WorldWideScience

Sample records for bimetallic catalysts supported

  1. Designing Pd-based supported bimetallic catalysts for environmental applications

    OpenAIRE

    Nowicka, Ewa; Meenakshisundaram, Sankar

    2018-01-01

    Supported bimetallic nanoparticulate catalysts are an important class of heterogeneous catalysts for many reactions including selective oxidation, hydrogenation/hydrogenolysis, reforming, biomass conversion reactions, and many more. The activity, selectivity, and stability of these catalysts depend on their structural features including particle size, composition, and morphology. In this review, we present important structural features relevant to supported bimetallic catalysts focusing on Pd...

  2. Structural Characteristics of Bimetallic Catalysts Supported on Nano-Ceria

    Directory of Open Access Journals (Sweden)

    J. F. Bozeman

    2011-01-01

    Full Text Available Cu-Pt bimetal catalysts supported on nanocrystalline CeO2 (nano-ceria are synthesized via the low-cost sol-gel approach followed by impregnation processing. The average particle size of the catalytic composites is 63 nm. Ceria nanopowders sequentially impregnated in copper solution and then in Pt solution transformed into Pt-skin-structured Cu-Pt/ceria nanocomposite, based on the surface elemental and bulk compositional analyses. The ceria supporter has a fluorite structure, but the structure of Cu and Pt catalytic contents, not detected by X-ray diffraction spectroscopy due to the low loading level, is yet conclusive. The bimetallic catalytic nanocomposites may potentially serve as sulfur-tolerant anode in solid oxide fuel cells.

  3. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  4. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  5. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-04-28

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  6. Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Khromova, S. A.; Venderbosch, R. H.; Yakovlev, V. A.; Melian-Cabrera, I. V.; Heeres, H. J.

    2012-01-01

    Bimetallic Ni-Cu catalysts on various Supports (CeO2-ZrO2, ZrO2, SiO2, TiO2, rice husk carbon, and Sibunite) with metal contents ranging from 7.5 to 9.0 (Ni) and 3.1-3.6 wt.% (Cu) for the inorganic supports and 17.1-17.8 (Ni) and 7.1-7.8 (Cu) for the carbon supports were synthesised and screened for

  7. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts.

    Science.gov (United States)

    Tathod, Anup P; Dhepe, Paresh L

    2015-02-01

    Promoter effect of Sn in the PtSn/γ-Al2O3 (AL) and PtSn/C bimetallic catalysts is studied for the conversion of variety of substrates such as, C5 sugars (xylose, arabinose), C6 sugars (glucose, fructose, galactose), hemicelluloses (xylan, arabinogalactan), inulin and agricultural wastes (bagasse, rice husk, wheat straw) into sugar alcohols (sorbitol, mannitol, xylitol, arabitol, galactitol). In all the reactions, PtSn/AL showed enhanced yields of sugar alcohols by 1.5-3 times than Pt/AL. Compared to C, AL supported bimetallic catalysts showed prominent enhancement in the yields of sugar alcohols. Bimetallic catalysts characterized by X-ray diffraction study revealed the stability of catalyst and absence of alloy formation thereby indicating that Pt and Sn are present as individual particles in PtSn/AL. The TEM analysis also confirmed stability of the catalysts and XPS study disclosed formation of electron deficient Sn species which helps in polarizing carbonyl bond to achieve enhanced hydrogenation activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ruthenium-platinum bimetallic catalysts supported on silica: characterization and study of benzene hydrogenation and CO methanation

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.K.; Rao, K.M.; Sundararaman, N.; Chandavar, K.

    1986-12-15

    Ru-Pt/SiO/sub 2/ bimetallic catalysts with varying Ru:Pt ratio have been prepared and studied with the aim to establish if they contain coclusters or isolated ruthenium and platinum particles. X-ray diffraction studies show that individual crystallites of ruthenium and platinum are present and no coclusters are formed. Metal dispersion has been determined by hydrogen chemisorption and surface composition of the catalysts has been obtained from XPS. It was found that preoxidation of the catalysts prior to reduction is essential for good platinum dispersion. The experimental turnover number (TN) for benzene hydrogenation on the bimetallic catalysts agrees very well with that of the weighted average on the individual metal catalysts and this may be taken as a kinetic evidence for the absence of coclusters. Carbon monoxide methanation activity of the bimetallic catalysts is quite similar to that of the supported platinum catalyst. 6 refs., 6 figs., 2 tabs.

  9. thesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts

    Directory of Open Access Journals (Sweden)

    Sanja Ratković

    2009-10-01

    Full Text Available Carbon nanotubes (CNTs were synthesized by a catalytic chemical vapor deposition method (CCVD of ethylene over alumina and silica supported bimetallic catalysts based on Fe, Co and Ni. The catalysts were prepared by a precipitation method, calcined at 600 °C and in situ reduced in hydrogen flow at 700 °C. The CNTs growth was carried out by a flow the mixture of C2H4 and nitrogen over the catalyst powder in a horizontal oven. The structure and morphology of as-synthesized CNTs were characterized using SEM. The as-synthesized nanotubes were purified by acid and basic treatments in order to remove impurities such as amorphous carbon, graphite nanoparticles and metal catalysts. XRD and DTA/TG analyses showed that the amounts of by-products in the purified CNTs samples were reduced significantly. According to the observed results, ethylene is an active carbon source for growing high-density CNTs with high yield but more on alumina-supported catalysts than on their silica- supported counterparts. The last might be explained by SMSI formed in the case of alumina-supported catalysts, resulting in higher active phase dispersion.

  10. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  11. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  12. Light alkane (mixed feed selective dehydrogenation using bi-metallic zeolite supported catalyst

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-12-01

    Full Text Available Light alkanes are the important intermediates of many refinery processes and their catalytic dehydrogenation gives corresponding alkenes. The aim behind this experimentation is to investigate reaction behavior of mixed alkanes during direct catalytic dehydrogenation and emphasis has been given to enhance propene. Bi-metallic zeolite supported catalyst Pt-Sn/ZSM-5 was prepared by sequentional impregnation method and characterized by BET, EDS and XRD. Direct dehydrogenation reaction is highly endothermic and its conversion is thermodynamically limited. Results showed that the increase in temperature increases the conversion to some extent but there is no overall effect on selectivity of propene. Increase in time-on-stream (TOS remarkably improves propene selectivity at the expense of lower conversion. The performances of bi-metallic zeolite based catalyst largely affected by coke deposition. The presence of butane and ethane adversely affected propane conversion. Optimum propene selectivity is about 48 %, obtained at 600 oC and time-on-stream 10 h.

  13. NOVEL SUPPORTED BIMETALLIC CARBIDE CATALYSTS FOR COPROCESSING OF COAL WITH WASTE METERIALS

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox; Chunshan Song; Fred Allen; Weilin Wang; Viviane Schwartz; Xinqin Wang; Jianli Yang

    2001-01-01

    The overall objectives of this project are to explore the potential of novel monometallic and bimetallic Mo-based carbide catalysts for heavy hydrocarbon coprocessing, and to understand the fundamental chemistry related to the reaction pathways of coprocessing and the role of the catalysts in the conversion of heavy hydrocarbon resources into liquid fuels based on the model compound reactions.

  14. Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Fe-based Bimetallic Supported Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; He, Jian; Schill, Leonhard

    2018-01-01

    Hydrodeoxygenation (HDO) of methyl lactate (ML) to methyl propionate (MP) was performed with various base-metal supported catalysts. A high yield of 77 % MP was obtained with bimetallic Fe-Ni/ZrO2 in methanol at 220 °C and 50 bar H2 . A synergistic effect of Ni increased the yield of MP...... of the material. Interestingly, it was observed that Fe-Ni/ZrO2 also effectively catalyzed methanol reforming to produce H2 in situ, followed by HDO of ML, yielding 60 % MP at 220 °C with 50 bar N2 instead of H2. Fe-Ni/ZrO2 also catalyzed HDO of other short-chain alkyl lactates to the corresponding alkyl...

  15. Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Fe-based Bimetallic Supported Catalysts.

    Science.gov (United States)

    Khokarale, Santosh Govind; He, Jian; Schill, Leonhard; Yang, Song; Riisager, Anders; Saravanamurugan, Shunmugavel

    2018-02-22

    Hydrodeoxygenation (HDO) of methyl lactate (ML) to methyl propionate (MP) was performed with various base-metal supported catalysts. A high yield of 77 % MP was obtained with bimetallic Fe-Ni/ZrO 2 in methanol at 220 °C and 50 bar H 2 . A synergistic effect of Ni increased the yield of MP significantly when using Fe-Ni/ZrO 2 instead of Fe/ZrO 2 alone. Moreover, the ZrO 2 support contributed to improve the yield as a phase transition of ZrO 2 from tetragonal to monoclinic occurred after metal doping giving rise to fine dispersion of the Fe and Ni on the ZrO 2 , resulting in a higher catalytic activity of the material. Interestingly, it was observed that Fe-Ni/ZrO 2 also effectively catalyzed methanol reforming to produce H 2 in situ, followed by HDO of ML, yielding 60 % MP at 220 °C with 50 bar N 2 instead of H 2 . Fe-Ni/ZrO 2 also catalyzed HDO of other short-chain alkyl lactates to the corresponding alkyl propionates in high yields around 70 %. No loss of activity of Fe-Ni/ZrO 2 occurred in five consecutive reaction runs demonstrating the high durability of the catalyst system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganok, Andrey I. [Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, D' Iorio Hall, 10 Marie Curie Street, Ottawa, Ont. (Canada); Inaba, Mieko [Natural Gas Technology Development Team, Teikoku Oil Co., 9-23-30 Kitakarasuyama, Setagaya-ku, Tokyo 157-0061 (Japan); Tsunoda, Tatsuo; Uchida, Kunio; Suzuki, Kunio; Hayakawa, Takashi [Institute for Materials and Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Takehira, Katsuomi [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2005-09-18

    A novel synthetic strategy for preparing bimetallic Ru-M (M=Cr, Fe, Co, Ni and Cu) catalysts, supported on Mg-Al mixed oxide, has been introduced. It was based on a 'memory effect', i.e. on the ability of Mg-Al mixed oxide to reconstruct a layered structure upon rehydration with an aqueous solution. By repeated calcinations-rehydration cycles, layered double hydroxide (LDH) precursors of catalysts containing two different metals were synthesized. Bimetallic catalysts were then generated (1) in situ from LDH under methane reforming reaction conditions and (2) from mixed metal oxides obtained by preliminary LDH calcination. Among all the LDH-derived catalysts, a Ru{sup 0.1%}-Ni{sup 5.0%}/MgAlO{sub x} sample revealed the highest activity and selectivity to syngas, a suitable durability and a low coking capacity. A promoting effect of ruthenium on catalytic function of supported nickel was demonstrated. Preliminary LDH calcination was shown to markedly affect the catalytic activity of the derived catalysts and especially their coking properties.

  17. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja

    2016-06-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of Zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON: 1436) than the monometallic W hydride (TON: 650) in metathesis of n-decane at 150 0C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation which occurs on Zr. The produced olefin resulting from a ß–H elimination undergoes easy metathesis on W.

  18. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  19. Chitosan supported bimetallic Pd/Co nanoparticles as a heterogeneous catalyst for the reduction of nitroaromatics to amines

    Directory of Open Access Journals (Sweden)

    Sajjad Keshipour

    2017-01-01

    Full Text Available A new bimetallic nanocomposite of chitosan was prepared. Pd and Co nanoparticles were deposited on chitosan to produce a new heterogeneous recyclable catalyst for use in the bimetallic catalytic reduction reaction. The catalyst was characterized with common analysis methods for nanocomposites including Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction pattern, Thermal Gravimetric Analysis, Flame Atomic Absorption Spectroscopy and Scanning Electron Microscopy, and applied in the reduction reaction of nitroaromatics using NaBH4 at room temperature. The bimetallic system gave good results compared to each of the applied metals. Various aromatic amines and diamines were used in the reduction reaction. The aromatic amines were obtained as the sole product of the reduction reaction with 15 mol% Pd and 12 mol% Co during 2h. This reaction had some advantages such as mild reaction conditions, high yield, green solvent, and a recyclable catalyst. Also, the recovered catalyst was applicable in the reduction reaction without a significant decrease in the activity for up to six times.

  20. Study of selective Fischer-Tropsch catalysts synthesized by the destruction of bimetallic carbonyl complexes on activated γ-Al2O3 support

    International Nuclear Information System (INIS)

    Maksimov, Yu.V.; Matveev, V.V.; Suzdalev, I.P.; Khomenko, T.I.; Kadushin, A.A.

    1990-01-01

    The bimetallic catalysts obtained by the deposition of a Fe-Co binuclear cluster on the dehydroxylated γ-Al 2 O 3 are studied and compared to some other relative systems. These bimetallic catalysts are found to be active and selective in olefin synthesis. This is connected with the formation of Fe-Co contact which is detectable by Moessbauer spectroscopy. (orig.)

  1. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  2. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  3. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja; Dey, Raju; Kavitake, Santosh Giridhar; Abou-Hamad, Edy; Bendjeriou-Sedjerari, Anissa; Hamieh, Ali Imad Ali; Basset, Jean-Marie

    2016-01-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support

  4. Study on purification of carbon nano tubes grown on Fe/Ni bimetallic catalyst supported on Mg O by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Mirershadi, S.; Mortazavi, Z.; Reyhani, A.; Norouzian, Sh.; Moniri, N.; Novinrooz, A. J.

    2007-01-01

    Carbon nano tubes grown on Fe/Ni bimetallic catalysts supported on Mg O by thermal chemical vapor deposition. Then purification of carbon nano tubes by oxidation under air at atmospheric pressure and acid treatment with HCl, have been studied. The Scanning electron microscopy observation showed impurities with carbon nano tubes. Scanning electron microscopy, XRD, Raman spectroscopy and Thermogravimetric analysis/Differential Scanning Calorimetry techniques have been used to investigate the effect of purification of carbon nano tubes on morphology and structural quality of them. The weight ratio of carbon nano tubes in purified sample re saved to 85/8 %.

  5. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    John Meynard M. Tengco

    2016-06-01

    Full Text Available Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD and scanning transmission electron microscopy (STEM characterization of the base catalyst showed highly dispersed particles. A basic ED bath containing PtCl62− as the Pt precursor, dimethylamine borane as reducing agent, and ethylenediamine as stabilizing agent successfully targeted deposition of Pt on Co particles. Simultaneous action of galvanic displacement and ED resulted in Pt-Co alloy formation observed in XRD and energy dispersive X-ray spectroscopy (XEDS mapping. In addition, fast deposition kinetics resulted in hollow shell Pt-Co alloy particles while particles with Pt-rich shell and Co-rich cores formed with controlled Pt deposition. Electrochemical evaluation of the Pt-Co/C catalysts showed lower active surface but much higher mass and surface activities for oxygen reduction reaction compared to a commercial Pt/C fuel cell catalyst.

  6. Preparation of highly dispersed Ru-Sn bimetallic supported catalysts from the single source precursors Cp(PPh32Ru-SnX3 (X = Cl or Br

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Bernardes Silva

    2003-06-01

    Full Text Available In this work highly dispersed Ru-Sn bimetallic catalysts have been prepared from organobimetallic Cp(PPh32Ru-SnX3 (X = Cl or Br complexes. These single source precursors can be easily impregnated in high surface area supports, such as activated carbon and sol-gel SiO2, and upon controlled thermal treatment the ligands are released as volatile products resulting in the formation of the bimetallic system Ru-Sn. Catalytic reactions, such as hydrodechlorination of CCl4 and chlorobenzene and TPR (Temperature Programmed Reduction experiments carried out with these RuSn catalysts suggested a strong interaction between Ruthenium and Tin. Mössbauer measurements showed that these materials when exposed to air are immediately oxidized to form Sn (IV. It was shown that upon controlled reduction conditions with H2 it is possible to reduce selectively Sn to different oxidation states and different phases. The Sn oxidation state showed significant effect on the catalytic hydrogenation of 1,5-cyclooctadiene. The use of these single source precursors with a controlled decomposition/reduction procedure allows the preparation of unique catalysts with an intimate interaction between the components ruthenium and tin and the possibility of varying the Sn oxidation state around the Ru metal.

  7. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst

    NARCIS (Netherlands)

    Chakinala, A.G.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; de Vlieger, Dennis; Seshan, Kulathuiyer; Brilman, Derk Willem Frederik

    2013-01-01

    Catalytic reforming of pure glycerol for the production of hydrogen at low temperature and short residence times in supercritical water was investigated using a bimetallic Pt–Ni catalyst supported on alumina. Initial tests were carried out to study the reforming activity of bimetallic Pt–Ni

  8. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    International Nuclear Information System (INIS)

    Zhou, Juan; Chen, Huan; Chen, Quanyuan; Huang, Zhaolu

    2016-01-01

    Graphical abstract: 2,4-Dichlorophenol can be converted to phenol via the catalytic HDC method over Pd-Au/CNTs and the catalytic activity first increased and then decreased with Au content. - Highlights: • Bimetallic catalysts had smaller metal particles and larger number of exposed active site than the monometallic catalysts. • The cationization of Pd particles increased with Au content in the bimetallic catalysts. • The bimetallic catalysts exhibited higher catalytic activities for HDC of 2,4-DCP than the monometallic counterparts. • The concerted pathway for HDC of 2,4-DCP was more predominant with increasing Au content in the bimetallic catalyst. - Abstract: Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N 2 adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H 2 chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d 5/2 shifted to higher positions while that of Au 4f 7/2 had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest catalytic activity

  9. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Juan [School of the Environment, Donghua University, Shanghai 201620 (China); Chen, Huan, E-mail: hchen404@njust.edu.cn [Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen, Quanyuan; Huang, Zhaolu [School of the Environment, Donghua University, Shanghai 201620 (China)

    2016-11-30

    Graphical abstract: 2,4-Dichlorophenol can be converted to phenol via the catalytic HDC method over Pd-Au/CNTs and the catalytic activity first increased and then decreased with Au content. - Highlights: • Bimetallic catalysts had smaller metal particles and larger number of exposed active site than the monometallic catalysts. • The cationization of Pd particles increased with Au content in the bimetallic catalysts. • The bimetallic catalysts exhibited higher catalytic activities for HDC of 2,4-DCP than the monometallic counterparts. • The concerted pathway for HDC of 2,4-DCP was more predominant with increasing Au content in the bimetallic catalyst. - Abstract: Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N{sub 2} adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H{sub 2} chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d{sub 5/2} shifted to higher positions while that of Au 4f{sub 7/2} had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest

  10. Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions

    Directory of Open Access Journals (Sweden)

    Ahmad Alshammari

    2016-07-01

    Full Text Available Supported bimetallic nanoparticles (SBN are extensively used as efficient redox catalysts. This kind of catalysis particularly using SBN has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The primary objective of this contribution is to provide comprehensive overview about SBN and their application as promising catalysts. The present review contains four sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of SBN as promising catalysts for different applications. Section 2 reviews the preparation and characterization methods of SBN for a wide range of catalytic reactions. Section 3 concentrates on our own results related to the application of SBN in heterogeneous catalysis. In this section, the oxidation of cyclohexane to adipic acid (an eco-friendly and novel approach will be discussed. In addition, the application of bimetallic Pd catalysts for vapor phase toluene acetoxylation in a fixed bed reactor will also be highlighted. Acetoxylation of toluene to benzyl acetate is another green route to synthesize benzyl acetate in one step. Finally, Section 4 describes the summary of the main points and also presents an outlook on the application of SBN as promising catalysts for the production of valuable products.

  11. Selective hydrogenation of acetylene on SiO{sub 2} supported Ni-In bimetallic catalysts: Promotional effect of In

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanjun; Chen, Jixiang, E-mail: jxchen@tju.edu.cn

    2016-11-30

    Graphical abstract: A suitable Ni/In ratio remarkably enhanced the acetylene conversion, the selectivity to ethylene and the catalyst stability. Display Omitted - Highlights: • There was a promotional effect of In on the performance of Ni/SiO{sub 2}. • A suitable Ni/In ratio was required for good performance of Ni{sub x}In/SiO{sub 2}. • Both geometrical and electronic effects of In contributed to good performance. • Ni/SiO{sub 2} deactivation is mainly owing to phase change from Ni to nickel carbide. • The carbonaceous deposit was the main reason for Ni{sub x}In/SiO{sub 2} deactivation. - Abstract: Ni/SiO{sub 2} and the bimetallic Ni{sub x}In/SiO{sub 2} catalysts with different Ni/In ratios were tested for the selective hydrogenation of acetylene, and their physicochemical properties before and after the reaction were characterized by means of N{sub 2}-sorption, H{sub 2}-TPR, XRD, TEM, XPS, H{sub 2} chemisorption, C{sub 2}H{sub 4}-TPD, NH{sub 3}-TPD, FT-IR of adsorbed pyridine, and TG/DTA and Raman. A promotional effect of In on the performance of Ni/SiO{sub 2} was found, and Ni{sub x}In/SiO{sub 2} with a suitable Ni/In ratio gave much higher acetylene conversion, ethylene selectivity and catalyst stability than Ni/SiO{sub 2}. This is ascribed to the geometrical isolation of the reactive Ni atoms with the inert In ones and the charge transfer from the In atoms to Ni ones, both of which are favorable for reducing the adsorption strength of ethylene and restraining the C−C hydrogenolysis and the polymerizations of acetylene and the intermediate compounds. On the whole, Ni{sub 6}In/SiO{sub 2} and Ni{sub 10}In/SiO{sub 2} had better performance. Nevertheless, with increasing the In content, the selectivity to the C4+ hydrocarbons tended to increase due to the enhanced catalyst acidity because of the charge transfer from the In atoms to Ni ones. As the Lewis acid ones, the In sites could promote the polymerization. The catalyst deactivation was also analyzed

  12. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  13. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    Science.gov (United States)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are

  14. Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature

    Directory of Open Access Journals (Sweden)

    A.S. Al-Fatesh

    2018-02-01

    Full Text Available Catalytic decomposition of methane has been studied extensively as the production of hydrogen and formation of carbon nanotube is proven crucial from the scientific and technological point of view. In that context, variation of catalyst preparation procedure, calcination temperature and use of promoters could significantly alter the methane conversion, hydrogen yield and morphology of carbon nanotubes formed after the reaction. In this work, Ni promoted and unpromoted Fe/Al2O3 catalysts have been prepared by impregnation, sol–gel and co-precipitation method with calcination at two different temperatures. The catalysts were characterized by X-ray diffraction (XRD, N2 physisorption, temperature programmed reduction (TPR and thermogravimetric analysis (TGA techniques. The catalytic activity was tested for methane decomposition reaction. The catalytic activity was high when calcined at 500 °C temperature irrespective of the preparation method. However while calcined at high temperature the catalyst prepared by impregnation method showed a high activity. It is found from XRD and TPR characterization that disordered iron oxides supported on alumina play an important role for dissociative chemisorptions of methane generating molecular hydrogen. The transmission electron microscope technique results of the spent catalysts showed the formation of carbon nanotube which is having length of 32–34 nm. The Fe nanoparticles are present on the tip of the carbon nanotube and nanotube grows by contraction–elongation mechanism. Among three different methodologies impregnation method was more effective to generate adequate active sites in the catalyst surface. The Ni promotion enhances the reducibility of Fe/Al2O3 oxides showing a higher catalytic activity. The catalyst is stable up to six hours on stream as observed in the activity results.

  15. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  16. Comparison of P-containing {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB (Canada)

    2006-09-01

    Phosphorus containing {gamma}-Al{sub 2}O{sub 3} supported bimetallic Ni-Mo carbide, nitride and sulfide catalysts have been synthesized from an oxide precursor containing 12.73wt.% Mo, 2.54wt.% Ni and 2.38wt.% P and characterized by elemental analysis, pulsed CO chemisorption, surface area measurements, X-ray diffraction, temperature-programmed reduction and DRIFT spectroscopy of CO adsorption. DRIFT spectroscopy of adsorbed CO on activated catalysts showed that carbide and nitride catalysts have surface exposed sites of Mo{sup o+} (0bimetallic Ni-Mo carbide, nitride and sulfide catalysts were compared against commercial Ni-Mo/Al{sub 2}O{sub 3} catalyst in a trickle bed reactor using light gas oil and heavy gas oil derived from Athabasca bitumen in the temperature range 340-370 and 375-400{sup o}C respectively at 8.8MPa. The gradual transformation of Ni-Mo carbide and nitride phases into Ni-Mo sulfide phases was observed during precoking period, and the formed Ni-Mo sulfide phases enhanced the HDN and HDS activities of carbide and nitride catalysts. The {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic sulfide catalyst was found to be more active for HDN and HDS of light gas oil and heavy gas oil than the corresponding carbide and nitride catalysts on the basis of unit weight. (author)

  17. Carbon monoxide adsorption studies on Ru:Mn bimetallic catalysts supported on alumina, silica and titania supported for the determination of metal surface area overview

    International Nuclear Information System (INIS)

    Hussain, S.T.

    1992-01-01

    Supported Ru: Mn bimetallic samples were studied using CO-chemisorption on alumina, silica and titania supports for the determination of active metal site/metal surface area. The data indicates the presence of Mn on the surface of Ru. With the increase of Mn loadings a decrease in the CO adsorption occurred indicating that presence of Mn masks the active sites responsible for Co-adsorption. On the titania supported system reduced at high and low temperature the CO-chemisorption data suggest the unusual behaviour. This behaviour is possibly caused due to creation of new active surface sites. (author)

  18. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; Anjum, Dalaver; Kanoun, Mohammed; Scaranto, Jessica; Hedhili, Mohamed Nejib; Khalid, Syed; Laveille, Paco; D'Souza, Lawrence; Clo, Alain M.; Basset, Jean-Marie

    2015-01-01

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  19. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  20. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Ruan, Hao [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Feng, Maoqi [Chemistry & Chemical Engineering Division, Southwest Research Institute, San Antonio TX 78238 USA; Qin, Yuling [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Job, Heather [Pacific Northwest National Laboratory, 902 Battelle Blvd Richland WA 99354 USA; Luo, Langli [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Kuhn, Erik [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Tucker, Melvin P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Yang, Bin [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA

    2017-03-16

    The synthesis of high-efficiency and low-cost multifunctional catalysts for hydrodeoxygenation (HDO) of waste lignin into advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low molecular weight gaseous side-products. Among all the prepared catalysts, Ru-Cu/HY showed the best HDO performance, giving the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably due to the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all the bifunctional catalysts were proven to be superior over the combination catalysts of Ru/Al2O3 and HY zeolite, and this could be attributed to the “intimacy criterion”. The practical use of the designed catalysts would be promising in lignin valorization.

  1. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.

    Science.gov (United States)

    Wang, Hongliang; Ruan, Hao; Feng, Maoqi; Qin, Yuling; Job, Heather; Luo, Langli; Wang, Chongmin; Engelhard, Mark H; Kuhn, Erik; Chen, Xiaowen; Tucker, Melvin P; Yang, Bin

    2017-04-22

    The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al 2 O 3 and HY zeolite. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparison of Bimetallic and Trimetallic Catalyst in Reductive Dechlorination; Influence of Copper Addition

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Kaštánek, Petr; Maléterová, Ywetta; Kallistová, A.; Šolcová, Olga

    2015-01-01

    Roč. 2, č. 7 (2015), s. 1954-1958 E-ISSN 3159-0040 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : PCB * reductive dechlorination * bimetallic and trimetallic catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jmest.org/wp-content/uploads/JMESTN42350950.pdf

  3. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong; Anjum, Dalaver H.; Zhou, Lu; Laveille, Paco; Basset, Jean-Marie

    2015-01-01

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles

  4. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong

    2015-06-25

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  6. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  7. On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei; Vlachos, Dionisios G., E-mail: vlachos@udel.edu [Center for Catalytic Science and Technology, Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2014-01-07

    We model N{sub 2} desorption on submonolayer bimetallic surfaces consisting of Co clusters on Pt(111) via first-principles density functional theory-based kinetic Monte Carlo simulations. We find that submonolayer structures are essential to rationalize the high activity of these bimetallics in ammonia decomposition. We show that the N{sub 2} desorption temperature on Co/Pt(111) is about 100 K higher than that on Ni/Pt(111), despite Co/Pt(111) binding N weaker at low N coverages. Co/Pt(111) has substantially different lateral interactions than single metals and Ni/Pt. The lateral interactions are rationalized with the d-band center theory. The activity of bimetallic catalysts is the result of heterogeneity of binding energies and reaction barriers among sites, and the most active site can differ on various bimetallics. Our results are in excellent agreement with experimental data and demonstrate for the first time that the zero-coverage descriptor, used until now, for catalyst activity is inadequate due not only to lacking lateral interactions but importantly to presence of multiple sites and a complex interplay of thermodynamics (binding energies, occupation) and kinetics (association barriers) on those sites.

  8. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-01-08

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature-programmed reduction, and BET analysis demonstrates that the excellent performance of this catalyst is ascribed to the synergy of various parameters, including metal-nanoparticle size, metal-support interaction, catalyst structure, ensemble size, and alloy effects.

  9. Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH4

    Science.gov (United States)

    Huang, Liang; Jiao, Chengpeng; Wang, Liqiong; Huang, Zili; Liang, Feng; Liu, Simin; Wang, Yuhua; Zhang, Haijun; Zhang, Shaowei

    2018-01-01

    ISOBAM-104 protected Rh/Ag bimetallic nanoparticles (NPs) with average diameter less than 3.0 nm were synthesized by a co-reduction method. Ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM and x-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, particle size, and electronic structure of the prepared bimetallic NPs. The catalytic activities of prepared bimetallic NPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated in detail. The results indicated that as-prepared Rh/Ag bimetallic NPs showed a higher catalytic activity than corresponding monometallic NPs. Among all the monometallic NPs and bimetallic NPs, Rh80Ag20 bimetallic NPs exhibited the highest catalytic activity with a value of 6010 mol-H2·h-1·mol-catalyst-1 at pH = 12 and 303 K. The high catalytic activities of Rh/Ag bimetallic NPs could be attributed to presence of negatively charged Rh atoms and positively charged Ag atoms, which is supported by the results of XPS and density functional theory calculation. Based on the kinetic study, the apparent activation energy for the hydrolysis reaction of the basic KBH4 solution catalyzed by Rh80Ag20 bimetallic NPs was about 47.0 ± 3.9 kJ mol-1.

  10. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    Science.gov (United States)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  11. Session 6: Catalytic hydro-dehalogenation of halon 1211 (CBrClF{sub 2}) over carbon supported Pd-Fe, Pd-Co and Pd-Ni bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Yu; Kennedy, E.M.; Md Azhar, Uddin; Dlugogorski, B.Z. [Newcastle Univ., Process Safety and Environment Protection Group, School of Engineering, Callaghan, NSW (Australia)

    2004-07-01

    In the current study, we present the result of our investigation on the hydro-dehalogenation of halon 1211 with hydrogen over carbon supported Pd-Fe, Pd-Co and Pd-Ni bimetallic catalysts. In addition to dissociatively adsorbing hydrogen, Fe, Co and Ni themselves can facilitate cleavage of C-halogen bonds. The effect of the interaction of a second metal (Fe, Co and Ni) with Pd on the conversion of halon 1211 and selectivity to CH{sub 2}F{sub 2} for the catalytic hydro-dehalogenation of halon 1211 is discussed. Activated carbon is chosen as support in order to minimize the interaction of support with the metals. The obtained experimental results show that the introduction of Fe, Co and Ni to Pd catalysts has a significant influence on the catalytic hydro-dehalogenation of halon 1211, especially with respect to the selectivity to CH{sub 2}F{sub 2}. The presence of Fe increases the amount of halon 1211 adsorbed on the surface of catalysts and enhances the cleavage of C-halogen bonds in halon 1211, resulting in a higher halon 1211 conversion level and selectivity to hydrocarbons. Higher selectivity to CHBrF{sub 2} is ascribed to the secondary reaction: CF{sub 2} + HBr {yields} CHBrF{sub 2}. (authors)

  12. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  13. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong; Anjum, Dalaver; Zhu, Haibo; Saih, Youssef; Laveille, Paco; D'Souza, Lawrence; Basset, Jean-Marie

    2015-01-01

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature

  14. Highly selective bimetallic Pt-Cu/Mg(Al)O catalysts for the aqueous-phase reforming of glycerol

    NARCIS (Netherlands)

    Boga, D.A.; Oord, R.; Beale, A.M.; Chung, Y.M.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    Monometallic Pt and bimetallic Pt-Cu catalysts supported on Mg(Al)O mixed oxides, obtained by calcination of the corresponding layered double hydroxides (LDHs), were prepared and tested in the aqueous-phase reforming (APR) of glycerol. The effect of the Mg/Al ratio and calcination temperature of the

  15. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  16. Patched bimetallic surfaces are active catalysts for ammonia decomposition.

    Science.gov (United States)

    Guo, Wei; Vlachos, Dionisios G

    2015-10-07

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  17. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.; Widger, Peter C. B.; Ahmed, Syud M.; Jeske, Ryan C.; Hirahata, Wataru; Lobkovsky, Emil B.; Coates, Geoffrey W.

    2010-01-01

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  18. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO2 reforming of methane

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.

  19. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-09-24

    Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.

  20. Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)

    International Nuclear Information System (INIS)

    Song, Xingjuan; Zhang, Dongming

    2014-01-01

    AFCs (alkaline fuel cells) is one of the promising fuel cells, due to their low working temperature and less corrosive environment. However, decreasing the catalyst cost and improving its performance are still the challenges in its application. Transition metal as the catalyst for AFCs not only can reduce its cost, but also has great electro-catalytic efficiency. In this paper, Carbon supported Ag–Ni bimetallic catalysts with differential Ag/Ni atomic ratios were prepared by chemically reducing silver and nickel salts. Ag 3 Ni/C shows the relatively higher ORR (oxygen reduction reaction) activity among the differential Ag/Ni bimetallic particles. In order to improve the activity and stability, the catalysts were heat-treated at the temperature of 500 °C. The results indicate that the limiting current density has been improved greatly for Ag 3 Ni/C-500 °C, which is as high as 2.5× that of Ag/C. The microstructure investigation show that the non-equilibrium state of Ag–Ni alloy by heat treatment is confirmed by HRTEM (high-resolution transmission electron microscopy) images, and Ag(111) surfaces are decreased in XRD pattern, which results in the ORR activity improved and overpotential decreased. Heat treatment also has contributed to Ag–Ni/C electrochemistry stability in some degree. - Highlights: • Ag–Ni/C is applied as cathode catalyst for AFCs (alkaline fuel cells). • Ag 3 Ni/C-500 °C shows the best performance. • Non-equilibrium state of Ag–Ni alloy by heat treatment is observed. • The decreased Ag(111) surfaces are favor to improve the catalyst activity

  1. Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Ramulifho, T

    2013-04-01

    Full Text Available Electrocatalytic oxidation of ethylene glycol (EG) in alkaline medium using nano-scaled palladium-based bimetallic catalysts (PdM, where M = Ni and Sn) supported on sulfonated multi-walled carbon nanotubes (SF-MWCNTs) is compared. The bimetallic...

  2. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu; Guo, Yu; Kameyama, Hideo; Basset, Jean-Marie

    2014-01-01

    . The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced

  3. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam

    2015-07-06

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

  4. Novel palladium-lead (Pd-Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Nguyen, Truong Son; Wang, Xin [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Xuewei [School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-05-01

    Carbon-supported bimetallic palladium-lead (Pd-Pb/C) catalysts with different amounts of lead are prepared using a co-reduction method. The catalysts are characterized by various techniques, which reveal the formation of an alloy nanoparticle structure. The electrochemical activities of the catalysts towards ethanol oxidation in alkaline media are examined by cyclic voltammetry, linear sweep voltammetry and chronoamperometry methods. The results show that the Pd-Pb(4:1)/C catalyst exhibits a better catalytic activity than the Pd/C catalyst. From carbon monoxide (CO) stripping results, the addition of lead also facilitates the oxidative removal of adsorbed CO. The promoting effect of lead is explained by a bi-functional mechanism and d-band theory. (author)

  5. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  6. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  7. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  8. Selective Hydrodeoxygenation of Vegetable Oils and Waste Cooking Oils to Green Diesel Using a Silica-Supported Ir-ReOx Bimetallic Catalyst.

    Science.gov (United States)

    Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb

    2018-05-09

    High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  10. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation

    International Nuclear Information System (INIS)

    Yan Wei; Wang Dan; Botte, Gerardine G.

    2012-01-01

    Nickel–Cobalt bimetallic hydroxide electrocatalysts, synthesized through a one-step electrodeposition method, were evaluated for the oxidation of urea in alkaline conditions with the intention of reducing the oxidation overpotential for this reaction. The Nickel–Cobalt bimetallic hydroxide catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, cyclic voltammetry (CV), and polarization techniques. A significant reduction in the overpotential (150 mV) of the reaction was observed with the Nickel–Cobalt bimetallic hydroxide electrode (ca. 43% Co content) when compared to a nickel hydroxide electrode. The decrease of the urea oxidation potential on the Nickel–Cobalt bimetallic hydroxide electrodes reveals great potential for future applications of urea electro-oxidation, including wastewater remediation, hydrogen production, sensors, and fuel cells.

  11. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    Science.gov (United States)

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  12. Design of supported bi-metallic nanoparticles based on Platinum and Palladium using Surface Organometallic Chemistry (SOMC)

    KAUST Repository

    Al-Shareef, Reem A.

    2017-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx (where x is the molar ratio of Pd) are prepared by Surface Organometallic Chemistry (SOMC) via controlled decomposition of Pd2(allyl)2Cl2 on Pt/SiO2. For comparison purposes, Pt100-x Pdx

  13. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry. It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.

  14. Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Ramulifho, T

    2012-01-01

    Full Text Available The preparation of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated multi-walled carbon nanotubes (SF-MWCNTs) using a very rapid microwave-assisted solvothermal strategy has been described. Electrocatalytic behaviour of the SF...

  15. Systematic Identification of Promoters for Methane Oxidation Catalysts Using Size- and Composition-Controlled Pd-Based Bimetallic Nanocrystals.

    Science.gov (United States)

    Willis, Joshua J; Goodman, Emmett D; Wu, Liheng; Riscoe, Andrew R; Martins, Pedro; Tassone, Christopher J; Cargnello, Matteo

    2017-08-30

    Promoters enhance the performance of catalytic active phases by increasing rates, stability, and/or selectivity. The process of identifying promoters is in most cases empirical and relies on testing a broad range of catalysts prepared with the random deposition of active and promoter phases, typically with no fine control over their localization. This issue is particularly relevant in supported bimetallic systems, where two metals are codeposited onto high-surface area materials. We here report the use of colloidal bimetallic nanocrystals to produce catalysts where the active and promoter phases are colocalized to a fine extent. This strategy enables a systematic approach to study the promotional effects of several transition metals on palladium catalysts for methane oxidation. In order to achieve these goals, we demonstrate a single synthetic protocol to obtain uniform palladium-based bimetallic nanocrystals (PdM, M = V, Mn, Fe, Co, Ni, Zn, Sn, and potentially extendable to other metal combinations) with a wide variety of compositions and sizes based on high-temperature thermal decomposition of readily available precursors. Once the nanocrystals are supported onto oxide materials, thermal treatments in air cause segregation of the base metal oxide phase in close proximity to the Pd phase. We demonstrate that some metals (Fe, Co, and Sn) inhibit the sintering of the active Pd metal phase, while others (Ni and Zn) increase its intrinsic activity compared to a monometallic Pd catalyst. This procedure can be generalized to systematically investigate the promotional effects of metal and metal oxide phases for a variety of active metal-promoter combinations and catalytic reactions.

  16. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction.

    Science.gov (United States)

    Hansgen, Danielle A; Vlachos, Dionisios G; Chen, Jingguang G

    2010-06-01

    The facile decomposition of ammonia to produce hydrogen is critical to its use as a hydrogen storage medium in a hydrogen economy, and although ruthenium shows good activity for catalysing this process, its expense and scarcity are prohibitive to large-scale commercialization. The need to develop alternative catalysts has been addressed here, using microkinetic modelling combined with density functional studies to identify suitable monolayer bimetallic (surface or subsurface) catalysts based on nitrogen binding energies. The Ni-Pt-Pt(111) surface, with one monolayer of Ni atoms residing on a Pt(111) substrate, was predicted to be a catalytically active surface. This was verified using temperature-programmed desorption and high-resolution electron energy loss spectroscopy experiments. The results reported here provide a framework for complex catalyst discovery. They also demonstrate the critical importance of combining theoretical and experimental approaches for identifying desirable monolayer bimetallic systems when the surface properties are not a linear function of the parent metals.

  17. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.

    Science.gov (United States)

    Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun

    2015-03-21

    Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Villarraga, Fernando, E-mail: ferchogomezv@gmail.com; Radnik, Jörg; Martin, Andreas; Köckritz, Angela [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (Germany)

    2016-06-15

    Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.Graphical Abstract.

  19. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  20. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  1. XPS/STM study of model bimetallic Pd–Au/HOPG catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-03-30

    Graphical abstract: - Highlights: • The model Pd–Au/HOPG catalysts preparation has been studied by XPS and STM. • Model “core–shell” type Pd–Au/HOPG catalysts with different Pd/Au ratios were prepared. • Heating of the “core–shell” Pd–Au/HOPG samples up to 400 °C leads to alloy formation. • Contribution of parameters controlling the properties of Pd–Au alloyed particles has been discussed. - Abstract: The preparation of model bimetallic Pd–Au/HOPG catalysts has been investigated using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, model “core–shell” type Pd–Au/HOPG catalysts with similar particle size distribution (5–8 nm), but with different densities of particle locations on the HOPG surface and Pd/Au atomic ratios are prepared. Further, their thermal stability is studied within a temperature range of 50–500 °C at UHV conditions. It has been shown that annealing the model catalysts at a temperature range of 300–400 °C leads to formation of Pd–Au alloyed particles. Enhancement of heating temperature up to 500 °C results in sintering of bimetallic nanoparticles. Contribution of different parameters controlling the properties of Pd–Au alloyed particles has been discussed.

  2. Efficient utilization of bimetallic catalyst in low environment syngas ...

    Indian Academy of Sciences (India)

    Sonal

    2017-10-26

    Oct 26, 2017 ... Department of Chemical Engineering, Indian Institute of Technology, ... MS received 27 May 2017; revised 21 August 2017; accepted 31 ... The catalysts were tested in fixed bed reactor at industrial relevant FTS conditions.

  3. More active and sulfur resistant bimetallic Pd-Ni catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica, E-mail: mquiroga@fiq.unl.edu.ar [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ-UNL, CONICET), Santa Fe (Argentina)

    2018-02-15

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfide compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the presence of different Pd species: Pd{sup δ-}, Pd{sup 0} and Pd{sup δ+}. In the case of the Ni containing catalysts, Ni{sup 0} and NiO species were also detected. These palladium and nickel species would be responsible of the variation of activity and sulfur resistance of the catalysts. NiClPd catalysts had a higher resistance to deactivation by sulfur poisoning. This was associated to a higher concentration of Pd{sup η+}Cl{sub x}O{sub y} species that would prevent the adsorption of thiophene by both steric and electronic effects. It could also be due to the lower concentration of Pd{sup 0} and Ni{sup 0} on these catalysts, as compared to those shown by the PdNiCl catalysts. Both the Pd{sup 0} and Ni{sup 0} species are more prone to poisoning because of their higher electronic availability. (author)

  4. Highly Stable Bimetallic AuIr/TiO₂ Catalyst: Physical Origins of the Intrinsic High Stability against Sintering.

    Science.gov (United States)

    Han, Chang Wan; Majumdar, Paulami; Marinero, Ernesto E; Aguilar-Tapia, Antonio; Zanella, Rodolfo; Greeley, Jeffrey; Ortalan, Volkan

    2015-12-09

    It has been a long-lived research topic in the field of heterogeneous catalysts to find a way of stabilizing supported gold catalyst against sintering. Herein, we report highly stable AuIr bimetallic nanoparticles on TiO2 synthesized by sequential deposition-precipitation. To reveal the physical origin of the high stability of AuIr/TiO2, we used aberration-corrected scanning transmission electron microscopy (STEM), STEM-tomography, and density functional theory (DFT) calculations. Three-dimensional structures of AuIr/TiO2 obtained by STEM-tomography indicate that AuIr nanoparticles on TiO2 have intrinsically lower free energy and less driving force for sintering than Au nanoparticles. DFT calculations on segregation behavior of AuIr slabs on TiO2 showed that the presence of Ir near the TiO2 surface increases the adhesion energy of the bimetallic slabs to the TiO2 and the attractive interactions between Ir and TiO2 lead to higher stability of AuIr nanoparticles as compared to Au nanoparticles.

  5. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Wen; Peng, Ping’an; Huang, Weilin

    2013-01-01

    Highlights: • TCBPA can be rapidly and completely dechlorinated by Pd/Fe bimetallic catalysts. • The observed rate constants are functions of dosages, initial concentration, Pd coverage and solution pH. • Pd dosage is the major factor in the observed rates of the reaction. • This is the first report investigating the dechlorination of TCBPA by Pd/Fe catalysts. -- Abstract: The Pd/Fe bimetallic catalysts of micron sizes were synthesized and the rates of tetrachlorobisphenol A (TCBPA) degradation were measured under various conditions using a batch reactor system. The results showed that TCBPA was rapidly dechlorinated to tri-, di- and mono-chlorobisphenol A and to bisphenol A (BPA). The observed rate constants (k obs ) were found to increase as functions of the Pd coverage on the Fe particles and the dosages of the catalysts within the reactors. The k obs value decreased as the initial TCBPA concentration increased, suggesting that the TCBPA dechlorination may follow a surface-site limiting Langmuir–Hinshelwood rate model. The weakly acidic solution, especially at or near pH 6.0, also favored the dechlorination of TCBPA. At pH 6.0, Pd coverage of 0.044 wt% and catalyst dosage of 5 g L −1 , TCBPA with an initial concentration of 20 μM was completely transformed within 60 min, and BPA was detected as the major product through the reaction time. Meanwhile, the k obs values measured at constant solution pH correlated linearly with the mass of particle-bound Pd introduced to the reactors, regardless of Pd/Fe catalyst dosage or Pd surface coverage. This study suggested that Pd/Fe catalysts could be potentially employed to rapidly degrade TCBPA in the contaminated environment

  6. MORE ACTIVE AND SULFUR RESISTANT BIMETALLIC Pd-Ni CATALYSTS

    OpenAIRE

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica

    2018-01-01

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfided compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the pr...

  7. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.

    Science.gov (United States)

    Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang

    2017-05-01

    Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH) 2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

    Directory of Open Access Journals (Sweden)

    Anna M. Venezia

    2013-06-01

    Full Text Available Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.

  9. Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe-Mo/MgO catalyst

    International Nuclear Information System (INIS)

    Xu Xiangju; Huang Shaoming; Yang Zhi; Zou Chao; Jiang Junfan; Shang Zhijie

    2011-01-01

    Research highlights: → Increasing the Mo content in the Fe-Mo/MgO catalysts resulted in an increase in wall number, diameter and growth yield of carbon nanotubes. → The Fe interacts with MgO to form complex (MgO) x (FeO) 1-x (0 4 and relative large metal Mo particles can be generated after reduction. → The avalanche-like reduction of MgMoO 4 makes the catalyst particles to be small thus enhances the utilize efficiency of Fe nanoparticles. - Abstract: A series of Fe-Mo/MgO catalysts with different Mo content were prepared by combustion method and used as catalysts for carbon nanotube (CNT) growth. Transmission electron microscopy studies of the nanotubes show that the number of the CNT walls and the CNT diameters increase with the increasing of Mo content in the bimetallic catalyst. The growth yield determined by thermogravimetric analysis also follows the trend: the higher the Mo content, the higher the yield of the CNTs. However, the increase of Mo content leads to the lower degree of graphitization of CNTs. A comparative study on the morphology and catalytic functions of Fe/MgO, Mo/MgO and Fe-Mo/MgO catalysts was carried out by scanning electron microscopy and X-ray diffraction. It is found that the Fe interacts with MgO to form complexes and is then dispersed into the MgO support uniformly, resulting in very small Fe nanoparticles after reduction. The Mo interacts with MgO to form stoichiometry compound MgMoO 4 and relative large metal Mo particles can be generated after reduction. High yield CNTs with small diameter can be generated from Fe-Mo/MgO because the avalanche-like reduction of MgMoO 4 makes the catalyst particles to be small thus enhances the utilize efficiency of Fe nanoparticles.

  10. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.; Ahmed, Syud M.; Coates, Geoffrey W.

    2011-01-01

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  11. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  12. High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction.

    Science.gov (United States)

    Jung, Won Suk

    2018-03-15

    In this study, a novel synthesis method for the bimetallic alloy catalyst is reported, which is subsequently used as an oxygen reduction catalyst in polymer electrolyte membrane fuel cells (PEMFCs). The support prepared from the Ni-chelate complex shows a mesoporous structure with a specific surface area of ca. 400 m 2  g -1 indicating the suitable support for PEMFC applications. Ethylenediamine is converted to the nitrogen and carbon layers to protect the Ni particles which will diffuse into the Pt lattice at 800 °C. The PtNi/NCC catalyst with PtNi cores and Pt-rich shells is successfully formed when acid-treated as evidenced by line scan profiles. The catalyst particles thus synthesized are well-dispersed on the N-doped carbon support, while the average particle size is ca. 3 nm. In the PEMFC test, the maximum power density of the PtNi/NCC catalyst shows approximately 25% higher than that of the commercial Pt/C catalyst. The mass activity of the PtNi/NCC catalyst showed approximately 3-fold higher than that of the commercial Pt/C catalyst. The mass activity strongly depends on the ratio of Pt to Ni since the strain effect can be strong for catalysts due to the mismatch of lattice parameters of the Ni and Pt. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  14. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    Valicor’s proprietary wet extraction process in conjunction with thermochemical pre-treatment was performed on algal biomass from two different algae strains, Nannochloropsis Salina (N.S.) and Chlorella to produce algae oils. Polar lipids such as phospholipids were hydrolyzed, and metals and metalloids, known catalyst poisons, were separated into the aqueous phase, creating an attractive “pre-refined” oil for hydrodeoxygenation (HDO) upgrading by Stevens. Oil content and oil extraction efficiency of approximately 30 and 90% respectively were achieved. At Stevens, we formulated a Pt-based bi-metallic catalyst which was demonstrated to be effective in the hydro-treating of the algae oils to produce ‘green’ diesel. The bi-metallic catalyst was wash-coated on a monolith, and in conjunction with a high throughput high pressure (pilot plant) reactor system, was used in hydrotreating algae oils from N.S. and Chlorella. Mixtures of these algae oils and refinery light atmospheric gas oil (LAGO) supplied by our petroleum refiner partner, Marathon Petroleum Corporation, were co-processed in the pilot plant reactor system using the Pt-based bi-metallic monolith catalyst. A 26 wt% N.S. algae oil/74 wt % LAGO mixture hydrotreated in the reactor system was subjected to the ASTM D975 Diesel Fuel Specification Test and it met all the important requirements, including a cetane index of 50.5. An elemental oxygen analysis performed by an independent and reputable lab reported an oxygen content of trace to none found. The successful co-processing of a mixture of algae oil and LAGO will enable integration of algae oil as a refinery feedstock which is one of the goals of DOE-BETO. We have presented experimental data that show that our precious metal-based catalysts consume less hydrogen than the conventional hydrotreating catalyst NiMo Precious metal catalysts favor the hydrodecarbonylation/hydrodecarboxylation route of HDO over the dehydration route preferred by base metal

  15. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Felix-Navarro, R. M., E-mail: moi6salazar@hotmail.com; Beltran-Gastelum, M.; Salazar-Gastelum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Perez-Sicairos, S.; Lin, S. W. [Centro de Graduados e Investigacion, Instituto Tecnologico de Tijuana (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados (Mexico); Alonso-Nunez, G. [Centro de Nanociencias y Nanotecnologia (Mexico)

    2013-08-15

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O{sub 2} to H{sub 2}O{sub 2}. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H{sub 2}SO{sub 4} electrolyte using dissolved O{sub 2}. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H{sub 2}O{sub 2} electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H{sub 2}O{sub 2} alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  16. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  17. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  18. Study of carbon-supported bimetallic PtCu nanoparticles by ASAXS

    International Nuclear Information System (INIS)

    Bulat, N.V.; Avakyan, L.A; Pryadchenko, V.V.; Srabionyan, V.V.; Belenov, S.V.; Bugaev, L.A.

    2017-01-01

    Bimetallic platinum-copper nanoparticles on carbon support are studied as a perspective electrochemical catalyst by anomalous small-angle X-ray scattering near the Pt absorption L 3 -edge. The simultaneous fitting of several diffraction patterns measured at different photon energies lead to a satisfactory agreement between experimental and model curves in the assumption of core-shell structure of the particles with Pt-rich shell and Cu-rich core. It is shown that the average size of as prepared nanoparticles is about 6 nm with distribution spread of about ±2 nm and with thickness of Pt-rich shell approximately 1.6 nm. After annealing at 350o C the average size of the particles increased by two times with additional enlargement of the Pt-rich shell thickness. (paper)

  19. Catalysis on singly dispersed bimetallic sites

    Science.gov (United States)

    Zhang, Shiran; Nguyen, Luan; Liang, Jin-Xia; Shan, Junjun; Liu, Jingyue; Frenkel, Anatoly I.; Patlolla, Anitha; Huang, Weixin; Li, Jun; Tao, Franklin

    2015-08-01

    A catalytic site typically consists of one or more atoms of a catalyst surface that arrange into a configuration offering a specific electronic structure for adsorbing or dissociating reactant molecules. The catalytic activity of adjacent bimetallic sites of metallic nanoparticles has been studied previously. An isolated bimetallic site supported on a non-metallic surface could exhibit a distinctly different catalytic performance owing to the cationic state of the singly dispersed bimetallic site and the minimized choices of binding configurations of a reactant molecule compared with continuously packed bimetallic sites. Here we report that isolated Rh1Co3 bimetallic sites exhibit a distinctly different catalytic performance in reduction of nitric oxide with carbon monoxide at low temperature, resulting from strong adsorption of two nitric oxide molecules and a nitrous oxide intermediate on Rh1Co3 sites and following a low-barrier pathway dissociation to dinitrogen and an oxygen atom. This observation suggests a method to develop catalysts with high selectivity.

  20. Design of Pd-Based Bimetallic Catalysts for ORR: A DFT Calculation Study

    Directory of Open Access Journals (Sweden)

    Lihui Ou

    2015-01-01

    Full Text Available Developing Pd-lean catalysts for oxygen reduction reaction (ORR is the key for large-scale application of proton exchange membrane fuel cells (PEMFCs. In the present paper, we have proposed a multiple-descriptor strategy for designing efficient and durable ORR Pd-based alloy catalysts. We demonstrated that an ideal Pd-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pd, and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of Pd-M alloys, Pd-V, Pd-Fe, Pd-Zn, Pd-Nb, and Pd-Ta, are identified theoretically to have stable Pd segregated surface and improved ORR activity. Factors affecting these properties are analyzed. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction. This may be the origin of the negative alloy formation energy for Pd-M alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding Pd-M alloys.

  1. A general approach for the synthesis of bimetallic M–Sn (M = Ru, Rh and Ir) catalysts for efficient hydrogenolysis of ester

    KAUST Repository

    Samal, Akshaya Kumar

    2016-11-24

    A versatile synthetic method was applied for the preparation of Sn containing bimetallic catalysts. The synthesis was performed by simply mixing the super hydride [LiB(C2H5)(3)H], with a metal (Ru, Rh or Ir) salt and an organotin complex in tetrahydrofuran solvent without using any surfactant. This leads to the formation of monodispersed M-Sn (M = Ru, Rh or Ir) bimetallic nanoparticles (NPs). These bimetallic catalysts show high performances in the hydrogenolysis of ester to the corresponding alcohol.

  2. Preparation and characterization of bi-metallic nanoparticle catalyst having better anti-coking properties using reverse micelle technique

    Science.gov (United States)

    Zacharia, Thomas

    Energy needs are rising on an exponential basis. The mammoth energy sources like coal, natural gas and petroleum are the cause of pollution. The large outcry for an alternate energy source which is environmentally friendly and energy efficient is heard during the past few years. This is where “Clean-Fuel” like hydrogen gained its ground. Hydrogen is mainly produced by steam methane reforming (SMR). An alternate sustainable process which can reduce the cost as well as eliminate the waste products is Tri-reforming. In both these reforming processes nickel is used as catalyst. However as the process goes on the catalyst gets deactivated due to coking on the catalytic surface. This goal of this thesis work was to develop a bi-metallic catalyst which has better anti-coking properties compared to the conventional nickel catalyst. Tin was used to dope nickel. It was found that Ni3Sn complex around a core of Ni is coking resistant compared to pure nickel catalyst. Reverse micelle synthesis of catalyst preparation was used to control the size and shape of catalytic particles. These studies will benefit researches on hydrogen production and catalyst manufactures who work on different bi-metallic combinations.

  3. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  4. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers

    Science.gov (United States)

    Shanmugam Ranjith, Kugalur; Celebioglu, Asli; Uyar, Tamer

    2018-06-01

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min‑1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  5. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    Science.gov (United States)

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrothermal performance of catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.; Dumesic, James A.; Pagan-Torres, Yomaira J.

    2018-04-10

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  7. Design of supported bi-metallic nanoparticles based on Platinum and Palladium using Surface Organometallic Chemistry (SOMC)

    KAUST Repository

    Al-Shareef, Reem A.

    2017-11-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx (where x is the molar ratio of Pd) are prepared by Surface Organometallic Chemistry (SOMC) via controlled decomposition of Pd2(allyl)2Cl2 on Pt/SiO2. For comparison purposes, Pt100-x Pdx bimetallic catalysts is also prepared by ion-exchange (IE). According to the results of STEM, XAS and H2 chemisorption, all bimetallic nanoparticles, prepared using neither SOMC nor IE, produce discrete formation of monometallic species (either Pt or Pd). Most catalysts exhibit a narrow particle size distribution with an average diameter ranging from 1 to 3 nm for samples prepared by IE and from 2 to 5 nm for the ones synthesized by SOMC. For all catalysts investigated in the present work, iso-butane reaction with hydrogen under differential conditions (conversions below 5%) leads to the formation of methane and propane (hydrogenolysis), n-butane (isomerization), and traces of iso-butylene (dehydrogenation). The total rate of reaction decreases with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate (expressed as moles converted per total surface metal per second) of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the results suggest a selective coverage of Pt (100) surface by a Pd layer, followed by a buildup of Pd overcoat onto a Pd layer assuming that each metal keeps its intrinsic catalytic properties. There is no mutual electronic charge transfer between the two metals (DFT). For the PtPd catalysts prepared by IE, the catalytic behavior cannot simply be explained by a surface coverage of highly active Pt metal by less active Pd (not observed), suggesting there is formation of a surface alloy between Pt and Pd collaborated by EXAFS and DFT. The catalytic results are explained by a simple structure activity relationship based on the previously proposed mechanism of C-H bond and C-C Bond activation and cleavage for iso-butane hydrogenolysis

  8. Enhanced hydrogen reaction kinetics of nanostructured Mg-based composites with nanoparticle metal catalysts dispersed on supports

    International Nuclear Information System (INIS)

    Yoo, Yeong; Tuck, Mark; Kondakindi, Rajender; Seo, Chan-Yeol; Dehouche, Zahir; Belkacemi, Khaled

    2007-01-01

    Hydrogen reaction kinetics of nanocrystalline MgH 2 co-catalyzed with Ba 3 (Ca 1+x Nb 2-x )O 9-δ (BCN) proton conductive ceramics and nanoparticle bimetallic catalyst of Ni/Pd dispersed on single wall carbon nanotubes (SWNTs) support has been investigated. The nanoparticle bimetallic catalysts of Ni/Pd supported by SWNTs were synthesized based on a novel polyol method using NiCl 2 .6H 2 O, PdCl 2 , NaOH and ethylene glycol (EG). The nanostructured Mg composites co-catalyzed with BCN and bimetallic supported catalysts exhibited stable hydrogen desorption capacity of 6.3-6.7 wt.% H 2 and the significant enhancement of hydrogen desorption kinetics at 230-300 deg. C in comparison to either non-catalyzed MgH 2 or the nanocomposite of MgH 2 catalyzed with BCN

  9. Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wu, Tao; Xu, Xiaoyang; Xia, Fengling; Na, Heya [School of Science, Tianjin University, Tianjin 300072 (China); Liu, Yu, E-mail: liuyuls@163.com [School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China); Wang, Wei [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Gao, Jianping, E-mail: jianpinggao2012@126.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-15

    Highlights: • Ni and Ag nanoparticles loaded on RGO (Ni–Ag@RGO) were fabricated in a one-pot reaction. • The Ni–Ag@RGO were excellent catalysts for the reduction of 4-nitrophenol. • The Ni–Ag@RGO showed superior catalytic activity for photodegradation of methyl orange. • The Ni–Ag@RGO exhibit good reusability in a magnetic field. - Abstract: A facile method for preparing Ni–Ag bimetallic nanoparticles supported on reduced graphene oxide (Ni–Ag@RGO hybrid) has been established. Hydrazine hydrate was used as the reducing agent to reduce the graphene oxide, Ni{sup 2+} and Ag{sup +} to form Ni–Ag@RGO hybrid. The prepared hybrid was further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Interestingly, the prepared material shown good magnetic properties, which were determined by vibrating sample magnetometer. In addition, the Ni–Ag@RGO hybrid exhibited excellent catalytic activity for the reduction of 4-nitrophenol and the photodegradation of methyl orange. The catalytic process was monitored by determining the change in the concentration of the reactants with time using ultraviolet–visible absorption spectroscopy. After completion of the reaction, the catalyst can be separated from the reaction system simply under a magnet field and shows good recyclability.

  10. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Science.gov (United States)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  11. Catalytic activity of bimetallic AuPd alloys supported MgO and MnO2 nanostructures and their role in selective aerobic oxidation of alcohols

    Directory of Open Access Journals (Sweden)

    Hamed Alshammari

    2017-10-01

    Full Text Available The use of metal oxides as supports for gold and palladium (Au-Pd nano alloys constitutes new horizons to improve catalysts materials for very important reactions. From the literatures, Pd-based bimetallic nanostructures have great properties and active catalytic performance. In this study, nanostructures of magnesium oxide (MgO and manganese dioxide (MnO₂ were synthesised and utilized as supports for Au-Pd nanoparticle catalysts. Gold and palladium were deposited on these supports using sol-immobilisation method. The MgO and MnO2 supported Au-Pd catalysts were evaluated for the oxidation of benzyl alcohol and 1-octanol, respectively. These catalysts were found to be more selective, active and reusable than the corresponding monometallic Au and Pd catalysts. The effect of base supports on the disproportionation reaction during the oxidation process was investigated. The results show that MgO stopped the disproportionation reaction for both aromatic and aliphatic alcohols while MnO₂ stopped it in the case of benzyl alcohol only. The outcomes of this work shed light on the selective aerobic oxidation of alcohols using bimetallic Au-Pd nanoalloys and pave the way to a complete investigation of more basic metal oxides for various aliphatic alcohols.

  12. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    Science.gov (United States)

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  13. Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Palotás, K., E-mail: palotas@phy.bme.hu [Budapest University of Technology and Economics, Department of Theoretical Physics, H-1111 Budapest (Hungary); Slovak Academy of Sciences, Institute of Physics, Department of Complex Physical Systems, Center for Computational Materials Science, SK-84511 Bratislava (Slovakia); Bakó, I. [Hungarian Academy of Sciences, Research Center for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest (Hungary); Bugyi, L. [MTA-SZTE, Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. Sqr. 1, H-6720 Szeged (Hungary)

    2016-12-15

    Highlights: • 1 ML of Rh on Mo(110) forms a wavy structure propagating along the [001] direction. • Strain & ligand effects in the Rh film cause a downward shift of the d-band center. • CO adsorption energies are decreased by about 35% compared to pure Rh(111). • Depending on adsorption site, 0.28–0.46 e is transferred to adsorbed CO from Rh film. • CO adsorption generates 0.15–0.22 e transfer from Rh film to Mo in the unit cell. - Abstract: Geometric and electronic characterizations of one monolayer rhodium with Nishiyama-Wassermann (NW) structure on Mo(110) substrate have been performed by density functional theory (DFT) calculations. In the NW structure the Rh atoms form a wavy structure propagating along the [001] direction, characterized by an amplitude of 0.26 Å in the [110] direction and by 0.10 Å in the [110] direction of the Mo(110) substrate. Strain and ligand effects operating in the rhodium film are distinguished and found to be manifested in the downward shift of the d-band center of the electron density of states (DOS) by 0.11 eV and 0.18 eV, respectively. The shift in the d-band center of Rh DOS predicts a decrease in the surface reactivity toward CO adsorption, which has been verified by detailed calculations of bond energies of CO located at on-top, bridge and hollow adsorption sites. The CO adsorption energies are decreased by about 35% compared to those reported for pure Rh(111), offering novel catalytic pathways for the molecule. An in-depth analysis of the charge transfer and the partial DOS characters upon CO adsorption on the NW-structured Rh(111)/Mo(110) bimetallic catalyst and on the pure Rh(111) surface sheds light on the bonding mechanism of CO and on the governing factors determining its lowered bond energy on the bimetallic surface.

  14. Role of Pt(0) in bimetallic (Pt,Fe)-FER catalysts in the N2O decomposition

    Czech Academy of Sciences Publication Activity Database

    Tabor, Edyta; Jíša, Kamil; Nováková, Jana; Bastl, Zdeněk; Vondrová, Alena; Závěta, K.; Sobalík, Zdeněk

    2013-01-01

    Roč. 165, JAN 2013 (2013), s. 40-47 ISSN 1387-1811 R&D Projects: GA ČR GA203/09/1627 Institutional support: RVO:61388955 Keywords : bimetallic Pt,Fe- FER * Pt- FER * Pt(0) clusters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.209, year: 2013

  15. Effects of Cu over Pd based catalysts supported on silica or niobia

    Directory of Open Access Journals (Sweden)

    Roma M.N.S.C.

    2000-01-01

    Full Text Available Palladium and palladium-copper catalysts supported on silica and niobia were characterized by H2 chemisorption and H2-O2 titration. Systems over silica were also analyzed by transmission electron microscopy and EXAFS. The metallic dispersion decreased from 20% to 7% when the content of Pd was increased from 0.5wt.-% to 3wt.-% in monometallic catalysts. The addition of 3 wt.-% Cu to obtain Pd-Cu catalysts caused a remarkable capacity loss of hydrogen chemisorption. TPR analysis suggested an interaction between the two metals and EXAFS characterization of the catalyst supported on silica confirmed the formation of Pd-Cu alloy. Pd/Nb2O5 catalysts showed turnover numbers higher than those obtained with the Pd/SiO2 systems in the cyclohexane dehydrogenation. However, the bimetallic catalysts showed very low turnover numbers.

  16. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    DEFF Research Database (Denmark)

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena

    2012-01-01

    Transformation (FFT) analyses confirmed that the nanoparticles indeed were bimetallic. The bimetallic nanoparticles did not have a core-shell structure, but were superior to monometallic particles at reducing p-nitrophenol to p-aminophenol. Hence, formation of microbially supported nanoparticles may be a cheap......(II) to the bio-supported particles resulted in increased particle size. UV-Vis spectrophotometry and HR-TEM analyses indicated that the previously monometallic nanoparticles had become fully or partially covered by Au(0) or Pd(0), respectively. Furthermore, Energy Dispersive Spectrometry (EDS) and Fast Fourier...

  17. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi, E-mail: lijingyicn@163.com

    2017-01-01

    Highlights: • The catalysts were prepared by reduction method at room temperature. • α-Alkylation of ketones and primary alcohols occurred on Au-Pd/CeO{sub 2} in visible light. • Superior catalytic activities were shown on bimetallic Au-Pd/CeO{sub 2} catalysts. • The catalyst can be reused for 4 times. • The mechanism of the synthesis for ketones was proposed. - Abstract: The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO{sub 2}). This system demonstrated a higher catalytic property than Au/CeO{sub 2} and Pd/CeO{sub 2} under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH{sub 3}ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO{sub 2} or ZrO{sub 2}) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO{sub 2} photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  18. THE THEORY OF DEVELOPMENT OF SUPPORTED METAL-COMPLEX CATALYSTS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-06-01

    Full Text Available Some results of the investigations for the purpose of development of supported metal-complex catalysts for phosphine and carbon monoxide oxidation as well as for ozone decomposition are summarized. The activity of such catalysts has been found to depend not only on a nature of a central atom and ligands but also on a nature of supports. The theoretical model explaining mechanisms of surface complex formation taking into account the influence of physicochemical and structural-adsorption properties of the supports (SiO2, Al2O3, carbon materials, zeolites, dispersed silicas, lamellar aluminosilicates, etc. has been proposed. For quantitative description of the support effect, such a thermodynamic parameter as the adsorbed water activity assignable with the help of water vapor adsorption isotherms has been introduced. Successive stability constants of the surface metal complexes have been calculated by the kinetic method and, hence, compositions and partial catalytic activity of the latter have been determined. Taking into account the competitive adsorption of metal ions on the supports, some schemes of formation of surface bimetallic complexes have been suggested. The compositions of the supported metal-complex catalysts have been optimized to meet requirements of their use in respirators and plants for air purification from foregoing gaseous toxicants.

  19. Electrochemical and structural characterization of carbon-supported Pt-Pd bimetallic electrocatalysts prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Masato; Beard, Kevin D.; Ma Shuguo; Blom, Douglas A.; St-Pierre, Jean; Van Zee, John W. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Monnier, John R., E-mail: monnier@cec.sc.ed [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-10-01

    Electrochemical and structural characteristics of various Pt-Pd/C bimetallic catalysts prepared by electroless deposition (ED) methods have been investigated. Structural analysis was conducted by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). Monometallic Pt or Pd particles were not detected by EDS, indicating the ED methodology formed only bimetallic particles. The size of the Pt-Pd bimetallic particles was smaller than those of a commercially available Pt/C catalyst. The morphology of the Pt on Pd/C catalysts was identified and corresponded to Pd particles partially encapsulated by Pt. The electrochemical characteristics of the lowest Pd loading catalyst (7.0% Pt on 0.5% Pd/C) for the oxygen reduction reaction (ORR) have been investigated by the rotating ring disk electrode technique. The electrochemical activity was equal or lower than the commercially available Pt/C catalyst; however, the amount of hydrogen peroxide observed at the ring was reduced by the Pd, suggesting that such a catalyst has the potential to decrease ionomer degradation in applications. The Pt on Pd/C catalysts also show a higher tolerance to ripening induced by potential cycling. Therefore, catalyst suitability cannot be judged solely by its initial performance; information related to specific degradation mechanisms is also needed for a more complete assessment.

  20. Progress in controlling the size, composition and nanostructure of supported gold-palladium nanoparticles for catalytic applications

    NARCIS (Netherlands)

    Paalanen, P.P.|info:eu-repo/dai/nl/370602013; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Sankar, M.

    2013-01-01

    This review article gives an overview of the recent developments in the synthesis strategies of supported goldbased bimetallic nanoparticle catalysts. The catalytic efficiency of these supported bimetallic nanoparticles, similar to monometallic nanoparticles, depends on their structural

  1. Three-Dimensional Graphene Supported Bimetallic Nanocomposites with DNA Regulated-Flexibly Switchable Peroxidase-Like Activity.

    Science.gov (United States)

    Yuan, Fang; Zhao, Huimin; Zang, Hongmei; Ye, Fei; Quan, Xie

    2016-04-20

    A synergistic bimetallic enzyme mimetic catalyst, three-dimensional (3D) graphene/Fe3O4-AuNPs, was successfully fabricated which exhibited flexibly switchable peroxidase-like activity. Compared to the traditional 2D graphene-based monometallic composite, the introduced 3D structure, which was induced by the addition of glutamic acid, and bimetallic anchoring approach dramatically improved the catalytic activity, as well as the catalysis velocity and its affinity for substrate. Herein, Fe3O4NPs acted as supporters for AuNPs, which contributed to enhance the efficiency of electron transfer. On the basis of the measurement of Mott-Schottky plots of graphene and metal anchored hybrids, the catalysis mechanism was elucidated by the decrease of Fermi level resulted from the chemical doping behavior. Notably, the catalytic activity was able to be regulated by the adsorption and desorption of single-stranded DNA molecules, which laid a basis for its utilization in the construction of single-stranded DNA-based colorimetric biosensors. This strategy not only simplified the operation process including labeling, modification, and imprinting, but also protected the intrinsic affinity between the target and biological probe. Accordingly, based on the peroxidase-like activity and its controllability, our prepared nanohybrids was successfully adopted in the visualized and label-free sensing detections of glucose, sequence-specific DNA, mismatched nucleotides, and oxytetracycline.

  2. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelium 9, 040 01 Košice (Slovakia); Oriňak, A., E-mail: andrej.orinak@upjs.sk [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Oriňaková, R. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Lorinčík, J. [Research Center Rez, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Jerigová, M. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); Velič, D. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); International Laser Centre, Ilkovičová 3, 841 01 Bratislava (Slovakia); Mičušík, M. [Polymer institute, Slovak Academy of Sciences, Dubravská cesta 9, 84541 Bratislava (Slovakia); and others

    2017-02-28

    Highlights: • Zn/Cu/MWCNTs catalyst with good activity. • Methane conversion to hydrogen with high effectivity. • ZnO/Cu responsible for catalytic activity. - Abstract: Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  3. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica

    NARCIS (Netherlands)

    Palma, V.; Ruocco, C; Meloni, E.; Gallucci, F.; Ricca, A.

    2018-01-01

    In this paper, bimetallic Pt-Ni/CeO2 catalysts supported over mesoporous silica were employed for ethanol reforming in the low-temperature range. In particular, catalyst behaviour was investigated under a H2O/C2H5OH/N2 as well as H2O/C2H5OH/AIR mixture between 300 and 600 °C at different space

  4. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    Science.gov (United States)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  5. Preparation of Pt–Ru bimetallic catalyst supported on carbon ...

    Indian Academy of Sciences (India)

    Unknown

    †Laboratoire de Photonique, ‡Institut de Physique et Interfaces, Ecole Polytechnique Federale de Lausanne,. CH-1015 ... In this communication, we report the use of polyphenyl ... The open end structure of the tube has been confirmed by.

  6. Preparation of Pt–Ru bimetallic catalyst supported on carbon

    Indian Academy of Sciences (India)

    The template carbonization of polyphenyl acetylene yields hollow, uniform cylindrical carbon nanotubes with outer diameter almost equal to pore diameter of the template used. High resolution transmission electron microscopic investigation reveals that Pt–Ru nanoparticles are highly dispersed inside the tube with an ...

  7. Preparation of Pt–Ru bimetallic catalyst supported on carbon ...

    Indian Academy of Sciences (India)

    Unknown

    of carbon nanotube (Iijima 1991) was first based on the carbon-arc method, though the carbon nanotube prepared by this method are more graphitic, the low yield and rela- tively small length (< 1 m) make the production cost very high. The template synthesis method (Martin 1994) and catalytic production methods (Jose et ...

  8. Development of Cu and Ni catalysts supported on ZrO2 for the generation of H2 by means of the reaction of reformed methanol in atmosphere oxidizer

    International Nuclear Information System (INIS)

    Lopez C, P.

    2012-01-01

    ZrO 2 was prepared by the sol-gel method and calcined at 450 C. The prepared zirconia was impregnated with an aqueous solution of Cu(CH 3 CO 2 ) 2 ·H 2 O or NiNO 3 ·6H 2 O at an appropriate concentration to yield 3 wt % of copper or nickel, respectively, in the mono metallic catalysts. Three bimetallic samples were prepared at 80% Cu and 20% Ni respectively to obtain 3 wt % of total metallic phase. Surface area of the Cu-Ni base catalysts supported on ZrO 2 oxide showed differences as a function of the metal addition. Between them, the Cu/ZrO 2 catalyst had the lowest surface area than other catalysts. X-ray diffraction patterns of the bimetallic catalysts did not show diffraction peaks of the Cu, Ni or bimetallic Cu-Ni alloys. In addition, TPR profiles of the bimetallic catalysts had the lowest reduction temperature compared with the mono metallic samples. The reactivity of the catalysts in the range of 250-350 C showed that the samples prepared by successive impregnation had the highest catalytic activity than the other catalysts studied. Also the selectivity for H 2 production was higher for these catalysts. This finding was associated to the presence of the bimetallic Cu-Ni nanoparticles, as was evidenced by Tem-EDX analysis. (Author)

  9. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  10. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  11. The utilization of hydroxyapatite-supported CaO-CeO_2 catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Yan, Beibei; Zhang, Ying; Chen, Guanyi; Shan, Rui; Ma, Wenchao; Liu, Changye

    2016-01-01

    Highlights: • Hydroxyapatite derived from waste animal bones was served as the support for bimetallic CaO-CeO_2 catalyst. • The 30%CaO-CeO_2/HAP-650 catalyst exhibited excellent performance on biodiesel production. • The yield of FAME was 84.4 % after eight cycles. • Minor leaching concentrations of cerium and calcium species were detected in the product. - Abstract: The study investigated the effect of a bimetallic supported catalyst in biodiesel production. Calcined waste bone derived hydroxyapatite (HAP), a solid waste from animal, was served as the support for CaO-CeO_2 catalyst. Various characterization techniques such as FT-IR, BET, SEM-EDS, CO_2-TPD and XRD analysis were used to analyse the activity of this heterogeneous catalyst. The effect of main parameters in preparation process such as calcination temperature and active component loading on catalyst performance were discussed to obtain the optimal preparation conditions. Under the optimal reaction conditions (11 wt.% dosage of 30%CaO-CeO_2/HAP-650 catalyst and 9:1 methanol to oil molar ratio at 65 °C for 3 h) the highest biodiesel yield of 91.84% was obtained. Stability test indicated that the yield (84.4%) of fatty acid methyl ester was produced after 8 re-used cycles due to the low leaching of catalyst components. The experimental results showed that biodiesel production cost might be lowered while producing relatively high yield at the present of long life-span catalyst.

  12. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  13. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  14. Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me-N-C).

    Science.gov (United States)

    Shahraei, Ali; Moradabadi, Ashkan; Martinaiou, Ioanna; Lauterbach, Stefan; Klemenz, Sebastian; Dolique, Stephanie; Kleebe, Hans-Joachim; Kaghazchi, Payam; Kramm, Ulrike I

    2017-08-02

    In this work, we present a comprehensive study on the role of metal species in MOF-based Me-N-C (mono- and bimetallic) catalysts for the hydrogen evolution reaction (HER). The catalysts are investigated with respect to HER activity and stability in alkaline electrolyte. On the basis of the structural analysis by X-ray diffraction, X-ray-induced photoelectron spectroscopy, and transmission electron microscopy, it is concluded that MeN 4 sites seem to dominate the HER activity of these catalysts. There is a strong relation between the amount of MeN 4 sites that are formed and the energy of formation related to these sites integrated at the edge of a graphene layer, as obtained from density functional theory (DFT) calculations. Our results show, for the first time, that the combination of two metals (Co and Mo) in a bimetallic (Co,Mo)-N-C catalyst allows hydrogen production with a significantly improved overpotential in comparison to its monometallic counterparts and other Me-N-C catalysts. By the combination of experimental results with DFT calculations, we show that the origin of the enhanced performance of our (Co,Mo)-N-C catalyst seems to be provided by an improved hydrogen binding energy on one MeN 4 site because of the presence of a second MeN 4 site in its close vicinity, as investigated in detail for our most active (Co,Mo)-N-C catalyst. The outstanding stability and good activity make especially the bimetallic Me-N-C catalysts interesting candidates for solar fuel applications.

  15. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  16. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  17. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  18. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  19. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  20. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  1. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Science.gov (United States)

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  2. Nitrogen-Doped Ordered Mesoporous Carbon Supported Bimetallic PtCo Nanoparticles for Upgrading of Biophenolics.

    Science.gov (United States)

    Wang, Guang-Hui; Cao, Zhengwen; Gu, Dong; Pfänder, Norbert; Swertz, Ann-Christin; Spliethoff, Bernd; Bongard, Hans-Josef; Weidenthaler, Claudia; Schmidt, Wolfgang; Rinaldi, Roberto; Schüth, Ferdi

    2016-07-25

    Hydrodeoxygenation (HDO) is an attractive route for the upgrading of bio-oils produced from lignocellulose. Current catalysts require harsh conditions to effect HDO, decreasing the process efficiency in terms of energy and carbon balance. Herein we report a novel and facile method for synthesizing bimetallic PtCo nanoparticle catalysts (ca. 1.5 nm) highly dispersed in the framework of nitrogen-doped ordered mesoporous carbon (NOMC) for this reaction. We demonstrate that NOMC with either 2D hexagonal (p6m) or 3D cubic (Im3‾ m) structure can be easily synthesized by simply adjusting the polymerization temperature. We also demonstrate that PtCo/NOMC (metal loading: Pt 9.90 wt %; Co 3.31 wt %) is a highly effective catalyst for HDO of phenolic compounds and "real-world" biomass-derived phenolic streams. In the presence of PtCo/NOMC, full deoxygenation of phenolic compounds and a biomass-derived phenolic stream is achieved under conditions of low severity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    International Nuclear Information System (INIS)

    Xie, Hong; Ye, Xiaoliang; Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun; Wang, Chunming

    2015-01-01

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k app ) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes

  4. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hong [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Ye, Xiaoliang [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2015-07-05

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k{sub app}) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes.

  5. Molecular Level Control Through Dual Site Participation Using Bimetallic Catalysts - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    d' Itri, Julie, L.; Kovalchuk, Vladimir, I.

    2010-02-08

    The overall goal of this research program was to explore the hypothesis that it is possible to design a bimetallic surface such that each metal catalyzes different elementary reaction steps in an overall reaction pathway. A corollary to this hypothesis is that the different ensemble size requirements for an elementary reaction step can be used to force an elementary reaction step to occur on only one of the metals. The research program involved a combination of materials synthesis, chemical kinetics experiments, spectroscopic studies and computational investigations. The major outcome of this research program was the development and dissemination of the Dual Site Model, for which chlorocarbon reactions in the presence of hydrogen were used as model systems.

  6. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  7. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam; Jedidi, Abdesslem; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report

  8. Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO

    Directory of Open Access Journals (Sweden)

    Thuan M. Huynh

    2016-11-01

    Full Text Available Performances of bimetallic catalysts (Ni-Co supported on different acidic carriers (HZSM-5, HBeta, HY, ZrO2 and corresponding monometallic Ni catalysts in aqueous phase hydrodeoxygenation of phenol were compared in batch and continuous flow modes. The results revealed that the support acidity plays an important role in deoxygenation as it mainly controls the oxygen-removing steps in the reaction network. At the same time, sufficient hydrothermal stability of a solid catalyst is essential. Batch experiments revealed 10Ni10Co/HZSM-5 to be the best-performing catalyst in terms of conversion and cyclohexane yield. Complementary continuous runs provided more insights into the relationship between catalyst structure, efficiency and stability. After 24 h on-stream, the catalyst still reveals 100% conversion and a slight loss (from 100% to 90% in liquid hydrocarbon selectivity. The observed alloy of Co with Ni increased dispersion and stability of Ni-active sites, and combination with HZSM-5 resulted in a well-balanced ratio of metal and acid sites which promoted all necessary steps in preferred pathways. This was proved by studies of fresh and spent catalysts using various characterization techniques (N2 physisorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscopy (TEM and infrared spectroscopy of adsorbed pyridine (pyr-IR.

  9. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  10. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Al-Shareef, Reem A.; Harb, Moussab; Saih, Youssef; Ould-Chikh, Samy; Roldan, Manuel A.; Anjum, Dalaver H.; Guyonnet, Elodie Bile; Candy, Jean-Pierre; Jan, Deng-Yang; Abdo, Suheil F.; Aguilar-Tapia, Antonio; Proux, Olivier; Hazemann, Jean-Louis; Basset, Jean-Marie

    2018-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  11. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Alshareef, Reem Abdul aziz Hamed

    2018-04-25

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  12. Rapid synthesis of platinum-ruthenium bimetallic nanoparticles dispersed on carbon support as improved electrocatalysts for ethanol oxidation.

    Science.gov (United States)

    Gu, Zhulan; Li, Shumin; Xiong, Zhiping; Xu, Hui; Gao, Fei; Du, Yukou

    2018-07-01

    Bimetallic nanocatalysts with small particle size benefit from markedly enhanced electrocatalytic activity and stability during small molecule oxidation. Herein, we report a facile method to synthesize binary Pt-Ru nanoparticles dispersed on a carbon support at an optimum temperature. Because of its monodispersed nanostructure, synergistic effects were observed between Pt and Ru and the PtRu/C electrocatalysts showed remarkably enhanced electrocatalytic activity towards ethanol oxidation. The peak current density of the Pt 1 Ru 1 /C electrocatalyst is 3731 mA mg -1 , which is 9.3 times higher than that of commercial Pt/C (401 mA mg -1 ). Furthermore, the synthesized Pt 1 Ru 1 /C catalyst exhibited higher stability during ethanol oxidation in an alkaline medium and maintained a significantly higher current density after successive cyclic voltammograms (CVs) of 500 cycles than commercial Pt/C. Our work highlights the significance of the reaction temperature during electrocatalyst synthesis, leading to enhanced catalytic performance towards ethanol oxidation. The Pt 1 Ru 1 /C electrocatalyst has great potential for application in direct ethanol fuel cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Activity of bimetallic catalysts (Pt + Me)/A12030 in butane hydrogenolysis and benzene hydrogenation

    International Nuclear Information System (INIS)

    Zharkov, B.B.; Rubinov, A.Z.

    1986-01-01

    The authors evaluate the decomposing and hydrogenating activity of some Me/Al 2 0 3 0 and (Pt + Me)/Al 203 catalysis for the reactions of butane hydrogenolysis and conversion of benzene to cyclohexane. The temperature was 180-300 C for butane transformation and 150 C for benzene hydrogenation. During both reactions some initial decrease of catalytic activity which stabilized over 2-3 h was observed. The results show that roasting Re-containing reforming catalysts at fairly high temperatures (500-550 C) balances maximum hydrogenating and average splitting activities, thus guaranteeing high resistance to coke deposition while preserving the necessary selectivity. The decreased hydrogenating capacity of Ir/A1 2 0 3 0 and (Pt + Ir)/A1 23 0 catalysts after roasting at 500 C indicates insufficient thermal stability, which can be why renewing the initial activity of iridium containing forming catalysts by oxidating regeneration is difficult

  14. Tuning the Composition of Electrodeposited Bimetallic Tin-Lead Catalysts for Enhanced Activity and Durability in Carbon Dioxide Electroreduction to Formate.

    Science.gov (United States)

    Moore, Colin E; Gyenge, Előd L

    2017-09-11

    Bimetallic Sn-Pb catalysts with five different Sn/Pb atomic ratios were electrodeposited on Teflonated carbon paper and non-Teflonated carbon cloth using both fluoroborate- and oxide-containing deposition media to produce catalysts for the electrochemical reduction of CO 2 (ERC) to formate (HCOO - ). The interaction between catalyst composition, morphology, substrate, and deposition media was investigated by using cyclic voltammetry and constant potential electrolysis at -2.0 V versus Ag/AgCl for 2 h in 0.5 m KHCO 3 . The catalysts were analyzed before and after electrolysis by using SEM and XRD to determine the mechanisms of Faradaic efficiency loss and degradation. Catalysts that are mainly Sn with 15-35 at % Pb generated Faradaic efficiencies up to 95 % with a stable performance. However, pure Sn catalysts showed high initial stage formate production rates but experienced an extensive (up to 30 %) decrease of the Faradaic efficiency. The XRD results demonstrated the presence of polycrystalline SnO 2 after electrolysis using Sn-Pb catalysts with 35 at % Pb and its absence in the case of pure Sn. It is proposed that the presence of Pb (15-35 at %) in mainly Sn catalysts stabilized SnO 2 , which is responsible for the enhanced Faradaic efficiency and catalytic durability in the ERC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride

    Science.gov (United States)

    Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.

    2017-01-01

    In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…

  16. Development of Cu and Ni catalysts supported on ZrO{sub 2} for the generation of H{sub 2} by means of the reaction of reformed methanol in atmosphere oxidizer; Desarrollo de catalizadores de Cu y Ni soportados en ZrO{sub 2} para la generacion de H{sub 2} mediante la reaccion de reformado de metanol en atmosfera oxidante

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, P.

    2012-07-01

    ZrO{sub 2} was prepared by the sol-gel method and calcined at 450 C. The prepared zirconia was impregnated with an aqueous solution of Cu(CH{sub 3}CO{sub 2}){sub 2}{center_dot}H{sub 2}O or NiNO{sub 3}{center_dot}6H{sub 2}O at an appropriate concentration to yield 3 wt % of copper or nickel, respectively, in the mono metallic catalysts. Three bimetallic samples were prepared at 80% Cu and 20% Ni respectively to obtain 3 wt % of total metallic phase. Surface area of the Cu-Ni base catalysts supported on ZrO{sub 2} oxide showed differences as a function of the metal addition. Between them, the Cu/ZrO{sub 2} catalyst had the lowest surface area than other catalysts. X-ray diffraction patterns of the bimetallic catalysts did not show diffraction peaks of the Cu, Ni or bimetallic Cu-Ni alloys. In addition, TPR profiles of the bimetallic catalysts had the lowest reduction temperature compared with the mono metallic samples. The reactivity of the catalysts in the range of 250-350 C showed that the samples prepared by successive impregnation had the highest catalytic activity than the other catalysts studied. Also the selectivity for H{sub 2} production was higher for these catalysts. This finding was associated to the presence of the bimetallic Cu-Ni nanoparticles, as was evidenced by Tem-EDX analysis. (Author)

  17. NEXAFS characterization and reactivity studies of bimetallic vanadium molybdenum oxynitride hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, R.; Oyama, S.T. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Fruehberger, B.; Chen, J.G. [Exxon Research and Engineering Company, Annandale, NJ (United States)

    1997-02-27

    The surface and bulk compositions of vanadium molybdenum oxynitride (V{sub 2}MoO{sub 1.7}N{sub 2.4}), prepared by temperature-programmed reaction (TPR) of vanadium molybdenum oxide (V{sub 2}MoO{sub 8}) with ammonia, have been characterized using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS data were recorded at the K-edges of nitrogen and oxygen, the L-edge of vanadium, and the M-edge of molybdenum. The nitrogen K-edge region of V-Mo oxynitride shows the characteristic NEXAFS features of early-transition-metal nitrides, although these features are different from those of either VN or Mo{sub 2}N. Furthermore, comparison of the electron yield and fluorescence yield measurements also reveals that the oxidation state is different for vanadium near the surface region and for vanadium in the bulk, which is estimated to be 2.8 {+-} 0.3 and 3.8 {+-} 0.3, respectively. The oxidation state of bulk molybdenum is also estimated to be 4.4 {+-} 0.3. The X-ray diffraction pattern shows that the bulk phase of the bimetallic oxide is different from the pure monometallic oxide phases but the oxynitride has a cubic structure that resembles the pure vanadium and molybdenum nitride phases. The V-Mo oxide as prepared shows a preferential orientation of [001] crystallographic planes which is lost during the nitridation process. This shows that the solid state transformation V{sub 2}MoO{sub 8} {yields} V{sub 2}MoO{sub 1.7}N{sub 2.4} is not topotactic. 27 refs., 8 figs., 1 tab.

  18. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  19. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    Science.gov (United States)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  20. Probing the interaction of Rh, Co and bimetallic Rh-Co nanoparticles with the CeO2 support: catalytic materials for alternative energy generation.

    Science.gov (United States)

    Varga, E; Pusztai, P; Óvári, L; Oszkó, A; Erdőhelyi, A; Papp, C; Steinrück, H-P; Kónya, Z; Kiss, J

    2015-10-28

    The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.

  1. Session 6: Synergistic effects in selective hydro dechlorination on bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Srebowata, A.; Legawiec-Jarzyna, M.; Juszczyk, W.; Karpinski, Z. [Institute of Physical Chemistry of PAS, Warszawa (Poland)

    2004-07-01

    Catalytic removal of chlorine from organic compounds has recently attracted increasing interest. A special case of this important environmental issue is the hydro-dechlorination (HDC). HDC of three compounds was investigated: dichloro-difluoro-methane, carbon tetrachloride and 1,2-dichloroethane. Since the most desired products of the mentioned reactions are: CH{sub 2}F{sub 2}, chloroform and ethene (highlighted below), our attention was focused at the rates of formation of these products: CCl{sub 2}F{sub 2} {yields} CH{sub 2}F{sub 2} {yields} CH{sub 4}; CCl{sub 4} {yields} CHCl{sub 3} {yields} CH{sub 4}; ClCH{sub 2}-CH{sub 2}Cl {yields} CH{sub 2}=CH{sub 2} {yields} CH{sub 3}CH{sub 3}. In fact, Selection of the most suitable HDC catalyst depends on the C-Cl bond strength in a molecule subjected to reaction. A relatively weak C-Cl bond in CCl{sub 4} (306 kJ/mol) does not require a high dechlorination potential, which can be directly correlated with the strength of a metal-chlorine bond. Thus Pt is a better catalyst than Pd in CCl{sub 4} reaction. In addition, an improvement of Pt-based catalysts can be achieved by alloying with metals which bind chlorine even less strongly than Pt (i.e. with Au). In contrast, Pd is a better catalyst than Pt for hydro-dechlorination of a stronger C-Cl bond (about 350 kJ/mol), present in CCl{sub 2}F{sub 2} and ClCH{sub 2}-CH{sub 2}Cl. However, a good performance of Pd can still be improved by alloying it with much less active Pt (or Au), as a result of weakening of the metal-chlorine bond. This effect leads to a higher selectivity toward partial dehalogenation, i.e. to formation of a desired CH{sub 2}F{sub 2} (at the expense of CH{sub 4}). In a similar way, combination of Pd with Co and Cu is rationalized. For HDC of ClCH{sub 2}-CH{sub 2}Cl, addition of a metal characterized by a poor hydrogenation strength (like Cu or Ag) to Pd (or Pt) reduces undesired formation of ethane, giving higher yields of ethene. (authors)

  2. From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raul F.; Crooks, Richard M.; Mavrikakis, Manos

    2014-04-08

    “Catalysis by design” has been a dream for decades. To specify the composition and structure of matter to effect a desired catalytic transformation with desired and predicted rate and selectivity remains a monumental challenge, especially in heterogeneous catalysis. Our research thrusts have been chosen not only for their practical and scientific relevance, e.g. for more efficient and sustainable chemicals and fuels production, but also because they provide a foundation for developing and exploring broadly applicable principles and strategies for catalyst design.

  3. Thermal decomposition of supported lithium nitrate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  4. Polypropylene obtained through zeolite supported catalysts

    International Nuclear Information System (INIS)

    Bastos, Queli C.; Marques, Maria de Fatima V.

    2004-01-01

    Propylene polymerizations were carried out with φ 2 C(Flu)(Cp)ZrCl 2 and SiMe 2 (Ind)2ZrCl 2 catalysts supported on silica, zeolite sodic mordenite (NaM) and acid mordenite (HM). The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]). The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f 2 C(Flu)(Cp)ZrCl 2 , SiO 2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereo regularity. (author)

  5. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  6. Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Su, Jin [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Jin, Xiaoying [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Megharaj, Mallavarapu; Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2013-11-15

    Highlights: • Functional clay supported bimetallic nZVI/Pd was synthesized. • Methyl orange (MO) was degraded using B-nZVI/Pd. • 93.75% of MO in wastewater was removed. • The functions of clay, nZVI and Pd were observed. -- Abstract: Bentonite supported Fe/Pd nanoparticles (B/nZVI/Pd) were synthesized as composites that exhibit functionalities assisting in the removal of methyl orange (MO) from aqueous solution. The results showed that 91.87% of MO was removed using B/nZVI/Pd, while only 85% and 1.41% of MO were removed using nZVI/Pd and bentonite after 10 min, respectively. The new findings include that the presence of bentonite decreased the aggregation of nZVI/Pd and nZVI in the composite played its role as a reductant, while Pd{sup 0} acted as the catalyst to enhance the degradation of MO, which were confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis analysis and the batch experiments. The increase in B/nZVI/Pd loading led to greater removal efficiency, while decolorization efficiency declined in the presence of anions such as nitrate, sulfite and carbonate, especially nitrate, which decreased the apparent rate constant k{sub obs} almost 17.06-fold. The kinetics study indicated that the degradation of MO fitted well to the pseudo-first-order model, where the k{sub obs} was 0.0721 min{sup −1}. Finally, the reactivity of aged B/nZVI/Pd was investigated, and the application of B/nZVI/Pd in wastewater indicated a removal efficiency higher than 93.75%. This provided a new environmental pollution management option for dyes-contaminated sites.

  7. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  8. Heterogeneous Pd catalysts supported on silica matrices

    Czech Academy of Sciences Publication Activity Database

    Opanasenko, Maksym; Štěpnička, P.; Čejka, Jiří

    2014-01-01

    Roč. 4, č. 110 (2014), s. 65137-65162 ISSN 2046-2069 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : catalysts * molecular sieves * palladium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.840, year: 2014

  9. Carbon a support for sulfide catalysts

    NARCIS (Netherlands)

    Vissers, J.P.R.; Lensing, T.J.; Mercx, F.P.M.; Beer, de V.H.J.; Prins, R.

    1983-01-01

    Two types of carbon materials, carbon black composite and carbon covered alumina, were studied for-their use as support for sulfide catalysts. The following parameters were varied: type of carbon black, carbon coverage of the alumina and carbon pretreatment. Pore size distributions were determined

  10. Final Technical Report: Tandem and Bimetallic Catalysts for Oxidative Dehydrogenation of Light Hydrocarbon with Renewable Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States)

    2017-01-06

    An estimated 490 million metric tons of lignocellulosic biomass is available annually from U.S. agriculture and forestry. With continuing concerns over greenhouse gas emission, the development of efficient catalytic processes for conversion of biomass derived compounds is an important area of research. Since carbohydrates and polyols are rich in oxygen, approximately one oxygen atom per carbon, removal of hydroxyl groups via deoxygenation is needed. The necessary hydrogen required for hydrodeoxygenation (HDO) would either come from reforming biomass itself or from steam reforming of natural gas. Both processes contribute to global CO2 emission. The hope is that eventually renewable sources such as wind and solar for hydrogen production will become more viable and economic in the future. In the meantime, unconventional natural gas production in North America has boomed. As a result, light hydrocarbons present an opportunity when coupled with biomass derived oxygenates to generate valuable products from both streams without co-production of carbon dioxide. This concept is the focus of our current funding period. The objective of the project requires coupling two different types of catalysis, HDO and dehydrogenation. Our hypothesis was formulated around our success in establishing oxorhenium catalysts for polyol HDO reactions and known literature precedence for the use of iridium hydrides in alkane dehydrogenation. To examine our hypothesis we set out to investigate the reaction chemistry of binuclear complexes of oxorhenium and iridium hydride.

  11. Passivation of bimetallic catalysts used in water treatment: prevention and reactivation.

    Science.gov (United States)

    Chen, Jianming; Gillham, Robert W; Gui, Lai

    2013-01-01

    With respect to degradation rates and the range in contaminants treated, bimetals such as Ni-Fe or Pd-Fe generally outperform unamended granular iron. However, the catalytic enhancement is generally short-lived, lasting from a few days to months. To take advantage of the significant benefits of bimetals, this study aims at developing an effective method for the rejuvenation of passivated bimetals and alternatively, the prevention of rapid reactivity loss of bimetals. Because the most likely cause of Ni-Fe and Pd-Fe passivation is the deposition of iron oxide films over the catalyst sites, it is hypothesized that removal of the iron oxide films will restore the lost reactivity or avoiding the deposition of iron oxide films will prevent passivation. Two organic ligands (ethylenediaminetetraacetic acid (EDTA), and [s,s]-ethylenediaminedisuccinate acid ([s,s]-EDDS)) and two acids (citric acid and sulphuric acid) were tested as possible chemical reagents for both passivation rejuvenation and prevention. Trichloroethene (TCE) and Ni-Fe were chosen as probes for chlorinated solvents and bimetals respectively. The test was carried out using small glass columns packed with Ni-Fe. TCE solution containing a single reagent at various concentrations was pumped through the Ni-Fe columns with a residence time in the Ni-Fe of about 6.6 min. TCE concentrations in the influent and effluent were measured to evaluate the performance of each chemical reagent. The results show that (i) for passivated Ni-Fe, flushing with a low concentration of acid or ligand solution without mechanical mixing can fully restore the lost reactivity; and (ii) for passivation prevention, adding a small amount of a ligand or an acid to the feed solution can successfully prevent or at least substantially reduce Ni-Fe passivation. All four chemicals tested are effective in both rejuvenation and prevention, but sulphuric acid and citric acid are considered to be the most practical reagents due to their

  12. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  13. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells

    Science.gov (United States)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning

    2017-09-01

    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  14. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  15. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts

    Directory of Open Access Journals (Sweden)

    Anna Piskun

    2016-08-01

    Full Text Available γ-Valerolactone (GVL has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 °C, 45 bar of H2, 2 wt. % catalyst on LA. Eight monometallic catalysts were tested on carbon based(C, carbon nanotubes (CNT and inorganic supports (Al2O3, SiO2, TiO2, ZrO2, Nb2O5 and Beta-12.5. The best result was found for Ru/Beta-12.5 with almost quantitative LA conversion (94% and 66% of GVL yield after 2 h reaction. The remaining product was 4-hydroxypentanoic acid (4-HPA. Catalytic activity for a bimetallic RuPd/TiO2 catalyst was by far lower than for the monometallic Ru catalyst (9% conversion after 2 h. The effects of relevant catalyst properties (average Ru nanoparticle size, Brunauer-Emmett-Teller (BET surface area, micropore area and total acidity on catalyst activity were assessed.

  16. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  17. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Science.gov (United States)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  18. Hydrogen recombiner catalyst test supporting data

    International Nuclear Information System (INIS)

    Britton, M.D.

    1995-01-01

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs

  19. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  20. Electrocatalysis on bimetallic and alloy surfaces

    NARCIS (Netherlands)

    Koper, M.T.M.

    2004-01-01

    Bimetallic surfaces and alloys are well known to have unique catalytic properties for many important chemical transformations [1]. In electrocatalysis, bimetallic and alloy catalysts have been a particularly active area of research in relation to low-temperature fuel cells [2]. On the anode side,

  1. Surface structure and reaction property of CuCl2-PdCl2 bimetallic catalyst in methanol oxycarbonylation: A DFT approach

    International Nuclear Information System (INIS)

    Meng, Qingsen; Wang, Shengping; Shen, Yongli; Yan, Bing; Wu, Yuanxin; Ma, Xinbin

    2014-01-01

    Surface structure of CuCl 2 -PdCl 2 bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl 2 -PdCl 2 surfaces was also investigated. On the CuCl 2 -PdCl 2 surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl 2 surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH 3 on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH 3 species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl 2 -PdCl 2 surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that PdCl 2 -CuCl 2 catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.

  2. Surface structure and reaction property of CuCl{sub 2}-PdCl{sub 2} bimetallic catalyst in methanol oxycarbonylation: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingsen [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang, Shengping, E-mail: spwang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Shen, Yongli; Yan, Bing [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wu, Yuanxin [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Xinbin [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2014-02-15

    Surface structure of CuCl{sub 2}-PdCl{sub 2} bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl{sub 2}-PdCl{sub 2} surfaces was also investigated. On the CuCl{sub 2}-PdCl{sub 2} surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl{sub 2} surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH{sub 3} on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH{sub 3} species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl{sub 2}-PdCl{sub 2} surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that PdCl{sub 2}-CuCl{sub 2} catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.

  3. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  4. Ceramic wash-coat for catalyst support

    Science.gov (United States)

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  5. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    International Nuclear Information System (INIS)

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  6. Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst

    Directory of Open Access Journals (Sweden)

    Enling Hu

    2018-02-01

    Full Text Available In textile reactive dyeing, dyed fabrics have to be rinsed in the wash-off step several times to improve colorfastness. Thus, the multiple rinsing processes drastically increase the freshwater consumption and meanwhile generate massive waste rinsing effluents. This paper addresses an innovative alternative to recycle the waste effluents to minimize freshwater consumption in the wash-off step. Accordingly, catalytic ozonation with a highly effective catalyst has been applied to remedy the waste rinsing effluents for recycling. The carbon aerogel (CA hosted bimetallic hybrid material (Ag–Fe2O3@CA was fabricated and used as the catalyst in the degradation of residual dyes in the waste rinsing effluents by ozonation treatments. The results indicate the participation of Ag–Fe2O3@CA had strikingly enhanced the removal percentage of chemical oxidation demand by 30%. In addition, it has been validated that waste effluents had been successfully reclaimed after catalytic ozonation with Ag–Fe2O3@CA. They could be additionally reused to reduce freshwater consumption in the wash-off step, but without sacrificing the color quality of corresponding fabrics in terms of color difference and colorfastness. This study may be the first to report the feasibility of catalytic ozonation in minimization of freshwater consumption in the wash-off step in textile reactive dyeing.

  7. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  8. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    De Corte, S.; Fitts, J.; Hennebel, T.; Sabbe, T.; Bliznuk, V.; Verschuere, S.; van der Lelie, D.; Verstraete, W.; Boon, N.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.

  9. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  10. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  11. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Konsolakis, Michalis, E-mail: mkonsol@science.tuc.gr [School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Crete (Greece); Ioakeimidis, Zisis [Department of Mechanical Engineering, University of Western Macedonia, Bakola and Sialvera, GR-50100 Kozani (Greece)

    2014-11-30

    Highlights: • The surface chemistry of Cu-based catalysts is adjusted by metal-support or metal–metal interactions. • Three series of catalysts, i.e., Cu/REOs, Cu/Ce{sub 1−x}Sm{sub x}O{sub δ} and Cu–Co/CeO{sub 2} were prepared. • The local structure of Cu sites is remarkably affected by support or active phase modification. • Useful insights toward the fundamental understanding of Cu-catalyzed reactions are provided. - Abstract: Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal–metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO{sub 2}, La{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}), or (ii) ceria-based mixed oxides (Ce{sub 1−x}Sm{sub x}O{sub δ}) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu–Co/CeO{sub 2}). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal–metal interactions are provided, paving the way for real-life industrial applications.

  12. Graphene: a promising two-dimensional support for heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    Xiaobin eFan

    2015-01-01

    Full Text Available Graphene has many advantages that make it an attractive two-dimensional (2D support for heterogeneous catalysts. It not only allows the high loading of targeted catalytic species, but also facilitates the mass transfer during the reaction processes. These advantages, along with its unique physical and chemical properties, endow graphene great potential as catalyst support in heterogeneous catalysis.

  13. Kinetics on NiZn Bimetallic Catalysts for Hydrogen Evolution via Selective Dehydrogenation of Methylcyclohexane to Toluene

    KAUST Repository

    Shaikh Ali, Anaam

    2017-01-18

    Liquid organic chemical hydrides are effective hydrogen storage media for easy and safe transport. The chemical couple of methylcyclohexane (MCH) and toluene (TOL) has been considered one of the feasible cycles for a hydrogen carrier, but the selective dehydrogenation of MCH to TOL has been reported using only Pt-based noble metal catalysts. This study reports MCH dehydrogenation to TOL using supported NiZn as a selective, non-noble-metal catalyst. A combined experimental and computational study was conducted to provide insight into the site requirements and reaction mechanism for MCH dehydrogenation to TOL, which were compared with those for cyclohexane (CH) dehydrogenation to benzene (BZ). The kinetic measurements carried out at 300-360°C showed an almost zero order with respect to MCH pressure in the high-pressure region (≥10 kPa) and nearly a positive half order with respective to H pressure (≤40 kPa). These kinetic data for the dehydrogenation reaction paradoxically indicate that hydrogenation of a strongly chemisorbed intermediate originating from TOL is the rate-determining step. Density functional theory (DFT) calculation confirms that the dehydrogenated TOL species at the aliphatic (methyl) position group (CHCH) were strongly adsorbed on the surface, which must be hydrogenated to desorb as TOL. This hydrogen-assisted desorption mechanism explains the essential role of excess H present in the feed in maintaining the activity of the metallic surface for hydrogenation. The rate of the CH to BZ reaction was less sensitive to H pressure than that of MCH to TOL, which can be explained by the absence of a methyl group in the structure, which in turn reduces the binding energy of the adsorbed species. DFT suggests that the improved TOL selectivity by adding Zn to Ni was due to Zn atoms preferentially occupying low-coordination sites on the surface (the corner and edge sites), which are likely the unselective sites responsible for the C-C dissociation of the

  14. Kinetics on NiZn Bimetallic Catalysts for Hydrogen Evolution via Selective Dehydrogenation of Methylcyclohexane to Toluene

    KAUST Repository

    Shaikh Ali, Anaam; Jedidi, Abdesslem; Anjum, Dalaver H.; Cavallo, Luigi; Takanabe, Kazuhiro

    2017-01-01

    Liquid organic chemical hydrides are effective hydrogen storage media for easy and safe transport. The chemical couple of methylcyclohexane (MCH) and toluene (TOL) has been considered one of the feasible cycles for a hydrogen carrier, but the selective dehydrogenation of MCH to TOL has been reported using only Pt-based noble metal catalysts. This study reports MCH dehydrogenation to TOL using supported NiZn as a selective, non-noble-metal catalyst. A combined experimental and computational study was conducted to provide insight into the site requirements and reaction mechanism for MCH dehydrogenation to TOL, which were compared with those for cyclohexane (CH) dehydrogenation to benzene (BZ). The kinetic measurements carried out at 300-360°C showed an almost zero order with respect to MCH pressure in the high-pressure region (≥10 kPa) and nearly a positive half order with respective to H pressure (≤40 kPa). These kinetic data for the dehydrogenation reaction paradoxically indicate that hydrogenation of a strongly chemisorbed intermediate originating from TOL is the rate-determining step. Density functional theory (DFT) calculation confirms that the dehydrogenated TOL species at the aliphatic (methyl) position group (CHCH) were strongly adsorbed on the surface, which must be hydrogenated to desorb as TOL. This hydrogen-assisted desorption mechanism explains the essential role of excess H present in the feed in maintaining the activity of the metallic surface for hydrogenation. The rate of the CH to BZ reaction was less sensitive to H pressure than that of MCH to TOL, which can be explained by the absence of a methyl group in the structure, which in turn reduces the binding energy of the adsorbed species. DFT suggests that the improved TOL selectivity by adding Zn to Ni was due to Zn atoms preferentially occupying low-coordination sites on the surface (the corner and edge sites), which are likely the unselective sites responsible for the C-C dissociation of the

  15. Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu.; Zhou, Yiming; Tang, Yawen; Lu, Tianhong [College of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210097 (China)

    2010-07-01

    A series of carbon-supported bimetallic Pt-Ru catalysts with high alloying degree and different Pt/Ru atomic ratio have been prepared by a chemical reduction method in the H{sub 2}O/ethanol/tetrahydrofuran (THF) mixture solvent. The structural and electronic properties of catalysts are characterized using X-ray reflection (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM). The electrooxidation of formic acid on these Pt-Ru nanoparticles are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The results of electrochemical measurements illustrate that the alloying degree and Pt/Ru atomic ratio of Pt-Ru catalyst play an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for formic acid electrooxidation due to the bifunctional mechanism and the electronic effect. Since formic acid is an intermediate in the methanol electrooxidation on Pt electrode in acidic electrolyte, the observation provides an additional fundamental understanding of the structure-activity relationship of Pt-Ru catalyst for methanol electrooxidation. (author)

  16. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  17. Dynamic structural disorder in supported nanoscale catalysts

    International Nuclear Information System (INIS)

    Rehr, J. J.; Vila, F. D.

    2014-01-01

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale

  18. Dynamic structural disorder in supported nanoscale catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rehr, J. J.; Vila, F. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  19. 57Fe Moessbauer Studies in Mo-Fe Supported Catalysts

    International Nuclear Information System (INIS)

    Castelao-Dias, M.; Costa, B. F. O.; Quinta-Ferreira, R. M.

    2001-01-01

    Industrially, the Mo-Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Moessbauer spectroscopy which proved to be a useful technique in the choice of supported materials

  20. Performance of supported catalysts for water electrolysis

    OpenAIRE

    Gurrik, Stian

    2012-01-01

    The most active catalyst for oxygen evolution in PEM water electrolysis is ruthenium oxide. Its major drawback as a commercial catalyst is its poor stability. In a mixed oxide with iridium, ruthenium becomes more stable. However, it would be favorable to find a less expensive substitute to iridium. In this work, the dissolution potential and lifetime of mixed oxides containing ruthenium and tantalum are investigated. In order to effectively determine what effects tantalum and particle size ha...

  1. Synthesis and characterization of MCM-41-supported nano zirconia catalysts

    Directory of Open Access Journals (Sweden)

    Mohamed S. Abdel Salam

    2015-03-01

    Full Text Available Series of MCM-41 supported sulfated Zirconia (SZ catalysts with different loadings (2.5–7.5% wt. were prepared using direct impregnation method. The acquired solid catalysts were characterized structurally and chemically using X-RD, HRTEM, BET, FT-IR, Raman spectroscopy and TPD analysis. The acidity of the solid catalysts was investigated through cumene cracking and isopropanol dehydration at different temperatures. As the SZ loading increases, the surface acidity of the mesoporous catalysts was enhanced, this was reflected by the higher catalytic activity toward cumene cracking and isopropanol dehydration.

  2. Sulfidation of carbon-supported iron oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Oers, van E.M.; Kraan, van der A.M.

    1989-01-01

    The sulfidation of carbon-supported iron oxide catalysts was studied by means of in-situ Mössbauer spectroscopy at temperatures down to 4.2 K. The catalysts were dried in two different ways and then sulfided in a flow of 10% H2S in H2 at temperatures between 293 and 773 K. Thiophene

  3. Silica-supported Preyssler Nanoparticles as New Catalysts in the ...

    African Journals Online (AJOL)

    A new and efficient method for the preparation of 4(3H)-quinazolinones from the condensation of anthranilic acid, orthoester and substituted anilines, in the presence of catalytic amounts of silica-supported Preyssler nanoparticles is reported. The catalyst performs very well in comparison with other catalysts reported before.

  4. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  5. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Bimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2011-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels into hydrogen-rich reformate and deliver to the fuel cell stack with little or no sulfur. Since sulfur poisons and deactivates the reforming catalyst, robust sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization and evaluation of a series of reforming catalysts containing two noble metals (with total metal loading not exceeding 1 weight percent supported on nanoscale ceria for the steam-reforming of kerosene is reported. Due to inherent synergy, a bimetallic catalyst is superior to its monometallic analog, for the same level of loading. The choice of noble metal combination in the bimetallic formulations plays a vital and meaningful role in their performance. Presence of ruthenium and/or rhodium in formulations containing palladium showed improved sulfur tolerance and significant enhancement in their catalytic activity and stability. Rhodium was responsible for higher hydrogen yields in the logistic fuel reformate. Duration of steady hydrogen production was higher in the case of RhPd (75 h than for RuPd (68 h; hydrogen generation was stable over the longest period (88 h with RuRh containing no Pd. A mechanistic correlation between the characteristic role of precious metals in the presence of each other is discussed.

  6. Simultaneous adsorption and degradation of {gamma}-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Chang Chun; Lian Fei [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2011-10-15

    Cu amended zero valent iron bimetallic nanoparticles were synthesized by doping Cu on the surface of iron. They were incorporated with granular activated carbon (AC) to prepare supported particles (AC-Fe{sup 0}-Cu), which were used to remove {gamma}-HCH. Cu on the surface of iron enhanced the dechlorination activity of Fe{sup 0}. The dechlorination rate constant (k{sub obs}) increased with the Cu loading on the surface of iron and the maximum was achieved with 6.073% Cu. AC as a support was effective for increasing the dispersion of the nanoparticles and avoiding the agglomeration of the metallic nanoparticles. The simultaneous adsorption of {gamma}-HCH on AC accelerated the degradation rate of {gamma}-HCH by the bimetals. After reaction for 165 min, around 99% of {gamma}-HCH was removed by the solids of AC-Fe{sup 0}-Cu. In addition, AC could adsorb the degradation products. The degradation of {gamma}-HCH was mainly through dehydrochlorination and dichloroelmination based on the intermediate products detected by GC/MS. - Highlights: > Deposition of Cu on the surface of Fe enhances its dechlorination efficiency toward {gamma}-HCH. > Incorporation of the bimetallic nanoparticles with activated carbon (AC) reduces their agglomeration. > AC support increases the contact of {gamma}-HCH with the nanoparticles and enhances the degradation efficiency. > The AC support adsorbs {gamma}-HCH and its degradation products, reducing their ecological risks in water. - Impregnation of Cu amended iron on AC enhances the removal efficiency of {gamma}-HCH and reduces the concentrations of its intermediates in aqueous solution.

  7. Nitrogen-doped carbon nanotubes as a metal catalyst support

    CSIR Research Space (South Africa)

    Mabena, LF

    2011-05-01

    Full Text Available ., which are among the most commonly used heterogeneous catalyst supports (Mart??nez-Me?ndez et al. 2006). Catalyst activity depends on the particle size and appropriate dis- tance between each particle. These catalysts deposited on a support... supported Pt electrodes. Appl Catal B Environ 80:286?295 Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429?1437 Mart??nez-Me?ndez S, Henr??quez Y...

  8. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal-metal interactions

    Science.gov (United States)

    Konsolakis, Michalis; Ioakeimidis, Zisis

    2014-11-01

    Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal-metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO2, La2O3, Sm2O3), or (ii) ceria-based mixed oxides (Ce1-xSmxOδ) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu-Co/CeO2). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal-metal interactions are provided, paving the way for real-life industrial applications.

  9. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  10. Characterization of alumina supported molybdenum catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, N M; Carmo, L M.P.M.; Sachett, C M.M.; Lam, Y L [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Quimica

    1983-10-01

    In order to optimize a bifunctional catalyst (acid and hydrogenating) of Mo/Al/sub 2/O/sub 3/, oxygen adsorption at 195 K and ethanol dehydration at 480-520 K were carried out using a series of these catalysts. The increase of Mo content increased the quantity of adsorbed oxygen, thus indicating that the number of hydrogenating sites also increased. The specific activity of ethanol dehydration varied slightly, indicating that the number of acid sites remains almost constant. On the other hand, the selectivity in ethylene (versus ether) increased markedly. This may be attributed to the increase in acid force of the acid sites.

  11. Characterization of alumina supported molybdenum catalysts

    International Nuclear Information System (INIS)

    Pastura, N.M.; Carmo, L.M.P.M.; Sachett, C.M.M.; Lam, Y.L.

    1983-01-01

    In order to optimize a bifunctional catalyst (acid and hydrogenating) of Mo/Al 2 O 3 , oxygen adsorption at 195 K and ethanol dehydration at 480-520 K were carried out using a series of these catalysts. The increase of Mo content increased the quantity of adsorbed oxygen, thus indicating that the number of hydrogenating sites also increased. The specific activity of ethanol dehydration varied slightly, indicating that the number of acid sites remains almost constant. On the other hand, the selectivity in ethylene (versus ether) increased markedly. This may be attributed to the increase in acid force of the acid sites. (C.L.B.) [pt

  12. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Haibin Jiang

    2016-06-01

    Full Text Available Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  13. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Alaric C.W. [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Luwei; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Kee Leong, Weng [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Johnson, Brian F.G.; Khimyak, Tetyana [University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW (United Kingdom)

    2007-05-15

    Activity, selectivity, and coking-resistance of a series of Ni{sub x}Co{sub y} (where x,y are the respective metal loadings of 0, 1, 2 or 3 wt.%; x+y=3) bimetallic catalysts supported on CaAl{sub 2}O{sub 4}/Al{sub 2}O{sub 3} have been studied for hydrogen/synthesis gas production via the catalytic partial oxidation (CPO) of methane. Catalysts were characterized by temperature programmed reduction (TPR), transmission electron microscopy (TEM) and X-ray fluorescence multi-element analysis (XRF). Their activity for the partial oxidation of methane to hydrogen and carbon monoxide (at 1 bar, gas hourly space velocity (GHSV) of 144,000cm{sup 3}g{sup -1}h{sup -1} and CH{sub 4}/O{sub 2} molar ratio of 2) was investigated, and coke deposited on the spent catalysts was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA). The activity was found to decrease in the order of Ni{sub 2}Co>Ni{sub 3}>NiCo{sub 2}>>Co{sub 3}, while CO and H{sub 2} selectivities were found to be in the order ofNi{sub 2}Co>Ni{sub 3}{approx}NiCo{sub 2}>Co{sub 3}. Ni{sub 2}Co is also shown to be more resistant to coking as compared to Ni{sub 3}, which is a current catalyst of choice. Results show that not only does Ni{sub 2}Co have the highest activity and selectivity among all the catalysts tested, it is also relatively resistant to coking. This finding would be helpful for catalyst design to achieve high coking resistivity catalysts for hydrogen production from CPO of methane. (author)

  14. Thermal and electrochemical stability of tungsten carbide catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Materials Engineering, University of British Columbia, Vancouver, BC (Canada); Campbell, S. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC (Canada)

    2007-02-10

    The thermal and electrochemical stability of tungsten carbide (WC), with and without a catalyst dispersed on it, have been investigated to evaluate the potential suitability of the material as an oxidation-resistant catalyst support. Standard techniques currently used to disperse Pt on carbon could not be used to disperse Pt on WC, so an alternative method was developed and used to disperse Pt on both commercially available WC and on carbon for comparison of stability. Electrochemical testing was performed by applying oxidation cycles between +0.6 V and +1.8 V to the support-catalyst material combinations and monitoring the activity of the supported catalyst over 100 oxidation cycles. Comparisons of activity change with cumulative oxidation cycles were made between C and WC supports with comparable loadings of catalyst by weight, solid volume, and powder volume. WC was found to be more thermally and electrochemically stable than currently used carbon support material Vulcan XC-72R. However, further optimization of the particle sizes and dispersion of Pt/WC catalyst/support materials and of comparison standards between new candidate materials and existing carbon-based supports are required. (author)

  15. Hydrodeoxygenation of Levulinic Acid over Supported Catalysts

    NARCIS (Netherlands)

    Luo, Wenhao|info:eu-repo/dai/nl/341385972

    2014-01-01

    Levulinic acid (LA), which can be produced from the sugar fractions of lignocellulosic biomass, is a promising sustainable platform molecule that can play a major role in future biorefineries. The work described was aimed at the development of heterogeneous catalysts for the selective conversion of

  16. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  17. Electroreduction of oxygen on carbon-supported gold catalysts

    International Nuclear Information System (INIS)

    Erikson, Heiki; Juermann, Gea; Sarapuu, Ave; Potter, Robert J.; Tammeveski, Kaido

    2009-01-01

    The electrochemical reduction of oxygen was studied on Au/C catalysts (20 and 30 wt%) in 0.5 M H 2 SO 4 and 0.1 M KOH solutions using the rotating disk electrode (RDE) method. The thickness of the Au/C-Nafion layers was varied between 1.5 and 10 μm. The specific activity of Au was independent of catalyst loading in both solutions, indicating that the transport of reactants through the catalyst layer does not limit the process of oxygen reduction under these conditions. The mass activity of 20 wt% Au/C catalysts was higher due to smaller particle size. The number of electrons involved in the reaction and the Tafel slopes were found; the values of these parameters are similar to that of bulk polycrystalline gold and indicate that the mechanism of O 2 reduction is not affected by carbon support or the catalyst configuration.

  18. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  19. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  20. Hydrogenation of carbon monoxide over supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Hashimoto, H.; Kunugi, T.

    1978-03-01

    An alumina-supported 2% palladium catalyst had higher activity for carbon monoxide hydrogenation than a silica-supported 2% palladium catalyst, at 250/sup 0/-400/sup 0/C and 1 atm. The addition of lanthanum oxide or thorium oxide, but not of potassium oxide, to the silica-supported catalyst increased the conversion at 350/sup 0/C from 1.1% to 81.0% with a selectivity of 56.1% for methane, 1.4% for C/sub 2/ compounds, 0.1% for C/sub 3/ compounds, and 42.5% for carbon dioxide. Temperature-programed desorption of carbon monoxide in a hydrogen stream showed that of two desorption peaks observed for carbon monoxide, the one at higher temperature corresponded to the carbon monoxide species which hydrogenates to methane and that the area of this peak increased with increasing thorium content of the catalyst. Graphs, tables, and 12 references.

  1. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  2. Study of the catalytic activity of supported technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhailenko, I.E.; Pokorovskaya, O.V.

    1985-01-01

    The radioactive d metal 43 Tc 99 has catalytic properties in the synthesis of ammonia. For the purpose of reducing the quantity of the radioactive metal and of increasing the specific surface, the active component was applied to BaTiO 3 and gamma-Al 2 O 3 supports. This paper uses charcoal as a support and a table presents the catalytic activity of the samples during the synthesis of ammonia. X-ray diffractometric investigation of the catalysts was carried out with the use of Cu K /SUB alpha/ radiation. It is shown that the catalysts. The values of the specific rate constants of technetium in the catalysts. The values of the specific rate constants remain practically constant for all the catalyst samples studied, attesting to the absence of a specific metal-support interaction during the synthesis of ammonia

  3. EXAFS characterization of supported metal catalysts in chemically dynamic environments

    International Nuclear Information System (INIS)

    Robota, H.J.

    1991-01-01

    Characterization of catalysts focuses on the identification of an active site responsible for accelerating desirable chemical reactions. The identification, characterization, and selective modification of such sites is fundamental to the development of structure-function relationships. Unfortunately, this goal is far from realized in nearly all catalysts, and particularly in catalysts comprised of small supported metal particles. X-ray absorption spectroscopy (XAS) has had a dramatic effect on our understanding of supported metal particles in their resting state. However, the performance of a catalyst can not be assessed from such simple resting state measurements. Among the factors which influence catalyst performance are the exact catalyst composition, including the support and any modifiers; particle size; catalyst finishing and pretreatment conditions; pressure, composition, and temperature of the operating environment; time. Gaining an understanding of how the structure of a catalytic site can change with such an array of variables requires that we begin to develop measurement methods which are effective under chemically dynamic conditions. Ideally, it should be possible to obtain a full X-ray absorption spectrum of each element thought to have a causal relationship with observed catalyst properties. From these spectra, we can optimally extract only a relatively limited amount of information which we must then piece together with information derived from other characterization methods and intuition to arrive at a hypothetical structure of the operating catalyst. Information about crystallinity, homogeneity, and general disorder can be obtained from the Debye-Waller factor. Finally, through analogy with known compounds, the electronic structure of the active atoms can be inferred from near edge absorption features

  4. Nanoparticle-Supported Molecular Polymerization Catalysts

    OpenAIRE

    Amgoune, Abderramane; Krumova, Marina; Mecking, Stefan

    2008-01-01

    Homogeneous molecular catalysts are immobilzed in a well-defined fashion on individual silica nanoparticles with a narrow particle size distribution by covalent attachment. This synthetic methodology is demonstrated with modified salicylaldiminato-substituted titanium(IV) complexes incorporating a trimethoxysilane-terminated linker: dichloro-bis[κ2-N,O-6-(3-(trimethoxysilyl)propoxyphenylimino)-2-tert-butyl-phenolato]titanium(IV) (3) and dichlorobis[κ2-N,O-6-(4-(trimethoxysilyl)propoxy-2,3,5,6...

  5. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  6. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco; Vummaleti, Sai V. C.; Buonerba, Antonio; Nisi, Assunta De; Monari, Magda; Milione, Stefano; Grassi, Alfonso; Cavallo, Luigi; Capacchione, Carmine

    2016-01-01

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco

    2016-08-25

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interfacial charge distributions in carbon-supported palladium catalysts

    DEFF Research Database (Denmark)

    Rao, Radhika G.; Blume, Raoul; Hansen, Thomas Willum

    2017-01-01

    Controlling the charge transfer between a semiconducting catalyst carrier and the supported transition metal active phase represents an elite strategy for fine turning the electronic structure of the catalytic centers, hence their activity and selectivity. These phenomena have been theoretically...... and experimentally elucidated for oxide supports but remain poorly understood for carbons due to their complex nanoscale structure. Here, we combine advanced spectroscopy and microscopy on model Pd/C samples to decouple the electronic and surface chemistry effects on catalytic performance. Our investigations reveal...... treatments can be used to tune the interfacial charge distribution, hereby providing a strategy to rationally design carbon-supported catalysts.Control over charge transfer in carbon-supported metal nanoparticles is essential for designing new catalysts. Here, the authors show that thermal treatments...

  9. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support

  10. Highly dispersed PVP-supported Ir–Ni bimetallic nanoparticles as ...

    Indian Academy of Sciences (India)

    2018-05-23

    May 23, 2018 ... high performance catalyst for degradation of metanil yellow ... Department of Chemistry, KGC, Gurukul Kangri University, Haridwar 249407, India. ∗. Author for ... dyes possess one or more azo groups and are widely used ... streams from textile plants are highly coloured in most cases. The ... from toxicity.

  11. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  12. Preparation and characterization of bimetallic catalysts supported on mesoporous silica films

    NARCIS (Netherlands)

    Muraza, O.; Rebrov, E.V.; Khimyak, T.; Johnson, B.F.G.; Kooyman, P.J.; Lafont, U.; Albouy, P.A.; Croon, de M.H.J.M.; Schouten, J.C.

    2006-01-01

    Thin (300–1000 nm) mesoporous silica coatings with hexagonal and cubic mesostructure have been prepared on Pyrex® 7740 borosilicate glass substrates by the evaporation induced self assembly assisted sol-gel route. Prior to the synthesis, a 50 nm TiO2 layer has been deposited on the substate by

  13. Support effects on hydrotreating activity of NiMo catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Diaz-Garcia, L.; Cortez de la Paz, M.T.

    2007-01-01

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS x catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts

  14. Supported chromium-molybdenum and tungsten sulfide catalysts

    International Nuclear Information System (INIS)

    Chianelli, R.R.; Jacobson, A.J.; Young, A.R.

    1988-01-01

    This patent describes the process for preparing a supported hydroprocessing catalyst. The process comprising compositing a quantity of a particulate, porous catalyst support material comprising one or more refactory oxides with one or more catalyst precursor salts and heating the composite at elevated temperature of at least about 200/sup 0/C up to about 600/sup 0/, in the presence of a sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur bearing compound is present in excess of that contained in the catalyst precursor and under oxygen-free conditions for a time sufficient to form the catalyst. The catalyst precursor salt contains a tetrathiometallate anion of Mo, W or mixture therof and a cation comprising trivalent chromium or a mixture of trivalent chromium with one or more divalent promoter metals selected from the group consisting of Fe, Ni, Co, Mn, Cu and a mixture thereof wherein the trivalent chromium and divalent promoter metals are chelated by at least one neutral, nitrogen-containing polydentate ligand, L

  15. Graphitised Carbon Nanofibres as Catalyst Support for PEMFC

    DEFF Research Database (Denmark)

    Yli-Rantala, E.; Pasanen, A.; Kauranen, P.

    2011-01-01

    (PANI) precursor. The modified surfaces were studied by FTIR and XPS and the electrochemical characterization, including long-term Pt stability tests, was performed using a low-temperature PEMFC single cell. The performance and stability of the G-CNF supported catalysts were compared with a CB supported...

  16. Preparation of Bimetallic Pd-Co Nanoparticles on Graphene Support for Use as Methanol Tolerant Oxygen Reduction Electrocatalysts

    Directory of Open Access Journals (Sweden)

    R. N. Singh

    2012-12-01

    Full Text Available Graphene-supported (40-x wt% Pd x wt% Co (0≤x≤13.33 alloys/composites have been prepared by a microwave-assisted polyol reduction method and been investigated for their structural and electrocatalytic properties for the oxygen reduction reaction (ORR in 0.5 M H2SO4 at 298 K. The study demonstrated that the bimetallic Pd-Co composite nanoparticles are, in fact, alloy nanoparticles with fcc crystalline structure. Partial substitution of Pd by Co (from 3.64 to 13.33 wt% in 40 wt% Pd/graphene decreases the lattice parameter as well as the crystallite size and increases the apparent catalytic activity, the latter, however, being the greatest with 8 wt% Co. The ORR activity of the active 32 wt% Pd 8wt% Co is found to be considerably low when it was deposited on the support multiwall carbon nanotubes under similar conditions. The rotating disk electrode study indicated that the ORR on 32 wt% Pd 8 wt% Co/GNS in 0.5 M H2SO4 follows approximately the four-electron pathway.

  17. Templating Routes to Supported Oxide Catalysts by Design

    Energy Technology Data Exchange (ETDEWEB)

    Notestein, Justin M. [Northwestern Univ., Evanston, IL (United States)

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas. First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MOx-SiO2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO2-Al2O3 acid catalysts and to control reactant selectivity in Al2O3-TiO2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported

  18. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  19. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  20. Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction

    Czech Academy of Sciences Publication Activity Database

    Demel, J.; Čejka, Jiří; Štěpnička, P.

    2010-01-01

    Roč. 329, 1-2 (2010), s. 13-20 ISSN 1381-1169 R&D Projects: GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous catalysts * immobolized catalysts * supported catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.872, year: 2010

  1. Reactions of synthesis gas on silica supported transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M. [VTT Chemical Technology, Espoo (Finland). Lab. of Industrial Chemistry

    1997-12-31

    The effect of catalyst precursor and composition on the activation of CO was investigated using CO hydrogenation as a test reaction. The interrelations of preparation, pretreatment, characteristics and activity were clarified. For Co/SiO{sub 2} catalyst, MgO promotion increased the CO adsorption capacity and the hydrogen uptake, although the extent of reduction for cobalt remained the same or decreased. The conversion per active metallic cobalt site consequently increased in conjunction with MgO promotion, while the effect on overall performance per 1 g of catalyst remained moderate. The precursor affected the performance of Co/SiO{sub 2} considerably. CO was more strongly adsorbed on catalysts of carbonyl origin than on those derived from cobalt nitrate, the activity thus being higher. Although the nitrate derived Co/SiO{sub 2} appeared both to retain its activity and to regain its adsorption capacity better than the catalysts of carbonyl origin, the performance of the latter was superior with time on stream. For tetranuclear cluster based Co-Ru and Co-Rh catalysts, rhodium or ruthenium was in contact with the support and cobalt was enriched on top. On Co-Ru/SiO{sub 2} ruthenium enhanced deactivation, and no benefits in activity or oxygenate selectivity were achieved relative to the monometallic catalysts of cluster origin. The Co-Rh/SiO{sub 2} catalysts were also less active than those derived from monometallic clusters, but they exhibited higher selectivities to oxygenated compounds due to the presence of active sites on the perimeter of the cobalt particles located on rhodium. The highest selectivity to oxygenates was achieved by changing the decomposition atmosphere of Rh{sub 4}(CO){sub 12}/SiO{sub 2} from hydrogen to carbon monoxide. The results also showed two types of active sites to be operative in the formation of oxygenates - one for ethanol and another for aldehydes. (orig.) 69 refs.

  2. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and

  3. Nanostructured catalysts for oxygen electroreduction based on bimetallic monoethanolamine complexes of Co(III) and Ni(II)

    Czech Academy of Sciences Publication Activity Database

    Pirskyy, Y.; Murafa, Nataliya; Korduban, A.M.; Šubrt, Jan

    2014-01-01

    Roč. 44, č. 11 (2014), s. 1193-1203 ISSN 0021-891X Institutional support: RVO:61388980 Keywords : Electrochemistry * Oxygen electroreduction * Electrocatalysts * Monoethanolamine complexes * Nanostructure Subject RIV: CA - Inorganic Chemistry Impact factor: 2.409, year: 2014

  4. Enhancement of Degradation and Dechlorination of Trichloroethylene via Supporting Palladium/Iron Bimetallic Nanoparticles onto Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Jianjun Wei

    2016-07-01

    Full Text Available This study is aimed to prevent the agglomeration of Pd/Fe bimetallic nanoparticles and thus improve the efficiency toward degradation and dechlorination of chlorinated organic contaminants. A mesoporous silica with a primary pore diameter of 8.3 nm and a specific surface area of 688 m2/g was prepared and used as the host of Pd/Fe nanoparticles. The Pd/Fe nanoparticles were deposited onto or into the mesoporous silica by reduction of ferrous ion and hexachloropalladate ion in aqueous phase. Batch degradation and dechlorination reactions of trichloroethylene were conducted with initial trichloroethylene concentration of 23.7 mg/L, iron loading of 203 or 1.91 × 103 mg/L and silica loading of 8.10 g/L at 25 °C. Concentration of trichloroethylene occurs on the supported Pd/Fe nanoparticles, with trichloroethylene degrading to 56% and 59% in 30 min on the supported Pd/Fe nanoparticles with weight percentage of palladium to iron at 0.075% and 0.10% respectively. The supported Pd/Fe nanoparticles exhibit better dechlorination activity. When the supported Pd/Fe nanoparticles with a weight percentage of palladium to iron of 0.10% were loaded much less than the bare counterpart, the yield of ethylene plus ethane in 10 h on them was comparable, i.e., 19% vs. 21%. This study offers a future approach to efficiently combine the reactivity of supported Pd/Fe nanoparticles and the adsorption ability of mesoporous silica.

  5. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A bimetallic catalyst, AgPd@g-C3N4, synthesized by reducing silver and palladium salts over graphitic carbon nitride (g-C3N4), enables the concerted reductive...

  6. Synthesis and characterization of bimetallic Pd-Ni catalysts in a CeO_2 matrix for the generation of H_2 by the reforming reaction of methanol

    International Nuclear Information System (INIS)

    Contreras C, R.

    2016-01-01

    The hydrothermal method was used for the synthesis of CeO_2 nano rods using Ce(NO_3)_3·6H_2O and NH_4OH. The catalytic support was calcined at 700 degrees Celsius. The synthesis of CeO_2 nano rods were impregnated with an aqueous solution of Ni(NO_3)_2·6H_2O by an incipient wetness impregnation method at an appropriate concentration to yield 5 and 15% of Ni in the catalysts. Then 0.5% of Pd was impregnated using PdCl_2. The samples obtained were calcined at 400 and reduced at 450 degrees Celsius. The catalytic materials were characterized by: temperature programmed reduction (TPR), Scanning Electron Microscopy (Sem) , surface area and X-ray diffraction (XRD) . Sem results showed that the CeO_2 is formed by nano rods and in lesser proportion semi spherical particles. Bet surface area of the catalysts decreases with Ni loading onto the CeO_2 nano rods. Pd O and Ni O were reduced at low and high temperature as was observed by TPR. The CeO_2 one-dimensional nano rods showed a highly crystalline structure with sharp diffraction peaks, with a typical fluorite structure (cubic structure of the CeO_2) and characteristic peaks corresponding to metallic Ni. No diffraction peaks of Pd were found. This is due to the low concentration of this metal in the catalyst. These catalysts showed high activity and selectivity to H_2 at maximum reaction temperature. According to the results of activity and selectivity, the catalysts with Pd-Ni are an alternative for the H_2 production in auto thermal reforming reaction of methanol. (Author)

  7. Carbon Nanofibers as Catalyst Support for Noble Metals

    NARCIS (Netherlands)

    Toebes, M.L.

    2004-01-01

    In the quest for new and well-defined support materials for heterogeneous catalysts we explored the potential of carbon nanofibers (CNF). CNF belongs to the by now extensive family of synthetic graphite-like carbon materials with advantageous and tunable physico-chemical properties. Aim of the work

  8. Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Čejka, Jiří

    2013-01-01

    Roč. 257, 21-22 (2013), s. 3107-3124 ISSN 0010-8545 R&D Projects: GA AV ČR IAA400400805; GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : Olefin metathesis * mesoporous molecular sieves * Heterogeneous catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.098, year: 2013

  9. Exceptionally Stable and Efficient Solid Supported Hoveyda-Type Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skowerski, K.; Pastva, J.; Czarnocki, S. J.; Janošcová, Jana

    2015-01-01

    Roč. 19, č. 7 (2015), s. 872-877 ISSN 1083-6160 Institutional support: RVO:61388955 Keywords : OLEFIN-METATHESIS CATALYSTS * RING-CLOSING METATHESIS * N-HETEROCYCLIC CARBENES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.922, year: 2015

  10. Polyvinylpolypyrrolidone Supported Brønsted Acidic Catalyst for Esterification

    Directory of Open Access Journals (Sweden)

    Song Wang

    2016-01-01

    Full Text Available A polyvinylpolypyrrolidone (PVPP supported Brønsted acidic catalyst ([PVPP-BS]HSO4 was prepared by coupling SO3H-functionalized polyvinylpolypyrrolidone with H2SO4 in this work. After the characterization through FT-IR, FESEM, TG, BET, and elemental analysis, it was found that 1,4-butane sultone (BS and sulfuric acid reacted with PVPP and were immobilized on PVPP surface. The prepared [PVPP-BS]HSO4 catalyst shows high catalytic activity for a series of esterification reactions and could be separated from the reacted mixture easily. Moreover, this catalyst could be recycled and reused for six times without significant loss of catalytic performance.

  11. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Qian

    2014-12-01

    Full Text Available Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2 have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO46(OH2, denoted as Ca-P-O here also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP atomic emission spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectron spectroscopy (XPS, and H2 temperature-programmed reduction (H2-TPR. This work furnishes a new catalyst system for CO oxidation and other possible reactions.

  12. Structural studies of supported tin catalysts

    Science.gov (United States)

    Nava, Noel; Viveros, Tomás

    1999-11-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Mössbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied.

  13. Structural studies of supported tin catalysts

    International Nuclear Information System (INIS)

    Nava, Noel; Viveros, Tomas

    1999-01-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Moessbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO 2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied

  14. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  15. Porous Diatomite-Immobilized Cu–Ni Bimetallic Nanocatalysts for Direct Synthesis of Dimethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2012-01-01

    Full Text Available A series of diatomite-immobilized Cu–Ni bimetallic nanocatalysts was prepared under ultrasonication and evaluated for the direct synthesis of dimethyl carbonate under various conditions. Upon being fully characterized by TPR, TPD, BET, SEM, XRD, and XPS methodologies, it is found that the bimetallic composite is effectively alloyed and well immobilized inside or outside the pore of diatomite. Under the optimal conditions of 1.2 MPa and 120∘C, the prepared catalyst with loading of 15% exhibited the highest methanol conversion of 6.50% with DMC selectivity of 91.2% as well as more than 10-hour lifetime. The possible reaction mechanism was proposed and discussed in detail. To our knowledge, this is the first report to use diatomite as a catalyst support for direct DMC synthesis from methanol and CO2.

  16. Study of the productivity of MWCNT over Fe and Fe–Co catalysts supported on SiO2, Al2O3 and MgO

    Directory of Open Access Journals (Sweden)

    S.A. Shokry

    2014-06-01

    Full Text Available In the present study, multi-walled carbon nanotubes (MWCNT were prepared in good quality and quantity, MWCNT were produced using the catalytic chemical vapor deposition (CCVD technique and the carbon source was acetylene. Different catalysts were synthesized based on iron and a mixture of iron and cobalt metal supported on SiO2, Al2O3 or MgO. The effect of parameters such as iron concentration, support type, bimetallic catalyst and the method of catalyst preparation has been investigated in the production of MWCNT. The quality of as-made nanotubes was investigated by the high-resolution transmission electron microscopy (HRTEM and thermogravimetric analysis (TGA. The best yield of MWCNT was 30 times of the amount of the used catalyst. The high yield of MWCNT was gained by 40 wt.% Fe on alumina support which was prepared by the sol–gel method. TEM analysis was done for the carbon deposit, which revealed that the walls of the MWCNT were graphitized, with regular inner channel and uniform diameter. It reflected a reasonable degree of purity. The TGA showed that MWCNT was decomposed at 635 °C by a small rate indicating a high thermal stability and well crystalline formation of the produced MWCNT.

  17. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    Science.gov (United States)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  18. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  19. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  20. Support Functionalization To Retard Ostwald Ripening in Copper Methanol Synthesis Catalysts

    NARCIS (Netherlands)

    van den Berg, Roy; Parmentier, Tanja E.; Elkjaer, Christian F.; Gommes, Cedric J.; Sehested, Jens; Helveg, Stig; de Jongh, Petra E.; de Jong, Krijn P.

    A main reason for catalyst deactivation in supported catalysts for methanol synthesis is copper particle growth. We have functionalized the support surface in order to suppress the formation and/or transport of mobile copper species and thereby catalyst deactivation. A Stober silica support was

  1. Ni–Sn-Supported ZrO2 Catalysts Modified by Indium for Selective CO2 Hydrogenation to Methanol

    KAUST Repository

    Hengne, Amol Mahalingappa

    2018-04-02

    Ni and NiSn supported on zirconia (ZrO2) and on indium (In)-incorporated zirconia (InZrO2) catalysts were prepared by a wet chemical reduction route and tested for hydrogenation of CO2 to methanol in a fixed-bed isothermal flow reactor at 250 °C. The mono-metallic Ni (5%Ni/ZrO2) catalysts showed a very high selectivity for methane (99%) during CO2 hydrogenation. Introduction of Sn to this material with the following formulation 5Ni5Sn/ZrO2 (5% Ni-5% Sn/ZrO2) showed the rate of methanol formation to be 0.0417 μmol/(gcat·s) with 54% selectivity. Furthermore, the combination NiSn supported on InZrO2 (5Ni5Sn/10InZrO2) exhibited a rate of methanol formation 10 times higher than that on 5Ni/ZrO2 (0.1043 μmol/(gcat·s)) with 99% selectivity for methanol. All of these catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy, CO2-temperature-programmed desorption, and density functional theory (DFT) studies. Addition of Sn to Ni catalysts resulted in the formation of a NiSn alloy. The NiSn alloy particle size was kept in the range of 10–15 nm, which was evidenced by HRTEM study. DFT analysis was carried out to identify the surface composition as well as the structural location of each element on the surface in three compositions investigated, namely, Ni28Sn27, Ni18Sn37, and Ni37Sn18 bimetallic nanoclusters, and results were in agreement with the STEM and electron energy-loss spectroscopy results. Also, the introduction of “Sn” and “In” helped improve the reducibility of Ni oxide and the basic strength of catalysts. Considerable details of the catalytic and structural properties of the Ni, NiSn, and NiSnIn catalyst systems were elucidated. These observations were decisive for achieving a highly efficient formation rate of methanol via CO2 by the H2 reduction process with high methanol selectivity.

  2. Fabrication of Nonenzymatic Glucose Sensors Based on Multiwalled Carbon Nanotubes with Bimetallic Pt-M (M = Ru and Sn Catalysts by Radiolytic Deposition

    Directory of Open Access Journals (Sweden)

    Sun-Young Kwon

    2012-01-01

    Full Text Available Nonenzymatic glucose sensors employing multiwalled carbon nanotubes (MWNTs with highly dispersed Pt-M (M = Ru and Sn nanoparticles (Pt-M@PVP-MWNTs were fabricated by radiolytic deposition. The Pt-M nanoparticles on the MWNTs were characterized by transmittance electron microscopy, elemental analysis, and X-ray diffraction. They were found to be well dispersed and to exhibit alloy properties on the MWNT support. Electrochemical testing showed that these nonenzymatic sensors had larger currents (mA than that of a bare glassy carbon (GC electrode and one modified with MWNTs. The sensitivity (A mM−1, linear range (mM, and detection limit (mM (S/N = 3 of the glucose sensor with the Pt-Ru catalyst in NaOH electrolyte were determined as 18.0, 1.0–2.5, 0.7, respectively. The corresponding data of the sensor with Pt-Sn catalyst were 889.0, 1.00–3.00, and 0.3, respectively. In addition, these non-enzymatic sensors can effectively avoid interference arising from the oxidation of the common interfering species ascorbic acid and uric acid in NaOH electrolyte. The experimental results show that such sensors can be applied in the detection of glucose in commercial red wine samples.

  3. New synthesis ways of supported metallic catalysts and structure-reactivity relations in catalysis by metals; Nouvelles voies de syntheses de catalyseurs metalliques supportes et relations structure-reactivite en catalyse par les metaux

    Energy Technology Data Exchange (ETDEWEB)

    Uzio, D.

    2006-01-15

    This work deals with some research studies in the field of supported metallic catalysts. In all these works have been studied the characteristics bound to the active sites and the relations between these characteristics and the catalytic performances. The genesis of colloidal suspensions of transition metallic oxide has been used for the preparation of selective hydrogenation catalysts. At first studied in the case of palladium, this new synthesis way has been used for other metals such as Pt, Ni or Co. These studies have then been developed for preparing bimetallic catalysts (PdSn) with as supplementary aim the control of the homogeneity of the bimetallic character at the scale of nano-metric particles. These works have particularly allowed to specify the chemistry of the solutions of some metallic complexes and to rationalize the chemical processes carried out in the usual fabrication processes. Studies on size effects and the study of the reactivity of the nano and sub nano-metric particle have then been developed. Indeed, the clusters containing some atoms can see their intrinsic properties varied very strongly under the influence of several parameters as the number of atoms, the nature of the support, the reactional atmosphere. Using the knowledge acquired during the preceding works (chemistry of palladium aqueous solutions), the study of new methods of preparation of particles containing very few atoms has brought new data on the properties of hyper dispersed particles as well as on the principle of sensitivity to structure. The contribution of the support to the catalytic process for the hydrogenation of different substrates has been studied too. (O.M.)

  4. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells

    Science.gov (United States)

    Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong

    2013-11-01

    Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.

  5. Mixtures of functionalized aromatic groups generated from diazonium chemistry as templates towards bimetallic species supported on carbon electrode surfaces

    International Nuclear Information System (INIS)

    Vilà, Neus; Bélanger, Daniel

    2012-01-01

    Mixtures of 4-sulfophenyl and 4-aminophenyl groups were grafted onto carbon electrodes by electrochemical reduction of their corresponding diazonium cations. Two experimental methodologies were tested in order to control primarily the composition of the binary organic films and subsequently the composition of the bimetallic Cu/Pt layers. The composition of the organic layers was controlled either by changing the ratio of the two components in solution and applying a cathodic potential at which both diazonium cations are electrochemically reduced. The organic layers were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. These binary organic films were subsequently used as templates to load bimetallic species to the carbon surface based on electrostatic interactions of 4-sulfophenyl and 4-aminophenyl groups with Cu 2+ and PtCl 6 2− ionic species dissolved in solution, respectively. The metal complexes, electrostatically bounded to the ionic sites of the grafted groups, were reduced by using NaBH 4 as reducing agent. The amount of Cu was estimated by stripping voltammetry in a sulfuric acid aqueous solution whereas adsorption/desorption of hydrogen was used to quantify the platinum present on the carbon surface. XPS analysis of the metallic surfaces was also performed to confirm the presence of the metals on the electrode surface. The results indicate that the composition of the bimetallic layers is controlled by the ratio of the 4-sulfophenyl and 4-aminophenyl grafted groups.

  6. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  7. Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials

    KAUST Repository

    Yates, Matthew D.; Logan, Bruce E.

    2014-01-01

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sustainably biotemplated palladium catalysts generated on different carbon-based support materials are examined for durability under electrochemical (oxidative) and mechanical-stress conditions. Biotemplated catalysts on carbon paper under both stresses retain 95% (at 0.6V) of the initial catalytic activity as opposed to 70% for carbon cloth and 60% for graphite. Graphite electrodes retain 95% of initial catalytic activity under a single stress. Using electrodeposited polyaniline (PANI) and polydimethylsiloxane binder increases the current density after the stress tests by 22%, as opposed to a 30% decrease for Nafion. PANI-coated electrodes retain more activity than carbon-paper electrodes under elevated mechanical (94 versus 70%) or increased oxidative (175 versus 62%) stress. Biotemplated catalytic electrodes may be useful alternatives to synthetically produce catalysts for some electrochemical applications. Sustainable electrode fabrication: The biotemplated synthesis of catalytic porous electrodes is a sustainable process and, according to the results of durability tests under electrochemical and mechanical stress, these electrodes (e.g. the Pd/carbon paper electrode shown in the picture) are durable enough to replace catalytic electrodes based on synthetic materials in certain applications.

  8. Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials

    KAUST Repository

    Yates, Matthew D.

    2014-07-30

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sustainably biotemplated palladium catalysts generated on different carbon-based support materials are examined for durability under electrochemical (oxidative) and mechanical-stress conditions. Biotemplated catalysts on carbon paper under both stresses retain 95% (at 0.6V) of the initial catalytic activity as opposed to 70% for carbon cloth and 60% for graphite. Graphite electrodes retain 95% of initial catalytic activity under a single stress. Using electrodeposited polyaniline (PANI) and polydimethylsiloxane binder increases the current density after the stress tests by 22%, as opposed to a 30% decrease for Nafion. PANI-coated electrodes retain more activity than carbon-paper electrodes under elevated mechanical (94 versus 70%) or increased oxidative (175 versus 62%) stress. Biotemplated catalytic electrodes may be useful alternatives to synthetically produce catalysts for some electrochemical applications. Sustainable electrode fabrication: The biotemplated synthesis of catalytic porous electrodes is a sustainable process and, according to the results of durability tests under electrochemical and mechanical stress, these electrodes (e.g. the Pd/carbon paper electrode shown in the picture) are durable enough to replace catalytic electrodes based on synthetic materials in certain applications.

  9. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Keith James [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  10. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane

    Science.gov (United States)

    Gao, Doudou; Zhang, Yuhong; Zhou, Liqun; Yang, Kunzhou

    2018-01-01

    The catalysts containing Cu, Ni bi-metallic nanoparticles were successfully synthesized by in-situ reduction of Cu2+ and Ni2+ salts into the highly porous and hydrothermally stable metal-organic framework MIL-101 via a simple liquid impregnation method. When the total amount of loading metal is 3 × 10-4 mol, Cu2Ni1@MIL-101 catalyst shows higher catalytic activity comparing to CuxNiy@MIL-101 with different molar ratio of Cu and Ni (x, y = 0, 0.5, 1.5, 2, 2.5, 3). Cu2Ni1@MIL-101 catalyst has the highest catalytic activity comparing to mono-metallic Cu and Ni counterparts and pure bi-metallic CuNi nanoparticles in hydrolytic dehydrogeneration of ammonia borane (AB) at room temperature. Additionally, in the hydrolysis reaction, the Cu2Ni1@MIL- 101 catalyst possesses excellent catalytic performances, which exhibit highly catalytic activity with turn over frequency (TOF) value of 20.9 mol H2 min-1 Cu mol-1 and a very low activation energy value of 32.2 kJ mol-1. The excellent catalytic activity has been successfully achieved thanks to the strong bi-metallic synergistic effects, uniform distribution of nanoparticles and the bi-functional effects between CuNi nanoparticles and the host of MIL-101. Moreover, the catalyst also displays satisfied durable stability after five cycles for the hydrolytically releasing H2 from AB. The non-noble metal catalysts have broad prospects for commercial applications in the field of hydrogen-stored materials due to the low prices and excellent catalytic activity.

  11. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications....

  12. Preparation of supported Au–Pd and Cu–Pd by the combined strong ...

    Indian Academy of Sciences (India)

    BOONTIDA PONGTHAWORNSAKUN

    2017-10-25

    Oct 25, 2017 ... Bimetallic catalyst; Au–Pd/TiO2; Cu–Pd/TiO2; strong electrostatic adsorption; electroless deposition .... The liquid samples .... composition and gas mixture product at the outlet of reactor ... the TiO2 support (no change in the deposition curve of. TiO2). ..... TrimmDL1980In Design of Industrial Catalysts (Ams-.

  13. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  14. MASS TRANSFER IN PORE STRUCTURES OF SUPPORTED CATALYSTS

    Directory of Open Access Journals (Sweden)

    F.R.C. Silva

    1997-09-01

    Full Text Available The effects of gas-solid interaction and mass transfer in fixed-bed systems of supported catalysts were analyzed for g -Al2O3 (support and Cu/g -Al2O3 (catalyst systems. Evaluations of the mass transfer coefficients in the macropores and of the diffusivity in the micropores, as formed by the crystallite agglomerates of the metallic phases, were obtained. Dynamic experiments with gaseous tracers permitted the quantification of the parameters based on models for these two pore structures. With a flow in a range of 18 cm3 s-1 to 39.98 cm3 s-1 at 45oC, 65oC and 100oC, mass transfer coefficients km =4.33x10-4 m s-1 to 7.38x10-4 m s-1 for macropore structures and diffusivities Dm =1.29x10-11 m2 s-1 to 5.35x10-11 m2 s-1 for micropore structures were estimated

  15. Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts

    DEFF Research Database (Denmark)

    Duc, Duc Truong; Ha, Hanh Nguyen; Fehrmann, Rasmus

    2011-01-01

    Silica-supported bismuth molybdate catalysts have been prepared by impregnation, structurally characterized and examined as improved catalysts for the selective oxidation of propylene to acrolein. Catalysts with a wide range of loadings (from 10 to 90 wt%) of beta bismuth molybdate (β-Bi2Mo2O9) w...

  16. Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Crajé, M.W.J.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Kraan, van der A.M.

    1990-01-01

    The transition of alumina-supported iron and iron-molybdenum catalysts from the oxidic precursor to the sulfided catalysts was systematically studied by means of in-situ Mössbauer spectroscopy at room temperature. This enabled the adjudgement of various sulfidic phases in the sulfided catalysts. The

  17. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuila, Debasish [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States); Ilias, Shamsuddin [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States)

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  18. Use of Hydrogen Chemisorption and Ethylene Hydrogenation as Predictors for Aqueous Phase Reforming of Lactose over Ni@Pt and Co@Pt Bimetallic Overlayer Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Qinghua; Skoglund, Michael D.; Zhang, Chen; Morris, Allen R.; Holles, Joseph H.

    2016-10-20

    Overlayer Pt on Ni (Ni@Pt) or Co (Co@Pt) were synthesized and tested for H2 generation from APR of lactose. H2 chemisorption descriptor showed that Ni@Pt and Co@Pt overlayer catalysts had reduced H2 adsorption strength compared to a Pt only catalyst, which agree with computational predictions. The overlayer catalysts also demonstrated lower activity for ethylene hydrogenation than the Pt only catalyst, which likely resulted from decreased H2 binding strength decreasing the surface coverage of H2. XAS results showed that overlayer catalysts exhibited higher white line intensity than the Pt catalyst, which indicates a negative d-band shift for the Pt overlayer, further providing evidence for overlayer formation. Lactose APR studies showed that lactose can be used as feedstock to produce H2 and CO under desirable reaction conditions. The Pt active sites of Ni@Pt and Co@Pt overlayer catalysts showed significantly enhanced H2 production selectivity and activity when compared with that of a Pt only catalyst. The single deposition overlayer with the largest d-band shift showed the highest H2 activity. The results suggest that overlayer formation using directed deposition technique could modify the behavior of the surface metal and ultimately modify the APR activity.

  19. SSZ-13-supported manganese oxide catalysts for low temperature ...

    Indian Academy of Sciences (India)

    YONGZHOU YE

    Their performances for the selective catalytic reduction (SCR) of NOx with NH3 were evaluated. ... catalysts have received considerable attention.2,3 More- over, catalysts ..... zeolite channels or causing agglomeration on the cat- alyst surface ...

  20. The effect of catalyst support on the RWGS reaction

    International Nuclear Information System (INIS)

    Laosiripojana, N.; Sutthisripok, W.

    2004-01-01

    'Full text:' Methane steam reforming is generally applied in order to produce synthesis gas mainly consist of hydrogen and carbon monoxide for later utilization in SOFC. This reaction is always carried out with the water gas shift reaction over a catalyst at elevated temperatures resulting in some carbon dioxide production. The CO/CO2 production selectivity strongly depends on the influence of water gas shift reaction. It was observed that the reactivity of this reaction depended on the type of support material. Stabilities, activities, and kinetics of the reverse water gas shift reaction (RWGS) for commercial nickel on CeO2, ZrO2, CeO2-ZrO2, TiO2, MgO, and Al2O3 supports were studied in order to observe the influence of the support on this reaction. According to the experiment, the activities of Ni/CeO2 toward the reverse water gas shift reaction (RWGS) were very high, and reached equilibrium level at approximately 600 o C (where the conversion of CO2 was closed to 1). Other oxide supports provided lower activities toward this reaction. It was observed that the activity of Ni/Al2O3 toward this reaction was the lowest. The kinetics of this reaction was also studied. Carbon dioxide presented positive effect on the reverse water gas shift reaction. The reaction orders in carbon dioxide were observed to be positive partial value between 0-1. It slightly decreased with increasing temperature for Ni/ CeO2 and Ni/CeO2-ZrO2, whereas it seemed to be independent of the operating temperature for other materials in the range of conditions studied. Hydrogen also showed positive effect on the reverse water gas shift reaction for all materials. The reaction order in hydrogen for all materials was observed to be the positive value and less than one for the range of conditions studied. The approximate values for all catalysts were between 0.45-0.65, and seemed to be independent of the operating temperature. The estimated values of the apparent activation energy for RWGS reaction

  1. Fuel cell testing of Pt–Ru catalysts supported on differently prepared and pretreated carbon nanotubes

    International Nuclear Information System (INIS)

    Tokarz, Wojciech; Lota, Grzegorz; Frackowiak, Elzbieta; Czerwiński, Andrzej; Piela, Piotr

    2013-01-01

    Proton-exchange membrane fuel cell (PEMFC) testing of Pt–Ru catalysts supported on differently prepared multiwall carbon nanotube (MCNT) supports was performed to elucidate the influence of the different supports on the operating characteristics of the catalysts under real direct methanol fuel cell (DMFC) anode and H 2 -PEMFC anode conditions. The MCNTs were either thin, entangled or thick, disentangled. Pretreatment of the MCNTs was also done and it was either high-temperature KOH etching or annealing (graphitization). The performance of the catalysts was compared against the performance of a commercial Pt–Ru catalyst supported on a high-surface-area carbon black. Among the different MCNT supports, the graphitized, entangled support offered the best performance in all tests, which was equal to the performance of the commercial catalyst, despite the MCNT catalyst layer was ca. 2.2 times thicker than the carbon black catalyst layer. Even for an MCNT catalyst layer, which was almost 7 times thicker than the carbon black catalyst layer, the transport limitations were not prohibitive. This confirmed the expected potential of nanotube supports for providing superior reactant transport properties of the PEMFC catalyst layers

  2. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT

    Directory of Open Access Journals (Sweden)

    A.B. da Silva

    1998-06-01

    Full Text Available Low-temperature reduced TiO2-supported Pt and Pt-Fe catalysts are much more active and selective for the liquid–phase hydrogenation of cinnamaldehyde to unsaturated cinnamyl alcohol than the corresponding carbon-supported catalysts. High-temperature reduced catalysts, where the SMSI effect should be present, are almost inactive for this reaction. There is at present no definitive explanation for this effect but an electronic metal-support interaction is most probably involved.

  3. In situ XAFS studies of the oxygen reduction reaction on carbon supported platinum and platinum nickel nano-scale alloys as cathode catalysts in fuel cells

    Science.gov (United States)

    Jia, Qingying

    Platinum based bimetallic alloys have been investigated by conducting Pt L3 and Ni K edge in situ XAFS measurements on carbon supported Pt and PtNi(1:1) nanoscale catalysts under a wide range of operating potentials. We observed that (1) the Pt-Pt bond distance in PtNi alloys is shorter than that of Pt, and the bond distance between Pt and oxygen adsorbate is longer for PtNi. (2) Pt has a tendency to stay on the surface while Ni is mostly underneath the surface. (3) While a change in oxidation of pure Pt was clearly observed at different potentials, the Pt in the PtNi alloy remained nearly oxygen-free at all potentials, but an accompanying oxidation change of Ni was observed instead. (4) PtNi has higher open circuit voltage than Pt/C. These results indicate that the chemisorption energy between Pt and oxygen adsorbate is reduced in PtNi alloys, which prevents the poison of oxygen adsorbate and hence improves the reactivity. In addition, the strain and ligand effects in PtNi nanoparticle alloys were studied by FEW calculations using experimental data as a guide to understand the factors causing the reduction of chemisorptions energy of Pt. Our calculation indicates that Pt d-band is broader and lower in energy when the bond distance between Pt is shorter, resulting in weaker chemisorption energy between Pt and absorbed oxygen atom on top, and vice verse. Meanwhile, the investigation of ligand effect shows two trends in modifying Pt's properties within alloyed transition metals. The strain effect dominates in PtNi bimetallic system, corresponding to weaker chemisorptions energy and lower white intensity of Pt L3 edge, which is in consistent with our experimental results. The implications of these results afford a good guideline in understanding the reactivity enhancement mechanism and in the context of alloy catalysts design.

  4. Propene Hydroformylation by Supported Aqueous-phase Rh-NORBOS Catalysts

    DEFF Research Database (Denmark)

    Riisager, Anders; Eriksen, Kim Michael; Hjortkjær, Jes

    2003-01-01

    The gas-phase hydroformylation reaction of propene using supported aqueous-phase (SAP) Rh-NORBOS modified catalysts in a continuous flow reactor has been examined. SAP catalysts supported on six different support materials were made by wet impregnation using solutions of the precursor complex Rh(...

  5. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films

    NARCIS (Netherlands)

    Ma, M.; Hansen, H.A.; Valenti, M.; Wang, Z.; Cao, A.; Dong, M.; Smith, W.A.

    2017-01-01

    The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized by a

  6. Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions.

    Science.gov (United States)

    Baran, Talat

    2017-06-15

    In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Electrocatalytic properties of graphite nanofibers-supported platinum catalysts for direct methanol fuel cells.

    Science.gov (United States)

    Park, Soo-Jin; Park, Jeong-Min; Seo, Min-Kang

    2009-09-01

    Graphite nanofibers (GNFs) treated at various temperatures were used as carbon supports to improve the efficiency of PtRu catalysts. The electrochemical properties of the PtRu/GNFs catalysts were then investigated to evaluate their potential for application in DMFCs. The results indicated that the particle size and dispersibility of PtRu in the catalysts were changed by heat treatment, and the electrochemical activity of the catalysts was improved. Consequently, it was found that heat treatments could have an influence on the surface and structural properties of GNFs, resulting in enhancing an electrocatalytic activity of the catalysts for DMFCs.

  8. A surface science study of model catalysts : II metal-support interactions in Cu/SiO2 model catalysts

    NARCIS (Netherlands)

    Oetelaar, van den L.C.A.; Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; Brongersma, H.H.

    1998-01-01

    The thermal stability of wet-chemically prepared Cu/SiO2 model catalysts containing nanometer-sized Cu particles on silica model supports was studied upon heating in hydrogen and ultrahigh vacuum. The surface and interface phenomena that occur are determined by the metal-support interactions.

  9. Supported quantum clusters of silver as enhanced catalysts for reduction

    Directory of Open Access Journals (Sweden)

    Leelavathi Annamalai

    2011-01-01

    Full Text Available Abstract Quantum clusters (QCs of silver such as Ag7(H2MSA7, Ag8(H2MSA8 (H2MSA, mercaptosuccinic acid were synthesized by the interfacial etching of Ag nanoparticle precursors and were loaded on metal oxide supports to prepare active catalysts. The supported clusters were characterized using high resolution transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and laser desorption ionization mass spectrometry. We used the conversion of nitro group to amino group as a model reaction to study the catalytic reduction activity of the QCs. Various aromatic nitro compounds, namely, 3-nitrophenol (3-np, 4-nitrophenol (4-np, 3-nitroaniline (3-na, and 4-nitroaniline (4-na were used as substrates. Products were confirmed using UV-visible spectroscopy and electrospray ionization mass spectrometry. The supported QCs remained active and were reused several times after separation. The rate constant suggested that the reaction followed pseudo-first-order kinetics. The turn-over frequency was 1.87 s-1 per cluster for the reduction of 4-np at 35°C. Among the substrates investigated, the kinetics followed the order, SiO2 > TiO2 > Fe2O3 > Al2O3.

  10. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    Science.gov (United States)

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  11. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  12. Glycerol valorization: dehydration to acrolein over silica-supported niobia catalysts

    NARCIS (Netherlands)

    Shiju, N.R.; Brown, D.R.; Wilson, K.; Rothenberg, G.

    2010-01-01

    The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV-Vis, XPS, N2 adsorption),

  13. Graphitized Carbon: A Promising Stable Cathode Catalyst Support Material for Long Term PEMFC Applications.

    Science.gov (United States)

    Mohanta, Paritosh Kumar; Regnet, Fabian; Jörissen, Ludwig

    2018-05-28

    Stability of cathode catalyst support material is one of the big challenges of polymer electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB) supports are not stable enough to prevent oxidation to CO₂ under fuel cell operating conditions. The feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed polyol process. The physical characterization of the prepared catalysts was performed using transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling, and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the supported catalysts of different Brunauer⁻Emmett⁻Teller (BET) surface areas with the ionomer content was also established. GC was identified as a promising candidate for catalyst support in terms of both of the stability and the performance of fuel cell.

  14. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    Science.gov (United States)

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-07

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.

  15. Phosphorus poisoning of molybdenum sulfide hydrodesulfurization catalysts supported on carbon and alumina

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Vissers, J.P.R.; Beer, de V.H.J.; Prins, R.

    1988-01-01

    Phosphorus-containing Mo sulfide catalysts supported on ¿-Al2O3 and activated carbon were evaluated for their thiophene HDS activities. Phosphorus was added as phosphoric acid to the carrier material prior to the molybdenum component. The thiophene HDS activity of the carbon-supported catalysts was

  16. The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Rasmussen, Søren Birk; Eriksen, Kim Michael

    2006-01-01

    The catalytic oxidation of SO2 to SO3 was studied over platinum based catalysts in the absence and the presence of dopants. The active metal was supported on silica gel or titania (anatase) by impregnation. The activities of the silica supported catalysts were found to follow the order PtRh/SiO2 ...

  17. Enhanced life of proton exchange membrane fuel cell catalysts using perfluorosulfonic acid stabilized carbon support

    International Nuclear Information System (INIS)

    Cheng Niancai; Mu Shichun; Chen Xiaojing; Lv Haifeng; Pan Mu; Edwards, Peter P.

    2011-01-01

    We report a new and simple solution to increase life of Pt/C catalysts using the proton-conducting polymer (perfluorosulfonic acid, PFSA) stabilized carbon support (denoted these catalysts as Pt/NFC catalysts) as compared to conventional Pt/C catalysts commonly used in PEM fuel cells. A high catalytic activity of the catalyst is observed by both CV (cyclic voltammetry) and ORR (oxygen reduction reaction) measurements. Especially, our own catalysts have a 60% better life as compared to Pt/C under electrochemically accelerated durability test conditions. The loss rate of electrochemical active area (ECA) for Pt/NFC catalysts is only 0.007 m 2 g -1 cycle -1 , compared to a value of 0.011 m 2 g -1 cycle -1 for Pt/C.

  18. Enhanced life of proton exchange membrane fuel cell catalysts using perfluorosulfonic acid stabilized carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Niancai [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Mu Shichun, E-mail: msc@whut.edu.c [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QR (United Kingdom); Chen Xiaojing; Lv Haifeng; Pan Mu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Edwards, Peter P. [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QR (United Kingdom)

    2011-02-01

    We report a new and simple solution to increase life of Pt/C catalysts using the proton-conducting polymer (perfluorosulfonic acid, PFSA) stabilized carbon support (denoted these catalysts as Pt/NFC catalysts) as compared to conventional Pt/C catalysts commonly used in PEM fuel cells. A high catalytic activity of the catalyst is observed by both CV (cyclic voltammetry) and ORR (oxygen reduction reaction) measurements. Especially, our own catalysts have a 60% better life as compared to Pt/C under electrochemically accelerated durability test conditions. The loss rate of electrochemical active area (ECA) for Pt/NFC catalysts is only 0.007 m{sup 2} g{sup -1} cycle{sup -1}, compared to a value of 0.011 m{sup 2} g{sup -1} cycle{sup -1} for Pt/C.

  19. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  20. Au and AuCu Nanoparticles Supported on SBA-15 Ordered Mesoporous Titania-Silica as Catalysts for Methylene Blue Photodegradation

    Directory of Open Access Journals (Sweden)

    Isabel Barroso-Martín

    2018-05-01

    Full Text Available The photocatalytic degradation of methylene blue (MB dye has been performed under UV irradiation in aqueous suspension, employing photocatalysts based on Au (1.5 wt % and AuCu (Au/Cu = 1, 2.0 wt %, and supported on SBA-15-ordered mesoporous silica, with and without titania (Si/Ti = 3, in order to evaluate the versatility of this mesoporous support in this type of reaction of great impact from the environmental point of view. Samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption-desorption at −196 °C, and X-ray photoelectron spectroscopy (XPS, so as to study their structural, optical, and chemical properties. All the prepared catalysts were found to be active in the test reaction. The bimetallic AuCu-based catalysts attained very high MB degradation values, in particular AuCu/SBA-15 titania-silica sample reached 100% of dye oxidation after the monitored reaction period (120 min.

  1. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    Science.gov (United States)

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  2. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  3. Selective hydrogenation of citral over supported Pt catalysts: insight into support effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States); Hu, Weiming; Deng, Baolin [University of Missouri, Department of Civil and Environmental Engineering (United States); Liang, Xinhua, E-mail: liangxin@mst.edu [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States)

    2017-04-15

    Highly dispersed platinum (Pt) nanoparticles (NPs) were deposited on various substrates by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. The substrates included multi-walled carbon nanotubes (MWCNTs), silica gel (SiO{sub 2}), commercial γ-Al{sub 2}O{sub 3}, and ALD-prepared porous Al{sub 2}O{sub 3} particles (ALD-Al{sub 2}O{sub 3}). The results of TEM analysis showed that ~1.3 nm Pt NPs were highly dispersed on all different supports. All catalysts were used for the reaction of selective hydrogenation of citral to unsaturated alcohols (UA), geraniol, and nerol. Both the structure and acidity of supports affected the activity and selectivity of Pt catalysts. Pt/SiO{sub 2} showed the highest activity due to the strong acidity of SiO{sub 2} and the conversion of citral reached 82% after 12 h with a selectivity of 58% of UA. Pt/MWCNTs showed the highest selectivity of UA, which reached 65% with a conversion of 38% due to its unique structure and electronic effect. The cycling experiments indicated that Pt/MWCNTs and Pt/ALD-Al{sub 2}O{sub 3} catalysts were more stable than Pt/SiO{sub 2}, as a result of the different interactions between the Pt NPs and the supports.

  4. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk-Zychora, A., E-mail: amikolajczuk@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Mazurkiewicz-Pawlicka, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Ciecierska, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Zimoch, A.; Opałło, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Palladium catalyst used on the cathode DFAFC is comparable to commercial platinum catalyst. • The treatment of carbon supports in nitric acid(V) increases the electrochemically available metal surface area and the catalytic activity in oxygen reduction reaction of catalysts. - Abstract: One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  5. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  6. Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

    Directory of Open Access Journals (Sweden)

    Zengfeng Guo

    2016-04-01

    Full Text Available Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR in alkaline media. X-ray photoelectron spectroscopy (XPS and high resolution transmission electron microscopy (HRTEM confirmed the existence of both Cu and CuOx in the as-prepared Pd0.9Cu0.1/C. About 74% of the Cu atoms are in their oxide form (CuO or Cu2O. Besides the synergistic effect of Cu, CuOx existed in the Pd-Cu bimetallic nanoparticles works as a promoter for the EOR. The decreased Pd 3d electron density disclosed by XPS is ascribed to the formation of CuOx and the spill-over of oxygen-containing species from CuOx to Pd. The low Pd 3d electron density will decrease the adsorption of CH3COads intermediates. As a result, the electrocatalytic activity is enhanced. The onset potential of oxide-rich Pd0.9Cu0.1/C is negative shifted 150 mV compared to Pd/C. The oxide-rich Pd0.9Cu0.1/C also exhibited high stability, which indicated that it is a candidate for the anode of direct ethanol fuel cells (DEFCs.

  7. Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications

    Science.gov (United States)

    Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun

    2014-06-01

    A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.

  8. Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts

    Directory of Open Access Journals (Sweden)

    Shū Kobayashi

    2011-05-01

    Full Text Available Continuous flow systems for hydrogenation using polysilane-supported palladium/alumina (Pd/(PSi–Al2O3 hybrid catalysts were developed. Our original Pd/(PSi–Al2O3 catalysts were used successfully in these systems and the hydrogenation of unsaturated C–C bonds and a nitro group, deprotection of a carbobenzyloxy (Cbz group, and a dehalogenation reaction proceeded smoothly. The catalyst retained high activity for at least 8 h under neat conditions.

  9. Pd nanoparticles Supported on Cellulose as a catalyst for vanillin conversion in aqueous media.

    Science.gov (United States)

    Li, Dan-Dan; Zhang, Jia-Wei; Cai, Chun

    2018-05-17

    Palladium nanoparticles were firstly anchored on modified biopolymer as an efficient catalyst for biofuel upgradation. Fluorinated compounds was grafted onto cellulose to obtain amphiphilic supports for on water reactions. Pd catalyst was prepared by straightforward deposition of metal nanoparticles on modified cellulose. The catalyst exhibited excellent catalytic activity and selectivity in hydrodeoxygenation of vanillin (a typical model compound of lignin) to 2-methoxy-4-methylphenol under atmospheric hydrogen pressure in neat water without any other additives under mild conditions.

  10. Wet chemical synthesis of nickel supported on alumina catalysts

    International Nuclear Information System (INIS)

    Freire, Ranny Rodrigues; Costa, Talita Kenya Oliveira; Morais, Ana Carla da Fonseca Ferreira; Costa, Ana Cristina Figueiredo de Melo; Freitas, Normanda Lino de

    2016-01-01

    Heterogenic catalysts are those found to be in a different phase on the reaction when compared to the reactants and products. Preferred when compared to homogeneous catalysts due to the easiness on which the separation is processed. The objective of this study is to obtain and characterize Alumina based catalysts impregnated with Nickel (Al_2O_3), by wet impregnation. The alumina was synthesized by combustion reaction. Before and after the impregnation the catalysts were characterized by X-ray diffraction (XRD), granulometric analysis, the textural analysis will be held by nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show a presence of a stable crystalline phase of Al2O3 in all the studied samples and after the impregnation the second phase formed was of NiO and NiAl_2O_4. The Al_2O_3 e Ni/Al_2O_3 catalysts resulted in clusters with a medium diameter of 18.9 and 14.2 μm, respectively. The catalysts show a medium-pore characteristic (medium pore diameter between 2 and 50 nm), the superficial area to Al_2O_3 and Ni/Al_2O_3 catalysts were 8.69 m"2/g and 5.56 m"2/g, respectively. (author)

  11. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  12. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Yang, Xiaojun, E-mail: 10100201@wit.edu.cn [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Cao, Shuo, E-mail: cao23@email.sc.edu [North America R& D Center, Clariant BU Catalysts, Louisville, 40209, KY (United States); Zhou, Jie [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Wu, Yuanxin [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Han, Jinyu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yan, Zhiguo [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Zheng, Mingming [Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Oilcrops Lipid Chemistry and Nutrition, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Polyvinyl alcohol (PVA) inhibited the sintering and reduction of Pd nanoparticles. • Activity was improved for supported Pd catalysts with PVA modified method. • PVA modified method minimized the catalyst deactivation. • This work provides an insight of the regeneration strategies for Pd catalysts. - Abstract: A series of supported palladium catalysts has been prepared through the precipitation method and the reduction method, using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as dispersants. The effects of the dispersants on the properties of catalysts were evaluated and the catalytic performance of the new materials was investigated for the oxidative carbonylation of phenol to diphenyl carbonate (DPC). The catalysts as prepared were also characterized by the X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET) measurements and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the addition of the dispersants had no effect on the crystal phase of the catalysts. However, the dispersion of Pd particles was improved when the dispersants were used. Moreover, the particle sizes of Pd nanoparticles modified by PVA were smaller than those modified by PVP. The catalysts prepared using the dispersants gave better yields of DPC than the catalysts prepared without the dispersants. The highest yield of DPC was 17.9% with the PVA-Red catalyst. The characterization results for the used catalysts showed that the Pd species in the PVA-Red catalyst remained mostly divalent and the lattice oxygen species were consumed during the reaction, which could lead to the higher catalytic activity of the PVA-Red catalyst. The experimental results confirm that PVA effectively inhibited the sintering and reduction of active Pd species in the oxidative carbonylation of phenol.

  13. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  14. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Science.gov (United States)

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  15. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei; Hengne, Amol Mahalingappa; Bhatte, Kushal Deepak; Ould-Chikh, Samy; Saih, Youssef; Basset, Jean-Marie

    2017-01-01

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction

  16. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  17. Catalytic combustion of particulate matter Catalysts of alkaline nitrates supported on hydrous zirconium

    International Nuclear Information System (INIS)

    Galdeano, N.F.; Carrascull, A.L.; Ponzi, M.I.; Lick, I.D.; Ponzi, E.N.

    2004-01-01

    In order to explore a method to remove particulate matter, catalysts of different alkaline nitrates (Li, K and Cs) supported on hydrous zirconium were prepared by the method of incipient humidity and tested as catalysts for particulate matter combustion. The catalytic activity was determined by using the temperature programmed oxidation technique (TPO), utilizing two equipments, a thermogravimetric reactor and other of fixed bed. In the first case the particulate matter/catalyst mixture was milled carefully in a mortar (tight contact) while in the second case more realistic operative conditions were used, particulate matter/catalyst mixture was made with a spatula (loose contact). All prepared catalysts showed good activity for the particulate matter combustion. The cesium catalyst was the one that presented higher activity, decreasing the combustion temperature between 200 and 250 deg. C with respect to the combustion without catalyst. The catalyst with lithium nitrate became active at higher temperature than its melting point and the same occurred with the potassium catalyst. This did not occur for the catalyst containing cesium nitrate that melts at 407 deg. C and became active from 350 deg. C

  18. Physicochemical investigations of carbon nanofiber supported Cu/ZrO2 catalyst

    International Nuclear Information System (INIS)

    Din, Israf Ud; Shaharun, Maizatul S.; Subbarao, Duvvuri; Naeem, A.

    2014-01-01

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO 2 /CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO 3 ). The CNF activated with 5% HNO 3 produced higher surface area which is 155 m 2 /g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N 2 adsorption-desorption. The results showed that increase of HNO 3 concentration reduced the surface area and porosity of the catalyst

  19. Sulphur poisoning of palladium catalysts used for methane combustion: Effect of the support

    International Nuclear Information System (INIS)

    Escandon, Lara S.; Ordonez, Salvador; Vega, Aurelio; Diez, Fernando V.

    2008-01-01

    Four different supported palladium catalysts (using alumina, silica, zirconia and titania as supports), prepared by incipient wetness impregnation, were tested as catalysts for methane oxidation in presence of sulphur dioxide. The catalyst supported on zirconia showed the best performance, whereas the silica-supported one showed the fastest deactivation. Temperature-programmed desorption experiments of the poisoned catalysts suggest that SO 2 adsorption capacity of the support plays a key role in the catalyst poisoning. In order to study the effect of promoters, expected to improve the thermal stability and thioresistance of the catalyst, commercial zirconia modified by yttrium and lantane was tested as supports. It was found that the presence of these promoters does not improve the performance of the zirconia-supported catalyst. A deactivation model - considering two different active sites (fresh and poisoning), pseudo-first order dependence on methane concentration and poisoning rate depending on sulphur concentration and fraction of non-poisoned palladium - was used for modelling the deactivation behaviour

  20. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    Science.gov (United States)

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.

  1. The role of Ni in sulfided carbon-supported Ni-Mo hydrodesulfurization catalysts

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Barthe-Zahir, N.; Beer, de V.H.J.; Prins, R.

    1991-01-01

    The thiophene hydrodesulfurization activities of Ni and Ni---Mo sulfide catalysts supported on activated carbon were measured at atmospheric pressure and the catalyst structures were studied by means of X-ray photoelectron spectroscopy, dynamic oxygen chemisorption, and chemical sulfur analysis. The

  2. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15

    NARCIS (Netherlands)

    Santen, van R.A.; Zhang, Lei; Abbenhuis, H.C.L.; Gerritsen, G.; Ní Bhriain, N.M.; Magusin, P.C.M.M.; Mezari, B.; Han, W.; Yang, Q.; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active

  3. Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts

    NARCIS (Netherlands)

    Kulazynski, M.; van Ommen, J.G.; Trawczynski, J.; Walendziewski, J.

    2002-01-01

    Combustion of trichloroethylene (TCE) on Cr2O3, V2O5, Pt or Pd catalysts supported on TiO2-SiO2 as a carrier has been investigated. It was found that oxide catalysts are very active but their activity quickly diminishes due to loss of the active component, especially at higher reaction temperatures

  4. Carbon Nanofiber Supported Transition-Metal Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    NARCIS (Netherlands)

    Jongerius, A.; Gosselink, R.W.; Dijkstra, J.; Bitter, J.H.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    Hydrodeoxygenation (HDO) studies over carbon nanofiber-supported (CNF) W2C and Mo2C catalysts were performed on guaiacol, a prototypical substrate to evaluate the potential of a catalyst for valorization of depolymerized lignin streams. Typical reactions were executed at 55 bar hydrogen pressure

  5. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  6. Cobalt supported on carbon nanofibers as catalysts for the Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Bezemer, G.L.

    2006-01-01

    The Fischer-Tropsch (FT) process converts synthesis gas (H2/CO) over a heterogeneous catalyst into hydrocarbons. Generally, cobalt catalysts supported on oxidic carriers are used for the FT process, however it appears to be difficult to obtain and maintain fully reduced cobalt particles. To overcome

  7. Metathesis of cardanol over ammonium tagged Hoveyda-Grubbs type catalyst supported on SBA-15

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Polášek, Miroslav; Zedník, J.

    2018-01-01

    Roč. 304, APR 2018 (2018), s. 127-134 ISSN 0920-5861 R&D Projects: GA ČR GA17-01440S Institutional support: RVO:61388955 Keywords : Cardanol * Flow chemistry * Hoveyda-Grubbs type catalyst * Immobilized catalyst Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.636, year: 2016

  8. Effect of the nanostructure and the surface composition of bimetallic Ni-Ru nanoparticles on the performance of CO methanation

    Science.gov (United States)

    Wang, Jing; Yuan, Changkun; Yao, Nan; Li, Xiaonian

    2018-05-01

    The Ni/SiO2 catalysts with trace Ru promoter were prepared by either polyethylene glycol (PEG)-assisted or PEG-free impregnation method and were used in CO methanation reaction. The presence of PEG molecules was beneficial to form bimetallic Ni-Ru particles with smaller size, better anti-sintering property and low-temperature reducibility on SiO2 support than the conventional PEG-free derived NiRu/SiO2 catalyst. Moreover, it was found that the low-temperature reduction at 573 K was favorable to form bimetallic Ni-Ru particles with more surface Ru atoms. This nanostructure not only allowed the electron transfer happening from Ru0 to Ni0 which led to its higher electron cloud density, but also could reduce the deposition of less reactive carbon on the catalyst. Therefore, the low-temperature reduction enhanced the reaction stability of NiRu/SiO2 catalyst. The increase of reduction temperature from 573 K to 693 K did not change the size of metallic particles, but decreased the amount of surface Ru atoms. It deactivated the catalyst due to the deposition of more less reactive carbon. Although the higher reduction temperature (e.g. 693 and 793 K) was unfavorable to the reaction stability, it created more surface defects. The amount of defects showed a volcano-shaped correlation with the reduction temperature which was consistent with the variation tendency of turnover frequency of CO conversion. Consequently, it evidenced that the amount of surface Ru atoms and defects on the bimetallic Ni-Ru particle played the critical roles on the stability and the intrinsic activity of methanation, respectively.

  9. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Kootenaei, A.H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-01-01

    Highlights: • Vanadia supported on titanate nanotube shows enhanced dispersion of vanadia. • Deactivatoin during propane ODH related to the rutile development. • Titanate nanotube transfers to anatase due to calcinations and presence of vanadia. - Abstract: Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V 2 O 5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere

  10. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Kootenaei, A.H. Shahbazi [Department of Chemical Engineering, College of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Towfighi, J., E-mail: towfighi@modares.ac.ir [Department of Chemical Engineering, College of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Khodadadi, A.; Mortazavi, Y. [Catalysis and Nanostructured Materials Laboratory, Oil and Gas Processing Center of Excellence, Department of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Vanadia supported on titanate nanotube shows enhanced dispersion of vanadia. • Deactivatoin during propane ODH related to the rutile development. • Titanate nanotube transfers to anatase due to calcinations and presence of vanadia. - Abstract: Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V{sub 2}O{sub 5} catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  11. Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study

    OpenAIRE

    Rane, S. A.; Pudi, S. M.; Biswas, P.

    2016-01-01

    The catalytic activity of Cu- or Ni monometallic and Cu-Ni bimetallic (Cu/Ni ratio = 3, 1, 0.33) catalysts supported on γ-Al2O3 and SO42–/γ-Al2O3 catalysts were evaluated for esterification of glycerol. The reactions were performed in a batch reactor under reflux at standard reaction conditions: temperature 110 °C, atmospheric pressure, glycerol to acetic acid molar ratio 1:9, and catalyst loading 0.25 g. The best catalytic activity was observed over 2 M SO42–/γ-Al2O3 catalyst, which showed t...

  12. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    International Nuclear Information System (INIS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    Highlights: ► NiW catalysts supported on TiO 2 nanotubes, titania and alumina. ► The best results are obtained with NiW/TiO 2 nanotubes in hydrodesulfurization (HDS) of thiophene. ► Active phase is Ni-WO x S y . ► Electronic promotion of W by Ti. - Abstract: High surface area TiO 2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid – Ni 3/2 PW 12 O 40 was applied as oxide precursor of the active components. The catalyst was characterized by S BET , XRD, UV–vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  13. Supported Catalysts for CO2 Methanation: A Review

    Directory of Open Access Journals (Sweden)

    Patrizia Frontera

    2017-02-01

    Full Text Available CO2 methanation is a well-known reaction that is of interest as a capture and storage (CCS process and as a renewable energy storage system based on a power-to-gas conversion process by substitute or synthetic natural gas (SNG production. Integrating water electrolysis and CO2 methanation is a highly effective way to store energy produced by renewables sources. The conversion of electricity into methane takes place via two steps: hydrogen is produced by electrolysis and converted to methane by CO2 methanation. The effectiveness and efficiency of power-to-gas plants strongly depend on the CO2 methanation process. For this reason, research on CO2 methanation has intensified over the last 10 years. The rise of active, selective, and stable catalysts is the core of the CO2 methanation process. Novel, heterogeneous catalysts have been tested and tuned such that the CO2 methanation process increases their productivity. The present work aims to give a critical overview of CO2 methanation catalyst production and research carried out in the last 50 years. The fundamentals of reaction mechanism, catalyst deactivation, and catalyst promoters, as well as a discussion of current and future developments in CO2 methanation, are also included.

  14. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Li Ning; Descorme, Claude; Besson, Michele

    2007-01-01

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3 wt.% Ru/ZrO 2 . 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3 wt.% Ru/ZrO 2 is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393 K) and lower total pressure (3 MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect

  15. Synthesis and comparison of the activities of a catalyst supported on two silicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Eduardo G., E-mail: eduardogv5007@gmail.com [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Silva, Rafael O.; Carmo, Devaney R. do [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Junior, Enes F. [Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo (Brazil); Dias Filho, Newton L., E-mail: nldias@unesc.net [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Universidade do Extremo Sul Catarinense, Av. Universitaria, 1105, CP 3167, CEP 88806-000, Criciúma, SC (Brazil)

    2017-04-15

    The focus of this work is inspecting the synthesis and comparison of the activities of a catalyst supported on two silicate materials in the epoxidation of 1-octene. The two new catalyst materials were characterized by infrared spectroscopy, elemental analysis, solid-state {sup 29}Si and {sup 13}C nuclear magnetic resonance, scanning electronic microscope (SEM) and analysis of nitrogen. Lastly, the two new catalysts, Silsesq-TCA-[(W(CO){sub 3}I{sub 2}){sub 3}] and Silica-TCA-[W(CO){sub 3}I{sub 2}] were tested as catalysts in reactions of epoxidation of 1-octene and compared with their analogue not supported [W(CO){sub 3}I{sub 2}(thiocarbamide)]. After an extensive literature search, we verified that our work is the first that has reported the immobilization process of [W(CO){sub 3}I{sub 2}(NCCH{sub 3}){sub 2}] on silsesquioxane and silica gel functionalized with propyl-thiocarbamide groups and their applications as catalysts of reactions of catalytic epoxidation of 1-octene. - Highlights: • Immobilization of [W(CO){sub 3}I{sub 2}(NCCH{sub 3}){sub 2}] complex onto mesoporous supports. • Synthesis and characterization of new mesoporous catalysts. • The new catalysts exhibit great catalytic activity in the epoxidation of 1-octene. • Recyclable catalysts with excellent reusability and stability.

  16. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  17. A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide.

    Science.gov (United States)

    Wu, Xiao; North, Michael

    2017-01-10

    A bimetallic aluminium(salphen) complex is reported as a sustainable, efficient and inexpensive catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. In the presence of this complex and tetrabutylammonium bromide, terminal and internal epoxides reacted at 50 °C and 10 bar carbon dioxide pressure to afford their corresponding cyclic carbonates in yields of 50-94 % and 30-71 % for terminal and internal cyclic carbonates, respectively. Mechanistic studies using deuterated epoxides and an analogous monometallic aluminium(salphen) chloride complex support a mechanism for catalysis by the bimetallic complex, which involves intramolecular cooperative catalysis between the two aluminium centres. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine.

    Science.gov (United States)

    Amiripour, Fatemeh; Azizi, Seyed Naser; Ghasemi, Shahram

    2018-06-01

    In this report, a facile, efficient and low cost electrochemical sensor based on bimetallic Au-Cu nanoparticles supported on P nanozeolite modified carbon paste electrode (Au-Cu/NPZ/CPE) was constructed and its efficiency for determination of hydrazine in trace level was studied. For this purpose, agro waste material, stem sweep ash (SSA) was employed as the starting material (silica source) for the synthesis of nano P zeolite (NPZ). After characterization of the synthesized NPZ by analytical instruments (scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy), construction of Au-Cu/NPZ/CPE was performed by three steps procedure involving preparation of nano P zeolite modified carbon paste electrode (NPZ/CPE), introducing Cu +2 ions into nano zeolite structure by ion exchange and electrochemical reduction of Cu +2 ions upon applying constant potential. This procedure is followed by partial replacement of Cu by Au due to galvanic replacement reaction (GRR). The electrochemical properties of hydrazine at the surface of Au-Cu/NPZ/CPE was evaluated using cyclic voltammetry (CV), amperometry, and chronoamperometry methods in 0.1 M phosphate buffer solution (PBS). It was found that the prepared sensor has higher electrocatalytic activity at a relatively lower potential compared to other modified electrodes including Au/NPZ/CPE, Cu/NPZ/CPE, Au-Cu/CPE and etc. Moreover, the proposed electrochemical sensor presented the favorable analytical properties for determination of hydrazine such as low detection limit (0.04 µM), rapid response time (3 s), wide linear range (0.01-150 mM), and high sensitivity (99.53 µA mM -1 ) that are related to the synergic effect of bimetallic of Au-Cu, porous structure and enough surface area of NPZ. In addition, capability of Au-Cu/NPZ/CPE sensor was successfully tested in real samples with good accuracy and precision. Copyright

  19. Recent Scientific Progress on Developing Supported Ni Catalysts for Dry (CO2 Reforming of Methane

    Directory of Open Access Journals (Sweden)

    Hyun Ook Seo

    2018-03-01

    Full Text Available Two major green house gases (CO2 and CH4 can be converted into useful synthetic gas (H2 and CO during dry reforming of methane (DRM reaction, and a lot of scientific efforts has been made to develop efficient catalysts for dry reforming of methane (DRM. Noble metal-based catalysts can effectively assist DRM reaction, however they are not economically viable. Alternatively, non-noble based catalysts have been studied so far, and supported Ni catalysts have been considered as a promising candidate for DRM catalyst. Main drawback of Ni catalysts is its catalytic instability under operating conditions of DRM (>700 °C. Recently, it has been demonstrated that the appropriate choice of metal-oxide supports can address this issue since the chemical and physical of metal-oxide supports can prevent coke formation and stabilize the small Ni nanoparticles under harsh conditions of DRM operation. This mini-review covers the recent scientific findings on the development of supported Ni catalysts for DRM reaction, including the synthetic methods of supported Ni nanoparticles with high sintering resistance.

  20. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    Science.gov (United States)

    Abney, Morgan B.; Karr, Laurel; Paley, Mark S.; Donovan, David N.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  1. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  2. Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner

    International Nuclear Information System (INIS)

    Sanap, Kiran K.; Varma, S.; Waghmode, S.B.; Bharadwaj, S.R.

    2015-01-01

    Highlights: • Synthesis by electroless deposition method and chemical reduction route. • Particle size of 0.1–0.5 μm & 3.5–5 nm for Pt–Pd/Wg & Pt–Pd/Cord catalysts. • Active for H_2 and O_2 reaction with initial H_2 concentration of 1.5 to 7% in air. • Active in presence of different contaminants like CO_2, CH_4, CO & relative humidity. • Enhanced resistance of Pt–Pd/Cord catalyst towards the poisoning of CO. - Abstract: Hydrogen released in nuclear reactor containment under severe accident scenario poses a threat to containment and hence needs to be regulated by catalytic recombination. Mixed noble metal catalysts with platinum–palladium supported on stainless steel wire gauze and cordierite support have been developed for this purpose. The developed catalysts have been found to be highly efficient for removal of hydrogen concentration in the range of 1.5 to 7.0% v/v in air. Though both the catalysts exhibit similar kinetics for lower hydrogen concentration, cordierite supported catalysts exhibits better kinetic rate at higher hydrogen concentration. The performances of these catalysts in presence of various probable catalytic poison like carbon monoxide and catalytic inhibitors like moisture, carbon dioxide, and hydrocarbons provide data for use of these catalysts under the actual scenario. Compared to stainless steel wire gauze supported catalyst, the cordierite based catalyst are found to exhibit enhanced resistance towards carbon monoxide and limited temperature rise for safer application at higher hydrogen concentrations.

  3. Nature of the metal-support interface in supported metal catalysts: results from x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Koningsberger, D.C.; Gates, B.C.

    1992-01-01

    X-ray absorption spectra characterizing the metal-support interface in supported metal complexes and supported metal catalysts are summarized and evaluated with 29 refs. Mononuclear transition metal complexes on non-reducible metal oxide supports are bonded with metal-oxygen bonds of .apprx.2.15

  4. The key role of biochar in the rapid removal of decabromodiphenyl ether from aqueous solution by biochar-supported Ni/Fe bimetallic nanoparticles

    Science.gov (United States)

    Yi, Yunqiang; Wu, Juan; Wei, Yufen; Fang, Zhanqiang; Tsang, Eric Pokeung

    2017-07-01

    Some problems exist in the current remediation of polybrominated diphenyl ethers (PBDEs) from aqueous solution by using iron-based nanoparticles. Our efforts have contributed to the synthesis of biochar-supported Ni/Fe bimetallic nanoparticle composites (BC@Ni/Fe). Under the optimum operating parameters of BC@Ni/Fe, the morphologic analysis revealed that biochar effectively solved the agglomeration of Ni/Fe nanoparticles and the removal efficiency of BDE209 obtained by BC@Ni/Fe (91.29%) was seven times higher than the sum of biochar (2.55%) and Ni/Fe (11.22%) in 10 min. The degradation products of BDE209 in the solution and absorbed on the BC@Ni/Fe were analyzed with gas chromatography-mass spectroscopy, which indicated that the degradation of BDE209 was mainly a process of stepwise debromination. Meanwhile, compared with Ni/Fe nanoparticles, the adsorption ability of the by-products of BDE209 by BC@Ni/Fe was greater, to a certain extent, which reduced the additional environmental burden. In addition, the concentration of nickle ion leaching from the Ni/Fe nanoparticles was 3.09 mg/L; conversely, the concentration of nickle leaching from BC@Ni/Fe was not detected. This excellent performance in our study indicates a possible means to enhance the reactivity and reduce the secondary risks of Ni/Fe nanoparticles.

  5. Ni catalysts with different promoters supported on zeolite for dry reforming of methane

    KAUST Repository

    Alotaibi, Raja; Alenazey, Feraih; Alotaibi, Faisal; Wei, Nini; Al-Fatesh, Ahmed; Fakeeha, Anis

    2015-01-01

    Dry reforming of methane (DRM) is considered a high endothermic reaction with operating temperatures between 700 and 1000 °C to achieve high equilibrium conversion of CH4 and CO2 to the syngas (H2 and CO). The conventional catalysts used for DRM are Ni-based catalysts. However, many of these catalysts suffer from the short longevity due to carbon deposition. This study aims to evaluate the effect of La and Ca as promoters for Ni-based catalysts supported on two different zeolite supports, ZL (A) (BET surface area = 925 m2/g, SiO2/Al2O3 mol ratio = 5.1), and ZL (B) (BET surface area = 730 m2/g, SiO2/Al2O3 mol ratio = 12), for DRM. The physicochemical properties of the prepared catalysts were characterized with XRD, BET, TEM and TGA. These catalysts were tested for DRM in a microtubular reactor at reaction conditions of 700 °C. The catalyst activity results show that the catalysts Ni/ZL (B) and Ca-Ni/ZL (B) give the highest methane conversion (60 %) with less time on stream stability compared with promoted Ni on ZL (A). In contrast, La-containing catalysts, La-Ni/ZL (B), show more time on stream stability with minimum carbon content for the spent catalyst indicating the enhancement of the promoters to the Ni/ZL (A) and (B), but with less catalytic activity performance in terms of methane and carbon dioxide conversions due to rapid catalyst deactivation.

  6. Ni catalysts with different promoters supported on zeolite for dry reforming of methane

    KAUST Repository

    Alotaibi, Raja

    2015-07-08

    Dry reforming of methane (DRM) is considered a high endothermic reaction with operating temperatures between 700 and 1000 °C to achieve high equilibrium conversion of CH4 and CO2 to the syngas (H2 and CO). The conventional catalysts used for DRM are Ni-based catalysts. However, many of these catalysts suffer from the short longevity due to carbon deposition. This study aims to evaluate the effect of La and Ca as promoters for Ni-based catalysts supported on two different zeolite supports, ZL (A) (BET surface area = 925 m2/g, SiO2/Al2O3 mol ratio = 5.1), and ZL (B) (BET surface area = 730 m2/g, SiO2/Al2O3 mol ratio = 12), for DRM. The physicochemical properties of the prepared catalysts were characterized with XRD, BET, TEM and TGA. These catalysts were tested for DRM in a microtubular reactor at reaction conditions of 700 °C. The catalyst activity results show that the catalysts Ni/ZL (B) and Ca-Ni/ZL (B) give the highest methane conversion (60 %) with less time on stream stability compared with promoted Ni on ZL (A). In contrast, La-containing catalysts, La-Ni/ZL (B), show more time on stream stability with minimum carbon content for the spent catalyst indicating the enhancement of the promoters to the Ni/ZL (A) and (B), but with less catalytic activity performance in terms of methane and carbon dioxide conversions due to rapid catalyst deactivation.

  7. Oxidation of Propylene on catalytic Pt-Cu/y alumina. (Part I) Characterization of catalysts of Pt-Cu/y alumina for chemisorption of H2

    International Nuclear Information System (INIS)

    Carballo, Luis M; Zea, Hugo R

    1999-01-01

    In this work the effect of the composition of catalysts of Pt-Cu/y-alumina is analyzed on the superficial area it reactivates corresponding to the total oxidation of propylene. The experimental essays were also made in a differential reactor that was used so much for the characterization of the catalyst in situ by means of the measurement of the selective chemisorption of H 2 , the effects and the bimetallic interactions are discussed that frequently happen in the supported catalysts. Starting from the studies of chemical adsorption of H 2 on the supported catalysts of Pt-Cu was, by means of the application of the theory of the regular solution to the surface of the glasses and keeping in mind that the H 2 it adsorbs chemically only on the superficial atoms of Pt (it was observed that the hydrogen not it chemi-absorb on the Cu) that the Cu atoms are segregated to the surface of the bimetallic crystals

  8. Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Chunling Wei

    2016-10-01

    Full Text Available A series of vanadia catalysts supported on SBA-15 (V/SBA with a vanadia (V content ranging from 1% to 11% were prepared by an incipient wetness method. Their catalytic behavior in the dehydrogenation of isobutane to isobutene with CO2 was examined. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, and temperature-programmed reduction (TPR. It was found that these catalysts were effective for the dehydrogenation reaction, and the catalytic activity is correlated with the amount of dispersed vanadium species on the SBA-15 support. The 7% V/SBA catalyst shows the highest activity, which gives 40.8% isobutane conversion and 84.8% isobutene selectivity. The SBA-15-supported vanadia exhibits higher isobutane conversion and isobutene selectivity than the MCM-41-supported one.

  9. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    Science.gov (United States)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  10. Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports

    Directory of Open Access Journals (Sweden)

    Hermenegildo Garcia

    2014-01-01

    Full Text Available This perspective paper summarizes the use of three nanostructured carbon allotropes as metal-free catalysts (“carbocatalysts” or as supports of metal nanoparticles. After an introductory section commenting the interest of developing metal-free catalysts and main features of carbon nanoforms, the main body of this paper is focused on exemplifying the opportunities that carbon nanotubes, graphene, and diamond nanoparticles offer to develop advanced catalysts having active sites based on carbon in the absence of transition metals or as large area supports with special morphology and unique properties. The final section provides my personal view on future developments in this field.

  11. Graphene-supported platinum catalysts for fuel cells

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko; Engelbrekt, Christian; Zhang, Jingdong

    2015-01-01

    Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the...

  12. Carbon-supported iron and iron-molybdenum sulfide catalysts

    International Nuclear Information System (INIS)

    Ramselaar, W.L.T.M.

    1988-01-01

    The main objective was to describe the relations between the characteristics (composition and dispersion) of the actual sulfide phase and the catalytic activity. Attention was also paid to the influence of preparational aspects on these characteristics. The catalysts were characterized using in-situ Moessbauer spectroscopy down to 2.0 K. 254 refs.; 47 figs.; 22 tabs

  13. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei; Ball, Madelyn; Huber, George W.; Zanchet, Daniela; Dumesic, James A.

    2018-03-01

    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. The catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H2O activation on FeOx species at or near the Pt surface, mostly in the (II) oxidation state.

  14. Hydroformylation and kinetics of 1-hexene over ruthenium, cobalt and rhodium zerolite catalysts

    International Nuclear Information System (INIS)

    Wang, C.; Wei, W.

    1989-01-01

    In this paper, six kinds of catalysts were prepared by cation exchange with rhodium, ruthenium and cobalt chloropentaamino dichoride and zeolites. Effects such as support materials, PPH 3 to metal ratio, reaction temperature, total pressure, H 2 /CO ratio, reaction time and solvents have been investigated in an autoclave. The most favorable results of 1-hexene hydroformylation were obtained in the temperature range 100-150 degrees C at a pressure of 5.0MPa (H 2 /CO=1:1) and the addition of free PPh 3 . The bimetallic catalysts showed high catalytic activing for hydroformylation because of the synergistic effect of bimetallic systems. This paper reports the results of experiments and catalysts characterization by means of IR and XRD spectroscopy

  15. Process intensification by combination of activated carbon supported catalysts and alternative energy sources

    OpenAIRE

    Calvino Casilda, Vanesa; Pérez-Mayoral, E.

    2014-01-01

    [EN] Activated carbons are well known for their catalytic properties and for being used as a catalyst support in heterogeneous catalysis. Activated carbons possess most of the desired properties of a catalyst support; inertness towards unwanted reactions, stability under regeneration and reaction conditions, suitable mechanical properties, tunable surface area, porosity, and the possibility of being manufactured in different size and shape. On the other hand, the in...

  16. Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene

    KAUST Repository

    Zwaschka, Gregor; Rondelli, Manuel; Krause, Maximilian; Rö tzer, Marian David; Hedhili, Mohamed N.; Heiz, Ulrich; Basset, Jean-Marie; Schweinberger, Florian; D'Elia, Valerio

    2018-01-01

    The preparation of organic ligands-free, isolated tantalum oxide atoms (Ta1) and small clusters (Tan>1) on flat silicate supports was accomplished by ultra-high vacuum (UHV) techniques followed by oxidation in air. The resulting surface complexes were thoroughly characterized and tested as supported catalysts for the epoxidation of cycloalkenes. The observed catalytic performance highlights the potential of the applied method for the production of active catalysts and the study of well-defined, ligand-free metal oxide moieties.

  17. Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene

    KAUST Repository

    Zwaschka, Gregor

    2018-01-22

    The preparation of organic ligands-free, isolated tantalum oxide atoms (Ta1) and small clusters (Tan>1) on flat silicate supports was accomplished by ultra-high vacuum (UHV) techniques followed by oxidation in air. The resulting surface complexes were thoroughly characterized and tested as supported catalysts for the epoxidation of cycloalkenes. The observed catalytic performance highlights the potential of the applied method for the production of active catalysts and the study of well-defined, ligand-free metal oxide moieties.

  18. Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure.

    Science.gov (United States)

    Jarupatrakorn, Jonggol; Don Tilley, T

    2002-07-17

    A molecular precursor approach involving simple grafting procedures was used to produce site-isolated titanium-supported epoxidation catalysts of high activity and selectivity. The tris(tert-butoxy)siloxy titanium complexes Ti[OSi(O(t)Bu)(3)](4) (TiSi4), ((i)PrO)Ti[OSi(O(t)Bu)(3)](3) (TiSi3), and ((t)BuO)(3)TiOSi(O(t)Bu)(3) (TiSi) react with the hydroxyl groups of amorphous Aerosil, mesoporous MCM-41, and SBA-15 via loss of HO(t)Bu and/or HOSi(O(t)Bu)(3) and introduction of titanium species onto the silica surface. Powder X-ray diffraction, nitrogen adsorption/desorption, infrared, and diffuse reflectance ultraviolet spectroscopies were used to investigate the structures and chemical natures of the surface-bound titanium species. The titanium species exist mainly in isolated, tetrahedral coordination environments. Increasing the number of siloxide ligands in the molecular precursor decreases the amount of titanium that can be introduced this way, but also enhances the catalytic activity and selectivity for the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. In addition, the high surface area mesoporous silicas (MCM-41 and SBA-15) are more effective than amorphous silica as supports for these catalysts. Supporting TiSi3 on the SBA-15 affords highly active cyclohexene epoxidation catalysts (0.25-1.77 wt % Ti loading) that provide turnover frequencies (TOFs) of 500-1500 h(-1) after 1 h (TOFs are reduced by about half after calcination). These results demonstrate that oxygen-rich siloxide complexes of titanium are useful as precursors to supported epoxidation catalysts.

  19. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane.

    Science.gov (United States)

    Zhang, Sheng; Kang, Peng; Bakir, Mohammed; Lapides, Alexander M; Dares, Christopher J; Meyer, Thomas J

    2015-12-29

    Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world's continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd-H sites and Cu-CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices.

  20. Effect of Au Precursor and Support on the Catalytic Activity of the Nano-Au-Catalysts for Propane Complete Oxidation

    Directory of Open Access Journals (Sweden)

    Arshid M. Ali

    2015-01-01

    Full Text Available Catalytic activity of nano-Au-catalyst(s for the complete propane oxidation was investigated. The results showed that the nature of both Au precursor and support strongly influences catalytic activity of the Au-catalyst(s for the propane oxidation. Oxidation state, size, and dispersion of Au nanoparticles in the Au-catalysts, surface area, crystallinity, phase structure, and redox property of the support are the key aspects for the complete propane oxidation. Among the studied Au-catalysts, the AuHAuCl4-Ce catalyst is found to be the most active catalyst.

  1. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    Science.gov (United States)

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  2. Polymer supported organic catalysts for O2 reduction in Li-O2 batteries

    International Nuclear Information System (INIS)

    Weng, Wei; Barile, Christopher J.; Du, Peng; Abouimrane, Ali; Assary, Rajeev S.; Gewirth, Andrew A.; Curtiss, Larry A.; Amine, Khalil

    2014-01-01

    Graphical abstract: - Abstract: A novel organic catalyst has been synthesized that contains an anthraquinone moiety supported on a polymer backbone. This oxygen reduction catalyst was successfully incorporated in the cathode of Li-O 2 batteries. The addition of the anthraquinone-based catalyst improved the cycleability of the Li-O 2 battery when cycled in a tetraethylene glycol dimethyl ether electrolyte. Computational studies coupled with a wide range of analytical techniques including differential electrochemical mass spectrometry, cyclic voltammetry, electrochemical impedence spectroscopy, and X-ray diffraction were used to interrogate the Li-O 2 battery with and without the organic catalyst present. This study suggests that organic catalysts may serve as light and inexpensive alternatives to the precious metals frequently used in Li-O 2 batteries

  3. Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2015-12-01

    Full Text Available Four types of nickel catalysts supported on aluminum oxide (Ni/Al2O3 with different nickel loadings were synthesized using the co-precipitation method and were used for the hydrogenation of levulinic acid (LA to prepare γ-valerolactone (GVL. The synthesized Ni/Al2O3 catalysts exhibited excellent catalytic activity in dioxane, and the activity of the catalysts was excellent even after being used four times in dioxane. The catalytic activity in dioxane as a solvent was found to be superior to the activity in water. Nitrogen physisorption, X-ray diffraction, and transmission electron microscopy were employed to characterize the fresh and used catalysts. The effects of the nickel loading, temperature, hydrogen pressure, and substrate/catalyst ratio on the catalytic activity were investigated.

  4. FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Nonnekens, R.C.H.; Niemantsverdriet, J.W.

    1986-01-01

    A series of TiO 2 -supported bimetallic FeRu catalysts with different Fe:Ru ratios (infinity; 10:1; 3:1; 1:1; 1:3) has been studied by means of in situ Moessbauer spectroscopy. The influence of reduction and Fischer-Tropsch synthesis on the state of iron in the FeRu/TiO 2 catalysts is derived. (Auth.)

  5. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  6. Kinetic modelling of slurry polymerization of ethylene with a polymer supported Ziegler-Natta catalyst (hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, A.

    1996-12-31

    The kinetics of polymerization of ethylene catalyzed by a polymer supported Ziegler-Natta catalyst were investigated in a semi-batch reactor system. The influences of six polymerization variables were investigated using a central composite design. The variables were monomer partial pressure, catalyst loading, co-catalyst loading, catalyst particle size and hydrogen to monomer ratio. The influence of temperature on rate and polymer properties were investigated. Empirical models were fitted to the experimental data to quantify the effects of the polymerization variables on the rate characteristics and polymer properties. The rate of polymerization exhibited a first order dependency with respect to monomer partial pressure, but a nonlinear relationship with respect to catalyst loading. In the absence of hydrogen, the polymerization rate showed a non-decaying profile at the centre point conditions for the other variables. Catalyst loading and catalyst particle size had a negligible effect on weight-and-number-average molecular weights, while increasing co-catalysts loading lowered the molecular weights, as did increased temperature and hydrogen concentration. refs., figs.

  7. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    Science.gov (United States)

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose

    This thesis presents a fundamental study of the sintering of supported nanoparticles in relation to diesel oxidation catalysts. The sintering of supported nanoparticles is an important challenge in relation to this catalyst, as well as many other catalyst systems, and a fundamental understanding...... of Pt, Pd and bimetallic Pt-Pd nanoparticles supported on a flat and homogeneous Al2O3 or SiO2 surface. By using in situ TEM on the planar model catalysts it was possible to directly monitor the detailed dynamical changes of the individual nanoparticles during exposure to oxidizing conditions...

  9. Development of supported noble metal catalyst for U(VI) to U(IV) reduction

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Varma, Salil; Bhattacharyya, K.; Tripathi, A.K.; Bharadwaj, S.R.; Jain, V.K.; Sahu, Avinash; Vincent, Tessy; Jagatap, B.N.; Wattal, P.K.

    2015-01-01

    Uranium-plutonium separation is an essential step in the PUREX process employed in spent nuclear fuel reprocessing. This partitioning in the PUREX process is achieved by selective reduction of Pu(IV) to Pu(III) using uranous nitrate as reductant and hydrazine as stabilizer. Currently in our Indian reprocessing plants, the requirement of uranous nitrate is met by electrolytic reduction of uranyl nitrate. This process, however, suffers from a major drawback of incomplete reduction with a maximum conversion of ~ 60%. Catalytic reduction of U(VI) to U(IV) is being considered as one of the promising alternatives to the electro-reduction process due to fast kinetics and near total conversion. Various catalysts involving noble metals like platinum (Adams catalyst, Pt/Al 2 O 3 , Pt/SiO 2 etc.) have been reported for the reduction. Sustained activity and stability of the catalyst under harsh reaction conditions are still the issues that need to be resolved. We present here the results on zirconia supported noble metal catalyst that is developed in BARC for reduction of uranyl nitrate to uranous nitrate. Supported noble metal catalysts with varying metal loadings (0.5 - 2 wt%) were prepared via support precipitation and noble metal impregnation. The green catalysts were reduced either by chemical reduction using hydrazine hydrate or by heating in hydrogen flow or combination of both the steps. These catalysts were characterized by various techniques such as, XRD, SEM, TEM, N 2 adsorption and H 2 chemisorption. Performance of these catalysts was evaluated for U(VI) to U(IV) reduction with uranyl nitrate feed using hydrazine as reductant. The results with the most active catalyst are named as 'BARC-CAT', which was developed in our lab. (author)

  10. Kinetics and Pathways for the Debromination of Polybrominated Diphenyl Ethers by Bimetallic and Nanoscale Zerovalent Iron: Effects of Particle Properties and Catalyst

    Science.gov (United States)

    Zhuang, Yuan; Jin, Luting; Luthy, Richard G.

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) are recognized as a new class of widely-distributed and persistent contaminants for which effective treatment and remediation technologies are needed. In this study, two kinds of commercially available nanoscale Fe° slurries (Nanofer N25 and N25S), a freeze-dried laboratory-synthesized Fe° nanoparticle (nZVI), and their palladized forms were used to investigate the effect of particle properties and catalyst on PBDE debromination kinetics and pathways. Nanofers and their palladized forms were found to debrominate PBDEs effectively. The laboratory-synthesized Fe° nanoparticles also debrominated PBDEs, but were slower due to deactivation by the freeze-drying and stabilization processes in the laboratory synthesis. An organic modifier, polyacrylic acid (PAA), bound on N25S slowed PBDE debromination by a factor of three to four compared to N25. The activity of palladized nZVI (nZVI/Pd) was optimized at 0.3 Pd/Fe wt% in our system. N25 could debrominate selected environmentally-abundant PBDEs, including BDE 209, 183, 153, 99, and 47, to end products di-BDEs, mono-BDEs and diphenyl ether (DE) in one week, while nZVI/Pd (0.3 Pd/Fe wt%) mainly resulted in DE as a final product. Step-wise major PBDE debromination pathways by unamended and palladized Fe° are described and compared. Surface precursor complex formation is an important limiting factor for palladized Fe° reduction as demonstrated by PBDE pathways where steric hindrance and rapid sequential debromination of adjacent bromines play an important role. PMID:22732301

  11. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4.

    Science.gov (United States)

    Zhang, Guojie; Su, Aiting; Du, Yannian; Qu, Jiangwen; Xu, Ying

    2014-11-01

    Syngas production by CO2 reforming of CH4 in a fixed bed reactor was investigated over a series of activated carbon (AC) supported Co catalysts as a function of Co loading (between 15 and 30wt.%) and calcination temperature (Tc=300, 400 or 500°C). The catalytic performance was assessed through CH4 and CO2 conversions and long-term stability. XRD and SEM were used to characterize the catalysts. It was found that the stability of Co/AC catalysts was strongly dependent on the Co loading and calcination temperature. For the loadings (25wt.% for Tc=300°C), stable activities have been achieved. The loading of excess Co (>wt.% 25) causes negative effects not only on the performance of the catalysts but also on the support surface properties. In addition, the experiment showed that ultrasound can enhance and promote dispersion of the active metal on the carrier, thus improving the catalytic performance of the catalyst. The catalyst activity can be long-term stably maintained, and no obvious deactivation has been observed in the first 2700min. After analyzing the characteristics, a reaction mechanism for CO2 reforming of CH4 over Co/AC catalyst was proposed. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effect of support on the activity of MoVCeZr catalyst for propane ammoxidation reaction

    International Nuclear Information System (INIS)

    Anita Ramli; Farinaa Md Jamil; Ishak Ahmad

    2010-01-01

    Mixed metal oxide catalysts based on Mo-V have been known as the most active and selective in the ammoxidation of propane to ACN. A series of MoVCeZr (5 % wt/ wt) supported with MOR, TiO 2 and MgO have been prepared by incipient wetness impregnation method for propane ammoxidation reaction to ACN. The catalyst was calcined in a two step calcination process in static air between 350 - 600 degree Celsius for 10 hour. The surface area and pore size of these catalysts were measured using physical adsorption of nitrogen following Brunauer, Emmet and Teller (BET) equation. The textural and morphological of these catalysts were determined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The activities of all catalysts were tested using a fixed-bed reactor with online gas chromatography (GC) at 420 degree Celsius and atmospheric pressure in the presence of 0.5 ml catalyst with composition consisting of 5.8:7:17.4 (propane: ammonia: air) and helium as carrier to give a total flow of 120 ml. Result shows that MoVCeZr support gives a better conversion due to the surface area and pore size characteristic of the catalyst. (author)

  13. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  14. Development of CuxFe/Al2O3 catalysts for the hydrogenation of carbon monoxide guided by magnetic methods, Moessbauer and infrared spectroscopy

    International Nuclear Information System (INIS)

    Boellaard, E.; Geus, J.W.; Bruggen, J.M. van; Kraan, A.M. van der

    1993-01-01

    A copper-iron catalyst for the hydrogenation of carbon monoxide has been prepared using a supported stoichiometric cyanide complex. Conversion of the cyanide precursor to a metallic catalyst appeared to be a precious process. Copper and iron in the bimetallic particles easily separate by thermal treatment and upon exposure to carbon monoxide, as revealed from Moessbauer and infrared spectroscopy. During Fischer-Tropsch reaction the catalyst exhibits a rapid decline of activity. Magnetisation measurements on spent catalysts indicate that the deactivation is caused by a fast conversion of metallic iron to initially unstable carbides which transform ultimately to more stable carbides. (orig.)

  15. Investigation of altenative carbon materials for fuel-cell catalyst support

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul

    In order to ensure high utilization of the catalyst material in a polymer electrolyte membrane fuel cell (PEMFC) it is usually fixed in the form of nanoparticles on a supporting material. The catalyst is platinum or a platinum alloy, and the commonly used support is carbon black (CB). Although...... structured carbon forms such as graphitized CBs, carbon nanotubes (CNTs), and carbon nanofibres (CNFs). This thesis concerns the investigation of an array of different materials which may prospec-tively replace the conventional materials used in the catalyst. The study comprised 13 carbon samples which...... nanotubes (GMWCNTs), and graphitized carbon nanofibre (CNF), while the Pt/C samples were platinized samples of some of the CNTs and CNFs (Pt/FWCNT, Pt/GMWCNT, and Pt/CNF, respectively) as well as two commercial Pt/CB reference catalysts. Comparative analyses have been performed in order to be able to assess...

  16. Synthesis of cerium oxide catalysts supported on MCM-41 molecular sieve

    International Nuclear Information System (INIS)

    Souza, E.L.S.; Barros, T.R.B.; Sousa, B.V. de

    2016-01-01

    Porous materials have been widely studied as catalysts and catalyst support. The MCM-41 structure is the one that has been most studied because of its application possibilities in chemical processes. This work aimed to obtain and characterize cerium oxide catalysts supported on MCM-41 molecular sieve. The molecular sieve was synthesized by the conventional method with the following molar composition: 1 SiO2: 0.30 CTABr: NH3 11: 144 H2O. Then, 25% w/w cerium was incorporated into the MCM-41 using the wet impregnation process and the material obtained was activated by calcination. From the XRD patterns was confirmed the structure of the molecular sieve, and were identified the cerium oxide phases in its structure. The textural catalysts characteristics were investigated by isotherms of N2 adsorption/desorption (BET method). (author)

  17. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  18. Isotopic exchange between deuterium and neohexane on supported platinum and palladium catalysts

    International Nuclear Information System (INIS)

    Eskinazi, V.

    1979-01-01

    The isotopic exchange reaction between neohexane and deuterium on supported Pt/SiO 2 and Pd/SiO 2 catalysts has been investigated in the temperature range 86.5 to 110 0 C. Rates of exchange were studied as functions of percentage of metal atoms exposed, the conditions of catalyst pretreatment, and the reaction temperature. The rates of exchange were not strongly dependent upon percentage exposed; however, the relative yields of d 1 through d 5 in the ethyl moiety or neohexane were dependent on the percentage metal atoms exposed. The Pt/SiO 2 catalysts were found to be more active for exchange than the Pd/SiO 2 catalysts by an order of magnitude. Both the turnover frequencies and the exchange pattern were observed to be influenced by the pretreatment of the catalyst. Maxima in the exchange pattern occurred at d 3 and d 5 in the case of Pt/SiO 2 and at d 5 only in the case of the Pd/SiO 2 catalysts. In order to account for the d 3 maximum observed for Pt catalysts, some extension of the Horiuti-Polanyi mechanism is required. Mechanisms by which the d 3 species might be formed are proposed and discussed. On Pd/SiO 2 catalysts exchange occurs preferentially in the ethyl substituent of the quaternary carbon atom rather than on the three methyl substituents of the quaternary carbon atom. Such preference is not observed on Pt/SiO 2 catalysts; in fact, in some cases, this preference is reversed. Whenever exchange occurs in the three methyl substituents, mostly the d 1 product is obtained. For Pt/SiO 2 catalysts, the exchange pattern appears to be influenced by steric effects, but the data suggest that factors other than steric effects are important on Pd

  19. {alpha}-Al{sub 2}O{sub 3} catalyst supports for synthesis gas production: influence of different alumina bonding agents on support and catalyst properties

    Energy Technology Data Exchange (ETDEWEB)

    Marturano, M. [Centro de Investigacion y Desarrollo en Procesos Cataliticos, La Plata (Argentina); Aglietti, E.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Gonnet (Argentina); Ferretti, O. [Centro de Investigacion y Desarrollo en Procesos Cataliticos, La Plata (Argentina)]|[Univ. Nacional de La Plata, Dept. de Ingenieria Quimica de la Facultad de Ingenieria, La Plata (Argentina)

    1997-02-01

    Aluminas are widely used as catalytic supports in chemical reactions. Reforming reactions to obtain synthesis gas requires good mechanical strength and low sintering behaviour. In this work, the influence of bentonite, aluminium phosphate and alumina gel as binder agents of a calcined {alpha}-Al{sub 2}O{sub 3} are analyzed with respect to support and catalytic properties. The {alpha}-Al{sub 2}O{sub 3} supports, calcined at 1300 C, are then impregnated with solutions of Ni and Al inorganic salts to obtain the catalysts and are finally tested in the reforming reaction of methane to synthesis gas at 500-900 C. Supports and catalysts are characterized by XRD, SEM, N{sub 2} adsorption, mechanical strength test and other techniques. Mechanical strength depends on the type and quantity of binder material used during support preparation. The influence of the support on the performance of the resulting catalyst is evidenced by means of catalytic tests. (orig.) 8 refs.

  20. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......The interaction between perfluorosulfonic acid ionomer and supported platinum catalyst is essential. It directly influences platinum accessibility, stability of carbon support and platinum, proton conductivity and electron conductivity in an electrode. In this study, we compare the adsorption...... that the platinization step modifies the surface nature of the carbon supports in terms of specific surface area, crystallinity and especially porosity; therefore, ionomer adsorption over carbon is not always representative for the ionomer adsorption over carbon supported catalyst, though indicative. Moreover...

  1. An iron-57 Moessbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1992-01-01

    57 Fe Moessbauer spectroscopy shows that titania-supported iron is reduced by treatment in hydrogen at significantly lower temperatures than corresponding silica- and alumina-supported catalysts. The metallic iron formed under hydrogen at 600deg C is partially converted to carbide by treatment in carbon monoxide and hydrogen. In contrast to its alumina- and silica-supported counterparts, the remainder of the titania-supported iron is unchanged by this gaseous mixture. The 57 Fe Moessbauer spectra of EXAFS show that iron and iridium in the titania-supported iron-iridium catalysts are reduced in hydrogen at even lower temperatures and, after treatment at 600deg C, are predominantly present as the iron-iridium alloy. The treatment of these reduced catalysts in carbon monoxide and hydrogen is shown by Moessbauer spectroscopy and EXAFS to induce the segregation of iron from the iron-iridium alloy and its conversion to iron oxide. (orig.)

  2. Design of bimetal catalysts Pt-Ni/CeO_2-1D for generation of H_2 by the reforming reaction of methanol

    International Nuclear Information System (INIS)

    Sarmiento F, I.

    2016-01-01

    CeO_2 nano rods were synthesized by hydrothermal method and were used as support for preparing catalysts bimetallic Pt Ni / CeO_2-1D. The catalysts were prepared by classical impregnation by the conventional wet method. The prepared catalysts are Pt (0.5 %) - Ni (5 %) / CeO_2 and Pt (0.5 %) - Ni (15 %) / CeO_2, which were characterized by different physico-chemical techniques: Bet, Sem, TPR and XRD, that were evaluated in the Auto thermal Steam reforming of Methanol for H_2 production. The Bet surface area results, show that the surface area of the catalysts decreases as the nominal load of Ni in the catalyst, increases. Sem shows, that the catalyst support (CeO_2-1D) and the bimetallic catalysts are conformed by nano rods. By XRD were identified the crystalline phases present, in the catalytic material: cerianite distinctive phase of cerium oxide and metallic Ni; however it was not possible to observe diffraction peaks of Platinum using this technique. The temperature-programmed reduction (TPR) analysis allowed to obtain the reduction profiles, of the different species present on the catalysts. The catalytic activity tests carried out, showed that the catalysts total 100% methanol conversion is achieved at 300 degrees Celsius, making them excellent, to be used in reactions at low temperature conditions. Selectivity towards H_2, is very similar in both catalysts, and it reaches a 50% yield per mole of methanol fed stoichiometrically. (Author)

  3. Modification by SiO2 of Alumina Support for Light Alkane Dehydrogenation Catalysts

    Directory of Open Access Journals (Sweden)

    Giyjaz E. Bekmukhamedov

    2016-10-01

    Full Text Available Due to the continuously rising demand for C3–C5 olefins it is important to improve the performance of catalysts for dehydrogenation of light alkanes. In this work the effect of modification by SiO2 on the properties of the alumina support and the chromia-alumina catalyst was studied. SiO2 was introduced by impregnation of the support with a silica sol. To characterize the supports and the catalysts the following techniques were used: low-temperature nitrogen adsorption; IR-spectroscopy; magic angle spinning 29Si nuclear magnetic resonance; temperature programmed desorption and reduction; UV-Vis-, Raman- and electron paramagnetic resonance (EPR-spectroscopy. It was shown that the modifier in amounts of 2.5–7.5 wt % distributed on the support surface in the form of SiOx-islands diminishes the interaction between the alumina support and the chromate ions (precursor of the active component. As a result, polychromates are the compounds predominantly stabilized on the surface of the modified support; under thermal activation of the catalyst and are reduced to the amorphous Cr2O3. This in turn leads to an increase in the activity of the catalyst in the dehydrogenation of isobutane.

  4. Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers

    International Nuclear Information System (INIS)

    Mansor, Noramalina; Miller, Thomas S.; Dedigama, Ishanka; Jorge, Ana Belen; Jia, Jingjing; Brázdová, Veronika; Mattevi, Cecilia; Gibbs, Chris; Hodgson, David; Shearing, Paul R.; Howard, Christopher A.; Corà, Furio; Shaffer, Milo; Brett, Daniel J.L.

    2016-01-01

    Highlights: • Graphitic carbon nitride (gCN) describes many materials with different structures. • gCNs can exhibit excellent mechanical, chemical and thermal resistance. • A major obstacle for pure gCN catalyst supports is limited electronic conductivity. • Composite/Hybrid gCN structures show excellent performance as catalyst supports. • gCNs have great potential for use in fuel calls and water electrolyzers. - Abstract: Electrochemical power sources, such as polymer electrolyte membrane fuel cells (PEMFCs), require the use of precious metal catalysts which are deposited as nanoparticles onto supports in order to minimize their mass loading and therefore cost. State-of-the-art/commercial supports are based on forms of carbon black. However, carbon supports present disadvantages including corrosion in the operating fuel cell environment and loss of catalyst activity. Here we review recent work examining the potential of different varieties of graphitic carbon nitride (gCN) as catalyst supports, highlighting their likely benefits, as well as the challenges associated with their implementation. The performance of gCN and hybrid gCN-carbon materials as PEMFC electrodes is discussed, as well as their potential for use in alkaline systems and water electrolyzers. We illustrate the discussion with examples taken from our own recent studies.

  5. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.

    Science.gov (United States)

    Zhang, Lei; Abbenhuis, Hendrikus C L; Gerritsen, Gijsbert; Bhriain, Nollaig Ní; Magusin, Pieter C M M; Mezari, Brahim; Han, Wei; van Santen, Rutger A; Yang, Qihua; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.

  6. Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Tikkanen

    2006-12-31

    The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replaced by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.

  7. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  8. Bimetallic Nanoparticles in Alternative Solvents for Catalytic Purposes

    Directory of Open Access Journals (Sweden)

    Trung Dang-Bao

    2017-07-01

    Full Text Available Bimetallic nanoparticles represent attractive catalytic systems thanks to the synergy between both partners at the atomic level, mainly induced by electronic effects which in turn are associated with the corresponding structures (alloy, core-shell, hetero-dimer. This type of engineered material can trigger changes in the kinetics of catalyzed processes by variations on the electrophilicity/nucleophilicity of the metal centers involved and also promote cooperative effects to foster organic transformations, including multi-component and multi-step processes. Solvents become a crucial factor in the conception of catalytic processes, not only due to their environmental impact, but also because they can preserve the bimetallic structure during the catalytic reaction and therefore increase the catalyst life-time. In this frame, the present review focuses on the recent works described in the literature concerning the synthesis of bimetallic nanoparticles in non-conventional solvents, i.e., other than common volatile compounds, for catalytic applications.

  9. Preparation of ethylene/1-hexene copolymers from ethylene using a fully silica-supported tandem catalyst system

    NARCIS (Netherlands)

    Karbach, Fabian F.; Macko, Tibor; Duchateau, Robbert

    2016-01-01

    A silica-supported tandem catalyst system, capable of producing ethylene/1-hexene copolymers from ethylene being the single monomer, has been investigated. As tandem couple a phenoxyimine titanium catalyst for ethylene trimerization was combined with a metallocene catalyst for α-olefin

  10. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  11. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Electrochemical evaluation of Pt-Based binary catalysts on various supports for the direct methanol fuel cell

    CSIR Research Space (South Africa)

    Khotseng, L

    2016-01-01

    Full Text Available Ru/MoO(sub2) > PtSn/TiO(sub2) > PtRu/TiO(sub2). It was also observed that catalysts supported on MWCNTs were more active than those supported on metal oxides. Furthermore, catalysts supported on MWCNTs proved to be more stable than all the other supported...

  13. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    Science.gov (United States)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  14. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    Science.gov (United States)

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  15. Polystyrene-supported pyridinium chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for selective synthesis of benzimidazoles

    Directory of Open Access Journals (Sweden)

    Parvanak Boroujeni Kaveh

    2013-01-01

    Full Text Available Polystyrene-supported pyridinium chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with pyridine followed by reaction with aluminium chloride. This catalyst was used as a new chemoselective Lewis acid catalyst for the exclusive synthesis of 2-substituted benzimidazoles from the reaction of aldehydes with o-phenylenediamines. The catalyst is stable (as a bench top catalyst and can be easily recovered and reused without appreciable change in its efficiency.

  16. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    International Nuclear Information System (INIS)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-01-01

    Highlights: • Pd catalysts supported on TiO_2, CeO_2, Al_2O_3 and SiO_2 were prepared. • Deposition-precipitation method resulted in positively charged smaller Pd particle. • Complete debromination of tetrabromobisphenol A could be achieved on Pd/TiO_2. • Pd/TiO_2 prepared by the deposition-precipitation method was more active. - Abstract: Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO_2, CeO_2, Al_2O_3 and SiO_2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N_2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO_2 was much smaller than those in im-Pd/TiO_2 and pd-Pd/TiO_2. Pd particle size of the dp-Pd/TiO_2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO_2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO_2 exhibited a much higher catalytic activity

  17. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ke [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zheng, Mengjia [Kuang Yaming Honors School, Nanjing University, Nanjing 210023 (China); Han, Yuxiang [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Xu, Zhaoyi, E-mail: zhaoyixu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zheng, Shourong [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-07-15

    Highlights: • Pd catalysts supported on TiO{sub 2}, CeO{sub 2}, Al{sub 2}O{sub 3} and SiO{sub 2} were prepared. • Deposition-precipitation method resulted in positively charged smaller Pd particle. • Complete debromination of tetrabromobisphenol A could be achieved on Pd/TiO{sub 2}. • Pd/TiO{sub 2} prepared by the deposition-precipitation method was more active. - Abstract: Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO{sub 2}, CeO{sub 2}, Al{sub 2}O{sub 3} and SiO{sub 2} were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N{sub 2} adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO{sub 2} was much smaller than those in im-Pd/TiO{sub 2} and pd-Pd/TiO{sub 2}. Pd particle size of the dp-Pd/TiO{sub 2} catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO{sub 2} catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd

  18. Secondary promoters in alumina-supported nickel-molybdenum hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.M.

    1992-01-01

    Two secondary promoters, phosphorus and fluoride, have been investigated for their influences on the physicochemical properties of alumina-supported nickel-molybdenum hydroprocessing catalysts. Model compound reactions and infrared spectroscopy were used to probe the functionalities of the different catalysts, and the catalysts were tested in the hydroprocessing of a low-nitrogen and a high-nitrogen (quinoline-spiked) gas oil feed to assess the utility of the model compound reaction studies. Fluoride-promoted catalysts with high cumene hydrocracking activity and with comparable thiophene hydrodesulphurization (HDS) activity to Ni-Mo/Al[sub 2]O[sub 3] can be prepared by coimpregnation of the F, Ni and Mo additives. Fluoride promotes the hydrogenation (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of a low-nitrogen feed. Fluoride promotes the quinoline hydrodenitrogenation (HDN) activity of Ni-Mo/Al[sub 2]O[sub 3] catalysts. Impregnation of phosphorus prior to the metal additives results in catalysts which are more active in HDS. Phosphorus increases indirectly the Broensted acidity of the catalyst by increasing the activity of the MoS[sub 2]-associated acid sites. Phosphorus promotes the HDSW and HYD activities of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of the low-N feed. A promotional effect of phosphorus is seen in quinoline HDN. P- and F-promoted Ni-MO/Al[sub 2]O[sub 3] catalysts are very active in quinoline HDN and maintain good activity in HDS and HYD of the high-N feed. Thiophene HDS was a good reaction for probing the activity of catalysts in the HDS of sterically-unhindered molecules, but an inaccurate probe for the HDS of hindered compounds.

  19. Physicochemical investigations of carbon nanofiber supported Cu/ZrO{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Din, Israf Ud, E-mail: drisraf@yahoo.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: drisraf@yahoo.com, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Naeem, A., E-mail: naeeem64@yahoo.com [National Centre of Excellence in Physical Chemistry, University of Peshawar (Pakistan)

    2014-10-24

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO{sub 2}/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO{sub 3}). The CNF activated with 5% HNO{sub 3} produced higher surface area which is 155 m{sup 2}/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N{sub 2} adsorption-desorption. The results showed that increase of HNO{sub 3} concentration reduced the surface area and porosity of the catalyst.

  20. Fe phase complexes and their thermal stability in iron phosphate catalysts supported on silica

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@gmail.com; Bharuth-Ram, K.; Harilal, A.; Singh, S.; Friedrich, H. B. [University of KwaZulu-Natal, School of Chemistry and Physics (South Africa)

    2015-04-15

    Comparative XRD and Mössbauer spectroscopy studies have been conducted on the effect of temperature on the phase transformations of an iron phosphate catalyst synthesized using the ammonia gel method (CAT1) and a commercial grade FePO {sub 4} catalyst supported on silica using wet impregnation method (CAT2). The XRD patterns of both catalysts showed the presence of iron phosphate and the tridymite phase of aluminum phosphate. Mössbauer spectra of the catalysts show that the phases present in CAT1 are thermally stable up to 500 {sup ∘}C, but CAT2 shows significant changes with the tridymite phase of iron phosphate increasing from 6 % to 29 % of the spectral area at a temperature of 500 {sup ∘}C.

  1. Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade

    Directory of Open Access Journals (Sweden)

    Ling Fei

    2012-01-01

    Full Text Available We report the preparation of two hydrocracking catalysts Pd/CoMoO4/silica and Pd/CNTs/CoMoO4/silica (CNTs, carbon nanotubes. The structure, morphologies, composition, and thermal stability of catalysts were studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, transmission electron microscopy (TEM, energy-dispersive X-ray (EDX, and thermogravimetric analysis (TGA. The catalyst activity was measured in a Parr reactor with camelina fatty acid methyl esters (FAMEs as the feed. The analysis shows that the palladium nanoparticles have been incorporated onto mesoporous silica in Pd/CoMoO4/silica or on the CNTs surface in Pd/CNTs/CoMoO4/silica catalysts. The different combinations of metals and supports have selective control cracking on heavy hydrocarbons.

  2. Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process

    Science.gov (United States)

    Lup, A. Ng K.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    Hydrodeoxygenation is an oxygen removal process that occurs in the presence of hydrogen and catalysts. This study has shown the importance of acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts in having high hydrodeoxygenation activity and selectivity. These properties are required to ensure the catalyst has high affinity for C-O or C=O bonds and the capability for the adsorption and activation of H2 and O-containing compounds. A theoretical framework of temperature programmed desorption technique was also discussed for the quantitative understanding of these properties. By using NH3-TPD, the nature and abundance of acid sites of catalyst can be determined. By using H2-TPD, the nature and abundance of metallic sites can also be determined. The desorption activation energy could also be determined based on the Redhead analysis of TPD spectra with different heating rates.

  3. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    Science.gov (United States)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  4. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R.; Werth, Charles J.

    2012-01-01

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  5. Graphene supported heterogeneous catalysts for Li–O{sub 2} batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alaf, M., E-mail: mirac.alaf@bilecik.edu.tr [Bilecik Seyh Edebali University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Gulumbe Campus, Bilecik 11210 (Turkey); Tocoglu, U.; Kartal, M.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey)

    2016-09-01

    Graphical abstract: - Highlights: • Free-standing and flexible electrodes were prepared for Li–air batteries. • α-MnO{sub 2} nanorods, Pt nanoparticles and graphene were used. • α-MnO{sub 2} and Pt catalyst improved OER/ORR kinetics. - Abstract: In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO{sub 2}/graphene, (iii) Pt/graphene (iv) α-MnO{sub 2}/Pt/graphene composite cathodes for Li–air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N{sub 2} adsorption–desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li–air batteries.

  6. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  7. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  8. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  9. Atomistic simulations of the structures of Pd-Pt bimetallic nanoparticles and nanowires

    OpenAIRE

    Yun, Kayoung; Cha, Pil-Ryung; Lee, Jaegab; Kim, Jiyoung; Nam, Ho-Seok

    2015-01-01

    Bimetallic nanoalloys such as nanoparticles and nanowires are attracting significant attention due to their vast potential applications such as in catalysis and nanoelectronics. Notably, Pd-Pt nanoparticles/nanowires are being widely recognized as catalysts and hydrogen sensors. Compared to unary systems, alloys present more structural complexity with various compositional configurations. Therefore, it is important to understand energetically preferred atomic structures of bimetallic nanoallo...

  10. Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Cho, Kyung Min; Park, Sunyoung; Song, In Kyu

    Mesoporous alumina xerogel (A-SG) is prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation.

  11. Controlled metal nitrate decomposition for the preparation of supported metal Catalysts

    NARCIS (Netherlands)

    Wolters, M.

    2010-01-01

    High surface area supported metal (oxide) catalysts are essential for the production of fuels, chemicals, pharmaceuticals and the abatement of environmental pollution. Impregnation of high surface area supports, often silica or alumina, followed by drying, calcination and reduction is one of the

  12. Metathesis of cardanol over Ru catalysts supported on mesoporousmolecular sieve SBA-15

    Czech Academy of Sciences Publication Activity Database

    Shinde, Tushar; Varga, Vojtěch; Polášek, Miroslav; Horáček, Michal; Žilková, Naděžda; Balcar, Hynek

    2014-01-01

    Roč. 478, MAY 2014 (2014), s. 138-145 ISSN 0926-860X R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : cardanol * metathesis * supported catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.942, year: 2014

  13. Effects of catalyst-support materials on the performance of fuel cells

    CSIR Research Space (South Africa)

    Ejikeme, PM

    2016-07-01

    Full Text Available The operating life of a fuel cell is expected to be thousands of hours. One of the critical components of the fuel cell that will allow for such long-life cycle is the catalyst-support material. The support material is expected, amongst others...

  14. Effects of supported (nBuCp)2ZrCl2 catalyst active center multiplicity on crystallization kinetics of ethylene homo- and copolymers

    KAUST Repository

    Atiqullah, Muhammad; Adamu, Sagir; Hossain, Mohammad Mozahar; Al-Harthi, Mamdouh A.; Anantawaraskul, Siripon; Hossaen, Anwar

    2014-01-01

    Two different supported zirconocene, that is, bis(n-butylcyclopentadienyl) zirconium dichloride (nBuCp)2ZrCl2, catalysts were synthesized. Each catalyst was used to prepare one ethylene homopolymer and one ethylene-1-hexene copolymer. Catalyst

  15. Vanadia-based SCR Catalysts Supported on Tungstated and Sulfated Zirconia: Influence of Doping with Potassium

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Boghosian, Soghomon; Kustov, Arkadii

    2007-01-01

    A series of vanadium-based SCR catalysts supported on sulfated or tungstated ZrO2 were synthesized and characterized by means of N2-BET, XRD, NH3-TPD and in situ Raman spectroscopy. The effect of potassium doping on the properties of vanadia species is studied in detail. A number of catalyst...... and morphology, the surface composition and the molecular configuration of the dispersed vanadates. It was observed that poisoning with potassium had a negligible effect on the surface vanadate species (especially the V=O stretching frequency observed by in situ Raman spectroscopy) if supported on the sulfated...... the observed decrease in V=O stretching frequency and the higher proportion of dimers and higher polymers through coordination between K+ and two neighbouring V=O. The results suggest an increased resistance towards potassium doping for the vanadia-based catalysts supported on sulfated zirconia....

  16. Carbon nanostructures as catalyst support for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, S.K.; Hamelin, J. [Quebec Univ., Trois Rivieres, PQ (Canada). Inst. de recherche sur l' hydrogene

    2008-07-01

    This paper reported on a study that investigated potential alternatives to Vulcan XC-72 as a catalyst supports for polymer electrolyte membrane fuel cells (PEMFCs). These included carbon nanostructures (CNS) prepared by high energy ball milling of graphite and transition metal catalysts, followed by heat treatment. Among the key factors discussed were the graphitic content, high surface area, microporous structure, good electrical conductivity and the ability of the material to attach functional groups. Some graphic results supporting the usage of CNS as catalyst support for PEMFCs were presented. Upon chemical oxidation, surface functional groups such as carbonyl, carboxyl, and hydroxyl were populated on the surface of CNS. Nanosized platinum particles with particle size distribution between 3 nm and 5 nm were reduced on the functionalized sites of CNS in a colloidal medium. The paper also presented cyclic voltammograms, XPS, HRTEM and PSD results. 3 refs.

  17. Montmorillonite Supported Titanium/Antimony Catalyst:Preparation, Characterization and Immobilization

    Institute of Scientific and Technical Information of China (English)

    CHEN Guiyong; WANG Xiaoqun; ZHAO Chuan; DU Shanyi

    2014-01-01

    Montmorillonite supported titanium (Ti-MMT) or antimony catalyst (Sb-MMT) has been a hot area of research on preparing polyethylene terephthalate/montmorillonite (PET/MMT) nanocomposites by in situ polymerization. So removal of Ti or Sb from Ti-MMT or Sb-MMT is not expected during in situ polymerization. Studies on immobilization of Ti or Sb on Ti-MMT or Sb-MMT are seldom reported. In this work, a series of montmorillonite supported catalysts of titanium (Ti-MMT) or antimony (Sb-MMT) and co-intercalated montmorillonite of titanium and antimony (Ti/Sb-MMT) were prepared by (1) the reaction of sodium bentonite suspension with intercalating solution containing titanium tetrachloride and/or antimony chloride, and (2) drying or calcinating the products at different temperature (100, 150, 240, 350 and 450℃). The physicochemical properties of these MMT supported catalysts were studied by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma optical emission spectrometer (ICPOES), N2 adsorption/desorption isotherms, UV-visible diffuse reflectance spectroscopy(UV-vis) and transmission electron microscopy (TEM). The immobile character of Ti or Sb on MMT supported catalysts was evaluated by a two-step method in deionized water or ethylene glycol. Several results were obtained, i e, (a) during the preparation, with an increase in drying or calcinating temperature, the amount of titanium and/or antimony species remained on these MMT supported catalysts decreased, (b) the experiments about immobile character of Ti or/and Sb showed that with an increase in drying or calcinating temperature, the immobilization of Ti and/or Sb species remained on these MMT supported catalysts increased gradually, (c) Ti-MMT calcinated at 450℃had the biggest pore volume, which means Ti-MMT had the best adsorption application prospect.

  18. Evidence for H2/D2 isotope effects on Fischer-Tropsch synthesis over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Kellner, C.S.; Bell, A.T.

    1981-01-01

    The effects of using D 2 rather than H 2 during Fischer-Tropsch synthesis were investigated using alumina- and silica-supported Ru catalysts. For the alumina-supported catalysts, the rate of CD 4 formation was 1.4 to 1.6 times faster than the formation of CH 4 . A noticeable isotope effect was also observed for higher molecular weight products. The magnitude of the isotope effects observed using the silica-supported catalyst was much smaller than that found using the alumina-supported catalysts. The formation of olefins relative to paraffins was found to be higher when H 2 rather than D 2 was used, independent of the catalyst support. The observed isotope effects are explained in terms of a mechanism for CO hydrogenation and are shown to arise from a complex combination of the kinetic and equilibrium isotope effects associated with elementary processes occurring on the catalyst surface

  19. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  20. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  1. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  2. XPS analysis of supported catalysts prepared in water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Mohd Ambar Yarmo; Wong Hoi Jin; Tan Chew Khim; Anita Ramli; Shahidan Radiman

    2002-01-01

    Catalysts supported on γ-alumina prepared by water-in-oil microemulsion were studied by X-ray photoelectron spectroscopy for comparison with catalysts prepared by wet impregnation. Comparable shifts to higher binding energies indicated a metal-support interaction where metal obtained via microemulsion is very small in size and highly dispersed. The positive binding energy shifts could be explained from a net unit positive charge remaining on the cluster in the photoemission final state in addition to the metallic screening from a redistribution of states within the bands. (Author)

  3. Development of super thin foil metal supported catalyst; Chousuhaku metal tantai shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sanji, F; Takada, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to improve warm-up performance, high heat resistance and long life durability of catalysts, the reduction of the metal support heat capacity has been focused. The effects of both reducing foil thickness and lowering cell density on low heat capacity have been investigated. As a result of engine bench and vehicle test, it was apparent that the reduction of foil thickness has greater effects. Newly developed 30 {mu} m foil thickness metal supported catalyst has quicker warm-up performance, and its structural durability up to 950degC is confirmed. 3 refs., 11 figs., 1 tab.

  4. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    Science.gov (United States)

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  5. Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    Feng Yongjun; Alonso-Vante, Nicolas

    2012-01-01

    Highlights: ► Cubic CoSe 2 a non-precious metal electrocatalyst for oxygen reduction in KOH. ► The catalyst shows four-electron transfer pathway in overall reaction. ► Catalyst has higher methanol tolerance than commercial Pt/C catalyst. - Abstract: A Carbon-supported CoSe 2 nanocatalyst has been developed as an alternative non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in alkaline medium. The catalyst was prepared via a surfactant-free route and its electrocatalytic activity for the ORR has been investigated in detail in 0.1 M KOH electrolyte at 25 °C using rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. The prepared catalyst showed promising catalytic activity towards ORR in a four-electron transfer pathway and higher tolerance to methanol compared to commercial Pt/C catalyst in 0.1 M KOH. To some extent, the increase of CoSe 2 loading on the electrode favors a faster reduction of H 2 O 2 intermediate to H 2 O.

  6. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    International Nuclear Information System (INIS)

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-01-01

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H 2 -temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H 2 /CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C 5+ selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum

  7. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H{sub 2}-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C{sub 5+} selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  8. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  9. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  10. Gas-phase Dehydration of Glycerol over Supported Silicotungstic Acids Catalysts

    International Nuclear Information System (INIS)

    Kim, Yong Tae; Park, Eun Duck; Jung, Kwang Deog

    2010-01-01

    The gas-phase dehydration of glycerol to acrolein was carried out over 10 wt % HSiW catalysts supported on different supports, viz. γ-Al 2 O 3 , SiO 2 -Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , AC, CeO 2 and MgO. The same reaction was also conducted over each support without HSiW for comparison. Several characterization techniques, N 2 -physisorption, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), the temperature-programmed desorption of ammonia (NH 3 - TPD), temperature-programmed oxidation (TPO) with mass spectroscopy and CHNS analysis were employed to characterize the catalysts. The glycerol conversion generally increased with increasing amount of acid sites. Ceria showed the highest 1-hydroxyacetone selectivity at 315 .deg. C among the various metal oxides. The supported HSiW catalyst showed superior catalytic activity to that of the corresponding support. Among the supported HSiW catalysts, HSiW/ZrO 2 and HSiW/SiO 2 -Al 2 O 3 showed the highest acrolein selectivity. In the case of HSiW/ZrO 2 , the initial catalytic activity was recovered after the removal of the accumulated carbon species at 550 .deg. C in the presence of oxygen

  11. Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Brites-Nóbrega, Fernanda F. de [Chemical Engineering Department, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, CEP 87020-900 Maringá, PR (Brazil); Sanitary and Environmental Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG (Brazil); Polo, Aldino N.B.; Benedetti, Angélica M. [Chemical Engineering Department, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua da Faculdade, 645, CEP 85903-000 Toledo, PR (Brazil); Leão, Mônica M.D. [Sanitary and Environmental Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG (Brazil); Slusarski-Santana, Veronice, E-mail: veronice.santana@unioeste.br [Chemical Engineering Department, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua da Faculdade, 645, CEP 85903-000 Toledo, PR (Brazil); Fernandes-Machado, Nádia R.C. [Chemical Engineering Department, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, CEP 87020-900 Maringá, PR (Brazil)

    2013-12-15

    Highlights: • The synergic effect between ZnO and NaX was positive, which increased its activity. • The best results were obtained at pH 3 and 9 with ZnO/NaX and at pH 3 with Nb{sub 2}O{sub 5}/AC. • High degradation and considerable mineralization were attained with 10% ZnO/NaX. • ZnO and Nb{sub 2}O{sub 5} supported on NaX and AC are promising alternatives as photocatalysts. -- Abstract: This study aimed to evaluate the photocatalytic activity of ZnO and Nb{sub 2}O{sub 5} catalysts, both supported on NaX zeolite and activated charcoal (AC). The synergistic effect between oxide and support and the influence of solution pH (3, 7 and 9) on photocatalytic degradation of reactive blue 5G (C.I. 222) were analyzed. The catalysts Nb{sub 2}O{sub 5}/NaX, Nb{sub 2}O{sub 5}/AC and ZnO/NaX, ZnO/AC with 5 and 10% (wt%) were prepared by wet impregnation. The results showed that the catalysts exhibit quite different structural and textural properties. The synergic effect between ZnO and NaX support was higher than that with the activated charcoal, showing that these catalysts were more efficient. The most photoactive catalyst was 10% ZnO/NaX which showed 100% discoloration of the dye solution at pH 3, 7 and 9 after 0.5, 5 and 2 h of irradiation, respectively. The hydrolytic nature of zeolite favored the formation of surface hydroxyl radicals, which increased the activity of the photocatalyst. Thus, catalysts supported on NaX zeolite are promising for use in photocatalysis.

  12. Development of Coke-tolerant Transition Metal Catalysts for Dry Reforming of Methane

    KAUST Repository

    Al-Sabban, Bedour E.

    2016-11-07

    Dry reforming of methane (DRM) is an attractive and promising process for the conversion of methane and carbon dioxide which are the most abundant carbon sources into valuable syngas. The produced syngas, which is a mixture of hydrogen and carbon monoxide, can be used as intermediates in the manufacture of numerous chemicals. To achieve high conversion, DRM reaction is operated at high temperatures (700-900 °C) that can cause major drawbacks of catalyst deactivation by carbon deposition, metal sintering or metal oxidation. Therefore, the primary goal is to develop a metal based catalyst for DRM that can completely suppress carbon formation by designing the catalyst composition. The strategy of this work was to synthesize Ni-based catalysts all of which prepared by homogeneous deposition precipitation method (HDP) to produce nanoparticles with narrow size distribution. In addition, control the reactivity of the metal by finely tuning the bimetallic composition and the reaction conditions in terms of reaction temperature and pressure. The highly endothermic dry reforming of methane proceeds via CH4 decomposition to leave surface carbon species, followed by removal of C with CO2-derived species to give CO. Tuning the reactivity of the active metal towards these reactions during DRM allows in principle the catalyst surface to remain active and clean without carbon deposition for a long-term. The initial attempt was to improve the resistance of Ni catalyst towards carbon deposition, therefore, a series of 5 wt.% bimetallic Ni9Pt1 were supported on various metal oxides (Al2O3, CeO2, and ZrO2). The addition of small amount of noble metal improved the stability of the catalyst compared to their monometallic Ni and Pt catalysts, but still high amount of carbon (> 0.1 wt.%) was formed after 24 h of the reaction. The obtained results showed that the catalytic performance, particle size and amount of deposited carbon depends on the nature of support. Among the tested

  13. Synthesis of PtSn nanostructured catalysts supported over TiO{sub 2} and Ce-doped TiO{sub 2} particles for the electro-oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.E. [Instituto de Ingeniería Electroquímica y Corrosión (INIEC), CONICET, Universidad Nacional del Sur. Av. Alem 1253, Bahía Blanca B8000CPB (Argentina); Gravina, A.N. [Departamento de Química, INQUISUR, CONICET, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca B8000CPB (Argentina); Sieben, J.M., E-mail: jmsieben@uns.edu.ar [Instituto de Ingeniería Electroquímica y Corrosión (INIEC), CONICET, Universidad Nacional del Sur. Av. Alem 1253, Bahía Blanca B8000CPB (Argentina); Messina, P.V. [Departamento de Química, INQUISUR, CONICET, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca B8000CPB (Argentina); Duarte, M.M.E. [Instituto de Ingeniería Electroquímica y Corrosión (INIEC), CONICET, Universidad Nacional del Sur. Av. Alem 1253, Bahía Blanca B8000CPB (Argentina)

    2016-09-15

    Highlights: • PtSn particles supported on TiO2 and Ce-doped TiO2 were evaluated as catalysts for EOR. • PtSn/TiO2 showed better mass current and higher TON than PtSn/Ce–TiO2 materials. • The activity for EOR decreased markedly with increasing Ce content in the TiO2. - Abstract: PtSn/TiO2 and PtSn/Ce-doped TiO2 catalysts were synthesized and evaluated for ethanol electro-oxidation in acid media. Titanium dioxide and Ce-doped TiO2 nanoparticles were prepared by hydrothermal method followed by calcination at 923 K. Bimetallic PtSn catalysts supported on the oxide materials were synthesized by microwave assisted reduction in ethylene glycol (EG). The structural properties of the resulting materials were evaluated via TEM and XRD, and the compositions were assessed by EDX and ICP-AES analysis. PtSn nanoparticles of about 3–4 nm were deposited on TiO2 and Ce–TiO2 particles. It was found that the catalyst composition is scarcely influenced by the cerium content in the mixed oxides while the electrochemical surface area per unit mass decreases upon the incorporation of Ce in the anatase lattice. The electrochemical tests pointed out that the electrocatalytic activity for ethanol oxidation decreases markedly as the Ce content increases. The results indicate that the presence of cerium in the titanium dioxide crystalline network induces local structural and electronic modifications, thereby leading to a reduction of the crystallinity, surface conductivity and the amount of OH species adsorbed on the surface of the oxide support.

  14. Co, Fe and Ni catalysts supported on coke for direct coal liquefaction

    International Nuclear Information System (INIS)

    Jimenez, Jose A; Villalba, Oscar A; Rodriguez, Luis I; Hernandez, Orlando; Agamez, Yasmin Y; Dias Jose de Jesus

    2008-01-01

    Transition metal catalysts supported on coke were prepared by impregnation with a solution of complex of metal-thiourea, that is produced from salt precursors of cobalt chloride, Nickel chloride or iron sulfate and ammonium. sulphide formation on the support surface was generated by decomposition of the metal complex. The catalysts obtained were used in direct coal liquefaction of a medium volatile bituminous coal (Yerbabuena N 1) from Cundinamarca using a 250 Ml, Parr reactor at 723 K and a hydrogen-donor solvent. The catalytic results show, for all samples, both a good coal conversion and an enhancement of the yield of oils, this indicates that the proposed preparation method of catalyst is effective and that eventually the H 2 S sulphidation conventional process could be replaced

  15. Wet catalyst-support films for production of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Alvarez, Noe T; Hamilton, Christopher E; Pint, Cary L; Orbaek, Alvin; Yao, Jun; Frosinini, Aldo L; Barron, Andrew R; Tour, James M; Hauge, Robert H

    2010-07-01

    A procedure for vertically aligned carbon nanotube (VA-CNT) production has been developed through liquid-phase deposition of alumoxanes (aluminum oxide hydroxides, boehmite) as a catalyst support. Through a simple spin-coating of alumoxane nanoparticles, uniform centimer-square thin film surfaces were coated and used as supports for subsequent deposition of metal catalyst. Uniform VA-CNTs are observed to grow from this film following deposition of both conventional evaporated Fe catalyst, as well as premade Fe nanoparticles drop-dried from the liquid phase. The quality and uniformity of the VA-CNTs are comparable to growth from conventional evaporated layers of Al(2)O(3). The combined use of alumoxane and Fe nanoparticles to coat surfaces represents an inexpensive and scalable approach to large-scale VA-CNT production that makes chemical vapor deposition significantly more competitive when compared to other CNT production techniques.

  16. Turbostratic carbon supported palladium as an efficient catalyst for reductive purification of water from trichloroethylene

    Directory of Open Access Journals (Sweden)

    Emil Kowalewski

    2017-12-01

    Full Text Available This work investigates the catalytic properties of turbostratic carbon supported Pd catalyst in hydrodechlorination of trichloroethylene (TCE HDC in aqueous phase. 1.57 wt% Pd/C was thoroughly characterized by BET, TPHD, CO chemisorption, PXRD, STEM, XPS and used as the catalyst in removal of trichloroethylene from drinking water in batch and continuous-flow reactors. The studies showed that catalytic performance of Pd/C depended on the hydrophobicity and textural properties of carbon support, which influenced noble metal dispersion and increased catalyst tolerance against deactivation by chlorination. Palladium in the form of uniformly dispersed small (~3.5 nm nanoparticles was found to be very active and stable in purification of water from TCE both in batch and continuous-flow operation.

  17. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts.

    Science.gov (United States)

    Han, Bing; Liu, Wen; Li, Jingwen; Wang, Jin; Zhao, Dongye; Xu, Rui; Lin, Zhang

    2017-09-01

    We prepared a new class of anion-exchange-resin supported Pd catalysts for efficient hydrodechlorination of triclosan in water. The catalysts were prepared through an initial ion-exchange uptake of PdCl 4 2- and subsequent reduction of Pd(II) to Pd(0) nanoparticles at ambient temperature. Two standard strong-base anion exchange resins (IRA-900 and IRA-958) with different matrices (polystyrene and polyacrylic) were chosen as the supports. SEM and TEM images showed that Pd(0) nanoparticles were evenly attached on the resin surface with a mean size of 3-5 nm. The resin supported Pd catalysts (Pd@IRA-900 and Pd@IRA-958) were able to facilitate rapid and complete hydrodechlorination of triclosan. At a Pd loading of 2.0 wt.%, the observed pseudo first-order rate constant (k obs ) was 1.25 ± 0.06 and 1.6 ± 0.1 L/g/min for Pd@IRA-900 and Pd@IRA-958, respectively. The catalysts were more resistant to Cl - poisoning and natural organic matter fouling than other supported-Pd catalysts. The presence of 10 mM NaCl suppressed the k obs value by 31% and 23% for Pd@IRA-900 and Pd@IRA-958, whereas the presence of humic acid at 30 mg/L as TOC lowered the rates by 28% and 27%, respectively. The better performance of Pd@IRA-958 was attributed to the polymeric matrix properties (i.e., hydrophobicity, pore size, and surface area) as well as Pd particle size. GC/MS analyses indicated that very low concentrations of chlorinated intermediates were detected in the early stage of the hydrodechlorination process, with 2-phenoxyphenol being the main byproduct. The catalysts can be repeatedly used in multiple operations without significant bleeding. The catalysts eliminate the need for calcination in preparing conventional supported catalysts, and the resin supports conveniently facilitate control of Pd loading and material properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. NMR evidence of metal-support interaction in syngas conversion catalyst Co-TiO2

    International Nuclear Information System (INIS)

    Murty, A.N.; Seamster, M.; Thorpe, A.N.; Obermyer, R.T.; Rao, V.U.S.

    1990-01-01

    To examine the relation between catalytic and magnetic properties, the zero-field NMR spectra and hysteresis loops of cobalt supported on silica, alumina, magnesia, titania, and ZSM-5 with and without the promoter thoria were investigated. Cobalt was incorporated on the support by simple physical admixture of precipitated cobalt and support, and by aqueous impregnation technique. Our studies indicate that the particle sizes are consistently lower in the presence of thoria. Of all the catalysts examined, the Co/Th/TiO 2 catalyst exhibits a high saturation magnetization value---about 20% higher than pure cobalt. In addition, the NMR spectrum of the aqueous impregnation Co/TiO 2 catalyst is distinctly different from the rest. All the NMR lines are shifted to a higher frequency by about 4 MHz. These two features---enhancement of the magnetic moment of cobalt atoms and increases in the hyperfine field at the Co nucleus---clearly indicate that there occurs strong metal-support interaction between cobalt and titania support. The higher hydrocarbon yields observed by the earlier investigators with Co/TiO 2 catalysts might be related to this phenomenon

  19. Removal of toluene by sequential adsorption-plasma oxidation: Mixed support and catalyst deactivation.

    Science.gov (United States)

    Qin, Caihong; Huang, Xuemin; Zhao, Junjie; Huang, Jiayu; Kang, Zhongli; Dang, Xiaoqing

    2017-07-15

    A sequential adsorption-plasma oxidation system was used to remove toluene from simulated dry air using γ-Al 2 O 3 , HZSM-5, a mixture of the two materials or their supported Mn-Ag catalyst as adsorbents under atmospheric pressure and room temperature. After 120min of plasma oxidation, γ-Al 2 O 3 had a better carbon balance (∼75%) than HZSM-5, but the CO 2 yield of γ-Al 2 O 3 was only ∼50%; and there was some desorption of toluene when γ-Al 2 O 3 was used. When a mixture of HZSM-5 and γ-Al 2 O 3 with a mass ratio of 1/2 was used, the carbon balance was up to 90% and 82% of this was CO 2 . The adsorption performance and electric discharge characteristics of the mixed supports were tested in order to rationalize this high CO x yield. After seven cycles of sequential adsorption-plasma oxidation, support and Mn-Ag catalyst deactivation occurred. The support and catalyst were characterized before and after deactivation by SEM, a BET method, XRD, XPS and GC-MS in order to probe the mechanism of their deactivation. 97.6% of the deactivated supports and 76% of the deactivated catalysts could be recovered by O 2 temperature-programmed oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H.; Campbell, S. [Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8 (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada)

    2006-10-27

    The oxidation of carbon catalyst supports causes degradation in catalyst performance in proton exchange membrane fuel cells (PEMFCs). Indium tin oxide (ITO) is considered as a candidate for an alternative catalyst support. The electrochemical stability of ITO was studied by use of a rotating disk electrode (RDE). Oxidation cycles between +0.6 and +1.8V were applied to ITO supporting a Pt catalyst. Cyclic voltammograms (CVs) both before and after the oxidation cycles were obtained for Pt on ITO, Hispec 4000 (a commercially available catalyst), and 40wt.% Pt dispersed in-house on Vulcan XC-72R. Pt on ITO showed significantly better electrochemical stability, as determined by the relative change in electrochemically active surface area after cycling. Hydrogen desorption peaks in the CVs existed even after 100 cycles from 0.6 to 1.8V for Pt on ITO. On the other hand, most of the active surface area was lost after 100 cycles of the Hispec 4000 catalyst. The 40wt.% Pt on Vulcan made in-house also lost most of its active area after only 50 cycles. Pt on ITO was significantly more electrochemically stable than both Hispec 4000 and Pt on Vulcan XC-72R. In this study, it was found that the Pt on ITO had average crystallite sizes of 13nm for Pt and 38nm for ITO. Pt on ITO showed extremely high thermal stability, with only {approx}1wt.% loss of material for ITO versus {approx}57wt.% for Hispec 4000 on heating to 1000{sup o}C. The TEM data show Pt clusters dispersed on small crystalline ITO particles. The SEM data show octahedral shaped ITO particles supporting Pt. (author)

  1. The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts

    International Nuclear Information System (INIS)

    GarcIa, J.; Gomes, H.T.; Figueiredo, J.L.; Faria, J.L.; Garcia, J.; Serp, P.; Kalck, P.

    2005-01-01

    High strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO 3 modified) and MWNT-COONa (HNO 3 /Na 2 CO 3 modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT)≥RuCl 3 ≥Ru(C 5 H 5 ) 2 . The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained in terms of the high dispersion of

  2. The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa, J.; Gomes, H.T.; Figueiredo, J.L.; Faria, J.L. [Porto Univ., Lab. de Catalise e Materiais, Dept. de Engenharia Quimica, Faculdade de Engenharia (Portugal); Garcia, J. [Madrid Univ. Complutense, Grupo de Catalisis y Operaciones de Separacion, Dept. de Ingenieria Quimica, Facultad de Ciencias (Spain); Serp, P.; Kalck, P. [Ecole Nationale Superieure des Ingenieurs en Arts Chimiques et Technologiques, Lab. de Catalyse, Chimie Fine et Polymeres, 31 - Toulouse (France)

    2005-07-01

    High strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO{sub 3} modified) and MWNT-COONa (HNO{sub 3}/Na{sub 2}CO{sub 3} modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT){>=}RuCl{sub 3}{>=}Ru(C{sub 5}H{sub 5}){sub 2}. The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained

  3. Electron Tomography Reveals the Active Phase–Support Interaction in Sulfidic Hydroprocessing Catalysts

    NARCIS (Netherlands)

    Eijsbouts, Sonja; Li, Xuang; Juan-Alcaniz, Jana; van den Oetelaar, Leon C A; Bergwerff, Jaap; Loos, Joachim; Carlsson, Anna; Vogt, E.T.C.

    2017-01-01

    Conventional two-dimensional (2D) transmission electron microscopy of sulfidic hydroprocessing catalysts can be deceiving and give the impression that parts of the support are overloaded with active phase. High-angle annular dark field scanning transmission electron microscopy tomography reveals

  4. Hydrogenation of carbon monoxide on WO/sub 3/-Supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, Tomohiro; Suganuma, Fujio; Sera, Chikara

    1988-01-01

    In this study, a WO/sub 3/-supported catalyst was prepared to conduct hydrogenation of CO for examining the product distribution and composition of hydrocarbons, using a gamma-alumina-supported catalyst for comparison. These catalysts were used under pressure to conduct a distributive reaction and the desorbing behavior of CO or H/sub 2/ at elevated temperature was measured to examine the influence of the type of carrier or the method of preparation on the activity and the distribution of products formed. The WO/sub 3/-supported catalyst gave a carbon chain length distribution that did not comply with the rule of Schulz-Flory, giving a composition richer in the isomers. Carbon number distribution is affected by Ru-dispersion, and the selectivity of isomers depends on the acidity of the carrier. Formed products distribution of the WO/sub 3/-supported reaction is attributable to the secondary reaction, which relates to the acidic point of the carrier, of the primary product formed on the metal. (7 figs, 4 tabs, 18 refs)

  5. Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2005-01-01

    Supported ionic liquid phase (SILP) catalysts have been studied with regard to their long-term stability in the continuous gas-phase hydroformylation of propene. Kinetic data have been acquired by variation of temperature, pressure, syngas composition, substrate concentration, and residence time...

  6. Supported liquid phase catalyst coating in micro flow Mizoroki-Heck reaction

    NARCIS (Netherlands)

    Stouten, S.C.; Noël, T.; Wang, Q.; Hessel, V.

    2015-01-01

    A Supported Liquid Phase Catalyst (SLPC) coating was successfully applied for the Mizoroki–Heck reaction in micro flow. Foremost, extended on stream operation was enabled and the on stream performance stability was verified. Stable catalytic activity was achieved during two consecutive runs totaling

  7. Highly Selective Continuous Gas-Phase Methoxycarbonylation of Ethylene with Supported Ionic Liquid Phase (SILP) Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia Suárez, Eduardo José; Fehrmann, Rasmus

    2017-01-01

    Supported ionic liquid phase (SILP) technology was applied for the first time to the Pd-catalyzed continuous, gas-phase methoxycarbonylation of ethylene to selectively produce methyl propanoate (MP) in high yields. The influence of catalyst and reaction parameters such as, for example, ionic liquid...

  8. Effects of supported metallocene catalyst active center multiplicity on antioxidant-stabilized ethylene homo- and copolymers

    KAUST Repository

    Atiqullah, Muhammad; Cibulková , Zuzana; Černá , Andrea; Šimon, Peter; Hussain, Ikram; Al-Harthi, Mamdouh A.; Anantawaraskul, Siripon

    2014-01-01

    © 2014 Akadémiai Kiadó, Budapest, Hungary. A silica-supported bis(n-butylcyclopentadienyl) zirconium dichloride [( n BuCp)2ZrCl2] catalyst was synthesized. This was used to prepare an ethylene homopolymer and an ethylene-1-hexene copolymer

  9. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts.

    Science.gov (United States)

    Hong, Do-Young; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W

    2010-02-21

    Pt supported on HY zeolite is successfully used as a bifunctional catalyst for phenol hydrodeoxygenation in a fixed-bed configuration at elevated hydrogen pressures, leading to hydrogenation-hydrogenolysis ring-coupling reactions producing hydrocarbons, some with enhanced molecular weight.

  10. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  11. Efficient oxygen reduction reaction using ruthenium tetrakis(diaquaplatinum)octacarboxyphthalocyanine catalyst supported on MWCNT platform

    CSIR Research Space (South Africa)

    Maxakato, NW

    2011-02-01

    Full Text Available -1 Electroanalysis 2011, 23, No. 2, 325 ? 329 Efficient Oxygen Reduction Reaction Using Ruthenium Tetrakis(diaquaplatinum)Octacarboxyphthalocyanine Catalyst Supported on MWCNT Platform Nobanathi W. Maxakato,a Solomon A. Mamuru,a Kenneth I. Ozoemena*a, b a...

  12. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  13. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  14. Silica-supported ionic liquid as highly efficient catalyst for one-pot ...

    Indian Academy of Sciences (India)

    4. Conclusion. A novel multicomponent approach for the synthesis of a series of new acenaphthofuran derivatives utilizing the supported ionic liquid catalyst has been elaborated. The efficient catalysing of used ionic liquid in the synthesis of acenaphtho[1,2-b]furans led to high chemical yields as well as short reaction times.

  15. Hydrogen peroxide modified Mg-Al-O oxides supported Pt-Sn catalysts for paraffin dehydrogenation

    NARCIS (Netherlands)

    Lai, Y.; He, Songbo; Luo, S.; Bi, W.; Li, XianRu; Sun, Chenglin; Seshan, Kulathuiyer

    2015-01-01

    In this work, a new method to prepare Mg–Al–O oxide by co-precipitation method with addition of H2O2 was developed. The application of Mg–Al–O as a support of Pt–Sn catalysts for paraffin dehydrogenation was investigated. Characterization results indicated that modification of H2O2 (i) enlarged the

  16. TiO2 Nanotubes Supported NiW Hydrodesulphurization Catalysts: Characterization and Activity

    Czech Academy of Sciences Publication Activity Database

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jirátová, Květa

    2013-01-01

    Roč. 265, JAN 15 (2013), s. 309-313 ISSN 0169-4332 Institutional support: RVO:67985858 Keywords : nano-structured TiO2 * NiW catalysts * XPS Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.538, year: 2013

  17. Calcium Oxide Supported on Monoclinic Zirconia as a Highly Active Solid Base Catalyst

    NARCIS (Netherlands)

    Frey, A.M.; Haasterecht, van T.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Calcium oxide supported on ZrO2 is a highly active catalyst for base-catalyzed reactions such as aldol-type reactions and transesterification reactions. The role of key parameters during preparation, that is, impregnation versus precipitation, heat treatment, and metal oxide loading on the basicity

  18. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    Science.gov (United States)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; Lee, Sungsik; Flytzani-Stephanopoulos, Maria

    2017-11-01

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful

  19. HDS, HDN and HDA activities of nickel-molybdenum catalysts supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Torres-Huerta, A.M.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Diaz-Garcia, L. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Arce-Estrada, E.M. [Instituto Politecnico Nacional, Departamento de Metalurgia y Materiales. A.P. 75-876, 07300 Mexico, D. F. (Mexico)

    2008-08-15

    In this work, NiMo-Al{sub 2}O{sub 3} catalysts were prepared by using different alumina precursors. The supports were impregnated by means of the spray at incipient wetness technique in both basic and acid media. Both the supports and fresh catalysts were characterized by the adsorption-desorption isotherms, Temperature-Programmed Reduction (TPR), Thermal Pyridine Adsorption-Desorption (TPD) and X-Ray Diffraction analyses (XRD). After sulfidation, the NiMoS metallic particles were characterized by Transmission Electron Microscopy (TEM). The initial analyses were performed in a trickle-bed reactor by using a real feedstock (Mexican heavy gas oil) and performing hydrotreating reactions (HDS, HDN and HDA) at three different temperatures: 613, 633 and 653 K; and 54 kg cm{sup -} {sup 2}. The catalytic activities are discussed in relation to the physicochemical properties of the NiMo catalysts, alumina phase and pH of the impregnating solution. The catalytic results show an increase in the conversion profiles with temperature. The sulfur conversion was increased from 89 to 99.25%, 91-99%, 90.8-97%, 83-95% and 78-96% when the crystal size of the support varied from 3 to 20 nm, respectively. The nitrogen and aromatic conversions were also increased in the range of 23-45 wt.%. It was found that the {gamma} phase reached a higher catalytic performance than the {eta} phase. The NiMo catalysts synthesized in a basic medium showed a better catalytic performance than that obtained with those prepared in acid solutions. The significance of the kinetic data to compare the catalysts is discussed. The maximum value of the catalytic activity was reached with the catalysts with the smallest particle sizes. (author)

  20. An Alumina-Supported Ni-La-Based Catalyst for Producing Synthetic Natural Gas

    Directory of Open Access Journals (Sweden)

    Daniel E. Rivero-Mendoza

    2016-10-01

    Full Text Available LaNi5, known for its hydrogen storage capability, was adapted to the form of a metal oxide-supported (γ-Al2O3 catalyst and its performance for the Sabatier reaction assessed. The 20 wt % La-Ni/γ-Al2O3 particles were prepared via solution combustion synthesis (SCS and exhibited good catalytic activity, achieving a CO2 conversion of 75% with a high CH4 selectivity (98% at 1 atm and 300 °C. Characteristics of the La-Ni/γ-Al2O3 catalyst were identified at various stages of the catalytic process (as-prepared, activated, and post-reaction and in-situ DRIFTS was used to probe the reaction mechanism. The as-prepared catalyst contained amorphous surface La–Ni spinels with particle sizes <6 nm. The reduction process altered the catalyst make-up where, despite the reducing conditions, Ni2+-based particles with diameters between 4 and 20 nm decorated with LaOx moieties were produced. However, the post-reaction catalyst had particle sizes of 4–9 nm and comprised metallic Ni, with the LaOx decoration reverting to a form akin to the as-prepared catalyst. DRIFTS analysis indicated that formates and adsorbed CO species were present on the catalyst surface during the reaction, implying the reaction proceeded via a H2-assisted and sequential CO2 dissociation to C and O. These were then rapidly hydrogenated into CH4 and H2O.

  1. Study of different nanostructured carbon supports for fuel cell catalysts

    Science.gov (United States)

    Mirabile Gattia, Daniele; Antisari, Marco Vittori; Giorgi, Leonardo; Marazzi, Renzo; Piscopiello, Emanuela; Montone, Amelia; Bellitto, Serafina; Licoccia, Silvia; Traversa, Enrico

    Pt clusters were deposited by an impregnation process on three carbon supports: multi-wall carbon nanotubes (MWNT), single-wall carbon nanohorns (SWNH), and Vulcan XC-72 carbon black to investigate the effect of the carbon support structure on the possibility of reducing Pt loading on electrodes for direct methanol (DMFC) fuel cells without impairing performance. MWNT and SWNH were in-house synthesised by a DC and an AC arc discharge process between pure graphite electrodes, respectively. UV-vis spectrophotometry, scanning and transmission electron microscopy, X-ray diffraction, and cyclic voltammetry measurements were used to characterize the Pt particles deposited on the three carbon supports. A differential yield for Pt deposition, not strictly related to the surface area of the carbon support, was observed. SWNH showed the highest surface chemical activity toward Pt deposition. Pt deposited in different forms depending on the carbon support. Electrochemical characterizations showed that the Pt nanostructures deposited on MWNT are particularly efficient in the methanol oxidation reaction.

  2. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  3. Reactivity of Aryl Halides for Reductive Dehalogenation in (Seawater Using Polymer-Supported Terpyridine Palladium Catalyst

    Directory of Open Access Journals (Sweden)

    Toshimasa Suzuka

    2015-05-01

    Full Text Available A polymer-supported terpyridine palladium complex was prepared. The complex was found to promote hydrodechlorination of aryl chlorides with potassium formate in seawater. Generally, reductive cleavage of aryl chlorides using transition metal catalysts is more difficult than that of aryl bromides and iodides (reactivity: I > Br > Cl; however, the results obtained did not follow the general trend. Therefore, we investigated the reaction inhibition agents and found a method to remove these inhibitors. The polymeric catalysts showed high catalytic activity and high reusability for transfer reduction in seawater.

  4. Synthesis of Carbon Nano tubes Using Anadara Granosa Shells as Catalyst Support

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Mohd Zobir Hussein; Salwani Asyikin Zakarya; Siti Halimah Sarijo

    2011-01-01

    The synthesis of carbon nano tubes (CNTs) by chemical vapor deposition (CVD) method using natural calcite prepared from Anadara granosa shells (CS), as metal catalyst support was studied. Hexane and iron were used as carbon precursor and catalyst, respectively. The as synthesised CNTs was characterized using XRD, TEM and FESEM. From the XRD patterns the CNTs peak can be seen more incisive after purification process and from the FESEM micrographs the CNTs can be seen as a bunch of rope-like structures. (author)

  5. Extended X-ray absorption fine structure (EXAFS) studies of supported catalysts

    International Nuclear Information System (INIS)

    Joyner, R.W.

    1979-01-01

    Since the rebirth of interest in extended X-ray absorption fine structure there have been several studies of systems of catalytic interest. This note is a preliminary account of an investigation of supported platinum catalysts and NiO/Al 2 O 3 catalysts. Experiments were performed on pressed disc samples at the DESY synchrotron, Hamburg, using the EXAFS spectrometer. The synchrotron operated at 7 GeV energy with a circulating current of approximately 4 mA; spectrum accumulation time was typically 45 minutes. (author)

  6. Session 4: High-throughput screening of supported catalysts for CO{sub x}-free hydrogen production from ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Hongchao, Liu; Hua, Wang; Zhongmin, Liu; Jianghan, Shen [Natural Gas Utilization and Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. (China)

    2004-07-01

    In this paper, we used a multi-stream mass spectrometer screening (MSMSS) technique and a multi-stream reactor to select promising candidates from supported transition metal catalyst library, and then combinatorially nitrided and tested silica and SAB-15 supported Mo catalysts for hydrogen production from ammonia. (authors)

  7. Characterization of Pt catalysts supported in mixed oxides

    International Nuclear Information System (INIS)

    Perez H, R.; Garcia C, M.A.; Gomez C, A.; Diaz, G.

    1999-01-01

    The catalytic supports TiO 2 , ZrO 2 and TiO 2 -ZrO 2 were prepared by the sol-gel technique. The incorporation of Pt to the supports was by the classical impregnation method. The catalytic materials were characterized (Pt/TiO 2 , Pt/ZrO 2 and Pt/TiO 2 -ZrO 2 ) by diverse techniques to determine: the texture (BET), evolution of the catalytic materials synthesised after drying and calcination (Infrared spectroscopy) and by Thermogravimetric analysis. (Author)

  8. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF2-MgO Carriers

    Directory of Open Access Journals (Sweden)

    Magdalena Bonarowska

    2016-11-01

    Full Text Available Pd/MgO, Pd/MgF2 and Pd/MgO-MgF2 catalysts were investigated in the reaction of CCl4 hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF2-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C2-C5 hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF2 is beneficial for shaping high activity of palladium catalysts. The MgO-MgF2 support characterized by stronger Lewis acidity than MgF2 contributes to very good catalytic activity for a relatively long reaction period (~5 h but subsequent neutralization of stronger acid centers (by coking eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  9. Factors influencing the charge distribution on Pd x Pt y bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Carlos M. Celis-Cornejo

    2013-12-01

    Full Text Available We performed quantum mechanics calculations to elucidate the electronic behavior of Pd-Pt bimetallic nanoparticles, using density functional theory, in response to particle size and stoichiometric composition. Using neutrally charged nanoparticles and the Bader charge analysis, we found that external Pd atoms were positively charged, which agrees with previous XPS observations of supported Pd-Pt nanoparticles. From the calculations, unsupported nanoparticles exhibit an electron transfer from Pd to Pt. This result supports the idea that Pd electron-deficient species are possibly responsible of the hydrogenating function of these catalysts, in the hydrodesulfurization of dibenzothiophene. Additionally, it was found that the particle size does not affect the electronic charge distribution and the stoichiometric composition is the factor that greatly influences this property in nanoparticles.

  10. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts

    DEFF Research Database (Denmark)

    Topsøe, Henrik; Hinnemann, Berit; Nørskov, Jens Kehlet

    2005-01-01

    structures may be present as single sulfide sheets. Thus, stacking is not an essential feature of Type II catalysts. The article illustrates how the new scientific insight has aided the introduction of the new high activity BRIM (TM) type catalysts for FCC pre-treatment and production of ultra low sulfur...... exhibiting a metallic character are observed to be involved in adsorption, hydrogenation and C-S bond cleavage. The insight is seen to provide a new framework for understanding the DDS and HYD pathways and the role of steric hindrance and poisons. Density functional theory (DFT) calculations have illustrated...... how support interactions may influence the activity of sulfided catalysts. The brim sites and the tendency to form vacancies are seen to differ in types I and II Co-Mo-S. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) studies show that the high activity Type II...

  11. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    Science.gov (United States)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  12. Porous graphene supported Pt catalysts for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Cheng, Kun; He, Daping; Peng, Tao; Lv, Haifeng; Pan, Mu; Mu, Shichun

    2014-01-01

    Graphene nanosheet (GNS) has a remarkably high ratio of surface area to thickness and intense inter-sheet aggregation, which heavily resist mass diffusion in vertical orientation. Here, we establish a fast-speed mass diffusion passage by creating pores in GNS, and the corresponding Pt catalyst (Pt/rPGO) displays 15.5 times mass diffusion rate than that of the pristine GNS supported Pt catalyst (Pt/rGO). Thus, the Pt/rPGO catalyst exhibits 1.5 times increase in Pt mass activity toward oxygen reduction reaction compared with the Pt/rGO. Significantly, after H 2 thermal treatment, the mass activity of the Pt/rPGO further increases to 1.9 times that of the Pt/rGO, and its electrochemical stability is also greatly improved

  13. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  14. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  15. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Nina Kann

    2010-09-01

    Full Text Available Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  17. Highly Loaded Carbon Black Supported Pt Catalysts for Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Vít, Zdeněk; Šolcová, Olga; Soukup, Karel; Koštejn, Martin; Bonde, J.L.; Maixnerová, Lucie; Odgaard, M.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 375-383 ISSN 0920-5861 R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * fuell cell * electrocatalyst Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 4.312, year: 2015

  18. Zeolite supported palladium catalysts for hydroalkylation of phenolic model compounds

    Czech Academy of Sciences Publication Activity Database

    Akhmetzyanova, U.; Opanasenko, Maksym; Horáček, J.; Montanari, E.; Čejka, Jiří; Kikhtyanin, O.

    2017-01-01

    Roč. 252, NOV 2017 (2017), s. 116-124 ISSN 1387-1811 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : Phenol hydroalkylation * Cyclohexylcyclohexane * MWW Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.615, year: 2016

  19. Niobia-supported Cobalt Catalysts for Fischer-Tropsch Synthesis

    NARCIS (Netherlands)

    den Otter, J.H.

    2016-01-01

    In this thesis niobia has been shown to be an attractive support for application in Fischer-Tropsch catalysis at industrially relevant conditions without apparent deactivation up to at least 200 hours of operation. This proves that the level of potentially poisoning contaminants is sufficiently low

  20. Hydrocracking of α-Cellulose Using Co, Ni, and Pd Supported on Mordenite Catalysts

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2018-02-01

    Full Text Available Hydrocracking of α-cellulose has been conducted in a semi-batch reactor at 400, 450, and 500 °C with hydrogen flow (30 mL/min. for 4 h. Mordenite (MOR and Co, Ni and Pd metal supported on the MOR were used as solid catalysts. The catalysts were characterized using X-ray Diffractometer (XRD, Fourier Transform Infrared (FTIR spectroscopy, and Scanning Electron Microscopy (SEM to evaluate the physical-chemical properties. Energy Dispersive X-ray (EDX and Inductively Coupled Plasma (ICP were used to analyze the amount of metal impregnated on the catalysts. The liquid product was analyzed using Gas Chromatograph-Mass Spectroscopy (GC-MS. Thermal hydrocracking was also conducted at 450 °C with the amount of liquid product was 37.86 wt.%. The highest liquid conversion obtained by mordenite catalyst was 94.66 wt.% at 450 °C and the highest liquid conversion (98.08 wt.% was reached by Pd/MOR catalyst at 400 °C.

  1. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  2. A facile method for the preparation of Covalent Triazine Framework coated monoliths as catalyst support - applications in C1 catalysis

    KAUST Repository

    Bavykina, Anastasiya V.

    2017-07-17

    A quasi Chemical Vapour Deposition method for the manufacturing of well-defined Covalent Triazine Framework (CTF) coatings on cordierite monoliths is reported. The resulting supported porous organic polymer is an excellent support for the immobilisation of two different homogeneous catalysts: 1) an IrIIICp*-based catalyst for the hydrogen production from formic acid, and 2) a PtII-based for the direct activation of methane via Periana chemistry. The immobilised catalysts display a much higher activity in comparison with the unsupported CTF operated in slurry because of improved mass transport. Our results demonstrate that CTF based catalysts can be further optimised by engineering at different length-scales.

  3. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  4. A facile method for the preparation of Covalent Triazine Framework coated monoliths as catalyst support - applications in C1 catalysis

    KAUST Repository

    Bavykina, Anastasiya V.; Olivos Suarez, Alma Itzel; Osadchii, Dmitrii; Valecha, Rahul; Franz, Robert; Makkee, Michiel; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    A quasi Chemical Vapour Deposition method for the manufacturing of well-defined Covalent Triazine Framework (CTF) coatings on cordierite monoliths is reported. The resulting supported porous organic polymer is an excellent support for the immobilisation of two different homogeneous catalysts: 1) an IrIIICp*-based catalyst for the hydrogen production from formic acid, and 2) a PtII-based for the direct activation of methane via Periana chemistry. The immobilised catalysts display a much higher activity in comparison with the unsupported CTF operated in slurry because of improved mass transport. Our results demonstrate that CTF based catalysts can be further optimised by engineering at different length-scales.

  5. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  6. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2015-11-01

    Full Text Available The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  7. In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    The interactions of methanol and butane with supported chromium oxide catalysts under oxidizing and reducing conditions were studied by in situ Raman spectroscopy as a function of the specific oxide support (Al2O3, ZrO2, TiO2, SiO2, Nb2O5, 3% SiO2/TiO2, 3% TiO2/SiO2, and a physical mixture of SiO2

  8. Supported Co-Mn-Al Mixed Oxides as Catalysts for N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Karásková, C.; Strakošová, J.; Jirátová, Květa; Obalová, L.

    2015-01-01

    Roč. 18, č. 20 (2015), s. 1114-1122 ISSN 1631-0748. [AWPAC2014 - International Symposium on Air & Water Pollution Abatement Catalysis. Krakow, 01.09.2014-05.09.2014] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : supported catalysts * heterogeneous catalysis * spinel phase * nitrogen oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.798, year: 2015

  9. Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum-antimony tin oxide nanoparticle catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dao-Jun [School of Chemistry and Chemical Engineering, The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong 273165 (China)

    2011-01-15

    We synthesize the new Pt based catalyst for direct ethanol fuel cells using novel multi-walled carbon nanotubes supported platinum-antimony tin oxide (Pt-ATO/MWCNT) nanoparticle as new catalyst support for the first time. The structure of Pt-ATO/MWCNT catalyst is characterized by transmission electron micrograph (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt-ATO/MWCNT catalyst for ethanol electrooxidation reactions are investigated by cyclic voltammetry (CV) and chronoamperometric experiments in acidic medium. The electrocatalytic activity for ethanol electrooxidation reaction shows that high carbon monoxide tolerance and good stability of Pt-ATO/MWCNT catalyst compared with Pt-SnO{sub 2}/MWCNT and commercial Pt/C are observed. These results imply that Pt-ATO/MWCNT catalyst has promising potential applications in direct alcohol fuel cells. (author)

  10. Moessbauer spectroscopic characterisation of catalysts obtained by interaction between tetra-n-butyl-tin and silica or silica supported rhodium

    International Nuclear Information System (INIS)

    Millet, J.M.M.; Toyir, J.; Didillon, B.; Candy, J.P.; Nedez, C.; Basset, J.M.

    1997-01-01

    Moessbauer spectroscopy at 78 K was used to study the interaction between tetra-n-butyl-tin and the surfaces of silica or silica supported rhodium. At room temperature, the tetra-n-butyl-tin was physically adsorbed on the surfaces. After reaction under hydrogen at 373 K, the formation of grafted organometallic fragments on the Rh surface was confirmed whereas with pure silica, ≡SiO-Sn(n-C 4 H 9 ) 3 moieties were observed. After treatment at 523 K, the rhodium grafted organometallic species was completely decomposed and there was formation of a defined bimetallic RhSn compound

  11. A Recyclable Nanoparticle-Supported Rhodium Catalyst for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Maria Michela Dell’Anna

    2010-05-01

    Full Text Available Catalytic hydrogenation under mild conditions of olefins, unsaturated aldeydes and ketones, nitriles and nitroarenes was investigated, using a supported rhodium complex obtained by copolymerization of Rh(cod(aaema [cod: 1,5-cyclooctadiene, aaema–: deprotonated form of 2-(acetoacetoxyethyl methacrylate] with acrylamides. In particular, the hydrogenation reaction of halonitroarenes was carried out under 20 bar hydrogen pressure with ethanol as solvent at room temperature, in order to minimize hydro-dehalogenation. The yields in haloanilines ranged from 85% (bromoaniline to 98% (chloroaniline.

  12. Structure-activity relationships of carbon-supported platinum-bismuth and platinum-antimony oxidation catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2017-04-01

    Full Text Available Compositional and morphological studies on supported platinum are important for the improvement and expanded use of catalysts for oxidative coupling reactions. Nanocomposites consisting of 5% Pt supported on activated carbon and promoted with 5% Bi...

  13. Synthesis and Characterization of Polyethylene/Starch Nanocomposites: A Spherical Starch-Supported Catalyst and In Situ Ethylene Polymerization.

    Science.gov (United States)

    Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan

    2017-01-01

    In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

  14. Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Liu, Xinmin; Cao, Changqing; Guo, Qingjie [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-08-01

    Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH{sub 4}) in fuel cell fields. In this study, hydrogen production from alkaline NaBH{sub 4} via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200-400 C, but a high calcination temperature above 500 C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co-B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH{sub 4}, and the hydrogen generation rate increases for lower NaBH{sub 4} concentrations and decreases after reaching a maximum at 10 wt.% of NaBH{sub 4}. (author)

  15. Gas-phase hydrogenation of benzene on supported nickel catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Franco, H.A.; Phillips, M.J.

    1980-06-01

    The reaction of 22.66-280 Pa benzene with 72.39-122.79 Pa hydrogen on kieselguhr-supported nickel at 392.2/sup 0/-468.2/sup 0/K yielded only cyclohexane and was independent of 5.33-40 Pa cyclohexane added to the feed of the differential flow reactor. Best fit for the kinetic data was obtained with a rate equation developed by van Meerten and Coenen which assumed that all hydrogen addition steps have the same rate constant and are slow. An observed rate maximum at 458/sup 0/K may be the result of an increasing rate constant and decreasing cyclohexyl surface coverage as the temperature increases. Temperature-programed hydrogen desorption showed a series of desorption peaks at 358/sup 0/-600/sup 0/K, including one at 453/sup 0/K, which may be due to the hydrogen involved in the surface reaction.

  16. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    Science.gov (United States)

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization and Catalytic Activity of Montmorillonite K10-Supported Cobalt Catalysts

    International Nuclear Information System (INIS)

    Gobara, H.M.; Ghattas, M.S.; Henien, S.A.

    2010-01-01

    Montmorillonite K10-supported cobalt catalysts were prepared by wet impregnation method. The samples were analyzed by XRD, TPR, FTTR and BET characterization techniques. [Three phases of cobalt species were identified namely, cobalt oxide (Co 3 O 4 ), cobalt silicate (Co 2 S 1 O 4 ) and cobalt aluminate (CoAl 2 O 4 ). These species were most probably existing within the inter lamellar spaces of the meso porous montmorillonite K10 support]. The two bands observed at 1385 and 760 cm 1 were characteristic of metal species rather than the support, being mostly of Co - O bond vibration. The hysteresis loop, pore size distribution, pore volume and BET surface area were greatly affected by cobalt loading. The catalyst containing 18 wt% cobalt was the most selective sample for ethylene production from ethanol dehydration.

  18. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts

    International Nuclear Information System (INIS)

    Li, Zhe-Fei; Wang, Yuxuan; Botte, Gerardine G.

    2017-01-01

    Highlights: • A procedure to pretreat electrocatalysts to study the ammonia oxidation is provided. • N ads and O/OH ads were identified as the major deactivation species that prevent ammonia oxidatoin. • The electrocatalytic activity, thermodynamics, and possible deactivation mechanisms for ammonia oxidation were elucidated. • The onset potential for ammonia oxidation is related to the hydrogen binding energy of the catalyst. • Ammonia electro-oxidation involves a complex decoupled electron and proton transfer process. - Abstract: The ammonia electro-oxidation reaction (AOR) has been studied due to its promising applications in ammonia electrolysis, wastewater remediation, direct ammonia fuel cells, and sensors. However, it is difficult to compare and analyze the reported electrocatalytic activity of AOR reliably, likely due to the variation in catalyst synthesis, electrode composition, electrode morphology, and testing protocol. In this paper, the electro-oxidation of ammonia on different carbon-supported precious metal nanoparticle catalysts was revisited. The effect of experimental conditions, electrochemical test parameters, electrocatalytic activity, thermodynamics, and possible deactivation mechanism of the catalysts were investigated. Pt/C catalyst possesses the highest electrocatalytic activity, while Ir/C and Rh/C show lower overpotential. The onset potential of the AOR is related to the hydrogen binding energy of the catalyst. N ads is one major cause of deactivation accompanied with the formation of surface O/OH ads at high potentials. The coulombic efficiency of N ads formation on Pt is about 1% initially and gradually decreases with reaction time. Increase in ammonia concentration leads to increase in current density, while increase in hydroxyl ions concentration can enhance the current density and reduce the overpotential simultaneously. The slopes of AOR onset potential and hydrogen adsorption/desorption potential of Pt/C as a function of p

  19. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  20. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    International Nuclear Information System (INIS)

    Xu, Dongyan; Ma, Hong; Cheng, Fei

    2014-01-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity