base catalyst showed highly dispersed particles. A basic ED bath containing PtCl62− as the Pt precursor, dimethylamine borane as reducing agent, and ethylenediamine as stabilizing agent successfully targeted deposition of Pt on Co particles. Simultaneous action of galvanic displacement and ED resulted in Pt-Co alloy formation observed in XRD and energy dispersive X-ray spectroscopy (XEDS mapping. In addition, fast deposition kinetics resulted in hollow shell Pt-Co alloy particles while particles with Pt-rich shell and Co-rich cores formed with controlled Pt deposition. Electrochemical evaluation of the Pt-Co/C catalysts showed lower active surface but much higher mass and surface activities for oxygen reduction reaction compared to a commercial Pt/C fuel cell catalyst.

  18. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  19. CATALYSIS SCIENCE INITIATIVE: From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    MAVRIKAKIS, MANOS

    2007-05-03

    In this project, we have integrated state-of-the-art Density Functional Theory (DFT) models of heterogeneous catalytic processes with high-throughput screening of bimetallic catalytic candidates for important industrial problems. We have studied a new class of alloys characterized by a surface composition different from the bulk composition, and investigated their stability and activity for the water-gas shift reaction and the oxygen reduction reaction. The former reaction is an essential part of hydrogen production; the latter is the rate-limiting step in low temperature H2 fuel cells. We have identified alloys that have remarkable stability and activity, while having a much lower material cost for both of these reactions. Using this knowledge of bimetallic interactions, we have also made progress in the industrially relevant areas of carbohydrate reforming and conversion of biomass to liquid alkanes. One aspect of this work is the conversion of glycerol (a byproduct of biodiesel production) to synthesis gas. We have developed a bifunctional supported Pt catalyst that can cleave the carbon-carbon bond while also performing the water-gas shift reaction, which allows us to better control the H2:CO ratio. Knowledge gained from the theoretical metal-metal interactions was used to develop bimetallic catalysts that perform this reaction at low temperature, allowing for an efficient coupling of this endothermic reaction with other reactions, such as Fischer-Tropsch or methanol synthesis. In our work on liquid alkane production from biomass, we have studied deactivation and selectivity in these areas as a function of metal-support interactions and reaction conditions, with an emphasis on the bifunctionality of the catalysts studied. We have identified a stable, active catalyst for this process, where the selectivity and yield can be controlled by the reaction conditions. While complete rational design of catalysts is still elusive, this work demonstrates the power of

  20. Ag-Sn Bimetallic Catalyst with a Core-Shell Structure for CO2 Reduction.

    Science.gov (United States)

    Luc, Wesley; Collins, Charles; Wang, Siwen; Xin, Hongliang; He, Kai; Kang, Yijin; Jiao, Feng

    2017-02-08

    Converting greenhouse gas carbon dioxide (CO2) to value-added chemicals is an appealing approach to tackle CO2 emission challenges. The chemical transformation of CO2 requires suitable catalysts that can lower the activation energy barrier, thus minimizing the energy penalty associated with the CO2 reduction reaction. First-row transition metals are potential candidates as catalysts for electrochemical CO2 reduction; however, their high oxygen affinity makes them easy to be oxidized, which could, in turn, strongly affect the catalytic properties of metal-based catalysts. In this work, we propose a strategy to synthesize Ag-Sn electrocatalysts with a core-shell nanostructure that contains a bimetallic core responsible for high electronic conductivity and an ultrathin partially oxidized shell for catalytic CO2 conversion. This concept was demonstrated by a series of Ag-Sn bimetallic electrocatalysts. At an optimal SnOx shell thickness of ∼1.7 nm, the catalyst exhibited a high formate Faradaic efficiency of ∼80% and a formate partial current density of ∼16 mA cm(-2) at -0.8 V vs RHE, a remarkable performance in comparison to state-of-the-art formate-selective CO2 reduction catalysts. Density-functional theory calculations showed that oxygen vacancies on the SnO (101) surface are stable at highly negative potentials and crucial for CO2 activation. In addition, the adsorption energy of CO2(-) at these oxygen-vacant sites can be used as the descriptor for catalytic performance because of its linear correlation to OCHO* and COOH*, two critical intermediates for the HCOOH and CO formation pathways, respectively. The volcano-like relationship between catalytic activity toward formate as a function of the bulk Sn concentration arises from the competing effects of favorable stabilization of OCHO* by lattice expansion and the electron conductivity loss due to the increased thickness of the SnOx layer.

  1. Synthesis of nanostructured lean-NO x catalysts by direct laser deposition of monometallic Pt-, Rh- and bimetallic PtRh-nanoparticles on SiO2 support

    Science.gov (United States)

    Savastenko, N.; Volpp, H.-R.; Gerlach, O.; Strehlau, W.

    2008-02-01

    Monometallic Pt and Rh and bimetallic PtRh catalysts with a highly dispersed noble metal weight loading of ca. 1 wt% were produced via the direct deposition of nanoparticles on different SiO2 supports by means of pulsed ultra-violet (248 nm) excimer laser ablation of Pt, Rh bulk metal and PtRh alloy targets. Backscattered electron microscopy (BSE), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were employed to characterize the deposited nanoparticles, which were found to exhibit narrow size distribution centred around 2.5 nm. The catalytic activities for lean NO x reduction of the monometallic and bimetallic catalyst samples were investigated in a flow reactor setup in the temperature range 100-400°C using a test gas mixture representative of oxygen rich diesel engine exhaust gas. For comparison a Rh/SiO2 reference catalyst prepared by a conventional impregnation method was also tested. Further experiments were performed in which PtRh nanoparticles were deposited on a Rh/SiO2 reference catalyst sample to study the possibility for controlled modification of its activity. The catalytic activity measurements revealed that among the samples solely prepared by laser deposition the PtRh-SiO2 nanoparticle catalyst showed the highest activity for NO x reduction at low temperatures 100-300°C. In addition, it could be demonstrated that the initially low NO x reduction activity and the N2 selectivity of the Rh/SiO2 reference catalyst sample for temperatures below 250°C can be enhanced by post laser deposition of PtRh nanoparticles.

  2. Electrocatalysis of fuel cells reaction on Pt and Pt-bimetallic anode catalysts: A selective review

    Directory of Open Access Journals (Sweden)

    Stamenković Vojislav

    2002-01-01

    Full Text Available In this review we selectively summarize recent progress, primarily from our laboratory, in the development of interrelationships between the kinetics of the fuel cells reactions and the structure/composition of anode catalysts. The focus is placed on two types of metallic surfaces: platinum single crystals and bimetallic surfaces based on Pt. In the first part it was illustrated that the hydcogen reaction is structure sensitive process, with Pt(110 being an order of magnitude more active than either of the atomically "flatter" (100 and (111 surfaces. The hydrogen reaction on Pt(hkl modified by pseudomorphic Pd (submonolayers shows the "volcano-like" behavior, having the maximum rate on Pt(111 modified by 1 ML of Pd. The Pt(111-Pd system is used to demonstrate how the energetics of intermediates formed in the hydrogen reaction is affected by interfacial bonding and energetic constraints produced between pseudomorphic Pd films and the Pt(111 substrate. In the second part it was shown that the oxidation of Ha in the presence of CO occurs concurrently with CO oxidation on Pt and Pt bimetallic surfaces. The Pt-Ru system is used to demonstrate that both the bifunctional effect and the ligand effect contribute to the influence of Ru on the CO oxidation rate and for Hz oxidation process in the presence of CO. The knowledge is then used to create the real-life catalyst with the catalytic activities which are, to the greatest extend possible similar to the tailor-made surface.

  3. First principles investigations of small bimetallic PdGa clusters as catalysts for hydrogen dissociation

    Science.gov (United States)

    Kaul, Indu; Ghosh, Prasenjit

    2017-04-01

    Using first principles density functional theory based calculations, we have studied hydrogen dissociation on sub nanometer bimetallic clusters formed from d-block (Pd) and p-block (Ga) elements in gas phase to explore the feasibility of using them as cheap catalysts for hydrogen dissociation. Our calculations show that the dimers, trimers and tetramers of these clusters are thermodynamically more stable than the pure ones for all Ga concentrations. For a given cluster size, we find that the clusters containing equal amount of Pd and Ga are the most stable ones. In contrast to bulk PdGa, the contribution of Pd-d states to the highest occupied molecular orbitals of the bimetallic clusters are either very small or absent. Study of adsorption of hydrogen molecule on these clusters show that hydrogen binds in an activated form only on the Pd rich clusters. From the calculations of hydrogen dissociation barriers on tetramers of pure Pd, 25% Ga (Pd3Ga) and 50% Ga (Pd2Ga2) we find that Pd3Ga is the most efficient catalyst for hydrogen dissociation with barriers even lower than that on the PdGa surfaces.

  4. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  5. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  6. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    Valicor’s proprietary wet extraction process in conjunction with thermochemical pre-treatment was performed on algal biomass from two different algae strains, Nannochloropsis Salina (N.S.) and Chlorella to produce algae oils. Polar lipids such as phospholipids were hydrolyzed, and metals and metalloids, known catalyst poisons, were separated into the aqueous phase, creating an attractive “pre-refined” oil for hydrodeoxygenation (HDO) upgrading by Stevens. Oil content and oil extraction efficiency of approximately 30 and 90% respectively were achieved. At Stevens, we formulated a Pt-based bi-metallic catalyst which was demonstrated to be effective in the hydro-treating of the algae oils to produce ‘green’ diesel. The bi-metallic catalyst was wash-coated on a monolith, and in conjunction with a high throughput high pressure (pilot plant) reactor system, was used in hydrotreating algae oils from N.S. and Chlorella. Mixtures of these algae oils and refinery light atmospheric gas oil (LAGO) supplied by our petroleum refiner partner, Marathon Petroleum Corporation, were co-processed in the pilot plant reactor system using the Pt-based bi-metallic monolith catalyst. A 26 wt% N.S. algae oil/74 wt % LAGO mixture hydrotreated in the reactor system was subjected to the ASTM D975 Diesel Fuel Specification Test and it met all the important requirements, including a cetane index of 50.5. An elemental oxygen analysis performed by an independent and reputable lab reported an oxygen content of trace to none found. The successful co-processing of a mixture of algae oil and LAGO will enable integration of algae oil as a refinery feedstock which is one of the goals of DOE-BETO. We have presented experimental data that show that our precious metal-based catalysts consume less hydrogen than the conventional hydrotreating catalyst NiMo Precious metal catalysts favor the hydrodecarbonylation/hydrodecarboxylation route of HDO over the dehydration route preferred by base metal

  7. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Felix-Navarro, R. M., E-mail: moi6salazar@hotmail.com; Beltran-Gastelum, M.; Salazar-Gastelum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Perez-Sicairos, S.; Lin, S. W. [Centro de Graduados e Investigacion, Instituto Tecnologico de Tijuana (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados (Mexico); Alonso-Nunez, G. [Centro de Nanociencias y Nanotecnologia (Mexico)

    2013-08-15

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O{sub 2} to H{sub 2}O{sub 2}. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H{sub 2}SO{sub 4} electrolyte using dissolved O{sub 2}. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H{sub 2}O{sub 2} electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H{sub 2}O{sub 2} alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  8. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  9. Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst: A DFT study

    Science.gov (United States)

    Palotás, K.; Bakó, I.; Bugyi, L.

    2016-12-01

    Geometric and electronic characterizations of one monolayer rhodium with Nishiyama-Wassermann (NW) structure on Mo(110) substrate have been performed by density functional theory (DFT) calculations. In the NW structure the Rh atoms form a wavy structure propagating along the [001] direction, characterized by an amplitude of 0.26 Å in the [110] direction and by 0.10 Å in the [110] direction of the Mo(110) substrate. Strain and ligand effects operating in the rhodium film are distinguished and found to be manifested in the downward shift of the d-band center of the electron density of states (DOS) by 0.11 eV and 0.18 eV, respectively. The shift in the d-band center of Rh DOS predicts a decrease in the surface reactivity toward CO adsorption, which has been verified by detailed calculations of bond energies of CO located at on-top, bridge and hollow adsorption sites. The CO adsorption energies are decreased by about 35% compared to those reported for pure Rh(111), offering novel catalytic pathways for the molecule. An in-depth analysis of the charge transfer and the partial DOS characters upon CO adsorption on the NW-structured Rh(111)/Mo(110) bimetallic catalyst and on the pure Rh(111) surface sheds light on the bonding mechanism of CO and on the governing factors determining its lowered bond energy on the bimetallic surface.

  10. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  11. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  12. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Goodman, Wayne D.

    2012-12-21

    Pd-Au bimetallic catalysts often display enhanced catalytic activities and selectivities compared with Pd-alone catalysts. This enhancement is often caused by two alloy effects, i.e., ensemble and ligand effects. The ensemble effect is dilution of surface Pd by Au. With increasing surface Au coverages, contiguous Pd ensembles disappear and isolated Pd ensembles form. For certain reactions, for example vinyl acetate synthesis, this effect is responsible for reaction rate enhancement via the formation of highly active surface sites, e.g., isolated Pd pairs. The disappearance of contiguous Pd ensembles also switches off side reactions catalyzed by these sites. This explains selectivity increase of certain reactions, for example direct H2O2 synthesis. The ligand effect is electronic perturbation of Au to Pd. By direct charge transfer or affecting bond length, the ligand effect causes the Pd d band to be more filled and the d-band center away from the Fermi level. Both changes make Pd more "atomic like" therefore binding reactants and products weaker. For certain reactions, this eliminates the so-called "self poisoning" and enhances activity/selectivity.

  13. Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganok, Andrey I. [Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, D' Iorio Hall, 10 Marie Curie Street, Ottawa, Ont. (Canada); Inaba, Mieko [Natural Gas Technology Development Team, Teikoku Oil Co., 9-23-30 Kitakarasuyama, Setagaya-ku, Tokyo 157-0061 (Japan); Tsunoda, Tatsuo; Uchida, Kunio; Suzuki, Kunio; Hayakawa, Takashi [Institute for Materials and Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Takehira, Katsuomi [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2005-09-18

    A novel synthetic strategy for preparing bimetallic Ru-M (M=Cr, Fe, Co, Ni and Cu) catalysts, supported on Mg-Al mixed oxide, has been introduced. It was based on a 'memory effect', i.e. on the ability of Mg-Al mixed oxide to reconstruct a layered structure upon rehydration with an aqueous solution. By repeated calcinations-rehydration cycles, layered double hydroxide (LDH) precursors of catalysts containing two different metals were synthesized. Bimetallic catalysts were then generated (1) in situ from LDH under methane reforming reaction conditions and (2) from mixed metal oxides obtained by preliminary LDH calcination. Among all the LDH-derived catalysts, a Ru{sup 0.1%}-Ni{sup 5.0%}/MgAlO{sub x} sample revealed the highest activity and selectivity to syngas, a suitable durability and a low coking capacity. A promoting effect of ruthenium on catalytic function of supported nickel was demonstrated. Preliminary LDH calcination was shown to markedly affect the catalytic activity of the derived catalysts and especially their coking properties.

  14. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    Science.gov (United States)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted

  15. Preparation and characterization of planar Ni–Au bimetallic model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan, E-mail: fan.yang@chem.tamu.edu; Yao, Yunxi; Yan, Zhen; Min, Hlaing; Goodman, D. Wayne

    2013-10-15

    Ni–Au bimetallic model catalysts were prepared as thin films on Re(0 0 0 1) or Ru(0 0 0 1) single crystal substrates. Surface compositions and electronic structures of the Ni–Au thin films were characterized by low energy ion scattering spectroscopy and X-ray photoelectron spectroscopy, respectively. Surface alloys were prepared by annealing Ni–Au thin films from 500 to 800 K, resulting in substantial surface enrichment of Au. Annealing a Ni–Au thin film with a 1:1 bulk composition ratio at 700 K for 10 min resulted in a surface alloy with 84% (atomic concentration) of Au in the outermost surface layer. The surface atomic structure was investigated using CO as probe molecules, which exclusively adsorbs on the Ni atoms rather than on the Au atoms at room temperature. Polarization modulation infrared reflection absorption spectroscopy of CO adsorption on Ni–Au surface alloys showed that CO adsorption on two-fold bridge sites decreased and finally disappeared with an increase of Au surface concentration. The absence of Ni bridge site CO adsorption indicated that Ni atoms were isolated by Au atoms on Ni–Au alloyed surface.

  16. Facile synthesis of Pd-based bimetallic nanocrystals and their application as catalysts for methanol oxidation reaction

    Science.gov (United States)

    Xi, Pinxian; Cao, Yang; Yang, Fengchun; Ma, Cai; Chen, Fengjuan; Yu, Sha; Wang, Shuai; Zeng, Zhengzhi; Zhang, Xin

    2013-06-01

    We employed an efficient and facile route to synthesise monodisperse Pd-based bimetallic nanocrystals (MPd: M = Cu, Co and Ni) via a controlled co-reduction of Pd(ii) chloride and M(ii) nitrate at 200-230 °C in the presence of oleylamine (OAm). These monodisperse Pd-based nanocrystals have small dimensions, unique structures and homogeneous morphology, thus exhibit efficient catalytic activities for methanol oxidation in alkaline solution, which is much better than commercial Pd/C with same amount of palladium. The catalytic activities of these nanocrystals followed the order of NiPd/C > CoPd/C > CuPd/C > commercial Pd/C, due to the different synergistic effects. Our results show that these Pd-based bimetallic nanocrystals can be promising as practical catalysts for methanol oxidation reactions and other catalytic reactions in further investigations.We employed an efficient and facile route to synthesise monodisperse Pd-based bimetallic nanocrystals (MPd: M = Cu, Co and Ni) via a controlled co-reduction of Pd(ii) chloride and M(ii) nitrate at 200-230 °C in the presence of oleylamine (OAm). These monodisperse Pd-based nanocrystals have small dimensions, unique structures and homogeneous morphology, thus exhibit efficient catalytic activities for methanol oxidation in alkaline solution, which is much better than commercial Pd/C with same amount of palladium. The catalytic activities of these nanocrystals followed the order of NiPd/C > CoPd/C > CuPd/C > commercial Pd/C, due to the different synergistic effects. Our results show that these Pd-based bimetallic nanocrystals can be promising as practical catalysts for methanol oxidation reactions and other catalytic reactions in further investigations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00912b

  17. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale.

    Science.gov (United States)

    Shan, Shiyao; Petkov, Valeri; Prasai, Binay; Wu, Jinfang; Joseph, Pharrah; Skeete, Zakiya; Kim, Eunjoo; Mott, Derrick; Malis, Oana; Luo, Jin; Zhong, Chuan-Jian

    2015-12-07

    The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo

  18. Hydrogen production from the steam reforming of bio-butanol over novel supported Co-based bimetallic catalysts.

    Science.gov (United States)

    Cai, Weijie; de la Piscina, Pilar Ramirez; Homs, Narcis

    2012-03-01

    This paper reports the hydrogen production through the steam reforming of a bioresource-derived butanol mixture (butanol:acetone:ethanol=6:3:1 mass ratio) over supported cobalt-based catalysts. The support plays an important role for the catalytic behavior and Co/ZnO exhibits the best catalytic performance compared to Co/TiO(2) and Co/CeO(2). Moreover, a higher hydrogen yield is obtained over bimetallic Co-Ir/ZnO, which shows an increase in H(2) selectivity and a decrease in CH(4) selectivity under steam reforming conditions, compared to Co/ZnO. Raman results of the used catalysts indicate that the addition of Ir could prevent the coke formation to prolong the catalyst stability.

  19. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.

    Science.gov (United States)

    Liu, Jinyong; Choe, Jong Kwon; Sasnow, Zachary; Werth, Charles J; Strathmann, Timothy J

    2013-01-01

    Concentrated sodium chloride (NaCl) brines are often used to regenerate ion-exchange (IX) resins applied to treat drinking water sources contaminated with perchlorate (ClO(4)(-)), generating large volumes of contaminated waste brine. Chemical and biological processes for ClO(4)(-) reduction are often inhibited severely by high salt levels, making it difficult to recycle waste brines. Recent work demonstrated that novel rhenium-palladium bimetallic catalysts on activated carbon support (Re-Pd/C) can efficiently reduce ClO(4)(-) to chloride (Cl(-)) under acidic conditions, and here the applicability of the process for treating waste IX brines was examined. Experiments conducted in synthetic NaCl-only brine (6-12 wt%) showed higher Re-Pd/C catalyst activity than in comparable freshwater solutions, but the rate constant for ClO(4)(-) reduction measured in a real IX waste brine was found to be 65 times lower than in the synthetic NaCl brine. Through a series of experiments, co-contamination of the IX waste brine by excess NO(3)(-) (which the catalyst reduces principally to NH(4)(+)) was found to be the primary cause for deactivation of the Re-Pd/C catalyst, most likely by altering the immobilized Re component. Pre-treatment of NO(3)(-) using a different bimetallic catalyst (In-Pd/Al(2)O(3)) improved selectivity for N(2) over NH(4)(+) and enabled facile ClO(4)(-) reduction by the Re-Pd/C catalyst. Thus, sequential catalytic treatment may be a promising strategy for enabling reuse of waste IX brine containing NO(3)(-) and ClO(4)(-).

  20. Synergy between Two Metal Catalysts: A Highly Active Silica-Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane.

    Science.gov (United States)

    Samantaray, Manoja K; Dey, Raju; Kavitake, Santosh; Abou-Hamad, Edy; Bendjeriou-Sedjerari, Anissa; Hamieh, Ali; Basset, Jean-Marie

    2016-07-13

    A well-defined, silica-supported bimetallic precatalyst [≡Si-O-W(Me)5≡Si-O-Zr(Np)3] (4) has been synthesized for the first time by successively grafting two organometallic complexes [W(Me)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple-quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON = 1436) than the monometallic W hydride (TON = 650) in the metathesis of n-decane at 150 °C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation that occurs on Zr. The produced olefin resulting from a β-H elimination undergoes easy metathesis on W.

  1. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja

    2016-06-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of Zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON: 1436) than the monometallic W hydride (TON: 650) in metathesis of n-decane at 150 0C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation which occurs on Zr. The produced olefin resulting from a ß–H elimination undergoes easy metathesis on W.

  2. Influence of complexing agents on the preparation of bimetallic platinum-ruthenium catalysts supported on O-functionalized graphite cloths

    Energy Technology Data Exchange (ETDEWEB)

    Sieben, J.M., E-mail: jmsieben@uns.edu.a [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Universidad Nacional del Sur., Av. Alem 1253, (B8000CPB) Bahia Blanca (Argentina); Duarte, M.M.E.; Mayer, C.E. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Universidad Nacional del Sur., Av. Alem 1253, (B8000CPB) Bahia Blanca (Argentina)

    2010-02-18

    Electrodeposition of bimetallic Pt-Ru catalysts on O-functionalized graphite cloths from H{sub 2}PtCl{sub 6} and RuCl{sub 3} solutions containing trisodium citrate (Cit) and disodium dihydrogen ethylenediaminetetraacetate (Na{sub 2}H{sub 2}EDTA) was investigated. SEM analysis of the electrode prepared without complexant showed a relatively compact and rough deposit displaying a 'tree cortex' structure, whereas uniform size and globular shape particles regularly distributed over the support surface were obtained using citrate and Na{sub 2}H{sub 2}EDTA as complexants. In addition, XRD diffraction and EDX analysis revealed that the catalysts prepared using the complexants showed smaller size particles and lower Ru content. Electrocatalytic activity measurements indicated that the most active electrode for methanol oxidation was obtained with Na{sub 2}H{sub 2}EDTA as additive.

  3. Selective aerobic oxidation of 1,3-propanediol to 3-hydroxypropanoic acid using hydrotalcite supported bimetallic gold nanoparticle catalyst in water

    Science.gov (United States)

    Mohammad, Mujahid; Nishimura, Shun; Ebitani, Kohki

    2015-02-01

    Selective oxidation of 1,3-propanediol (1,3-PD) to 3-hydroxypropanoic acid (3-HPA), an important industrial building block, was successfully achieved using hydrotalcite-supported bimetallic Au nanoparticle catalysts in water at 343 K under aerobic and base-free conditions. The highest yield of 42% with 73% selectivity towards 3-HPA was afforded by 1wt% Au0.8Pd0.2-PVP/HT catalyst.

  4. Enhanced Hydrodeoxygenation of m -Cresol over Bimetallic Pt–Mo Catalysts through an Oxophilic Metal-Induced Tautomerization Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison; Ferguson, Glen Allen; Gallagher, James R.; Cheah, Singfoong; Beckham, Gregg T.; Schaidle, Joshua A.; Hensley, Jesse E.; Medlin, J. Will

    2016-07-01

    Supported bimetallic catalysts consisting of a noble metal (e.g., Pt) and an oxophilic metal (e.g., Mo) have received considerable attention for the hydrodeoxygenation of oxygenated aromatic compounds produced from biomass fast pyrolysis. Here, we report that PtMo can catalyze m-cresol deoxygenation via a pathway involving an initial tautomerization step. In contrast, the dominant mechanism on monometallic Pt/Al2O3 was found to be sequential Pt-catalyzed ring hydrogenation followed by dehydration on the support. Bimetallic Pt10Mo1 and Pt1Mo1 catalysts were found to produce the completely hydrogenated and deoxygenated product, methylcyclohexane (MCH), with much higher yields than monometallic Pt catalysts with comparable metal loadings and surface areas. Over an inert carbon support, MCH formation was found to be slow over monometallic Pt catalysts, while deoxygenation was significant for PtMo catalysts even in the absence of an acidic support material. Experimental studies of m-cresol deoxygenation together with density functional theory calculations indicated that Mo sites on the PtMo bimetallic surface dramatically lower the barrier for m-cresol tautomerization and subsequent deoxygenation. The accessibility of this pathway arises from the increased interaction between the oxygen of m-cresol and the Mo sites in the Pt surface. This interaction significantly alters the configuration of the precursor and transition states for tautomerization. A suite of catalyst characterization techniques including X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR) indicate that Mo was present in a reduced state on the bimetallic surface under conditions relevant for reaction. Overall, these results suggest that the use of bifunctional metal catalysts can result in new reaction pathways that are unfavorable on monometallic noble metal catalysts.

  5. Suppression of carbon formation in CH4–CO2 reforming by addition of Sr into bimetallic Ni–Co/γ-Al2O3 catalyst

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Fatesh

    2015-01-01

    Full Text Available Bimetallic catalysts, containing 5 wt% Ni + 5 wt% Co supported on γ-Al2O3 combined with different amounts of Sr promoter ranging from 0 to 1 wt%, for dry reforming reaction were prepared by the impregnation method. The dry reforming reaction was carried out at atmospheric pressure using CO2/CH4/N2 feed ratio of 17/17/2, F/W = 60 mL/min gcat and reaction temperature range of 500–700 °C. The performance of the developed catalyst was evaluated by estimating the CH4 and CO2 conversions, and by performing a long run stability test. The fresh and spent catalysts were characterized by BET, TGA, TPD, TPR, and TPO. The bimetallic catalysts provided higher activity than the monometallic-catalysts. When the bimetallic was promoted with Sr, the activity decreased slightly however, the stability enhanced. The best stability, estimated by the deactivation factor, and less carbon deposition, measured by TGA, were obtained when 5Ni5CoSr0.75 catalyst was used.

  6. EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles

    NARCIS (Netherlands)

    Beale, A.M.; Weckhuysen, B.M.

    2013-01-01

    The influence of atom packing and the geometric arrangement of atoms on the coordination number(s) and resultant simulated EXAFS spectra for face centrered cubic (fcc), hexagonal close packed (hcp) and body centered cubic (bcc) monometallic structures and fcc bimetallic structures, has been examined

  7. EXAFS Peaks and TPR Characterizing Bimetallic Interactions: Effects of Impregnation Methods on the Structure of Pt-Ru/C Catalysts

    Directory of Open Access Journals (Sweden)

    Nan-Yu Chen

    2014-01-01

    Full Text Available To investigate bimetallic interactions, Pt-Ru/C catalysts were prepared by coimpregnation (Pt-Ruco/C and successive impregnation (Ru-Ptse/C, while Pt/C, Ru/C, and reduced Pt-Rublack were used as reference. Those samples were characterized by XAS and TPR. When Pt(absorber-Ru(backscatter phase-and-amplitude correction is applied to Fourier transformed (FT EXAFS of Pt-Rublack at Pt edge, the characteristic peak of Pt-Ru interactions appears at 2.70 Å´, whereas, when Pt-Pt correction is applied, the peak appears at about 2.5 Å´. Detailed EXAFS analysis for Pt-Ruco/C and Pt-Ruse/C confirms the nature of the characteristic peak and further indicates that the interactions can semiquantitatively be determined by the relative intensity between Pt-Ru and Pt-Pt characteristic peaks. This simple method in determining bimetallic interaction can be extended to characterize Pt-Pd/γ-Al2O3. However, for Pt-Re/γ-Al2O3, Pt-Re interactions cannot be determined by the method because of the overlap of Pt-Pt and Pt-Re characteristic peaks due to similar phase functions.

  8. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters.

    Science.gov (United States)

    Kaizuka, Kosuke; Miyamura, Hiroyuki; Kobayashi, Shū

    2010-11-01

    Selective oxidation of alcohols catalyzed by novel carbon-stabilized polymer-incarcerated bimetallic nanocluster catalysts using molecular oxygen has been developed. The reactivity and the selectivity were strongly dependent on the combination of metals and solvent systems; aldehydes and ketones were obtained by the gold/platinum catalyst in benzotrifluoride, and esters were formed by the gold/palladium catalyst in methanol. To the best of our knowledge, this is the first example that the reaction pathway has been changed dramatically in gold catalysis by combining with a second metal. The differences in the activity and the selectivity are considered to be derived from the difference in the structure of the bimetallic clusters.

  9. Bimetallic PtAu superlattice arrays: Highly electroactive and durable catalyst for oxygen reduction and methanol oxidation reactions

    Science.gov (United States)

    Feng, Jiu-Ju; He, Li-Li; Fang, Rui; Wang, Qiao-Li; Yuan, Junhua; Wang, Ai-Jun

    2016-10-01

    Superlattice arrays, an important type of nanomaterials, have wide applications in catalysis, optic/electronics and energy storage for the synergetic effects determined by both individual metals and collective interactions. Herein, a simple one-pot solvothermal coreduction approach is developed for facile preparation of bimetallic PtAu alloyed superlattice arrays (PtAu SLAs) in oleylamine, with the assistance of urea via hydrogen bonding induced self-assembly. Urea is essential in morphology-controlled process and prevents PtAu nanoparticles from the disordered aggregation. The characterization and formation mechanism of PtAu SLAs are investigated in details. The as-synthesized hybrid nanocrystals exhibit enhanced electrocatalytic performances for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline electrolyte in comparison with commercial Pt-C (50%, wt.%) and Pt black catalysts.

  10. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  11. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  12. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: Promotional effect of In

    Science.gov (United States)

    Chen, Yanjun; Chen, Jixiang

    2016-11-01

    Ni/SiO2 and the bimetallic NixIn/SiO2 catalysts with different Ni/In ratios were tested for the selective hydrogenation of acetylene, and their physicochemical properties before and after the reaction were characterized by means of N2-sorption, H2-TPR, XRD, TEM, XPS, H2 chemisorption, C2H4-TPD, NH3-TPD, FT-IR of adsorbed pyridine, and TG/DTA and Raman. A promotional effect of In on the performance of Ni/SiO2 was found, and NixIn/SiO2 with a suitable Ni/In ratio gave much higher acetylene conversion, ethylene selectivity and catalyst stability than Ni/SiO2. This is ascribed to the geometrical isolation of the reactive Ni atoms with the inert In ones and the charge transfer from the In atoms to Ni ones, both of which are favorable for reducing the adsorption strength of ethylene and restraining the Csbnd C hydrogenolysis and the polymerizations of acetylene and the intermediate compounds. On the whole, Ni6In/SiO2 and Ni10In/SiO2 had better performance. Nevertheless, with increasing the In content, the selectivity to the C4+ hydrocarbons tended to increase due to the enhanced catalyst acidity because of the charge transfer from the In atoms to Ni ones. As the Lewis acid ones, the In sites could promote the polymerization. The catalyst deactivation was also analyzed. We propose that the Ni/SiO2 deactivation is mainly attributed to the phase change from metallic Ni to nickel carbide. The introduction of In inhibited the formation of nickel carbide. However, as the In content increased, the carbonaceous deposit became the main reason for the NixIn/SiO2 deactivation due to the enhanced catalyst acidity.

  13. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  14. A Novelγ-Alumina Supported Fe-Mo Bimetallic Catalyst for Reverse Water Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Gharibi Kharaji; Ahmad Shariati; Mohammad Ali Takassi

    2013-01-01

    In reverse water gas shift (RWGS) reaction CO2 is converted to CO which in turn can be used to pro-duce beneficial chemicals such as methanol. In the present study, Mo/Al2O3, Fe/Al2O3 and Fe-Mo/Al2O3 catalysts were synthesised using impregnation method. The structures of catalysts were studied using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, inductively coupled plasma atomic emission spectrometer (ICP-AES), temperature programmed reduction (H2-TPR), CO chemisorption, energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. Kinetic properties of all catalysts were investigated in a batch re-actor for RWGS reaction. The results indicated that Mo existence in structure of Fe-Mo/Al2O3 catalyst enhances its activity as compared to Fe/Al2O3. This enhancement is probably due to better Fe dispersion and smaller particle size of Fe species. Stability test of Fe-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO yield for 60 h of time on stream was demonstrated. Fe2(MoO4)3 phase was found in the structures of fresh and used catalysts. TPR results also indicate that Fe2(MoO4)3 phase has low reducibility, therefore the Fe2(MoO4)3 phase significantly inhibits the reduction of the remaining Fe oxides in the catalyst, resulted in high stability of Fe-Mo/Al2O3 catalyst. Overall, this study introduces Fe-Mo/Al2O3 as a novel catalyst with high CO yield, almost no by-products and fairly stable for RWGS reaction.

  15. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

    Directory of Open Access Journals (Sweden)

    Anna M. Venezia

    2013-06-01

    Full Text Available Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.

  16. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Science.gov (United States)

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  17. Hydrogenation Conversion of Phenanthrene over Dispersed Mo-based Catalysts

    Institute of Scientific and Technical Information of China (English)

    Hu Yiwen; Da Zhijian; Wang Zijun

    2015-01-01

    With oil-soluble molybdenum compound and sublimed sulfur serving as raw materials, two dispersed Mo-based catalysts were prepared, characterized and then applied to the hydrogenation conversion of phenanthrene. The test results showed that under the conditions speciifed by this study, the catalyst prepared in a higher sulifding atmosphere was more catalytically active due to its higher content of MoS2 and stronger intrinsic catalytic activity of MoS2 unit, which demon-strated that the sulifding atmosphere for the preparation of catalysts not only could inlfuence the yield of MoS2 but also the structure of MoS2. The analysis on the selectivity of octahydrophenanthrene isomers revealed that the catalyst prepared in a lower sulifding atmosphere had a relatively higher catalytic selectivity to the hydrogenation of outer aromatic ring and the structure of catalysts could be modiifed under the speciifc reaction conditions. Moreover, the selectivity between the isomers of as-octahydrophenanthrene at different reaction time and temperature was analyzed and, based on the results, a hydroge-nation mechanism over dispersed Mo-based catalysts was suggested, with monatomic hydrogen transfer and catalytic sur-face desorption of the half-addition intermediates functioning as the key points. In addition, it is concluded that the catalyst prepared in a lower sulifding atmosphere was more capable of adsorption than the other one.

  18. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  19. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O' neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  20. Purification of Carbon Nanotubes Synthesized by Catalytic Decomposition of Methane using Bimetallic Fe-Co Catalysts Supported on MgO

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Beh Hoe; Ramli, Irmawati [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia); Yahya, Noorhana [Fundamental and Applied Science Department Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Pah, Lim Kean, E-mail: irmawati@science.upm.edu.my [Physics department, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    This work reports the synthesis of carbon nanotubes by catalytic decomposition of methane using bimetallic Fe-Co catalysts supported on MgO. Transmission electron microscopy (TEM) results show the as-prepared carbon nanotubes are multi-walled carbon nanotubes (MWCNTs) with diameter in the range of 15nm to 45nm. Purification of as-prepared MWCNTs was carried out by acid and heat treatment method. EDX results show the Fe, Co and MgO catalysts were successfully removed by refluxing the as-prepared MWCNTs in 3M H{sub 2}SO{sub 4}.

  1. Purification of Carbon Nanotubes Synthesized by Catalytic Decomposition of Methane using Bimetallic Fe-Co Catalysts Supported on MgO

    Science.gov (United States)

    Guan, Beh Hoe; Ramli, Irmawati; Yahya, Noorhana; Kean Pah, Lim

    2011-02-01

    This work reports the synthesis of carbon nanotubes by catalytic decomposition of methane using bimetallic Fe-Co catalysts supported on MgO. Transmission electron microscopy (TEM) results show the as-prepared carbon nanotubes are multi-walled carbon nanotubes (MWCNTs) with diameter in the range of 15nm to 45nm. Purification of as-prepared MWCNTs was carried out by acid and heat treatment method. EDX results show the Fe, Co and MgO catalysts were successfully removed by refluxing the as-prepared MWCNTs in 3M H2SO4.

  2. Selective Oxidation of 1,6-Hexanediol to 6-Hydroxycaproic Acid over Reusable Hydrotalcite-Supported Au-Pd Bimetallic Catalysts.

    Science.gov (United States)

    Tuteja, Jaya; Nishimura, Shun; Choudhary, Hemant; Ebitani, Kohki

    2015-06-08

    Selective oxidation of 1,6-hexanediol into 6-hydroxycaproic acid was achieved over hydrotalcite-supported Au-Pd bimetallic nanoparticles as heterogeneous catalyst using aqueous H2 O2 . N,N-dimethyldodecylamine N-oxide (DDAO) was used as an efficient capping agent. Spectroscopic analyses by UV/Vis, TEM, XPS, and X-ray absorption spectroscopy suggested that interactions between gold and palladium atoms are responsible for the high activity of the reusable Au40 Pd60 -DDAO/HT catalyst.

  3. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  4. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  5. Performance Comparison of Two Newly Developed Bimetallic (X-Mo/Al2O3, X=Fe or Co) Catalysts for Reverse Water Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Gharibi Kharaji; Ahmad Shariati

    2016-01-01

    The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al2O3, was com-pared for reverse water gas shift (RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, inductively coupled plasma-atomic emission spec-trometry (ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscopy (SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a ifxed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO2 conversion at all temperature level. The time-on-stream (TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60 h for both catalysts. The Fe-Mo/Al2O3 catalyst exhibits good stability within a period of 60 h, however, the Co-Mo/Al2O3 is gradually deactivated after 50 h of reaction time. Existence of Fe2(MoO4)3 phase in Fe-Mo/Al2O3 catalyst makes this catalyst more stable for RWGS reaction.

  6. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  7. XPS study of Cu-Ni bimetallic catalyst%Cu-Ni双金属催化剂的XPS研究

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    采用XPS方法研究了以不同方式引入Ni的Cu-Ni/Al2O3双金 属催化剂的表面结构及不同处理条件对催化剂表面结构的影响。发现催化剂表面存在表面铝 酸盐物种,且Ni的存在会促进表面铝酸盐物种的生成。催化剂经H2还原处理或经CO2加 氢反应后均要发生表面重构。Ni的存在会影响表面重构过程从而影响催化剂的活性和选择性 ,在所研究的含Ni催化剂上,CO2加氢反应经历了生成双齿表面吸附中间物的过程。%The surface structure of Cu-Ni bimetallic catalysts and its variation with diff erent treatment conditions were studied by XPS techique.The effect of the chemi cal state of Ni before the impregnation of Cu in catalyst preparation on the sur f ace structure and its variation were also investigated.It is found that Cu atom approaches the surface of Al2O3 when it is supported.Surface aluminates a re formed on the surface of the catalysts and the presence of Ni favorites the f ormation of surface aluminates.The surface content of Cu is increased when Ni e x isted in reduced form before the introduction of Cu,while the opposite is true w hen Ni existed in oxidized form before introduction of Cu.Surface reconstructio n is observed when the samples studied are reduced in H2 or treated under CO 2 hydrogenation condition.The hydrogenation of CO2 enriches the surface c ontenrt of Cu species comparing to reduction.After CO2 hydrogenation treat ment,Cu species is observed to migrate to the surface of the catalyst in the abs ence of Ni,while in the presence of Ni surface is remarkably decreased.Bidentat e CO2 adsorptive species with the two O of CO2 cooordinated to metal atom s is a possible intermediate in the hydrogenation of CO2 over Ni containing c atalyst studied.

  8. Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong Shari; Hensley, Alyssa J.; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  9. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  10. Orthogonal experiment of a supported bimetallic catalyst prepared by homogeneous precipitation method*%均匀沉淀法制备负载型双金属催化剂的正交实验研究

    Institute of Scientific and Technical Information of China (English)

    别妙; 陈龙; 黄涛; 何贠; 罗凡; 李建芬

    2011-01-01

    以NiCl2·6H2O和Co(NO3)2·6H2O为原料,CO(NH2)2为沉淀剂,Al2O3为载体,采用均匀沉淀法制备了负载型双金属催化剂(Ni-Co/γ-Al2O3).利用正交实验探讨了不同工艺参数对催化剂合成的影响,并得出了最佳制备工艺.实验得出的最佳工艺参数为:n(NiCl2·6H2O)/n(Co(NO3)2·6H2O)为4∶1,n(CO(NH2)2)/n(Ni2+Co2+)为6∶1,均匀沉淀反应的温度和时间分别为115%和2.5h.同时运用XRD、SEM等分析手段对催化剂的物相结构和形貌进行了表征.结果显示催化剂外壳由复合的Ni-Co金属氧化物包裹,分散性良好,呈现多层立体结构.%The supported bimetallic catalysts (nano-Ni-Co/γ-Al2O3) were prepared by a homogeneous precipitation method involving an aqueous solution of nickel chloride hexahydrate, cobalt nitrate hexahydrate and urea, with alumina as the catalyst carrier. The effects of various technical parameters on the synthesis yield of catalysts were investigated and the optimum processing conditions were found through orthogonal experiments. The optimum processing conditions to prepare Ni-Co/γ-A12O3 bimetallic catalysts were as follows: the molar ratio of nickel chloride hexahydrate to cobalt nitrate hexahydrate was 4:1, the molar ratio of urea to metal salts was 6:1, the reaction temperature was 115℃, the reaction time was 2.5h. Different approaches such as XRD and SEM were adopted to characterize the crystalline structure and morphology of the supported catalysts. The analytical results indicated that the supported catalysts had the composite nanoparticle of nickel and cobalt oxide on the surfaee of γ-A12O3 carrier, which is a multi-layered structure with well dispersed.

  11. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  12. Selective hydrogenation of acetylene on SiO{sub 2} supported Ni-In bimetallic catalysts: Promotional effect of In

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanjun; Chen, Jixiang, E-mail: jxchen@tju.edu.cn

    2016-11-30

    Graphical abstract: A suitable Ni/In ratio remarkably enhanced the acetylene conversion, the selectivity to ethylene and the catalyst stability. Display Omitted - Highlights: • There was a promotional effect of In on the performance of Ni/SiO{sub 2}. • A suitable Ni/In ratio was required for good performance of Ni{sub x}In/SiO{sub 2}. • Both geometrical and electronic effects of In contributed to good performance. • Ni/SiO{sub 2} deactivation is mainly owing to phase change from Ni to nickel carbide. • The carbonaceous deposit was the main reason for Ni{sub x}In/SiO{sub 2} deactivation. - Abstract: Ni/SiO{sub 2} and the bimetallic Ni{sub x}In/SiO{sub 2} catalysts with different Ni/In ratios were tested for the selective hydrogenation of acetylene, and their physicochemical properties before and after the reaction were characterized by means of N{sub 2}-sorption, H{sub 2}-TPR, XRD, TEM, XPS, H{sub 2} chemisorption, C{sub 2}H{sub 4}-TPD, NH{sub 3}-TPD, FT-IR of adsorbed pyridine, and TG/DTA and Raman. A promotional effect of In on the performance of Ni/SiO{sub 2} was found, and Ni{sub x}In/SiO{sub 2} with a suitable Ni/In ratio gave much higher acetylene conversion, ethylene selectivity and catalyst stability than Ni/SiO{sub 2}. This is ascribed to the geometrical isolation of the reactive Ni atoms with the inert In ones and the charge transfer from the In atoms to Ni ones, both of which are favorable for reducing the adsorption strength of ethylene and restraining the C−C hydrogenolysis and the polymerizations of acetylene and the intermediate compounds. On the whole, Ni{sub 6}In/SiO{sub 2} and Ni{sub 10}In/SiO{sub 2} had better performance. Nevertheless, with increasing the In content, the selectivity to the C4+ hydrocarbons tended to increase due to the enhanced catalyst acidity because of the charge transfer from the In atoms to Ni ones. As the Lewis acid ones, the In sites could promote the polymerization. The catalyst deactivation was also analyzed

  13. Mono- and Bimetallic Ruthenium—Arene Catalysts for Olefin Metathesis: A Survey

    Science.gov (United States)

    Borguet, Yannick; Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, we summarize the main achievements of our group toward the development of easily accessible, highly efficient ruthenium—arene catalyst precursors for olefin metathesis. Major advances in this field are presented chronologically, with an emphasis on catalyst design and mechanistic details. The first part of this survey focuses on monometallic complexes with the general formula RuCl2(p-cymene)(L), where L is a phosphine or N-heterocyclic carbene ancillary ligand. In the second part, we disclose recent developments in the synthesis and catalytic applications of homobimetallic ruthenium—arene complexes of generic formula (p-cymene)Ru(μ-Cl)3RuCl(η2-C2H4)(L) and their derivatives resulting from the substitution of the labile ethylene moiety with vinylidene, allenylidene, or indenylidene units

  14. 常压下Pt-Bi双金属催化剂上甘油选择性氧化%Glycerol Oxidation with Oxygen over Bimetallic Pt-Bi Catalysts under Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    梁丹; 崔世玉; 高静; 王军华; 陈平; 侯昭胤

    2011-01-01

    制备了一系列活性碳(AC)负载的Pt-Bi双金属催化剂,考察了催化剂中Bi含量对其催化甘油选择性氧化反应性能的影响.结果表明,适量Bi的添加可以改善催化剂中Pt的氧化还原性能,从而有利于催化剂活性的提高和二羟基丙酮(DIHA)产物的生成.当Bi的含量为5%时,该催化剂的活性最高,甘油转化率和DIHA选择性分别达到91.5%和49.0%.表征结果显示,Pt-Bi颗粒的平均粒径为3.8 nm,且高度分散在催化剂表面,这是该催化剂具有较高活性的主要原因.%A series of bimetallic Pt-Bi catalysts with a constant platinum content of 5.0 wt% and a varied bismuth content (3.0-7.0 wt%)supported on active carbon were prepared and used for glycerol oxidation with oxygen under atmospheric pressure.The bimetallic Pt-Bi/C was efficient for the selective oxidation of glycerol to dihydroxyacetone (DIHA) and the selectivity for DIHA reached 49.0% at a 91.5%conversion of glycerol over the 5%Pt-5%Bi/C catalyst.X-ray diffraction and transmission electron microscopy analysis revealed that the specially configured Pt-Bi nanoparticles in 5%Pt-5%Bi/C were highly dispersed (3.8 nm) over the active carbon support,which is proposed to contribute to the improved performance.

  15. From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raul F.; Crooks, Richard M.; Mavrikakis, Manos

    2014-04-08

    “Catalysis by design” has been a dream for decades. To specify the composition and structure of matter to effect a desired catalytic transformation with desired and predicted rate and selectivity remains a monumental challenge, especially in heterogeneous catalysis. Our research thrusts have been chosen not only for their practical and scientific relevance, e.g. for more efficient and sustainable chemicals and fuels production, but also because they provide a foundation for developing and exploring broadly applicable principles and strategies for catalyst design.

  16. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes

    Indian Academy of Sciences (India)

    B Rajesh; K Ravindranathan Thampi; J -M Bonard; B Viswanathan

    2000-10-01

    The template carbonization of polyphenyl acetylene yields hollow, uniform cylindrical carbon nanotubes with outer diameter almost equal to pore diameter of the template used. High resolution transmission electron microscopic investigation reveals that Pt–Ru nanoparticles are highly dispersed inside the tube with an average particle size of 1.7 nm.

  17. Deep Hydrodesulfurization of Diesel Fuel over Diatomite-dispersed NiMoW Sulifde Catalyst

    Institute of Scientific and Technical Information of China (English)

    Liu Di; Liu Chenguang

    2013-01-01

    Diatomite-dispersed NiMoW catalyst was prepared and characterized,and the activity of catalyst samples was tested during the HDS reaction of FCC diesel. Sulfur compounds in the feedstock and the hydrogenated products obtained over different catalysts were determined by GC-PFPD. The test results showed that the diatomite-dispersed NiMoW catalyst had high hydrodesulfurization activity for FCC diesel, which could be contributed to the excellent hydrogenation perfor-mance of the said catalyst. Characterization of catalyst by TEM and XRD indicated that the diatomite-dispersed NiMoW catalyst possessed higher layer stacking, larger curvature of MoS2 or WS2, and segregated Ni3S2 crystals relative to the sup-ported catalyst. This kind of structure leads to high hydrogenation activity of the diatomite-dispersed NiMoW catalyst.

  18. Synthesis,characterization and hydrodesulfurization activity of silica-dispersed NiMoW trimetallic catalysts

    Institute of Scientific and Technical Information of China (English)

    Di Liu; Lihua Liu; Guangci Li; Chenguang Liu

    2010-01-01

    Silica-dispersed NiMoW trimetallic hydrodesulfurization catalysts were prepared by deposition-precipitation method.For comparative purposes,bulk NiMoW trimetallic catalysts were obtained by co-precipitation.Silica was employed to disperse active metals for full utilization of active components and silica-dispersed NiMoW catalyst had high active metal content.BET analysis showed that silica-dispersed NiMoW trimetallic catalysts had a high surface area(165.1 m2/g)and pore volume(0.27 ml/g).Transmission electron microscopy results proved that active components were well dispersed.Hydrodesulfurization activity of silica-dispersed NiMoW catalysts was much higher than that of comparative catalysts and up to twice greater than those of commercial NiMo alumina-supported systems per gram of catalyst.

  19. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  20. Final Technical Report: Tandem and Bimetallic Catalysts for Oxidative Dehydrogenation of Light Hydrocarbon with Renewable Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States)

    2017-01-06

    An estimated 490 million metric tons of lignocellulosic biomass is available annually from U.S. agriculture and forestry. With continuing concerns over greenhouse gas emission, the development of efficient catalytic processes for conversion of biomass derived compounds is an important area of research. Since carbohydrates and polyols are rich in oxygen, approximately one oxygen atom per carbon, removal of hydroxyl groups via deoxygenation is needed. The necessary hydrogen required for hydrodeoxygenation (HDO) would either come from reforming biomass itself or from steam reforming of natural gas. Both processes contribute to global CO2 emission. The hope is that eventually renewable sources such as wind and solar for hydrogen production will become more viable and economic in the future. In the meantime, unconventional natural gas production in North America has boomed. As a result, light hydrocarbons present an opportunity when coupled with biomass derived oxygenates to generate valuable products from both streams without co-production of carbon dioxide. This concept is the focus of our current funding period. The objective of the project requires coupling two different types of catalysis, HDO and dehydrogenation. Our hypothesis was formulated around our success in establishing oxorhenium catalysts for polyol HDO reactions and known literature precedence for the use of iridium hydrides in alkane dehydrogenation. To examine our hypothesis we set out to investigate the reaction chemistry of binuclear complexes of oxorhenium and iridium hydride.

  1. Passivation of bimetallic catalysts used in water treatment: prevention and reactivation.

    Science.gov (United States)

    Chen, Jianming; Gillham, Robert W; Gui, Lai

    2013-01-01

    With respect to degradation rates and the range in contaminants treated, bimetals such as Ni-Fe or Pd-Fe generally outperform unamended granular iron. However, the catalytic enhancement is generally short-lived, lasting from a few days to months. To take advantage of the significant benefits of bimetals, this study aims at developing an effective method for the rejuvenation of passivated bimetals and alternatively, the prevention of rapid reactivity loss of bimetals. Because the most likely cause of Ni-Fe and Pd-Fe passivation is the deposition of iron oxide films over the catalyst sites, it is hypothesized that removal of the iron oxide films will restore the lost reactivity or avoiding the deposition of iron oxide films will prevent passivation. Two organic ligands (ethylenediaminetetraacetic acid (EDTA), and [s,s]-ethylenediaminedisuccinate acid ([s,s]-EDDS)) and two acids (citric acid and sulphuric acid) were tested as possible chemical reagents for both passivation rejuvenation and prevention. Trichloroethene (TCE) and Ni-Fe were chosen as probes for chlorinated solvents and bimetals respectively. The test was carried out using small glass columns packed with Ni-Fe. TCE solution containing a single reagent at various concentrations was pumped through the Ni-Fe columns with a residence time in the Ni-Fe of about 6.6 min. TCE concentrations in the influent and effluent were measured to evaluate the performance of each chemical reagent. The results show that (i) for passivated Ni-Fe, flushing with a low concentration of acid or ligand solution without mechanical mixing can fully restore the lost reactivity; and (ii) for passivation prevention, adding a small amount of a ligand or an acid to the feed solution can successfully prevent or at least substantially reduce Ni-Fe passivation. All four chemicals tested are effective in both rejuvenation and prevention, but sulphuric acid and citric acid are considered to be the most practical reagents due to their

  2. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    De Corte, S.; Fitts, J.; Hennebel, T.; Sabbe, T.; Bliznuk, V.; Verschuere, S.; van der Lelie, D.; Verstraete, W.; Boon, N.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.

  3. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  4. Polymer Film Supported Bimetallic Au-Ag Catalysts for Electrocatalytic Oxidation of Ammonia Borane in Alkaline Media

    Institute of Scientific and Technical Information of China (English)

    Şükriye Ulubay Karabiberoglu; ÇagrCeylan Koçak; Süleyman Kocak; Zekerya Dursun

    2016-01-01

    Ammonia borane is widely used in most areas including fuel cell applications. The present paper describes electrochemical behavior of ammonia borane in alkaline media on the poly(p-aminophenol) film modified with Au and Ag bimetallic nanoparticles. The glassy carbon electrode was firstly covered with polymeric film electrochemically and then, Au, Ag, and Au–Ag nanoparticles were deposited on the polymeric film, respectively. The surface morphology and chemical composition of these electrodes were examined by scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It was found that alloyed Au–Ag bimetallic nanoparticles are formed. Electrochemical measurements indicate that the developed electrode modified by Au–Ag bimetallic nanoparticles exhibit the highest electrocatalytic activity for ammonia borane oxidation in alkaline media. The rotating disk electrode voltammetry demonstrates that the developed electrode can catalyze almost six-electron oxidation pathway of ammonia borane. Our results may be attractive for anode materials of ammonia borane fuel cells under alkaline conditions.

  5. Comparison of P-containing {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB (Canada)

    2006-09-01

    Phosphorus containing {gamma}-Al{sub 2}O{sub 3} supported bimetallic Ni-Mo carbide, nitride and sulfide catalysts have been synthesized from an oxide precursor containing 12.73wt.% Mo, 2.54wt.% Ni and 2.38wt.% P and characterized by elemental analysis, pulsed CO chemisorption, surface area measurements, X-ray diffraction, temperature-programmed reduction and DRIFT spectroscopy of CO adsorption. DRIFT spectroscopy of adsorbed CO on activated catalysts showed that carbide and nitride catalysts have surface exposed sites of Mo{sup o+} (0bimetallic Ni-Mo carbide, nitride and sulfide catalysts were compared against commercial Ni-Mo/Al{sub 2}O{sub 3} catalyst in a trickle bed reactor using light gas oil and heavy gas oil derived from Athabasca bitumen in the temperature range 340-370 and 375-400{sup o}C respectively at 8.8MPa. The gradual transformation of Ni-Mo carbide and nitride phases into Ni-Mo sulfide phases was observed during precoking period, and the formed Ni-Mo sulfide phases enhanced the HDN and HDS activities of carbide and nitride catalysts. The {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic sulfide catalyst was found to be more active for HDN and HDS of light gas oil and heavy gas oil than the corresponding carbide and nitride catalysts on the basis of unit weight. (author)

  6. Effect of Reaction Temperature in the Selective Synthesis of Single Wall Carbon Nanotubes (SWNT) on a Bimetallic CoCr-MCM-41 Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Zoican Loebick, C.; Abanulo, D; Majewska, M; Haller, G; Pfefferle, L

    2010-01-01

    Synthesis of single wall carbon nanotubes (SWNT) on a CoCr-MCM-41 bimetallic catalyst by CO disproportionation has been carried out at five different temperatures between 500 and 900 C. A series of methods have been employed for a comprehensive assessment effect of temperature on the size-controllability of the catalyst particles and the morphology of the resultant SWNT. By extended fine structure X-ray absorption, thermogravimetric analysis, resonance Raman spectroscopy, photoluminescence excitation (PLE) mapping and transmission electron microscopy we found an optimal synthesis temperature window between 600 and 800 C. In this window, modifying the reaction temperature leads to significant changes in the SWNT yield, diameter and chirality distribution. Decrease in reaction temperature favored the selective synthesis of very small diameter carbon nanotubes (as low as 0.6 nm). Chirality dependence of SWNT on temperature has been measured by PLE. A progressive suppression of larger diameter SWNT identities in the measured SWNT population was noted when reaction temperature decreased. In the measured PL maps, two near armchair structures (6,5) and (7,3) were dominant at 600 and 700 C.

  7. Insight on the Interaction of Methanol-Selective Oxidation Intermediates with Au- or/and Pd-Containing Monometallic and Bimetallic Core@Shell Catalysts.

    Science.gov (United States)

    Czelej, Kamil; Cwieka, Karol; Colmenares, Juan Carlos; Kurzydlowski, Krzysztof J

    2016-08-02

    Using density functional theory (DFT), the interaction of crucial molecules involved in the selective partial oxidation of methanol to methyl formate (MF) with monometallic Au and Pd and bimetallic Au/Pd and Pd/Au core@shell catalysts is systematically investigated. The core@shell structures modeled in this study consist of Au(111) and Pd(111) cores covered by a monolayer of Pd and Au, respectively. Our results indicate that the adsorption strength of the molecules examined as a function of catalytic surface decreases in the order of Au/Pd(111) > Pd(111) > Au(111) > Pd/Au(111) and correlates well with the d-band center model. The preadsorption of oxygen is found to have a positive impact on the selective partial oxidation reaction because of the stabilization of CH3OH and HCHO on the catalyst surface and the simultaneous intensification of MF desorption. On the basis of a dynamical matrix approach combined with statistical thermodynamics, we propose a simple route for evaluating the Gibbs free energy of adsorption as a function of temperature. This method allows us to anticipate the relative temperature stability of molecules involved in the selective partial oxidation of methanol to MF in terms of catalytic surface.

  8. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Gao, Guang; Zhang, Xin; Li, Fuwei [ChinaU - Petroleum; (Chinese Aca. Sci.)

    2016-02-04

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (RuxNi1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophase before pyrolysis and silica removal. The resulting RuxNi1–x–OMC materials are in-depth characterized with X-ray diffraction, N2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru0.9Ni0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h–1) was obtained, and the Ru0.9Ni0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.

  9. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry. It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.

  10. Effect of promoter and noble metals and suspension pH on catalytic nitrate reduction by bimetallic nanoscale Fe(0) catalysts.

    Science.gov (United States)

    Bae, Sungjun; Hamid, Shanawar; Jung, Junyoung; Sihn, Youngho; Lee, Woojin

    2016-01-01

    Experiments were conducted to investigate the effect of experimental factors (types of promotor and noble metals, H2 injection, and suspension pH) on catalytic nitrate reduction by bimetallic catalysts supported by nanoscale zero-valent iron (NZVI). NZVI without H2 injection showed 71% of nitrate reduction in 1 h. Cu/NZVI showed the almost complete nitrate reduction (96%) in 1 h, while 67% of nitrate was reduced by Ni/NZVI. The presence of noble metals (Pd and Pt) on Cu/NZVI without H2 injection resulted in the decrease of removal efficiency to 89% and 84%, respectively, due probably to the electron loss of NZVI for formation of metallic Pd and Pt. H2 injection into Cu-Pd/NZVI suspension significantly improved both catalytic nitrate reduction (>97% in 30 min) and N2 selectivity (18%), indicating that adsorbed H on active Pd sites played an important role for the enhanced nitrate reduction and N2 selectivity. The rapid passivation of NZVI surface resulted in a dramatic decrease in nitrate reduction (79-28%) with an increase in N2 selectivity (8-66%) as the suspension pH increased from 8 to 10.

  11. Bimetallic NiCo functional graphene: an efficient catalyst for hydrogen-storage properties of MgH₂.

    Science.gov (United States)

    Wang, Ying; Liu, Guang; An, Cuihua; Li, Li; Qiu, Fangyuan; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2014-09-01

    Bimetallic NiCo functional graphene (NiCo/rGO) was synthesized by a facile one-pot method. During the coreduction process, the as-synthesized ultrafine NiCo nanoparticles (NPs), with a typical size of 4-6 nm, were uniformly anchored onto the surface of reduced graphene oxide (rGO). The NiCo bimetal-supported graphene was found to be more efficient than their single metals. Synergetic catalysis of NiCo NPs and rGO was confirmed, which can significantly improve the hydrogen-storage properties of MgH2. The apparent activation energy (E(a)) of the MgH2-NiCo/rGO sample decreases to 105 kJ mol(-1), which is 40.7% lower than that of pure MgH2. More importantly, the as-prepared MgH2-NiCo/rGO sample can absorb 5.5 and 6.1 wt% hydrogen within 100 and 350 s, respectively, at 300 °C under 0.9 MPa H2 pressure. Further cyclic kinetics investigation indicates that MgH2-NiCo/rGO nanocomposites have excellent cycle stability.

  12. Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co-W bimetallic catalyst

    Science.gov (United States)

    An, Hua; Kumamoto, Akihito; Takezaki, Hiroki; Ohyama, Shinnosuke; Qian, Yang; Inoue, Taiki; Ikuhara, Yuichi; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo

    2016-07-01

    Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system.Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system. Electronic supplementary information (ESI) available: Raman spectroscopy (G-band) of SWNTs grown from Co and Co-W catalyst; Kataura plot for chirality

  13. The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst

    Science.gov (United States)

    Allaedini, Ghazaleh; Tasirin, Siti Masrinda; Aminayi, Payam

    2016-10-01

    In this study, the characterization and photocatalytic activity of MoO3 nanoparticles doped with various doping concentrations of cerium have been investigated. The Fourier transform infrared (FT-IR) spectra of the prepared catalysts confirmed that MoO3 particles have been successfully doped by cerium. Field emission scanning electron microscopy (FESEM) was performed to visualize the surface morphology of the obtained catalysts. The XRD patterns suggested that the crystallinity of the sample with the lowest doping concentration of 15 mol % was higher in comparison with samples of higher doping concentrations. The volume-averaged crystal sizes of the obtained catalysts were calculated to be 25, 28, and 32 nm for 15, 35, and 60 mol % samples, respectively. The photocatalytic activity along with the reaction kinetics of Ce-doped MoO3 nanoparticles have also been investigated through the dye degradation of methyl orange. The synthesized Ce-doped MoO3 particles with the lowest dopant concentration of 15 mol % exhibited the highest photocatalytic activity for methyl orange dye degradation. It was observed that photo-degradation activity decreased with an increase in the doping concentration of cerium. The predicted rate constants for samples with 15, 35, and 60 mol % doping concentrations were found to be 0.0432, 0.035, and 0.029 min-1, respectively.

  14. Science Letters: Structure relationship of nitrochlorobenzene catalytic degradation process in water over palladium-iron bimetallic catalyst

    Institute of Scientific and Technical Information of China (English)

    NIU Shao-feng; ZHOU Hong-yi; AO Xu-ping; XU Xin-hua; LOU Zhang-hua

    2006-01-01

    Two isomers of nitrochlorobenzene (o-, and p-NCB) were treated by a Pd/Fe catalyst in aqueous solutions through catalytic amination and dechlorination. Nitrochlorobenzenes are rapidly converted to form chloroanilines (CAN) first through an amination process, and then rapidly dechlorinated to become aniline (AN) and Cl-, without the involvement of any other intermediate reaction products. The amination and dechlorination reaction are believed to take place predominantly on the surface site of the Pd/Fe catalysts. The dechlorination rate of the reductive degradation of the two isomers of nitrochlorobenzene (o-, and p-NCB) in the presence of Pd/Fe as a catalyst was measured experimentally. In all cases, the reaction rate constants were found to increase with the decrease in the Gibbs free energy (correlation with the activation energy) of NCBs formation; the activation energy of each dechlorination reaction was measured to be 95.83 and 77.05 kJ/mol, respectively for o- and p-NCB. The results demonstrated that p-NCBs were reduced more easily than o-NCBs.

  15. Dispersed catalysts for transforming extra heavy crude oil into transportable upgraded crude: phase identification

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, S.; Canizales, E.; Machin, I. [Gerencia Depttal de Investigacion Estrategica en Refinacion PDVSA Intevep (Venezuela); Segovia, X.; Rivas, A.; Lopez, E.; Pena, J.P.; Rojas, J.D.; Sardella, R. [Gerencia Depttal de Infraestructura y Mejoramiento en Faja Petrolifera PDVSA Intevep (Venezuela)

    2011-07-01

    A new technology to convert extra heavy crude oil into transportable upgraded crude has been developed. A water/oil emulsion composed of steam and catalyst precursors is introduced in the feed which then generates unsupported dispersed catalyst in situ under thermal decomposition. The aim of this paper is to characterize the particles. The study was conducted in a laboratory and on a pilot scale on three different vacuum residues using high resolution transmission electron microscopy and a transmission electron microscope. Results showed that the particles were formed by oxides and inorganic sulphur based in transition metals and their sizes ranged between 5 and 120 nm; in addition, good dispersion was observed. This study demonstrated that the process involved in the generation of dispersed catalyst is extremely complex and showed that further work with heavy crude oils and its residua is required to understand the mechanisms involved.

  16. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Science.gov (United States)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  17. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  18. The Simple, Effective Synthesis of Highly Dispersed Pd/C and CoPd/C Heterogeneous Catalysts via Charge-Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    Lawrence D’Souza

    2016-05-01

    Full Text Available Pd/C and CoPd/C heterogeneous catalysts have been synthesized by adopting Charge Enhanced Dry Impregnation (CEDI. The particles size distribution, their high metal surface-to-bulk ratios, and synthesis feasibility are unmatchable to any known noble metal bimetallic heterogeneous catalyst preparation techniques. Next generation Fuel Cells and Fischer-Tropsch catalytic processes economy will be benefited from the proposed methodology.

  19. Kinetics on NiZn Bimetallic Catalysts for Hydrogen Evolution via Selective Dehydrogenation of Methylcyclohexane to Toluene

    KAUST Repository

    Shaikh Ali, Anaam

    2017-01-18

    Liquid organic chemical hydrides are effective hydrogen storage media for easy and safe transport. The chemical couple of methylcyclohexane (MCH) and toluene (TOL) has been considered one of the feasible cycles for a hydrogen carrier, but the selective dehydrogenation of MCH to TOL has been reported using only Pt-based noble metal catalysts. This study reports MCH dehydrogenation to TOL using supported NiZn as a selective, non-noble-metal catalyst. A combined experimental and computational study was conducted to provide insight into the site requirements and reaction mechanism for MCH dehydrogenation to TOL, which were compared with those for cyclohexane (CH) dehydrogenation to benzene (BZ). The kinetic measurements carried out at 300-360°C showed an almost zero order with respect to MCH pressure in the high-pressure region (≥10 kPa) and nearly a positive half order with respective to H pressure (≤40 kPa). These kinetic data for the dehydrogenation reaction paradoxically indicate that hydrogenation of a strongly chemisorbed intermediate originating from TOL is the rate-determining step. Density functional theory (DFT) calculation confirms that the dehydrogenated TOL species at the aliphatic (methyl) position group (CHCH) were strongly adsorbed on the surface, which must be hydrogenated to desorb as TOL. This hydrogen-assisted desorption mechanism explains the essential role of excess H present in the feed in maintaining the activity of the metallic surface for hydrogenation. The rate of the CH to BZ reaction was less sensitive to H pressure than that of MCH to TOL, which can be explained by the absence of a methyl group in the structure, which in turn reduces the binding energy of the adsorbed species. DFT suggests that the improved TOL selectivity by adding Zn to Ni was due to Zn atoms preferentially occupying low-coordination sites on the surface (the corner and edge sites), which are likely the unselective sites responsible for the C-C dissociation of the

  20. The role of the catalysts with highly dispersed and isolated active sites in the selective oxidation of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxuan; ZHAO Zhen

    2005-01-01

    This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidation of light hydrocarbons, such as methane, ethane and propane, into oxygenatesand the epoxidation of olefins. The plausible structures of the highly dispersed and isolated active species, as well as their effects on the catalytic performances are discussed. The special physico-chemical properties and the functional mechanism of the catalysts with highly dispersed and isolated active sites, as well as the preparation, characterization of the catalysts with highly dispersed and isolated active sites and their applications in other types of reactions of lower hydrocarbons are summarized.

  1. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst.

    Science.gov (United States)

    Abdullah, Ahmad Zuhairi; Bakar, Mohamad Zailani Abu; Bhatia, Subhash

    2006-02-28

    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.

  2. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A bimetallic catalyst, AgPd@g-C3N4, synthesized by reducing silver and palladium salts over graphitic carbon nitride (g-C3N4), enables the concerted reductive...

  3. Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters

    Directory of Open Access Journals (Sweden)

    Subarna Khanal

    2014-08-01

    Full Text Available Highly monodispersed Cu–Pt bimetallic nanoclusters were synthesized by a facile synthesis approach. Analysis of transmission electron microscopy (TEM and spherical aberration (Cs-corrected scanning transmission electron microscopy (STEM images shows that the average diameter of the Cu–Pt nanoclusters is 3.0 ± 1.0 nm. The high angle annular dark field (HAADF-STEM images, intensity profiles, and energy dispersive X-ray spectroscopy (EDX line scans, allowed us to study the distribution of Cu and Pt with atomistic resolution, finding that Pt is embedded randomly in the Cu lattice. A novel simulation method is applied to study the growth mechanism, which shows the formation of alloy structures in good agreement with the experimental evidence. The findings give insight into the formation mechanism of the nanosized Cu–Pt bimetallic catalysts.

  4. Measurement, by adsorption, of the dispersion of platinum on supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Castells, R.C.

    1979-12-01

    A gas chromatographic pulsed adsorption technique similar to that of Freel was used in hydrogen and oxygen chemisorption measurements, and in ''titrating'' adsorbed hydrogen with oxygen pulses (H-O) and adsorbed oxygen with hydrogen pulses (O-H) on the surfaces of a Houdry 3H (0.30-0.70% platinum/alumina) catalyst and of 3.7 and 2.3% Pt/silica catalysts. In successive H-O and O-H titration cycles, hydrogen and oxygen consumption increased, leveling off after 8-10 cycles for Pt/alumina and after 3-4 cycles for the Pt/silica catalyst. The adsorption of hydrogen increased, whereas that of oxygen decreased with increasing number of cycles. The H-O titration sequence was a more accurate method of measuring metal dispersion than hydrogen adsorption or the O-H sequence.

  5. Microwave-assisted synthesis of high-loading, highly dispersed Pt/carbon aerogel catalyst for direct methanol fuel cell

    Indian Academy of Sciences (India)

    Zhijun Guo; Hong Zhu; Xinwei Zhang; Fanghui Wang; Yubao Guo; Yongsheng Wei

    2011-06-01

    A Pt supported on carbon aerogel catalyst has been synthesized by the microwave-assisted polyol process. The Pt supported on carbon aerogel catalyst was characterized by high resolution transmission electron microscopy and X-ray diffraction. The results show a uniform dispersion of spherical Pt nanoparticles 2.5–3.0 nm in diameter. Cyclic voltammetry and chronoamperometry were used to evaluate the electrocatalytic activity of the Pt/carbon aerogel catalyst for methanol oxidation at room temperature. The Pt/carbon aerogel catalyst shows higher electrochemical catalytic activity and stability for methanol oxidation than a commercial Pt/C catalyst of the same Pt loading.

  6. Highly dispersed CoMoS phase on titania nanotubes as efficient HDS catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Jacome, M.A.; Escobar, J.; Angeles Chavez, C.; Lopez-Salinas, E.; Romero, E.; Ferrat, G.; Toledo-Antonio, J.A. [Molecular Engineering Program, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, G.A. Madero, 07730 Mexico, D.F. (Mexico)

    2008-01-15

    Nanotubular titania (NT) to be used as support for CoMo-based hydrodesulfurization (HDS) catalyst was synthesized and characterized by various techniques. NT annealed at 400 C (under nitrogen) was constituted by nanotubes of {proportional_to}5.5 nm (internal diameter) and retained 236 m{sup 2}/g of surface area. Mo at 3 atoms/nm{sup 2} (nominal loading) and cobalt at Co/(Co + Mo) = 0.3 were impregnated under nearly neutral, acidic or basic media. By XPS analyses of NT-supported sulfided catalysts, highly dispersed MoS{sub 2} particles of low stacking degree (1-2 slabs) aligned along the nanotubes were observed by HR-TEM in all sulfided materials. The CoMo catalysts supported on nanostructured titania had dibenzothiophene (DBT) HDS activity (in pseudo first order kinetic constant basis) values {proportional_to}1.35 and {proportional_to}1.7 times (Mo impregnated under near neutral and basic media, respectively) higher to that of a commercial reference with alumina carrier. According to shifts to higher binding energy of the Co 2p peak corresponding to sulfided cobalt (as determined by XPS), MoS{sub 2} dispersed on NT support could be efficiently promoted by Co (''CoMoS'' phase formation), opening the possibility of developing new highly active HDS catalysts. (author)

  7. Hydrogen production using Ag-Pd/TiO2 bimetallic catalysts: is there a combined effect of surface plasmon resonance with the Schottky mechanism on the photo-catalytic activity?(Conference Presentation)

    Science.gov (United States)

    Nadeem, Muhammad Amtiaz; Idriss, Hicham; Al-Oufi, Maher; Ahmed, Khaja Wahab; Anjum, Dalaver H.

    2016-10-01

    A series of Ag-Pd/TiO2 catalysts have been prepared, characterized and tested for H2 production activities from water in the presence of organic sacrificial agents. The synergistic effect of metallic properties (plasmonic and Schottky mechanisms) was investigated. XPS results indicated that silver is present in the form of its oxides (Ag2O and AgO) at 0.2-0.4 wt. % loading while palladium is present as PdO and Pd metal at similar loading. However, metallic character for silver particles increases while that of palladium metal particles decreases with increasing their % in the investigated range (0-1 wt. %). HRTEM results coupled with EDX analyses indicated the presence of two types of Ag containing particles (large ones with about 4-6 nm and smaller ones with ca. 1nm in size). Palladium was only found forming Ag-Pd alloy/composite with a wide size distribution range between 10-60 nm. Both particles are composed of silver and palladium, however. Optimal photocatalytic H2 production rates were obtained for catalysts with a palladium to silver ratios between 4 and 1.5 in the case of bimetallic catalysts. In addition, H2 production rates showed linear dependency on plasmonic response of Ag. The study demonstrates that increased H2 production rates can be achieved from an understanding of plasmonic and Schottky properties of metals loaded on top of the semiconductor.

  8. 钴含量对铁钴双金属催化剂的费-托合成催化性能的影响%Performance of Fe-Co bimetallic catalysts with different and low Co contents for Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    顾榜; 金亚美; 徐程; 李金林

    2012-01-01

    A series of Fe-Co bimetallic catalysts with different and low Co contents of 0. 5wt% , 1. 0wt% , 1. 5wt% have been synthesized. The catalysts were characterized by X-ray diffraction (XRD) , X-ray photoelectron spectroscopy, hydrogen temperature programmed reduction (H2-TPR), hydrogen temperature programmed desorption (H2-TPD) and oxygen titration, and their catalytic activities for FTS were measured in a fixed bed reactor. The addition of a small amount of Co promoted the reduction of Fe. However, catalyst with higher Co content (1.5 wt%) leads to formation of some CoFe2O4 species on the surface. The stronger interaction between Fe and Co decreased the reducibility but increased the dispersion of catalyst. The surface properties of the catalysts have been changed by the mixing of Fe and Co. The addition of Co increased the absorption ability of hydrogen at low temperature.%制备了一系列钴含量为0.5wt%、1.0wt%、1.5wt%的铁钴双金属催化剂,并结合X-射线衍射、X-射线光电子能谱、氢气程序升温还原、氢气程序升温脱附和氧滴定等一系列表征手段,研究了不同含量的钴对铁钴双金属催化剂的结构和费-托合成反应催化性能的影响.结果表明少量钴的加入促进了铁的还原,但较高含量(1.5 wt%)的钴使得催化剂表面形成了少量的CoFe2O4物种,钴铁之间相互作用增强导致1.5Co-Fe的还原度降低但分散得更好.铁钴的混合改变了催化剂表面的化学性质,钴的加入使催化剂的低温氢气吸附性能增强.

  9. Effect of Activated Carbon as a Support on Metal Dispersion and Activity of Ruthenium Catalyst for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10.0 MPa and 10 000 h-1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13.17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1.37% over 4%Ru-BaO/AC10 catalyst.

  10. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  11. AgRu Bimetallic Catalysts for the Selectively Hydrogenation of Ethylene Glycol%AgRu双金属催化剂在乙二醇选择加氢中的研究

    Institute of Scientific and Technical Information of China (English)

    余思莹; 王芸芸; 史瑞安; 陆思帆; 李嵘嵘

    2015-01-01

    Ethanol is an important organic solvent and raw material in chemical production. The catalysts in the research were AgRu bimetallic catalysts, which were prepared by the ammonia evaporation method, catalytic properties of catalysts were systemically investigated, using the technologies of XRD, BET, TEM and the evaluation of catalytic activity was conducted in a autoclave. Investigate Ru impact on the catalytic hydrogenation in ethylene glycol in the performance of Ag / SiO2 catalyst. Under the conditions of reaction temperature of 175 ℃, reaction pressure of 2. 0 MPa, the reaction activity with the addition of Ru was inhibitory, but promoting the selective hydrogenation of C-C. The main reason of this result may be due to add Ru, which changed the activation ability of Ag nanoparticles on the C-O.%乙醇是化工生产中重要的有机溶剂和生产原料。通过氨蒸法制备新型的 AgRu 双金属负载 SiO2催化剂,采用 XRD、BET 和 TEM 等对催化剂进行表征,考察 Ru 的加入对 Ag/ SiO2催化剂在乙二醇加氢中催化性能的影响。当在反应温度175℃,压力2 MPa 条件下, Ru 的加入,对反应活性起到抑制作用,但可促进 C-C 键的选择加氢。产生这个结果的主要原因可能是由于当Ru 的加入,改变了 Ag 纳米颗粒对 C-O 键的活化能力。

  12. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  13. Dependence of copper species on the nature of the support for dispersed CuO catalysts.

    Science.gov (United States)

    Gervasini, Antonella; Manzoli, Maela; Martra, Gianmario; Ponti, Alessandro; Ravasio, Nicoletta; Sordelli, Laura; Zaccheria, Federica

    2006-04-20

    Copper catalysts prepared by chemisorption-hydrolysis technique over silica (Cu/Si) and silica-alumina (Cu/SiAl) supports were studied to understand the role of the support on the nature and surface properties of the copper species stabilized on their surfaces. The morphological and surface properties of the copper phases have been characterized by complementary techniques, such as HRTEM, EXAFS-XANES, EPR, XPS, and FTIR. For the FTIR investigation, molecular probes (CO and NO) were also adsorbed on the surfaces to test the reactivity of the copper species. Moreover, the catalytic performances of the two catalysts have been compared in the HC-SCR reaction (NO reduction by C(2)H(4)) performed in highly oxidant conditions. The superior activity and selectivity of the supported silica-alumina catalyst with respect to that supported on silica could be related with the different nature of the copper species stabilized on the two supports, as emerged from the results obtained from the spectroscopic investigations. Small and well-dispersed CuO particles were present on silica, whereas isolated copper ions predominated on silica-alumina, likely in regions rich in alumina that made some exchangeable sites available, as indicated by FTIR spectra of adsorbed CO. The less positive global charge of copper species on Cu/SiAl than in Cu/Si has been confirmed by EPR, XPS, and EXAFS-XANES analyses.

  14. CO2 as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids.

    Science.gov (United States)

    Xue, Zhimin; Sun, Xiaofu; Li, Zhonghao; Mu, Tiancheng

    2015-07-11

    A controllable synthetic route has been developed for the preparation of chitosan supported Pd catalysts in an ionic liquid, 1-butyl-3-methylimidazolium acetate ([Bmim]OAc), by using compressed CO2 as the anti-solvent and regulator. It was found that the dispersion of Pd particles on chitosan and the catalytic activity of the as-prepared catalysts for the hydrogenation of styrene could be tuned by changing the pressure of CO2.

  15. Use of Hydrogen Chemisorption and Ethylene Hydrogenation as Predictors for Aqueous Phase Reforming of Lactose over Ni@Pt and Co@Pt Bimetallic Overlayer Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Qinghua; Skoglund, Michael D.; Zhang, Chen; Morris, Allen R.; Holles, Joseph H.

    2016-10-20

    Overlayer Pt on Ni (Ni@Pt) or Co (Co@Pt) were synthesized and tested for H2 generation from APR of lactose. H2 chemisorption descriptor showed that Ni@Pt and Co@Pt overlayer catalysts had reduced H2 adsorption strength compared to a Pt only catalyst, which agree with computational predictions. The overlayer catalysts also demonstrated lower activity for ethylene hydrogenation than the Pt only catalyst, which likely resulted from decreased H2 binding strength decreasing the surface coverage of H2. XAS results showed that overlayer catalysts exhibited higher white line intensity than the Pt catalyst, which indicates a negative d-band shift for the Pt overlayer, further providing evidence for overlayer formation. Lactose APR studies showed that lactose can be used as feedstock to produce H2 and CO under desirable reaction conditions. The Pt active sites of Ni@Pt and Co@Pt overlayer catalysts showed significantly enhanced H2 production selectivity and activity when compared with that of a Pt only catalyst. The single deposition overlayer with the largest d-band shift showed the highest H2 activity. The results suggest that overlayer formation using directed deposition technique could modify the behavior of the surface metal and ultimately modify the APR activity.

  16. Preparation of high dispersion and high performance PtRu/CNTs catalyst by an organic colloid method

    Institute of Scientific and Technical Information of China (English)

    王宁卡特; 刘军民; 廖世军; V.Birss

    2006-01-01

    A high dispersion and high performance PtRu catalyst supported on carbon nanotubes was prepared by an organic colloid method. The particle size of the active components could be as small as 1.0 nm,the active surface area was about 466 m2/g(Pt). The catalytic activity toward anodic oxidation of methanol was about 3 ~ 4 times higher than that of Johnson Matthey PtRu/XC-72R catalyst. The single testing showed that the performance of the prepared catalyst was higher than that of the commercial one.

  17. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco

    2016-08-25

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bimetallic-catalyst-mediated syntheses of nanomaterials (nanowires, nanotubes, nanofibers, nanodots, etc) by the VQS (vapor-quasiliquid-solid, vapor- quasisolid-solid) growth mechanism

    Science.gov (United States)

    Mohammad, S. N.

    2016-12-01

    The enhanced synergistic, catalytic effect of bimetallic nanoparticles (BNPs), as compared to monometallic nanoparticles (NPs), on the nanomaterials (nanowires, nanotubes, nanodots, nanofibers, etc) synthesed by chemical vapor deposition has been investigated. A theoretical model for this catalytic effect and hence for nanomaterial growth, has been developed. The key element of the model is the diffusion of the nanomaterial source species through the nanopores of quasiliquid (quasisolid) BNP, rather than through the liquid or solid BNP, for nanomaterial growth. The role of growth parameters such as temperature, pressure and of the BNP material characteristics such as element mole fraction of BNP, has been studied. The cause of enhanced catalytic activity of BNPs as compared to NPs as a function of temperature has been explored. The dependence of growth rate on the nanomaterial diameter has also been examined. The calculated results have been extensively compared with available experiments. Experimental supports for the growth mechanism have been presented as well. Close correspondence between the calculated and experimental results attests to the validity of the proposed model. The wide applicability of the proposed model to nanowires, nanotubes, nanofibers, nanodots, etc suggests that it is general and has broad appeal.

  19. Autothermal Reforming and Partial Oxidation of Methane in Fluidized Reactor over Highly Dispersed Ni Catalyst Prepared from Ni Complex

    Institute of Scientific and Technical Information of China (English)

    GAO Jing; HOU Zhao-Yin; SHEN Kai; LOU Hui; FEI Jin-Hua; ZHENG Xiao-Ming

    2006-01-01

    Highly dispersed Ni catalysts on spherical SiO2 were prepared by simple impregnation of Ni(acac)2, [Ni-(NH3)6-n(H2O)n]2+, [Ni(en)3]2+ and [Ni(EDTA)]2-. Pulse adsorption of H2 and TEM analysis results confirmed that Ni was dispersed very well on the surface of SiO2 even after calcination (4 h) and reduction (1 h) at high temperature of 800 ℃. These highly dispersed and uniquely sized Ni crystallites were more stable and more reactive for both autothermal reforming and partial oxidation of methane in fluidized reactor.

  20. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  1. Study of the re-dispersion of platinum containing bimetallic phases supported on chlorinated or neutralized alumina; Etude de la redispersion de phases bimetalliques a base de platine supportees sur alumine chloree ou neutralisee

    Energy Technology Data Exchange (ETDEWEB)

    Cholley, T.

    1997-01-31

    The re-dispersion by oxy-chlorination of platinum-tin catalysts supported on alumina constitute the matter of this work. Influence of parameters like the nature of the platinum-tin phases and particles size has been examined. The use of organometallic precursors has allowed an optimum control of the preparation and of the particles growth of the catalysts. Characterization by programmed temperature reduction (TPR), X-ray photoelectron spectroscopy (XPS), Moessbauer spectroscopy, near-edge absorption spectra (XANES) and X-ray absorption fine structure (EXAFS) has led to a better understanding of the phenomena ruling the tin reducibility. Sintering has been studied, showing that only platinum-tin alloy can sinter, while tin oxides are strongly stabilized by the support. It is shown similarly that oxy-chlorination of these catalysts causes the re-dispersion of the platinum and the platinum-tin alloy only. A re-dispersion mechanism through platinum-tin oxychloride species has been proposed. Furthermore, the main parameters influencing the re-dispersion have been highlighted. (author) 175 refs.

  2. Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols

    NARCIS (Netherlands)

    Meenakshisundaram, Sankar; He, Qian; Dawson, Simon; Nowicka, Ewa; Lu, Li; Bruijnincx, Pieter C. A.; Beale, Andrew M.; Kiely, Christopher J.; Weckhuysen, Bert M.

    2016-01-01

    The synthesis and functionalization of imines and amines are key steps in the preparation of many fine chemicals and for pharmaceuticals in particular. Traditionally, metal complexes are used as homogeneous catalysts for these organic transformations. Here we report gold-palladium and ruthenium-pall

  3. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  4. A DFT Calculation Screening of Pt-Based Bimetallic Catalysts for Oxygen Reduction%Pt基合金氧还原催化剂设计的密度泛函理论计算研究

    Institute of Scientific and Technical Information of China (English)

    欧利辉; 陈胜利

    2013-01-01

    Developing Pt-lean catalysts for oxygen reduction reaction (ORR) is the key for the large-scale application of the proton exchange membrane fuel cell (PEMFC). In this paper, we have proposed a multiple-descriptor strategy for screening efficient and durable ORR alloy catalysts of low Pt content. We demonstrate that an ideal Pt-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pt and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemical and electronic properties of various Pt-M alloys (M refers to non-precious transition metals in the periodic table), Pt-V,Pt-Fe,Pt-Co,Pt-Ni,Pt-Cu,Pt-Zn, Pt-Mo, Pt-W alloys are predicted to have improved catalytic activity and durability for ORR, most of which have indeed been reported to have excellent ORR catalytic performance in the literature. It is suggested that the ORR performance of Pt-Zn and Pt-Mo systems deserve detailed theoretical and experimental investigations.%本文提出以合金形成能、Pt表面偏析能和氧原子吸附能作为依据筛选具有高活性和高稳定性的表面富Pt氧还原合金催化剂.利用DFT计算对Pt与各种过渡金属形成的合金的热力学、表面化学和电子性质进行了系统研究,在此基础上预测Pt-V、Pt-Fe、Pt-Co、Pt-Ni、Pt-Cu、Pt-Zn、Pt-Mo和Pt-W等合金可能具有好的氧还原催化活性和稳定性.所预期的大部分催化剂已有文献研究结果支持.另外,Pt-Zn和Pt-Mo体系目前报道尚不多,值得进一步细致研究.

  5. Effects of Cu over Pd based catalysts supported on silica or niobia

    Directory of Open Access Journals (Sweden)

    Roma M.N.S.C.

    2000-01-01

    Full Text Available Palladium and palladium-copper catalysts supported on silica and niobia were characterized by H2 chemisorption and H2-O2 titration. Systems over silica were also analyzed by transmission electron microscopy and EXAFS. The metallic dispersion decreased from 20% to 7% when the content of Pd was increased from 0.5wt.-% to 3wt.-% in monometallic catalysts. The addition of 3 wt.-% Cu to obtain Pd-Cu catalysts caused a remarkable capacity loss of hydrogen chemisorption. TPR analysis suggested an interaction between the two metals and EXAFS characterization of the catalyst supported on silica confirmed the formation of Pd-Cu alloy. Pd/Nb2O5 catalysts showed turnover numbers higher than those obtained with the Pd/SiO2 systems in the cyclohexane dehydrogenation. However, the bimetallic catalysts showed very low turnover numbers.

  6. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    Science.gov (United States)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  7. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong

    2015-06-25

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.

  8. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water.

    Science.gov (United States)

    Cai, Chun; Zhang, Hui; Zhong, Xing; Hou, Liwei

    2015-01-01

    Mesoporous silica SBA-15 supported iron and cobalt (Fe-Co/SBA-15) was prepared and used as catalyst in the ultrasound (US) enhanced heterogeneous activation of peroxymonosulfate (PMS, HSO5(-)) process. The effects of some important reaction parameters on the removal of Orange II by US/Fe-Co/SBA-15/PMS process were investigated. The results indicated that the removal rate of Orange II was not significantly affected by the initial pH, and it increased with the higher PMS concentration, reaction temperature, Fe-Co/SBA-15 dosage and ultrasonic power. Furthermore, sulfate radicals (SO4(-)) were assumed to be the dominating reactive species for the Orange II decolorization. Moreover, the Fe-Co/SBA-15 catalyst showed high activity during the repeated experiments. The intermediate products were identified by GC-MS, thereby a plausible degradation pathway is proposed. In addition, the chemical oxygen demand (COD) removal efficiencies at 2 and 24h were 56.8% and 80.1%, respectively and the corresponding total organic carbon (TOC) removal efficiencies were 33.8 and 53.3%. Finally, toxicity tests with activated sludge showed that the toxicity of the solution increased during the first stage and then decreased significantly with the progress of the oxidation.

  9. Facile Synthesis of Highly Active and Robust Ni-Mo Bimetallic Electrocatalyst for Hydrocarbon Oxidation in Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Hua, B.; Li, M.; Zhang, Y.-Q.; Chen, J.; Sun, Y.-F.; Yan, N.; Li, J.; Luo, J.L.

    2016-01-01

    We report a novel Ni–Mo bimetallic alloy decorated with multimicrocrystals as an efficient anode catalyst for hydrocarbon-fueled solid oxide fuel cells (SOFCs). We show that these Ni–Mo bimetallic alloys are highly active, thermally stable, and sulfur/coke tolerant electrocatalysts for hydrocarbon o

  10. Biosensors Incorporating Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    John Rick

    2015-12-01

    Full Text Available This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs, which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

  11. Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Fang; Yuan Liu; Wei Deng; Junhai Liu

    2014-01-01

    Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La2O2CO3 under H2 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified Co2 C species.

  12. Vibrational spectroscopy of the double complex salt Pd(NH3)4(ReO4)2, a bimetallic catalyst precursor

    Science.gov (United States)

    Thompson, Simon T.; Lamb, H. Henry; Delley, Bernard; Franzen, Stefan

    2017-02-01

    Tetraamminepalladium(II) perrhenate, a double complex salt, has significant utility in PdRe catalyst preparation; however, the vibrational spectra of this readily prepared compound have not been described in the literature. Herein, we present the infrared (IR) and Raman spectra of tetraamminepalladium(II) perrhenate and several related compounds. The experimental spectra are complemented by an analysis of normal vibrational modes that compares the experimentally obtained spectra with spectra calculated using DFT (DMol3). The spectra are dominated by features due to the ammine groups and the Resbnd O stretch in Td ReO4-; lattice vibrations due to the D4h Pd(NH3)42+ are also observed in the Raman spectrum. Generally, we observe good agreement between ab initio calculations and experimental spectra. The calculated IR spectrum closely matches experimental results for peak positions and their relative intensities. The methods for calculating resonance Raman intensities are implemented using the time correlator formalism using two methods to obtain the excited state displacements and electron-vibration coupling constants, which are the needed inputs in addition to the normal mode wave numbers. Calculated excited state energy surfaces of Raman-active modes correctly predict relative intensities of the peaks and Franck-Condon activity; however, the position of Raman bands are predicted at lower frequencies than observed. Factor group splitting of Raman peaks observed in spectra of pure compounds is not predicted by DFT.

  13. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, David A [ORNL

    2016-01-01

    Late transition metal nanocrystals find applications in heterogeneous catalysis such as plasmon-enhanced catalysis and as electrode materials for fuel cells, a zero-emission and sustainable energy technology. Their commercial viability for automotive transportation has steadily increased in recent years, almost exclusively due to the discovery of more efficient bimetallic nanocatalysts for the oxygen reduction reaction (ORR) at the cathode. Despite improvements to catalyst design, achieving high activity while maintaining durability is essential to further enhance their performance for this and other important applications in catalysis. Electronic effects arising from the generation of metal-metal interfaces, from plasmonic metals, and from lattice distortions, can vastly improve sorption properties at catalytic surfaces, while increasing durability.[1] Multimetallic lattice-strained nanoparticles are thus an interesting opportunity for fundamental research.[2,3] A colloidal synthesis approach is demonstrated to produce AuPd alloy and Pd@Au core-shell nanoicosahedra as catalysts for electro-oxidations. The nanoparticles are characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and large solid angle energy dispersive X-ray spectroscopy (EDS) on an FEI Talos 4-detector STEM/EDS system. Figure 1 shows bright-field (BF) and high-angle annular dark-field (HAADF) ac-STEM images of the alloy and core-shell nanoicosahedra together with EDS line-scans and elemental maps. These structures are unique in that the presence of twin boundaries, alloying, and core-shell morphology could create highly strained surfaces and interfaces. The shell thickness of the core-shell structures observed in HAADF-STEM images is tuned by adjusting the ratio between metal precursors (Figure 2a-f) to produce shells ranging from a few to several monolayers. Specific activity was measured in ethanol electro-oxidation to examine the effect of shell thickness on

  14. XAFS studies on highly dispersed Ni 2P/SiO 2 catalysts for hydrodesulfurization of 4,6-dimethyldibenzothiophene

    Science.gov (United States)

    Cho, Kye-Sung; Lee, Yong-Kul

    2010-09-01

    The Ni 2P catalysts were prepared by a new synthetic method with the use of less oxidic phosphorus precursor in order to achieve high dispersion on silica support, and their structural properties and catalytic activity in HDS of 4,6-DMDBT were studied. Comparison was made with a conventionally prepared sample which was obtained by temperature programmed reduction method. Various characterizations were conducted by BET, CO uptake, TPR, XRD and X-ray absorption spectroscopy. The amounts of CO chemisorption uptake were 64 and 20 μmol g -1 for Ni 2P/SiO 2-LT and Ni 2P/SiO 2-HT, respectively, indicating that the low temperature reduction technique led to better dispersion of Ni 2P particles on SiO 2 support. The catalytic activity in the HDS of 4,6-DMDBT followed the order, Ni 2P/SiO 2-HT(54%)catalysts highly depend on the dispersion of the Ni 2P phase.

  15. Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2013-01-01

    Full Text Available In this paper, a chlorination method is proposed for simultaneous purification and functionalization of carbon nanotubes, thus increasing their ability to use. Carbon nanotubes were obtained by CVD method through ethylene decomposition on the nanocrystalline iron or cobalt or bimetallic iron-cobalt catalysts. The effects of temperature (50, 250, and 450°C in the case of carbon nanotubes obtained on the Fe-Co catalyst and type of catalyst (Fe, Co, Fe/Co on the effectiveness of the treatment and functionalization were tested. The phase composition of the samples was determined using the X-ray diffraction method. The quantitative analysis of metal impurity content was validated by means of the thermogravimetric analysis. Using X-ray Photoelectron Spectroscopy (XPS, Energy Dispersive Spectroscopy (EDS analysis, and also Mohr titration method, the presence of chlorine species on the surface of chlorinated samples was confirmed.

  16. Catalytic Performance and Characterization of Pt-Co/Al2O3Catalysts for CO2 Reforming of CH4 to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    HUANG, Chuan-Jing; ZHENG, Xiao-Ming; MO, Liu-Ye; FEI, Jin-Hua

    2001-01-01

    Pt-Co/Al2O3 catalyst has been studied for CO2 reforming of CH4 to synthesis gas. It was found that the catalytic performance of the catalyst was sensitive to calcination temperature.When Co/Al2O3 was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al2O3 and Pt/Al2O3 catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt-Co/Al2O3 > Pt/Al2O3 》 Co/Al2O3. With 9% Co, the Co/Al2O3calcined at 923 K was also active for CO2 reforming of CH4,however, its carbon formation was much more fast than that of the Pt-Co/Al2O3 catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl2O4, formed during calcining of Co/Al2O3 at high temperature before Pt addition. Promoted by Pt, CoAl2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre-re-duction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity of the Pt-Co/Al2O3 catalyst, and the remain CoAl2O4 is beneficial to suppression of carbon deposition over the catalyst.

  17. Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane

    Institute of Scientific and Technical Information of China (English)

    Huali; Long; Yan; Xu; Xiaoqing; Zhang; Shijing; Hu; Shuyong; Shang; Yongxiang; Yin; Xiaoyan; Dai

    2013-01-01

    Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was investigated with dry reforming of methane.Experimental results showed that the hydrotalcite-like precursors could be completely decomposed and partly reduced by cold plasma jet,and the Nicontained catalysts exhibited much higher activity than the catalyst without Ni.Especially,the catalyst with Ni/Co ratio of 8/2 achieved not only the highest conversions of 80.3%and 69.3%for CH4 and CO2,respectively,but also the best stability in 100 h testing.The catalysts were characterized by XRD,XPS,TEM and N2 adsorption techniques,and the results showed that the better performance of the 8Ni2Co bimetallic catalyst was attributed to its higher metal dispersion,smaller metal particle size,as well as the interaction effect between Ni and Co,which were brought by the special catalyst preparation method.

  18. Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    Zahra Gholami; Noor Asmawati Mohd Zabidi; Fatemeh Gholami; Mohammadtaghi Vakili

    2016-01-01

    Bimetallic Co/Fe catalysts supported on carbon nanotubes ( CNTs) were prepared, and niobium ( Nb) was added as promoter to the 70Co:30Fe/CNT catalyst. The physicochemical properties of the catalysts were characterized, and the catalytic performances were analyzed at the same operation conditions (H2:CO (volume ratio)= 2:1, p = 1 MPa, and t = 260℃) in a tubular fixed-bed microreactor system. The addition of Nb to the bimetallic catalyst decreases the average size of the oxide nanoparticles and improves the reducibility of the bimetallic catalyst. Evaluation of the catalyst performance in a Fischer-Tropsch reaction shows that the catalyst results in high selectivity to methane, and the selectivity to C5+ increased slightly in the bimetallic catalyst unlike that in the monometallic catalysts. The addition of 1% Nb to the bimetallic catalyst increases CO conversion and selectivity to C5+. Meanwhile, a decrease in methane selectivity is observed.

  19. Bimetallic redox synergy in oxidative palladium catalysis.

    Science.gov (United States)

    Powers, David C; Ritter, Tobias

    2012-06-19

    (II/IV) catalysis has guided the successful development of many reactions. Herein we discuss differences between monometallic Pd(IV) and bimetallic Pd(III) redox catalysis. We address whether appreciation of the relevance of bimetallic Pd(III) redox catalysis is of academic interest exclusively, serving to provide a more nuanced description of catalysis, or if the new insight regarding bimetallic Pd(III) chemistry can be a platform to enable future reaction development. To this end, we describe an example in which the hypothesis of bimetallic redox chemistry guided reaction development, leading to the discovery of reactivity distinct from monometallic catalysts.

  20. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  1. Effect of the Dispersibility of Nano-CuO Catalyst on Heat Releasing of AP/HTPB Propellant

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2011-01-01

    Full Text Available Kneading time is adjusted to change the dispersibility of nano-CuO in AP/HTPB (Ammonia Perchlorate/Hydroxyl-Terminated Polybutadiene composite propellants. Nano-CuO/AP is prepared to serve as the other dispersing method of nano-CuO, named predispersing procedure. Several kinds of heat releasing, thermal decomposition by DSC, combustion heat in oxygen environment, and explosion heat in nitrogen environment, are characterized to learn the effect of dispersibility of nano-CuO catalyst on heat releasing of propellants. With pre-dispersing procedures, thermal decomposition temperature of nano-CuO/AP and its propellant are about 25∘C and 8.6∘C lower than that of AP simple mixed with nano-CuO and its propellant, respectively. Comparing propellant with simple mixed nano-CuO kneading 3 hours, combustion heat and explosion heat of propellant with nano-CuO/AP increase about 1.4% and 1.7%, respectively. However, because of the breaking of nano-CuO/AP structure during kneading procedure, combustion heat and explosion heat of all the samples are decreased with the increase of kneading time after 3 hours.

  2. Preparation of highly dispersed W/Al2O3 hydrodesulfurization catalysts via a microwave hydrothermal method: Effect of oxalic acid

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-01-01

    Full Text Available A novel microwave hydrothermal method was developed to prepare highly dispersed W/Al2O3 catalysts, in which WO3 was deposited on alumina via precipitation between tungstate and nitric acid under microwave hydrothermal environment and oxalic acid was used as an additive. Moreover, the role of oxalic acid was investigated by varying its amount and the addition method. It is found that the catalysts show higher WO3 dispersion and weaker W–Al interaction than that prepared by the conventional impregnation method. The hydrothermal period can be extremely reduced to a few minutes, and highly dispersed WO3 can be achieved even without oxalic acid. When oxalic acid was added after the formation of H2WO4, it mainly acts as a modifier for reacting with the hydroxyl groups on alumina and has little effect on WO3 dispersion. When oxalic acid was divided into two parts, one for pretreating alumina and the remains for preventing the aggregation of H2WO4, it may effectively act as both dispersant and modifier, leading to further increased WO3 dispersion and weakened W–Al interaction. The catalysts prepared by the microwave hydrothermal method show superior dibenzothiophene hydrodesulfurization activity. This method provides rapidity, convenience and cost effectiveness for preparing active hydrotreating catalysts.

  3. Selective oxidation of methylamine over zirconia supported Pt-Ru, Pt and Ru catalysts

    Institute of Scientific and Technical Information of China (English)

    Aiying Song; Gongxuan Lu

    2015-01-01

    Pt–Ru, Pt and Ru catalysts supported on zirconia were prepared by impregnation method and were tested in se-lective oxidation of methylamine (MA) in aqueous media. Among three catalysts, Ru/ZrO2 was more active than Pt/ZrO2 while Pt–Ru/ZrO2 demonstrated the best catalytic activity due to the fact that Pt addition efficiently pro-moted the dispersion of active species in bimetallic catalyst. Therefore, the~100%TOC conversion and N2 selec-tivity were achieved over Pt–Ru/ZrO2, Pt/ZrO2 and Ru/ZrO2 catalysts at 190, 220 and 250 °C, respectively.

  4. Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes

    KAUST Repository

    Seo, Jeongsuk

    2012-01-01

    The Ta-oxide cathode catalysts were prepared by electrodeposition in a non-aqueous solution. These catalysts showed excellent catalytic activity and have an onset potential of 0.92 V RHE for the oxygen reduction reaction (ORR). The highly-dispersed Ta species at the nanometer scale on the carbon black was an important contributor to the high activity. © 2012 The Royal Society of Chemistry.

  5. Influence of dispersity on the activity, selectivity, and stability of Raney-Nickel catalyst during the hydrogenation of 1,4-butynediol into 1,4-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Rusina, S.V.; Litvin, E.F.; Kheifets, V.I.; Sharf, V.Z.

    1992-07-10

    Raney-nickel catalysts are widely used in the hydrogenation of 1,4-butynediol into 1,4-butanediol, an important intermediate for the preparation of thermostable resins, plasticizers, pharmaceutical preparations, and other compounds. The authors carried out the investigation of the influence of the dispersity of the Raney-nickel catalysts on their activity, selectivity, and stability in the hydrogenation reaction of 1,4-butynediol into 1,4-butanediol.

  6. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  7. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  8. Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom.

    Science.gov (United States)

    Zhang, H J; Chen, Z Q; Wang, S J

    2012-01-21

    NiO/Al(2)O(3) catalysts with different NiO loadings were prepared by impregnation method. The monolayer dispersion capacity of NiO is determined to be about 9 wt.% through XRD quantitative phase analysis. Positron lifetime spectra measured for NiO/Al(2)O(3) catalysts comprise two long and two short lifetime components, where the long lifetimes τ(3) and τ(4) correspond to ortho-positronium (o-Ps) annihilation in microvoids and large pores, respectively. With increasing loading of NiO from 0 to 9 wt.%, τ(4) drops drastically from 88 to 38 ns. However, when the NiO loading is higher than 9 wt.%, τ(4) shows a slower decrease. Variation of λ(4) (1/τ(4)) as a function of the NiO content can be well fitted by two straight lines with different slopes. The relative intensity of τ(4) also shows a fast decrease followed by a slow decrease for the NiO content lower and higher than 9 wt.%, respectively. The coincidence Doppler broadening measurements reveal a continuous increase of S parameter with increasing NiO loading up to 9 wt.% and then a decrease afterwards. This is due to the variation in intensity of the narrow component contributed by the annihilation of para-positronium (p-Ps). Our results show that the annihilation behavior of positronium is very sensitive to the dispersion state of NiO on the surface of γ-Al(2)O(3). When the NiO loading is lower than monolayer dispersion capacity, spin conversion of positronium induced by NiO is the dominant effect, which causes decrease of the longest lifetime and its intensity but increase of the narrow component intensity. After the NiO loading is higher than monolayer dispersion capacity, the spin conversion effect becomes weaker and inhibition of positronium formation by NiO is strengthened, which results in decrease of both the long lifetime intensity and the narrow component intensity. The reaction rate constant is determined to be (1.50 ± 0.04) × 10(10) g mol(-1) s(-1) and (3.43 ± 0.20) × 10(9) g mol(-1) s(-1

  9. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    microcopy (STEM) to measure size and structure, energy dispersive X-ray spectroscopy (EDS) to measure atomic composition, X-ray absorption spectroscopy (XAS) to measure oxidation state and metal coordination, Fourier transform infrared spectroscopy (FTIR) to study adsorbed species, laser Raman spectroscopy to probe metal oxide promoters, and temperature programmed reaction/desorption to study the energetics of adsorption and desorption processes. We have studied our bimetallic catalysts for the selective cleavage of carbon-oxygen bonds, and we have studied the effects of adding metal oxide promoters to supported platinum and gold catalysts for water-gas shift (i.e., the production of hydrogen by reaction of carbon monoxide with water). We anticipate that the knowledge obtained from our studies will allow us to identify promising directions for new catalysts that show high activity, selectivity, and stability for important reactions, such as the conversion of biomass-derived oxygenated hydrocarbons to fuels and chemicals.

  10. Progress, Challenge, and Perspective of Bimetallic TiO2-Based Photocatalysts

    Directory of Open Access Journals (Sweden)

    Anna Zielińska-Jurek

    2014-01-01

    Full Text Available Bimetallic TiO2-based photocatalysts have attracted considerable attention in recent years as a class of highly active catalysts and photocatalysts under both UV and Vis light irradiation. Bimetallic noble metal structures deposited on TiO2 possess the ability to absorb visible light, in a wide wavelength range (broad LSPR peak, and therefore reveal the highest level of activity as a result of utilization of a large amount of incident photons. On the other hand they can enhance the rate of trapping photoexcited electrons and inhibit the recombination process due to the capability of the storage of photoexcited electrons. Based on literature two groups of bimetallic photocatalysts were distinguished. The first group includes bimetallic TiO2 photocatalysts (BMOX, highly active under UV and Vis light irradiation in a variety of oxidation reactions, and the second group presents bimetallic photocatalysts (BMRED exceptionally active in hydrogenation reactions. This review summarizes recent advances in the preparation and environmental application of bimetallic TiO2-based photocatalysts. Moreover, the effects of various parameters such as particle shape, size, amount of metals, and calcination on the photocatalytic activity of bimetallic TiO2-based photocatalysts are also discussed.

  11. Efficient Nd Promoted Rh Catalysts for Vapor Phase Methanol Carbonylation

    Institute of Scientific and Technical Information of China (English)

    Shu Feng ZHANG; Qing Li QIAN; Ping Lai PAN; Yi CHEN; Guo Qing YUAN

    2005-01-01

    A Nd promoted-Rh catalysts supported on polymer-derived carbon beads for vapor-phase methanol carbonylation was developed. Rh-Nd bimetallic catalysts obviously have higher activity than that of supported Rh catalyst under similar reaction condition. The difference between the activity of above two catalyst systems is clearly caused by the intrinsic properties generated by the introduction of Nd.

  12. Fabrication of bimetallic nanostructures via aerosol-assisted electroless silver deposition for catalytic CO conversion.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Jang-Woo

    2014-03-12

    Bimetallic nanostructures were fabricated via aerosol-assisted electroless silver deposition for catalytic CO conversion. An ambient spark discharge was employed to produce nanocatalysts, and the particles were directly deposited on a polytetrafluoroethylene substrate for initiating silver deposition to form Pd-Ag, Pt-Ag, Au-Ag bimetallic nanostructures as well as a pure Ag nanostructure. Kinetics and morphological evolutions in the silver deposition with different nanocatalysts were comparatively studied. The Pt catalyst displayed the highest catalytic activity for electroless silver deposition, followed by the order Pd > Au > Ag. Another catalytic activity of the fabricated bimetallic structures in the carbon monoxide conversion was further evaluated at low-temperature conditions. The bimetallic systems showed significantly higher catalytic activity than that from a pure Ag system.

  13. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  14. Dispersal

    Science.gov (United States)

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  15. Study of Pd-Sn/Al{sub 2}O{sub 3} catalysts prepared by an oxide colloidal route; Etude de catalyseurs Pd-Sn/Al{sub 2}O{sub 3} prepares par voie colloidale oxyde

    Energy Technology Data Exchange (ETDEWEB)

    Verdier, St.

    2001-09-01

    The oxide colloidal route, developed in the laboratory for mono-metallic catalysts, consists in preparing a metallic oxide hydro-sol which leads to the supported catalyst after deposition onto a support and an activation stage. In this work, this method has been adapted to the preparation of alumina supported bimetallic Pd-Sn catalysts to determine its interest for the control of the properties of the bimetallic phase (size, composition and structure). In the preliminary study concerning tin oxide sols, SnO{sub 2} (size=2,3 nm) and Sn{sub 6}O{sub 4}(OH){sub 4} (size = 25 nm) nano-particles were synthesized by neutralization respectively for tin(IV) and tin(H). The control through the pH of the aggregation of the PdO and SnO{sub 2} particles revealed that increasing oxide solubility promotes integral re-dispersion of the oxide particles. To synthesize oxide bimetallic sols, three strategies were defined. Copolymerization (formation of a mixed oxide nano-sol by cross condensation of both metals) does not lead to a mixed oxide Pd-Sn phase. Surface precipitation (neutralization of the second metal in the presence of the first oxide sol) yields nano-particles of both oxides in close interaction. Adsorption (adsorption of the second metal onto the first oxide sol) significantly occurs when contacting tin with a basic PdO sol (hydrolytic adsorption). The characterization and the assessment of the catalytic properties (selective hydrogenation of buta-1,3-diene) of the catalysts prepared by deposition of oxide bimetallic sols showed that the oxide colloidal route allows the control of the properties of the supported bimetallic phase. Moreover, our results display that both Pd-Sn alloy formation and,aggregation of the metallic particles contribute to increase the selectivity for this reaction. (author)

  16. How NO affects nickel and cobalt nitrates at low temperatures to arrive at highly dispersed silica-supported nickel and cobalt catalysts

    NARCIS (Netherlands)

    Wolters, M.; Munnik, P.; Bitter, J.H.; de Jongh, P.E.; de Jong, K.P.

    2011-01-01

    Impregnation of porous silica supports with cobalt and nickel nitrate precursor solutions is a convenient method to prepare supported nickel and cobalt (oxide) catalysts. However, the metal (oxide) dispersion obtained is highly dependent on the gas atmosphere during thermal treatment to convert the

  17. Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Baltes, M.; Voort, P. van der; Ramachandra Rao, R.; Catana, Gabriela; Schoonheydt, R.A.; Vansant, E.F.

    2000-01-01

    Alumina-supported vanadium oxide catalysts have been prepared by the molecular designed dispersion method, using the vanadyl acetylacetonate complex (VO(acac)2). The complex has been adsorbed on the support from solution, followed by thermal conversion into the corresponding supported vanadium oxide

  18. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang

    2013-01-01

    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  19. ELECTRONIC AND CHEMICAL PROPERTIES OF PD IN BIMETALLIC SYSTEMS: HOW MUCH DO WE KNOW ABOUT HETERONUCLEAR METAL-METAL BONDING?

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.

    2001-09-27

    The experimental and theoretical studies described above illustrate the complex nature of the heteronuclear metal-metal bond. In many cases, bimetallic bonding induces a significant redistribution of charge around the bonded metals. This redistribution of charge is usually linked to the strength of the bimetallic bond, affects the position of the core and valence levels of the metals, and can determine the chemical reactivity of the system under study. New concepts are emerging [22,23,34,36] and eventually the coupling of experiment and theory can be useful for designing more efficient bimetallic catalysts [98,106,107].

  20. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst.

    Science.gov (United States)

    Manthiram, Karthish; Beberwyck, Brandon J; Alivisatos, A Paul

    2014-09-24

    Although the vast majority of hydrocarbon fuels and products are presently derived from petroleum, there is much interest in the development of routes for synthesizing these same products by hydrogenating CO2. The simplest hydrocarbon target is methane, which can utilize existing infrastructure for natural gas storage, distribution, and consumption. Electrochemical methods for methanizing CO2 currently suffer from a combination of low activities and poor selectivities. We demonstrate that copper nanoparticles supported on glassy carbon (n-Cu/C) achieve up to 4 times greater methanation current densities compared to high-purity copper foil electrodes. The n-Cu/C electrocatalyst also exhibits an average Faradaic efficiency for methanation of 80% during extended electrolysis, the highest Faradaic efficiency for room-temperature methanation reported to date. We find that the level of copper catalyst loading on the glassy carbon support has an enormous impact on the morphology of the copper under catalytic conditions and the resulting Faradaic efficiency for methane. The improved activity and Faradaic efficiency for methanation involves a mechanism that is distinct from what is generally thought to occur on copper foils. Electrochemical data indicate that the early steps of methanation on n-Cu/C involve a pre-equilibrium one-electron transfer to CO2 to form an adsorbed radical, followed by a rate-limiting non-electrochemical step in which the adsorbed CO2 radical reacts with a second CO2 molecule from solution. These nanoscale copper electrocatalysts represent a first step toward the preparation of practical methanation catalysts that can be incorporated into membrane-electrode assemblies in electrolyzers.

  1. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis

    Science.gov (United States)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2016-06-01

    Catalyst synthesis with precise control over the structure of catalytic active sites at the atomic level is of essential importance for the scientific understanding of reaction mechanisms and for rational design of advanced catalysts with high performance. Such precise control is achievable using atomic layer deposition (ALD). ALD is similar to chemical vapor deposition (CVD), except that the deposition is split into a sequence of two self-limiting surface reactions between gaseous precursor molecules and a substrate. The unique self-limiting feature of ALD allows conformal deposition of catalytic materials on a high surface area catalyst support at the atomic level. The deposited catalytic materials can be precisely constructed on the support by varying the number and type of ALD cycles. As an alternative to the wet-chemistry based conventional methods, ALD provides a cycle-by-cycle "bottom-up" approach for nanostructuring supported catalysts with near atomic precision. In this review, we summarize recent attempts to synthesize supported catalysts with ALD. Nucleation and growth of metals by ALD on oxides and carbon materials for precise synthesis of supported monometallic catalyst are reviewed. The capability of achieving precise control over the particle size of monometallic nanoparticles by ALD is emphasized. The resulting metal catalysts with high dispersions and uniformity often show comparable or remarkably higher activity than those prepared by conventional methods. For supported bimetallic catalyst synthesis, we summarize the strategies for controlling the deposition of the secondary metal selectively on the primary metal nanoparticle but not on the support to exclude monometallic formation. As a review of the surface chemistry and growth behavior of metal ALD on metal surfaces, we demonstrate the ways to precisely tune size, composition and structure of bimetallic metal nanoparticles. The cycle-by-cycle "bottom up" construction of bimetallic (or multiple

  2. Gold/Iron Carbonyl Clusters for Tailored Au/FeOx Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Stefania Albonetti

    2011-12-01

    Full Text Available A novel preparation method was developed for the preparation of gold/iron oxide supported catalysts using the bimetallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO16] and [NEt4][AuFe4(CO16] as precursors of highly dispersed nanoparticles over different supports. A series of catalysts with different metal loadings were prepared and tested in the complete oxidation of dichlorobenzene, toluene, methanol and in the preferential oxidation of CO in the presence of H2 (PROX as model reactions. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS point out the way the nature of the precursors and the thermal treatment conditions affected the dispersion of the active phase and their catalytic activity in the studied reactions.

  3. Magnetic iron species highly dispersed over silica: use as catalysts for removal of pollutants in water.

    Science.gov (United States)

    Freitas, Victor A A; Maia, Laura A; Belardinelli, Rolando E; Ardisson, Jose D; Pereira, Márcio C; Oliveira, Luiz C A

    2016-04-04

    Fe2O3-SiO2 composites were prepared by impregnation (sample FeIMP) or doping (sample FeDOP) in the structure of porous silica. The dye removal capacity of the materials was investigated through adsorption and oxidation studies of methylene blue and rhodamine B. N2 adsorption/desorption measurements on FeIMP and FeDOP resulted in specific areas of 27 and 235 m(2) g(-1), respectively. Mössbauer spectroscopy and XRD data detected hematite and maghemite as the iron phases in the samples FeIMP and FeDOP, respectively. Adsorption isotherms and kinetic studies of the dyes were better fitted in DKR model for FeDOP, where the process follows a pseudo-second order with the interparticle diffusion step being the rate-limiting step. On the other hand, FeIMP has better fit in the Langmuir model. Photocatalytic activity was observed in FeDOP under UV irradiation by the presence of reaction-hydroxylated intermediates for MB (m/z = 301) and RhB (m/z = 459). However, the photocatalytic activity was strongly influenced by the adsorption affinity between dye/catalyst. Photogenerated holes are the species responsible for the dye degradation when the adsorption is too strong, while hydroxyl radical action will be favored when the adsorption is not vigorous as detected by ESI-MS. Graphical Abstract Action of photogenerated holes and free electrons into the photocatalytically mechanism of methylene blue degradation over a semiconductor.

  4. Highly dispersed ruthenium nanoparticle-embedded mesoporous silica as a catalyst for the production of gamma-butyrolactone from succinic anhydride.

    Science.gov (United States)

    Chung, Sang-Ho; Eom, Hee-Jun; Kim, Min-Sung; Lee, Myung Suk; Lee, Kwan-Young

    2013-11-01

    In this study, a novel, strategic method was developed for the synthesis of a mesoporous silica catalyst embedded with ruthenium nanoparticles (RuNPs/SiO2) by combining the polyol and modified sol-gel methods. By applying this new procedure, uniformly synthesized ruthenium nanoparticles with an average size of 3.8 nm and 95% spherical shape were highly dispersed in the mesoporous silica support material. Coordinated carbonyl groups of PVP remaining from the synthesis of the RuNPs were effectively removed by the thermal treatment (calcined at 573 K for 4 h) and the sythesized RuNPs/SiO2 catalysts were reduced under hydrogen at 20 bar for 2 h. These catalysts were analyzed using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption, and X-ray diffraction (XRD). After the thermal treatment and the reduction procedure, the size and shape of the embedded RuNPs were nearly unchanged, and the catalyst was active in the liquid-phase hydrogenation of succinic anhydride (SAN) to selectively form y-butyrolactone (GBL) with a maximum yield of 90.1%. This novel catalyst preparation is a potentially useful method for the synthesis of metal nanoparticles as heterogeneous catalysts.

  5. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    Science.gov (United States)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high

  6. INTERACTION OF SULPHUR WITH BIMETALLIC SURFACES: EFFECTS OF STRUCTURAL, ELECTRONIC AND CHEMICAL PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; HRBEK,J.

    2001-10-04

    In recent years, several new interesting phenomena have been discovered when studying the interaction of sulphur with bimetallic surfaces using the modern techniques of surface science. Very small amounts of sulphur can induce dramatic changes in the morphology of bimetallic surfaces. The electronic perturbations associated with the formation of a heteronuclear metal-metal bond affect the reactivity of the bonded metals toward sulphur. This can be a very important issue to consider when trying to minimize the negative effects of sulphur poisoning or dealing with the design of desulfurization catalysts.

  7. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  8. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Science.gov (United States)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  9. X-ray characterization of platinum group metal catalysts

    Science.gov (United States)

    Peterson, Eric J.

    complements information obtained from both XRD and XAS. With aberration-corrected HAADF, particles ranging from sub-nm-size down to clusters of a few atoms and isolated single-atoms can be routinely imaged. A challenge to the interpretation of these images is the characterization of mixed atomic species, in this case, palladium and lanthanum. In this work we show for the first time that quantitative chemical identification of atomically-dispersed mixtures of palladium and lanthanum in an industrially relevant catalyst (palladium on lanthanum-stabilized gamma-alumina) can be obtained through image intensity analysis. Using these techniques we have characterized the state of bimetallic fuel cell catalysts, ex situ, and have examined the state of Pd catalysts under operando CO oxidation conditions.

  10. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds

    Directory of Open Access Journals (Sweden)

    Huishan Shang

    2016-06-01

    Full Text Available To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni and nickel-platinum (NiPt nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD, high-resolution transmission electron microscopy (HRTEM, energy dispersive X-ray spectroscopy (EDS mapping, and X-ray photoelectron spectroscopy (XPS techniques. The Ni2+ was reduced to metallic Ni0 via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka of 18.82 × 10−3 s−1, 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes.

  11. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2 for the HDS of DBT: Effect of the Pd and Pt Incorporation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Martínez Guerrero

    2014-01-01

    Full Text Available The effect of the preparation method of monometallic Pd and Pt and bimetallic Pd-Pt/Al2O3-TiO2 catalysts on the hydrodesulfurization (HDS of dibenzothiophene (DBT was investigated in this study. The synthesis was accomplished using three methods: (A impregnation, (B metal organic chemical vapor deposition (MOCVD, and (C impregnation-MOCVD. The bimetallic Pd-Pt catalyst prepared by the impregnation-MOCVD method was most active for the HDS of DBT compared to those prepared by the single impregnation or MOCVD method due to the synergetic effect between both noble metals. The greater selectivity toward biphenyl indicated that this bimetallic Pd-Pt catalyst preferentially removes sulfur via the direct desulfurization mechanism. However, the bimetallic Pd-Pt catalyst prepared using the single MOCVD method did not produce any cyclohexylbenzene, which is most likely associated with the hydrogenation/dehydrogenation sites.

  12. Kinetics of Oxidation of L-Leucine by Mono-and Bimetallic Gold and Silver Nanoparticles in Hydrogen Peroxide Solution

    Institute of Scientific and Technical Information of China (English)

    P.VENKATESAN; J.SANTHANALAKSHMI

    2012-01-01

    The catalytic activity of surfactant stabilized mono- and bimetallic Au and Ag nanoparticles for the oxidation of an amino acid,L-leucine,was studied using hydrogen peroxide as the oxidant.The Au and Ag nanoparticle catalysts exhibited very good catalytic activity and the kinetics of the reaction were found to be pseudo-first order with respect to the amino acid.The effects of several factors,such as oxidant concentration,ionic strength,pH,and catalyst concentration on the reaction,were also investigated.In particular,optimal oxidant and catalyst concentrations were determined.Very high concentrations of the metal nano-catalysts or the oxidant led to a dramatic increase in reaction rate.Moreover,bimetallic Au-Ag catalysts provided higher selectivity than pure Au or Ag.

  13. Pt-Rh/g Al2O3 Influence of Catalyst Preparation Methods on Metallic Particle Dispersion and Size Distribution

    Directory of Open Access Journals (Sweden)

    N.M. da Fonseca

    1998-06-01

    Full Text Available - Pt-Rh/Al2O3 catalysts were prepared by successive incipient impregnations or coimpregnation. Characterization was achieved by H2 chemisorption and transmission electron microscopy. It was verified that method of preparation, ratio of metal weights and sequence of deposition are factors that result in very distinct catalysts.

  14. Characterization and Preparation of Bimetallic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Bing; Joe; Hwang; Ching; Hsiang; Chen; Loka; Subramanyam; Sarma; Din-gao; Liu; Jyh; Fu; Lee

    2007-01-01

    1 Results Bimetallic particles in the nanometer size range are of substantial interest due to their vast applications in catalysis[1].The synthesis of bimetallic nanoparticles with definite size with a well-control over their nanostructure remains a challenging problem.Thus there exists a great demand for both synthesis and atomic level characterization of nanostructure of bimetallic nanoparticles (NPs).With the recent advent of high-intensity tunable sources of X-rays,now available at synchrotron radia...

  15. 固体单相催化剂CVD法制备成束或分散MWCNT%Solid Single Phase Catalyst for Growth of Bundled or Dispersed MWCNT by CVD

    Institute of Scientific and Technical Information of China (English)

    徐军明; 张孝彬; 李昱; 陶新永; 陈飞; 杨晓芳

    2003-01-01

    Fe-Mo-Mg-O catalyst prepared by combustion method has great efficiency to grow carbon nanotubes with CVD method. Through investigation of TEM, it is found that bundles of multi-wall carbon nanotubos (MWCNT) can be got when the catalyst is directly used to synthesize the product in CH4/H2 afinosphere; however, the dispersed carbon nanotubes are obtained while the catalyst is reduced firstly in the H2 before the synthesis. The morphology and structure of the catalysts before and after reduced are analyzed by TEM and XRD. The growth mechanism is suggeested for the formation off these two kinds of carbon nanotubes.

  16. Antibacterial activity of graphene supported FeAg bimetallic nanocomposites.

    Science.gov (United States)

    Ahmad, Ayyaz; Qureshi, Abdul Sattar; Li, Li; Bao, Jie; Jia, Xin; Xu, Yisheng; Guo, Xuhong

    2016-07-01

    We report the simple one pot synthesis of iron-silver (FeAg) bimetallic nanoparticles with different compositions on graphene support. The nanoparticles are well dispersed on the graphene sheet as revealed by the TEM, XRD, and Raman spectra. The antibacterial activity of graphene-FeAg nanocomposite (NC) towards Bacillus subtilis, Escherichia coli, and Staphylococcus aureus was investigated by colony counting method. Graphene-FeAg NC demonstrates excellent antibacterial activity as compared to FeAg bimetallic without graphene. To understand the antibacterial mechanism of the NC, oxidative stress caused by reactive oxygen species (ROS) and the glutathione (GSH) oxidation were investigated in the system. It has been observed that ROS production and GSH oxidation are concentration dependent while the increase in silver content up to 50% generally enhances the ROS production while ROS decreases on further increase in silver content. Graphene loaded FeAg NC demonstrates higher GSH oxidation capacity than bare FeAg bimetallic nanocomposite. The mechanism study suggests that the antibacterial activity is probably due to membrane and oxidative stress produced by the nanocomposites. The possible antibacterial pathway mainly includes the non-ROS oxidative stress (GSH oxidation) while ROS play minor role.

  17. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  18. Development of MCM-41 based catalysts for the photo-Fenton's degradation of dye pollutants

    Science.gov (United States)

    Lam, Leung Yuk Frank

    The continuous advancement in most industries has resulted in serious water pollution problems. The industrial effluents contain a variety of highly toxic organics such as dye pollutants. Numerous processes have been demonstrated for treating such pollutants. Among them, photo-Fenton's reaction is effective for organic mineralization by hydroxyl radicals generated from the Fenton's reagents (Fe2+ and H2O2). However, there is a drawback in that it requires a separation system to recover the homogeneous ferrous ion in the treated wastewater. In this research, new heterogeneous Fenton's catalysts are developed to solve such a problem and to achieve an efficient mineralization of dye pollutants. Two methods for catalyst preparation, including sol-gel hydrothermal (SG) and metal-organic chemical vapor deposition (MOCVD) techniques, were studied in this work. For SG-prepared catalysts, the iron element was successfully doped into the MCM-41 structure. These catalysts demonstrated a good catalytic efficiency but leaching of metal ions from the developed catalyst was found. In the MOCVD technique, a rotated tubular reactor system was developed to synthesize Fe/MCM-41 catalyst with uniform metal dispersion. It was found that using oxygen as a carrier gas during metal deposition was able to increase the stability of the deposited metal. In degradation of a model dye pollutant, Orange II, a total of 85% TOC mineralization was achieved at pH 3. A disadvantage of using Fe/MCM-41 was the reduced efficiency at higher pH. Cu/MCM-41 was thus developed and showed better catalytic activities than Fe/MCM-41 at neutral pH. Having the specific catalytic properties of Fe/MCM-41 and Cu/MCM-41, bimetallic (Fe+Cu) catalysts supported on MCM-41 were developed which show better activities in the Orange II mineralization than those monometallic (Fe or Cu) catalysts. The preparation conditions of the catalysts were experimentally optimized. The effects of catalyst dosage, metal loading

  19. Synthesis and characterization of bimetallic Cu-Ni/ZrO{sub 2} nanocatalysts: H{sub 2} production by oxidative steam reforming of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Hernandez, R.; Mondragon Galicia, G.; Mendoza Anaya, D.; Palacios, J. [Instituto Nacional de Investigaciones Nucleares; Carretera Mexico-Toluca S/N La Marquesa, Ocoyoacac, Estado de Mexico C.P. 52750 (Mexico); Angeles-Chavez, C. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas, No. 152, C.P. 07730, Mexico D.F. (Mexico); Arenas-Alatorre, J. [Instituto de Fisica-UNAM, Apartado Postal 20-364, C.P. 01000, Mexico D.F. (Mexico)

    2008-09-15

    Cu/ZrO{sub 2}, Ni/ZrO{sub 2} and bimetallic Cu-Ni/ZrO{sub 2} catalysts were prepared by deposition-precipitation method to produce hydrogen by oxidative steam reforming of methanol (OSRM) reaction in the range of 250-360 C. TPR analysis of the Cu-Ni/ZrO{sub 2} catalyst showed that the presence of Cu facilitates the reduction of the Ni at lower temperatures. In addition, this sample showed two reduction peaks, the former peak was attributed to the reduction of the adjacent Cu and Ni atoms which could be forming a bimetallic Cu-rich phase, and the second was assigned to the remaining Ni atoms forming bimetallic Ni-rich nanoparticles. Transmission Electron Microscopy revealed Cu or Ni nanoparticles on the monometallic samples, while bimetallic nanoparticles were identified on the Cu-Ni/ZrO{sub 2} catalyst. On the other hand, Cu-Ni/ZrO{sub 2} catalyst exhibited better catalytic activity than the monometallic samples. The difference between them was related to the Cu-Ni nanoparticles present on the former catalyst, as well as the bifunctional role of the bimetallic phase and the support that improve the catalytic activity. All the catalysts showed the same selectivity toward H{sub 2} at the maximum reaction temperature and it was {proportional_to}60%. The high selectivity toward CO is associated to the presence of the bimetallic Ni-rich nanoparticles, as evidenced by TEM-EDX analysis, since this behavior is similar to the one showed by the monometallic Ni-catalyst. (author)

  20. Synthesis and characterization of bimetallic nanocatalysts and their application in selective hydrogenation of citral to unsaturated alcohols

    Indian Academy of Sciences (India)

    S A Ananthan; R Suresh; K Giribabu; V Narayanan

    2013-11-01

    TiO2-supported bimetallic nanocatalysts were prepared and reduced at two different temperatures, 375°C and 575°C for selective hydrogenation of citral to corresponding unsaturated alcohols (geraniol (GOL) and nerol (NOL)). The nanocatalysts were characterized by difference techniques of Fourier transform infrared spectroscopy (FT-IR), Brunauer, Emmett and Teller (BET) surface area measurement, scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The prepared nanocatalysts are uniformly dispersed with an average particle size of 50-100 nm and zero valence metallic state. Catalysts reduced at higher temperature lead to an increase in selectivity toward unsaturated alcohols (GOL and NOL). The Pt-Ru/TiO2 shows higher activity compared to Pt-Pd/TiO2 and Pt-Au/TiO2 nanocatalysts. In addition, a second metal (Ru) also leads to an increase in GOL and NOL selectivity during citral hydrogenation. Partially generated oxidized second metal species due to the difference in electronegativity, strongly binds the C=O group and also paves the way for selective activation of C=O bond.

  1. Effects of different additives on bimetallic Au-Pt nanoparticles electrodeposited onto indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara, E-mail: ballarin@ms.fci.unibo.i [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy); Gazzano, Massimo [ISOF-CNR, V. Selmi, 40126-Bologna (Italy); Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy)

    2010-09-01

    Bimetallic Au-Pt nanoparticles (Au-Pt{sub NPs}) have been synthesized using an electrochemical reduction approach. The effects of the addition of different additives in the electrodeposition bath namely KI, 1-nonanesulfonic acid sodium salt and Triton X-100 have been investigated. The structural characterization of the bimetallic nanoparticles has been carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy, X-ray diffraction (XRD) and cyclic voltammetry (CV). The Au-Pt{sub NPs} prepared in the presence of KI and Triton X-100 characterized by a relatively narrow size distribution as well as a higher particle density and surface coverage whereas no changes in the morphology were observed. These results suggest a dependence of the size and distribution of the bimetallic nanoparticles from the type and concentration of the additives employed.

  2. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., (United States)

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  3. Porous Diatomite-Immobilized Cu–Ni Bimetallic Nanocatalysts for Direct Synthesis of Dimethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2012-01-01

    Full Text Available A series of diatomite-immobilized Cu–Ni bimetallic nanocatalysts was prepared under ultrasonication and evaluated for the direct synthesis of dimethyl carbonate under various conditions. Upon being fully characterized by TPR, TPD, BET, SEM, XRD, and XPS methodologies, it is found that the bimetallic composite is effectively alloyed and well immobilized inside or outside the pore of diatomite. Under the optimal conditions of 1.2 MPa and 120∘C, the prepared catalyst with loading of 15% exhibited the highest methanol conversion of 6.50% with DMC selectivity of 91.2% as well as more than 10-hour lifetime. The possible reaction mechanism was proposed and discussed in detail. To our knowledge, this is the first report to use diatomite as a catalyst support for direct DMC synthesis from methanol and CO2.

  4. Nanopore and nanoparticle catalysts.

    Science.gov (United States)

    Thomas, J M; Raja, R

    2001-01-01

    The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.

  5. Water-dispersable hybrid Au-Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki-Miyaura and Heck reactions

    KAUST Repository

    Song, Hyon Min

    2012-01-01

    The catalytic activities of water-dispersable Au@Pd core-shell nanoparticles (NPs) and Au-Pd alloy NPs were examined. There is growing interest in Au-Pd hybridized NPs in a supported matrix or non-supported forms as catalysts in various reactions that are not limited to conventional Pd-related reactions. Four different Au@Pd core-shell NPs in this study were prepared at room temperature with help from the emulsion phase surrounding the Au core NPs. Au-Pd alloy NPs were prepared over 90 °C, and underwent phase transfer to aqueous medium for their catalytic use. Au@Pd core-shell NPs show catalytic activity in ethanol oxidation reactions as electrocatalysts, and both core-shell and alloy NPs are good to excellent catalysts in various Suzuki-Miyaura and Heck reactions as heterogeneous catalysts. Specifically, Au@Pd core-shell NPs with sharp branched arms show the highest yield in the reactions tested in this study. A relatively small amount (0.25 mol%) was used throughout the catalytic reactions. © 2012 The Royal Society of Chemistry.

  6. Dispersion state and catalytic properties of vanadia species on the surface of V2O5/TiO2 catalysts

    Institute of Scientific and Technical Information of China (English)

    许波连; 范以宁; 刘浏; 林明; 陈懿

    2002-01-01

    The dispersion state and catalytic properties of anatase-supported vanadia species are studied by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), H2 temperature-programmed reduction (TPR) and the selective oxidation of o-xylene to phthalic anhydride. The almost identical values of the experimental dispersion capacity of V2O5 on anatase and the surface vacant sites available on the preferentially exposed (001) plane of anatase suggest that the highly dispersed vanadium cations are bonded to the vacant sites on the surface of anatase as derived by the incorporation model. When the loading amount of V2O5 is far below its dispersion capacity, the dispersed vanadia species might mainly consist of isolated VOx species bridging to the surface through V-O-Ti bonds. With the increase of V2O5 loading the isolated vanadia species interact with their nearest neighbors (either isolated or polymerized vanadia) through bridging V-O-V at the expenses of V-O-Ti bonds, resulting in the increase of the ratio of polymerized to isolated vanadia species and the decrease of the reactivity of the associated surface oxygen anions and, consequently, although the activity increases with loading to reach a maximum value, the turn over number (TON) of the V2O5/TiO2 catalyst decreases linearly. When the loading amount of V2O5 is higher than its dispersion capacity, the turn over number decreases more rapidly with the increase of V2O5 loading due to the formation of V2O5 crystallites in which the oxygen anions associated with V-O-V bonds are less reactive and only partially exposed on the surface.

  7. Effect of addition of sulphur and phosphorus on heavy oil hydrotreatment with dispersed molybdenum-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kushiyama, S.; Aizawa, R.; Kobayashi, S.; Koinuma, Y.; Uemasu, I.; Ohuchi, H. (National Research Inst. for Pollution and Resources, Tsukuba, Ibaraki (Japan))

    1990-08-22

    The influence of the addition of sulphur and phosphorus on the activity of finely divided molybdenum-based catalysts formed in situ was investigated with regard to the hydrotreatment of Morichal crude oil (Venezuela). Reactions were carried out using a batch reactor at 470 C. The catalyst precursors used were molybdenum naphthenate, cobalt octylate and di-2-ethylhexyl phosphate. An increase in elemental sulphur addition led to increased catalytic activity, especially in the presence of phosphorus. It was found that the hydrogen sulphide that was generated from elemental sulphur can accelerate the decomposition of the precursors at temperatures below 240 C during the period of heating of the reactor. It was suggested that hydrogen sulphide is essential for the catalyst species to be sufficiently sulphided and activated without suffering possible coke poisoning. Phosphorus increased the hydrodesulphurization activity in amounts up to ca. 15.10{sup {minus}4} mol P per 70 g of feed, but further addition decreased the activity. The optimum level was unchanged irrespective of the molybdenum concentrations employed . In addition, the vanadium removal improved remarkably with increase in the amount of phosphorus added. It is concluded that phosphorus interacted strongly with the vanadium compounds in the feed and prevented the catalyst species from being deactivated by the deposition of vanadium. 5 figs., 4 tabs., 25 refs.

  8. 负载型钌-钇双金属催化剂催化萜烯树脂加氢反应研究%Study on the hydrogenation of terpene resin with supported ruthenium-yttrium bimetallic catalysts

    Institute of Scientific and Technical Information of China (English)

    郑惠榕; 林嘉渭; 郑国才; 林棋

    2016-01-01

    采用浸渍法制备了负载型Ru-Y/TiO2催化剂,并考察了其在萜烯树脂加氢反应中的催化性能。结果表明,负载型Ru-Y/TiO2催化剂对萜烯树脂加氢反应具有较高的催化活性,在150℃,氢气压力4 MPa,反应时间6 h,制得了无色或浅色萜烯树脂,加氢反应前、后萜烯树脂的色差可达82%以上,且催化剂稳定性较好,循环使用5次后,其催化萜烯树脂加氢反应前后的色差仍高于75%。合成的无色或浅色萜烯树脂具有无毒、稳定和抗老化等特性,可广泛应用于塑料、油墨、涂料、黏合剂、电子产品、食品加工和医药材料等领域。%The supported Ru-Y/TiO2 catalysts was prepared by impregnation and characterized by XRD and SEM. The catalytic ac-tivity on the hydrogenation of terpene resin to colorless terpene resin was explored. The results indicated that,the hydrogenation of terpene resin exhibited higher activity under the optimal reaction conditions as:terpene resin 1. 000 g,2. 5%Ru-2. 5%Y/TiO2 0. 040 g,n-hexane 2 mL,150℃,4 MPa,6 h. Color-difference of terpene resin was up to 82. 7%before and after hydrogenation. Mo-reover,the products were conveniently separated from the catalyst by simple decantation, and the catalyst could be reused five times,the color-difference of terpene resin is higher 75%before and after hydrogenation. The decolorized terpene resins might be used as plastics,printing inks,paintings,adhesive,electronic products,food processing and health goods because it was innocuous, stable and aging-resistant.

  9. Enhancing the cyclability of Li-O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst

    Science.gov (United States)

    Leng, Limin; Li, Jing; Zeng, Xiaoyuan; Song, Huiyu; Shu, Ting; Wang, Haishui; Liao, Shijun

    2017-01-01

    An efficient ORR/OER catalyst was developed by anchoring highly dispersed bimetallic PdM (M = Fe, Co, Ni) alloy nanoparticles on nitrogen-doped reduced graphene oxide (N-rGO). This new type of catalyst exhibited excellent ORR/OER activity, and the addition of transition metals also significantly improved catalytic stability, with the catalyst containing Fe (PdFe/N-rGO) exhibiting the best stability. A battery using this PdFe/N-rGO catalyst was capable of long-term stable cycling for 400 cycles (2000 h) with a limited capacity of 1000 mAh g-1 at 400 mA g-1, which was much longer than a battery with Pd/N-rGO as the catalyst (only 80 cycles, 400 h). We attribute the high performance of these catalysts to the high surface area of N-rGO, the anchoring of highly dispersed Pd alloy nanoparticles, and the prevention of Pd alloy nanoparticle aggregation and dissolution by the presence of the transition metals.

  10. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  11. Dehalogenation of Aryl Halides Catalyzed by Montmorillonite Immobilized Bimetal Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel bisupported bimetal catalyst PVP-PdCl2-FeSO4/Al-Mont-PEG600 was prepared by immobilization of PVP (poly (N-vinyl-2-pyrrolidone)) supported bimetallic catalyst using alumina pillared inartificial montmorillonite as the carrier. This catalyst has good dehalogenation activity and selectivity to aryl halides-o-chlorotoluene in aqueous system in the presence of phase transfer catalyst (PEG) and sodium formate as hydrogen source. The catalyst also shows good reusability.

  12. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuila, Debasish [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States); Ilias, Shamsuddin [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States)

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  13. Cr-free Co-Cu/SBA-15 catalysts for hydrogenation of biomass-derivedα-,β-unsaturated aldehyde to alcohol

    Institute of Scientific and Technical Information of China (English)

    Sanjay Srivastava; Pravakar Mohanty; Jigisha K. Parikh; Ajay K. Dalai; S. S. Amritphale; Anup K. Khare

    2015-01-01

    Cr-free bi-metallic SBA-15-supported Co–Cu catalysts were examined in the conversion of bio-mass-derived α-, β-unsaturated aldehyde (furfural) to value-added chemical furfuryl alcohol (FOL). Co–Cu/SBA-15 catalysts with a fixed Cu loading of 10 wt% and varying Co loadings (2.5, 5, and 10 wt%) were prepared by the impregnation method. The catalysts were characterized by X-ray dif-fraction, N2 sorption, H2 temperature-programmed reduction, scanning electron microscopy, ener-gy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, CO chemi-sorption, and inductively coupled plasma mass spectrometry. The influence of different reaction parameters such as temperature, pressure, catalyst dosage, and furfural concentration on the cata-lyst performance was evaluated. Relative to catalysts supported on amorphous silica, the current SBA-15-supported Co–Cu catalysts displayed higher performance, attaining a furfural conversion of 99% and furfuryl alcohol selectivity of 80%. The catalytic reactions were conducted in a 100-mL autoclave at 170 °C and 2 MPa H2 pressure for 4 h.

  14. Laser deposition of bimetallic island films

    Science.gov (United States)

    Kucherik, A. O.; Arakelyan, S. M.; Kutrovskaya, S. V.; Osipov, A. V.; Istratov, A. V.; Vartanyan, T. A.; Itina, T. E.

    2016-08-01

    In this work the results of a bimetallic Au-Ag structure deposition from the colloidal system by nanosecond laser radiation are presented. The formation of the extended arrays of gold and silver nanoparticles with controlled morphology is examined. We report the results of formation bimetallic islands films with various electrical and optical properties. The changes in the optical properties of the obtained thin films are found to depend on their morphology.

  15. Controlling the dispersion of supported polyoxometalate heterogeneous catalysts: impact of hybridization and the role of hydrophilicity–hydrophobicity balance and supramolecularity

    Directory of Open Access Journals (Sweden)

    Gijo Raj

    2014-10-01

    Full Text Available The hybridization of polyoxometalates (POMs through an organic–inorganic association offers several processing advantages in the design of heterogeneous catalysts. A clear understanding of the organization of these hybrid materials on solid surfaces is necessary to optimise their properties. Herein, we report for the first time the organization of Keggin phosphotungstic [PW12O40]3− and Wells–Dawson (WD phosphomolybdic [P2Mo18O62]6− anions deposited on mica (hydrophilic, and highly oriented pyrolytic graphite (HOPG (hydrophobic surfaces. Next, the supramolecular organization of the organic–inorganic hybrid materials formed from the association of POM anions and dimethyldioctadecylammonium bromide (DODA is investigated as a function of the hydrophilic or hydrophobic nature of the surfaces. The height of the Keggin-POM anions, measured with tapping mode (TM-AFM is always in good agreement with the molecular dimension of symmetric Keggin-POM anions (ca. 1 nm. However, the asymmetric WD-POM anions form monolayer assemblies on the surfaces with the orientation of their long molecular axis (ca. 1.6 nm depending on the hydrophilic or hydrophobic properties of the substrate. Namely, the long axis is parallel on mica, and perpendicular on HOPG. When hybridized with DODA, the organization of the hybrid material is dictated by the interaction of the alkyl side chains of DODA with the substrate surface. On HOPG, the DODA–POM hybrid forms small domains of epitaxially arranged straight nanorod structures with their orientation parallel to each other. Conversely, randomly distributed nanospheres are formed when the hybrid material is deposited on freshly cleaved mica. Finally, a UV–ozone treatment of the hybrid material allows one to obtain highly dispersed isolated POM entities on both hydrophilic and hydrophobic surfaces. The hybridization strategy to prevent the clustering of POMs on various supports would enable to develop highly dispersed POM

  16. Green synthesis and applications of Au-Ag bimetallic nanoparticles.

    Science.gov (United States)

    Meena Kumari, M; Jacob, John; Philip, Daizy

    2015-02-25

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenolnanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  17. Catalysts and process for liquid hydrocarbon fuel production

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  18. Bimetallic nanoalloys in heterogeneous catalysis of industrially important reactions: synergistic effects and structural organization of active components

    Science.gov (United States)

    Ellert, O. G.; Tsodikov, M. V.; Nikolaev, S. A.; Novotortsev, V. M.

    2014-08-01

    The review is concerned with correlations between the synergistic effects and structural organization of the surface of bimetallic alloys that are used as active components of catalysts for selective hydrogenation of organic compounds and for CO oxidation in hydrogen-rich mixtures. Studies on the preparation of novel highly efficient catalysts using modern theoretical approaches, computer-assisted molecular design and original synthetic procedures are considered. It is shown that introduction of the second metal into the monometallic catalyst and subsequent formation of alloy particles with modified structure of the surface and near-surface layers leads to nonadditive enhancement of catalytic activity and/or selectivity. The bibliography includes 203 references.

  19. Facile Synthesis of Bimetallic Pt-Ag/Graphene Composite and Its Electro-Photo-Synergistic Catalytic Properties for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Shuhong Xu

    2016-09-01

    Full Text Available A Pt-Ag/graphene composite (Pt-Ag/GNs was synthesized by the facile aqueous solution method, in which Ag+ was first transformed into Ag2O under UV light irradiation, and then Ag2O, Pt2+, and graphene oxide (GO were simultaneously reduced by formic acid. It was found that Pt-Ag bimetallic nanoparticles were highly dispersed on the surface of graphene, and their size distribution was narrow with an average diameter of 3.3 nm. Electrocatalytic properties of the Pt-Ag/GNs composite were investigated by cyclic voltammograms (CVs, chronoamperometry (CA, CO-stripping voltammograms, and electrochemical impedance spectrum (EIS techniques. It was shown that the Pt-Ag/GNs composite has much higher catalytic activity and stability for the methanol oxidation reaction (MOR and better tolerance toward CO poisoning when compared with Pt/GNs and the commercially available Johnson Matthey 20% Pt/C catalyst (Pt/C-JM. Furthermore, the Pt-Ag/GNs composite showed efficient electro-photo-synergistic catalysis for MOR under UV or visible light irradiation. Particularly in the presence of UV irradiation, the Pt-Ag/GNs composite exhibited an ultrahigh mass activity of 1842.4 mA·mg−1, nearly 2.0 times higher than that without light irradiation (838.3 mA·mg−1.

  20. Comparison between a Water-Based and a Solvent-Based Impregnation Method towards Dispersed CuO/SBA-15 Catalysts: Texture, Structure and Catalytic Performance in Automotive Exhaust Gas Abatement

    Directory of Open Access Journals (Sweden)

    Qi Xin

    2016-10-01

    Full Text Available Supported copper oxide nanoparticles are a potential candidate for replacing the rare and expensive precious metals within the automotive three-way catalyst. However, a well-designed dispersion method is necessary to allow a stable high loading of active material, compensating its lower intrinsic activity and stability. In this work, a CuO-loaded SBA-15 catalyst has been manufactured by two methods. The ammonia-driven deposition precipitation (ADP and the molecular designed dispersion (MDD methods are both considered as efficient deposition methods to provide well-dispersed copper oxide-based catalysts. Their morphology, copper dispersion and the chemical state of copper were characterized and compared. Due to the differences in the synthesis approach, a difference in the obtained copper oxide phases has been observed, leading to a distinct behavior in the catalytic performance. The structure-activity correlation of both catalysts has also been revealed for automotive exhaust gas abatement. Results demonstrate that various copper species can be formed depending on the precursor–support interaction, affecting selectivity and conversion during the catalytic reaction.

  1. Use of Citric Acid in Synthesizing a Highly Dispersed Copper Catalyst for Selective Hydrogenolysis%采用柠檬酸合成高分散铜催化剂用于选择氢解反应

    Institute of Scientific and Technical Information of China (English)

    Ming-Hoong LOOI; Shuk-Tong LEE; Sharifah Bee ABD-HAMID

    2008-01-01

    A highly dispersed Cu catalyst supported on silica was prepared by an incipient wetness impregnation method with citric acid. The synthesis was studied by nitrogen physisorption, X-ray diffraction, and temperature-programmed reduction by comparing with a reference prepared without citric acid. The catalyst precursor obtained after impregnation was X-ray amorphous. The precursor was readily transformed to crystalline CuO upon calcination. The CuO particles were of uniform size in a highly dispersed state and can be reduced to Cu at a lower temperature. The activity of the Cu catalyst obtained was an order of magnitude higher than that of the reference for the hydrogenolysis of methyl laurate to dodecanol.

  2. Preparation of Au-Pd bimetallic nanoparticles in porous germania nanospheres: A study of their morphology and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Maureen R. [Department of Chemistry, Fordham University, 441, East Fordham Road, Bronx, NY 10458 (United States); Banerjee, Ipsita A. [Department of Chemistry, Fordham University, 441, East Fordham Road, Bronx, NY 10458 (United States)]. E-mail: banerjee@fordham.edu

    2006-03-15

    Size controlled Au-Pd bimetallic nanoparticles with an average size of 7-10 nm were grown in porous germania nanospheres. The properties of the resulting nanocomposites were characterized by electron microscopy, energy dispersive spectroscopy, and ultraviolet-visible spectroscopy. The catalytic activity of the nanocomposites was also examined by studying the degradation of p-nitroaniline.

  3. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  4. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  5. Hydrogen purification for fuel cell by copper promoted gold catalysts; Purificacao de hidrogenio para pilha a combustivel utilizando catalisadores de ouro promovidos com cobre

    Energy Technology Data Exchange (ETDEWEB)

    Mozer, Thiago S.; Vieira, Carlos T.P.; Passos, Fabio B. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Dziuba, Dominika A. [Hochschule Mannheim (Germany)

    2008-07-01

    Copper promoted gold catalysts were studied for hydrogen purification through selective CO oxidation. The Cu acted as a selectivity promoter favoring the CO conversion and decreasing the H{sub 2} consumption. The deposition-precipitation method, used to prepare the samples generated small and well dispersed gold particles, as the UV-vis DRS spectra did not show the 'plasmon' band, which indicates that the samples are active for SELOX. The activity tests showed high CO conversion, the bimetallic 2,5%Au-0,5%Cu/Al{sub 2}O{sub 3} catalyst showed the best behavior in the tested condition, 95% of CO conversion and 75% of selectivity at 50 deg C. Increasing the O{sub 2} content in the feedstream the CO conversion also increased, although the selectivity decreased. (author)

  6. Effect of titania on the characteristics of a Tin-Platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Gil, P., E-mail: moralesp@imp.mx; Nava, N. [Instituto Mexicano del Petróleo (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas (Brazil)

    2015-06-15

    Pt-Sn bimetallic catalysts dispersed on alumina are commonly used for reforming and dehydrogenation reactions. In this research work, Pt and Sn were supported on titania. The resulting interactions between the components in the prepared samples, before and after treatment with hydrogen, were studied by Mössbauer spectroscopy, X-ray diffraction and Rietveld refinement. The results show the presence of Pt and SnO{sub 2} after calcinations. After the reduction process, metallic Pt, PtSn, and Pt{sub 3}Sn alloys were identified. The Rietveld refinement analysis shows that some Ti{sup 4+} atoms were replaced by Sn{sup 4+} atoms in the titania structure. Finally, the Mössbauer spectroscopy and X-ray diffraction results indicate that metallic platinum and SnO{sub 2} are encapsulated by a TiOx layer.

  7. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  8. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli (Finland); Heikkilae, Mikko; Leskelae, Markku, E-mail: weiliuzk@yahoo.cn, E-mail: mika.sillanpaa@uef.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki (Finland)

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), {xi}-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH{sub 2}OH{center_dot}HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H{sub 2}PtCl{sub 6} to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  9. Magneto-optical response in bimetallic metamaterials

    CERN Document Server

    Atmatzakis, Evangelos; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I

    2016-01-01

    We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows to optimize the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Although Ni sections correspond to as little as ~6% of the total surface of the metamaterial, the resulting magneto-optically induced polarization rotation is equal to that of a continuous film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components and integrated photonic circuits.

  10. Temperature-programmed oxidation of coked noble metal catalysts after autothermal reforming of n-hexadecane

    Energy Technology Data Exchange (ETDEWEB)

    Kauppi, E.I.; Linnekoski, J.A.; Krause, A.O.I.; Veringa Niemelae, M.K. [Aalto University, School of Science and Technology, Department of Biotechnology and Chemical Technology, Research Group Industrial Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kaila, R.K. [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1001, FI-02044 VTT (Finland)

    2010-08-15

    Autothermal reforming (ATR) of n-hexadecane was carried out on zirconia-supported mono- and bimetallic noble metal (Rh, Pt) catalysts at 600, 700, and 800 C. After ATR, the reactivity of coke deposits (2.8-9.9 wt%) on the catalysts was investigated by temperature-programmed oxidation (TPO). Analysis of the results obtained from ATR and TPO experiments at various temperatures and on the different catalysts gave information on the reaction conditions where the detrimental coke can be minimized and allows estimating the nature of carbon deposits. H{sub 2} production increased with temperature on the tested Rh-containing catalysts and the ZrO{sub 2} support, but decreased as a function of temperature on the Pt catalyst. The formation of coke was least at 800 C, evidently due to the intensifying reaction of carbon and steam with increasing temperature, as well as to the better activity of the catalysts. The amount of coke formed was highest at 700 C. Comparison of the TPO profiles obtained for the monometallic Rh and Pt catalysts with the bimetallic RhPt revealed differences in the nature of carbon deposits on their surface. At 600 C, the coke formed on the monometallic Rh and Pt catalysts was located mostly on the support, whereas on the bimetallic RhPt catalyst the formation of this type of coke was suppressed. The bimetallic RhPt catalyst also exhibited better tolerance toward coking at 700 C. Therefore, although the selectivity toward hydrogen was not related to the amount of coke formed, the deactivation patterns differed on the mono- and bimetallic catalysts. (author)

  11. Copper-silver bimetallic system on natural clinoptilolite: thermal reduction of Cu2+ and Ag+ exchanged.

    Science.gov (United States)

    Rodríguez-Iznaga, Inocente; Petranovskii, Vitalii; Castillón-Barraza, Felipe; Concepción-Rosabal, Beatriz

    2011-06-01

    Copper-silver bimetallic system supported on natural clinoptilolite from Tasajeras deposit (Cuba) was studied. Bimetallic samples were prepared by simultaneous ion exchange, and reduced in a wide temperature range in a hydrogen flow. The main goal of the work was analysis of the mutual influence of both metals on their reduction process and the properties of the resultant particles. Analysis was done by combined use of XRD and UV-Vis spectroscopy. The reduction of Cu2+ and Ag+ cations shows existence of notable inter-influence between both cations during this process. The Cu2+ reduction is favored by the presence of Ag+, which should be related with the synergetic influence of silver cations and/or clusters formed on the first stages of reduction on Cu(2+)-framework interaction, facilitating the Cu2+ reduction even at low temperature (25 and 50 degrees C). The aggregation of the reduced highly dispersed species both for copper and silver is limited in this bimetallic system. The introduction of Ag+ as the second cation in the copper-exchanged zeolites favors the copper reduction at lower temperatures (25 and 50 degrees C), and appears to be the efficient tool for the control of the size of the resultant reduced nanoparticles (it means their dispersion).

  12. Core-shell Rh-Pt nanocubes: A model for studying compressive strain effects in bimetallic nanocatalysts

    Science.gov (United States)

    Harak, Ethan William

    Shape-controlled bimetallic nanocatalysts often have increased activities and stabilities over their monometallic counterparts due to surface strain effects and electron transfer between the two metals. Here, we demonstrate that the degree of surface strain can be manipulated in shape-controlled nanocrystals through a bimetallic core shell architecture. This ability is achieved in a model core shell Rh Pt nanocube system through control of shell thickness. An increase in the Pt shell thickness leads to more compressive strain, which can increase the Pt 4f7/2 binding energy by as much as 0.13 eV. This change in electronic structure is correlated with a weakening of surface-adsorbate interactions, which we exploit to reduce catalyst poisoning by CO during formic acid electrooxidation. In fact, by precisely controlling the Pt shell thickness, the maximum current density achieved with Rh Pt nanocubes was 3.5 times greater than that achieved with similarly sized Pt nanocubes, with decreased CO generation as well. This system serves as a model for how bimetallic architectures can be used to manipulate the electronic structure of nanoparticle surfaces for efficient catalysis. The strategy employed here should enable the performance of bimetallic nanomaterials comprised of more cost-effective metals to be enhanced as well.

  13. Etat actuel des recherches fondamentales sur les catalyseurs bimétalliques à base de platine, sur support alumine, comparables à ceux utilisés dans l'industrie pétrolière. Current State of Fundamental Research on Platinum-Base Bimetallic Catalysts on an Alumina Support, Comparable to the Ones Used in the Petroleum Industry

    Directory of Open Access Journals (Sweden)

    Charcosset H.

    2006-11-01

    és promoteurs diminuant l'hydrogénolyse ou (et inhibiteurs par encrassement ; 6 le fait que dans les 158 références de l'article la moitié date de 1976 et après, souligne l'intérêt croissant porté aux recherches fondamentales dans ce domaine. This article mainly concerns the pairs (Pt, Re, (Pt, Ir and (Pt,Ru dealt with in the following order - catalyst preparation (impregnation of the support, reduction by hydrogen ; - characterization of reduced catalysts ; - catalytic activities ; - scale-up tests ta industriel catalysts , - conclusions. Special emphasis is placed on I the difficulty of obtaining data on the degree of reduction which are meaningful concerning the state of the catalyst under normal working conditions, hence the need ta combine several techniques such as DTA, TGA, volumetry, catharometry, ESCA, in-frared spectroscopy, HL thermodesorption and the measuring of catalytic activities ; 21 the dference between the phase diagrams of divided and massed systems ; 3 the usefulness of the hydrogen titration of the unsorbed oxygen ta give evidence for the presence of small pure Mell particles in (Pt, Mell/AI20a catalysts; 4 the dependence of the final state of the catalyst on the activation mode. The pair (Pt, Re con be stabilized in a state of alloy particles having similar superficial and mean composition or in a state of particle mixture of (Pt, Re with an Re content of less than the rated composition and of pure and well dispersed Re. The pairs (Pt, Ir and especially (Pt, Ru are characterized by the difficulty in obtaining on alloy state with a constant composition from one metal particle to another ; 5 variations in catalytic activity due ta the addition of Mell to Pt, reflecting one or several of the following effects a increase in the dispersion of Pt with (or without a change in its intrinsic properties by weak-valence ions of W, Mo, Cr, etc. ; b formation of Mell in a metallic state, eventually producing an alloy with Pt ; c the rote of promoter carbon

  14. Platinum-ruthenium bimetallic clusters on graphite: a comparison of vapor deposition and electroless deposition methods.

    Science.gov (United States)

    Galhenage, Randima P; Xie, Kangmin; Diao, Weijian; Tengco, John Meynard M; Seuser, Grant S; Monnier, John R; Chen, Donna A

    2015-11-14

    Bimetallic Pt-Ru clusters have been grown on highly ordered pyrolytic graphite (HOPG) surfaces by vapor deposition and by electroless deposition. These studies help to bridge the material gap between well-characterized vapor deposited clusters and electrolessly deposited clusters, which are better suited for industrial catalyst preparation. In the vapor deposition experiments, bimetallic clusters were formed by the sequential deposition of Pt on Ru or Ru on Pt. Seed clusters of the first metal were grown on HOPG surfaces that were sputtered with Ar(+) to introduce defects, which act as nucleation sites for Pt or Ru. On the unmodified HOPG surface, both Pt and Ru clusters preferentially nucleated at the step edges, whereas on the sputtered surface, clusters with relatively uniform sizes and spatial distributions were formed. Low energy ion scattering experiments showed that the surface compositions of the bimetallic clusters are Pt-rich, regardless of the order of deposition, indicating that the interdiffusion of metals within the clusters is facile at room temperature. Bimetallic clusters on sputtered HOPG were prepared by the electroless deposition of Pt on Ru seed clusters from a Pt(+2) solution using dimethylamine borane as the reducing agent at pH 11 and 40 °C. After exposure to the electroless deposition bath, Pt was selectively deposited on Ru, as demonstrated by the detection of Pt on the surface by XPS, and the increase in the average cluster height without an increase in the number of clusters, indicating that Pt atoms are incorporated into the Ru seed clusters. Electroless deposition of Ru on Pt seed clusters was also achieved, but it should be noted that this deposition method is extremely sensitive to the presence of other metal ions in solution that have a higher reduction potential than the metal ion targeted for deposition.

  15. Ordered macroporous bimetallic nanostructures: design, characterization, and applications.

    Science.gov (United States)

    Lu, Lehui; Eychmüller, Alexander

    2008-02-01

    Ordered porous metal nanomaterials have current and future potential applications, for example, as catalysts, as photonic crystals, as sensors, as porous electrodes, as substrates for surface-enhanced Raman scattering (SERS), in separation technology, and in other emerging nanotechnologies. Methods for creating such materials are commonly characterized as "templating", a technique that involves first the creation of a sacrificial template with a specific porous structure, followed by the filling of these pores with desired metal materials and finally the removal of the starting template, leaving behind a metal replica of the original template. From the viewpoint of practical applications, ordered metal nanostructures with hierarchical porosity, namely, macropores in combination with micropores or mesopores, are of particular interest because macropores allow large guest molecules to access and an efficient mass transport through the porous structures is enabled while the micropores or mesopores enhance the selectivity and the surface area of the metal nanostructures. For this objective, colloidal crystals (or artificial opals) consisting of three-dimensional (3D) long-range ordered arrays of silica or polymer microspheres are ideal starting templates. However, with respect to the colloidal crystal templating strategies for production of ordered porous metal nanostructures, there are two challenging questions for materials scientists: (1) how to uniformly and controllably fill the interstitial space of the colloidal crystal templates and (2) how to generate ordered composite metal nanostructures with hierarchical porosity. This Account reports on recent work in the development and applications of ordered macroporous bimetallic nanostructures in our laboratories. A series of strategies have been explored to address the challenges in colloidal crystal template techniques. By rationally tailoring experimental parameters, we could readily and selectively design

  16. 氧化锆负载Pd-Cu双金属催化剂上山梨醇选择性氢解合成乙二醇和丙二醇%Selective hydrogenolysis of sorbitol to ethylene glycol and propylene glycol on ZrO2-supported bimetallic Pd-Cu catalysts

    Institute of Scientific and Technical Information of China (English)

    贾玉庆; 刘海超

    2015-01-01

    Sorbitol is one of the key building blocks in catalytic conversion of biomass, and its selective hydro-genolysis to ethylene glycol and propylene glycol provides a viable and sustainable route towards the synthesis of the two glycols. Herein, the hydrogenolysis of biomass-derived sorbitol was studied on Pd-modified Cu/monoclinic zirconia (Pd-Cu/ZrO2) catalysts with a wide range of Cu/Pd atomic ratios in the presence of La(OH)3. The bimetallic Pd-Cu/ZrO2 catalysts showed superior activities and selectivities to the two target glycols, compared with the monometallic Cu/ZrO2 and Pd/ZrO2 catalysts under identical conditions. At nearly 100%sorbitol conversion, a combined selectivity of 61.7%to ethylene glycol, propylene glycol, and glycerol was obtained on Pd-Cu/ZrO2 (Cu/Pd=5) at 493 K under 5.0 MPa H2. Pd-Cu/ZrO2 was also stable and recyclable, in contrast to Cu/ZrO2, which suffered severe deactivation because of agglomeration of Cu particles during sorbitol hydrogenoly-sis. Clearly, the presence of Pd improved not only the activity and selectivity of the Cu catalyst, but also the hydrothermal stability. Characterization of these catalysts by X-ray diffraction, dif-fuse-reflectance infrared Fourier transform spectroscopy of CO adsorption, and H2 tempera-ture-programmed reduction suggests that the Cu particles deposited on the Pd surfaces with close contact and strong interaction between the two metals, most likely involving electron transfer from Pd to Cu. Such structural and electronic effects are proposed as the critical contributors to the sig-nificant promoting effect of Pd on the activity and stability of Pd-Cu catalysts in sorbitol hydrogen-olysis. These findings provide useful information for design of new Cu-based catalysts with higher efficiency and stability for selective hydrogenolysis of polyols and other biomass-derived reactants under hydrothermal conditions.%山梨醇和木糖醇等多元醇是可再生生物质转化合成液体燃料和化学品的重

  17. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  18. The use of mechanical alloying for the preparation of palladized magnesium bimetallic particles for the remediation of PCBs.

    Science.gov (United States)

    Coutts, Janelle L; Devor, Robert W; Aitken, Brian; Hampton, Michael D; Quinn, Jacqueline W; Clausen, Christian A; Geiger, Cherie L

    2011-09-15

    The kinetic rate of dechlorination of a polychlorinated biphenyl (PCB-151) by mechanically alloyed Mg/Pd was studied for optimization of the bimetallic system. Bimetal production was first carried out in a small-scale environment using a SPEX 8000M high-energy ball mill with 4-μm-magnesium and palladium impregnated on graphite, with optimized parameters including milling time and Pd-loading. A 5.57-g sample of bimetal containing 0.1257% Pd and ball milled for 3 min resulted in a degradation rate of 0.00176 min(-1)g(-1) catalyst as the most reactive bimetal. The process was then scaled-up, using a Red Devil 5400 Twin-Arm Paint Shaker, fitted with custom plates to hold milling canisters. Optimization parameters tested included milling time, number of ball bearings used, Pd-loading, and total bimetal mass milled. An 85-g sample of bimetal containing 0.1059% Pd and ball-milled for 23 min with 16 ball bearings yielded the most reactive bimetal with a degradation rate of 0.00122 min(-1)g(-1) catalyst. Further testing showed adsorption did not hinder extraction efficiency and that dechlorination products were only seen when using the bimetallic system, as opposed to any of its single components. The bimetallic system was also tested for its ability to degrade a second PCB congener, PCB-45, and a PCB mixture (Arochlor 1254); both contaminants were seen to degrade successfully.

  19. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  20. Fractal Dimension Calculation of a Manganese-Chromium Bimetallic Nanocomposite Using Image Processing

    Directory of Open Access Journals (Sweden)

    Amir Lashgari

    2015-01-01

    Full Text Available Bimetallic materials, which have the ability to convert heat change into mechanical movement, normally consist of two bonded strips of dissimilar metals that expand at different rates. We describe how we made a manganese-chromium (Mn-Cr bimetallic nanocomposite using the centrifuge method and a low-to-high approach. We conducted scanning electron microscope (SEM imaging, energy-dispersive X-ray spectroscopy (EDX analysis, and X-ray diffraction spectra of the nanocomposite to prove its identity. We examined how centrifuge speed, process time, and the use of an “intruder agent” affected the properties of the material. The fractal dimension is a significant factor that can be used to approximate the surface roughness, the texture segmentation, and an image of the studied compounds. We calculated the technique of fractal dimensions using image-processing values on a computer and histogram plot with the SEM image of the Mn-Cr bimetallic nanocomposite using MATLAB software. We applied the Statistical Package for the Social Sciences software for statistics data extracted from the SEM image of the nanocomposite and obtained the following results: mean = 1.778, median = 1.770, max = 1.98, min = 1.60, skewness = 0.177, range = 0.38, and harmonic mean = 1.771 for fractal dimension of the SEM image.

  1. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Directory of Open Access Journals (Sweden)

    Jianlong Ji

    2014-03-01

    Full Text Available Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectrometer (EDS, transmission electron microscopy (TEM and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS activity, using 4-mercaptopyridine (4-MP as model molecules.

  2. Characterization of Bimetallic Castings with an Austenitic Working Surface Layer and an Unalloyed Cast Steel Base

    Science.gov (United States)

    Wróbel, Tomasz

    2014-05-01

    The paper presents the technology of bimetallic castings based on the founding method of layer coating directly in the cast process of the so-called method of mold cavity preparation. The prepared castings consist of two fundamental parts, i.e., the base and the working surface layer. The base part of the bimetallic casting is typical foundry material, i.e., unalloyed cast steel, whereas the working layer is a plate of austenitic alloy steel sort X2CrNi 18-9. The quality of the joint between the base part and the working layer was evaluated on the basis of ultrasonic non-destructive testing and structure examinations containing metallographic macro- and microscopic studies with the use of a light microscope (LOM) with microhardness measurements and a scanning electron microscope (SEM) with microanalysis of the chemical composition (energy dispersive spectroscopy—EDS). On the basis of the obtained results it was confirmed that the decisive phenomena needed to create a permanent joint between the two components of the bimetallic casting are carbon and heat transport in the direction from the high-carbon and hot base material which was poured into the mold in the form of liquid metal to the low-carbon and cold material of the working layer which was placed in the mold cavity in the form of a monolithic insert.

  3. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn; Zhang, Wendong, E-mail: wdzhang@tyut.edu.cn; Li, Gang; Hu, Jie [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China); Zhou, Zhaoying, E-mail: zhouzy@mail.tsinghua.edu.cn; Yang, Xing; Dong, Hualai [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  4. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Science.gov (United States)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo; Zhang, Wendong; Zhou, Zhaoying; Yang, Xing; Dong, Hualai; Li, Gang; Hu, Jie

    2014-03-01

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  5. Gold-platinum bimetallic nanotubes templated from tellurium nanowires as efficient electrocatalysts for methanol oxidation reaction

    Science.gov (United States)

    Lu, Chenchen; Kong, Wei; Zhang, Huying; Song, Bo; Wang, Zhenghua

    2015-11-01

    In this paper, gold-platinum (Au-Pt) bimetallic nanotubes with different Au/Pt ratio are successfully synthesized through a simple wet-chemical reduction route in which tellurium (Te) nanowires serve as both sacrificial template and reducing agent. The hollow nanostructure of Au-Pt nanotubes is formed due to Kirkendall effect. The as-prepared Au-Pt nanotubes can be applied as catalyst for methanol oxidation reaction, and the results indicate that the Au-Pt nanotubes with an Au/Pt ratio of 1:1 show the best electrochemical catalytic performances. Furthermore, the catalytic activity of the Au-Pt nanotubes is also better than Pt nanotubes and commercial Pt/C catalyst.

  6. SYNTHESIS OF POLYMER-STABILIZED PLATINUM/RUTHENIUM BIMETALLIC COLLOIDS AND THEIR CATALYTIC PROPERTIES FOR SELECTIVE HYDROGENATION OF CROTONALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Han-fan Liu

    2005-01-01

    Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.

  7. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution

    Science.gov (United States)

    Zhong, Jin-Hui; Jin, Xi; Meng, Lingyan; Wang, Xiang; Su, Hai-Sheng; Yang, Zhi-Lin; Williams, Christopher T.; Ren, Bin

    2016-11-01

    An atomic- and molecular-level understanding of heterogeneous catalysis is required to characterize the nature of active sites and improve the rational design of catalysts. Achieving this level of characterization requires techniques that can correlate catalytic performances to specific surface structures, so as to avoid averaging effects. Tip-enhanced Raman spectroscopy combines scanning probe microscopy with plasmon-enhanced Raman scattering and provides simultaneous topographical and chemical information at the nano/atomic scale from ambient to ultrahigh-vacuum and electrochemical environments. Therefore, it has been used to monitor catalytic reactions and is proposed to correlate the local structure and function of heterogeneous catalysts. Bimetallic catalysts, such as Pd-Au, show superior performance in various catalytic reactions, but it has remained challenging to correlate structure and reactivity because of their structural complexity. Here, we show that TERS can chemically and spatially probe the site-specific chemical (electronic and catalytic) and physical (plasmonic) properties of an atomically well-defined Pd(sub-monolayer)/Au(111) bimetallic model catalyst at 3 nm resolution in real space using phenyl isocyanide as a probe molecule (Fig. 1a). We observe a weakened N≡C bond and enhanced reactivity of phenyl isocyanide adsorbed at the Pd step edge compared with that at the Pd terrace. Density functional theory corroborates these observations by revealing a higher d-band electronic profile for the low-coordinated Pd step edge atoms. The 3 nm spatial resolution we demonstrate here is the result of an enhanced electric field and distinct electronic properties at the step edges.

  8. Pb促进的Pd/γ-Al2O3催化剂上H2O2氧化甘油反应%Oxidation of glycerol with H2O2 on Pb-promoted Pd/γ-Al2O3 catalysts

    Institute of Scientific and Technical Information of China (English)

    María L. Faroppa; Juan J. Musci; María E. Chiosso; Claudia G. Caggiano; Hernán P. Bideberripe; José L. García Fierro; Guillermo J. Siri; Mónica L. Casella

    2016-01-01

    A series of bimetallic Pd‐Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported onγ‐Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at atmospheric pressure, 45 °C and pH=11. The morphology and dispersion of the catalysts were characterized by scanning electron microscopy‐energy dispersive X‐ray spectrosco‐py (SEM‐EDX) and transmission electron microscopy (TEM). The presence of an alloy phase in the bimetallic catalyst was detected by X‐ray photoelectron spectroscopy (XPS). Glycerol conversion obtained with the monometallic Pd catalyst was 19%, which was increased to 100%with the addi‐tion of Pb. The four bimetallic PdPb catalysts were able to oxidize glycerol to dihydroxyacetone (DIHA) and the selectivity to DIHA reached 59%, 58%, 34% and 25% for PdPb0.25, PdPb0.50, PdPb1.00 and PdPb1.60 catalysts, respectively.%制备了Pd含量为1 wt%、不同Pb/Pd摩尔比的γ-Al2O3负载Pd-Pb双金属催化剂,并用于常压、45°C和pH =11条件下H2O2氧化甘油反应中.催化剂的形貌和分散度采用扫描电镜-X射线电子散射谱和透射电镜进行了表征;双金属催化剂中合金相用X射线光电子能谱进行了验证.单金属Pd催化剂上反应结束后甘油转化率为19%,但随着Pb的加入甘油转化率增大到约100%.所制四个不同Pb/Pd原子比的双金属催化剂PdPb0.25, PdPb0.50, PdPb1.00和PdPb1.60均可氧化甘油至二羟基丙酮(DIHA),反应结束后DIHA选择性分别可达59%,58%,34%和25%.

  9. Controlled reduction of LaFe xMn yMo zO3/Al2O3 composites to produce highly dispersed and stable Fe0 catalysts: a Mössbauer investigation

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Tristão

    2008-06-01

    Full Text Available In this work, controlled reduction of perovskites supported on Al2O3 was used to prepare thermally stable nanodispersed iron catalysts based on Fe0/La2O3/Al2O3. The perovskites composites LaFe0.90Mn0.08Mo0.02O3(25, 33 and 50 wt (% /Al2O3 and LaFe0.90Mn0.1O3(25 wt (% /Al2O3 were prepared and characterized by XRD, BET, TPR, SEM and Mössbauer spectroscopy. XRD for unsupported perovskite showed the formation of a single phase perovskite structure. The Mössbauer spectra of the perovskites were fitted with hyperfine field distribution model for the perovskite. Supported perovskites on Al2O3 showed a decrease of the hyperfine field in respect to unsupported perovskite, due to decrease of particle size and dispersion of the Fe3+ specimens on the support. Also showed broaden lines and relaxation effects due to the small particle size. To produce the Fe0 catalyst, the composite perovskite(25%/Al2O3 was reduced with H2 at 900, 1000 and 1100 °C for 1 hour. XRD data indicated the formation of Fe0 catalyst with particles sizes of ca. 35 nm. The Mössbauer spectrum showed the formation of metallic iron and doublets corresponding to species of octahedric Fe2+ and Fe3+ sites dispersed on Al2O3. These catalysts showed improved stability towards sintering even upon treatment at 1000 and 1100 °C under H2.

  10. Effect of cobalt loading on reducibility,dispersion and crystallite size of Co/Al2O3 Fischer-Tropsch catalyst

    Institute of Scientific and Technical Information of China (English)

    熊海峰; 张煜华; 李金林; 古映莹

    2004-01-01

    Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD.For the Co/Al2 O3 catalysts with low cobalt loading, CoAl2 O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320 ℃ ) and cobalt oxidealumina interaction species (reduction at above 400 C ). Increasing Co loading results in the increase of Co3 O4 crystallite size. The reduced Co/Al2 O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.

  11. Oxidative Esterification of Methacrolein to Methyl Methacrylate over Supported Palladium Catalyst

    Institute of Scientific and Technical Information of China (English)

    Wei ZHAO; Wei Guo CHENG; Zeng Xi LI; Lei WANG; Xiang Ping ZHANG; Suo Jiang ZHANG

    2006-01-01

    Supported palladium catalysts, which were used in the oxidative esterification of methacrolein to methyl methacrylate, have been prepared with different carriers and Pd precursors.Experimental results revealed that Pd catalysts with γ-Al2O3 support and Na2PdCl4 precursor showed good performance. Pd catalyst modified with Pb and Mg indicated that Pd-Mg bimetallic catalyst exhibited considerably higher activity and Pd-Pb exhibited both higher activity and selectivity. 92.27% methacrolein conversion and 90.57% methyl methacrylate selectivity were obtained on Pd-Pb-Mg catalyst.

  12. Analysis of Manufacturing Bimetallic Tubes by the Cold Drawing Process

    Directory of Open Access Journals (Sweden)

    Halaczek D.

    2016-03-01

    Full Text Available Drawing processes apply to obtain the bimetallic tubes from the different metals and alloys, combined in the solid state, which significantly affects the specificity of this process. The manufacturing of bimetallic tubes by drawing process depends on many factors which include: preparation of the surface of materials joined in the solid state, the geometric parameters of the working tool, technological parameters of the drawing process (drawing speed, type of lubricant, the use of back pull etc.. Generally, the cold drawing process of producing the bimetallic tubes refers to metals which have high ductility (copper, aluminum, etc.. The tube sinking (tube drawing without a mandrel of bimetallic tubes together with joining them at the interface of the two metal in the solid-state is applied for tubes of the diameter range between 6 to 20 mm and based on of the reducing the diameter of the tube. However, a slight increase of wall thickness ca. 0.05 ÷ 0.10 mm can appear, which is not dangerous phenomenon in case of producing the bimetallic tubes by joining in the solid-state. The aim of the research was to investigate the technology of tubes drawing process from non-ferrous metal, drawing process of bimetallic tubes and the production of bimetallic tubes in layers composition: cooper Cu-ETP - brass CuZn37 and CuZn37 brass - copper Cu-ETP in the tube sinking process. The research program included: production of bimetallic tubes with a different composition (Cu- ETP-CuZn37 and CuZn37-Cu-ETP and a different percentage of the cross-section components; analysis of changes of tube wall thickness and the layer composition of the bimetallic tube, based on measurements on the workshop microscope; analysis of the material flow in the process of the bimetallic tubes production based on the measurements results of a profilograph CP-200.

  13. Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu; Luo, Xiangyi; Kropf, A. Jeremy; Wen, Jianguo; Wang, Xiaoping; Lee, Sungsik; Myers, Deborah J.; Miller, Dean; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2016-01-01

    The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt–Cu core–shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li–O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (<0.2 V). The superior performance is explained by the robust Cu(I) surface sites stabilized by the Pt core in the nanostructure. The insights into the catalytic mechanism of the unique Pt–Cu core–shell nanostructure gained in this work are expected to serve as a guide for future design of other nanostructured bimetallic OER catalysts.

  14. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Thomas J.A.; Janssen, Arne [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Camargo, Pedro H.C. [Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo (Brazil); Burke, M. Grace [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Zaluzec, Nestor J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Nanoscience and Technology Division, Argonne National Laboratory, Argonne, IL 60439, US (United States); Haigh, Sarah J., E-mail: sarah.haigh@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-03-15

    This paper presents an investigation of the limitations and optimisation of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensate for variations in the intensity of spectrum images at each sample tilt. Finally, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations. - Highlights: • We investigate the methodology of STEM-EDX tomography of nanoparticles. • We present a time-varied acquisition scheme to compensate for detector shadowing. • The ability of STEM-EDX tomography to meet the projection requirement is discussed.

  15. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  16. Electrochemical impedance study and performance of PdNi nanoparticles as cathode catalyst in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Sanchez, G.; Santana-Salinas, A.; Vazquez-Huerta, G.; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Polymer electrolyte membrane fuel cells (PEMFC) convert the energy stored in hydrogen and oxygen molecules directly into electricity. However, technical and economic challenges must be overcome to address cost, performance and stability issues associated with membrane electrode assemblies (MEA). The oxygen reduction reaction (ORR) which takes place in the cathode is the limiting reaction due to the slow kinetics of ORR on metals, including platinum (Pt). For that reason, much research has gone into finding catalyst materials with a similar or greater performance than Pt. Bimetallic palladium (Pd) based catalysts have been considered as alternative materials for ORR. In this study, a carbon-dispersed bimetallic PdNi was prepared by borohydride reduction using PdCl{sub 2} and NiCl{sub 2} as precursors in a tetrahydrofuran (THF) solution. The PdNi loading and weight percentage were optimized using the Simplex method. The MEA performance was evaluated at optimum conditions using the PdNi electrocatalyst as the cathode and a Pt-Etek carbon cloth as the anode. The maximum power density of 122 mW per cm{sup 2} was reached with 45 percent of PdNi wt percent at 30 psi and 80 degrees C. The catalytic activity and the mechanism of the ORR on PdNi, in 0.5M H{sub 2}SO{sub 4} was investigated using electrochemical impedance spectroscopy. The Tafel slope and the charge transfer coefficient were obtained from the impedance spectra at optimum condition of PdNi loading and PdNi wt percent. 24 refs., 2 tabs., 5 figs.

  17. 分散型镍、铁催化剂用于重油-煤的加氢共炼研究%Study on dispersed Ni and Fe catalysts for coal-heavy oil co-processing

    Institute of Scientific and Technical Information of China (English)

    戈军; 石斌; 杨圣闯; 李慎伟; 郭龙德; 郭智慧; 张建芳

    2011-01-01

    将硝酸镍和硝酸铁分别溶于水、甲醇或N,N二甲基甲酰胺(DMF),然后通过高速剪切分散在重油中,脱除溶剂后在350℃下采用升华硫预硫化成为分散型镍、铁催化剂,用于重油-煤加氢共炼.结果表明:与水溶性镍、铁催化剂相比,有机溶剂化的镍、铁催化剂前体在重油中由于黏度较小和相容性较好而具有更好的分散性,并且DMF做溶剂的性能优于甲醇;顶硫化后甲醇化的镍、铁催化剂颗粒分别可达50和120 nm,而采用DMF相应的催化剂颗粒为10 ~40和30 ~50 nm,并且催化剂粒径均匀;在420℃、1h、冷氢压8.0 MPa和煤与重油质量比1∶3的反应条件下,与以水为溶剂相比,采用甲醇或DMF为溶剂,尤其是DMF制备的镍、铁催化剂更能明显改善轮古常压渣油、Du-84特稠油与神华烟煤以及内蒙褐煤的加氢共炼效果;有机溶剂化制备的镍、铁催化剂在硫化和共炼条件下不容易聚结失活,并且DMF作溶剂的性能优于甲醇.%The dispersed nickel or ferric sulfide catalyst were prepared from nickel or ferric nitrate by dissolving in H2O, methanol or N-N dimethyl foramide ( DMF) and then dispersing in heavy oil and presulfurizing with sulfur at 330 t. The results show that the particles sizes of the nickel and ferric sulfides from organic-soluble catalysts precursors are smaller and more symmetrical than those of the traditional water solution. The particles sizes of nickel and ferric sulfides from DMF-solu-ble catalysts precursors are about 10-40 nm and 30-50 tun, exhibiting the advantage of DMF on methanol for the corresponding particles size from methanol-soluble respectively about 50 nm and 120 nm, which resulted from the lower viscosity and good compatibility of the preparing system. In the two heavy oils ( LGAR,Du-84) and two coals(Shenhua bitumite or Neimeng brown coal) co-processing system at 420 X., 1 h, 8.0 Mpa H2(cold) and the mass ratio of coal to oil 1 =3, the catalysts

  18. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and X-ra

  19. Development of Cu and Ni catalysts supported on ZrO{sub 2} for the generation of H{sub 2} by means of the reaction of reformed methanol in atmosphere oxidizer; Desarrollo de catalizadores de Cu y Ni soportados en ZrO{sub 2} para la generacion de H{sub 2} mediante la reaccion de reformado de metanol en atmosfera oxidante

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, P.

    2012-07-01

    ZrO{sub 2} was prepared by the sol-gel method and calcined at 450 C. The prepared zirconia was impregnated with an aqueous solution of Cu(CH{sub 3}CO{sub 2}){sub 2}{center_dot}H{sub 2}O or NiNO{sub 3}{center_dot}6H{sub 2}O at an appropriate concentration to yield 3 wt % of copper or nickel, respectively, in the mono metallic catalysts. Three bimetallic samples were prepared at 80% Cu and 20% Ni respectively to obtain 3 wt % of total metallic phase. Surface area of the Cu-Ni base catalysts supported on ZrO{sub 2} oxide showed differences as a function of the metal addition. Between them, the Cu/ZrO{sub 2} catalyst had the lowest surface area than other catalysts. X-ray diffraction patterns of the bimetallic catalysts did not show diffraction peaks of the Cu, Ni or bimetallic Cu-Ni alloys. In addition, TPR profiles of the bimetallic catalysts had the lowest reduction temperature compared with the mono metallic samples. The reactivity of the catalysts in the range of 250-350 C showed that the samples prepared by successive impregnation had the highest catalytic activity than the other catalysts studied. Also the selectivity for H{sub 2} production was higher for these catalysts. This finding was associated to the presence of the bimetallic Cu-Ni nanoparticles, as was evidenced by Tem-EDX analysis. (Author)

  20. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts.

  1. BIMETALLIC LITHIUM BOROHYDRIDES TOWARD REVERSIBLE HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Au, M.

    2010-10-21

    Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.

  2. Influence of dispersion of catalyst inks on performance of PEMFC prepared by decal transfer%催化剂浆料分散对转印法制备PEMFC性能的影响

    Institute of Scientific and Technical Information of China (English)

    梁晓璐; 潘国顺; 徐莉; 汪嘉澍

    2015-01-01

    Decal transfer is one of effective preparation methods for membrane electrode assemblies fabrication wel known for the low interfacial resistance and suitability for mass production. The complete decal transfer for membrane electrode was achieved on condition that ethylene glycol as the thickener and deionized water, isopropanol alcohol as the dispersion solvents were used in catalyst inks. Catalyst inks were dispersed by means of the ultrasonic cleaner, magnetic stirrer and ultra turrax. Also, influence of dispersion ways and extent on performance of proton exchange membrane fuel cells was investigated. The surface morphology of catalyst layers was observed through a field emission scanning electron microscope (FE-SEM), and images show that distribution of particles is uniform if catalyst inks were processed by a ultra turrax. Moreover, the electrochemical performance of the membrane electrode using different inks was characterized by polarization curves, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The polarization curves, CV curves and EIS show the single cell, for which catalyst ink was dispersed by a ultra turrax for 4 h, possesses the best cellperformance, the lowest ohmic resistance and charge transfer resistance, and the highest utilization of Pt.%转印法是有效制备膜电极的方法之一,具有界面电阻小、可大规模生产等优点。采用乙二醇作为催化剂浆料的增稠剂、去离子水和异丙醇作为分散溶剂,实现膜电极的低温完全转印。利用超声波清洗机、磁力搅拌器和均质机,以不同的处理方式对浆料进行分散,考察了浆料的分散方式及分散程度对质子交换膜燃料电池性能的影响。通过场发射电子显微镜(FE-SEM)对催化层的表面形貌进行表征。结果表明:用均质机处理过的催化层颗粒分布更加均匀,利用极化曲线、循环伏安法(CV)和交流阻抗谱(EIS)表征不同浆料制备膜电极的

  3. Supported Copper, Nickel and Copper-Nickel Nanoparticle Catalysts for Low Temperature Water-Gas-Shift Reaction

    Science.gov (United States)

    Lin, Jiann-Horng

    Hydrogen is being considered worldwide as a future replacement for gasoline, diesel fuel, natural gas in both the transportation and non-transportation sectors. Hydrogen is a versatile energy carrier that can be produced from a variety of widely available primary energy sources, including coal, natural gas, biomass, solar, wind, and nuclear power. Coal, the most abundant fossil fuel on the planet, is being looked at as the possible future major source of H2, due to the development of the integrated gasification combined cycle (IGCC) and integrated gasification fuel cell technologies (IGFC). The gasification of coal produces syngas consisting of predominately carbon monoxide and hydrogen with some remaining hydrocarbons, carbon dioxide and water. Then, the water-gas shift reaction is used to convert CO to CO2 and additional hydrogen. The present work describes the synthesis of model Cu, Ni and Cu-Ni catalysts prepared from metal colloids, and compares their behavior in the WGS reaction to that of traditional impregnation catalysts. Initially, we systematically explored the performance of traditional Cu, Ni and Cu-Ni WGS catalysts made by impregnation methods. Various bimetallic Cu-Ni catalysts were prepared by supported impregnation and compared to monometallic Cu and Ni catalysts. The presence of Cu in bimetallic catalysts suppressed undesirable methanation side reaction, while the Ni component was important for high WGS activity. Colloidal Cu, Ni and Cu-Ni alloy nanoparticles obtained by chemical reduction were deposited onto alumina to prepare supported catalysts. The resulting Cu and Ni nanoparticle catalysts were found to be 2.5 times more active in the WGS reaction per unit mass of active metal as compared to catalysts prepared by the conventional impregnation technique. The powder XRD and HAADF-STEM provided evidence supporting the formation of Cu-Ni particles containing the Cu core and Cu-Ni alloy shell. The XPS data indicated surface segregation of Cu in

  4. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    Science.gov (United States)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  5. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques...... on particle size, which suggests that the reaction is structure sensitive....

  6. Modeling the melting temperature of nanoscaled bimetallic alloys.

    Science.gov (United States)

    Li, Ming; Zhu, Tian-Shu

    2016-06-22

    The effect of size, composition and dimension on the melting temperature of nanoscaled bimetallic alloys was investigated by considering the interatomic interaction. The established thermodynamics model without any arbitrarily adjustable parameters can be used to predict the melting temperature of nanoscaled bimetallic alloys. It is found that, the melting temperature and interatomic interaction of nanoscaled bimetallic alloys decrease with the decrease in size and the increasing composition of the lower surface energy metal. Moreover, for the nanoscaled bimetallic alloys with the same size and composition, the dependence of the melting temperature on the dimension can be sequenced as follows: nanoparticles > nanowires > thin films. The accuracy of the developed model is verified by the recent experimental and computer simulation results.

  7. Computational study of alkynes insertion into metal-hydride bonds catalyzed by bimetallic complexes.

    Science.gov (United States)

    Di Tommaso, Stefania; Tognetti, Vincent; Sicilia, Emilia; Adamo, Carlo; Russo, Nino

    2010-11-01

    Density Functional Theory investigations on the insertion mechanism of phenylacetylene into metal-hydride bonds in bimetallic (Pt,Os) catalysts have been carried out. The results obtained have been also compared with the non-reactive monometallic (Os-based) system, to elucidate the cooperative effects and to explain the observed absence of reactivity. The identified reaction path involves phenylacetylene coordination followed by the insertion into the metal-hydride bond, leading to the formation of the experimentally observed products. Both steps do not require large energies compatible with the experimental conditions. The comparison with the reaction path for the monometallic species gives some hints on the cooperative effects due to the presence of the second metal which is related to its role in the CO release for creating a coordination site for phenylacetylene and not in the insertion energetics. The calculations provide a detailed analysis of the reaction complexity and provide a rationale for the efficiency of the process.

  8. On the role of reactant transport and (surface) alloy formation for the CO tolerance of carbon supported PtRu polymer electrolyte fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.; Colmenares, L.; Jusys, Z.; Behm, R.J. [Abt. Oberflaechenchemie und Katalyse, Universitaet Ulm (Germany); Moertel, R.; Boennemann, H. [Max-Planck-Institut fuer Kohlenforschung, Muelheim a.d. Ruhr (Germany); Koehl, G.; Modrow, H.; Hormes, J. [Physikalisches Institut, Universitaet Bonn (Germany)

    2006-07-15

    The role of atomic scale intermixing for the electrocatalytic activity of bimetallic PtRu anode catalysts in reformate operated polymer electrolyte fuel cells (PEFC) was investigated, exploiting the specific properties of colloid based catalyst synthesis for the selective preparation of alloyed and non-alloyed bimetallic catalysts. Three different carbon supported PtRu catalysts with different degrees of Pt and Ru intermixing, consisting of (i) carbon supported PtRu alloy particles (PtRu/C), (ii) Pt and Ru particles co-deposited on the same carbon support (Pt+Ru/C), and (iii) a mixture of carbon supported Pt and carbon supported Ru (Pt/C+Ru/C) as well as the respective monometallic Pt/C and Ru/C catalysts were prepared and characterized by electron microscopy (TEM), X-ray absorption spectroscopy, and CO stripping. Their performance as PEFC anode catalysts was evaluated by oxidation of a H{sub 2}/2%CO gas mixture (simulated reformate) under fuel cell relevant conditions (elevated temperature, continuous reaction and controlled reactant transport) in a rotating disk electrode (RDE) set-up. The CO tolerance and H{sub 2} oxidation activity of the three catalysts is comparable and distinctly different from that of the monometallic catalysts. The results indicate significant transport of the reactants, CO{sub ad} and/or OH{sub ad}, between Pt and Ru surface areas and particles for all three catalysts, with only subtle differences from the alloy catalyst to the physical mixture. The high activity and CO tolerance of the bimetallic catalysts, through the formation of bimetallic surfaces, is explained, e.g., by contact formation in nanoparticle agglomerates or by material transport and subsequent surface decoration/surface alloy formation during catalyst preparation, conditioning, and operation. The instability and mobility of the catalysts under these conditions closely resembles concepts in gas phase catalysis. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Dispersion state and catalytic properties of vanadia species on the surface of V2O5/TiO2 catalysts

    Institute of Scientific and Technical Information of China (English)

    许波连; 陈懿; 范以宁; 刘浏; 林明

    2002-01-01

    The dispersion state and catalytic properties of anatase-supported vanadia species are studied by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), H2 temperature-programmed reduction (TPR) and the selective oxidation of o-xylene to phthalic anhydride. The almost identical values of the experimental dispersion capacity of V2O5 on anatase and the surface vacant sites available on the preferentially exposed (001) plane of anatase suggest that the highly dispersed vanadium cations are bonded to the vacant sites on the surface of anatase as derived by the incorporation model. When the loading amount of V2O5 is far below its dispersion capacity, the dispersed vanadia species might mainly consist of isolated VOx species bridging to the surface through V-O-Ti bonds. With the increase of V2O5 loading the isolated vanadia species interact with their nearest neighbors (either isolated or polymerized vanadia) through bridging V-O-V at the expenses of V-O-Ti bonds, resulting in the increase of the ra

  10. New synthesis ways of supported metallic catalysts and structure-reactivity relations in catalysis by metals; Nouvelles voies de syntheses de catalyseurs metalliques supportes et relations structure-reactivite en catalyse par les metaux

    Energy Technology Data Exchange (ETDEWEB)

    Uzio, D.

    2006-01-15

    This work deals with some research studies in the field of supported metallic catalysts. In all these works have been studied the characteristics bound to the active sites and the relations between these characteristics and the catalytic performances. The genesis of colloidal suspensions of transition metallic oxide has been used for the preparation of selective hydrogenation catalysts. At first studied in the case of palladium, this new synthesis way has been used for other metals such as Pt, Ni or Co. These studies have then been developed for preparing bimetallic catalysts (PdSn) with as supplementary aim the control of the homogeneity of the bimetallic character at the scale of nano-metric particles. These works have particularly allowed to specify the chemistry of the solutions of some metallic complexes and to rationalize the chemical processes carried out in the usual fabrication processes. Studies on size effects and the study of the reactivity of the nano and sub nano-metric particle have then been developed. Indeed, the clusters containing some atoms can see their intrinsic properties varied very strongly under the influence of several parameters as the number of atoms, the nature of the support, the reactional atmosphere. Using the knowledge acquired during the preceding works (chemistry of palladium aqueous solutions), the study of new methods of preparation of particles containing very few atoms has brought new data on the properties of hyper dispersed particles as well as on the principle of sensitivity to structure. The contribution of the support to the catalytic process for the hydrogenation of different substrates has been studied too. (O.M.)

  11. Use of Cold Gas Dynamic Spraying of bi-metallic powder mixtures as alternative to classic powder metallurgy route for producing intermetallic materials

    Directory of Open Access Journals (Sweden)

    Vit Jan

    2016-06-01

    Full Text Available The paper presents cold gas dynamic spraying (or Cold Spray as a novel surface treatment technology capable not only of surface modifications but also being used as bulk creating technology. This is demonstrated on numerous samples where bi-metallic powder feedstock is deposited into bulk, self-standing pieces of material that does not need the support of substrate. Mixtures from the group of Fe, Al, Ti, Ni, Cu were used for the initial bi-metallic mixtures. The deposited samples were then subjected to annealing at temperatures ranging from 300 to 1100°C in protective atmosphere and resulting morphologies and microstructures were analysed. Generally materials with high proportion of intermetallic phase content were obtained. These are discussed as potential scaffolds for metal or polymer matrix composites or as hi temperature resistive supports for catalysts with filter functions.

  12. Ammonia Decomposition over Bimetallic Nitrides Supported on γ-Al2O3

    Institute of Scientific and Technical Information of China (English)

    Chun Shan LU; Xiao Nian LI; Yi Feng ZHU; Hua Zhang LIU; Chun Hui ZHOU

    2004-01-01

    A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.

  13. Photochemical synthesis of mono and bimetallic nanoparticles and their use in catalysis

    Science.gov (United States)

    Pardoe, Andrea

    2011-07-01

    Nanomaterials have become a popular topic of research over the years because of their many important applications. It can be a challenge to stabilize the particles at a nanometer size, while having control over their surface features. Copper nanoparticles were synthesized photochemically using a photogenerated radical allowing spatial and temporal control over their formation. The synthesis was affected by the stabilizers used, which changed the size, dispersity, rate of formation, and oxidation rate. Copper nanoparticles suffer from their fast oxidation in air, so copper-silver bimetallic nanoparticles were synthesized in attempts to overcome the oxidation of copper nanoparticles. Bimetallic nanoparticles were synthesized, but preventing the oxidation of the copper nanoparticles proved difficult. One important application of nanoparticles that was explored here is in catalyzing organic reactions. Because of the fast oxidation of copper nanoparticles, silver nanoparticles were synthesized photochemically on different supports including TiO2 and hydrotalcite (HTC). Their catalytic efficiency was tested using alcohol oxidations. Different silver nanoparticle shapes (decahedra and plates) were compared with the spheres to see the different catalytic efficiencies.

  14. High strength bimetallic composite material fabricated by electroslag casting and characteristics of its composite interface

    Directory of Open Access Journals (Sweden)

    Tian-shun Dong

    2016-11-01

    Full Text Available Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy dispersive spectrometer (EDS. Results show that the tensile strength (1,450 MPa, hardness (HRC 41-47 and impact toughness (94.7J·cm-2 of bainitic steel were comparatively high, while its elongation was slightly low (4.0%. Tensile strength (1,100 MPa, hardness (>HRC 31 and elongation (7.72% of the interface were also relatively high, but its impact toughness was low at 20.4 J·cm-2. Results of theoretical calculation of the element distribution in the interface region were basically consistent with that of EDS. Therefore, electroslag casting is a practical process to produce bimetallic composite material of bainitic steel and PD3 steel, and theoretical calculation also is a feasible method to study element distribution of their interface.

  15. Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride.

    Science.gov (United States)

    Ayán-Varela, M; Villar-Rodil, S; Paredes, J I; Munuera, J M; Pagán, A; Lozano-Pérez, A A; Cenis, J L; Martínez-Alonso, A; Tascón, J M D

    2015-11-04

    The liquid-phase exfoliation of graphitic carbon nitride (g-C3N4) to afford colloidal dispersions of two-dimensional flakes constitutes an attractive route to facilitate the processing and implementation of this novel material toward different technological applications, but quantitative knowledge about its dispersibility in solvents is lacking. Here, we investigate the dispersion behavior of exfoliated g-C3N4 in a wide range of solvents and evaluate the obtained results on the basis of solvent surface energy and Hildebrand/Hansen solubility parameters. Estimates of the three Hansen parameters for exfoliated g-C3N4 from the experimentally derived data yielded δD ≈ 17.8 MPa(1/2), δP ≈ 10.8 MPa(1/2), and δH ≈ 15.4 MPa(1/2). The relatively high δH value suggested that, contrary to the case of other two-dimensional materials (e.g., graphene or transition metal dichalcogenides), hydrogen-bonding plays a substantial role in the efficient interaction, and thus dispersibility, of exfoliated g-C3N4 with solvents. Such an outcome was attributed to a high density of primary and/or secondary amines in the material, the presence of which was associated with incomplete condensation of the structure. Furthermore, cell proliferation tests carried out on thin films of exfoliated g-C3N4 using murine fibroblasts suggested that this material is highly biocompatible and noncytotoxic. Finally, the exfoliated g-C3N4 flakes were used as supports in the synthesis of Pd nanoparticles, and the resulting hybrids exhibited an exceptional catalytic activity in the reduction of nitroarenes.

  16. Effect of surface structure on the catalytic behavior of Ni:Cu/Al and Ni:Cu:K/Al catalysts for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    S.Tajammul Hussain; Sheraz Gul; Muhammed Mazhar; Dalaver H.Anjum; Faical Larachi

    2008-01-01

    Methane decomposition using nickel, copper, and aluminum (Ni:Cu/Al) and nickel, copper, potassium, and alu-minum (Ni:Cu:K/Al) modified nano catalysts has been investigated for carbon fibers, hydrogen and hydrocarbon production. X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS), thermal gravimetric analysis (TGA),Fourier transform infrared (FT-IR), secondary electron microscopy/X-ray energy dispersive (SEM-EDX), and temperature pro-grammed desorption (TPD) were used to depict the chemistry of the catalytic results. These techniques revealed the changes in surface morphology and structure of Ni, Cu, Al, and K, and formation of bimetallic and trimetallic surface cationic sites with sifferent cationic species, which resulted in the production of graphitic form of pure carbon on Ni:Cu/Al catalyst. The addition of K has a marked effect on the product selectivity and reactivity of the catalyst system. K addition restricts the formation of carbon on the surface and increases the production of hydrogen and C2, C3 hydrocarbons during the catalytic reaction whereas no hydrocarbons are produced on the sample without K. This study completely maps the modified surface structure and its re-lationship with the catalytic behavior of both systems. The process provides a flexible route for the production of carbon fibers and hydrogen on Ni:Cu/Al catalyst and hydrogen along with hydrocarbons on Ni:Cu:K/Al catalyst. The produced carbon fibers are imaged using a transmission electron microscope (TEM) for diameter size and wall structure determination. Hydrogen produced is COx free, which can be used directly in the fuel cell system. The effect of the addition of Cu and its transformation and interaction with Ni and K is responsible for the production of CO/CO2 free hydrogen, thus producing an environmental friendly clean energy.

  17. Al-pillared montmorillonite-based NiMo catalysts for HDS and HDN of gas oil. Influence of the method and order of Mo and Ni impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, P.; Mendioroz, S.; Lopez Agudo, A. [Instituto de Catalisis y Petroleoquimica CSIC, Camino de Valdelatas, s/n. Campus Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2004-03-08

    The effect of the impregnation method (co-impregnation and sequential) and the incorporation order of the active phases, Ni and Mo, on the structure and catalytic activity of NiMo hydrotreating catalysts supported on an Al-pillared montmorillonite has been investigated. The catalysts were characterised by X-ray diffraction, N{sub 2} adsorption, thermogravimetric analysis, temperature-programmed reduction, UV-Vis diffuse reflectance, in situ laser Raman, and X-ray photoelectron spectroscopies, and their catalytic behaviour tested in the hydrodesulphurisation (HDS) and hydrodenitrogenation (HDN) of gas oil. It was found that the catalyst prepared by co-impregnation of Ni and Mo was more active than those prepared by sequential impregnation, and of the latter ones, the most active was that in which Mo was impregnated prior to Ni. Characterisation results revealed that by co-impregnation, the dispersion of the Mo phase was significantly increased due to the presence of Ni and, on the other hand, more Ni stay together to Mo on the external surface of the clay, favouring thus the formation of Ni-Mo-O interaction species, precursors of the 'Ni-Mo-S' active phase. The relatively low activity of the sequentially impregnated Mo-Ni/Al-PILC catalyst was due to the absence of synergism between Ni and Mo because most of Ni was as Ni{sup 2+} ions into the octahedral layers of the clay, separated from the Mo phase. All NiMo bimetallic catalysts exhibited initially a better selectivity towards HDN than towards HDS reaction, probably due to their acidity properties.

  18. Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Homs, Narcis; Llorca, Jordi; De la Piscina, Pilar Ramirez [Departament de Quimica Inorganica, Universitat de Barcelona, C/Marti i Franques 1-11, 08028 Barcelona (Spain)

    2006-08-15

    ZnO-supported Ni and Cu as well as bimetallic Co-Ni and Co-Cu catalysts containing ca. 0.7wt% sodium promoter and prepared by the co-precipitation method were tested in the ethanol steam-reforming reaction at low temperature (523-723K), using a bioethanol-like mixture diluted in Ar. Monometallic ZnO-supported Cu or Ni samples do not exhibit good catalytic performance in the steam-reforming of ethanol for hydrogen production. Copper catalyst mainly dehydrogenates ethanol to acetaldehyde, whereas nickel catalyst favours ethanol decomposition. However, the addition of Ni to ZnO-supported cobalt has a positive effect both on the production of hydrogen at low temperature (<573K), and on catalyst stability. Evidence for alloy formation as well as mixed oxides at the microstructural level was found in the bimetallic systems after running the ethanol steam-reforming reaction by HRTEM-EELS. (author)

  19. Bimetallic layered castings alloy steel – carbon cast steel

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2011-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast processso-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic carbon cast steel, whereas working part (layer is plate of austenitic alloy steel sort X10CrNi 18-8. The ratio of thickness between bearing and working part is 8:1. The quality of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  20. Examples of material solutions in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    S. Tenerowicz

    2011-07-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. pearlitic grey cast iron, whereas working part (layer is depending on accepted variant plates of alloy steels sort X6Cr13, X12Cr13, X10CrNi18-8 and X2CrNiMoN22-5-3. The ratio of thickness between bearing and working part is 8:1. The verification of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  1. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  2. Nitrate reduction in water: influence of the addition of a second metal on the performances of the Pd/CeO(2) catalyst.

    Science.gov (United States)

    Devadas, Abirami; Vasudevan, Subramanyan; Epron, Florence

    2011-01-30

    An attempt is made to improve the catalytic nitrate reduction on Pd/CeO(2) catalysts by the addition of a second metal. The influence of the second metal such as Sn, In and Ag on the Pd/CeO(2) for nitrate reduction is explored. The second metal is introduced over monometallic Pd/CeO(2) by a redox reaction. Pd/CeO(2) is more active than the bimetallic catalysts under pure hydrogen flow. Whereas in presence of CO(2) the monometallic Pd/CeO(2) is inactive for nitrate reduction, bimetallic catalysts are found to be more active than under pure hydrogen flow and also than the monometallic catalyst with a low selectivity towards ammonium ions, undesired product of the reaction. The Pd-Sn/CeO(2) catalyst is comparatively the most suited for nitrate reduction.

  3. Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction

    DEFF Research Database (Denmark)

    He, Maoshuai; Liu, Bilu; Chernov, Alexander I.

    2012-01-01

    Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type...... by impregnation, showing similar catalytic performance as the atomic layer deposition-prepared catalyst, yielding single-walled carbon nanotubes with a similar narrow chirality distribution....

  4. Bimetallic Ni/Pd finite systems: Structure and thermodynamics of bimetallic Ni/Pd nanostructures in two and three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Torres, Stephanie [Department of Chemistry, University of Puerto Rico at Mayagueez, Mayagueez 00681 (Puerto Rico); Mo, Elizabeth [Department of Chemistry, Lehman College-CUNY, Bronx, NY 10468 (United States); Lopez, Gustavo E., E-mail: glopez@uprm.edu [Department of Chemistry, University of Puerto Rico at Mayagueez, Mayagueez 00681 (Puerto Rico); Department of Chemistry, Lehman College-CUNY, Bronx, NY 10468 (United States)

    2011-09-15

    Highlights: {yields} Structure and thermodynamic of Ni/Pd bimetallic clusters as a function of composition. {yields} Melting and low temperature order-disorder transitions in Ni/Pd bimetallic clusters. {yields} Implementation of efficient classical Monte Carlo techniques. - Abstract: By implementing replica-exchange Monte Carlo simulations within the multihistogram reweighting techniques, the structural and thermodynamic changes in bimetallic nickel-palladium nanostructured systems were studied as a function of composition. Specifically, two- and three-dimensional clusters composed of seven and thirteen atoms, respectively, were described using the embedded atom potential. The lowest energy equilibrium structures were determined, and associated to the degree of mixing in the material. In all cases, melting and order-disorder transitions were revealed by calculating the average constant volume heat capacity as a function of temperature. The change in Helmholtz free energy for the order-disorder transition was determined as a function of composition for each system.

  5. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  6. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnO{sub x}) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lomocso, Thegy L. [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2011-10-01

    Highlights: > Oxidation of NH{sub 3} is investigated on carbon-supported Pt and PtM (M = Pd, Ir, SnO{sub x}) nanoparticles. > Carbon supported PtPd and PtIr nanoparticles show higher catalytic activity if compared to Pt nanocatalyst. > Pt{sub 7}Ir{sub 3} nanoparticles combine good catalytic activity and enhanced stability for NH{sub 3} oxidation. > Electronic effect between two metals in PtIr is responsible for increase in the catalytic activity. - Abstract: Ammonia electro-oxidation was studied in alkaline solution on carbon-supported Pt and bimetallic Pt{sub y}M{sub 1-y} (M = Pd, Ir, SnO{sub x} and y = 70, 50 at.%) nanoparticles. Catalysts were synthesized using the modified polyol method and deposited on carbon, resulting in 20 wt.% of metal loading. Particle size, structure and surface composition of the particles were investigated using TEM, XRD and XPS. Mean size of PtM bi-metallic nanoparticles varied between 2.0 and 4.7 nm, depending on the second metal (M). XRD revealed the structure of all bi-metallic particles to be face-centered cubic and confirmed alloy formation for Pt{sub y}Pd{sub 1-y} (y = 70, 50 at.%) and Pt{sub 7}Ir{sub 3}nanoparticles, as well as partial alloying between Pt and SnO{sub x}. Electrochemical behaviour of ammonia on Pt and PtM nanoparticles is comparable to that expected for bulk Pt and PtM alloys. Addition of Pd to Pt at the nanoscale decreased the onset potential of ammonia oxidation if compared to pure platinum nanoparticles; however stability of the catalyst was poor. For Pt{sub 7}(SnO{sub x}){sub 3}, current densities were similar to Pt, whereas catalyst stability against deactivation was improved. It is found that carbon supported Pt{sub 7}Ir{sub 3} nanoparticles combine good catalytic activity with enhanced stability for ammonia electro-oxidation. Electronic effect generated between two metals in the bimetallic nanoparticles might be responsible for increase in the catalytic activity of Pd- and Ir-containing catalysts, causing

  7. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  8. Photoluminescence of hollow gold-silver bimetallic nanoparticles

    OpenAIRE

    Weon-Sik Chae; Hee-Ok Lee; Seung-Lim Oh

    2011-01-01

    Hollow gold nanoparticles including silver were prepared by the galvanic replacement reaction of silver nanoparticles by gold. The resulting hollow gold-silver bimetallic nanoparticles show notable blue-green emissions, which are studied using steady-state and time-resolved spectroscopy.

  9. Crystalline structure-dependent growth of bimetallic nanostructures.

    Science.gov (United States)

    Li, Qian; Jiang, Ruibin; Ming, Tian; Fang, Caihong; Wang, Jianfang

    2012-11-21

    Morphological control of multimetallic nanostructures is crucial for obtaining shape-dependent physical and chemical properties. Up to date, control of the shapes of multimetallic nanostructures has remained largely empirical. Multimetallic nanostructures have been produced mostly through seed-mediated growth. Understanding the role played by starting nanocrystal seeds can help in controlling the shape and in turn the plasmonic and catalytic properties of multimetallic nanostructures. In this work, we have studied the effect of the crystalline structure and shape of Au nanocrystal seeds on the morphology of the resultant bimetallic nanostructures. Single-crystalline Au nanorods, multiply twinned Au nanorods, and multiply twinned Au nanobipyramids were employed as the starting seeds. Both silver and palladium exhibit highly preferential growth on the side surfaces of the single-crystalline Au nanorods, giving rise to bimetallic cuboids, whereas they prefer to grow at the ends of the multiply twinned Au nanorods and nanobipyramids, giving rise to bimetallic nanorods. These results indicate that the morphology of the bimetallic nanostructures is highly dependent on the crystalline structure of the Au nanocrystal seeds. Our results will be useful for guiding the preparation of multimetallic nanostructures with desired shapes and therefore plasmonic properties for various plasmon-based applications.

  10. Selective Oxidation of Glycerol over Carbon-Supported AuPd Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ketchie,W.; Murayama, M.; Davis, R.

    2007-01-01

    Carbon-supported AuPd bimetallic nanoparticles were synthesized, characterized, and evaluated as catalysts in the aqueous-phase selective oxidation of glycerol. The bimetallic catalysts were synthesized by two different methods. The first method involved the deposition of Au onto the surface of 3-nm supported Pd particles by catalytic reduction of HAuCl{sub 4} in aqueous solution by H{sub 2}. The second method used the formation of a AuPd sol that was subsequently deposited onto a carbon support. Characterization of the catalysts using analytical transmission electron microscopy, H{sub 2} titration, and X-ray absorption spectroscopy at the Au L{sub III} and Pd K-edges confirmed that the first synthesis method successfully deposited Au onto the Pd particles. Results from the AuPd sol catalyst also revealed that Au was preferentially located on the surface. Measurement of glycerol oxidation rates (0.3 M glycerol, 0.6 M NaOH, 10 atm O{sub 2}, 333 K) in a semibatch reactor gave a turnover frequency (TOF) of 17 s{sup -1} for monometallic Au and 1 s{sup -1} for monometallic Pd, with Pd exhibiting a higher selectivity to glyceric acid. Although the activity of the bimetallic AuPd catalysts depended on the amount of Au present, none of them had a TOF greater than that of the monometallic Au catalyst. However, the AuPd catalysts had higher selectivity to glyceric acid compared with the monometallic Au. Because a physical mixture of monometallic Au and Pd catalysts also gave higher selectivity to glyceric acid, the Pd is proposed to catalyze the decomposition of the side product H{sub 2}O{sub 2} that is also formed over the Au but is detrimental to the selectivity toward glyceric acid.

  11. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  12. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.

    Science.gov (United States)

    Moon, Young Kyun; Lee, Jaebeom; Lee, Jae Keun; Kim, Tae Kyu; Kim, Soo H

    2009-02-03

    A one-step method combining spray pyrolysis and thermal chemical vapor deposition (CVD) processes was developed to grow hybrid carbon nanotube (CNT)-bimetallic composite particles. Nickel, aluminum, and acetylene were used as the catalytic site, noncatalytic matrix, and hydrocarbon source, respectively. The bimetallic particles (i.e., Al-Ni) were spray pyrolized and subsequently passed through thermal CVD. During the thermal CVD, the catalytic decomposition of acetylene occurred on the free-floating bimetallic particles so that sea urchin-like CNTs were radially grown. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed the CNTs to have a uniform diameter of approximately 10 +/- 2 nm. The length of the CNTs was controlled by varying the residence time of the bimetallic nanoparticles with a length of 200-1000 nm. After nitric acid treatment, the CNTs were released by melting the bimetallic particles. The resulting CNTs were then dispersed in an aqueous solution to examine the effect of the length of CNTs on their dispersion stability, which is a critical issue for the stability and repeatability of the heat transfer performance in nanofluids. Ultraviolet-visible (UV-vis) spectrometer analysis showed that shorter CNTs were less stable than the longer CNTs due to the higher mobility-induced agglomeration of the shorter CNTs.

  13. Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction

    Science.gov (United States)

    Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.

    2014-04-01

    Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.

  14. Development of Coke-tolerant Transition Metal Catalysts for Dry Reforming of Methane

    KAUST Repository

    Al-Sabban, Bedour E.

    2016-11-07

    Dry reforming of methane (DRM) is an attractive and promising process for the conversion of methane and carbon dioxide which are the most abundant carbon sources into valuable syngas. The produced syngas, which is a mixture of hydrogen and carbon monoxide, can be used as intermediates in the manufacture of numerous chemicals. To achieve high conversion, DRM reaction is operated at high temperatures (700-900 °C) that can cause major drawbacks of catalyst deactivation by carbon deposition, metal sintering or metal oxidation. Therefore, the primary goal is to develop a metal based catalyst for DRM that can completely suppress carbon formation by designing the catalyst composition. The strategy of this work was to synthesize Ni-based catalysts all of which prepared by homogeneous deposition precipitation method (HDP) to produce nanoparticles with narrow size distribution. In addition, control the reactivity of the metal by finely tuning the bimetallic composition and the reaction conditions in terms of reaction temperature and pressure. The highly endothermic dry reforming of methane proceeds via CH4 decomposition to leave surface carbon species, followed by removal of C with CO2-derived species to give CO. Tuning the reactivity of the active metal towards these reactions during DRM allows in principle the catalyst surface to remain active and clean without carbon deposition for a long-term. The initial attempt was to improve the resistance of Ni catalyst towards carbon deposition, therefore, a series of 5 wt.% bimetallic Ni9Pt1 were supported on various metal oxides (Al2O3, CeO2, and ZrO2). The addition of small amount of noble metal improved the stability of the catalyst compared to their monometallic Ni and Pt catalysts, but still high amount of carbon (> 0.1 wt.%) was formed after 24 h of the reaction. The obtained results showed that the catalytic performance, particle size and amount of deposited carbon depends on the nature of support. Among the tested

  15. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities

    Directory of Open Access Journals (Sweden)

    Ghosh S

    2015-12-01

    Full Text Available Sougata Ghosh,1 Rahul Nitnavare,1 Ankush Dewle,1 Geetanjali B Tomar,1 Rohan Chippalkatti,1 Piyush More,1 Rohini Kitture,2 Sangeeta Kale,2 Jayesh Bellare,3 Balu A Chopade4 1Institute of Bioinformatics and Biotechnology, University of Pune, 2Department of Applied Physics, Defense Institute of Advanced Technology, Pune, 3Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 4Department of Microbiology, University of Pune, Pune, India Abstract: Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum–palladium bimetallic nanoparticles (Pt–PdNPs along with individual platinum (PtNPs and palladium (PdNPs nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE. High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2–5 nm, while PdNPs and Pt–PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88%±1.73% elemental Pt and 68.96%±1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm-1, attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm-1, associated with C–H stretching, N–H bending in primary amines, N–O stretching in nitro group, and C–C stretch, respectively. Anticancer activity against HeLa cells showed that Pt–PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6% or PdNPs (33.15%. Further, Pt–PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals. Keywords: Dioscorea bulbifera, platinum nanoparticles

  16. Dehalogenation of Aryl Halides Catalyzed by MontK10 Immobilized PVP-Pd-Sn Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of PVP-Pd-Sn/MontK10 catalysts were prepared by immobilization of PVP[poly(N-vinyl-2-pyrrolidone)] supported bimetallic catalyst using MontK10 as carrier. This catalyst has good catalytic activity for hydrogen transfer dehalogenation of aryl halides. The catalytic reaction was carried out in aqueous system in the presence of phase transfer catalyst and sodium formate as hydrogen source. The catalyst with loading Pd 0.19wt% and molar ratio of Pd/Sn 8:1 gives the highest activity and good stability. This catalyst is more reducible with NaBH4. It is also found that the catalyst is easily separated from the reaction system.

  17. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    Science.gov (United States)

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.

  18. Moessbauer study of function of magnesium in iron oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    YangJie-Xin; MaoLian-Sheng; 等

    1997-01-01

    Moessbauer spectroscopy has been utilized for studying the action of Mg element in iron oxide catalysts used for the dehydrogenation of ethylbenzene to sytrene.The experimental results show that the presence of opportune amount of Mg can enhance the stability and dispersion of catalysts,i.e.Mg is an sueful structure promoter in this kind of catalysts.

  19. Synthesis of higher alcohols from CO2 hydrogenation over a PtRu/Fe2O3 catalyst under supercritical condition.

    Science.gov (United States)

    He, Zhenhong; Qian, Qingli; Zhang, Zhaofu; Meng, Qinglei; Zhou, Huacong; Jiang, Zhiwei; Han, Buxing

    2015-12-28

    Hydrogenation of CO(2) to alcohols is of great importance, especially when producing higher alcohols. In this work, we synthesized heterogeneous PtRu/Fe(2)O(3), in which the Pt and Ru bimetallic catalysts were supported on Fe(2)O(3). The catalyst was used to catalyse CO(2) hydrogenation to alcohols. It was demonstrated that the activity and selectivity could be tuned by the bimetallic composition, and the catalyst with a Pt to Ru molar ratio of 1:2 (Pt(1)Ru(2)/Fe(2)O(3)) had high activity and selectivity at 200°C, which is very low for heterogeneous hydrogenation of CO(2) to produce higher alcohols. The conversion and the selectivity increased with increasing pressures of CO(2) and/or H(2). The catalyst could be reused at least five times without any obvious change in activity or selectivity.

  20. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    OpenAIRE

    Zhen Yin; Yining Zhang; Kai Chen; Jing Li; Wenjing Li; Pei Tang; Huabo Zhao; Qingjun Zhu; Xinhe Bao; Ding Ma

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the s...

  1. Facile growth of Ag@Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine

    Indian Academy of Sciences (India)

    Jeena S E; Selvaraju T

    2016-03-01

    An efficient transducer was constructed by the direct growth of bimetallic Ag@Pt nanorods (NRDs) on L−tryptophan functionalized electrochemically reduced graphene oxide (L−ERGO) modified electrode using galvanic displacement method for the electrooxidation of hydrazine.Initially, one dimensionalbimetallic Ag@Cu core−shell NRDs were grown on L−ERGO modified electrode by simple seed mediated growth method. Then, the Cu shells at bimetallic NRDs were exchanged by Pt through galvanic displacement method. Accordingly, the synergetic effect produced by the combination of Ag and Pt as NRDs at L−ERGO surface enabled an enhancement in the electrocatalytic efficiency for hydrazine oxidation. L−ERGO supported bimetallic Ag@Pt NRDs were characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and cyclic voltammetric techniques. Finally, the modified electrode was successfully used for the electrooxidation of hydrazine in PB (pH 7.4)with a detection limit of 6*10−7M(SdivN=3). Importantly, the presence of Pt on Ag surface plays a vital role in the electrooxidation of [N2H4] at−0.2 V with an onset potential at−0.5 V where its overpotential has decreased. On the other hand, L−ERGO nanosheets tend to facilitate an effective immobilization of low density Ag seeds (Agseeds) on its surface. Chronoamperometric studies were used to study the linear correlation of [N2H4] between 1 mM and 10 mM. The modified electrode shows a high sensitivity and selectivity for a trace amount of N2H4 in the presence of different interfering cations and anions

  2. In situ XAFS characterization of bimetallic nanoparticle catalysts PtCo/C structure changes in the working conditions%原位XAFS表征双金属纳米催化剂PtCo/C在工作状态下的结构变化

    Institute of Scientific and Technical Information of China (English)

    尚明丰; 赵天天; 鲍洪亮; 段佩权; 林瑞; 黄宇营; 王建强

    2016-01-01

    用两步还原法制备的PtCo/C (10 wt% Pt)纳米催化剂具有与商业催化剂Pt/C (20 wt% Pt)接近的催化反应活性,使贵金属Pt的用量减少了50%。利用上海光源BL14W1线站的质子交换膜燃料电池(Proton exchange membrane fuel cell, PEMFC)原位X射线吸收精细结构谱(X-ray absorption fine structure, XAFS)实验装置,在以该PtCo/C作为燃料电池的阴极催化剂,以Pd/C作为阳极催化剂的条件下,原位表征PtCo/C在工作状态下的结构变化,PtCo/C 的非原位 XAFS 数据没有观察到 Pt−Co 合金成分,发现存在显著的 Co−O 键和 Co−O−Co键贡献,且与Pt/C相比,Pt的氧化程度更高且具有更短的Pt−Pt金属键长,说明PtCo/C中的Co主要以氧化物种形式存在,且Co的存在影响着活性成分Pt的结构。原位XAFS数据表明随着电压的逐渐降低,PtCo/C中Pt和Co的氧化程度降低,揭示了在催化反应过程中Pt的d电子向过渡金属Co的转移过程。%AbstractBackground:The proton exchange membrane fuel cell (PEMFC) is considered as one of the most promising clean energy sources in the future, because of its high energy density and simple construction. However, the large scale commercial application of fuel cell is limited by the factors such as cost, durability and reliability. Purpose: For the purpose of reducing the cost and improving the performance of the PEMFC, transition metal elements alloy Pt nanoparticles (PtFe/C, PtCo/C, PtNi/C) catalysts have been studied in recent years.Methods:In situ X-ray absorption fine structure (XAFS) experimental testing device for PEMFC on beamline (BL14W1) of XAFS spectroscopy at the Shanghai Synchrotron Radiation Facility (SSRF) is conducted to explore the nanostructure changes of PtCo/C during the fuel cell operation. Results:In situ XAFS spectra indicts that Pt, and Co are gradually being reduced as the voltage of fuel cell decreases.Ex-situ XAFS spectra show Pt and Co did not form Pt

  3. Characterization of the impregnated iron based catalyst for direct coal liquefaction by EXAFS

    Institute of Scientific and Technical Information of China (English)

    JianliYang; JishengZhun; 等

    2001-01-01

    Catalyst plays an important role in direct cola liquefaction(DCL)[1],Due to relatively high activity,low cost and environmentally benign for disposal,iron catalysts are regarded as the most attractive catalysts for DCL.To maximize catalytic effect and minimize catalyst usage,ultra-fine size catalysts are preferred.The most effective catalysts are found to be those impregnated onto coal because of their high dispersion on coal surface and intimate contact with coal particles.

  4. Oxide-Bridged Heterobimetallic Aluminum/Zirconium Catalysts for Ethylene Polymerization

    NARCIS (Netherlands)

    Boulho, Cedric; Zijlstra, Harmen S.; Harder, Sjoerd

    2015-01-01

    A bimetallic aluminum/zirconium complex Cp*Zr-2(Me)OAl(DIPH) [DIPH-H-2 = 3,3-bis(2-methylallyl)-(1,1-biphenyl)-2,2-diol; Cp* = C5Me5] was prepared in good yield by the reaction of (DIPH)AlMe with Cp*Zr-2(Me)OH. In contrast to Roesky's catalyst, Cp2Zr(Me)O(Me)Al(DIPP-nacnac) {DIPP-nacnac = CH[(CMe)(2

  5. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    Science.gov (United States)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi

    2017-01-01

    The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO2). This system demonstrated a higher catalytic property than Au/CeO2 and Pd/CeO2 under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH3ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO2 or ZrO2) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO2 photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  6. Mg-AI Mixed Oxides Supported Bimetallic Au-Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol

    Institute of Scientific and Technical Information of China (English)

    王亮; 张伟; 曾尚景; 苏党生; 孟祥举; 肖丰收

    2012-01-01

    Nano-sized Au and Pd catalysts are favorable for oxidations with molecular oxygen, and the preparation of this kind of nanoparticles with high catalytic activities is strongly desirable. We report a successful synthesis of bimetal- lic Au-Pd nanoparticles with rich edge and comer sites on unique support of Mg-AI mixed oxides (Au-Pd/MAO), which are favorable for producing metal nanoparticles with high degree of coordinative unsaturation of metal atoms The systematic microscopic characterizations confirm the bimetallic Au-Pd nanoparticles are present as Au-Pd alloy The irregular shape of the bimetallic nanoparticles are directly observed in HRTEM images. As we expected, Au-Pd/MAO gives very excellent catalytic performances in the aerobic oxidation of benzyl alcohol and glycerol. For example, Au-Pd/MAO shows very high TOF of 91000 h i at 433 K with molecular oxygen at air pressure in solvent-free oxidation of benzyl alcohol; this catalyst also shows relatively high selectivity for tartronic acid (TA- RAC, 36.6%) at high conversion (98.5%) in aerobic oxidation of glycerol. The superior catalytic properties of Au-Pd/MAO would be potentially important tbr production of fine chemicals.

  7. Controllable Deposition of Alloy Clusters or Nanoparticles Catalysts on Carbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Ando, Y.; Su, D.; Adzic, R.

    2011-08-15

    We describe a simple method for controllably depositing Pt-Ru alloy nanoparticles on carbon surfaces that is mediated by Pb or Cu adlayers undergoing underpotential deposition and stripping during Pt and Ru codeposition at diffusion-limiting currents. The amount of surface Pt atoms deposited largely reflects the number of potential cycles causing the deposition and stripping of the metal adlayer at underpotentials, the metal species used as a mediator, and the scan rate of the potential cycles. We employed electrochemical methanol oxidation to gain information on the catalyst's activities. The catalysts with large amounts of surface Pt atoms have relatively high methanol-oxidation activity. Catalysts prepared using this method enhance methanol-oxidation activity per electrode surface area, while maintaining catalytic activity per surface Pt atom; thus, the amount of Pt is reduced in comparison with conventional methanol-oxidation catalysts. The method is suitable for efficient synthesizing various bimetallic catalysts.

  8. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    NARCIS (Netherlands)

    Krishnan, Gopi; Verheijen, Marcel A.; ten Brink, Gert; Palasantzas, George; Kooi, Bart J.

    2013-01-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for

  9. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  10. Bimetallic Thermal Resists for Photomask, Micromachining and Microfabrication

    OpenAIRE

    Tu, Richard Yuqiang

    2004-01-01

    Photoresists and photomasks are two of the most critical materials in microfabrication and micromachining industries. As the shift towards shorter wavelength exposure continues, conventional organic photoresists and chromelquartz photomasks start to encounter problems. This thesis investigates and presents an alternative to organic photoresists and chromium photomasks which overcomes their intrinsic problems. A bimetallic thin film, such as BilIn and SnIIn, creates an inorganic thermal resist...

  11. Facile and Rapid Synthesis of Ultrafine PtPd Bimetallic Nanoparticles and Their High Performance toward Methanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Tiantian Xia

    2014-01-01

    Full Text Available Uniform and sub-10 nm size bimetallic PtPd nanoparticles (NPs have been synthesized via a simple and facile method without using any surfactants at an ambient temperature. As a green and clean reductive agent, ascorbic acid (AA was employed for the coreduction of K2PtCl4 and K2PdCl4 in aqueous solution. The morphology, composition, and structure of PtPd NPs had been characterized by transmission electron microscopy (TEM, field emission high resolution transmission electron microscopy (FE-HRTEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and X-ray photoelectron spectroscope (XPS. Comparing with both the monometallic Pt and Pd, the as-prepared alloy nanoparticles show superior electrocatalytic activity and better tolerance against poisoning by intermediates generated during methanol electrooxidation, which makes them a promising electrocatalysts for direct methanol fuel cells (DMFCs. Meanwhile, the green and simple approach could be easily extended to the manufacture of bimetallic or trimetallic alloy nanomaterials.

  12. Catalyst mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Rosen, Brian A.

    2017-02-14

    Catalysts that include at least one catalytically active element and one helper catalyst can be used to increase the rate or lower the overpotential of chemical reactions. The helper catalyst can simultaneously act as a director molecule, suppressing undesired reactions and thus increasing selectivity toward the desired reaction. These catalysts can be useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO.sub.2 or formic acid. The catalysts can also suppress H.sub.2 evolution, permitting electrochemical cell operation at potentials below RHE. Chemical processes and devices using the catalysts are also disclosed, including processes to produce CO, OH.sup.-, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, O.sub.2, H.sub.2, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  13. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  14. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  15. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  16. Development of Novel Resid Hydrometallization Catalyst RDM-3

    Institute of Scientific and Technical Information of China (English)

    Hu Dawei; Niu Chuanfeng; Yang Qinghe; Liu Tao

    2007-01-01

    Based on the reaction mechanism of resid hydrodemetallization,a new catalyst carrier was designed and prepared.As compared with the similar type of catalyst carder,the said new carrier featured a higher pore volume,a larger pore diameter and a weaker surface acidity,which could improve the diffusion performance and stable reaction performance of the catalyst.The active metal components were loaded on the said carrier by a new technique for better metal dispersion,thus the impurity removal rate of the new catalyst,RDM-3,was improved significantly.The commercial test of the RDM-3 catalyst showed that the process of catalyst preparation was stable,the catalyst performance was slightly better than the catalyst prepared in the lab,therefore,the catalyst could be manufactured in commercial scale.

  17. Highly selective PdCu/amorphous silica-alumina (ASA) catalysts for groundwater denitration.

    Science.gov (United States)

    Xie, Yongbing; Cao, Hongbin; Li, Yuping; Zhang, Yi; Crittenden, John C

    2011-05-01

    Catalytic nitrate reduction is a promising technology in groundwater purification. In this study, PdCu bimetallic catalysts supported on an industrial amorphous silica-alumina (ASA) were synthesized and used to simulate catalytic removal of nitrate in groundwater. The catalysts exhibited very high activity and the highest catalytic selectivity toward N₂O and N₂ was 90.2%. The optimal Pd/Cu weight ratio was four. Relatively low reduction temperature was found benefit the catalytic stability and 300 °C was the appropriate reduction temperature during catalyst preparation. With an average particle size 5.4 nm, the metal particles were very uniformly distributed on the catalyst surface prepared with the codeposition method. This kept the catalyst more stable than the PdCu/Al₂O₂ catalyst with larger metal particles. According to XRD, TEM, and XPS results, the metals maintained zero-valence but aggregated by about 2 nm during the denitration reaction, which caused gradual deactivation of the catalysts. Little leaching of Cu and Pd from the catalyst might also have a slightly negative impact to the stability of the catalysts. A simple treatment was found to redistribute the particles on the deactivated catalysts, and high catalytic activity was recovered after this process.

  18. Deactivation and poisoning of fuel cell catalysts

    Science.gov (United States)

    Ross, P. N., Jr.

    1985-06-01

    The deactivation and poisoning phenomena reviewed are: the poisoning of anode (fuel electrode) catalyst by carbon monoxide and hydrogen sulfide; the deactivation of the cathode (air electrode) catalyst by sintering; and the deactivation of the cathode by corrosion of the support. The anode catalyst is Pt supported on a conductive, high area carbon black, usually at a loading of 10 w/o. This catalyst is tolerant to some level of carbon monoxide or hydrogen sulfide or both in combination, the level depending on temperature and pressure. Much less is known about hydrogen sulfide poisoning. Typical tolerance levels are 2% CO, and 10 ppM H2S. The cathode catalyst is typically Pt supported on a raphitic carbon black, usually a furnace black heat-treated to 2700 C. The Pt loading is typically 10 w/o, and the dispersion (or percent exposed) as-prepared is typically 30%. The loss of dispersion in use depends on the operational parameters, most especially the cathode potential history, i.e., higher potentials cause more rapid decrease in dispersion. The mechanism of loss of dispersion is not well known. The graphitic carbon support corrodes at a finite rate that is also potential dependent. Support corrosion causes thickening of the electrolyte film between the gas pores and the catalyst particles, which in turn causes increased diffusional resistance and performance loss.

  19. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  20. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Nadia Riaz

    2014-01-01

    Full Text Available Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI method with TiO2 (Degussa-P25 as support and calcined at different temperatures (180, 200, and 300°C for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR and temperature programmed reduction (TPR. The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD removal (86.82%. According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion.

  1. Electrochemically Smart Bimetallic Materials Featuring Group 11 Metals: In-situ Conductive Network Generation and Its Impact on Cell Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther [Stony Brook Univ., NY (United States)

    2016-11-30

    Our results for this program “Electrochemically smart bimetallic materials featuring Group 11 metals: in-situ conductive matrix generation and its impact on battery capacity, power and reversibility” have been highly successful: 1) we demonstrated material structures which generated in-situ conductive networks through electrochemical activation with increases in conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully designed synthetic methodology for direct control of material properties including crystallite size and surface area which showed significant impact on electrochemical behavior.

  2. Synthesis and Characterization of Monometallic (Ag, Cu and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications

    Directory of Open Access Journals (Sweden)

    Marta Paszkiewicz

    2016-01-01

    Full Text Available In this paper, the experimental studies are concerned with the effect of the synthesis parameters on the formation of monometallic Ag and Cu nanoparticles (NPs. We consider the synthesis strategies verification for the bimetallic core-shell and alloy particles preparation. It was successfully obtained by chemical reduction method. The obtained colloidal solution is characterized by the transmission electron microscopy (TEM with energy-dispersive X-ray spectroscopy (EDX data, UV-Vis spectra, particle size distribution, and zeta potential. This work presents a comprehensive overview of experimental studies of the most stable colloidal solutions to impregnate fabrics that will exhibit a bactericidal and fungicidal activity against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  3. Fabrication a new modified electrochemical sensor based on Au-Pd bimetallic nanoparticle decorated graphene for citalopram determination.

    Science.gov (United States)

    Daneshvar, Leili; Rounaghi, Gholam Hossein; Es'haghi, Zarrin; Chamsaz, Mahmoud; Tarahomi, Somayeh

    2016-12-01

    This paper proposes a simple approach for sensing of citalopram (CTL) using gold-palladium bimetallic nanoparticles (Au-PdNPs) decorated graphene modified gold electrode. Au-PdNPs were deposited at the surface of a graphene modified gold electrode with simple electrodeposition method. The morphology and the electrochemical properties of the modified electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), energy dispersion spectroscopy (EDS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV). The novel sensor exhibited an excellent catalytic activity towards the oxidation of CTL. The oxidation peak current of CTL, was linear in the range of 0.5-50μM with a detection limit 0.049μM with respect to concentration of citalopram. The proposed sensor was successfully applied for determination of CTL tablet and human plasma samples with satisfactory results.

  4. CATALYTIC BEHAVIOR OF SILICA-SUPPORTED POLY-γ-AMINOPROPYL-SILOXANE-Co-Ru BIMETALLIC COMPLEX FOR THE HYDROFORMYLATION OF CYCLOHEXENE

    Institute of Scientific and Technical Information of China (English)

    GUAN Shiyou; HUANG Meiyu; JIANG Yingyan

    1993-01-01

    The cobalt and ruthenium bimetallic complex of poly-γ-amino-propylsiloxane(abbr.as Si-CH2-Co-Ru) was prepared,and it was found that it can catalyze the hydroformylation of cyclohexene effectively with the conversion amounting to over 90%.Cyclohexanecarboxaldehyde was first formed in the hydrofor mylation,and then further hydrogenated to form cylcohexanemethanol.The coversion was affected obviously by the Co/Ru ratio.When Co/Ru molar ratio was 100-150,i.e.in the very low content of noble metal Ru,the catalytic activity of Si-NH2-Co-Ru was also very high.The product composition was affected by CO/H2 ratio in the reaction gas.Aldehyde can be got high selectively by controlling CO/H2 ratio.Compared with other catalyst system,the Si-NH2-Co-Ru catalyst has higher catalytic activity and efficiency with very low Ru/Co ratio.The total turnover number was more than 28,800(based on the amount of ruthenium used).

  5. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia

    Science.gov (United States)

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-10-01

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.

  6. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia.

    Science.gov (United States)

    Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett

    2016-10-20

    Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.

  7. Intermolecular forces: a solution to dispersion interactions.

    Science.gov (United States)

    Shimizu, Ken D

    2013-12-01

    London dispersion forces have been cited as an important factor in protein folding, drug–receptor interactions, and catalyst selectivities. However, careful analysis of a model system finds that the dispersion interactions are only minor contributors to the formation of complexes in solution.

  8. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  9. Heterogeneous Catalysts

    NARCIS (Netherlands)

    Dakka, J.; Sheldon, R.A.; Sanderson, W.A.

    1997-01-01

    Abstract of GB 2309655 (A) Heterogeneous catalysts comprising one or more metal compounds selected from the group consisting of tin, molybdenum, tungsten, zirconium and selenium compounds deposited on the surface of a silicalite are provided. Preferably Sn(IV) and/or Mo(VI) are employed. The cat

  10. 二苯并噻吩在分散型钼催化剂和原位产生的氢存在下的加氢脱硫Ⅲ.催化剂前身物、硫化氢、一氧化碳和水对反应的影响%HDS OF DBT USING in situ GENERATED HYDROGEN IN THE PRESENCE OF DISPERSED Mo CATALYSTS Ⅲ. Effects of Catalyst Precursors, H2S, CO and H2O

    Institute of Scientific and Technical Information of China (English)

    刘晨光; Flora T.T.Ng

    1999-01-01

    研究了水水/甲苯乳化液中二苯并噻吩(硫芴)在分散型钼酸、磷钼酸和四硫钼酸铵催化剂存在下的加氢脱硫反应.反应在高压釜中于340℃及三种不同的气氛即H2,H2/H2O和CO/H2O(CO和H2O经水煤气转换反应(WGSR)产生原位氢)的存在下进行.用GC和GC-MS鉴定、分析了气体和液体产物的组成.结果表明:对硫芴的加氢脱硫反应,在分散型四硫钼酸铵催化剂存在下,原位产生的氢的效果仅比加入的氢气稍好,而在分散型钼酸和磷钼酸催化剂存在下,原位产生的氢远比加入的氢气有效.实验结果还表明:硫化氢能显著提高分散型钼酸和磷钼酸催化剂的加氢脱硫活性,但在分散型四硫钼酸铵催化剂存在下,硫化氢能促进加氢反应而抑制氢解反应.一氧化碳和水均选择性地抑制氢解反应.%The hydrodesulfurization (HDS) of dibenzothiophene (DBT) was investigated using dispersed catalyst precursors molybdic acid (MA), phosphomolybdic acid (PMA), and ammonium tetrathiomolybdate (ATTM). The results indicated that with ATTM catalyst, in situ hydrogen was slightly more active than the externally supplied molecular H2 for HDS of DBT, but is not so active as with MA and PMA catalysts. The experimental results also indicated that H2S has a significant promotional effect on the catalytic activity of MA or PMA catalyst. While the H2 S promoted the hydrogenation pathway, inhibited the hydrogenolysis pathway with ATTM catalyst.Both CO and H2O selectively inhibited the hydrogenolysis route.

  11. Enhanced plasmonic behavior of bimetallic (Ag-Au multilayered spheres

    Directory of Open Access Journals (Sweden)

    Pal Umapada

    2011-01-01

    Full Text Available Abstract In this article we study the plasmonic behavior of some stable, highly biocompatible bimetallic metal-dielectric-metal (MDM and double concentric nanoshell (DCN structures. By simply switching the material of the inner structure from Au to Ag, the intensity of their surface plasmon resonance could be increased in the optical transparency region of the human tissues up to 20 and 60 percent for the MDM and DCN, respectively, while the biocompatibility is retained. The obtained results indicate that these novel structures could be highly suitable for surface enhanced Raman scattering and photothermal cancer therapy.

  12. Characterization of Pd-Cu/gamma-Al2O3 catalysts by XPS and catalytic measurements: Karakterizacija Pd-Cu/gama-Al2O3 katalizatorjev z XPS metodo in kinetičnimi testi:

    OpenAIRE

    Batista, Jurka; Jenko, Monika; Mandrino, Đorđe; Pintar, Albin

    1998-01-01

    Liquid-proces hydrogenaation using a solid catalyst provides a potential technique for the removal of nitrates from waters. Various Pd-Cu bimetallic catalysts were prepared according to different impregnation sequences of ?$\\gamma-Al_2O_3$? support, and tested for the selective hydrogenation of aqueous nitrate solutions to nitrogen. Measurements were performed in a semi-batch slurry reactor at T=293 K. The results show that the nitrate-to-nitrate reduction step undergoes a structure-insensiti...

  13. Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: Performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, OH 45221-0012 (United States); Cheng, Zihang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, OH 45221-0012 (United States); Tang, Bing [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-11-15

    Highlights: • Bimetallic particles with different Fe/Al mass ratios were prepared. • High removal rate of Cr(VI) was achieved in acidic, neutral, and alkaline pH. • No total iron ions at pH 3.0–11.0 and nearly no Al{sup 3+} at pH 3.0–7.0 were released. • Galvanic cell effect and high specific surface area contributed to Cr(VI) removal. - Abstract: The iron/aluminum (Fe/Al) bimetallic particles with high efficiency for the removal of Cr(VI) were prepared. Fe/Al bimetallic particles were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), SEM mapping, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM mapping showed that the core of bimetal was Al, and the planting Fe was deposited on the surface of Al. In acidic and neutral conditions, Fe/Al bimetal can completely remove Cr(VI) from wastewater in 20 min. Even at pH 11.0, the Cr(VI) removal efficiency achieved was 93.5%. Galvanic cell effect and high specific surface area are the main reasons for the enhanced removal of Cr(VI) by bimetallic particles. There were no iron ions released in solutions at pH values ranging from 3.0 to 11.0. The released Al{sup 3+} ions concentrations in acidic and neutral conditions were all less than 0.2 mg/L. The bimetal can be used 4 times without losing activity at initial pH 3.0. XPS indicated that the removed Cr(VI) was immobilized via the formation of Cr(III) hydroxide and Cr(III)–Fe(III) hydroxide/oxyhydroxide on the surface of Fe/Al bimetal. The Fe/Al bimetallic particles are promising for further testing for the rapid and effective removal of contaminants from water.

  14. Clean Catalysts for Water Recovery Systems in Long-Duration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Oxidation catalysts based on innovative, physically-robust activated carbon materials containing dispersed noble metals are essential in process optimization for...

  15. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  16. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m‑3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  17. Effects of Supports and Promoter Ag on Pd Catalysts for Selective Hydrogenation of Acetylene

    Institute of Scientific and Technical Information of China (English)

    朱淑映; 侯瑞君; 王铁峰

    2012-01-01

    SiO2,α-Al2O3,γ-Al2O3,ZrO2 and CeO2 were used as supports and Ag as promoter to study their effects on Pd catalysts for selective hydrogenation of acetylene.The catalysts were prepared by impregnated synthesis and characterized by XRD,BET and TEM.The catalytic reaction was carried out in a fixed-bed reactor.Overall,the low specific surface area supports were better to increase the ethylene selectivity at high conversion rate of acetylene.Among the four Pd catalysts on low specific surface area supports,the catalyst on low specific surface area SiO2 (LSA-SiO2) retained a high ethylene selectivity even at complete conversion,while the other catalysts showed significant decrease in the selectivity at complete conversion.The performance of Pd/LSA-SiO2 was important to decrease the loss of ethylene in selective hydrogenation of trace acetylene in ethylene.Addition of Ag to Pd/LSA-SiO2 significantly decreased the formation of ethane,C4 alkenes and green oil,and improved the ethylene selectivity to 90% when Pd∶Ag=1∶1 and 1∶3(ω).When the ratio of Pd to Ag was above 1,the activity of Pd-Ag bimetallic catalyst was similar to that of Pd monometallic catalyst,and the selectivity of ethylene increased with increasing of amount of Ag.When the ratio of Pd to Ag was below 1,the activity of bimetallic catalyst decreased with increasing of amount of Ag,while the selectivity of ethylene was kept unchanged.The optimum temperature was 200~230 ℃ for 0.02%(ω)Pd-0.02%( ω)Ag/LSA-SiO2 to give a high ethylene selectivity and low formation of green oil.

  18. CO2 Hydrogenation over Oxide-Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity.

    Science.gov (United States)

    Kattel, Shyam; Yu, Weiting; Yang, Xiaofang; Yan, Binhang; Huang, Yanqiang; Wan, Weiming; Liu, Ping; Chen, Jingguang G

    2016-07-04

    By simply changing the oxide support, the selectivity of a metal-oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2 , ZrO2 , and TiO2 ), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo-oxide interface, leading to a different product selectivity. These results reveal mechanistic insights into how the catalytic performance of metal-oxide catalysts can be fine-tuned.

  19. Studies of Heterogeneous Catalyst Selectivity and Stability for Biorefining Applications

    Science.gov (United States)

    O'Neill, Brandon J.

    The conversion of raw resources into value-added end products has long underlain the importance of catalysts in economic and scientific development. In particular, the development of selective and stable heterogeneous catalysts is a challenge that continues to grow in importance as environmental, sociological, and economic concerns have motivated an interest in sustainability and the use of renewable raw materials. Within this context, biomass has been identified as the only realistic source of renewable carbon for the foreseeable future. The development of processes to utilize biomass feedstocks will require breakthroughs in fundamental understanding and practical solutions to the challenges related to selectivity and stability of the catalysts employed. Selectivity is addressed on multiple fronts. First, the selectivity for C-O bond scission reactions of a bifunctional, bimetallic RhRe/C catalyst is investigated. Using multiple techniques, the origin of Bronsted acidity in the catalyst and the role of pretreatment on the activity, selectivity, and stability are explored. In addition, reaction kinetics experiments and kinetic modeling are utilized to understand the role of chemical functional group (i.e. carboxylic acid versus formate ester) in determining the decarbonylation versus decarboxylation selectivity over a Pd/C catalyst. Finally, kinetic studies over Pd/C and Cu/gamma-Al2O3 were performed so that that may be paired with density functional theory calculations and microkinetic modeling to elucidate the elementary reaction mechanism, identify the active site, and provide a basis for future rational catalyst design. Next, the issue of catalyst stability, important in the high-temperature, liquid-phase conditions of biomass processing, is examined, and a method for stabilizing the base-metal nanoparticles of a Cu/gamma-Al2O 3 catalyst using atomic layer deposition (ALD) is developed. This advancement may facilitate the development of biorefining by enabling

  20. Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts

    DEFF Research Database (Denmark)

    Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel J.

    2012-01-01

    as well as higher defect density, shifting H and OH adsorption energies back toward pure Pt. Using density functional theory, we calculate O adsorption energies and corresponding local ORR activities for fcc 3-fold hollow sites with various local geometries that are present in the three-dimensional Pt...

  1. Synthesis and Catalytic Application of Homo-bimetallic Metallocene Complexes as Ethylene Polymerization Catalysts

    Institute of Scientific and Technical Information of China (English)

    FENG,Zuo-Feng(冯作锋); HUANG,Ji-Ling(黄吉玲); QIAN,Yan-Long(钱延龙); SUN,Jun-Quan(孙俊全); CHEN,Wei(陈伟)

    2002-01-01

    Three new homo-birnetallic metallocene complexes were prepared by RCpMCl3(M = Ti, Zr) and Si-bridged cornpounds,and were all well characterized structurally. These complexes with the methylaluminoxane (MAO) are highly active catats for the polymerization of ethylene. Compared to the polyethylene obtained by Cp2ZrCl2, the molecular weight (Mw =78784-238021) of the polyethylene was higher and the molecular weight distribution (MwD= 2.10-2.44) was broader.

  2. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    NARCIS (Netherlands)

    Westsson, E.E.; Koper, G.J.M.

    2014-01-01

    Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop sy

  3. CO2 activation on bimetallic CuNi nanoparticles☆

    Institute of Scientific and Technical Information of China (English)

    Natalie Austin; Brandon Butina; Giannis Mpourmpakis⁎

    2016-01-01

    Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs) in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds). This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  4. Optical properties and sensing applications of stellated and bimetallic nanoparticles

    Science.gov (United States)

    Smith, Alison F.

    This dissertation focuses on developing guidelines to aid in the design of new bimetallic platforms for sensing applications. Stellated metal nanostructures are a class of plasmonic colloids in which large electric field enhancements can occur at sharp features, making them excellent candidates for surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared spectroscopy (SE-IRS) platforms. Shape-dependent rules for convex polyhedra such as cubes or octahedra exist, which describe far-field scattering and near-field enhancements. However, such rules are lacking for their concave (stellated) counterparts. This dissertation presents the optical response of stellated Au nanocrystals with Oh, D4h, D3h, C2v, and T d symmetry, which were modeled to systematically investigate the role of symmetry, branching, and particle orientation with respect to excitation source using finite difference time domain (FDTD) calculations. Expanding on stellated nanostructures, bimetallic compositions introduce an interplay between overall architecture and composition to provide tunable optical properties and the potential of new functionality. However, decoupling the complex compositional and structural contributions to the localized surface plasmon resonance (LSPR) remains a challenge, especially when the monometallic counterparts are not synthetically accessible for comparison and the theoretical tools for capturing gradient compositions are lacking. This dissertation explores a stellated Au-Pd nanocrystal model system with Oh symmetry to decouple structural and complex compositional effects on LSPR. (Abstract shortened by ProQuest.).

  5. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  6. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    Science.gov (United States)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  7. Towards the Rational Design of Nanoparticle Catalysts

    Science.gov (United States)

    Dash, Priyabrat

    This research is focused on development of routes towards the rational design of nanoparticle catalysts. Primarily, it is focused on two main projects; (1) the use of imidazolium-based ionic liquids (ILs) as greener media for the design of quasi-homogeneous nanoparticle catalysts and (2) the rational design of heterogeneous-supported nanoparticle catalysts from structured nanoparticle precursors. Each project has different studies associated with the main objective of the design of nanoparticle catalysts. In the first project, imidazolium-based ionic liquids have been used for the synthesis of nanoparticle catalysts. In particular, studies on recyclability, reuse, mode-of-stability, and long-term stability of these ionic-liquid supported nanoparticle catalysts have been done; all of which are important factors in determining the overall "greenness" of such synthetic routes. Three papers have been published/submitted for this project. In the first publication, highly stable polymer-stabilized Au, Pd and bimetallic Au-Pd nanoparticle catalysts have been synthesized in imidazolium-based 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid (Journal of Molecular Catalysis A: Chemical, 2008, 286, 114). The resulting nanoparticles were found to be effective and selective quasi-homogeneous catalysts towards a wide-range of hydrogenation reactions and the catalyst solution was reused for further catalytic reactions with minimal loss in activity. The synthesis of very pure and clean ILs has allowed a platform to study the effects of impurities in the imidazolium ILs on nanoparticle stability. In a later study, a new mode of stabilization was postulated where the presence of low amounts of 1-methylimidazole has substantial effects on the resulting stability of Au and Pd-Au nanoparticles in these ILs (Chemical Communications, 2009, 812). In further continuation of this study, a comparative study involving four stabilization protocols for nanoparticle

  8. Microwave-assisted synthesis and characterization of bimetallic PtRu alloy nanoparticles supported on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rahsepar, Mansour, E-mail: rahsepar@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz, 7134851154 (Iran, Islamic Republic of); Kim, Hasuck, E-mail: hasuckim@snu.ac.kr [Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-747 (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of)

    2015-11-15

    Multiwalled carbon nanotube (MWCNT) supported PtRu nanoparticles were synthesized by using a microwave-assisted improved impregnation technique. X-ray diffraction, transmission electron microscopy and X-ray photo electron spectroscopy were used to characterize the prepared PtRu/MWCNT nanoparticles. The PtRu nanoparticles with a satisfactory dispersion were formed on the external surface of MWCNTs. The CO stripping experiment was performed to evaluate the poisoning resistance of the prepared PtRu/MWCNT nanoparticles. Results of electrochemical measurements indicate that the prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning. The results of characterization revealed that microwave-assisted improved impregnation technique have a high yield of alloy phase formation and could be effectively used as a simple, quick and efficient technique for preparation of bimetallic PtRu/MWCNT nanoparticles. - Highlights: • Highly dispersed PtRu/MWCNTs were formed without use of any stabilizing agent. • Microwave irradiation enhances the uniform dispersion of the PtRu nanoparticles. • Microwave-assisted improved impregnation have a high yield of alloy phase formation. • The prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning.

  9. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    Directory of Open Access Journals (Sweden)

    Mengnan eWang

    2013-09-01

    Full Text Available The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs. Ni NPs and eight NiM (M stands for a second metal NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  10. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  11. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  12. Session 4: Low-temperature CO oxidation on Ni-Pt/SiO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Arenas-Alatorre, J.; Gomez-Cortes, A.; Diaz, G. [Instituto de Fisica UNAM, Mexico, D.F. (Mexico); Avalos Borja, M [Centro de Cciencias de la Materia Condensada, Ensenada, B.C. (Mexico)

    2004-07-01

    In the present study a set of Ni-Pt catalysts supported on silica have been examined as catalysts for the CO oxidation in the presence of hydrogen. The obtained results show that bimetallic Ni{sub 25}Pt{sub 75} catalyst is very active; total conversion of CO is achieved at 70 C and no significant diminution is observed at higher temperatures. Hydrogen concentration in the gas phase did not changed significantly indicating a very good selectivity towards CO oxidation. Bimetallic Ni{sub 50}Pt{sub 50} and Ni{sub 75}Pt{sub 25} catalysts showed also a good activity but the selectivity for CO oxidation decreases in favor of hydrogen oxidation at higher temperatures. It is interesting to note the performance of mono-metallic Ni/SiO{sub 2} since nickel is known to be not very active for oxidation reactions; at 120 C more than 80% of the CO is converted. On the other hand, Pt/SiO{sub 2} performance is not so good in comparison. (authors)

  13. EXAFS Determination of the Change in the Structure of Rhodium in Highly Dispersed Rhodium/gamma-Aluminum Oxide Catalysts after Carbon Monoxide and/or Hydrogen Adsorption at Different Temperatures

    NARCIS (Netherlands)

    Koningsberger, D.C.; Blik, H.F.J. van 't; Zon, J.B.A.D. van; Prins, R.

    1984-01-01

    Extended X-ray absorption spectroscopy (EXAFS) has been applied to study the Rh K-edge of two ultradisperse Rh/Al{2}O{3} catalysts containing 0.47 and 1.04 wt.% rhodium respectively. The structural properties of the Rh crystallites were determined after reduction with H{2}, evacuation at elevated te

  14. Analysis of Al-Cu Bimetallic Bars Properties After Explosive Welding and Rolling in Modified Passes

    Directory of Open Access Journals (Sweden)

    Mróz S.

    2015-04-01

    Full Text Available The paper presents the results of the experimental tests of Al-Cu bimetallic bars rolling process in multi-radial modified passes. The bimetallic bars consist of aluminium core, grade 1050A and copper outer layer, grade M1E. The stocks were round bars with diameter 22 mm with a copper layer share of 15 and 30%. As a result of rolling in four passes, bars of a diameter of about 16.0 mm were obtained. A bimetallic stock was manufactured using an explosive welding method. The use of the designed arrangement of multi-radial modified stretching passes resulted in obtaining Al-Cu bimetallic bars with the required lateral dimensions, an uniform distribution of the cladding layer over the bar perimeter and high quality of shear strength between individual layers.

  15. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  16. Supported cobalt catalysts - preparation, characterization and reaction studies

    OpenAIRE

    Backman, Leif

    2009-01-01

    The aim of this work was to understand on the effect of thermal treatments, precursor and support on the interaction between the support and cobalt species, and further how the interaction affects the reducibility and dispersion of the catalyst. Silica and alumina supported cobalt catalysts were prepared, characterised and tested for catalytic activity. The catalysts were prepared by gas phase deposition techniques from cobalt acetylacetonate and cobalt carbonyl and by incipient wetness impre...

  17. The role of Pt and Pd in enhancing the conversion of sorbitol to hydrogen over supported Ni-Pt and Ni-Pd catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tanksale, A.; Lu, G.Q. [Queensland Univ., Brisbane (Australia); Beltramini, J.N. [Queensland Univ., Brisbane (Australia). ARC Centre of Excellence for Functional Nanomaterials

    2009-07-01

    This study investigated the enhanced activity of bimetallic nickel-platinum (Ni-Pt) and nickel-palladium (Ni-Pd) catalysts for the production of hydrogen from reformed biomass-based products. The catalysts were prepared on an aluminum oxide (Al203) nanofibre. Mesoporous zirconia and composite silica-zirconia-ceria were used to determine the role of noble metals and supports. Desorption, oxidation, and temperature programmed reduction studies were conducted to investigate metal-metal and metal-support interactions. The study showed that Pt and Pd additions increased the reducibility of Ni catalysts. The bimetallic catalysts exhibited rates of hydrogen production 6 times higher than rates observed in pure metal catalysts. Sorbitol conversion increased from 35 per cent for the Ni catalyst to 62 per cent for the Ni-Pt catalyst. It was concluded that the alloying effect of the Ni-Pt and Ni-Pd systems lowered the carbon monoxide (CO) adsorption heat, and facilitated removal of the adsorbed CO by the water gas shift reaction.

  18. EFFECT OF CONCENTRATION METAL PRECURSOR Co AND Mo ON CHARACTER OF CoMo / USY CATALYST

    Directory of Open Access Journals (Sweden)

    Khoirina Dwi Nugrahaningtyas

    2016-08-01

    Full Text Available The preparation and characterization of bimetallic catalysts using impregnation method with a variation of concentration of precursor sequence Co and Mo metal obtained catalyst K 1 [Co (0.018 M - Mo (0.037 M/USY]. K 2 [Co (0.026 M - Mo (0.055 M/USY], K 3 [Co (0.035 M - Mo (0.074 M/USY], K 4 [Co (0.05 M - Mo (0.11 M /USY] and K 5 [Co (0.107 M - Mo (0.22 M/USY]. Character of the catalyst in terms of crystallinity was analyzed by XRD. The result shows that there is no cristalinity damage of USY after impregnation but the amorphous cristalin structure was obtained. Amount of metal content was analyzed by XRF and the catalyst morphology by SEM-EDS. The result shows that the higher the concentration of Co and Mo so that find the higher content of metal in catalyst of the prepared catalyst increase. K 4 shows the best characteristic of catalysts prepared in this research. Analysis of K 4 is proving that Co and Mo are presented in catalyst.

  19. Electrocatalytic activity of PtAu/C catalysts for glycerol oxidation.

    Science.gov (United States)

    Jin, Changchun; Sun, Chao; Dong, Rulin; Chen, Zhidong

    2012-01-01

    The electrocatalytic oxidation of glycerol on PtAu/C catalysts has been investigated by cyclic voltammetry. PtAu bimetallic nanoparticles are prepared by chemical reduction. Carbon-supported PtAu catalysts are found to exhibit high electrocatalytic activity for the oxidation of glycerol in alkaline solution in terms of oxidation potential and current density as well as stability, and PtAu/C catalysts with different Pt:Au composition ratios show no much difference in catalytic activity. In acidic solution, PtAu/C catalysts exhibit similar to Pt/C catalysts in activity, but the advantage of the PtAu/C catalysts in terms of per unit mass of platinum is still obvious. The PtAu/C catalysts, in a wide Pt:Au ratio range, show a remarkable enhancement in the mass specific activity of platinum with decreasing platinum content in both alkaline and acidic solutions. This is of significance for reducing the usage of platinum and indicates that though platinum acts as main active sites, gold also plays an important role in the function of PtAu/C catalysts.

  20. Catalyst Architecture

    DEFF Research Database (Denmark)

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    of programs, have a role in mediating positive social and/or cultural development. In this sense, we talk about architecture as a catalyst for: sustainable adaptation of the city’s infrastructure appropriate renovation of dilapidated urban districts strengthening of social cohesiveness in the city development...... meaningful for everyone. The exhibited works are designed by SANAA, Diller Scofidio + Renfro, James Corner Field Operation, JBMC Arquitetura e Urbanismo, Atelier Bow-Wow, Ateliers Jean Nouvel, COBE, Transform, BIG, Topotek1, Superflex, and by visual artist Jane Maria Petersen....

  1. Gas-Phase Growth of Heterostructures of Carbon Nanotubes and Bimetallic Nanowires

    Directory of Open Access Journals (Sweden)

    Whi Dong Kim

    2011-01-01

    Full Text Available A simple, inexpensive, and viable method for growing multiple heterostructured carbon nanotubes (CNTs over the entire surface of Ni-Al bimetallic nanowires (NWs in the gas phase was developed. Polymer-templated bimetallic nitrate NWs were produced by electrospinning in the first step, and subsequent calcination resulted in the formation of bimetallic oxide NWs by thermal decomposition. In the second step, free-floating bimetallic NWs were produced by spray pyrolysis in an environment containing hydrogen gas as a reducing gas. These NWs were continuously introduced into a thermal CVD reactor in order to grow CNTs in the gas phase. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and Raman spectrometry analyses revealed that the catalytic Ni sites exposed in the non-catalytic Al matrix over the entire surface of the bimetallic NWs were seeded to radially grow highly graphitized CNTs, which resembled “foxtail” structures. The grown CNTs were found to have a relatively uniform diameter of approximately 10±2 nm and 10 to 15 walls with a hollow core. The average length of the gas-phase-grown CNTs can be controlled between 100 and 1000 nm by adjusting the residence time of the free-floating bimetallic NWs in the thermal CVD reactor.

  2. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

    Science.gov (United States)

    Darabdhara, Gitashree; Boruah, Purna K.; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R.; Ahamad, Tansir; Alshehri, Saad M.; Malgras, Victor; Wu, Kevin C.-W.; Yamauchi, Yusuke

    2016-04-01

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst

  3. Lanthanide bimetallic helicates for in vitro imaging and sensing.

    Science.gov (United States)

    Bünzli, Jean-Claude G; Chauvin, Anne-Sophie; Vandevyver, Caroline D B; Bo, Song; Comby, Steve

    2008-01-01

    As the need for targeting luminescent biolabels increases, for mapping selected analytes, imaging of cells and organs, and tracking in cellulo processes, lanthanide bimetallic helicates are emerging as versatile bioprobes. The wrapping of three ligand strands around two metallic centers by self-assembly affords robust molecular edifices with tunable chemical and photophysical properties. In addition, heterometallic helical chelates can be assembled leading to bioprobes with inherent chiral properties. In this paper, we review the literature demonstrating that neutral [Ln(2)(L(CX))(3)] (x=1-3) helicates represent a viable alternative to existing chelating agents for bio-analyses, while featuring specific enhanced properties. These bimetallic chelates self-assemble in water, and at physiological pH the 2:3 (Ln:L(CX)) complex is by far the dominant species, conditional stability constants logbeta(23) being in the range 23-30. The metal ions are 9-coordinate and lie in sites with slightly distorted D(3) symmetry. Efficient protection from water interaction by the tightly wrapped ligand strands results in sizeable photophysical properties, with quantum yields up to 24% for Eu(III) and 11% for Tb(III), while the luminescence of several other visible and/or near-infrared emitting Ln(III) ions is also sensitized. Noncytotoxicity for all the helicates is established for several living cell lines including HeLa, HaCat, MCF-7, 5D10, and Jurkat. We present new data pertaining to the live cell imaging ability of [Eu(2)(L(C1))(3)] and compare the three systems with x=1-3 with respect to thermodynamic stability, photophysics, cell-permeation ability, and targeting capability for sensing in cellulo processes. Prospects of derivatization for characterizing specific biological interactions are discussed.

  4. Sol-gel based oxidation catalyst and coating system using same

    Science.gov (United States)

    Watkins, Anthony N. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  5. Hydrothermally Stable Fe–W–Ti SCR Catalysts Prepared by Deposition–Precipitation

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Mossin, Susanne;

    2014-01-01

    Fe/TiO2 based catalysts were prepared by incipient wetness impregnation and deposition–precipitation (DP). The catalysts were characterized by activity measurements, N2 physisorption, X-ray powder diffraction, electron paramagnetic resonance spectroscopy, energy dispersive X-ray spectroscopy, H2-.......Relative SCR activity of catalysts at 450 °C....

  6. Preparation methods of mixed metal sulfide catalysts for deep hydrogenation of crude oils%原油深度加氢复合多金属硫化物催化剂的制备方法

    Institute of Scientific and Technical Information of China (English)

    蒋丽娟; 李来平; 张文钲

    2014-01-01

    复合多金属硫化物( MMS)催化剂主要用于原油的深度加氢,用于生产高十六烷值、低硫和低芳族化合物柴油。MMS催化剂包含NiMoS、NiWS、NiMoO、NiWO、NiMoWS和ZnMoWS催化剂等。综述MMS催化剂中二元复合金属硫化物催化剂和三元复合金属硫化物催化剂的制备方法,采用二步法即添加有机物作孔成形剂先制得催化剂前驱体,再由前驱体制得的MMS催化剂结构更松散,具有较大的比表面积(90 m2·g-1)和大孔容(大于0.3 cm3·g-1),因而具有更好的催化活性。对比不同MMS催化剂对重质柴油、焦油等的加氢裂解、加氢脱硫和加氢脱氮性能,认为NiMoW三元复合金属硫化物催化剂(50%Ni25%Mo25%W)的活性最优。%Mixed metal sulfide catalyst( MMS)catalysts are mainly used for deep hydroprocessing of refractory crudes to produce diesel oil with higher cetane number,lower sulfur and lower aromatic compounds. MMS catalysts include NiMoS,NiWS,NiMoO,NiWO,NiMoWS and ZnMoWS,etc. The preparation methods of MMS catalysts,including bi-metallic sulfide catalysts and tri-metallic sulfide catalysts,were summarized in this paper. The catalyst precursors were prepared by adding organic compounds as pore forming agents,and then the catalysts were prepared. The catalysts prepared by the two-steps method possessed dispersive structure. The attained catalyst with BET specific surface area of 90 m2·g-1 and pore volume of 0. 3 cm3 ·g-1 exhibited better catalytic activity. Compared with other several MMS catalysts,the hydrocracking,hydrodesulfurization and hydrodenitrification activities of NiMoW(50mol%Ni,25mol%Mo,25mol%W)tri-metallic sulfide catalysts for processing heavy diesel oil and tar were the best.

  7. Monte Carlo simulation of the PEMFC catalyst layer

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxing; CAO Pengzhen; WANG Yuxin

    2007-01-01

    The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer.Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC.In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization,it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC.In this work,the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation.The model can predict the effects of some catalyst layer components,such as Pt/C catalyst,electrolyte and gas pores,on the utilization of the catalyst and the cell performance.The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization.The better the dispersion of the conduction grains,the larger the total effective area of the catalyst is.To achieve higher utilization,catalyst layer components must be distributed by means of engineered design,which can prevent aggregation.

  8. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  9. Promotion Effects of Nickel Catalysts of Dry Reforming with Methane

    Institute of Scientific and Technical Information of China (English)

    YAN,Zi-Feng(阎子峰); DING,Rong-Gang(丁荣刚); LIU,Xin-Mei(刘欣梅); SONG,Lin-Hua(宋林花)

    2001-01-01

    The promotion effects of nickel catalyst of dry reforming with methane were extensively investigated by means of XRD,SEM, EDX, N2-adsorption and H2-adsorption. XRD characterization indicated that good dispersion of nickel oxide and MgO promoter is achieved over γ-Al2O3 support. Addition of MgO promoter effectively retards the formation of NiS12O4 phase. SEM and EDX analysis exhibited that the addition ofrare-earth metal oxide CeO2 effectively promotes the Ni metal dispersion on the surface of the catalysts despite of undesirable self-dispersion of CeO2 promoter. Furthermore, the nickel component is gradually dispersed on the surface of the support following the exposure to reaction gas mixture for a period of time. The addition of MgO inhibited the self-dispersion and promotion effect of CeO2 on Ni dispersion on the catalysts. H2 chemisorption revealed that the addition of the alkaline oxide MgO promoter significantly prohibits the metal dispersion on the catalyst. Inappropriate promoter addition can result in sharp decrease of the metal dispersion. N2-adsorption indicated that oxide promoter was mostly concentrated on the outer layer of the alumina support while the nickel metal was generally dispersed in the support pores. Addition of promoters contributed to more reduction in mesopore volume.

  10. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  11. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis.

    Science.gov (United States)

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC-MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs.

  12. Green-chemistry Compatible Approach to TiO2-supported PdAu Bimetallic Nanoparticles for Solvent-free 1-Phenylethanol Oxidation under Mild Conditions

    Institute of Scientific and Technical Information of China (English)

    Jian-Bing Chang; Chang-Hai Liu; Jie Liu; Yu-Yan Zhou; Xu Gao; Sui-Dong Wang

    2015-01-01

    TiO2-supported PdAu bimetallic nanoparticles (NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and free of additives and byproducts. Pd/Au atomic ratio can be tuned by controlling the sputtering conditions simply. High catalytic activity was found in PdAu–NPs–TiO2 hybrids for solvent-free selective oxidation of 1-phenylethanol using O2 as the oxidant at the low temperature of 50 °C and low pressure of 1 atm. It was found that Pd/Au ratio strongly affected the catalytical activity, and the highest conversion of about 35%and turnover frequency of about 421 h-1 were achieved at 1:1 of Pd/Au atomic ratio. The synergistic effect in PdAu NPs was also discussed based on the comprehensive characterization results. The present approach may offer an alternative platform for future development of green-chemistry compatible bimetallic nanocatalysts.

  13. 室温合成团聚AuPd纳米粒子及其电催化性质%Room Temperature Synthesis and Characterization of Agglomerates of AuPd Bimetallic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    冯苍松; 梁新义; 崔兰

    2011-01-01

    室温下以水合肼为还原剂,在N,N-二甲基甲酰胺中合成了团聚态的AuPd双金属纳米粒子.X射线衍射(XRD)表征结果证明,所合成的AuPd纳米粒子具有面心立方结构.高分辨透射电子显微镜表征表明,AuPd纳米粒子表面存在大量孪晶结构和晶面层错等表面缺陷.活性评价结果表明,具有高密度晶面缺陷的双团聚态AuPd纳米粒子对甲醇氧化表现出较好的催化活性.%A facile synthesis of the agglomerates of AuPd bimetallic nanoparticles with hydrazine hydrate as a reductant is presented. The structures and morphologies of the agglomerates of AuPd bimetallic nanoparticles were investigated by high-resolution transmission electron microscopy(HRTEM) and X-ray diffraction(XRD). The composition and catalytic property of the AuPd bimetallic nanoparticles were studied by energy dispersive X-ray spectroscopy (EDS) and cyclic voltammetry(CV). The as-synthesized AuPd nanoparticles display agglomerates with face central cubic(fcc) structure enclosed by flat {100} and {111} facets. The details of HRTEM image reveal that unstable small nanoparticles aggregate into the agglomerates of structures. And the surface structure of nanoparticles yields various types of surface defects. Meanwhile, the agglomerates of structure and high density surface defects of AuPd bimetallic nanoparticle are found to dramatically improve the electrocatalytic activities.

  14. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  15. Probing hydrodesulfurization over bimetallic phosphides using monodisperse Ni2-xMxP nanoparticles encapsulated in mesoporous silica

    Science.gov (United States)

    Danforth, Samuel J.; Liyanage, D. Ruchira; Hitihami-Mudiyanselage, Asha; Ilic, Boris; Brock, Stephanie L.; Bussell, Mark E.

    2016-06-01

    Metal phosphide nanoparticles encapsulated in mesoporous silica provide a well-defined system for probing the fundamental chemistry of the hydrodesulfurization (HDS) reaction over this new class of hydrotreating catalysts. To investigate composition effects in bimetallic phosphides, the HDS of dibenzothiophene (DBT) was carried out over a series of Ni-rich Ni2-xMxP@mSiO2 (M = Co, Fe) nanocatalysts (x ≤ 0.50). The Ni2-xMxP nanoparticles (average diameters: 11-13 nm) were prepared by solution-phase arrested precipitation and encapsulated in mesoporous silica, characterized by a range of techniques (XRD, TEM, IR spectroscopy, BET surface area, CO chemisorption) and tested for DBT HDS activity and selectivity. The highest activity was observed for a Ni1.92Co0.08P@mSiO2 nanocatalyst, but the overall trend was a decrease in HDS activity with increasing Co or Fe content. In contrast, the highest turnover frequency (TOF) was observed for the most Co- and Fe-rich compositions based on sites titrated by CO chemisorption. IR spectral studies of adsorbed CO on the Ni2-xMxP@mSiO2 catalysts indicate that an increase in electron density occurs on Ni sites as the Co or Fe content is increased, which may be responsible for the increased TOFs of the catalytic sites. The Ni2-xMxP@mSiO2 nanocatalysts exhibit a strong preference for the direct desulfurization pathway (DDS) for DBT HDS that changes only slightly with increasing Co or Fe content.

  16. Electrochemical catalyst recovery method

    Science.gov (United States)

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  17. Formulation of cracking catalyst based on zeolite and natural clays

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, R.R.; Lupina, M.I.

    1995-11-01

    Domestically manufactured cracking catalysts are based on a synthetic amorphous aluminosilicate matrix and Y zeolite. A multistage {open_quotes}gel{close_quotes} technology is used in manufacturing the catalysts. The process includes mixing solutions of sodium silicate and acidic aluminum sulfate, forming, syneresis, and activation of the beaded gel. In the manufacture of bead catalysts, the next steps in the process are washing, drying, and calcining; in the manufacture of microbead catalysts, the next steps are dispersion and formation of a hydrogel slurry, spray-drying, and calcining. The Y zeolite is either introduced into the alumina-silica sol in the stage of forming the beads, or introduced in the dispersion stage. With the aim of developing an active and selective cracking catalyst based on Y zeolite and natural clays, with improved physicomechanical properties, the authors carried out a series of studies, obtaining results that are set forth in the present article.

  18. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  19. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  20. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Lugo, Violeta [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Universidad Autonoma del Estado de Mexico, Facultad de Quimica. Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca (Mexico); Barrera-Diaz, Carlos, E-mail: cbarrera@uaemex.mx [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Universidad Autonoma del Estado de Mexico, Facultad de Quimica. Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca (Mexico); Bilyeu, Bryan [Xavier University of Louisiana, Department of Chemistry, 1 Drexel Drive, New Orleans, LA 70125 (United States); Balderas-Hernandez, Patricia [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Universidad Autonoma del Estado de Mexico, Facultad de Quimica. Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca (Mexico); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico); Sanchez-Mendieta, Victor [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Universidad Autonoma del Estado de Mexico, Facultad de Quimica. Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca (Mexico)

    2010-04-15

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm{sup -2} iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm{sup -2}. The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  1. Ligand-controlled Co-reduction versus electroless Co-deposition: synthesis of nanodendrites with spatially defined bimetallic distributions.

    Science.gov (United States)

    Ortiz, Nancy; Weiner, Rebecca G; Skrabalak, Sara E

    2014-12-23

    The predictable synthesis of bimetallic nanostructures via co-reduction of two metal precursors is challenging due to our limited understanding of precursor ligand effects. Here, the influence of different metal-ligand environments is systematically examined in the synthesis of Pd-Pt nanostructures as a model bimetallic system. Nanodendrites with different spatially defined Pd-Pt compositions are achieved, where the local ligand environments of metal precursors dictate if temporally separated co-reduction dominates to achieve core-shell nanostructures or whether electroless co-deposition proceeds to facilitate alloyed nanostructure formation. As the properties of bimetallic nanomaterials depend on crystal ordering and composition, chemical routes to structurally defined bimetallic nanomaterials are critically needed. The approaches reported here should be applicable to other bimetallic compositions given the established reactivity of coordination complexes available for use as precursors.

  2. Understanding of catalyst deactivation caused by sulfur poisoning and carbon deposition in steam reforming of liquid hydrocarbon fuels

    Science.gov (United States)

    Xie, Chao

    2011-12-01

    The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production. Steam reforming of Norpar13 (a liquid hydrocarbon fuel from Exxon Mobile) without and with sulfur was performed on various metal catalysts (Rh, Ru, Pt, Pd, and Ni) supported on different materials (Al2O3, CeO2, SiO2, MgO, and CeO2- Al2O3). A number of characterization techniques were applied to study the physicochemical properties of these catalysts before and after the reactions. Especially, X-ray absorption near edge structure (XANES) spectroscopy was intensively used to investigate the nature of sulfur and carbon species in the used catalysts to reveal the catalyst deactivation mechanism. Among the tested noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalyst is the most sulfur tolerant. Al2O3 and CeO2 are much better than SiO2 and MgO as the supports for the Rh catalyst to reform sulfur-containing hydrocarbons. The good sulfur tolerance of Rh/Al2O3 can be attributed to the acidic nature of the Al2O3 support and its small Rh crystallites (1-3 nm) as these characteristics facilitate the formation of electron-deficient Rh particles with high sulfur tolerance. The good catalytic performance of Rh/CeO2 in the presence of sulfur can be ascribed to the promotion effect of CeO2 on carbon gasification, which significantly reduced the carbon deposition on the Rh/CeO2catalyst. Steam reforming of Norpar13 in the absence and presence of sulfur was further carried out over CeO2-Al2O3 supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 °C. Both monometallic catalysts rapidly deactivated at 550 °C, iv and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 °C dramatically improved the sulfur tolerance of the Rh catalyst. Sulfur K-edge XANES revealed that metal sulfide and organic sulfide are the dominant sulfur

  3. Reductive transformation of endosulfan in aqueous phase using magnesium–palladium bimetallic systems: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Thangadurai, Prabhu, E-mail: prabhuthangadurai@iitb.ac.in [Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, State of Maharashtra (India); Suresh, Sumathi, E-mail: sumathis@iitb.ac.in [Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, State of Maharashtra (India)

    2013-02-15

    Highlights: ► Mg{sup 0}/immobilized Pd{sup 0} is an efficient system for the reductive removal of endosulfan. ► Endosulfan was transformed into innocuous hydrocarbon product. ► Pd{sup 0}-Al{sub 2}0{sub 3} and Pd{sup 0}-C were recycled for 6 and 12 consecutive detoxification cycles. ► Organic solvents could be replaced with non-ionic detergents such as Tween 80. ► Immobilized palladium can be used in a reactor and reduce the water treatment cost. -- Abstract: The efficiencies of reductive transformation of endosulfan by bimetallic systems consisting of zerovalent magnesium (Mg{sup 0}) as the electron donor and three forms of palladium as the catalyst (Pd{sup 0}-alumina, Pd{sup 0}-carbon and Pd-K{sub 2}PdCl{sub 6}) were compared in this investigation. Results revealed that both Pd{sup 0}-alumina and Pd{sup 0}-carbon were able to remove 90 and 93% of 10 mg L{sup −1} of endosulfan, respectively in 30 min with the concomitant accumulation of trace concentrations of partially chlorinated compounds in the reaction medium. Removal of endosulfan followed first-order kinetics and the rate constant (k{sub obs}) value was computed to be 0.2 min{sup −1} for both Pd{sup 0}-alumina and Pd{sup 0}-carbon. Pd{sup 0}-carbon was relatively more stable and reusable in comparison to Pd{sup 0}-alumina. More than 99% of 10 mg L{sup −1} endosulfan was converted to hydrocarbon end product by Pd-K{sub 2}PdCl{sub 6} system within 6 min of reaction. The formation of hydrocarbon end product suggested desulfurization and complete dechlorination of endosulfan. The efficiencies of removal of α and β endosulfan isomers were nearly the same in reaction media containing acetone or Tween 80 as the pesticide solubilizing agents. Results obtained in this study suggest the possibility of developing a reactor containing immobilized palladium for the treatment of water contaminated with endosulfan.

  4. Salt flux synthesis of single and bimetallic carbide nanowires

    Science.gov (United States)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  5. Formation of Cu/Pd bimetallic crystals by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.E. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahia Blanca (Argentina); Salinas, D.R., E-mail: dsalinas@uns.edu.a [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahia Blanca (Argentina)

    2010-04-15

    The early stages of the palladium electrodeposition process onto a vitreous carbon (VC) substrate as well as the deposition of Cu on such Pd/VC modified surface were investigated using classical electrochemical techniques, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Within the potential range considered the kinetics of the Pd electrodeposition from a PdCl{sub 2} acid solution can be described by a model involving progressive nucleation on active sites and diffusion-controlled 3D growth. The nucleation rate constant, A{sub 0}, and the number of active sites of the substrate, N{sub 0}, were determined from the analysis of potentiostatic current transients on the basis of an existing theoretical model. The AFM images corroborated the progressive nucleation mechanism showing irregular palladium crystals randomly distributed over the VC surface, with different sizes and 3D morphological characteristics. The electrodeposition of Cu was carried out onto the characterized Pd/VC modified surface from a Cu{sup 2+} containing solution using a well defined polarization routine. The SEM/EDX images confirmed the formation of Cu/Pd bimetallic crystals uniformly distributed on the VC surface and the in situ AFM images obtained during this process corroborated that Cu formed a core-shell structure with the Pd crystals. Nevertheless, the subsequent anodic stripping produced only a partial dissolution of the Cu deposits, and therefore, the formation of a Cu/Pd alloy could be inferred.

  6. Foundation Flash Catalyst

    CERN Document Server

    Goralski, Greg

    2010-01-01

    This book offers an introduction to Flash Catalyst for designers with intermediate to advanced skills. It discusses where Catalyst sits within the production process and how it communicates with other programs. It covers all of the features of the Flash Catalyst workspace, teaching you how to create designs from scratch, how to build application designs and add functionality, and how to master the Catalyst/Flex workflow. * Introduces Flash Catalyst * Focuses on production process * Covers the interrelation between Flash Catalyst and Photoshop/Illustrator/Flex/Flash What you'll learn Starting f

  7. Description of the performances of a thermo-mechanical energy harvester using bimetallic beams

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2016-06-01

    Many recent researches have been focused on the development of thermal energy harvesters using thermo-mechanical or thermo-electrical coupling phenomena associated to a first-order thermodynamic transition. In the case of the bimetallic strip heat engine, the exploitation of the thermo-mechanical instability of bimetallic membranes placed in a thermal gradient enables to convert heat into kinetic energy. This paper is a contribution to the modeling and the comprehension of these heat engines. By restraining the study to the simply-supported bimetallic beams and using a Ritz approximation of the beam shape, this paper aims to give an analytical solution to the first mode of the composite beams and then to evaluate the efficiency of the harvesters exploiting these kinds of instability.

  8. Design and performance benchmark of various architectures of a piezoelectric bimetallic strip heat engine

    Science.gov (United States)

    Boughaleb, J.; Arnaud, A.; Monfray, S.; Cottinet, P. J.; Quenard, S.; Boeuf, F.; Guyomar, D.; Skotnicki, T.

    2016-06-01

    This paper deals with an investigation of a thermal energy harvester based on the coupling of a piezoelectric membrane and a bimetallic strip heat engine. The general working principle of the device consists of a double conversion mechanism: the thermal energy is first converted into mechanical energy by means of a bimetallic strip, then the mechanical energy is converted into electricity with a piezoelectric membrane. This paper deals with the study and optimization of the harvester's design. First, the piezoelectric membrane configuration is studied to find the most efficient way to convert mechanical energy into electricity. A benchmark of various piezoelectric materials is then presented to point out the most efficient materials. Finally, our study focuses on the bimetallic strip's properties: the effect of its dimensions of its thermal hysteresis on the harvester's performances are studied and compared. Thanks to these different steps, we were able to point out the best configuration to convert efficiently thermal heat flux into electricity.

  9. The quality of the joint between alloy steel and unalloyed cast steel in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2012-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.

  10. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    DEFF Research Database (Denmark)

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena

    2012-01-01

    Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio-supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols....... In this study we synthesize bimetallic bio-supported Pd-Au nanoparticles for the first time using microorganisms as support material. The synthesis involved two steps: (1) Formation of monometallic bio-supported Pd(0) and Au(0) nanoparticles on the surface of Cupriavidus necator cells, and (2) formation...... of bimetallic bio-supported nanoparticles by reduction of either Au(III) or Pd(II) on to the nanoparticles prepared in step one. Bio-supported monometallic Pd(0) or Au(0) nanoparticles were formed on the surface of C. necator by reduction of Pd(II) or Au(III) with formate. Addition of Au(III) or Pd...

  11. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    Science.gov (United States)

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-07-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications.

  12. Preparation and characterization of Ni/Co bimetallic nano-clusters

    Institute of Scientific and Technical Information of China (English)

    Jinzhang Gao; Fei Guan; Yongjun Ma; Jingwan Kang

    2003-01-01

    Ni/Co bimetallic nano-cluters have been prepared from the aqueous solution by reducing their corresponding metal salts under suitable conditions. The experimental conditions including the type and concentration of protective agent, feeding order and the pH of the solution that influence the average particle size have been studied in detail. Transmission electron microscopy (TEM)indicates that the shape of those bimetallic nano-cluster particles is spheroid. The alloy structure has been shown by X-ray powder diffraction (XRD). The X-ray photoelectron spectroscopic (XPS) data have confirmed that the nickel and cobalt in the bimetallic nano-clusters are in the zero-valence state.

  13. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  14. Development of structural characterisation tools for catalysts; Developpement d'outils de caracterisation structurale de catalyseurs

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, J.

    1999-10-01

    Because of the diversity of their compositions and structures, and the treatments needed to render them active, heterogeneous catalysts present a major challenge in structural characterisation. Electron microscopy provides textural and structural information at the scale of the individual particle. We have been able to analyse epitaxial relationships between nanometer size particles and their support and to determine which crystal faces are most exposed. Chemical analysis can be carried out on individual particles in a bimetallic catalyst. Limitations of this technique are shown for characterisation of catalysts at the atomic scale or in reactive conditions. Here, global analysis methods based on X-ray absorption and diffraction provide more information. W-ray absorption fine structure analysis has been applied to sub-nanometer size particles in platinum based catalysts to explore interactions between the metal and reactive gases such as hydrocarbons and H{sub 2}S. Differences observed between mono-metallic and bimetallic solids lead to structural models to explain differences in catalyst reactivity. X-ray diffraction, combined with electron microscopy, shows the presence of different forms of extra-framework aluminium is steamed zeolites. Quantification of some these forms has been possible and a study of their reactivity towards different de-aluminating agents has been achieved. Work in progress shows the advantages of a combination of X-ray diffraction and absorption to study decomposition of hydrotalcites to form mixed oxides as well as possibilities in infra-red spectroscopy of adsorbed CO to determine surface sites in Fischer Tropsch catalysts. Use of in-situ analysis cells enables a detailed description of catalyst structure in reactive atmospheres and opens the possibility of correlating structure with catalytic activity. (author)

  15. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    Science.gov (United States)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  16. Polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets

    CERN Document Server

    Clément, R; Gruselle, M; Train, C

    2003-01-01

    We report major results concerning polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets. As a consequence of their specific organization they are composed of an anionic sub-lattice and a cationic counter-part. These bimetallic polymers can accommodate various counter-cations possessing specific physical properties in addition to the magnetic ones resulting from the interactions between the metallic ions in the anionic sub-lattice. Thus, molecular magnets possessing paramagnetic, conductive and optical properties are presented in this review. Refs. 60 (author)

  17. A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems

    Science.gov (United States)

    Salabat, Alireza; Saydi, Hassan

    2012-12-01

    In this research a new idea for prediction of ultimate sizes of bimetallic nanocomposites synthesized in water-in-oil microemulsion system is proposed. In this method, by modifying Tabor Winterton approximation equation, an effective Hamaker constant was introduced. This effective Hamaker constant was applied in the van der Waals attractive interaction energy. The obtained effective van der Waals interaction energy was used as attractive contribution in the total interaction energy. The modified interaction energy was applied successfully to predict some bimetallic nanoparticles, at different mass fraction, synthesized in microemulsion system of dioctyl sodium sulfosuccinate (AOT)/isooctane.

  18. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  19. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liuqing [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Xiaoying [College of Science, Science and Technological Innovation Platform, Hunan Agricultural University, Hunan, Changsha 410128 (China); Lu, Qiujun; Huang, Na [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Meiling, E-mail: liumeilingww@126.com [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Zhang, Youyu; Yao, Shouzhuo [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2016-08-03

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H{sub 2}O{sub 2}) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H{sub 2}O{sub 2} in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  20. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  1. Dispersion Modeling.

    Science.gov (United States)

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  2. Supported Molten Metal Catalysis. A New Class of Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  3. Pd Close Coupled Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhong Hua SHI; Mao Chu GONG; Yao Qiang CHEN

    2006-01-01

    A catalyst comprised novel high surface area alumina support was prepared to control emission of automobiles. The results showed that prepared catalyst could satisfy the requirements of a high performance close coupled catalyst for its good catalytic activity at low temperature and good stability at high temperature.

  4. Structure sensitive adsorption of hydrogen on ruthenium and ruthenium-silver catalysts supported on silica

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.

    1999-02-12

    Supported metal catalysts typically consist of particles with sizes less than 10 nm, and because of the small crystallite size, low coordination number sites (edges and corners) represent a significant fraction of all surface sites. Furthermore, it has been demonstrated that adsorption rates can be much greater at these low coordination sites than on basal plane sites. What has not been generally appreciated, however, is that preferential adsorption at edge and corner sites may explain the mechanism by which a promoter, or the addition of a second metal to form a bimetallic, can alter the selectivity and rate of reaction. For example, the measurements of hydrogen adsorption onto supported Ru-Ag catalysts show marked decreases in the amount of hydrogen adsorbed relative to the amount adsorbed on Ru catalysts. Although it is known that Ag does not dissociatively adsorb hydrogen, this decrease cannot be explained by a simple one-to-one site blocking mechanism unless Ag preferentially populates edges and corners, thereby reducing the number of Ru edge sites. Indeed, Monte Carlo simulations of Ru-Group IB metal catalysts predict that Group IB metal atoms preferentially populate corner and edge sites of ruthenium crystals. This evidence, taken together, suggests that adsorption occurs preferentially at Ru corner and edge sites, which act as portals onto basal planes. A model based on this portal theory for hydrogen adsorption onto supported ruthenium bimetallic catalysts has been developed using a rate equation approach. Specifically, the model accounts for the following features: (1) preferential adsorption through portals, (2) basal plane site-energy multiplicity, and (3) hydrogen spillover onto the support. A comparison of model predictions with experiment is presented for different concentration of Ag in Ru-Ag catalysts. The portal model of hydrogen adsorption can explain the observed decreased in the amount of hydrogen adsorbed on Ru-Ag catalysts. The model can be

  5. Structure and properties of bimetallic titanium and vanadium oxide clusters.

    Science.gov (United States)

    Helmich, Benjamin; Sierka, Marek; Döbler, Jens; Sauer, Joachim

    2014-05-14

    By employing a genetic algorithm together with density functional theory (B3LYP), we investigate the most stable minimum structures of several bimetallic titanium and vanadium oxide clusters that contain four metal atoms. The following compositions are studied: VnTin-4O10(-) (n = 1-4), (TiO2)VOn(-) (n = 1-4), and (TiO2)VOn(+) (n = 1-3). Apart from (TiO2)3VO(-), vanadium oxo groups are always part of the most stable minimum structures when vanadium is present. Anti-ferromagnetic coupling lowers the energy substantially if spin centers are located at neighbored metal atoms rather than at distant oxygen radical sites. Vanadium-rich or oxygen-poor compositions prefer symmetric adamantane-like cage structures, some of which have already been proposed in a previous study. In contrast, vanadium-poor and oxygen-rich compositions show versatile structural motifs that cannot be intuitively derived from the symmetric cage motif. Particularly, for Ti4O10(-) there are several non-symmetric and distorted cages that have an up to 68 kJ mol(-1) lower energy than the symmetric adamantane-like cage structure. Nevertheless, for the adamantane-like cage the simulated infra-red spectrum (within the harmonic approximation) agrees best with the experimental vibrational spectrum. The oxidative power of the (TiO2)3VO3(-) and (TiO2)3VO2(+) clusters as measured by the energy of removing 1/2 O2 (297 and 227 kJ mol(-1), respectively) is less than that of the pure vanadium oxide clusters (V2O5)VO3(-) and (V2O5)VO2(+) (283 and 165 kJ mol(-1), respectively).

  6. X-Ray Absorption Spectroscopy of Mo and Ni K-edge of Supported Hydrotreating Catalysts

    Institute of Scientific and Technical Information of China (English)

    DuanAijun; XuChunming; ZhaoZhen; DongPeng

    2005-01-01

    X-ray absorption fine structure (XAFS) and other techniques have been used to characterize Ni-Mo/Al2O3 supported catalysts. The analysis of Mo K-edge spetrum shows that the active species over sulfide catalysts are MoS2-alike and the dispersion of Mo is high at the level of nanometer particles. There may exist some distortion of the local environment of MoS2, which has an influence on the hydrotreating activities of catalysts. Ni K-edge analysis shows that the coordination effects of Ni-Mo favor the dispersion state of active phase and imply a close relationship with catalyst activities.

  7. Studies on Macro—kinetics of Gas Phase Polymerization of Butadiene with Rare—earch Catalyst

    Institute of Scientific and Technical Information of China (English)

    FANGDonyu; SUNJianzhong; 等

    2002-01-01

    The study of the kinetics of gas phase polymerization of butadiene with heterogeneous catalyst based on neodymium(Nd) was carried out.The effects of reaction temperature,reaction pressure,dispersing medium, and types of catalyst on kinetics of polymerization were investigated .A kinetic model with two kinds of active sites was proposed.The results show that the effects of the reaction temperature and the types of dispersing medium and catalyst on the kinetic performance of polymerization are significant,and that the combined model of first and second order decay of active site of catalyst can be used to describe the phenomena.

  8. Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: effect of the support.

    Science.gov (United States)

    Cai, Weijie; Piscina, Pilar Ramírez de la; Gabrowska, Klaudia; Homs, Narcís

    2013-01-01

    This paper studies the influence of the support on the behavior of bimetallic CoIr-based catalysts (6.5 wt.% Co, 0.4 wt.% Ir) for hydrogen production from the oxidative steam reforming of bio-butanol raw mixture (butanol/acetone/ethanol = 6/3/1 mass ratio). Catalytic tests were carried out at 500 °C for 60 h with raw mixture/water/air/Ar = 1/10/7.5/12 molar ratio and GHSV = 7500 h(-1). Over CoIr/18CeZrO(2) and CoIr/ZnO the main process which took place was the oxidative steam reforming of the raw mixture. CoIr/18CeZrO(2) showed the better catalytic performance. Characterization of the used catalysts indicated that both active metal sintering and coke formation was prevented on the CoIr/18CeZrO(2) catalyst.

  9. Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined.The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feed-stock.The TiO2,γ-Al2O3 supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni (3%-5%),Co (5%-7%) and V (1%-3%) could increase dispersivity of the W species and the BET surface area of the WP/γ-Al2O3 catalyst.The WP/γ-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/γ-Al2O3 catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/γ-Al2O3 catalyst.In general,a support or promoter in the WP/γ-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.

  10. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  11. Pyrochlore catalysts for hydrocarbon fuel reforming

    Science.gov (United States)

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  12. Theoretical studies of the work functions of Pd-based bimetallic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhao-Bin; Wu, Feng; Wang, Yue-Chao; Jiang, Hong, E-mail: jianghchem@pku.edu.cn [Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-06-07

    Work functions of Pd-based bimetallic surfaces, including mainly M/Pd(111), Pd/M, and Pd/M/Pd(111) (M = 4d transition metals, Cu, Au, and Pt), are studied using density functional theory. We find that the work function of these bimetallic surfaces is significantly different from that of parent metals. Careful analysis based on Bader charges and electron density difference indicates that the variation of the work function in bimetallic surfaces can be mainly attributed to two factors: (1) charge transfer between the two different metals as a result of their different intrinsic electronegativity, and (2) the charge redistribution induced by chemical bonding between the top two layers. The first factor can be related to the contact potential, i.e., the work function difference between two metals in direct contact, and the second factor can be well characterized by the change in the charge spilling out into vacuum. We also find that the variation in the work functions of Pd/M/Pd(111) surfaces correlates very well with the variation of the d-band center of the surface Pd atom. The findings in this work can be used to provide general guidelines to design new bimetallic surfaces with desired electronic properties.

  13. Synthesis and exceptional thermal stability of Mg-based bimetallic nanoparticles during hydrogenation

    NARCIS (Netherlands)

    Krishnan, Gopi; Negrea, Raluca F.; Ghica, Corneliu; ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, Georgios

    2014-01-01

    Here we report the extraordinary thermal stability of Mg rich bimetallic nanoparticles (NPs), which is important for hydrogen storage technology. The enhanced NP stability is accomplished because of two critical improvements: (i) no void development within NPs (nanoscale Kirkendall effect) during th

  14. Synthesis of bimetallic gold-silver alloy nanoclusters by simple mortar grinding.

    Science.gov (United States)

    Murugadoss, Arumugam; Kai, Noriko; Sakurai, Hidehiro

    2012-02-21

    A macroscale quantity of bimetallic Au-Ag alloy nanoclusters was achieved through sequential reduction by simple mortar grinding. The chitosan biopolymer was used as both a stabilizing and reducing agent. These nanoclusters exhibit excellent catalytic activity toward the reduction of 4-nitrophenol.

  15. Optical properties of multilayer bimetallic films obtained by laser deposition of colloidal particles

    Science.gov (United States)

    Antipov, A.; Arakelian, S.; Vartanyan, T.; Gerke, M.; Istratov, A.; Kutrovskaya, S.; Kucherik, A.; Osipov, A.

    2016-11-01

    The optical properties of multilayer bimetallic films composed of silver and gold nanoparticles have been investigated. The dependence of the transmission spectra of the films on their morphology is demonstrated. A finite-difference time-domain (FDTD) simulation has confirmed that there is a dependence of the transmission spectra on the average distance between particles and the number of deposited layers.

  16. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    Science.gov (United States)

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  17. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Korzeniewski, Carol

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  18. Renovation and Reuse of Reactive Dyeing Effluent by a Novel Heterogeneous Fenton System Based on Metal Modified PTFE Fibrous Catalyst/H2O2

    Directory of Open Access Journals (Sweden)

    Bing Li

    2013-01-01

    Full Text Available Cu-Fe bimetallic grafted polytetrafluoroethylene (PTFE fiber complexes were prepared and optimized as the novel heterogeneous Fenton catalysts for the degradation of reactive dyes under UV irradiation. Cotton fabrics were dyed with three reactive dyes, namely, Reactive Red 195, Reactive Yellow 145, and Reactive Blue 222, in tap fresh water using exhaustion process. The spent dyeing effluents were then collected and degraded with the optimized Cu-Fe bimetallic grafted PTFE fiber complex/H2O2 system. The treated dyeing effluents were characterized and reused for the dyeing of cotton fabrics through the same process. The effect of reuse process number on quality of the dyed cotton fabrics was examined. The results indicated that the Cu-Fe bimetallic modified PTFE fiber complex with a Cu/Fe molar ratio of 2.87 was found to be the most effective fibrous catalyst, which enhanced complete decolorization of the treated dyeing effluents with H2O2 in 4 h. However, the TOC removal for the treated dyeing effluents was below 80%. The dyeing quality was not affected for three successive cycles. The increase in residual TOC value influences fourth dyeing cycle. Further TOC reduction of the treated effluents is needed for its repeated reuse in more than three dyeing cycles.

  19. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts

    Directory of Open Access Journals (Sweden)

    Anna Piskun

    2016-08-01

    Full Text Available γ-Valerolactone (GVL has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 °C, 45 bar of H2, 2 wt. % catalyst on LA. Eight monometallic catalysts were tested on carbon based(C, carbon nanotubes (CNT and inorganic supports (Al2O3, SiO2, TiO2, ZrO2, Nb2O5 and Beta-12.5. The best result was found for Ru/Beta-12.5 with almost quantitative LA conversion (94% and 66% of GVL yield after 2 h reaction. The remaining product was 4-hydroxypentanoic acid (4-HPA. Catalytic activity for a bimetallic RuPd/TiO2 catalyst was by far lower than for the monometallic Ru catalyst (9% conversion after 2 h. The effects of relevant catalyst properties (average Ru nanoparticle size, Brunauer-Emmett-Teller (BET surface area, micropore area and total acidity on catalyst activity were assessed.

  20. PROGRESS IN PHASE INVERSION EMULSIFICATION FOR EPOXY RESIN WATERBORNE DISPERSIONS

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhong Yang

    2007-01-01

    In this review,our recent work in phase inversion emulsification (PIE)for polymer(especially epoxy resin) waterborne dispersions is summarized.Based on experimental results about PIE process,the physical model is proposed which Can guide the synthesis of the waterborne dispersions such as polymer/nanoparticle composite dispersion.In the presence of a latent curing catalyst,PIE can give a crosslinkable epoxy resin waterborne dispersion.The dispersions can form cured transparent coatings with some unique properties such as UV shielding.They are promising in functional coatings,waterborne resin matrices for composites,and sizing for high performance fibers.

  1. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders

    2011-01-01

    Cu/TiO2, Fe/TiO2 and heteropoly acid promoted Cu/TiO2, Fe/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR and EPR. The catalysts exhibited only crystalline TiO2 phases with the active metals and promoters in highly dispersed state. The acidic properties...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might...... were studied and compared with the catalytic activity for the selective catalytic reduction (SCR) of NO with ammonia. The SCR activities and acidity values of heteropoly acid promoted catalysts were found to be much higher than unpromoted catalysts. The influence of potassium poisons on the SCR...

  2. A possible role of the dipole moment of the catalyst droplet in nanotube growth, alignment, chirality, and characteristics.

    Science.gov (United States)

    Mohammad, S Noor

    2012-03-02

    Why vapor species land on the surface of the nanoparticle seed for nanotube synthesis is a vital question. An investigation has been carried out to find an answer to it. For this, a model of the dipole moment has been developed. A bimetallic alloy (non-alloy, solid solution) exhibiting the shape of a cap has been assumed to function as the nanoparticle seed. Various features of the dipole moment have been examined. The influence of the dipole moment on nanotube synthesis, alignment, chirality, and characteristics has also been studied. Available experiments on the synthesis of carbon nanotubes employing bimetallic catalysts have been compared with the results from calculations. Close correspondence between the two demonstrates that the catalysts may exhibit a dipole moment and have a crucial role in nanotube synthesis and characteristics. The dipole moment has also been employed to determine why some nanotubes grow vertically, while others are bent. Calculated results appear to explain the basic causes for this. These results suggest that the electric field resulting from the dipole moment of catalysts may be important for the vertical alignment of nanotubes. They may attest to the validity of the model and to the existence of a dipole moment in seeds. Although considered for nanotube syntheses, the results may be applicable to other nanomaterials (nanotubes, nanowires, nanodots).

  3. Pt-Re-Sn/Al{sub 2}O{sub 3} trimetallic catalysts for naphtha reforming processes without presulfiding step

    Energy Technology Data Exchange (ETDEWEB)

    Mazzieri, V.A.; Grau, J.M.; Vera, C.R.; Yori, J.C.; Parera, J.M.; Pieck, C.L. [Instituto de Investigaciones en Catalisis y Petroquimica, INCAPE, FIQ-UNL, CONICET, Santiago del Estero 2654, 3000 Santa Fe (Argentina)

    2005-12-12

    The n-heptane reforming and the cyclopentane hydrogenolysis reactions over noble metal monometallic catalysts (0.3% Pt), bimetallic catalysts (0.3% Pt, x% Re, x=0.1, 0.3, 0.9 and 2.0, sulfided) and trimetallic catalysts (0.3% Pt, 0.3% Re, y% Sn, y=0.1, 0.3, 0.6 and 0.9, unsulfided) were studied. The metal function was supported over a chlorided {gamma}-alumina that provided the acid function. The reforming of n-heptane was performed at 450{sup o}C, molar ratio H{sub 2}/n-C{sub 7}=4 and WHSV=7.3 while the hydrogenolysis of cyclopentane was performed at 350{sup o}C, H{sub 2}/CP=20 and WHSV=2.4. The sulfided 0.3Pt-0.3Re catalyst (with 0.06% S) was found to be the best performing bimetallic one. It had a great stability, typical of this kind of catalysts, and also produced a reformate with a high iso-heptanes/toluene ratio. This is advantageous for fulfilling the current environmental regulations that limit the amount of aromatic hydrocarbons in reformulated gasolines. The best trimetallic catalyst was 0.3Pt-0.3Re-0.6Sn which had a similar activity and selectivity as sulfided 0.3Pt-0.3Re, though it displayed a higher stability and a lower hydrogenolysis activity, without the need of presulfidation. Tin affected the metal and acid functions of the catalyst simultaneously and inhibited them to such different degrees that a very convenient metal/acid activity ratio was obtained, resulting in an improvement of the activity, selectivity and stability of the catalysts. It can be concluded that it is possible to prepare trimetallic naphtha reforming catalysts of the Pt-Re-Sn kind with a better performance than conventional sulfided Pt-Re catalysts and with the additional advantage that they do not need complicated sulfiding pretreatments. This simplifies the commercial operation of the reformer unit and enables the application of this catalyst to continuously operated processes.

  4. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.

    Science.gov (United States)

    Madhavan, Nandita; Jones, Christopher W; Weck, Marcus

    2008-09-01

    site density, and (iv) the nature of the catalyst attachment. Herein, we describe the design of polymer supports tuned to enhance the catalytic activity or decrease, or even eliminate, decomposition pathways of salen-based transition metal catalysts that follow either a monometallic or a bimetallic reaction mechanism. These findings result in the creation of some of the most active and selective salen catalysts in the literature.

  5. Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst

    Science.gov (United States)

    Paßens, M.; Caciuc, V.; Atodiresei, N.; Moors, M.; Blügel, S.; Waser, R.; Karthäuser, S.

    2016-07-01

    Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the preparation conditions.Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the

  6. Role of clay as catalyst in Friedel–Craft alkylation

    Indian Academy of Sciences (India)

    Tanushree Choudhury; Nirendra M Misra

    2011-10-01

    Solid acids have become increasingly important for many liquid-phase industrial reactions these days. Montmorillonite clays (2:1 clay mineral) have been used as efficient solid acid catalysts for a number of organic and liquid phase reactions and offer several advantages over classic acids. Tailor made catalysts can be prepared from clays by suitably adjusting their acidity and surface area by acid activation. In the present work, preparation, characterization and performance of Pt (II) clays, Cu (II) clays, acid clay, and sol–gel hybrids of Cu (II) clays as solid catalysts in a test Friedel–Craft alkylation reaction of benzyl chloride with toluene using differential scanning calorimeter (DSC) are reported. Product formation has been analysed by FTIR spectroscopy. The main objective of this work is to show how clay as a solid catalyst affects reaction rates and activation energies. Acidity and dispersion of solid catalysts are twomain factors which govern a catalysis reaction. Kinetic parameter analysis and XRD studies confirm that acid Pt (II) clay and Pt (II) clay dispersed by natural dispersants aremore effective catalysts. In contrast to the reactions using AlCl3, the experimental conditions are non-polluting and the final work up does not require any aqueous treatment.

  7. Thermal decomposition of mono- and bimetallic magnesium amidoborane complexes.

    Science.gov (United States)

    Spielmann, Jan; Piesik, Dirk F-J; Harder, Sjoerd

    2010-07-26

    Complexes of the type [(DIPPnacnac)MgNH(R)BH(3)] have been prepared (DIPPnacnac=CH{(CMe)(2,6-iPr(2)C(6)H(3)N)}(2)). The following substituents R have been used: H, Me, iPr, DIPP (DIPP=2,6-diisopropylphenyl). Complexes [(DIPPnac- nac)MgNH(2)BH(3)].THF, [{(DIPPnac- nac)MgNH(iPr)BH(3)}(2)] and [(DIPPnacnac)MgNH(DIPP)BH(3)] were structurally characterised. The Mg amidoborane complexes decompose at a significantly higher temperature (90-110 degrees C) than the corresponding Ca amidoborane complexes (20-110 degrees C). The complexes with the smaller R substituents (H, Me) gave a mixture of decomposition products of which one could be structurally characterised as [{(DIPPnacnac)Mg}(2)(H(3)B-NMe-BH-NMe)].THF. [{(DIPP- nacnac)MgNH(iPr)BH(3)}(2)] cleanly decomposed to [(DIPPnacnac)MgH], which was characterised as a dimeric THF adduct. The amidoborane complex with the larger DIPP-substituent decomposed into a borylamide complex [(DIPPnacnac)MgN(DIPP)BH(2)], which was structurally characterised as its THF adduct. Bimetallic Mg amidoborane complexes decompose at lower temperatures (60-90 degrees C) and show a different decomposition pathway. The dinuclear Mg amidoborane complexes presented here are based on DIPPnacnac units that are either directly coupled through N-N bonding (abbreviated NN) or through a 2,6-pyridylene bridge (abbreviated PYR). Crystal structures of [PYR-{Mg(nBu)}(2)], [PYR-{MgNH(iPr)BH(3)}(2)], [NN-{MgNH(iPr)BH(3)}(2)]THF and the decomposition products [PYR-Mg(2)(iPrN-BH-iPrN-BH(3))] and [NN-Mg(2)(iPrN-BH-iPrN-BH(3))].THF are presented. The following conclusions can be drawn from these studies: i) The first step in the decomposition of a metal amidoborane complex is beta-hydride elimination, which results in formation of a metal hydride complex and R(H)N=BH(2), ii) depending on the nature of the metal, the metal hydride is either stable and can be isolated or it reacts further, iii) amidoborane anions with small R substituents decompose into the dianionic

  8. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents

    Directory of Open Access Journals (Sweden)

    Singh R

    2016-05-01

    Full Text Available Richa Singh,1 Laxman Nawale,2 Manisha Arkile,2 Sweety Wadhwani,1 Utkarsha Shedbalkar,1 Snehal Chopade,1 Dhiman Sarkar,2 Balu Ananda Chopade1,3 1Department of Microbiology, Savitribai Phule Pune University, 2Combichem-Bioresource Center, Organic Chemistry Division, National Chemical Laboratory, Pune, 3Dr Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India Purpose: Multi- and extensively drug-resistant tuberculosis (TB is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics. In view of this, the current study aims to determine the efficacy of phytogenic metal nanoparticles to inhibit mycobacteria. Methods: Silver (AgNPs, gold (AuNPs, and gold–silver bimetallic (Au–AgNPs nanoparticles synthesized from medicinal plants, such as Barleria prionitis, Plumbago zeylanica, and Syzygium cumini, were tested against Mycobacterium tuberculosis and M. bovis BCG. In vitro and ex vivo macrophage infection model assays were designed to determine minimum inhibitory concentration (MIC and half maximal inhibitory concentration of nanoparticles. Microscopic analyses were carried out to demonstrate intracellular uptake of nanoparticles in macrophages. Besides this, biocompatibility, specificity, and selectivity of nanoparticles were also established with respect to human cell lines. Results: Au–AgNPs exhibited highest antitubercular activity, with MIC of <2.56 µg/mL, followed by AgNPs. AuNPs did not show such activity at concentrations of up to 100 µg/mL. In vitro and ex vivo macrophage infection model assays revealed the inhibition of both active and dormant stage mycobacteria on exposure to Au–AgNPs. These nanoparticles were capable of entering macrophage cells and exhibited up to 45% cytotoxicity at 30 µg/mL (ten times MIC concentration after 48 hours

  9. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  10. On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj K; Mohr, Gerhard J [Institute of Physical Chemistry, Friedrich-Schiller University, Lessingstrasse 10, 07743 Jena (Germany)], E-mail: anuj.sharma@uni-jena.de

    2008-03-07

    In this work, we have investigated the capability of different bimetallic nanoparticle alloy combinations to be used in fibre optic sensors based on the technique of surface plasmon resonance. The metals considered for this analysis are silver, gold, copper and aluminium. The performance of the sensor with different bimetallic nanoparticle alloy combinations is evaluated and compared numerically. The performance is analysed in terms of three parameters: sensitivity, signal-to-noise ratio (SNR) and operating range for the sensing layer refractive index values. On the basis of the comparison and some logistic criteria, the best possible bimetallic alloy combinations along with a requisite alloy composition ratio are predicted. The bimetallic nanoparticle alloy combination is capable of simultaneously providing larger values of sensitivity, SNR and operating range, which is not possible with any single metallic nanoparticle layer.

  11. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Bimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2011-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels into hydrogen-rich reformate and deliver to the fuel cell stack with little or no sulfur. Since sulfur poisons and deactivates the reforming catalyst, robust sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization and evaluation of a series of reforming catalysts containing two noble metals (with total metal loading not exceeding 1 weight percent supported on nanoscale ceria for the steam-reforming of kerosene is reported. Due to inherent synergy, a bimetallic catalyst is superior to its monometallic analog, for the same level of loading. The choice of noble metal combination in the bimetallic formulations plays a vital and meaningful role in their performance. Presence of ruthenium and/or rhodium in formulations containing palladium showed improved sulfur tolerance and significant enhancement in their catalytic activity and stability. Rhodium was responsible for higher hydrogen yields in the logistic fuel reformate. Duration of steady hydrogen production was higher in the case of RhPd (75 h than for RuPd (68 h; hydrogen generation was stable over the longest period (88 h with RuRh containing no Pd. A mechanistic correlation between the characteristic role of precious metals in the presence of each other is discussed.

  12. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  13. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die; Chen, Zuliang, E-mail: Zuliang.chen@newcastle.edu.au; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  14. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  15. Ethylbenzene dehydrogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−yNiyAl0.5 catalysts

    KAUST Repository

    Atanda, Luqman A.

    2011-04-01

    A series of Mg3Fe0.5-xCoxAl0.5 (x = 0-0.5) catalysts were prepared from hydrotalcite precursors and their activities in the dehydrogenation of ethylbenzene were compared with those of a series of Mg3Fe0.5-yNiyAl0.5 (y = 0-0.5) catalysts also derived from hydrotalcite. The hydrotalcites prepared by co-precipitation were calcined at 550 °C to the mixed oxides with a high surface area of 150-240m2gcat-1; they were composed of Mg(Fe,Me,Al)O periclase and Mg(Me)(Fe,Al)2O4 spinel (Me = Co or Ni). Bimetallic Fe3+-Co2+ system showed a synergy, i.e., an increase in the activity, whereas Fe3+-Ni2+ bimetallic system showed no synergy. The high styrene yield was obtained on Mg 3Fe0.1Co0.4Al0.5; however, a large substitution of Fe3+ with Co2+ caused a decrease in styrene selectivity along with coking on the catalysts, due to an isolation of CoOx on the catalyst surface. The highest yield as well as the highest selectivity for styrene production was obtained at x = 0.25 at time on stream of 30 min. The coprecipitation at pH = 10.0 and the composition of Mg3Fe0.25Co0.25Al0.5 were the best for preparing the active catalyst. This is partly due to the formation of a good hydrotalcite structure. On this catalyst, the active Fe3+ species was reduced at a low temperature by the Fe3+-Co2+ bimetal formation, leading to a high activity. Simultaneously, the amount of reducible Fe3+ was the smallest, resulting in a high stability of the active Fe3+ species. It is likely that the dehydrogenation was catalyzed by the reduction-oxidation between Fe3+ and Fe2+ and that Co2+ assisted the reduction-oxidation by forming Fe 3+-Co2+ (1/1) bimetallic active species. © 2011 Elsevier B.V. All rights reserved.

  16. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.

    Science.gov (United States)

    Bi, Liyan; Dong, Jian; Xie, Wei; Lu, Wenbo; Tong, Wei; Tao, Lin; Qian, Weiping

    2013-12-17

    The silver-modified gold nanoplate arrays as bimetallic surface-enhanced Raman scattering (SERS) substrates were optimized for the surface-enhanced Raman detection of streptavidin/biotin monolayer assemblies. The bimetallic gold-silver nanoplate arrays were fabricated by coating silver nanoparticles uniformly on the gold nanoplate arrays. Depending on silver nanoparticle coating, the localized surface plasmon resonance (LSPR) peak of the bimetallic gold-silver nanoplate arrays blue-shifted and broadened significantly. The common probe molecule, Niel Blue A sulfate (NBA) was used for testing the SERS activity of the bimetallic gold-silver nanoplate arrays. The SERS intensity increased with the silver nanoparticle coating, due to a large number of hot spots and nanoparticle interfaces. The platforms were tested against a monolayer of streptavidin functionalized over the bimetallic gold-silver nanoplate arrays showing that good quality spectra could be acquired with a short acquisition time. The supramolecular interaction between streptavidin (strep) and biotin showed subsequent modification of Raman spectra that implied a change of the secondary structure of the host biomolecule. And the detection concentration for biotin by this method was as low as 1.0 nM. The enhanced SERS performance of such bimetallic gold-silver nanoplate arrays could spur further interest in the integration of highly sensitive biosensors for rapid, nondestructive, and quantitative bioanalysis, particularly in microfluidics.

  17. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip

    Science.gov (United States)

    Kim, Hyung Jin; Sohn, Young-Soo; Kim, Chang-duk; Jang, Dae-ho

    2016-09-01

    A surface plasmon resonance (SPR) sensor system with a bimetallic chip has been utilized to sense the very low concentration of amyloid-beta (A β)(1-42) by measurement of the reflectance variation. The bimetallic chip was comprised of Au (10 nm) and Ag (40 nm) on Cr (2 nm)-coated BK-7 glass substrate. Protein A was used to efficiently immobilize the antibody of A β(1-42) on the surface of the bimetallic chip. The reflectance curve of the bimetallic chip represented a narrower linewidth compared to that of the conventional gold (Au) chip. The SPR sensor using the bimetallic chip in the intensity interrogation mode acquired the response of A β(1-42) at concentrations of 250, 500, 750 and 1,000 pg/ml. The calibration plot showed a linear relationship between the mean reflectance variation and the A β(1-42) concentration. The results proved that the SPR sensor system with the bimetallic chip in the intensity interrogation mode can successfully detect various concentrations of A β(1-42), including critical concentration, to help diagnose Alzheimer's disease.

  18. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.

    Science.gov (United States)

    Zaleska-Medynska, Adriana; Marchelek, Martyna; Diak, Magdalena; Grabowska, Ewelina

    2016-03-01

    Nanoparticles composed of two different metal elements show novel electronic, optical, catalytic or photocatalytic properties from monometallic nanoparticles. Bimetallic nanoparticles could show not only the combination of the properties related to the presence of two individual metals, but also new properties due to a synergy between two metals. The structure of bimetallic nanoparticles can be oriented in random alloy, alloy with an intermetallic compound, cluster-in-cluster or core-shell structures and is strictly dependent on the relative strengths of metal-metal bond, surface energies of bulk elements, relative atomic sizes, preparation method and conditions, etc. In this review, selected properties, such as structure, optical, catalytic and photocatalytic of noble metals-based bimetallic nanoparticles, are discussed together with preparation routes. The effects of preparation method conditions as well as metal properties on the final structure of bimetallic nanoparticles (from alloy to core-shell structure) are followed. The role of bimetallic nanoparticles in heterogeneous catalysis and photocatalysis are discussed. Furthermore, structure and optical characteristics of bimetallic nanoparticles are described in relation to the some features of monometallic NPs. Such a complex approach allows to systematize knowledge and to identify the future direction of research.

  19. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; WANG Xiangyu; CHANG Ying; LIU Huiling

    2008-01-01

    Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained α-Fe0. Detected Pd to Fe ratio by weight (PFRW) was close to theoretical PFRW. Spherical granules with diameter of 47±11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. Factors, such as species of reductants, PFRW, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid (MCAA) by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% PFRW > nanoscale Fe > reductive Fe. When PFRW was lower than 0.083%, increasing PFRW would increase dechlorination efficiency (DE) of MCAA. But when the PFRW was higher than 0.083%, increasing PFRW caused decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.

  20. 离子掩蔽剂在制备铜银双金属粉中的应用%Ionic Masking Agent in the Preparation of Copper-Silver Bimetallic Powder

    Institute of Scientific and Technical Information of China (English)

    彭优; 聂登攀; 薛涛

    2011-01-01

    采用化学置换法制备了系列铜银双金属粉,在制备过程中添加离子掩蔽剂,有效消除了铜氨络合离子在铜粉表面的吸附,实现银在铜粉表面的连续包覆.分析了掩蔽原理及其主要影响因素,并用透射电子显微镜,热重分析仪,X射线衍射仪对铜银双金属粉进行了表征.结果表明:在添加了离子掩蔽剂后制备铜银双金属粉末为连续包覆型结构,分散性好,有效改善了铜粉的抗氧化性能.%A series of copper-silver bimetallic powder was prepared by a chemical replacement method.In this process, ionic masking agent was added to eliminate copper ammonia complex ions adsorption on copper powder surface, which realizes silver continuous coating on the copper powder surfaces.The masking mechanism and the main influencing factors were analyzed.Besides that, TEM, TGA and XRD were used to characterize the Cu-Ag bimetallic powder.Results show that the copper-silver bimetallic powder with the ionic masking agent is of a continuous coating type structure, which has good dispersity, effectively improving antioxidation properties of the copper powdet.

  1. Synthesis and Photocatalytic Activity of TiO2/V2O5 Composite Catalyst Doped with Rare Earth Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiO2/V2O5 catalyst doped with rare earth ions was prepared by sol-gel method. Titanium tetrapropoxide and vanadium pentoxide were used as precursor of the composite catalyst and rare earth ions were used as dopant. The crystal phases, crystalline sizes, microstructure, absorption spectra of doped composite catalyst were studied by XRD, EDS, FT-IR and UV-Vis. Photoactivity of the prepared catalyst under ultraviolet irradiation were evaluated by degradation of methyl orange (MO) in aqueous solution. It is shown that the prepared catalyst is composed of anatase and rutile. The rare earth ions are highly dispersed in composite catalyst. All the doped catalysts appear higher photocatalytic activity than TiO2/V2O5 catalyst and catalyst doped with Ce4+ present the best activity to MO.

  2. Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade

    OpenAIRE

    Ling Fei; Harvind Kumar Reddy; Joshua Hill; Qianglu Lin; Bin Yuan; Yun Xu; Peter Dailey; Shuguang Deng; Hongmei Luo

    2012-01-01

    We report the preparation of two hydrocracking catalysts Pd/CoMoO4/silica and Pd/CNTs/CoMoO4/silica (CNTs, carbon nanotubes). The structure, morphologies, composition, and thermal stability of catalysts were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and thermogravimetric analysis (TGA). The catalyst activity was measured in a Parr reactor with camelina fatty acid methyl est...

  3. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  4. Fabrication of Fischer-Tropsch Catalysts by Deposition of Iron Nanocrystals on Carbon Nanotubes

    NARCIS (Netherlands)

    Casavola, Marianna; Hermannsdoerfer, Justus; de Jonge, Niels; Dugulan, A. Iulian; de Jong, Krijn P.

    2015-01-01

    The fabrication of supported catalysts consisting of colloidal iron oxide nanocrystals with tunable size, geometry, and loadinghomogeneously dispersed on carbon nanotube (CNT) supportsis described herein. The catalyst synthesis is performed in a two-step approach. First, colloidal iron and iron oxid

  5. Atomistic Processes of Catalyst Degradation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-27

    The purpose of this cooperative research and development agreement (CRADA) between Sasol North America, Inc., and the oak Ridge National Laboratory (ORNL) was to improve the stability of alumina-based industrial catalysts through the combination of aberration-corrected scanning transmission electron microscopy (STEM) at ORNL and innovative sample preparation techniques at Sasol. Outstanding progress has been made in task 1, 'Atomistic processes of La stabilization'. STEM investigations provided structural information with single-atom precision, showing the lattice location of La dopant atoms, thus enabling first-principles calculations of binding energies, which were performed in collaboration with Vanderbilt University. The stabilization mechanism turns out to be entirely due to a particularly strong binding energy of the La tom to the {gamma}-alumina surface. The large size of the La atom precludes incorporation of La into the bulk alumina and also strains the surface, thus preventing any clustering of La atoms. Thus highly disperse distribution is achieved and confirmed by STEM images. la also affects relative stability of the exposed surfaces of {gamma}-alumina, making the 100 surface more stable for the doped case, unlike the 110 surface for pure {gamma}-alumina. From the first-principles calculations, they can estimate the increase in transition temperature for the 3% loading of La used commercially, and it is in excellent agreement with experiment. This task was further pursued aiming to generate useable recommendations for the optimization of the preparation techniques for La-doped aluminas. The effort was primarily concentrated on the connection between the boehmitre-{gamma}-Al{sub 2}O{sub 3} phase transition (i.e. catalyst preparation) and the resulting dispersion of La on the {gamma}-Al{sub 2}O{sub 3} surface. It was determined that the La distribution on boehmite was non-uniform and different from that on the {gamma}-Al{sub 2}O{sub 3} and thus

  6. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co–W/MgO catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah

    2015-09-01

    Full Text Available Bimetallic catalysts containing a series of Co/W at 40/10, 30/20, 20/30 and 10/40 wt% supported on MgO with a total metal content of 50 wt% were prepared and used for the catalytic decomposition of methane to COx-free hydrogen and multi-walled carbon nanotubes (MWCNTs. The solid fresh and exhausted catalysts were characterized structurally and chemically through XRD, TPR, BET, TGA, TEM and Raman spectroscopy. The 40%Co–10%W/MgO catalyst exhibited the highest activity for the production of both hydrogen and MWCNTs. The formation of a large amount of non-interacted Co3O4 species is considered as the main reason for the catalyst superiority in its activity. On the contrary, catalysts formulations of 20%Co–30%W and 10%Co–40%W demonstrated the formation of a large amount of hardly reducible CoWO4 and MgWO4 particles causing lower activity of these catalysts toward methane decomposition as evidenced through the XRD and TPR results.

  7. States of Carbon Nanotube Supported Mo-Based HDS Catalysts

    Institute of Scientific and Technical Information of China (English)

    Hongyan Shang; Chenguang Liu; Yongqiang Xu; Jieshan Qiu; Fei Wei

    2006-01-01

    The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.

  8. MicroChannel Reactors for ISRU Applications Using Nanofabricated Catalysts

    Science.gov (United States)

    Carranza, Susana; Makel, Darby B.; Vander Wal, Randall L.; Berger, Gordon M.; Pushkarev, Vladimir V.

    2006-01-01

    With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In-Situ Resources Utilization (ISRU) is more critical and timely than ever before. Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. This paper presents current development of miniaturized chemical processing systems that combine microchannel reactor design with nanofabricated catalysts. Carbon nanotubes (CNT) are used to produce a nanostructure within microchannel reactors, as support for catalysts. By virtue of their nanoscale dimensions, nanotubes geometrically restrict the catalyst particle size that can be supported upon the tube walls. By confining catalyst particles to sizes smaller than the CNT diameter, a more uniform catalyst particle size distribution may be maintained. The high dispersion permitted by the vast surface area of the nanoscale material serves to retain the integrity of the catalyst by reducing sintering or coalescence. Additionally, catalytic efficiency increases with decreasing catalyst particle size (reflecting higher surface area per unit mass) while chemical reactivity frequently is enhanced at the nanoscale. Particularly significant is the catalyst exposure. Rather than being confined within a porous material or deposited upon a 2-d surface, the catalyst is fully exposed to the reactant gases by virtue of the nanofabricated support structure. The combination of microchannel technology with nanofabricated catalysts provides a synergistic effect, enhancing both technologies with the potential to produce much more efficient systems than either technology alone. The development of highly efficient microchannel reactors will be applicable to multiple ISRU programs. By selection of proper nanofabricated catalysts, the microchannel reactors can be

  9. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  10. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  11. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    2001-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the particles.

  12. The adsorption and decomposition of methane on Fe/Cu(110)bimetallic surface

    Institute of Scientific and Technical Information of China (English)

    鲍世宁; 范朝阳; 李海洋; 徐亚伯

    1995-01-01

    The adsorption and decomposition of methane on Fe/Cu(110) bimetallic surface have been studied by HREELS and ARUPS. The results show that the activation energy of dissociative chemisorption for methane is reduced obviously by preadsorption of iron on copper surface. The chemisorption probability of methane is so high on Fe/Cu(110) bimetallic surface that chemisorption of methane can be observed at room temperature and low pressure. When the iron coverage is lower than 1 ML, the chemisorption probability increases linearly with increasing iron coverage. After the iron coverage is beyond 1 ML(<2ML) the probability continues increasing. The iron atom with disordered structure can offer the site of dissociative chemisorption to methane too. A hydroformyl species is formed through interaction between methane and the preadsorbed oxygen atoms. The reaction enhances the dissociative chemisorption of methane on the surface.

  13. Structure and atomic vibrations in bimetallic Ni13 - n Al n clusters

    Science.gov (United States)

    Rusina, G. G.; Borisova, S. D.; Chulkov, E. V.

    2015-04-01

    The binding energy, equilibrium geometry, and vibration frequencies in bimetallic clusters Ni13 - n Al n ( n = 0-13) have been calculated using the embedded atom method potentials. It has been shown that the icosahedral structure is the most stable in monoatomic and bimetallic clusters. A tendency of Al atoms to segregate on the cluster surface has been revealed in agreement with the experimental data. The calculations of the atomic vibrations have shown the nonmonotonic dependence of the minimum and maximum vibration frequencies of cluster atoms on its composition and the coupling of their extreme values with the most stable atomic configuration. The increase in the number of Al atoms leads to the shift of the frequency spectrum and the substantial redistribution of the localization of vibrations on the cluster atoms.

  14. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  15. Synthesis of a discrete-action thermo-bimetallic actuator with a tongue

    Science.gov (United States)

    Nikolaeva, A.; McMillan, AJ; Gavriushin, S.

    2016-10-01

    The selection of suitable parameters, by experimental or intuitive processes for snap-through actuation of a bimetallic actuator at a prescribed temperature is an extremely time-consuming task. This paper describes a new methodology for the optimization of a discrete action thermo-bimetallic actuator with a tongue. This methodology makes it possible to solve the optimization task with higher efficiency. The requirement is to find optimal parameters values so that the actuator will make a snap-through at a given temperature. The constrained optimization task was performed using an evolutional algorithm and surrogate modelling and this was coded in Matlab. Functional relationships between the criteria and parameters were not set explicitly, but they were calculated using finite element method, each simulation of which was performed in Abaqus.

  16. LPG sensing performance of CuO–Ag2O bimetallic oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    K.R. Nemade

    2015-10-01

    Full Text Available In the present article, we synthesized CuO–Ag2O bimetallic oxide nanoparticles by using microwave assisted and solid state diffusion routes. The structural, morphological, optical and thermal study of as-synthesized materials were done through X-ray diffractometer (XRD, scanning electron microscope (SEM, Fourier transform infrared (FTIR, ultraviolet–visible (UV–vis and thermogravimetric analysis (TGA, respectively. Comparatively different sensing parameters such as sensing response at room temperature, operating temperature, response and recovery time and stability characteristics were investigated and discussed for liquefied petroleum gas (LPG. The CuO–Ag2O bimetallic oxide nanoparticles synthesized by microwave assisted route shows good gas sensing properties.

  17. Synthesis and exceptional thermal stability of Mg-based bimetallic nanoparticles during hydrogenation

    Science.gov (United States)

    Krishnan, Gopi; Negrea, Raluca F.; Ghica, Corneliu; Ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, George

    2014-09-01

    Here we report the extraordinary thermal stability of Mg rich bimetallic nanoparticles (NPs), which is important for hydrogen storage technology. The enhanced NP stability is accomplished because of two critical improvements: (i) no void development within NPs (nanoscale Kirkendall effect) during their formation and (ii) suppressed Mg evaporation and NP hollowing during Mg hydrogenation at elevated temperature. The mechanism leading to the improved thermal stability of Mg-based bimetallic NPs is shown to be due to MgH2 hydride formation before evaporation can take place. These findings were tested for various compositions of Mg with Ni, Cu, and Ti, which are interesting combinations of materials for hydrogen storage systems. To achieve this we first demonstrate the synthesis mechanism of Mg-Ni and Mg-Cu NPs, which is well controlled at the single particle level, in order to accomplish multi-shell, alloy and intermetallic structures of interest for hydrogen storage tests. Aberration corrected transmission electron microscopy was carried out to unravel the detailed atomic structure and composition of the bimetallic NPs after production, processing, and hydrogenation. Finally, a simple and effective methodology is proposed for tuning the composition of the Mg-based bimetallic NPs based on the temperature-dependent nucleation behavior of NPs in the gas-phase.Here we report the extraordinary thermal stability of Mg rich bimetallic nanoparticles (NPs), which is important for hydrogen storage technology. The enhanced NP stability is accomplished because of two critical improvements: (i) no void development within NPs (nanoscale Kirkendall effect) during their formation and (ii) suppressed Mg evaporation and NP hollowing during Mg hydrogenation at elevated temperature. The mechanism leading to the improved thermal stability of Mg-based bimetallic NPs is shown to be due to MgH2 hydride formation before evaporation can take place. These findings were tested for various

  18. Dispersed Indeterminacy

    CERN Document Server

    Fayngold, Moses

    2013-01-01

    A state of a single particle can be represented by a quantum blob in the corresponding phase space, or a patch (granule) in its 2-D subspace. Its area is frequently stated to be no less than, implying that such a granule is an indivisible quantum of the 2-D phase space. But this is generally not true, as is evident, for instance, from representation of some states in the basis of innately discrete observables like angular momentum. Here we consider some dispersed states involving the evanescent waves different from that in the total internal reflection. Such states are represented by a set of separated granules with individual areas, but with the total indeterminacy . An idealized model has a discrete Wigner function and is described by a superposition of eigenstates with eigenvalues and forming an infinite periodic array of dots on the phase plane. The question about the total indeterminacy in such state is discussed. We argue that the eigenstates corresponding to the considered EW cannot be singled out by a...

  19. Stability of the Shallow Axisymmetric Parabolic-Conic Bimetallic Shell by Nonlinear Theory

    OpenAIRE

    M. Jakomin; Kosel, F.

    2011-01-01

    In this contribution, we discuss the stress, deformation, and snap-through conditions of thin, axi-symmetric, shallow bimetallic shells of so-called parabolic-conic and plate-parabolic type shells loaded by thermal loading. According to the theory of the third order that takes into account the balance of forces on a deformed body, we present a model with a mathematical description of the system geometry, displacements, stress, and thermoelastic deformations. The equations are based on the lar...

  20. LPG sensing performance of CuO–Ag2O bimetallic oxide nanoparticles

    OpenAIRE

    K.R. Nemade; S.A. Waghuley

    2015-01-01

    In the present article, we synthesized CuO–Ag2O bimetallic oxide nanoparticles by using microwave assisted and solid state diffusion routes. The structural, morphological, optical and thermal study of as-synthesized materials were done through X-ray diffractometer (XRD), scanning electron microscope (SEM), Fourier transform infrared (FTIR), ultraviolet–visible (UV–vis) and thermogravimetric analysis (TGA), respectively. Comparatively different sensing parameters such as sensing response at ro...

  1. Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au

    Directory of Open Access Journals (Sweden)

    Lu-Cun Wang

    2013-02-01

    Full Text Available The catalytic properties of nanostructured Au and their physical origin were investigated by using the low-temperature CO oxidation as a test reaction. In order to distinguish between structural effects (structure–activity correlations and bimetallic/bifunctional effects, unsupported nanoporous gold (NPG samples prepared from different Au alloys (AuAg, AuCu by selective leaching of a less noble metal (Ag, Cu were employed, whose structure (surface area, ligament size as well as their residual amount of the second metal were systematically varied by applying different potentials for dealloying. The structural and chemical properties before and after 1000 min reaction were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS. The catalytic behavior was evaluated by kinetic measurements in a conventional microreactor and by dynamic measurements in a temporal analysis of products (TAP reactor. The data reveal a clear influence of the surface contents of residual Ag and Cu species on both O2 activation and catalytic activity, while correlations between activity and structural parameters such as surface area or ligament/crystallite size are less evident. Consequences for the mechanistic understanding and the role of the nanostructure in these NPG catalysts are discussed.

  2. An Efficient Bifunctional Electrocatalyst for a Zinc-Air Battery Derived from Fe/N/C and Bimetallic Metal-Organic Framework Composites.

    Science.gov (United States)

    Wang, Mengfan; Qian, Tao; Zhou, Jinqiu; Yan, Chenglin

    2017-02-15

    Efficient bifunctional electrocatalysts with desirable oxygen activities are closely related to practical applications of renewable energy systems including metal-air batteries, fuel cells, and water splitting. Here a composite material derived from a combination of bimetallic zeolitic imidazolate frameworks (denoted as BMZIFs) and Fe/N/C framework was reported as an efficient bifunctional catalyst. Although BMZIF or Fe/N/C alone exhibits undesirable oxygen reaction activity, a combination of these materials shows unprecedented ORR (half-wave potential of 0.85 V as well as comparatively superior OER activities (potential@10 mA cm(-2) of 1.64 V), outperforming not only a commercial Pt/C electrocatalyst but also most reported bifunctional electrocatalysts. We then tested its practical application in Zn-air batteries. The primary batteries exhibit a high peak power density of 235 mW cm(-2), and the batteries are able to be operated smoothly for 100 cycles at a curent density of 10 mA cm(-2). The unprecedented catalytic activity can be attritued to chemical coupling effects between Fe/N/C and BMZIF and will aid the development of highly active electrocatalysts and applications for electrochemical energy devices.

  3. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    Science.gov (United States)

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles.

  4. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    Science.gov (United States)

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  5. Ferrocenyl-cymantrenyl hetero-bimetallic chalcones: Synthesis, structure and biological properties

    Science.gov (United States)

    Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav

    2015-04-01

    Two new ferrocenyl-cymantrenyl bimetallic chalcones, [(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)Fe(η5-C5H5)] (1) and [{(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)}2Fe] (2) have been synthesized. Their reactivity study with triphenylphosphine and bis-(diphenylphosphino)ferrocene led to the isolation of phosphine substituted bimetallic chalcones (3-6). Single crystal X-ray structural characterization for 1 and its phosphine analogue (3) reveals their different conformational identity with anti-conformation for 1, while syn-conformation for 3. Investigation of antimalarial and antibacterial activities was carried out for compounds 1 and 2 against two strains of Plasmodium falciparum (3D7, K1) and four bacterial strains. TD-DFT calculation was performed for compound 1 and electrochemical properties were studied for bimetallic chalcone compounds by cyclic voltammetric technique.

  6. In Situ Synthesis of Bimetallic Hybrid Nanocatalysts on a Paper-Structured Matrix for Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2011-11-01

    Full Text Available Bimetallic nanoparticles have attracted significant attention as their electrochemical and catalytic properties being superior to those of the individual component nanoparticles. In this study, gold-silver hybrid nanoparticles (AuAgNPs with an Aucore-Agshell nanostructure were successfully synthesized on zinc oxide (ZnO whiskers. The as-prepared nanocatalyst, denoted AuAgNPs@ZnO whisker, exhibits an excellent catalytic efficiency in the aqueous reduction of 4-nitrophenol to 4-aminophenol; the turnover frequency was up to 40 times higher than that of each component nanoparticle. Their unique features were attributed to the electronic ligand effect at the bimetallic interface. In addition, the AuAgNPs were synthesized on a ZnO whisker-containing paper with a fiber-network microstructure, which was prepared via a papermaking technique. The paper-structured AuAgNPs composite possessed both a paper-like practical utility and a good catalytic performance. Furthermore, the on-paper synthesis process for these bimetallic nanocatalysts is facile. These easy-to-handle nanocatalyst hybrid composites are expected to find a wide range of applications in various chemical and catalytic processes.

  7. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  8. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    -particles dispersed in water which also contains the catalyst precursor nitrate salt. This support-catalyst precursor fluid must have a sufficiently low viscosity but high elastic modulus (high extensional viscosity to form films and bubbles when exposed to processing energy sources such as microwave, thermal, ultra-sound or UV-radiation or their combination. The micro-to-nano structures of the catalyst system are essentially formed at an early stage of energy input. It is shown that the primary particles of silica are transformed to a proto-silica particle state and form lamellar structures with the catalyst precursor. While the nano-structure is forming, water is evaporated leaving a highly porous solid support-catalyst precursor which then undergoes decomposition to form a silica-catalyst oxide system. The final catalyst system is obtained after catalyst oxide reduction. Although the XRD-based catalyst size changes slightly during the subsequent heat treatments, the nano-structure of the catalyst system remains substantially unaltered as evaluated through TEM images. However, if the catalyst preparation is carried out without film formation, the XRD-based catalyst size increases substantially by a factor of 2–8, with no significant alteration in surface area.

  9. Propene epoxidation over Au/Ti-SBA-15 catalysts

    NARCIS (Netherlands)

    Sacaliuc, E.; Beale, A.M.; Weckhuysen, B.M.; Nijhuis, T.A.

    2007-01-01

    Highly dispersed gold nanoparticles were synthesized within the channels of a mesoporous Ti-SBA-15 support, followed by thorough catalyst characterization and testing in the selective epoxidation of propene to propene oxide. For this purpose, two series of Ti-SBA-15 materials differing in their Ti c

  10. Ethylene Polymerization Using Improved Polyethylene Catalyst%改进的催化剂的乙烯聚合动力学研究

    Institute of Scientific and Technical Information of China (English)

    朱孝恒; 郭子芳; 岑为; 毛炳权

    2011-01-01

    The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene. In particular, two types of catalysts were investigated, which were N-catalyst (BRICI) and improved polyethylene catalyst. The effects of catalyst structure on kinetic behavior were examined. The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays (EDAX), and morphologies of catalyst particles and polymer products were examined by scanning electron microscope (SEM). Hydrogen response and copolymerization performance were investigated and compared with the two catalysts. The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented. The improved polyethylene catalyst showed higher activity, better hydrogen response and copolymerization performance.

  11. 高分散Fe-N-C氧还原反应电催化剂及其在直接甲醇燃料电池中的应用%A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells

    Institute of Scientific and Technical Information of China (English)

    谷领峥; 姜鲁华; 李旭宁; 金具涛; 王军虎; 孙公权

    2016-01-01

    Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mössbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.%氧还原反应(ORR)是燃料电池和金属空气电池等洁净发电装置中阴极的主要反应,该反应动力学过程慢,电化学极化严重. Pt基电催化剂具有较好的ORR活性,然而Pt资源有限、价格昂贵,研制高活性、低成本的代Pt电催化剂意义重大.经过几十年的探索,研究者发现将含有C, N和Fe等元素的前体进行高温热处理得到的Fe-N-C电催化剂对ORR具有良好的活性,然而在高温热解过程中Fe容易发生聚集而形成大块颗粒,导致Fe的利用率不高,影响了电催化剂的ORR活性.  本文分别以聚吡咯和乙二胺四乙酸二钠(EDTA-2Na)为C和N的前驱体,利用高温热解形成的富含微孔

  12. Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Gutierrez, A.; Honkela, M. L.; Krause, A. O. I.; Heeres, H. J.

    2011-01-01

    Fast pyrolysis oil (PO), the liquid product of fast pyrolysis of lignocellulosic biomass, requires upgrading to extent its application range and for instance to allow for co-feeding in an existing oil-refinery. Catalytic hydrotreatment reactions (350 degrees C, 20 MPa total pressure, and 4h reaction

  13. Autothermal reforming of simulated and commercial fuels on zirconia-supported mono- and bimetallic noble metal catalysts

    OpenAIRE

    Kaila, Reetta

    2008-01-01

    New energy sources are needed if energy supply and demand are to remain in balance. At the same time, the level of emissions needs to be reduced to minimise their contribution to the greenhouse effect. Renewable energy sources, and hydrogen (H2), have been attracting much attention, and more efficient technologies for energy recovery have been developed. Among these are fuel cells. H2 is not a source of energy but an energy carrier, which needs to be produced from a primary fuel (hydroca...

  14. Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: An in Situ XAS and DFT Study

    Energy Technology Data Exchange (ETDEWEB)

    Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel James; Anniyev, Toyli; Ogasawara, Hirohito; Larsen, Ask Hjorth; O' Grady, Christopher P.; Norskov, Jens K.; Nilsson, Anders

    2012-05-31

    We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L(3) edge reveals characteristic changes of the shape and intensity of the 'white-line' due to chemisorption of atomic hydrogen (H(ad)) at low potentials and oxygen-containing species (O/OH(ad)) at high potentials. On a uniform, two-dimensional Pt monolayer grown by Pt evaporation in ultrahigh vacuum, we observe a significant destabilization of both H(ad) and O/OH(ad) due to strain and ligand effects induced by the underlying Rh(111) substrate. When Pt is deposited via a wet-chemical route, by contrast, three-dimensional Pt islands are formed. In this case, strain and Rh ligand effects are balanced with higher local thickness of the Pt islands as well as higher defect density, shifting H