WorldWideScience

Sample records for bimetallic catalysts final

  1. Bimetallic Catalysts.

    Science.gov (United States)

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  2. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  3. Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions

    Directory of Open Access Journals (Sweden)

    Ahmad Alshammari

    2016-07-01

    Full Text Available Supported bimetallic nanoparticles (SBN are extensively used as efficient redox catalysts. This kind of catalysis particularly using SBN has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The primary objective of this contribution is to provide comprehensive overview about SBN and their application as promising catalysts. The present review contains four sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of SBN as promising catalysts for different applications. Section 2 reviews the preparation and characterization methods of SBN for a wide range of catalytic reactions. Section 3 concentrates on our own results related to the application of SBN in heterogeneous catalysis. In this section, the oxidation of cyclohexane to adipic acid (an eco-friendly and novel approach will be discussed. In addition, the application of bimetallic Pd catalysts for vapor phase toluene acetoxylation in a fixed bed reactor will also be highlighted. Acetoxylation of toluene to benzyl acetate is another green route to synthesize benzyl acetate in one step. Finally, Section 4 describes the summary of the main points and also presents an outlook on the application of SBN as promising catalysts for the production of valuable products.

  4. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  5. Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions.

    Science.gov (United States)

    Goulas, Konstantinos A; Sreekumar, Sanil; Song, Yuying; Kharidehal, Purnima; Gunbas, Gorkem; Dietrich, Paul J; Johnson, Gregory R; Wang, Y C; Grippo, Adam M; Grabow, Lars C; Gokhale, Amit A; Toste, F Dean

    2016-06-01

    Condensation reactions such as Guerbet and aldol are important since they allow for C-C bond formation and give higher molecular weight oxygenates. An initial study identified Pd-supported on hydrotalcite as an active catalyst for the transformation, although this catalyst showed extensive undesirable decarbonylation. A catalyst containing Pd and Cu in a 3:1 ratio dramatically decreased decarbonylation, while preserving the high catalytic rates seen with Pd-based catalysts. A combination of XRD, EXAFS, TEM, and CO chemisorption and TPD revealed the formation of CuPd bimetallic nanoparticles with a Cu-enriched surface. Finally, density functional theory studies suggest that the surface segregation of Cu atoms in the bimetallic alloy catalyst produces Cu sites with increased reactivity, while the Pd sites responsible for unselective decarbonylation pathways are selectively poisoned by CO. PMID:27195582

  6. Improvements in NOx reduction by carbon using bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Illan-Gomez, M.J.; Brandan, S.; Salinas-Martinez de Lecea, C.; Linares-Solano, A. [Universidad de Alicante, Alicante (Spain). Departamento de Quimica Inorganica

    2001-11-30

    A catalysis of the C-NOx reaction has been studied to optimize the composition of the catalysts in order to decrease the carbon consumption by oxygen. Both the metal content and the composition of the catalysts have been investigated. The activity of bimetallic (KNi, NiCo and NiCu) catalysts for NOx reduction by carbon has been studied using both isothermal reactions at 300{sup o}C and temperature programmed reaction up to 500{sup o}C. It has been found that the experimental variables (i.e. amount of catalysts and nature of the bimetallic catalysts) determine the selectivity against carbon combustion by oxygen. Thus, it has been observed that the amount of catalyst greatly affects the C-O{sub 2} reaction but only lightly the C-NOx reaction and, consequently, modifies the selectivity of the catalyst for NOx reduction. Among the bimetallic catalysts tested, NiCu catalyst presents the best performance, at a temperature as low as 250{sup o}C, a high de-NOx activity and a high NOx selectivity due to a low carbon burn-off, with the additional advantage of the absence of N{sub 2}O and CO in the reaction products. Thus, the results obtained in this study show, in comparison with our previous results, that better selectivities are achieved. 20 refs., 3 figs., 2 tabs.

  7. High pressure CO hydrogenation over bimetallic Pt-Co catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Medford, Andrew James; Studt, Felix;

    2014-01-01

    The potential of bimetallic Pt-Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt-Co catalysts was reviewed. It is found that the catalysts...... produce mainly methanol in the Pt-rich composition range andmainly hydrocarbons (and to a modest extent higher alcohols) in the Co-rich composition range. The transition between the two types of behavior occurs in a narrow composition range around a molar Pt:Co ratio of 1:1....

  8. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil;

    2007-01-01

    , we report a more detailed catalytic study aimed at optimizing the catalyst performance. For this purpose, two series of mono and bimetallic Ni-Fe catalysts supported on MgAl2O4 and Al2O3, respectively, were prepared. All catalysts were tested in the CO methanation reaction in the temperature interval...

  9. Bimetallic catalysts for upgrading of biomass to fuels and chemicals.

    Science.gov (United States)

    Alonso, David Martin; Wettstein, Stephanie G; Dumesic, James A

    2012-12-21

    Research interest in biomass conversion to fuels and chemicals has increased significantly in the last decade as the necessity for a renewable source of carbon has become more evident. Accordingly, many different reactions and processes to convert biomass into high-value products and fuels have been proposed in the literature. Special attention has been given to the conversion of lignocellulosic biomass, which does not compete with food sources and is widely available as a low cost feedstock. In this review, we start with a brief introduction on lignocellulose and the different chemical structures of its components: cellulose, hemicellulose, and lignin. These three components allow for the production of different chemicals after fractionation. After a brief overview of the main reactions involved in biomass conversion, we focus on those where bimetallic catalysts are playing an important role. Although the reactions are similar for cellulose and hemicellulose, which contain C(6) and C(5) sugars, respectively, different products are obtained, and therefore, they have been reviewed separately. The third major fraction of lignocellulose that we address is lignin, which has significant challenges to overcome, as its structure makes catalytic processing more challenging. Bimetallic catalysts offer the possibility of enabling lignocellulosic processing to become a larger part of the biofuels and renewable chemical industry. This review summarizes recent results published in the literature for biomass upgrading reactions using bimetallic catalysts. PMID:22872312

  10. The selective hydrogenation of crotonaldehyde over bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schoeb, A.M.

    1997-02-01

    The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO{sub 2} catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO{sub 2} system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, {sup 1}H NMR and microcalorimetry. The Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO{sub 2} catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO{sub 2} catalysts for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO{sub 2}, Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts produced only butyraldehyde. Initial heats of adsorption ({approximately}90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the {sup 1}H NMR Knight shift.

  11. Exploration of Nanotube Structure Selectivity Using Bimetallic Catalysts

    Science.gov (United States)

    Pfefferle, Lisa

    2007-10-01

    Achieving selectivity for nanotube chirality is one of the holy grails for single-walled carbon nanotube research. One approach we are following is based on the ability to engineer the size and state of the initiating metal particle to constrain the type of cap formed. The chirality/structure of a nanotube is controlled by carbon cap formation on the metal particle during the nucleation step. It has been proposed that varying the carbon-metal catalyst binding energy could help lead to structure selectivity. One reason theoretically proposed for the favoring of armchair nanotubes, for example, is the proximity of low energy binding locations for two carbon atoms. Thus blocking sites or perturbing the binding energy on adjacent sites could in theory affect the structure of the carbon cap formed in the nucleation step. Our goal is to demonstrate structure selectivity in the growth of single wall carbon nanotubes (SWNT) using a bimetallic catalyst. The catalyst used was a bimetallic CoCr-MCM 41 and the effect of different molecular ratios between the two metals on the SWNT diameter distribution was studied. We have found that by adding Cr to the Co-MCM 41 monometallic catalyst the diameter distribution shifted in a systematic manner correlated to the development of a bimetallic phase as characterized by X-Ray absorption spectroscopy (XAS). We have also found that the shift is accompanied by suppression of metallic SWNT, particularly those with diameter over 0.9 nm. We are also currently exploring the possibility of a further narrowing of the distribution by lowering the reaction temperatures.

  12. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  13. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  14. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    Science.gov (United States)

    Zhou, Juan; Chen, Huan; Chen, Quanyuan; Huang, Zhaolu

    2016-11-01

    Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N2 adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2 chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d5/2 shifted to higher positions while that of Au 4f7/2 had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest catalytic activity. For the bimetallic catalysts, a disproportional increase of turnover frequency (TOF) was observed with increasing Au content due to the enhanced cationization of Pd particles. Moreover, the dechlorination of 2,4-DCP over the supported monometallic and bimetallic catalysts proceeded via both the stepwise and concerted pathway, and the concerted pathway became predominant with Au decoration amount in the catalyst.

  15. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.

    Science.gov (United States)

    Liao, Xin; Gerdts, Rihards; Parker, Stewart F; Chi, Lina; Zhao, Yongxiang; Hill, Martyn; Guo, Junqiu; Jones, Martin O; Jiang, Zheng

    2016-06-29

    Ni/Al2O3, Co/Al2O3 and bimetallic Ni(Co)/Al2O3 catalysts were prepared using an impregnation method and employed in CO2 dry reforming of methane under coking-favored conditions. The spent catalysts were carefully characterized using typical characterization technologies and inelastic neutron scattering spectroscopy. The bimetallic catalyst exhibited a superior activity and anti-coking performance compared to Ni/Al2O3, while the most resistant to coking behavior was Co/Al2O3. The enhanced activity of the Ni(Co)/Al2O3 bimetallic catalyst is attributed to the reduced particle size of metallic species and resistance to forming stable filamentous carbon. The overall carbon deposition on the spent bimetallic catalyst is comparable to that of the spent Ni/Al2O3 catalyst, whereas the carbon deposited on the bimetallic catalyst is mainly less-stable carbonaceous species as confirmed by SEM, TPO, Raman and INS characterization. This study provides an in depth understanding of alloy effects in catalysts, the chemical nature of coked carbon on spent Ni-based catalysts and, hopefully, inspires the creative design of a new bimetallic catalyst for dry reforming reactions.

  16. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pudukudy, Manoj, E-mail: manojpudukudy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Yaakob, Zahira, E-mail: zahirayaakob65@gmail.com [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Akmal, Zubair Shamsul [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Synthesis and characterization of Ni, Co and Fe based bimetallic catalysts supported over SBA-15. • Thermocatalytic decomposition of methane over the SBA-15 supported bimetallic catalysts. • Enhanced catalytic efficiency of the bimetallic catalysts for the production of CO{sub x} free hydrogen and nanocarbon. • Production of value added open tip hollow multi-walled carbon nanotubes. • Crystalline characterization of carbon nanotubes by XRD, Raman and thermogravimetric analysis. - Abstract: Thermocatalytic decomposition of methane is an alternative route for the production of CO{sub x}-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow

  17. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam

    2015-07-06

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

  18. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-04-28

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  19. Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts

    Institute of Scientific and Technical Information of China (English)

    Iker Obregón; Eriz Corro; Urko Izquierdo; Jesus Requies; Pedro L. Arias

    2014-01-01

    Inexpensive γ-alumina-based nickel-copper bimetallic catalysts were studied for the hydrogenolysis of levulinic acid, a key platform molecule for biomass conversion to biofuels and other valued chemicals, into γ-valerolactone as a first step towards the production of 2-methyltetrahydrofurane. The activities of both monometallic and bimetallic catalysts were tested. Their textural and chemical characteristics were determined by nitrogen physisorption, elemental analysis, temperature-pro-grammed ammonia desorption, and temperature-programmed reduction. The monometallic nickel catalyst showed high activity but the highest by-product production and significant amounts of carbon deposited on the catalyst surface. The copper monometallic catalyst showed the lowest activity but the lowest carbon deposition. The incorporation of the two metals generated a bimetal-lic catalyst that displayed a similar activity to that of the Ni monometallic catalyst and significantly low by-product and carbon contents, indicating the occurrence of important synergetic effects. The influence of the preparation method was also examined by studying impregnated- and sol-gel-derived bimetallic catalysts. A strong dependency on the preparation procedure and calcina-tion temperature was observed. The highest activity per metal atom was achieved using the sol-gel-derived catalyst that was calcined at 450 °C. High reaction rates were achieved;the total levulinic acid conversion was obtained in less than 2 h of reaction time, yielding up to 96%γ-valerolactone, at operating temperature and pressure of 250 °C and 6.5 MPa hydrogen, respec-tively.

  20. Synergy between metals in bimetallic zeolite supported catalyst for NO-promoted N2O decomposition

    NARCIS (Netherlands)

    Pieterse, J.A.Z.; Mul, G.; Melian-Cabrera, I.; van den Brink, R.W.

    2005-01-01

    The detrimental effect of NO on N2O decomposition over zeolite supported noble metal catalysts can be (partly) eliminated by combining noble metal with iron or cobalt. In the presence of NO, the total conversion of N2O over these bimetallic-zeolites exceeds the sum of conversions over the monometall

  1. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  2. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    Directory of Open Access Journals (Sweden)

    F. V. Barsi

    2009-06-01

    Full Text Available Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt and bimetallic catalysts (Pt-Ni, using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH36]Cl2 and [Pt(NH34]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.

  3. PROPERTIES OF POLYMER SUPPORTED Ni-Cu BIMETALLIC CATALYSTS PREPARED BY SOLVATED METAL ATOM IMPREGNATION

    Institute of Scientific and Technical Information of China (English)

    WU Shihua; ZHU Changying; HUANG Wenqiang

    1996-01-01

    D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.

  4. Controlled Surface Segregation Leads to Efficient Coke-Resistant Nickel/Platinum Bimetallic Catalysts for the Dry Reforming of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lidong [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Zhou, Lu [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Ould-Chikh, Samy [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Anjum, Dalaver H. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Kanoun, Mohammed B. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Scaranto, Jessica [SABIC Corporate Research and Innovation Center, Thuwal (Saudi Arabia); Hedhili, Mohamed N. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Khalid, Syed [Brookhaven National Lab. (BNL), Upton, NY (United States); Laveille, Paco V. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); D' Souza, Lawrence [SABIC Corporate Research and Innovation Center, Thuwal (Saudi Arabia); Clo, Alain [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Basset, Jean-Marie [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia)

    2015-02-03

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  5. Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram

    2016-08-23

    A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.

  6. STUDY ON POLYMER- Ru- Co BIMETALLIC COMPLEXES CATALYSTS Ⅱ. X-RAY PHOTOELECTRON SPECTROSCOPIC ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    ZONG Huijuan; TANG Qi; CHEN Zonghan; JIANG Yingyan

    1991-01-01

    Polymer-Ru-Co bimetallic complexes have been examined by X-ray photoelectron spectroscopy.The catalyst is highly active only when the mole ratio of Co/Ru is 4:3. The activity of catalysts does not depend on the total Co/Ru ratio, but on the surface stoichiometry of Co and Ru. When the relative intensities of Co2p and Ru3d of XP S peaks are close to each other and both are high, the catalyst exhibits its maximum activity.The mechanism of catalytic hydroformylation has been discussed.

  7. Preparation and catalytic performance of monolayer-dispersed Pd/Ni bimetallic catalysts for hydrogenation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pd/Ni bimetallic catalysts were prepared by replacement reactions,characterized by X-ray diffraction,CO chemisorption and H2 temperature-programmed desorption,and evaluated for hydrogenation of cyclohexene,styrene and acetone.The results show that Pd atoms are monolayer-dispersed on the Ni surface in these Pd/Ni catalysts.Consequently,Pd/Ni catalysts are much more active than Pd/Ni and Pd/γ-Al2O3 with the same Pd loading prepared by the conventional impregnation method.

  8. SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd-M/Y bimetallic catalysts, where M is non-noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd-M/Y catalysts were evaluated under the following conditions: H2 pressure 4.2 MPa, MHSV 4.0 h-1, sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.

  9. The synergistic effect in the Fe-Co bimetallic catalyst system for the growth of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, D.; Esconjauregui, S., E-mail: cse28@cam.ac.uk; Cartwright, R.; D' Arsié, L.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, S.; Cepek, C. [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy); Oakes, D.; Clark, J. [Johnson Matthey Technology Centre, Sonning Common RG4 9NH (United Kingdom); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2015-01-28

    We report the growth of multi-walled carbon nanotube forests employing an active-active bimetallic Fe-Co catalyst. Using this catalyst system, we observe a synergistic effect by which—in comparison to pure Fe or Co—the height of the forests increases significantly. The homogeneity in the as-grown nanotubes is also improved. By both energy dispersive spectroscopy and in-situ x-ray photoelectron spectroscopy, we show that the catalyst particles consist of Fe and Co, and this dramatically increases the growth rate of the tubes. Bimetallic catalysts are thus potentially useful for synthesising nanotube forests more efficiently.

  10. Selective hydrogenation of citral over Au-based bimetallic catalysts in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Selective hydrogenation of citral was investigated over Au-based bimetallic catalysts in the environmentally benign supercritical carbon dioxide (scCO2) medium.The catalytic performances were different in citral hydrogenation when Pd or Ru was mixed (physically and chemically) with Au.Compared with the corresponding monometallic catalyst,the total conversion and the selectivity to citronellal (CAL) were significantly enhanced over TiO2 supported Pd and Au bimetallic catalysts (physically and chemically mixed);however,the conversion and selectivity did not change when Ru was physically mixed with Au catalyst compared to the monometallic Ru/TiO2,and the chemically mixed Ru-Au/TiO2 catalyst did not show any activity.The effect of CO2 pressure on the conversion of citral and product selectivity was significantly different over the Au/TiO2,Pd-Au/TiO2,and Pd/TiO2 catalysts.It was assumed to be ascribed to the difference in the interactions between Au,Pd nanoparticles and CO2 under different CO2 pressures.

  11. Bimetallic Palladium Catalysts for Methane Combustion in Gas Turbines

    OpenAIRE

    Persson, Katarina

    2006-01-01

    Catalytic combustion is a promising combustion technology for gas turbines, which results in ultra low emission levels of nitrogen oxides (NOx), carbon monoxide (CO) and unburned hydrocarbons (UHC). Due to the low temperature achieved in catalytic combustion almost no thermal NOx is formed. This thesis is concentrated on the first stage in a catalytic combustion chamber, i.e. the ignition catalyst. The catalyst used for this application is often a supported palladium based catalyst due to its...

  12. Preparation and characterization of planar Ni–Au bimetallic model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan, E-mail: fan.yang@chem.tamu.edu; Yao, Yunxi; Yan, Zhen; Min, Hlaing; Goodman, D. Wayne

    2013-10-15

    Ni–Au bimetallic model catalysts were prepared as thin films on Re(0 0 0 1) or Ru(0 0 0 1) single crystal substrates. Surface compositions and electronic structures of the Ni–Au thin films were characterized by low energy ion scattering spectroscopy and X-ray photoelectron spectroscopy, respectively. Surface alloys were prepared by annealing Ni–Au thin films from 500 to 800 K, resulting in substantial surface enrichment of Au. Annealing a Ni–Au thin film with a 1:1 bulk composition ratio at 700 K for 10 min resulted in a surface alloy with 84% (atomic concentration) of Au in the outermost surface layer. The surface atomic structure was investigated using CO as probe molecules, which exclusively adsorbs on the Ni atoms rather than on the Au atoms at room temperature. Polarization modulation infrared reflection absorption spectroscopy of CO adsorption on Ni–Au surface alloys showed that CO adsorption on two-fold bridge sites decreased and finally disappeared with an increase of Au surface concentration. The absence of Ni bridge site CO adsorption indicated that Ni atoms were isolated by Au atoms on Ni–Au alloyed surface.

  13. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt-Cu nanocrystals catalysts

    Science.gov (United States)

    Wang, Ying-Xia; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2014-01-01

    PtCux (x = 1, 2 and 3) bimetallic nanocrystals with concave surface and dendritic morphology were prepared and used as electrocatalysts in methanol oxidation reaction (MOR) for polymer electrolyte membrane fuel cells. The bimetallic nanocrystals were synthesized via one-pot co-reduction of H2PtCl6 and Cu(acac)2 by oleylamine and polyvinyl pyrrolidone (PVP) in an autoclave at 180 °C. The concave dendritic bimetallic nanostructure consisted of a core rich in Cu and nanodendrites rich in Pt, which was formed via galvanic replacement of Cu by Pt. It was found that PVP played an important role in initiating, facilitating, and directing the replacement reaction. The electrochemical properties of the PtCux were characterized by cyclic voltammetry (CV) and chronoamperometry (CA). The concave dendritic PtCu2/C nanocrystals exhibited exceptionally high activity and strong poisoning resistance in MOR. At 0.75 V (vs. reversible hydrogen electrode, RHE) the mass activity and specific activity of PtCu2/C were 3.3 and 4.1 times higher than those of the commercial Pt/C catalysts, respectively. The enhanced catalytic activity could be attributed to the unique concave dendritic morphology of the bimetallic nanocrystals.

  14. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  15. STUDY ON POLYMER-Ru-Co-BIMETALLIC COMPLEXES CATALYSTS I. SYNTHESIS OF CATALYSTS AND THEIR USE FOR THE HYDROFORMYLATION

    Institute of Scientific and Technical Information of China (English)

    TANG Qi; ZONG Huijuan; CHEN Zonghan; JIANG Yingyan

    1991-01-01

    Six kinds of polymer ligands, supported on SiO2, containing coordinating atoms P, S and N respectively, have been synthesized. The Ru(Ⅲ)-Co(Ⅱ) bimetallic complexes of these polymer ligands have been obtained and examined as catalysts for the hydroformylation of cyclohexene. The effects of reaction temperature, pressure and Co/Ru ratio etc. on the activities of catalysts were investigated in detail. The catalysts are all polymer-noncarbonyl-metal complexes, easily to be prepared, active and stable. From the experimental results it can be suggested that under reaction conditions such polymer-noncarbonyl-metal complexes convert "in situ" to polymer-carbonyl-metal complexes, thus become active catalysts. The course of this conversion is supposed as a preliminary approach.

  16. Effects of bimetallic catalysts on synthesis of nitrogen-doped carbon nanotubes as nanoscale energetic materials

    Institute of Scientific and Technical Information of China (English)

    Hao Liu; Yong Zhang; Ruying Li; Xueliang Sun; Hakima Abou-Rachid

    2011-01-01

    Well aligned nitrogen-doped carbon nanotubes (CNx-NTs),as energetic materials,are synthesized on a silicon substrate by aerosol-assisted chemical vapor deposition.Tungsten (W) and molybdenum (Mo) metals are respectively introduced to combine with iron (Fe) to act as a bimetallic co-catalyst layer.Correlations between the composition and shape of the co-catalyst and morphology,size,growth rate and nitrogen doping amount of the synthesized CNx-NTs are investigated by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and X-ray photoelectron spectrometer (XPS).Compared to pure iron catalyst.W-Fe co-catalyst can result in lower growth rate,larger diameter and wider size distribution of the CNx-NTs; while incorporation of molybdenum into the iron catalyst layer can reduce the diameter and size distribution of the nanotubes.Compared to the sole iron catalyst,Fe-W catalyst impedes nitrogen doping while Fe-Mo catalyst promotes the incorporation of nitrogen into the nanotubes.The present work indicates that CNx-NTs with modulated size,growth rate and nitrogen doping concentration are expected to be synthesized by tuning the size and composition of co-catalysts,which may find great potential in producing CNx-NTs with controlled structure and properties.

  17. Reverse Micelle Synthesis and Characterization of Supported Pt/Ni Bimetallic Catalysts on gamma-Al2O3

    Energy Technology Data Exchange (ETDEWEB)

    B Cheney; J Lauterbach; J Chen

    2011-12-31

    Reverse micelle synthesis was used to improve the nanoparticle size uniformity of bimetallic Pt/Ni nanoparticles supported on {gamma}-Al{sub 2}O{sub 3}. Two impregnation methods were investigated to optimize the use of the micelle method: (1) step-impregnation, where Ni nanoparticles were chemically reduced in microemulsion and then supported, followed by Pt deposition using incipient wetness impregnation, and (2) co-impregnation, where Ni and Pt were chemically reduced simultaneously in microemulsion and then supported. Transmission electron microscopy (TEM) was used to characterize the particle size distribution. Atomic absorption spectroscopy (AAS) was used to perform elemental analysis of bimetallic catalysts. Extended X-ray absorption fine structure (EXAFS) measurements were utilized to confirm the formation of the Pt-Ni bimetallic bond in the step-impregnated catalyst. CO pulse chemisorption and Fourier transform infrared spectroscopy (FTIR) studies of 1,3-butadiene hydrogenation in a batch reactor were performed to determine the catalytic activity. Step-impregnated Pt/Ni catalyst demonstrated enhanced hydrogenation activity over the parent monometallic Pt and Ni catalysts due to bimetallic bond formation. The catalyst synthesized using co-impregnation showed no enhanced activity, behaving similarly to monometallic Ni. Overall, our results indicate that reverse micelle synthesis combined with incipient wetness impregnation produced small, uniform nanoparticles with bimetallic bonds that enhanced hydrogenation activity.

  18. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide.

    Science.gov (United States)

    Edwards, Jennifer K; Freakley, Simon J; Carley, Albert F; Kiely, Christopher J; Hutchings, Graham J

    2014-03-18

    Hydrogen peroxide is a widely used chemical but is not very efficient to make in smaller than industrial scale. It is an important commodity chemical used for bleaching, disinfection, and chemical manufacture. At present, manufacturers use an indirect process in which anthraquinones are sequentially hydrogenated and oxidized in a manner that hydrogen and oxygen are never mixed. However, this process is only economic at a very large scale producing a concentrated product. For many years, the identification of a direct process has been a research goal because it could operate at the point of need, producing hydrogen peroxide at the required concentration for its applications. Research on this topic has been ongoing for about 100 years. Until the last 10 years, catalyst design was solely directed at using supported palladium nanoparticles. These catalysts require the use of bromide and acid to arrest peroxide decomposition, since palladium is a very active catalyst for hydrogen peroxide hydrogenation. Recently, chemists have shown that supported gold nanoparticles are active when gold is alloyed with palladium because this leads to a significant synergistic enhancement in activity and importantly selectivity. Crucially, bimetallic gold-based catalysts do not require the addition of bromide and acids, but with carbon dioxide as a diluent its solubility in the reaction media acts as an in situ acid promoter, which represents a greener approach for peroxide synthesis. The gold catalysts can operate under intrinsically safe conditions using dilute hydrogen and oxygen, yet these catalysts are so active that they can generate peroxide at commercially significant rates. The major problem associated with the direct synthesis of hydrogen peroxide concerns the selectivity of hydrogen usage, since in the indirect process this factor has been finely tuned over decades of operation. In this Account, we discuss how the gold-palladium bimetallic catalysts have active sites for the

  19. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-01-08

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature-programmed reduction, and BET analysis demonstrates that the excellent performance of this catalyst is ascribed to the synergy of various parameters, including metal-nanoparticle size, metal-support interaction, catalyst structure, ensemble size, and alloy effects.

  20. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  1. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Yang, Hui; Huang, Peiyan; Song, Huiyu [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China)

    2014-10-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  2. Nanocrystalline MgO supported nickel-based bimetallic catalysts for carbon dioxide reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Meshkani, Fereshteh [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran); Rezaei, Mehran [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran)

    2010-10-15

    Nanocrystalline magnesium oxide with high surface area and plate-like shape was employed as catalyst support for preparation of nickel-based bimetallic catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N{sub 2} adsorption (BET), Temperature programmed oxidation and desorption (TPO-TPD), Thermal gravimetric and differential thermal gravimetric (TGA-DTG), H{sub 2} chemisorption and Transmission and electron microscopies (TEM and SEM) analyses. CO{sub 2}-TPD data showed the high CO{sub 2} adsorption capacity of catalysts which improves the resistance of catalysts against the carbon formation. The H{sub 2} chemisorption results also indicated that the addition of Pt to nickel catalyst improved the nickel dispersion. The obtained results revealed that the prepared catalysts showed a high activity and stability during the reaction with a low amount of deposited carbon. Addition of Pt to nickel catalyst improved both the activity and resistivity against carbon formation. (author)

  3. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  4. CATALYSIS SCIENCE INITIATIVE: From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    MAVRIKAKIS, MANOS

    2007-05-03

    In this project, we have integrated state-of-the-art Density Functional Theory (DFT) models of heterogeneous catalytic processes with high-throughput screening of bimetallic catalytic candidates for important industrial problems. We have studied a new class of alloys characterized by a surface composition different from the bulk composition, and investigated their stability and activity for the water-gas shift reaction and the oxygen reduction reaction. The former reaction is an essential part of hydrogen production; the latter is the rate-limiting step in low temperature H2 fuel cells. We have identified alloys that have remarkable stability and activity, while having a much lower material cost for both of these reactions. Using this knowledge of bimetallic interactions, we have also made progress in the industrially relevant areas of carbohydrate reforming and conversion of biomass to liquid alkanes. One aspect of this work is the conversion of glycerol (a byproduct of biodiesel production) to synthesis gas. We have developed a bifunctional supported Pt catalyst that can cleave the carbon-carbon bond while also performing the water-gas shift reaction, which allows us to better control the H2:CO ratio. Knowledge gained from the theoretical metal-metal interactions was used to develop bimetallic catalysts that perform this reaction at low temperature, allowing for an efficient coupling of this endothermic reaction with other reactions, such as Fischer-Tropsch or methanol synthesis. In our work on liquid alkane production from biomass, we have studied deactivation and selectivity in these areas as a function of metal-support interactions and reaction conditions, with an emphasis on the bifunctionality of the catalysts studied. We have identified a stable, active catalyst for this process, where the selectivity and yield can be controlled by the reaction conditions. While complete rational design of catalysts is still elusive, this work demonstrates the power of

  5. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  6. thesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts

    Directory of Open Access Journals (Sweden)

    Sanja Ratković

    2009-10-01

    Full Text Available Carbon nanotubes (CNTs were synthesized by a catalytic chemical vapor deposition method (CCVD of ethylene over alumina and silica supported bimetallic catalysts based on Fe, Co and Ni. The catalysts were prepared by a precipitation method, calcined at 600 °C and in situ reduced in hydrogen flow at 700 °C. The CNTs growth was carried out by a flow the mixture of C2H4 and nitrogen over the catalyst powder in a horizontal oven. The structure and morphology of as-synthesized CNTs were characterized using SEM. The as-synthesized nanotubes were purified by acid and basic treatments in order to remove impurities such as amorphous carbon, graphite nanoparticles and metal catalysts. XRD and DTA/TG analyses showed that the amounts of by-products in the purified CNTs samples were reduced significantly. According to the observed results, ethylene is an active carbon source for growing high-density CNTs with high yield but more on alumina-supported catalysts than on their silica- supported counterparts. The last might be explained by SMSI formed in the case of alumina-supported catalysts, resulting in higher active phase dispersion.

  7. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Science.gov (United States)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  8. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  9. Performance enhancement of bimetallic Co-Ru/CNTs nano catalysts using microemulsion technique

    Institute of Scientific and Technical Information of China (English)

    Ahmad; Tavasoli; Somayeh; Taghavi

    2013-01-01

    Bimetallic cobalt-ruthenium nano catalysts supported on carbon nanotubes(CNTs)are prepared using microemultion technique with water-to-surfactant ratios of 0.5—1.5.The nano catalysts were extensively characterized by different methods and their activity and selectivity in Fischer-Tropsch synthesis(FTS)have been assessed in a fixed-bed microreactor.The physicochemical properties and performance of the nanocatalysts were compared with the catalyst prepared by impregnation method.Very narrow particle size distribution has been produced by the microemulsion technique at relatively high loadings of active metals(15 wt%Co and 1 wt%Ru).According to TEM images,small Co particles(2—7 nm)were mostly confined inside the CNTs.Comparing with the catalyst prepared by impregnation,the use of microemulsion technique with water to surfactant ratio of 0.5 decreased the average cobalt oxide particle size to 4.8 nm,the dispersion was almost doubled and the reduction increased by 28%.Activity and selectivity were found to be dependent on the catalyst preparation method and water-to-surfactant ratio(as well as cobalt particle sizes).CO conversion increased from 59.1%to 75.1%and the FTS rate increased from 0.291 to0.372 gHC/(gcath).C5+liquid hydrocarbons selectivity decreased from 92.4%to 87.6%.

  10. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Felix-Navarro, R. M., E-mail: moi6salazar@hotmail.com; Beltran-Gastelum, M.; Salazar-Gastelum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Perez-Sicairos, S.; Lin, S. W. [Centro de Graduados e Investigacion, Instituto Tecnologico de Tijuana (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados (Mexico); Alonso-Nunez, G. [Centro de Nanociencias y Nanotecnologia (Mexico)

    2013-08-15

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O{sub 2} to H{sub 2}O{sub 2}. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H{sub 2}SO{sub 4} electrolyte using dissolved O{sub 2}. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H{sub 2}O{sub 2} electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H{sub 2}O{sub 2} alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  11. Highly selective bimetallic Pt-Cu/Mg(Al)O catalysts for the aqueous-phase reforming of glycerol

    NARCIS (Netherlands)

    Boga, D.A.; Oord, R.; Beale, A.M.; Chung, Y.M.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    Monometallic Pt and bimetallic Pt-Cu catalysts supported on Mg(Al)O mixed oxides, obtained by calcination of the corresponding layered double hydroxides (LDHs), were prepared and tested in the aqueous-phase reforming (APR) of glycerol. The effect of the Mg/Al ratio and calcination temperature of the

  12. Selective Liquid-Phase Semihydrogenation of Functionalized Acetylenes and Propargylic Alcohols with Silica-Supported Bimetallic Palladium—Copper Catalysts

    NARCIS (Netherlands)

    Koten, G. van; Spee, M.P.R.; Meijer, M.D.; Slagt, M.Q.; Geus, John W.

    2001-01-01

    Silica-supported, bimetallic palladium-copper catalysts were prepared in solution under mild conditions by reacting lithium di(4-tolyl)cuprate with palladium acetate in the presence of silica particles. Small bimetallic palladium-copper particles were deposited on the silica surface as confirmed wit

  13. Enhancement of bimetallic Fe-Mn/CNTs nano catalyst activity and product selectivity using microemulsion technique

    Institute of Scientific and Technical Information of China (English)

    Zahra; Zolfaghari; Ahmad; Tavasoli; Saber; Tabyar; Ali; Nakhaei; Pour

    2014-01-01

    Bimetallic Fe-Mn nano catalysts supported on carbon nanotubes(CNTs) were prepared using microemulsion technique with water-to-surfactant ratios of 0.4-1.6. The nano catalysts were extensively characterized by different methods and their activity and selectivity in Fischer-Tropsch synthesis(FTS) have been assessed in a fixed-bed microreactor. The physicochemical properties and performance of the nanocatalysts were compared with the catalyst prepared by impregnation method. Very narrow particle size distribution has been produced by the microemulsion technique at relatively high loading of active metal. TEM images showed that small metal nano particles in the range of 3–7 nm were not only confined inside the CNTs but also located on the outer surface of the CNTs. Using microemulsion technique with water to surfactant ratio of0.4 decreased the average iron particle sizes to 5.1 nm. The reduction percentage and dispersion percentage were almost doubled. Activity and selectivity were found to be dependent on the catalyst preparation method and average iron particle size. CO conversion and FTS rate increased from 49.1% to 71.0% and 0.144 to 0.289 gHC/(gcat h), respectively. While the WGS rate decreased from 0.097 to 0.056 gCO2/(gcat h). C5+liquid hydrocarbons selectivity decreased slightly and olefins selectivity almost doubled.

  14. Facile synthesis of ultrathin bimetallic PtSn wavy nanowires by nanoparticle attachment as enhanced hydrogenation catalysts.

    Science.gov (United States)

    Ding, Jiabao; Bu, Lingzheng; Zhang, Nan; Yao, Jianlin; Huang, Yu; Huang, Xiaoqing

    2015-03-01

    Ultrathin wavy nanowires represent an emerging class of nanostructures that exhibit unique catalytic, magnetic, and electronic properties, but the controlled production of bimetallic wavy nanowires remains a significant challenge. Ultrathin bimetallic PtSn nanowires have been prepared with high yield and featuring a highly wavy structure. Owing to the ultrathin nature and unique electronic properties of these PtSn wavy nanowires, they exhibit improved catalytic performance for the hydrogenation of nitrobenzene, as well as for the hydrogenation of styrene. These results suggest a new strategy to prepare highly active catalysts through defect engineering and can significantly impact broad practical applications. PMID:25603959

  15. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  16. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  17. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  18. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  19. Design of Pd-Based Bimetallic Catalysts for ORR: A DFT Calculation Study

    Directory of Open Access Journals (Sweden)

    Lihui Ou

    2015-01-01

    Full Text Available Developing Pd-lean catalysts for oxygen reduction reaction (ORR is the key for large-scale application of proton exchange membrane fuel cells (PEMFCs. In the present paper, we have proposed a multiple-descriptor strategy for designing efficient and durable ORR Pd-based alloy catalysts. We demonstrated that an ideal Pd-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pd, and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of Pd-M alloys, Pd-V, Pd-Fe, Pd-Zn, Pd-Nb, and Pd-Ta, are identified theoretically to have stable Pd segregated surface and improved ORR activity. Factors affecting these properties are analyzed. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction. This may be the origin of the negative alloy formation energy for Pd-M alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding Pd-M alloys.

  20. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Goodman, Wayne D.

    2012-12-21

    Pd-Au bimetallic catalysts often display enhanced catalytic activities and selectivities compared with Pd-alone catalysts. This enhancement is often caused by two alloy effects, i.e., ensemble and ligand effects. The ensemble effect is dilution of surface Pd by Au. With increasing surface Au coverages, contiguous Pd ensembles disappear and isolated Pd ensembles form. For certain reactions, for example vinyl acetate synthesis, this effect is responsible for reaction rate enhancement via the formation of highly active surface sites, e.g., isolated Pd pairs. The disappearance of contiguous Pd ensembles also switches off side reactions catalyzed by these sites. This explains selectivity increase of certain reactions, for example direct H2O2 synthesis. The ligand effect is electronic perturbation of Au to Pd. By direct charge transfer or affecting bond length, the ligand effect causes the Pd d band to be more filled and the d-band center away from the Fermi level. Both changes make Pd more "atomic like" therefore binding reactants and products weaker. For certain reactions, this eliminates the so-called "self poisoning" and enhances activity/selectivity.

  1. Facile Synthesis of Porous Dendritic Bimetallic Platinum-Nickel Nanocrystals as Efficient Catalysts for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Eid, Kamel; Wang, Hongjing; Malgras, Victor; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Wang, Liang

    2016-05-01

    Certain bimetallic nanocrystals (NCs) possess promising catalytic properties for electrochemical energy conversion. Herein, we report a facile method for the one-step synthesis of porous dendritic PtNi NCs in aqueous solution at room temperature that contrasts with the traditional multistep thermal decomposition approach. The dendritic PtNi NCs assembled by interconnected arms are efficient catalysts for the oxygen reduction reaction. This direct and efficient method is favorable for the up-scaled synthesis of active catalysts used in electrochemical applications. PMID:26879517

  2. Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganok, Andrey I. [Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, D' Iorio Hall, 10 Marie Curie Street, Ottawa, Ont. (Canada); Inaba, Mieko [Natural Gas Technology Development Team, Teikoku Oil Co., 9-23-30 Kitakarasuyama, Setagaya-ku, Tokyo 157-0061 (Japan); Tsunoda, Tatsuo; Uchida, Kunio; Suzuki, Kunio; Hayakawa, Takashi [Institute for Materials and Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Takehira, Katsuomi [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2005-09-18

    A novel synthetic strategy for preparing bimetallic Ru-M (M=Cr, Fe, Co, Ni and Cu) catalysts, supported on Mg-Al mixed oxide, has been introduced. It was based on a 'memory effect', i.e. on the ability of Mg-Al mixed oxide to reconstruct a layered structure upon rehydration with an aqueous solution. By repeated calcinations-rehydration cycles, layered double hydroxide (LDH) precursors of catalysts containing two different metals were synthesized. Bimetallic catalysts were then generated (1) in situ from LDH under methane reforming reaction conditions and (2) from mixed metal oxides obtained by preliminary LDH calcination. Among all the LDH-derived catalysts, a Ru{sup 0.1%}-Ni{sup 5.0%}/MgAlO{sub x} sample revealed the highest activity and selectivity to syngas, a suitable durability and a low coking capacity. A promoting effect of ruthenium on catalytic function of supported nickel was demonstrated. Preliminary LDH calcination was shown to markedly affect the catalytic activity of the derived catalysts and especially their coking properties.

  3. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    Science.gov (United States)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted

  4. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.

    Science.gov (United States)

    Liu, Jinyong; Choe, Jong Kwon; Sasnow, Zachary; Werth, Charles J; Strathmann, Timothy J

    2013-01-01

    Concentrated sodium chloride (NaCl) brines are often used to regenerate ion-exchange (IX) resins applied to treat drinking water sources contaminated with perchlorate (ClO(4)(-)), generating large volumes of contaminated waste brine. Chemical and biological processes for ClO(4)(-) reduction are often inhibited severely by high salt levels, making it difficult to recycle waste brines. Recent work demonstrated that novel rhenium-palladium bimetallic catalysts on activated carbon support (Re-Pd/C) can efficiently reduce ClO(4)(-) to chloride (Cl(-)) under acidic conditions, and here the applicability of the process for treating waste IX brines was examined. Experiments conducted in synthetic NaCl-only brine (6-12 wt%) showed higher Re-Pd/C catalyst activity than in comparable freshwater solutions, but the rate constant for ClO(4)(-) reduction measured in a real IX waste brine was found to be 65 times lower than in the synthetic NaCl brine. Through a series of experiments, co-contamination of the IX waste brine by excess NO(3)(-) (which the catalyst reduces principally to NH(4)(+)) was found to be the primary cause for deactivation of the Re-Pd/C catalyst, most likely by altering the immobilized Re component. Pre-treatment of NO(3)(-) using a different bimetallic catalyst (In-Pd/Al(2)O(3)) improved selectivity for N(2) over NH(4)(+) and enabled facile ClO(4)(-) reduction by the Re-Pd/C catalyst. Thus, sequential catalytic treatment may be a promising strategy for enabling reuse of waste IX brine containing NO(3)(-) and ClO(4)(-).

  5. Low-temperature 1 3-butadiene Hydrogenation over Supported Pt/3d/gamma-Al2O3 Bimetallic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    W Lonergan; X Xing; R Zheng; S Qi; B Huang; J Chen

    2011-12-31

    Low-temperature 1,3-butadiene hydrogenation is used as a probe reaction to investigate the hydrogenation activity over several {gamma}-Al{sub 2}O{sub 3} supported Pt/3d (3d = Co, Ni, Cu) bimetallic catalysts. Batch and flow reactor studies are employed to quantify the kinetic activity and steady-state conversion, respectively, of each catalyst. Transmission electron microscopy (TEM) is utilized to characterize particle sizes and extended X-ray absorption fine structure (EXAFS) measurements are performed to verify the Pt-3d bimetallic bond formation. Pulse carbon monoxide chemisorption measurements are also performed to characterize the number of active sites. Additionally, density functional theory (DFT) calculations are included to determine the binding energies of 1,3-butadiene and atomic hydrogen on the corresponding model surfaces. The binding energies of the adsorbates are found to correlate with the hydrogenation activity, allowing for use of such correlation to potentially predict hydrogenation catalysts with enhanced activity based on the binding energies of the adsorbates of interest.

  6. Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts

    OpenAIRE

    Ardiyanti, A. R.; GUTIERREZ, A.; Honkela, M. L.; Krause, A.O.I.; Heeres, H. J.

    2011-01-01

    Fast pyrolysis oil (PO), the liquid product of fast pyrolysis of lignocellulosic biomass, requires upgrading to extent its application range and for instance to allow for co-feeding in an existing oil-refinery. Catalytic hydrotreatment reactions (350 degrees C, 20 MPa total pressure, and 4h reaction time) with mono- and bimetallic metal catalysts based on Rh, Pt, Pd on a zirconia support were performed in a batch set-up. Pd/ZrO(2) showed the highest activity, followed by Rh/ZrO(2). Upgraded o...

  7. Kinetics of oxygen-enhanced water gas shift on bimetallic catalysts and the roles of metals and support

    Science.gov (United States)

    Kugai, Junichiro

    The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However, the conventional process consists of three steps, i.e. two steps of water gas shift (WGS) and preferential oxidation (PROX) of CO, and it is not suitable for mobile applications due to the large volume of water gas shift (WGS) catalysts and conditioning and/or regeneration necessary for these catalysts. Aiming at replacing those three steps by a simple one-step process, small amount of oxygen was added to WGS (the reaction called oxygen-enhanced water gas shift or OWGS) to promote the reaction kinetics and low pyrophoric ceria-supported bimetallic catalysts were employed for stable performance in this reaction. Not only CO conversion, but also H2 yield was found to increase by the O2 addition on CeO2-supported catalysts. The characteristics of OWGS, high H2 production rate at 200 to 300°C at short contact time where unreacted O2 exists, evidenced the impact of O2 addition on surface species on the catalyst. Around 1.5 of reaction order in CO for various CeO2-supported metal catalysts for OWGS compared to reaction orders in CO ranging from -0.1 to 0.6 depending on metal species for WGS shows O2 addition decreases CO coverage to free up the active sites for co-reactant (H2O) adsorption and activation. Among the monometallic and bimetallic catalysts, Pt-Cu and Pd-Cu bimetallic catalysts were superior to monometallic catalysts in OWGS. These bimetallic components were found to form alloys where noble metal is surrounded mainly by Cu to have strong interaction between noble metal and copper resulting in high OWGS activity and low pyrophoric property. The metal loadings were optimized for CeO2-supported Pd-Cu bimetallic system and 2 wt% Pd with 5 -- 10 wt% Cu were found to be the optimum for the present OWGS condition. In the kinetic study, Pd in Pd-Cu was shown to increase the active sites for H2O

  8. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale

    Science.gov (United States)

    Shan, Shiyao; Petkov, Valeri; Prasai, Binay; Wu, Jinfang; Joseph, Pharrah; Skeete, Zakiya; Kim, Eunjoo; Mott, Derrick; Malis, Oana; Luo, Jin; Zhong, Chuan-Jian

    2015-11-01

    The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo phase

  9. Synergy between Two Metal Catalysts: A Highly Active Silica-Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane.

    Science.gov (United States)

    Samantaray, Manoja K; Dey, Raju; Kavitake, Santosh; Abou-Hamad, Edy; Bendjeriou-Sedjerari, Anissa; Hamieh, Ali; Basset, Jean-Marie

    2016-07-13

    A well-defined, silica-supported bimetallic precatalyst [≡Si-O-W(Me)5≡Si-O-Zr(Np)3] (4) has been synthesized for the first time by successively grafting two organometallic complexes [W(Me)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple-quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON = 1436) than the monometallic W hydride (TON = 650) in the metathesis of n-decane at 150 °C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation that occurs on Zr. The produced olefin resulting from a β-H elimination undergoes easy metathesis on W. PMID:27248839

  10. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja K

    2016-06-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of Zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON: 1436) than the monometallic W hydride (TON: 650) in metathesis of n-decane at 150 0C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation which occurs on Zr. The produced olefin resulting from a ß–H elimination undergoes easy metathesis on W.

  11. Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts.

    Science.gov (United States)

    Falletta, Ermelinda; Della Pina, Cristina; Rossi, Michele; He, Qian; Kiely, Christopher J; Hutchings, Graham J

    2011-01-01

    One of the strategic building blocks in organic synthesis is 3-hydroxypropionic acid, which is particularly important for the manufacture of high performance polymers. However, to date, despite many attempts using both biological and chemical routes, no large scale effective process for manufacturing 3-hydroxypropionic acid has been developed. One potentially useful starting point is from allyl alcohol, as this can be obtained in principle from the dehydration of glycerol, thereby presenting a bio-renewable green pathway to this important building block. The catalytic transformation of allyl alcohol to 3-hydroxypropionic acid presents interesting challenges in catalyst design, particularly with respect to the control of selectivity among the products that can be expected, as acrylic acid, acrolein and glyceric acid can also be formed. In this paper, we present a novel eco-sustainable catalytic pathway leading to 3-hydroxypropionic acid, which highlights the outstanding potential of gold-based and bimetallic catalysts in the aerobic oxidation of allyl alcohol. PMID:22455056

  12. Enhanced Hydrodeoxygenation of m -Cresol over Bimetallic Pt–Mo Catalysts through an Oxophilic Metal-Induced Tautomerization Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison; Ferguson, Glen Allen; Gallagher, James R.; Cheah, Singfoong; Beckham, Gregg T.; Schaidle, Joshua A.; Hensley, Jesse E.; Medlin, J. Will

    2016-07-01

    Supported bimetallic catalysts consisting of a noble metal (e.g., Pt) and an oxophilic metal (e.g., Mo) have received considerable attention for the hydrodeoxygenation of oxygenated aromatic compounds produced from biomass fast pyrolysis. Here, we report that PtMo can catalyze m-cresol deoxygenation via a pathway involving an initial tautomerization step. In contrast, the dominant mechanism on monometallic Pt/Al2O3 was found to be sequential Pt-catalyzed ring hydrogenation followed by dehydration on the support. Bimetallic Pt10Mo1 and Pt1Mo1 catalysts were found to produce the completely hydrogenated and deoxygenated product, methylcyclohexane (MCH), with much higher yields than monometallic Pt catalysts with comparable metal loadings and surface areas. Over an inert carbon support, MCH formation was found to be slow over monometallic Pt catalysts, while deoxygenation was significant for PtMo catalysts even in the absence of an acidic support material. Experimental studies of m-cresol deoxygenation together with density functional theory calculations indicated that Mo sites on the PtMo bimetallic surface dramatically lower the barrier for m-cresol tautomerization and subsequent deoxygenation. The accessibility of this pathway arises from the increased interaction between the oxygen of m-cresol and the Mo sites in the Pt surface. This interaction significantly alters the configuration of the precursor and transition states for tautomerization. A suite of catalyst characterization techniques including X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR) indicate that Mo was present in a reduced state on the bimetallic surface under conditions relevant for reaction. Overall, these results suggest that the use of bifunctional metal catalysts can result in new reaction pathways that are unfavorable on monometallic noble metal catalysts.

  13. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  14. Suppression of carbon formation in CH4–CO2 reforming by addition of Sr into bimetallic Ni–Co/γ-Al2O3 catalyst

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Fatesh

    2015-01-01

    Full Text Available Bimetallic catalysts, containing 5 wt% Ni + 5 wt% Co supported on γ-Al2O3 combined with different amounts of Sr promoter ranging from 0 to 1 wt%, for dry reforming reaction were prepared by the impregnation method. The dry reforming reaction was carried out at atmospheric pressure using CO2/CH4/N2 feed ratio of 17/17/2, F/W = 60 mL/min gcat and reaction temperature range of 500–700 °C. The performance of the developed catalyst was evaluated by estimating the CH4 and CO2 conversions, and by performing a long run stability test. The fresh and spent catalysts were characterized by BET, TGA, TPD, TPR, and TPO. The bimetallic catalysts provided higher activity than the monometallic-catalysts. When the bimetallic was promoted with Sr, the activity decreased slightly however, the stability enhanced. The best stability, estimated by the deactivation factor, and less carbon deposition, measured by TGA, were obtained when 5Ni5CoSr0.75 catalyst was used.

  15. Aqueous Phase Glycerol Reforming by PtMo Bimetallic Nano-Particle Catalyst: Product Selectivity and Structural Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Stach E. A.; Dietrich, P.J.; Lobo-Lapidus, R.J.; Wu, T.; Sumer, A.; Akatay, M.C.; Fingland, B.R.; Guo, N.; Dumesic, J.A.; Marshall, C.L.; Jellinek, J.; Delgass, W.N.; Ribeiro, F.H.; Miller, J.T.

    2012-03-01

    A carbon supported PtMo aqueous phase reforming catalyst for producing hydrogen from glycerol was characterized by analysis of the reaction products and pathway, TEM, XPS and XAS spectroscopy. Operando X-ray absorption spectroscopy (XAS) indicates the catalyst consists of bimetallic nano-particles with a Pt rich core and a Mo rich surface. XAS of adsorbed CO indicates that approximately 25% of the surface atoms are Pt. X-ray photoelectron spectroscopy indicates that there is unreduced and partially reduced Mo oxide (MoO{sub 3} and MoO{sub 2}), and Pt-rich PtMo bimetallic nano-particles. The average size measured by transmission electron microscopy of the fresh PtMo nano-particles is about 2 nm, which increases in size to 5 nm after 30 days of glycerol reforming at 31 bar and 503 K. The catalyst structure differs from the most energetically stable structure predicted by density functional theory (DFT) calculations for metallic Pt and Mo atoms. However, DFT indicates that for nano-particles composed of metallic Pt and Mo oxide, the Mo oxide is at the particle surface. Subsequent reduction would lead to the experimentally observed structure. The aqueous phase reforming reaction products and intermediates are consistent with both C-C and C-OH bond cleavage to generate H{sub 2}/CO{sub 2} or the side product CH{sub 4}. While the H{sub 2} selectivity at low conversion is about 75%, cleavage of C-OH bonds leads to liquid products with saturated carbon atoms. At high conversions (to gas), these will produced additional CH{sub 4} reducing the H{sub 2} yield and selectivity.

  16. Greatly improved electrochemical performance of lithium-oxygen batteries with a bimetallic platinum-copper alloy catalyst

    Science.gov (United States)

    Lee, Minwook; Hwang, Yubin; Yun, Kyung-Han; Chung, Yong-Chae

    2015-08-01

    Research on the cathode catalysts of lithium-oxygen (Li-O2) batteries is one of the most important branches to commercialize these batteries to overcome the sluggish kinetics during both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). In this study, a high performance catalyst based on a bimetallic Pt-Cu alloy is investigated for Li-O2 batteries using first-principles calculation. The theoretical prediction shows that the Pt-Cu alloy is much more effective than the pure Pt according to the electrochemical performance. In particular, the effectiveness of the catalytic property is maximized in the case of the PtCu (111) surface which greatly reduces the large overpotentials of the original Li-O2 batteries during the OER/ORR. It is identified for the first time that the charge overpotentials are affected mainly by the inherent surface charge character of the alloy catalyst. It is observed that the more negatively charged PtCu (111) surface can act as a weakly positively charged surface for the adsorption of Li-O intermediates and thus result in weak ionic bonding of the intermediates on the surface. As a result, the dominant factor improving the catalytic performance is clearly demonstrated, providing insight into the design of an efficient catalyst for Li-O2 battery technologies.

  17. Final Technical Report: First Principles Investigations for the Ensemble Effects of PdAu and PtAu Bimetallic Nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruqian Wu

    2012-05-18

    Bimetallic surfaces with tunable chemical properties have attracted broad attention in recent years due to their ample potential for heterogeneous catalysis applications. The local chemical properties of constituents are strongly altered from their parent metals by 'ligand effect', a term encompassing the influences of charge transfer, orbital rehybridization and lattice strain. In comparison to the aforementioned, the 'ensemble effect' associated with particular arrangements of the active constituents have received much less attention, despite their notable importance towards the determination of reactivity and selectivity of bimetallic catalysts. We performed theoretical studies for understanding the ensemble effects on bimetallic catalysis: (i) simulations for the formation of different ensembles on PdAu and PtAu nanoclusters; (ii) studies of the size, shape, and substrate dependence of their electronic properties; and (iii) simulations for model reactions such as CO oxidation, methanol, ethylene and water dehydrogenation on PdAu and PtAu nanoclusters. In close collaboration with leading experimental groups, our theoretical research elucidated the fundamentals of Au based bimetallic nanocatalysts.

  18. Efficiently cubic platinum-cobalt bimetallic nano-catalysts for use in low-cost dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: Low-platinum (Pt) alloy can be expected to substitute for the conventional Pt catalyst due to its modified Pt electronic structure with highly electrocatalytic activity and Pt-skin nano-structure with high durability. Pt3Co bimetallic nano-catalysts show high catalytic activity for the reduction of triiodide to iodide and low charge transfer resistance at the electrolyte/counter electrode interface as well as those of pure cubic Pt nano-catalysts. DSSC based on Pt3Co CE achieves an enhanced efficiency of 8.16% compared to that of thermal decomposition Pt CE (7.26%). - Highlights: • Cubic Co, Pt, PtCo, and Pt3Co nano-catalysts were synthesized in the oleylamine. • Pt-metal alloy with modified Pt electronic structure shows highly electrocatalytic activity. • Pt-metal alloy with Pt-skin nano-structure shows high durability. • The efficiency of DSSC with Pt3Co bimetallic counter electrode reaches 8.16%. - Abstract: Low-platinum (Pt) alloy can be expected to substitute for the conventional Pt catalyst due to its modified Pt electronic structure with highly electrocatalytic activity and Pt-skin nano-structure with high durability. Here we synthesize the pure cobalt (Co), pure Pt, PtCo, and Pt3Co nano-catalysts in the oleylamine and use their as the counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Cyclic voltammetry and electrochemical impedance spectroscopy measurements indicate that the cubic Pt3Co CE has a high catalytic activity for the reduction of triiodide to iodide and a low charge transfer resistance at the electrolyte/CE interface, which are close to those of the pure cubic Pt CE but superior than those of the thermal decomposition platinum (TDPt) CE due to its modified Pt electronic structure and its catalytic surfaces are composed of Pt-rich and Pt-skin nano-structure. DSSC based on Pt3Co CE achieves a photovoltaic conversion efficiency of 8.16% under full sunlight illumination (100 mW cm−2, AM1.5 G), which

  19. EXAFS Peaks and TPR Characterizing Bimetallic Interactions: Effects of Impregnation Methods on the Structure of Pt-Ru/C Catalysts

    Directory of Open Access Journals (Sweden)

    Nan-Yu Chen

    2014-01-01

    Full Text Available To investigate bimetallic interactions, Pt-Ru/C catalysts were prepared by coimpregnation (Pt-Ruco/C and successive impregnation (Ru-Ptse/C, while Pt/C, Ru/C, and reduced Pt-Rublack were used as reference. Those samples were characterized by XAS and TPR. When Pt(absorber-Ru(backscatter phase-and-amplitude correction is applied to Fourier transformed (FT EXAFS of Pt-Rublack at Pt edge, the characteristic peak of Pt-Ru interactions appears at 2.70 Å´, whereas, when Pt-Pt correction is applied, the peak appears at about 2.5 Å´. Detailed EXAFS analysis for Pt-Ruco/C and Pt-Ruse/C confirms the nature of the characteristic peak and further indicates that the interactions can semiquantitatively be determined by the relative intensity between Pt-Ru and Pt-Pt characteristic peaks. This simple method in determining bimetallic interaction can be extended to characterize Pt-Pd/γ-Al2O3. However, for Pt-Re/γ-Al2O3, Pt-Re interactions cannot be determined by the method because of the overlap of Pt-Pt and Pt-Re characteristic peaks due to similar phase functions.

  20. Surface structure and reaction property of CuCl2-PdCl2 bimetallic catalyst in methanol oxycarbonylation: A DFT approach

    International Nuclear Information System (INIS)

    Surface structure of CuCl2-PdCl2 bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl2-PdCl2 surfaces was also investigated. On the CuCl2-PdCl2 surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl2 surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH3 on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH3 species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl2-PdCl2 surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that PdCl2-CuCl2 catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.

  1. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters.

    Science.gov (United States)

    Kaizuka, Kosuke; Miyamura, Hiroyuki; Kobayashi, Shū

    2010-11-01

    Selective oxidation of alcohols catalyzed by novel carbon-stabilized polymer-incarcerated bimetallic nanocluster catalysts using molecular oxygen has been developed. The reactivity and the selectivity were strongly dependent on the combination of metals and solvent systems; aldehydes and ketones were obtained by the gold/platinum catalyst in benzotrifluoride, and esters were formed by the gold/palladium catalyst in methanol. To the best of our knowledge, this is the first example that the reaction pathway has been changed dramatically in gold catalysis by combining with a second metal. The differences in the activity and the selectivity are considered to be derived from the difference in the structure of the bimetallic clusters.

  2. Bimetallic PtAu superlattice arrays: Highly electroactive and durable catalyst for oxygen reduction and methanol oxidation reactions

    Science.gov (United States)

    Feng, Jiu-Ju; He, Li-Li; Fang, Rui; Wang, Qiao-Li; Yuan, Junhua; Wang, Ai-Jun

    2016-10-01

    Superlattice arrays, an important type of nanomaterials, have wide applications in catalysis, optic/electronics and energy storage for the synergetic effects determined by both individual metals and collective interactions. Herein, a simple one-pot solvothermal coreduction approach is developed for facile preparation of bimetallic PtAu alloyed superlattice arrays (PtAu SLAs) in oleylamine, with the assistance of urea via hydrogen bonding induced self-assembly. Urea is essential in morphology-controlled process and prevents PtAu nanoparticles from the disordered aggregation. The characterization and formation mechanism of PtAu SLAs are investigated in details. The as-synthesized hybrid nanocrystals exhibit enhanced electrocatalytic performances for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline electrolyte in comparison with commercial Pt-C (50%, wt.%) and Pt black catalysts.

  3. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  4. LC-finer catalyst testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D.; Bronfenbrenner, J.C.

    1983-09-01

    The activity and aging rate of modified Shell 324 Ni-Mo-Al catalyst were studied in ICRC's process development unit (PDU) under SRC-I Demonstration Plant hydroprocessing conditions. The studies determined variations in SRC conversion, hydrocarbon gas production, hydrogen consumption, and heteroatom removal at both constant and increasing reaction temperatures. Samples of spent catalyst were analyzed to ascertain the reasons for catalyst deactivation. Finally, the PDU hydroprocessing results were compared with those generated at Lummus and Wilsonville pilot plants. 14 references, 25 figures, 16 tables.

  5. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: Promotional effect of In

    Science.gov (United States)

    Chen, Yanjun; Chen, Jixiang

    2016-11-01

    Ni/SiO2 and the bimetallic NixIn/SiO2 catalysts with different Ni/In ratios were tested for the selective hydrogenation of acetylene, and their physicochemical properties before and after the reaction were characterized by means of N2-sorption, H2-TPR, XRD, TEM, XPS, H2 chemisorption, C2H4-TPD, NH3-TPD, FT-IR of adsorbed pyridine, and TG/DTA and Raman. A promotional effect of In on the performance of Ni/SiO2 was found, and NixIn/SiO2 with a suitable Ni/In ratio gave much higher acetylene conversion, ethylene selectivity and catalyst stability than Ni/SiO2. This is ascribed to the geometrical isolation of the reactive Ni atoms with the inert In ones and the charge transfer from the In atoms to Ni ones, both of which are favorable for reducing the adsorption strength of ethylene and restraining the Csbnd C hydrogenolysis and the polymerizations of acetylene and the intermediate compounds. On the whole, Ni6In/SiO2 and Ni10In/SiO2 had better performance. Nevertheless, with increasing the In content, the selectivity to the C4+ hydrocarbons tended to increase due to the enhanced catalyst acidity because of the charge transfer from the In atoms to Ni ones. As the Lewis acid ones, the In sites could promote the polymerization. The catalyst deactivation was also analyzed. We propose that the Ni/SiO2 deactivation is mainly attributed to the phase change from metallic Ni to nickel carbide. The introduction of In inhibited the formation of nickel carbide. However, as the In content increased, the carbonaceous deposit became the main reason for the NixIn/SiO2 deactivation due to the enhanced catalyst acidity.

  6. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  7. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

    Directory of Open Access Journals (Sweden)

    Anna M. Venezia

    2013-06-01

    Full Text Available Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.

  8. Correlating ethylene glycol reforming activity with in-situ EXAFS detection of Ni segregation in supported NiPt bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Trupy, Sarah A.; Karim, Ayman M.; Bagia, Christtina; Deng, Weihua; Huang, Yulin; Vlachos, Dionisios G.; Chen, Jingguang

    2012-10-31

    The structural changes in supported NiPt/C and NiPt/γ-Al2O3 catalysts were investigated using in-situ extended X-ray absorption fine structure (EXAFS) under aqueous phase reforming (APR) of ethylene glycol conditions. Reverse Monte Carlo is introduced to analyze the EXAFS data. Parallel reactor studies of APR of ethylene glycol showed that NiPt catalysts were initially more active than monometallic Pt catalysts. The enhanced activity was correlated to changes in the catalyst structure. Under APR conditions, Ni segregated to the surface of the catalysts, resembling Ni-terminated bimetallic surfaces that were predicted to be more active than Pt from theoretical and experimental studies on model surfaces.

  9. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  10. Purification of Carbon Nanotubes Synthesized by Catalytic Decomposition of Methane using Bimetallic Fe-Co Catalysts Supported on MgO

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Beh Hoe; Ramli, Irmawati [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia); Yahya, Noorhana [Fundamental and Applied Science Department Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Pah, Lim Kean, E-mail: irmawati@science.upm.edu.my [Physics department, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    This work reports the synthesis of carbon nanotubes by catalytic decomposition of methane using bimetallic Fe-Co catalysts supported on MgO. Transmission electron microscopy (TEM) results show the as-prepared carbon nanotubes are multi-walled carbon nanotubes (MWCNTs) with diameter in the range of 15nm to 45nm. Purification of as-prepared MWCNTs was carried out by acid and heat treatment method. EDX results show the Fe, Co and MgO catalysts were successfully removed by refluxing the as-prepared MWCNTs in 3M H{sub 2}SO{sub 4}.

  11. Purification of Carbon Nanotubes Synthesized by Catalytic Decomposition of Methane using Bimetallic Fe-Co Catalysts Supported on MgO

    Science.gov (United States)

    Guan, Beh Hoe; Ramli, Irmawati; Yahya, Noorhana; Kean Pah, Lim

    2011-02-01

    This work reports the synthesis of carbon nanotubes by catalytic decomposition of methane using bimetallic Fe-Co catalysts supported on MgO. Transmission electron microscopy (TEM) results show the as-prepared carbon nanotubes are multi-walled carbon nanotubes (MWCNTs) with diameter in the range of 15nm to 45nm. Purification of as-prepared MWCNTs was carried out by acid and heat treatment method. EDX results show the Fe, Co and MgO catalysts were successfully removed by refluxing the as-prepared MWCNTs in 3M H2SO4.

  12. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hong [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Ye, Xiaoliang [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2015-07-05

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k{sub app}) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes.

  13. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  14. Catalytic performance of dealuminated H-Y zeolite supported bimetallic nano catalysts in Hydroizomerization of n-hexane and n-heptane

    International Nuclear Information System (INIS)

    A series of dealuminated Y-zeolites impregnated by 0.5 wt % Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt %) were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydro conversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 degree C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption-desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2-4 nm and 7-8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5 Pt-0.3 Cr)/D18 H-Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5 Pt-0.6 Ni)/D18 H-Y catalyst can be designed as most suitable as a cracking catalyst

  15. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  16. Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts.

    Science.gov (United States)

    Wurster, Benjamin; Grumelli, Doris; Hötger, Diana; Gutzler, Rico; Kern, Klaus

    2016-03-23

    Developing efficient catalysts for electrolysis, in particular for the oxygen evolution in the anodic half cell reaction, is an important challenge in energy conversion technologies. By taking inspiration from the catalytic properties of single-atom catalysts and metallo-proteins, we exploit the potential of metal-organic networks as electrocatalysts in the oxygen evolution reaction (OER). A dramatic enhancement of the catalytic activity toward the production of oxygen by nearly 2 orders of magnitude is demonstrated for novel heterobimetallic organic catalysts compared to metallo-porphyrins. Using a supramolecular approach we deliberately place single iron and cobalt atoms in either of two different coordination environments and observe a highly nonlinear increase in the catalytic activity depending on the coordination spheres of Fe and Co. Catalysis sets in at about 300 mV overpotential with high turnover frequencies that outperform other metal-organic catalysts like the prototypical hangman porphyrins. PMID:26937997

  17. Performance Comparison of Two Newly Developed Bimetallic (X-Mo/Al2O3, X=Fe or Co) Catalysts for Reverse Water Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Gharibi Kharaji; Ahmad Shariati

    2016-01-01

    The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al2O3, was com-pared for reverse water gas shift (RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, inductively coupled plasma-atomic emission spec-trometry (ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscopy (SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a ifxed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO2 conversion at all temperature level. The time-on-stream (TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60 h for both catalysts. The Fe-Mo/Al2O3 catalyst exhibits good stability within a period of 60 h, however, the Co-Mo/Al2O3 is gradually deactivated after 50 h of reaction time. Existence of Fe2(MoO4)3 phase in Fe-Mo/Al2O3 catalyst makes this catalyst more stable for RWGS reaction.

  18. XPS study of Cu-Ni bimetallic catalyst%Cu-Ni双金属催化剂的XPS研究

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    采用XPS方法研究了以不同方式引入Ni的Cu-Ni/Al2O3双金 属催化剂的表面结构及不同处理条件对催化剂表面结构的影响。发现催化剂表面存在表面铝 酸盐物种,且Ni的存在会促进表面铝酸盐物种的生成。催化剂经H2还原处理或经CO2加 氢反应后均要发生表面重构。Ni的存在会影响表面重构过程从而影响催化剂的活性和选择性 ,在所研究的含Ni催化剂上,CO2加氢反应经历了生成双齿表面吸附中间物的过程。%The surface structure of Cu-Ni bimetallic catalysts and its variation with diff erent treatment conditions were studied by XPS techique.The effect of the chemi cal state of Ni before the impregnation of Cu in catalyst preparation on the sur f ace structure and its variation were also investigated.It is found that Cu atom approaches the surface of Al2O3 when it is supported.Surface aluminates a re formed on the surface of the catalysts and the presence of Ni favorites the f ormation of surface aluminates.The surface content of Cu is increased when Ni e x isted in reduced form before the introduction of Cu,while the opposite is true w hen Ni existed in oxidized form before introduction of Cu.Surface reconstructio n is observed when the samples studied are reduced in H2 or treated under CO 2 hydrogenation condition.The hydrogenation of CO2 enriches the surface c ontenrt of Cu species comparing to reduction.After CO2 hydrogenation treat ment,Cu species is observed to migrate to the surface of the catalyst in the abs ence of Ni,while in the presence of Ni surface is remarkably decreased.Bidentat e CO2 adsorptive species with the two O of CO2 cooordinated to metal atom s is a possible intermediate in the hydrogenation of CO2 over Ni containing c atalyst studied.

  19. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong S.; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  20. Mono- and Bimetallic Ruthenium—Arene Catalysts for Olefin Metathesis: A Survey

    Science.gov (United States)

    Borguet, Yannick; Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, we summarize the main achievements of our group toward the development of easily accessible, highly efficient ruthenium—arene catalyst precursors for olefin metathesis. Major advances in this field are presented chronologically, with an emphasis on catalyst design and mechanistic details. The first part of this survey focuses on monometallic complexes with the general formula RuCl2(p-cymene)(L), where L is a phosphine or N-heterocyclic carbene ancillary ligand. In the second part, we disclose recent developments in the synthesis and catalytic applications of homobimetallic ruthenium—arene complexes of generic formula (p-cymene)Ru(μ-Cl)3RuCl(η2-C2H4)(L) and their derivatives resulting from the substitution of the labile ethylene moiety with vinylidene, allenylidene, or indenylidene units

  1. Preparation of highly dispersed Ru-Sn bimetallic supported catalysts from the single source precursors Cp(PPh32Ru-SnX3 (X = Cl or Br

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Bernardes Silva

    2003-06-01

    Full Text Available In this work highly dispersed Ru-Sn bimetallic catalysts have been prepared from organobimetallic Cp(PPh32Ru-SnX3 (X = Cl or Br complexes. These single source precursors can be easily impregnated in high surface area supports, such as activated carbon and sol-gel SiO2, and upon controlled thermal treatment the ligands are released as volatile products resulting in the formation of the bimetallic system Ru-Sn. Catalytic reactions, such as hydrodechlorination of CCl4 and chlorobenzene and TPR (Temperature Programmed Reduction experiments carried out with these RuSn catalysts suggested a strong interaction between Ruthenium and Tin. Mössbauer measurements showed that these materials when exposed to air are immediately oxidized to form Sn (IV. It was shown that upon controlled reduction conditions with H2 it is possible to reduce selectively Sn to different oxidation states and different phases. The Sn oxidation state showed significant effect on the catalytic hydrogenation of 1,5-cyclooctadiene. The use of these single source precursors with a controlled decomposition/reduction procedure allows the preparation of unique catalysts with an intimate interaction between the components ruthenium and tin and the possibility of varying the Sn oxidation state around the Ru metal.

  2. Low-Temperature 1,3-Butadiene Hydrogenation over Supported Pt/3d/gamma-Al2O3 Bimetallic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lonergan, William W; Xing, X; Zheng, Renyang; Qi, Suitao; Huang, B; Chen, Jingguang

    2011-02-02

    Low-temperature 1,3-butadiene hydrogenation is used as a probe reaction to investigate the hydrogenation activity over several γ-Al{sub 2}O{sub 3} supported Pt/3d (3d = Co, Ni, Cu) bimetallic catalysts. Batch and flow reactor studies are employed to quantify the kinetic activity and steady-state conversion, respectively, of each catalyst. Transmission electron microscopy (TEM) is utilized to characterize particle sizes and extended X-ray absorption fine structure (EXAFS) measurements are performed to verify the Pt–3d bimetallic bond formation. Pulse carbon monoxide chemisorption measurements are also performed to characterize the number of active sites. Additionally, density functional theory (DFT) calculations are included to determine the binding energies of 1,3-butadiene and atomic hydrogen on the corresponding model surfaces. The binding energies of the adsorbates are found to correlate with the hydrogenation activity, allowing for use of such correlation to potentially predict hydrogenation catalysts with enhanced activity based on the binding energies of the adsorbates of interest.

  3. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    John Meynard M. Tengco

    2016-06-01

    Full Text Available Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD and scanning transmission electron microscopy (STEM characterization of the base catalyst showed highly dispersed particles. A basic ED bath containing PtCl62− as the Pt precursor, dimethylamine borane as reducing agent, and ethylenediamine as stabilizing agent successfully targeted deposition of Pt on Co particles. Simultaneous action of galvanic displacement and ED resulted in Pt-Co alloy formation observed in XRD and energy dispersive X-ray spectroscopy (XEDS mapping. In addition, fast deposition kinetics resulted in hollow shell Pt-Co alloy particles while particles with Pt-rich shell and Co-rich cores formed with controlled Pt deposition. Electrochemical evaluation of the Pt-Co/C catalysts showed lower active surface but much higher mass and surface activities for oxygen reduction reaction compared to a commercial Pt/C fuel cell catalyst.

  4. From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raul F.; Crooks, Richard M.; Mavrikakis, Manos

    2014-04-08

    “Catalysis by design” has been a dream for decades. To specify the composition and structure of matter to effect a desired catalytic transformation with desired and predicted rate and selectivity remains a monumental challenge, especially in heterogeneous catalysis. Our research thrusts have been chosen not only for their practical and scientific relevance, e.g. for more efficient and sustainable chemicals and fuels production, but also because they provide a foundation for developing and exploring broadly applicable principles and strategies for catalyst design.

  5. Effects of the ratio of Fe to Co over Fe-Co/SiO2 bimetallic catalysts on their catalytic performance for Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Xiangdong Ma; Qiwen Sun; Weiyong Ying; Dingye Fang

    2009-01-01

    The Fe-Co/SiO2 bimetallic catalysts with different ratios of Fe to Co were prepared by aqueous incipient wetness impregnation. The catalysts of 10%Fe:0%Co/SiO2, 10%Fe:6%Co/SiO2, 10%Fe:2%Co/SiO2, 10%Fe: 10%Co/SiO2, 6%Fe: 10%Co/SiO2, 2%Fe: 10%Co/SiO2 and 0%Fe: 10%Co/SiO2 by mass were tested in a fixed reactor by the Fischer-Tropsch synthesis. Activity and hydrocarbon distribution were found to be determined by the ratio of iron to cobalt of the catalysts. Higher iron content inhibited the activity, whereas higher cobalt content enhanced the activity of the Fe-Co/SiO2 catalysts. On the other hand, for the catalysts of 10%Fe:6%Co/SiO2, 10%Fe: 10%Co/SiO2, 6%Fe: 10%Co/SiO2, and 2%Fe: 10%Co/SiO2, the total C2-C4 fraction increased (from 10.65% to 26.78%) and C5+ fraction decreased (from 75.75% to 57.63%) at 523 K. Temperature programmed reduction revealed that the addition of cobalt enhanced the reducibility of the Fe-Co/SiO2 catalyst. Metal oxides were present in those catalysts as shown by XRD. The Fe-Co alloy phase was found in the 2%Fe: 10%Co/SiO2, 6%Fe: 10%Co/SiO2, 10%Fe:10%Co/SiO2, 10%Fe:6%Co/SiO2 catalysts and their crystals were perfect.

  6. A structure investigation of Pt-Co bimetallic catalysts fabricated by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Lucariello, Marialaura; Penazzi, Nerino [Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, C.so Duca Abruzzi n. 24, I-10129 Torino (Italy); Arca, Elisabetta; Mulas, Gabriele [Dipartimento di Chimica, Universita di Sassari, Via Vienna n. 2, I-07100 Sassari (Italy); Enzo, Stefano [Dipartimento di Chimica, Universita di Sassari, Via Vienna n. 2, I-07100 Sassari (Italy)], E-mail: enzo@uniss.it

    2009-03-15

    Three Pt-Co mixtures of composition Pt{sub 25}Co{sub 75}, Pt{sub 50}Co{sub 50} and Pt{sub 75}Co{sub 25} respectively, were synthesized using the high-energy ball milling technique of the elemental powders with a view to prepare catalysts for fuel cells. The kinetics of phase evolution, their structure and average microstructure properties were quantitatively investigated by X-ray powder diffraction with the Rietveld method. The results show that the ball milling technique is able to produce Pt-Co solid solutions soon after few minutes of mechanical treatment. Of the two polymorphs of cobalt the fcc allotrope appears to be involved preferentially in the early stage of alloying reaction with fcc platinum. For the three compositions, a sigmoidal equation based on an interdiffusion-controlled mechanism satisfactorily accounts for the evolution of the solid solution as a function of mechanical treatment time. A characteristic reaction time of 3-6 h is observed for the solid state transformation reaction with the milling conditions adopted in our reactor. In the case of the Pt{sub 25}Co{sub 75} composition, a competitive-consecutive reaction is observed. Lattice parameters of the solid solutions after extended times of milling and related atomic volumes turn out to be slightly above the values ideally predicted on the basis of the Vegard's law. For the Pt{sub 75}Co{sub 25} composition the average crystallite size is reduced down to ca. 150 A after 12 h when the lattice microstrain is also at a maximum, but further mechanical treatment increases the average crystal size value and to decrease the strain. Similar results are found for equiatomic and Co-rich compositions. Annealing of the alloyed equiatomic powders promotes a cubic-to-tetragonal transformation which is already operative at 600 deg. C. In fact, after this treatment two tetragonal phases are observed. Further thermal treatment and annealing at 700 deg. C induces peak sharpening of the diffraction patterns

  7. Passivation of bimetallic catalysts used in water treatment: prevention and reactivation.

    Science.gov (United States)

    Chen, Jianming; Gillham, Robert W; Gui, Lai

    2013-01-01

    With respect to degradation rates and the range in contaminants treated, bimetals such as Ni-Fe or Pd-Fe generally outperform unamended granular iron. However, the catalytic enhancement is generally short-lived, lasting from a few days to months. To take advantage of the significant benefits of bimetals, this study aims at developing an effective method for the rejuvenation of passivated bimetals and alternatively, the prevention of rapid reactivity loss of bimetals. Because the most likely cause of Ni-Fe and Pd-Fe passivation is the deposition of iron oxide films over the catalyst sites, it is hypothesized that removal of the iron oxide films will restore the lost reactivity or avoiding the deposition of iron oxide films will prevent passivation. Two organic ligands (ethylenediaminetetraacetic acid (EDTA), and [s,s]-ethylenediaminedisuccinate acid ([s,s]-EDDS)) and two acids (citric acid and sulphuric acid) were tested as possible chemical reagents for both passivation rejuvenation and prevention. Trichloroethene (TCE) and Ni-Fe were chosen as probes for chlorinated solvents and bimetals respectively. The test was carried out using small glass columns packed with Ni-Fe. TCE solution containing a single reagent at various concentrations was pumped through the Ni-Fe columns with a residence time in the Ni-Fe of about 6.6 min. TCE concentrations in the influent and effluent were measured to evaluate the performance of each chemical reagent. The results show that (i) for passivated Ni-Fe, flushing with a low concentration of acid or ligand solution without mechanical mixing can fully restore the lost reactivity; and (ii) for passivation prevention, adding a small amount of a ligand or an acid to the feed solution can successfully prevent or at least substantially reduce Ni-Fe passivation. All four chemicals tested are effective in both rejuvenation and prevention, but sulphuric acid and citric acid are considered to be the most practical reagents due to their

  8. Synthesis of coal-derived single-walled carbon nanotube from coal by varying the ratio of Zr/Ni as bimetallic catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh, E-mail: rajeshbhu1@gmail.com [Banaras Hindu University, Nanoscience and Nanotechnology Unit, Department of Physics (India); Singh, Rajesh Kumar, E-mail: rksbhu@gmail.com [Indian Institute of Technology (Banaras Hindu University), Department of Applied Physics (India); Ghosh, A. K.; Sen, Raja; Srivastava, S. K. [Central Institute of Mining and Fuel Research (India); Tiwari, R. S.; Srivastava, O. N. [Banaras Hindu University, Nanoscience and Nanotechnology Unit, Department of Physics (India)

    2013-01-15

    In this paper coal, source has been used in place of graphite for synthesis of single-walled carbon nanotubes (SWCNTs) with new Zr/Ni bimetallic catalyst. Using coal as starting material to produce the high-value-added SWCNTs is an economically competent route. SWCNTs have been synthesized by the electric arc discharge method using the so-called heterogeneous annealed coal anode filled with Zr and Ni catalyst. SWCNTs have been synthesized using annealed coal rod. The SWCNTs bundles synthesized generally have diameters of 4-10 nm. Most of those produced with Zr/Ni as the catalyst has a diameter ranging from 2.0 to 1.0 nm. The as-synthesized SWCNTs have been characterized employing XRD, HRTEM, EDX, Raman spectroscopy, and FTIR. It has been found that the change of the ratio of Zr and Ni concentration (wt%) in the catalyst affects the yield of SWCNTs. However, the purity of SWCNTs is very sensitive to the concentration of Zr. An optimal range of Zr/Ni compositions for synthesis of SWCNTs with relatively high purity and yield is obtained at specific concentration of 3:1.

  9. Preparation of highly dispersed Ru-Sn bimetallic supported catalysts from the single source precursors Cp(PPh3)2Ru-SnX3 (X = Cl or Br)

    OpenAIRE

    Ana Cláudia Bernardes Silva; Ana Paula Guimarães de Sousa; José Domingos Ardisson; Helmuth Guido Luna Siebald; Edmilson Moura; Eduardo Nicolau dos Santos; Nelcy Della Santina Mohallem; Rochel Montero Lago

    2003-01-01

    In this work highly dispersed Ru-Sn bimetallic catalysts have been prepared from organobimetallic Cp(PPh3)2Ru-SnX3 (X = Cl or Br) complexes. These single source precursors can be easily impregnated in high surface area supports, such as activated carbon and sol-gel SiO2, and upon controlled thermal treatment the ligands are released as volatile products resulting in the formation of the bimetallic system Ru-Sn. Catalytic reactions, such as hydrodechlorination of CCl4 and chlorobenzene and TPR...

  10. Heterogenized Bimetallic Pd-Pt-Fe3O4 Nanoflakes as Extremely Robust, Magnetically Recyclable Catalysts for Chemoselective Nitroarene Reduction.

    Science.gov (United States)

    Byun, Sangmoon; Song, Yeami; Kim, B Moon

    2016-06-15

    A very simple synthesis of bimetallic Pd-Pt-Fe3O4 nanoflake-shaped alloy nanoparticles (NPs) for cascade catalytic reactions such as dehydrogenation of ammonia-borane (AB) followed by the reduction of nitro compounds (R-NO2) to anilines or alkylamines (R-NH2) in methanol at ambient temperature is described. The Pd-Pt-Fe3O4 NPs were easily prepared via a solution phase hydrothermal method involving the simple one-pot coreduction of potassium tetrachloroplatinate (II) and palladium chloride (II) in polyvinylpyrrolidone with subsequent deposition on commercially available Fe3O4 NPs. The bimetallic Pd-Pt alloy NPs decorated on Fe3O4 NPs provide a unique synergistic effect for the catalysis of cascade dehydrogenation/reduction. Various nitroarene derivatives were reduced to anilines with very specific chemoselectivity in the presence of other reducible functional groups. The bimetallic Pd-Pt-Fe3O4 NPs provide a unique synergistic effect for the catalysis of cascade dehydrogenation/reduction. The nitro reduction proceeded in 5 min with nearly quantitative conversions and yields. Furthermore, the magnetically recyclable nanocatalysts were readily separated using an external magnet and reused up to 250 times without any loss of catalytic activity. A larger scale (10 mmol) reaction was also successfully performed with >99% yield. This efficient, recyclable Pd-Pt-Fe3O4 NPs system can therefore be repetitively utilized for the reduction of various nitro-containing compounds. PMID:27191706

  11. Comparison of P-containing {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB (Canada)

    2006-09-01

    Phosphorus containing {gamma}-Al{sub 2}O{sub 3} supported bimetallic Ni-Mo carbide, nitride and sulfide catalysts have been synthesized from an oxide precursor containing 12.73wt.% Mo, 2.54wt.% Ni and 2.38wt.% P and characterized by elemental analysis, pulsed CO chemisorption, surface area measurements, X-ray diffraction, temperature-programmed reduction and DRIFT spectroscopy of CO adsorption. DRIFT spectroscopy of adsorbed CO on activated catalysts showed that carbide and nitride catalysts have surface exposed sites of Mo{sup o+} (0bimetallic Ni-Mo carbide, nitride and sulfide catalysts were compared against commercial Ni-Mo/Al{sub 2}O{sub 3} catalyst in a trickle bed reactor using light gas oil and heavy gas oil derived from Athabasca bitumen in the temperature range 340-370 and 375-400{sup o}C respectively at 8.8MPa. The gradual transformation of Ni-Mo carbide and nitride phases into Ni-Mo sulfide phases was observed during precoking period, and the formed Ni-Mo sulfide phases enhanced the HDN and HDS activities of carbide and nitride catalysts. The {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic sulfide catalyst was found to be more active for HDN and HDS of light gas oil and heavy gas oil than the corresponding carbide and nitride catalysts on the basis of unit weight. (author)

  12. Biosensors Incorporating Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    John Rick

    2015-12-01

    Full Text Available This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs, which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

  13. A Novelγ-Alumina Supported Fe-Mo Bimetallic Catalyst for Reverse Water Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Gharibi Kharaji; Ahmad Shariati; Mohammad Ali Takassi

    2013-01-01

    In reverse water gas shift (RWGS) reaction CO2 is converted to CO which in turn can be used to pro-duce beneficial chemicals such as methanol. In the present study, Mo/Al2O3, Fe/Al2O3 and Fe-Mo/Al2O3 catalysts were synthesised using impregnation method. The structures of catalysts were studied using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, inductively coupled plasma atomic emission spectrometer (ICP-AES), temperature programmed reduction (H2-TPR), CO chemisorption, energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. Kinetic properties of all catalysts were investigated in a batch re-actor for RWGS reaction. The results indicated that Mo existence in structure of Fe-Mo/Al2O3 catalyst enhances its activity as compared to Fe/Al2O3. This enhancement is probably due to better Fe dispersion and smaller particle size of Fe species. Stability test of Fe-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO yield for 60 h of time on stream was demonstrated. Fe2(MoO4)3 phase was found in the structures of fresh and used catalysts. TPR results also indicate that Fe2(MoO4)3 phase has low reducibility, therefore the Fe2(MoO4)3 phase significantly inhibits the reduction of the remaining Fe oxides in the catalyst, resulted in high stability of Fe-Mo/Al2O3 catalyst. Overall, this study introduces Fe-Mo/Al2O3 as a novel catalyst with high CO yield, almost no by-products and fairly stable for RWGS reaction.

  14. Correlation of Theory and Function in Well-Defined Bimetallic Electrocatalysts - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, Richard M.

    2014-06-05

    The objective of this research proposal was to correlate the structure of nanoparticles that are comprised of ~100-200 atoms to their electrocatalytic function. This objective was based on the growing body of evidence suggesting that catalytic properties can be tailored through controlled synthesis of nanoparticles. What has been missing from many of these studies, and what we are contributing, is a model catalyst that is sufficiently small, structurally well-defined, and well-characterized that its function can be directly predicted by theory. Specifically, our work seeks to develop a fundamental and detailed understanding of the relationship between the structure of nanoscopic oxygen-reduction catalysts and their function. We assembled a team with expertise in theory, synthesis, and advanced characterization methods to address the primary objective of this project. We anticipated the outcomes of the study to be: (1) a better theoretical understanding of how nanoparticle structure affects catalytic properties; (2) the development of advanced, in-situ and ex-situ, atomic-scale characterization methods that are appropriate for particles containing about 100 atoms; and (3) improved synthetic methods that produce unique nanoparticle structures that can be used to test theoretical predictions. During the project period, we have made excellent progress on all three fronts.

  15. Fabrication of PdCo Bimetallic Nanoparticles Anchored on Three-Dimensional Ordered N-Doped Porous Carbon as an Efficient Catalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Xue, Hairong; Tang, Jing; Gong, Hao; Guo, Hu; Fan, Xiaoli; Wang, Tao; He, Jianping; Yamauchi, Yusuke

    2016-08-17

    PdCo bimetallic nanoparticles (NPs) anchored on three-dimensional (3D) ordered N-doped porous carbon (PdCo/NPC) were fabricated by an in situ synthesis. Within this composite, N-doped porous carbon (NPC) with an ordered mesoporous structure possesses a high surface area (659.6 m(2) g(-1)), which can facilitate electrolyte infiltration. NPC also acts as a perfect 3D conductive network, guaranteeing fast electron transport. In addition, homogeneously distributed PdCo alloy NPs (∼15 nm) combined with the doping of the N element can significantly improve the electrocatalytic activity for the oxygen reduction reaction (ORR). Due to the structural and material superiority, although the weight percentage of PdCo NPs (∼8 wt%) is much smaller than that of commercial Pt/C (20 wt%), the PdCo/NPC catalyst exhibits similar excellent electrocatalytic activity; however, its superior durability and methanol-tolerance ability of the ORR are as great as those of commercial Pt/C in alkaline media. PMID:27441490

  16. Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction.

    Science.gov (United States)

    Barman, Barun Kumar; Nanda, Karuna Kar

    2015-03-01

    Here, we demonstrate an uninterrupted galvanic replacement reaction (GRR) for the synthesis of metallic (Ag, Cu and Sn) and bimetallic (Cu-M, M=Ag, Au, Pt and Pd) sponges/dendrites by sacrificing the low reduction potential metals (Mg in our case) in acidic medium. The acidic medium prevents the oxide formation on Mg surface and facilitates the uninterrupted reaction. The morphology of dendritic/spongy structures is controlled by the volume of acid used for this reaction. The growth mechanism of the spongy/dendritic microstructures is explained by diffusion-limited aggregate model (DLA), which is also largely affected by the volume of acid. The significance of this method is that the yield can be easily predicted, which is a major challenge for the commercialization of the products. Furthermore, the synthesis is complete in 1-2 minutes at room temperature. We show that the sponges/dendrites efficiently act as catalysts to reduce 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4-a widely studied conversion process. PMID:25628256

  17. Sulfided heterogeneous, bimetallic RuMo catalysts derived from mixtures of Ru{sub 3}(CO){sub 12} (or RuCl{sub 3}) and a molybdenum heteropolyanion. The reactions of ethanol with tetrahydroquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Sang-Man; Ryan, D.; Laine, R.M.

    1992-09-01

    Efforts have been made to develop Ru/Mo bimetallic catalyst systems for hydrodenitrogenation (HDN) of tetrahydroquinoline (THQ)- In the course of these studies, it was discovered that in ethanol, under H{sub 2} and in the presence Of CS2, Precatalyst solutions containing Ru [as Ru{sub 3} (CO){sub 12} or RuCl{sub 3}] and Mo [as the H{sub 3}PMO{sub 12}0{sub 40} heteropolyanion (HPA)] decompose to form bimetallic, sulfided particles. Particle diameters run from 0.1 to 5 {mu}m depending on the rate of stirring. Catalyst particles with sizes ranging from 0.1--1 {mu}m can be prepared reproducibly. BET measured surface areas for these size particles ranged from 2 to 20 m2/g. These sulfided particles were found to catalyze, at temperatures of 200--250{degrees}C and hydrogen pressures of 200--1000 psig H{sub 2}, the N-ethylation of THQ to form NEt-THQ; rather than the formation of propylcyclohexane or propylbenzene, reaction products expected for HDN of THQ. Monometallic heterogeneous catalysts prepared from the individual precatalyst complexes, under identical conditions, show minimal activity for N-ethylation by comparison with the bimetallic catalyst. In the absence of H{sub 2}, the reaction proceeds such that THQ is converted to Q, N-EtTHQ, N-C{sub 6}H{sub 9}-THQ, and N-C{sub 6}H{sub 13}-THQ. The latter products appear to arise via acetaldehyde, formed as an intermediate by dehydrogenation of ethanol. Acetaldehyde either condenses with THQ to form N-Et-THQ, or self condenses (aldol condensation) prior to reaction with THQ thereby giving higher homolog alkylation products.

  18. Sulfided heterogeneous, bimetallic RuMo catalysts derived from mixtures of Ru sub 3 (CO) sub 12 (or RuCl sub 3 ) and a molybdenum heteropolyanion. The reactions of ethanol with tetrahydroquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Sang-Man; Ryan, D.; Laine, R.M.

    1992-01-01

    Efforts have been made to develop Ru/Mo bimetallic catalyst systems for hydrodenitrogenation (HDN) of tetrahydroquinoline (THQ)- In the course of these studies, it was discovered that in ethanol, under H{sub 2} and in the presence Of CS2, Precatalyst solutions containing Ru (as Ru{sub 3} (CO){sub 12} or RuCl{sub 3}) and Mo (as the H{sub 3}PMO{sub 12}0{sub 40} heteropolyanion (HPA)) decompose to form bimetallic, sulfided particles. Particle diameters run from 0.1 to 5 {mu}m depending on the rate of stirring. Catalyst particles with sizes ranging from 0.1--1 {mu}m can be prepared reproducibly. BET measured surface areas for these size particles ranged from 2 to 20 m2/g. These sulfided particles were found to catalyze, at temperatures of 200--250{degrees}C and hydrogen pressures of 200--1000 psig H{sub 2}, the N-ethylation of THQ to form NEt-THQ; rather than the formation of propylcyclohexane or propylbenzene, reaction products expected for HDN of THQ. Monometallic heterogeneous catalysts prepared from the individual precatalyst complexes, under identical conditions, show minimal activity for N-ethylation by comparison with the bimetallic catalyst. In the absence of H{sub 2}, the reaction proceeds such that THQ is converted to Q, N-EtTHQ, N-C{sub 6}H{sub 9}-THQ, and N-C{sub 6}H{sub 13}-THQ. The latter products appear to arise via acetaldehyde, formed as an intermediate by dehydrogenation of ethanol. Acetaldehyde either condenses with THQ to form N-Et-THQ, or self condenses (aldol condensation) prior to reaction with THQ thereby giving higher homolog alkylation products.

  19. Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co-W bimetallic catalyst

    Science.gov (United States)

    An, Hua; Kumamoto, Akihito; Takezaki, Hiroki; Ohyama, Shinnosuke; Qian, Yang; Inoue, Taiki; Ikuhara, Yuichi; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo

    2016-07-01

    Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system.Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system. Electronic supplementary information (ESI) available: Raman spectroscopy (G-band) of SWNTs grown from Co and Co-W catalyst; Kataura plot for chirality

  20. Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co-W bimetallic catalyst.

    Science.gov (United States)

    An, Hua; Kumamoto, Akihito; Takezaki, Hiroki; Ohyama, Shinnosuke; Qian, Yang; Inoue, Taiki; Ikuhara, Yuichi; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo

    2016-08-14

    Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system. PMID:27412697

  1. Development of a PtSn bimetallic catalyst for direct fuel cells using bio-butanol fuel

    OpenAIRE

    Puthiyapura, V.K.; Brett, D. J. L.; Russell, A E; Lin, W.F.; Hardacre, C.

    2015-01-01

    Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is similar to 520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt.

  2. Development of a PtSn bimetallic catalyst for direct fuel cells using bio-butanol fuel.

    Science.gov (United States)

    Puthiyapura, V K; Brett, D J L; Russell, A E; Lin, W F; Hardacre, C

    2015-09-01

    Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ∼520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt. PMID:26214283

  3. The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst

    Science.gov (United States)

    Allaedini, Ghazaleh; Tasirin, Siti Masrinda; Aminayi, Payam

    2016-10-01

    In this study, the characterization and photocatalytic activity of MoO3 nanoparticles doped with various doping concentrations of cerium have been investigated. The Fourier transform infrared (FT-IR) spectra of the prepared catalysts confirmed that MoO3 particles have been successfully doped by cerium. Field emission scanning electron microscopy (FESEM) was performed to visualize the surface morphology of the obtained catalysts. The XRD patterns suggested that the crystallinity of the sample with the lowest doping concentration of 15 mol % was higher in comparison with samples of higher doping concentrations. The volume-averaged crystal sizes of the obtained catalysts were calculated to be 25, 28, and 32 nm for 15, 35, and 60 mol % samples, respectively. The photocatalytic activity along with the reaction kinetics of Ce-doped MoO3 nanoparticles have also been investigated through the dye degradation of methyl orange. The synthesized Ce-doped MoO3 particles with the lowest dopant concentration of 15 mol % exhibited the highest photocatalytic activity for methyl orange dye degradation. It was observed that photo-degradation activity decreased with an increase in the doping concentration of cerium. The predicted rate constants for samples with 15, 35, and 60 mol % doping concentrations were found to be 0.0432, 0.035, and 0.029 min-1, respectively.

  4. Science Letters: Structure relationship of nitrochlorobenzene catalytic degradation process in water over palladium-iron bimetallic catalyst

    Institute of Scientific and Technical Information of China (English)

    NIU Shao-feng; ZHOU Hong-yi; AO Xu-ping; XU Xin-hua; LOU Zhang-hua

    2006-01-01

    Two isomers of nitrochlorobenzene (o-, and p-NCB) were treated by a Pd/Fe catalyst in aqueous solutions through catalytic amination and dechlorination. Nitrochlorobenzenes are rapidly converted to form chloroanilines (CAN) first through an amination process, and then rapidly dechlorinated to become aniline (AN) and Cl-, without the involvement of any other intermediate reaction products. The amination and dechlorination reaction are believed to take place predominantly on the surface site of the Pd/Fe catalysts. The dechlorination rate of the reductive degradation of the two isomers of nitrochlorobenzene (o-, and p-NCB) in the presence of Pd/Fe as a catalyst was measured experimentally. In all cases, the reaction rate constants were found to increase with the decrease in the Gibbs free energy (correlation with the activation energy) of NCBs formation; the activation energy of each dechlorination reaction was measured to be 95.83 and 77.05 kJ/mol, respectively for o- and p-NCB. The results demonstrated that p-NCBs were reduced more easily than o-NCBs.

  5. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  6. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A bimetallic catalyst, AgPd@g-C3N4, synthesized by reducing silver and palladium salts over graphitic carbon nitride (g-C3N4), enables the concerted reductive...

  7. 常压下Pt-Bi双金属催化剂上甘油选择性氧化%Glycerol Oxidation with Oxygen over Bimetallic Pt-Bi Catalysts under Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    梁丹; 崔世玉; 高静; 王军华; 陈平; 侯昭胤

    2011-01-01

    制备了一系列活性碳(AC)负载的Pt-Bi双金属催化剂,考察了催化剂中Bi含量对其催化甘油选择性氧化反应性能的影响.结果表明,适量Bi的添加可以改善催化剂中Pt的氧化还原性能,从而有利于催化剂活性的提高和二羟基丙酮(DIHA)产物的生成.当Bi的含量为5%时,该催化剂的活性最高,甘油转化率和DIHA选择性分别达到91.5%和49.0%.表征结果显示,Pt-Bi颗粒的平均粒径为3.8 nm,且高度分散在催化剂表面,这是该催化剂具有较高活性的主要原因.%A series of bimetallic Pt-Bi catalysts with a constant platinum content of 5.0 wt% and a varied bismuth content (3.0-7.0 wt%)supported on active carbon were prepared and used for glycerol oxidation with oxygen under atmospheric pressure.The bimetallic Pt-Bi/C was efficient for the selective oxidation of glycerol to dihydroxyacetone (DIHA) and the selectivity for DIHA reached 49.0% at a 91.5%conversion of glycerol over the 5%Pt-5%Bi/C catalyst.X-ray diffraction and transmission electron microscopy analysis revealed that the specially configured Pt-Bi nanoparticles in 5%Pt-5%Bi/C were highly dispersed (3.8 nm) over the active carbon support,which is proposed to contribute to the improved performance.

  8. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  9. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

    OpenAIRE

    Anna M. Venezia; Fabrizio Puleo; Valeria La Parola; Giuseppe Pantaleo; Hongjing Wu; Leonarda F. Liotta

    2013-01-01

    Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside...

  10. Fine particle clay catalysts for coal liquefaction. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.

    1995-08-01

    In an effort to develop new disposable catalysts for direct coal liquefaction, several types of clay-supported pyrrhotite catalysts were prepared and tested. These included iron-pillared montmorillonite, mixed iron/alumina-pillared montmorillonite, iron-impregnated montmorillonite, and iron oxometallate-impregnated montmorillonite.

  11. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    Energy Technology Data Exchange (ETDEWEB)

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T. (Chemical Sciences and Engineering Division); ( ES)

    2012-08-27

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The

  12. A silica supported Fe-Co bimetallic catalyst prepared by the sol/gel technique: Operating conditions, catalytic properties and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, Ali A.; Babaei, Adel Beig; Galavy, Maryam [Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan 98135-674 (Iran); Youssefi, Abbas [Par-e-Taavouse Research Institute, Mashhad (Iran)

    2010-03-15

    A Co/Fe catalyst was prepared using the sol/gel technique in order to study its catalytic activity and selectivity in the Fischer-Tropsch synthesis. The effect of a range of operation variables such as pressure, temperature and H{sub 2}/CO molar feed ratio on the catalytic performance of 40%Fe/60%Co/15 wt.%SiO{sub 2}/1.5 wt.%K catalyst was investigated. It was found that the optimum operating conditions is a H{sub 2}/CO = 2/1 molar feed ratio at 350 C temperature and 3 bar pressure. Characterization of both precursor and calcined catalysts was carried out using XRD, SEM, EDS, TPR, BET surface area measurements and thermal analysis methods such as TGA and DSC. It was observed that all of the different operation variables influenced the structure, morphology and catalytic performance of the catalysts. (author)

  13. Synchrotron radiation studies of supported metal catalysts

    International Nuclear Information System (INIS)

    Metallic clusters supported on refractory oxides have been used extensively for several decades in the production of chemicals and petroleum derived transportation fuels. Catalysts containing more than one metal component are of particular interest since the addition of a second metal provides a method of controlling the selectivity of the catalyst. That is, the second metal can alter the rates of competing reactions in a complex reaction sequence and thus alter the final product distribution of the reaction. In this work the reactions of cyclohexane in hydrogen over silica supported ruthenium and osmium catalysts were studied. Bimetallic catalysts represent an important class of materials that are of interest both scientifically and technologically. Despite the importance and long-standing use of supported metal catalysts, detailed information on the structure of the metal clusters has been difficult to obtain. The development of x-ray absorption spectroscopy with the increasing availability of synchrotron radiation, however, has provided a powerful and versatile tool for studying the structure of these complex systems. Using the Extended X-ray Absorption Fine Structure (EXAFS) technique, it is possible to obtain information on the local atomic structure of supported monometallic catalytic metals and their interaction with the support. In the discussion that follows the authors will focus on results that have been obtained on the structure of supported bimetallic cluster catalysts

  14. Bimetallic Wiregauze Supported Pt-Ru Nanocatalysts for Hydrogen Mitigation.

    Science.gov (United States)

    Sanap, Kiran K; Varma, S; Waghmode, S B; Sharma, P; Manoj, N; Vatsa, R K; Bharadwaj, S R

    2015-05-01

    Passive autocatalytic recombiner (PAR) is one of the most suitable devices for mitigation of hydrogen, generated in nuclear power plant under accidental conditions. For this purpose we report development of stainless steel wire gauze supported Pt-Ru nanoparticles as catalysts. Simultaneous electroless deposition has been employed for the synthesis of the catalysts. Pt-Ru based bimetallic catalysts were characterized for their rate of coating kinetics, noble metal loading, phase purity by XRD and surface morphology by SEM, TEM and elemental analysis by SIMS. Developed catalysts were found to be active for efficient recombination of hydrogen and oxygen in air as well as in presence of various prospective poisons like CO2, CH4, CO and relative humidity. Pt-Ru based bimetallic catalyst with 0.9% loading was found to be active for CO poisoning up to 400 ppm of CO. PMID:26504972

  15. Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst

    DEFF Research Database (Denmark)

    Rasmussen, Søren B.; Bañares, Miguel A.; Bazin, Philippe;

    2012-01-01

    A monolithic vanadia–titania based catalyst has been subjected to studies with in situ FTIR spectroscopy coupled with mass spectrometry, during the SCR (Selective Catalytic Reduction) reaction. A device based on a transmission reactor cell for monolithic samples was constructed, dedicated to the...

  16. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  17. Promotion of the electrocatalytic activity of a bimetallic platinum-ruthenium catalyst by repetitive redox treatments for direct methanol fuel cell

    Science.gov (United States)

    Huang, Sheng-Yang; Yeh, Chuin-Tih

    Pt-Ru/C catalyst (12 wt%) was prepared by the incipient wetness impregnation method followed by a redox heat-treatment. Transmission electron microscopy (TEM) results revealed uniformly distributed metallic crystallites of Pt-Ru alloy nanoparticles (d PtRu = 2.1 ± 1.0 nm). The effect of redox treatments of the impregnated catalysts on methanol oxidation reaction (MOR) was examined by cyclic voltammetry (CV). The MOR activity of the PtRu/C was significantly improved after each oxidation step of the redox treatment cycles. The enhanced catalytic activity was found to be quite stable in chronoamperometry (CA) measurements. CV, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results strongly suggested that the improved catalytic activity was due to the formation of a stable c-RuO x (x = 2-3) domain during the oxidation treatments. A bifunctional based mechanism was proposed for the MOR on the oxidized PtRu/C catalysts. Formation of Ru-OH species on the surface of c-RuO x domains was suggested as stale sites for the oxidation of carbon monoxide adsorbed on the Pt catalytic sites.

  18. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong

    2015-06-25

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.

  19. Kinetics assisted design of catalysts for coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  20. Bimetallic redox synergy in oxidative palladium catalysis.

    Science.gov (United States)

    Powers, David C; Ritter, Tobias

    2012-06-19

    (II/IV) catalysis has guided the successful development of many reactions. Herein we discuss differences between monometallic Pd(IV) and bimetallic Pd(III) redox catalysis. We address whether appreciation of the relevance of bimetallic Pd(III) redox catalysis is of academic interest exclusively, serving to provide a more nuanced description of catalysis, or if the new insight regarding bimetallic Pd(III) chemistry can be a platform to enable future reaction development. To this end, we describe an example in which the hypothesis of bimetallic redox chemistry guided reaction development, leading to the discovery of reactivity distinct from monometallic catalysts.

  1. Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    Zahra Gholami; Noor Asmawati Mohd Zabidi; Fatemeh Gholami; Mohammadtaghi Vakili

    2016-01-01

    Bimetallic Co/Fe catalysts supported on carbon nanotubes ( CNTs) were prepared, and niobium ( Nb) was added as promoter to the 70Co:30Fe/CNT catalyst. The physicochemical properties of the catalysts were characterized, and the catalytic performances were analyzed at the same operation conditions (H2:CO (volume ratio)= 2:1, p = 1 MPa, and t = 260℃) in a tubular fixed-bed microreactor system. The addition of Nb to the bimetallic catalyst decreases the average size of the oxide nanoparticles and improves the reducibility of the bimetallic catalyst. Evaluation of the catalyst performance in a Fischer-Tropsch reaction shows that the catalyst results in high selectivity to methane, and the selectivity to C5+ increased slightly in the bimetallic catalyst unlike that in the monometallic catalysts. The addition of 1% Nb to the bimetallic catalyst increases CO conversion and selectivity to C5+. Meanwhile, a decrease in methane selectivity is observed.

  2. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  3. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O' neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  4. Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther Sans [Stony Brook University; Takeuchi, Kenneth James [Stony Brook University; Marschilok, Amy Catherine [Stony Brook University

    2013-07-26

    Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

  5. Facile synthesis of Cu-Pd bimetallic multipods for application in cyclohexane oxidation

    Science.gov (United States)

    Zhang, Zhuo-Qun; Huang, Jianliu; Zhang, Lan; Sun, Mei; Wang, You-Cheng; Lin, Yue; Zeng, Jie

    2014-10-01

    The synergy between Cu and Pd makes Cu-Pd bimetallic nanocrystals interesting materials for investigation. The scarcity of shapes of Cu-Pd bimetallic nanocrystals motivated us to explore highly branched structures, which may promote a wide range of applications. In this communication, we report a facile synthesis of Cu-Pd bimetallic multipods (19.2 ± 1.2 nm), on branches of which some high-index facets were exposed. Modification of reaction parameters concerning capping agents and reductant led to the formation of other shapes, including sphere-like nanocrystals (SNCs). When loaded onto TiO2, the as-prepared Cu-Pd bimetallic multipods exhibited excellent catalytic activity for the oxidation of cyclohexane by hydrogen peroxide and higher selectivity towards cyclohexanone than monometallic catalysts and SNCs/TiO2.

  6. Efficient Nd Promoted Rh Catalysts for Vapor Phase Methanol Carbonylation

    Institute of Scientific and Technical Information of China (English)

    Shu Feng ZHANG; Qing Li QIAN; Ping Lai PAN; Yi CHEN; Guo Qing YUAN

    2005-01-01

    A Nd promoted-Rh catalysts supported on polymer-derived carbon beads for vapor-phase methanol carbonylation was developed. Rh-Nd bimetallic catalysts obviously have higher activity than that of supported Rh catalyst under similar reaction condition. The difference between the activity of above two catalyst systems is clearly caused by the intrinsic properties generated by the introduction of Nd.

  7. Development of a stable cobalt-ruthenium Fisher-Tropsch catalyst. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, R.R.; Gala, H.B.

    1995-02-01

    The reverse micelle catalyst preparation method has been used to prepare catalysts on four supports: magnesium oxide, carbon, alumina- titania and steamed Y zeolite. These catalysts were not as active as a reference catalyst prepared during previous contracts to Union Carbide Corp. This catalyst was supported on steamed Y zerolite support and was impregnated by a pore-filling method using a nonaqueous solvent. Additional catalysts were prepared via pore- filling impregnation of steamed Y zeolites. These catalysts had levels of cobalt two to three and a half times as high as the original Union Carbide catalyst. On a catalyst volume basis they were much more active than the previous catalyst; on an atom by atom basis the cobalt was about of the same activity, i.e., the high cobalt catalysts` cobalt atoms were not extensively covered over and deactivated by other cobalt atoms. The new, high activity, Y zerolite catalysts were not as stable as the earlier Union Carbide catalyst. However, stability enhancement of these catalysts should be possible, for instance, through adjustment of the quantity and/or type of trace metals present. A primary objective of this work was determination whether small amounts of ruthenium could enhance the activity of the cobalt F-T catalyst. The reverse micelle catalysts were not activated by ruthenium, indeed scanning transmission electronic microscopy (STEM) analysis provided some evidence that ruthenium was not present in the cobalt crystallites. Ruthenium did not seem to activate the high cobalt Y zeolite catalyst either, but additional experiments with Y zeolite-supported catalysts are required. Should ruthenium prove not to be an effective promoter under the simple catalyst activation procedure used in this work, more complex activation procedures have been reported which are claimed to enhance the cobalt/ruthenium interaction and result in activity promotion by ruthenium.

  8. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  9. Dendritic Pt-Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jintao; Ma Jizhen [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Wan Yong [Institute of Multifunctional Materials (IMM), Laboratory of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Jiang Jianwen [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Zhao, X.S., E-mail: george.zhao@uq.edu.au [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Institute of Multifunctional Materials (IMM), Laboratory of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Dendritic Pt-Cu bimetallic nanocrystals were synthesized by one-step aqueous-phase reduction. Black-Right-Pointing-Pointer The formation process of dendritic Pt-Cu bimetallic nanocrystals can be carried out under mild conditions. Black-Right-Pointing-Pointer The dendritic Pt-Cu bimetallic nanocrystals exhibited a higher catalytic activity toward the electro-oxidation of methanol than commercial Pt/C catalysts. Black-Right-Pointing-Pointer The new findings are of fundamental importance to the development of high-performance electrocatalysts for direct methanol fuel cell. - Abstract: Dendritic Pt-Cu bimetallic nanocrystals were synthesized by one-step aqueous-phase reduction of H{sub 2}PtCl{sub 6} and CuCl{sub 2} at a mild temperature (60 Degree-Sign C). The morphology and composition of the dendritic Pt-Cu nanocrystals were characterized by means of high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectrometer. The electrochemical properties were characterized by the cyclic voltammetry technique. It was found that the dendritic Pt-Cu bimetallic nanocrystals exhibited a higher catalytic activity toward the electro-oxidation of methanol than commercial Pt/C catalyst The enhanced catalytic activity would be contributed to the unique dendritic structure and the formation of Pt-Cu alloy nanocrystals.

  10. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  11. Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05).

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; Coker, Eric Nicholas; Jarek, Russell L.; Steen, William Arthur

    2005-12-01

    The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported catalyst structures, and by verifying electrochemical performance in half cells and ultimately laboratory fuel cells. Synthesis methods were developed for making small, well-defined platinum clusters using zeolite hosts, ion exchange, and controlled calcination/reduction processes. Several factors influence cluster size, and clusters below 1 nm with narrow size distribution have been prepared. To enable electrochemical application, the zeolite pores were filled with electrically-conductive carbon via infiltration with carbon precursors, polymerization/cross-linking, and pyrolysis under inert conditions. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. Plotting electrochemical activity versus pyrolysis temperature typically produces a Gaussian curve, with a peak at ca. 800 C. The poorer relative performances at low and high temperature are due to low electrical conductivity of the carbon matrix, and loss of zeolitic structure combined with Pt sintering, respectively. Cluster sizes measured via adsorption-based methods were consistently larger than those observed by TEM and EXAFS, suggesting , that a fraction of the clusters were inaccessible to the fluid phase. Detailed EXAFS analysis has been performed on selected catalysts and catalyst precursors to monitor trends in cluster size evolution, as well as oxidation states of Pt. Experiments were conducted to probe the electroactive surface area of the Pt clusters. These Pt/C materials had as much as 110 m{sup 2}/g{sub pt} electroactive surface area, an almost 30% improvement over what is commercially (mfg. by ETEK) available (86 m{sup 2}/g{sub pt}). These Pt/C materials also perform

  12. INTERACTION OF SULPHUR WITH BIMETALLIC SURFACES: EFFECTS OF STRUCTURAL, ELECTRONIC AND CHEMICAL PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; HRBEK,J.

    2001-10-04

    In recent years, several new interesting phenomena have been discovered when studying the interaction of sulphur with bimetallic surfaces using the modern techniques of surface science. Very small amounts of sulphur can induce dramatic changes in the morphology of bimetallic surfaces. The electronic perturbations associated with the formation of a heteronuclear metal-metal bond affect the reactivity of the bonded metals toward sulphur. This can be a very important issue to consider when trying to minimize the negative effects of sulphur poisoning or dealing with the design of desulfurization catalysts.

  13. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural

    Science.gov (United States)

    Wang, Guang-Hui; Hilgert, Jakob; Richter, Felix Herrmann; Wang, Feng; Bongard, Hans-Josef; Spliethoff, Bernd; Weidenthaler, Claudia; Schüth, Ferdi

    2014-03-01

    The synthesis of 2,5-dimethylfuran (DMF) from 5-hydroxymethylfurfural (HMF) is a highly attractive route to a renewable fuel. However, achieving high yields in this reaction is a substantial challenge. Here it is described how PtCo bimetallic nanoparticles with diameters of 3.6 ± 0.7 nm can solve this problem. Over PtCo catalysts the conversion of HMF was 100% within 10 min and the yield to DMF reached 98% after 2 h, which substantially exceeds the best results reported in the literature. Moreover, the synthetic method can be generalized to other bimetallic nanoparticles encapsulated in hollow carbon spheres.

  14. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Eric I. [Yale University

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractable for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO2 surfaces. Building on this work on anatase, the mechanism by which TiO2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce catalytic properties not seen for the

  15. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Eric I. [Yale Univ., New Haven, CT (United States)

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractable for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO2 surfaces. Building on this work on anatase, the mechanism by which TiO2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce

  16. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  17. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2 for the HDS of DBT: Effect of the Pd and Pt Incorporation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Martínez Guerrero

    2014-01-01

    Full Text Available The effect of the preparation method of monometallic Pd and Pt and bimetallic Pd-Pt/Al2O3-TiO2 catalysts on the hydrodesulfurization (HDS of dibenzothiophene (DBT was investigated in this study. The synthesis was accomplished using three methods: (A impregnation, (B metal organic chemical vapor deposition (MOCVD, and (C impregnation-MOCVD. The bimetallic Pd-Pt catalyst prepared by the impregnation-MOCVD method was most active for the HDS of DBT compared to those prepared by the single impregnation or MOCVD method due to the synergetic effect between both noble metals. The greater selectivity toward biphenyl indicated that this bimetallic Pd-Pt catalyst preferentially removes sulfur via the direct desulfurization mechanism. However, the bimetallic Pd-Pt catalyst prepared using the single MOCVD method did not produce any cyclohexylbenzene, which is most likely associated with the hydrogenation/dehydrogenation sites.

  18. Kinetics of Oxidation of L-Leucine by Mono-and Bimetallic Gold and Silver Nanoparticles in Hydrogen Peroxide Solution

    Institute of Scientific and Technical Information of China (English)

    P.VENKATESAN; J.SANTHANALAKSHMI

    2012-01-01

    The catalytic activity of surfactant stabilized mono- and bimetallic Au and Ag nanoparticles for the oxidation of an amino acid,L-leucine,was studied using hydrogen peroxide as the oxidant.The Au and Ag nanoparticle catalysts exhibited very good catalytic activity and the kinetics of the reaction were found to be pseudo-first order with respect to the amino acid.The effects of several factors,such as oxidant concentration,ionic strength,pH,and catalyst concentration on the reaction,were also investigated.In particular,optimal oxidant and catalyst concentrations were determined.Very high concentrations of the metal nano-catalysts or the oxidant led to a dramatic increase in reaction rate.Moreover,bimetallic Au-Ag catalysts provided higher selectivity than pure Au or Ag.

  19. Novel catalysts for methane activation. Final progress report, September 30, 1992--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Du, Y.; Wu, H.J.; Malhotra, R.; Wilson, R.B.

    1996-06-11

    This final report summarizes the results of our research under Contract No. DE-AC22-92PC92112, Novel Catalysts for Methane Activation. In this research we prepared and tested fullerene soots for converting methane into higher hydrocarbons. We conducted the methane conversions using dehydrocoupling conditions, primarily in the temperature regimes of 600{degrees}-1000{degrees}C and atmospheric pressures. The research was divided into three sections. The first section focused on comparing fullerene soots with other forms of carbon such as acetylene black and Norit-A. We found that the fullerene soot was indeed more reactive than the other forms of carbon. However, due to its high reactivity, it was not selective. The second section focused on the effect of metals on the reactivity of the soots, including both transition metals and alkali metals. We found that potassium could enhance the selectivities of fullerene soot to higher hydrocarbons, but the effect was unique to fullerene soot and did not improve the performance of other forms of carbon. The third part focused on the use of co-feeds for methane activation to enhance the selectivities and lower the temperature threshold of methane activation.

  20. Characterization and Preparation of Bimetallic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Bing; Joe; Hwang; Ching; Hsiang; Chen; Loka; Subramanyam; Sarma; Din-gao; Liu; Jyh; Fu; Lee

    2007-01-01

    1 Results Bimetallic particles in the nanometer size range are of substantial interest due to their vast applications in catalysis[1].The synthesis of bimetallic nanoparticles with definite size with a well-control over their nanostructure remains a challenging problem.Thus there exists a great demand for both synthesis and atomic level characterization of nanostructure of bimetallic nanoparticles (NPs).With the recent advent of high-intensity tunable sources of X-rays,now available at synchrotron radia...

  1. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  2. The effect of lanthanum addition on the catalytic activity of ?-alumina supported bimetallic Co–Mo carbides for dry methane reforming

    OpenAIRE

    France, Liam J; Du, Xian; Almuqati, Naif; Vladimir L. Kuznetsov; Zhao, Yongxiang; Jiang, Zheng; Xiao, Tiancun; Bagabas, Abdulaziz; Almegren, Hamid; Edwards, Peter P.

    2014-01-01

    The effect of lanthanum addition to ?-alumina supported bimetallic carbides has been studied for the reaction of dry methane reforming using four different lanthanum loading levels of 1, 5, 10 and 15 wt% of lanthanum. It has been demonstrated that the addition of lanthanum to supported bimetallic carbides at low loading levels (1 wt%) results in smaller carbide crystallite sizes compared to catalysts containing either no lanthanum or higher lanthanum loading levels (5–15 wt%). Increased lanth...

  3. Microbial recovery of metals from spent coal liquefaction catalysts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sperl, P.L.; Sperl, G.T.

    1995-07-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types were the subject of the contract. The first was a Ni-No catalyst support on alumina (Shell 324), the catalyst used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The second material was an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the Mo content of this particular sample was too low for the current studies and the studies at the Pittsburgh Energy Technology Center have been discontinued. The object of the contract was to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans , but also other Thiobacillus spp. and possibly Sulfolobus and other potential microorganisms, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which could be readily recovered by conventional techniques.

  4. LDRD final report on new homogeneous and supported oligomerization catalysts (LDRD 42461).

    Energy Technology Data Exchange (ETDEWEB)

    Hascall, Anthony G.; Kemp, Richard Alan

    2004-11-01

    The overall purpose of this LDRD is multifold. First, we are interested in preparing new homogeneous catalysts that can be used in the oligomerization of ethylene and in understanding commercially important systems better. Second, we are interested in attempting to support these new homogeneous catalysts in the pores of nano- or mesoporous materials in order to force new and unusual distributions of a-olefins to be formed during the oligomerization. Thus the overall purpose is to try to prepare new catalytic species and to possibly control the active site architecture in order to yield certain desired products during a catalytic reaction, much like nature does with enzymes. In order to rationally synthesize catalysts it is imperative to comprehend the function of the various components of the catalyst. In heterogeneous systems, it is of utmost importance to know how a support interacts with the active site of the catalyst. In fact, in the catalysis world this lack of fundamental understanding of the relationship between active site and support is the single largest reason catalysis is considered an 'empirical' or 'black box' science rather than a well-understood one. In this work we will be preparing novel ethylene oligomerization catalysts, which are normally P-O chelated homogeneous complexes, with new ligands that replace P with a stable carbene. We will also examine a commercially catalyst system and investigate the active site in it via X-ray crystallography. We will also attempt to support these materials inside the pores of nano- and mesoporous materials. Essentially, we will be tailoring the size and scale of the catalyst active site and its surrounding environment to match the size of the molecular product(s) we wish to make. The overall purpose of the study will be to prepare new homogeneous catalysts, and if successful in supporting them to examine the effects that steric constraints and pore structures can have on growing oligomer

  5. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Gao, Guang; Zhang, Xin; Li, Fuwei [ChinaU - Petroleum; (Chinese Aca. Sci.)

    2016-02-04

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (RuxNi1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophase before pyrolysis and silica removal. The resulting RuxNi1–x–OMC materials are in-depth characterized with X-ray diffraction, N2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru0.9Ni0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h–1) was obtained, and the Ru0.9Ni0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.

  6. Coating of catalyst supports - links between slurry characteristics, coating process and final coating quality

    OpenAIRE

    Adegbite, SA

    2010-01-01

    Tightening legislation for vehicles across the world has caused the use of monolith catalysts in automotive emission control to become ubiquitous. Control of the adherence and homogeneity of the platinum group metal (PGM) coating onto the monolith block, to maximise catalytic performance for a minimum PGM loading, is therefore paramount. In this study, an automatic film application is used for coating γ–alumina slurries onto Fecralloy®, an integral component of metallic monolith catalysts, to...

  7. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry. It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.

  8. Studies of supported metal catalysts. Final report, September 1, 1979-April 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Hercules, D.M.

    1984-04-01

    A variety of surface spectroscopic techniques, coupled with chemical activity measurements, has been used to study supported heterogeneous catalysts. The catalytic systems investigated are: Ni on Al/sub 2/O/sub 3/ and SiO/sub 2/, Co on Al/sub 2/O/sub 3/, Co and Zn on Al/sub 2/O/sub 3/, Mo on Al/sub 2/O/sub 3/, Mo in TiO/sub 2/, W on Al/sub 2/O/sub 3/, Co and Mo on Al/sub 2/O/sub 3/ and Ni and W on Al/sub 2/O/sub 3/. Emphasis has been on defining the nature of the surface species on the oxidic catalysts, prior to treatment or activation. Reaction of catalysts with H/sub 2/ and H/sub 2/S/H/sub 2/ have been used for diagnosing different species. Treatment with Ha2S/H/sub 2/ also has been used to elucidate the species on sulfided hydrotreating catalysts. Other aspects of the research involved evaluation of photoacoustic spectroscopy for studying catalysts and use of curve resolving techniques to maximize use of ESCA spectra for studying catalysts. In general, the species on catalysts with loadings below monolayer coverage are determined by the nature of the support. For example, on ..gamma..-Al/sub 2/O/sub 3/ distributions of the metal between tetrahedral (Td) and octahedral (Oh) sites occurs. Reactivity of metals in Oh and Td support sites differ; in Mo-Al/sub 2/O/sub 3/ catalysts, the metal in Td sites is reduced only to Mo(+5) by H/sub 2/ (500/sup 0/C) but Oh Mo is reduced to Mo(+4). Sulfiding Mo/Al/sub 2/O/sub 3/ catalysts produces MoS/sub 2/ but leaves some metal unsulfided (Mo+5). Clear evidence for interaction species was found for ternary catalyst systems, viz. Co-Mo-Al/sub 2/O/sub 3/.

  9. Studies of Heterogeneous Catalyst Selectivity and Stability for Biorefining Applications

    Science.gov (United States)

    O'Neill, Brandon J.

    The conversion of raw resources into value-added end products has long underlain the importance of catalysts in economic and scientific development. In particular, the development of selective and stable heterogeneous catalysts is a challenge that continues to grow in importance as environmental, sociological, and economic concerns have motivated an interest in sustainability and the use of renewable raw materials. Within this context, biomass has been identified as the only realistic source of renewable carbon for the foreseeable future. The development of processes to utilize biomass feedstocks will require breakthroughs in fundamental understanding and practical solutions to the challenges related to selectivity and stability of the catalysts employed. Selectivity is addressed on multiple fronts. First, the selectivity for C-O bond scission reactions of a bifunctional, bimetallic RhRe/C catalyst is investigated. Using multiple techniques, the origin of Bronsted acidity in the catalyst and the role of pretreatment on the activity, selectivity, and stability are explored. In addition, reaction kinetics experiments and kinetic modeling are utilized to understand the role of chemical functional group (i.e. carboxylic acid versus formate ester) in determining the decarbonylation versus decarboxylation selectivity over a Pd/C catalyst. Finally, kinetic studies over Pd/C and Cu/gamma-Al2O3 were performed so that that may be paired with density functional theory calculations and microkinetic modeling to elucidate the elementary reaction mechanism, identify the active site, and provide a basis for future rational catalyst design. Next, the issue of catalyst stability, important in the high-temperature, liquid-phase conditions of biomass processing, is examined, and a method for stabilizing the base-metal nanoparticles of a Cu/gamma-Al2O 3 catalyst using atomic layer deposition (ALD) is developed. This advancement may facilitate the development of biorefining by enabling

  10. Porous Diatomite-Immobilized Cu–Ni Bimetallic Nanocatalysts for Direct Synthesis of Dimethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2012-01-01

    Full Text Available A series of diatomite-immobilized Cu–Ni bimetallic nanocatalysts was prepared under ultrasonication and evaluated for the direct synthesis of dimethyl carbonate under various conditions. Upon being fully characterized by TPR, TPD, BET, SEM, XRD, and XPS methodologies, it is found that the bimetallic composite is effectively alloyed and well immobilized inside or outside the pore of diatomite. Under the optimal conditions of 1.2 MPa and 120∘C, the prepared catalyst with loading of 15% exhibited the highest methanol conversion of 6.50% with DMC selectivity of 91.2% as well as more than 10-hour lifetime. The possible reaction mechanism was proposed and discussed in detail. To our knowledge, this is the first report to use diatomite as a catalyst support for direct DMC synthesis from methanol and CO2.

  11. Final Report - Durable Catalysts for Fuel Cell Protection during Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Atanasoski, Radoslav; van der Vliet, Dennis; Cullen, David; Atanasoska, Ljiljana

    2015-01-26

    The objective of this project was to develop catalysts that will enable proton exchange membranes (PEM) fuel cell systems to weather the damaging conditions in the fuel cell at voltages beyond the thermodynamic stability of water during the transient periods of start-up/shut-down and fuel starvation. Such catalysts are required to make it possible for the fuel cell to satisfy the 2015 DOE targets for performance and durability. The project addressed a key issue of importance for successful transition of PEM fuel cell technology from development to pre-commercial phase. This issue is the failure of the catalyst and the other thermodynamically unstable membrane electrode assembly (MEA) components during start-up/shut-down and local fuel starvation at the anode, commonly referred to as transient conditions. During these periods the electrodes can reach potentials higher than the usual 1.23V upper limit during normal operation. The most logical way to minimize the damage from such transient events is to minimize the potential seen by the electrodes. At lower positive potentials, increased stability of the catalysts themselves and reduced degradation of the other MEA components is expected.

  12. Development of improved iron Fischer-Tropsch catalysts. Final technical report: Project 6464

    Energy Technology Data Exchange (ETDEWEB)

    Bukur, D.B.; Ledakowicz, S.; Koranne, M. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering] [and others

    1994-02-28

    Despite the current worldwide oil glut, the United States will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer Tropsch (FT) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Texas A&M University (TAMU) with sponsorship from the US Department of Energy, Center for Energy and Mineral Resources at TAMU, Texas Higher Education Coordinating Board, and Air Products and Chemicals, Inc., has been working on development of improved iron FT catalysts and characterization of hydrodynamic parameters in two- and three-phase bubble columns with FT derived waxes. Our previous studies have provided an improved understanding of the role of promoters (Cu and K), binders (silica) and pretreatment procedures on catalyst activity, selectivity and longevity (deactivation). The objective of the present contract was to develop improved catalysts with enhanced slurry phase activity and higher selectivity to liquid fuels and wax. This was accomplished through systematic studies of the effects of pretreatment procedures and variations in catalyst composition (promoters and binders). The major accomplishments and results in each of these two main areas of research are summarized here.

  13. Diesel Emission Control- Sulfur Effects (DECSE) Program- Phase II Summary Report: NOx Adsorber Catalysts; FINAL

    International Nuclear Information System (INIS)

    The investigations performed in this project demonstrated the ability to develop a NO(sub x) regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO(sub x) conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO(sub x) absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO(sub x) conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO(sub x) conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO(sub x) conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be

  14. Nanopore and nanoparticle catalysts.

    Science.gov (United States)

    Thomas, J M; Raja, R

    2001-01-01

    The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.

  15. Bimetallic nanoparticles for arsenic detection.

    Science.gov (United States)

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic. PMID:25938763

  16. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  17. 铁铜双金属催化剂选择性催化氧化氨为氮气%Selective Catalytic Oxidation of Ammonia to Nitrogen over Iron and Copper Bimetallic Catalysts

    Institute of Scientific and Technical Information of China (English)

    孙萌萌; 曹毅; 兰丽; 邹莎; 房志涛; 陈耀强

    2014-01-01

    Iron and copper bimetal ic catalysts with fixed total contents of copper and iron were prepared by a co-impregnation method, and then used for selective catalytic oxidation of ammonia to nitrogen. The properties of the catalysts were characterized by N2 adsorption-desorption, H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The iron and copper bimetal ic catalysts exhibited good activity and high selectivity of N2 at the gas hourly space velocity (GHSV) of 100000 h-1. The activity and N2 selectivity in the low temperature range increased with increasing Cu loading, whereas in the high temperature range (above 400 ° C) the selectivity of N2 was directly related to the content of iron. The highest NH3 conversion was achieved at about 350 °C for Fe0.25Cu0.75/ZSM-5, and the N2 selectivity was up to 97%at 300 °C. On the other hand, the extremely high N2 selectivity about 98%was obtained over Fe0.75Cu0.25/ZSM-5 at 500 °C. In addition, N2O as the by-product and greenhouse gas was obtained in very low amounts for al the catalysts. The characterization results showed that the activity was influenced by the acid content and the amounts of copper species. Moreover, the highly reducing capacity could improve the N2 selectivity.%固定铜铁的总质量不变,采用共浸渍法制备铜铁双金属催化剂.为了更好地了解催化剂的性质,分别用N2吸附-脱附、H2-程序升温还原(H2-TPR)、NH3-程序升温脱附(NH3-TPD)、X射线衍射(XRD)和X射线光电子能谱(XPS)方法对制备的催化剂进行表征.研究发现在100000 h-1空速下,铜铁双金属催化剂呈现出好的活性和氮气选择性.在低温区,随着铜含量的增加,活性和氮气的选择性增加,然而在高温区氮气的选择性直接和铁的含量相关.其中催化剂Fe0.25Cu0.75/ZSM-5,在350° C氨的转化率达到最高,在300° C

  18. LDRD final report on new homogeneous catalysts for direct olefin epoxidation (LDRD 52591).

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Karen (University of Washington); Smythe, Nicole A. (University of Washington); Moore, Joshua T.; Stewart, Constantine A.; Kemp, Richard Alan; Miller, James Edward; Kornienko, Alexander (New Mexico Institute of Mining and Technology); Denney, Melanie C. (University of Washington); Cetto, Kara L. (University of Washington)

    2006-02-01

    This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

  19. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuila, Debasish; Ilias, Shamsuddin

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  20. Bimetallic materials for large diameter pipelines

    International Nuclear Information System (INIS)

    The results are presented of the investigation of bimetallic pipes made of Ni-Mn-Mo-V + Cb08Kh19N10G2B steel and of 19MN5 (type 22K) + SB 08Kh19N10G2B steels, manufactured in Japan for piping nuclear power stations for service under corrosion attack by coolants at high both pressure and temperature and under heavy cyclic loads. The procedures are described for manufacturing elements of piping from bimetallic seamless large-diameter pipes. A study has been made of the variation in bimetallic microstructure of the short-time mechanical properties, of the impact strength, of the critical brittleness point in initial and aged states of the cyclic strength and of the strength of the bimetallic joint

  1. Partial oxidation of methane over bimetallic copper- and nickel-actinide oxides (Th, U)

    International Nuclear Information System (INIS)

    The study of partial oxidation of methane (POM) over bimetallic nickel- or copper-actinide oxides was undertaken. Binary intermetallic compounds of the type AnNi2 (An = Th, U) and ThCu2 were used as precursors and the products (2NiO.UO3, 2NiO.ThO2 and 2CuO.ThO2) characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and temperature-programmed reduction. The catalysts were active and selective for the conversion of methane to H2 and CO and stable for a period of time of ∼18 h on stream. The nickel catalysts were more active and selective than the copper catalyst and, under the same conditions, show a catalytic behaviour comparable to that of a platinum commercial catalyst, 5 wt% Pt/Al2O3. The catalytic activity increases when uranium replaces thorium and the selectivity of this type of materials is clearly different from that of single metal oxides and/or mechanical mixtures. The good catalytic behaviour of the bimetallic copper- and nickel-actinide oxides was attributed to an unusual interaction between copper or nickel oxide and the actinide oxide phase as showed by H2-TPR, XPS and Raman analysis of the catalysts before and after reaction.

  2. Design and performance benchmark of various architectures of a piezoelectric bimetallic strip heat engine

    Science.gov (United States)

    Boughaleb, J.; Arnaud, A.; Monfray, S.; Cottinet, P. J.; Quenard, S.; Boeuf, F.; Guyomar, D.; Skotnicki, T.

    2016-06-01

    This paper deals with an investigation of a thermal energy harvester based on the coupling of a piezoelectric membrane and a bimetallic strip heat engine. The general working principle of the device consists of a double conversion mechanism: the thermal energy is first converted into mechanical energy by means of a bimetallic strip, then the mechanical energy is converted into electricity with a piezoelectric membrane. This paper deals with the study and optimization of the harvester's design. First, the piezoelectric membrane configuration is studied to find the most efficient way to convert mechanical energy into electricity. A benchmark of various piezoelectric materials is then presented to point out the most efficient materials. Finally, our study focuses on the bimetallic strip's properties: the effect of its dimensions of its thermal hysteresis on the harvester's performances are studied and compared. Thanks to these different steps, we were able to point out the best configuration to convert efficiently thermal heat flux into electricity.

  3. Dehalogenation of Aryl Halides Catalyzed by Montmorillonite Immobilized Bimetal Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel bisupported bimetal catalyst PVP-PdCl2-FeSO4/Al-Mont-PEG600 was prepared by immobilization of PVP (poly (N-vinyl-2-pyrrolidone)) supported bimetallic catalyst using alumina pillared inartificial montmorillonite as the carrier. This catalyst has good dehalogenation activity and selectivity to aryl halides-o-chlorotoluene in aqueous system in the presence of phase transfer catalyst (PEG) and sodium formate as hydrogen source. The catalyst also shows good reusability.

  4. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  5. Bimetallic nanoalloys in heterogeneous catalysis of industrially important reactions: synergistic effects and structural organization of active components

    International Nuclear Information System (INIS)

    The review is concerned with correlations between the synergistic effects and structural organization of the surface of bimetallic alloys that are used as active components of catalysts for selective hydrogenation of organic compounds and for CO oxidation in hydrogen-rich mixtures. Studies on the preparation of novel highly efficient catalysts using modern theoretical approaches, computer-assisted molecular design and original synthetic procedures are considered. It is shown that introduction of the second metal into the monometallic catalyst and subsequent formation of alloy particles with modified structure of the surface and near-surface layers leads to nonadditive enhancement of catalytic activity and/or selectivity. The bibliography includes 203 references

  6. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, David A [ORNL

    2016-01-01

    Late transition metal nanocrystals find applications in heterogeneous catalysis such as plasmon-enhanced catalysis and as electrode materials for fuel cells, a zero-emission and sustainable energy technology. Their commercial viability for automotive transportation has steadily increased in recent years, almost exclusively due to the discovery of more efficient bimetallic nanocatalysts for the oxygen reduction reaction (ORR) at the cathode. Despite improvements to catalyst design, achieving high activity while maintaining durability is essential to further enhance their performance for this and other important applications in catalysis. Electronic effects arising from the generation of metal-metal interfaces, from plasmonic metals, and from lattice distortions, can vastly improve sorption properties at catalytic surfaces, while increasing durability.[1] Multimetallic lattice-strained nanoparticles are thus an interesting opportunity for fundamental research.[2,3] A colloidal synthesis approach is demonstrated to produce AuPd alloy and Pd@Au core-shell nanoicosahedra as catalysts for electro-oxidations. The nanoparticles are characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and large solid angle energy dispersive X-ray spectroscopy (EDS) on an FEI Talos 4-detector STEM/EDS system. Figure 1 shows bright-field (BF) and high-angle annular dark-field (HAADF) ac-STEM images of the alloy and core-shell nanoicosahedra together with EDS line-scans and elemental maps. These structures are unique in that the presence of twin boundaries, alloying, and core-shell morphology could create highly strained surfaces and interfaces. The shell thickness of the core-shell structures observed in HAADF-STEM images is tuned by adjusting the ratio between metal precursors (Figure 2a-f) to produce shells ranging from a few to several monolayers. Specific activity was measured in ethanol electro-oxidation to examine the effect of shell thickness on

  7. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    Science.gov (United States)

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  8. Catalysts and process for liquid hydrocarbon fuel production

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  9. Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters

    Directory of Open Access Journals (Sweden)

    Subarna Khanal

    2014-08-01

    Full Text Available Highly monodispersed Cu–Pt bimetallic nanoclusters were synthesized by a facile synthesis approach. Analysis of transmission electron microscopy (TEM and spherical aberration (Cs-corrected scanning transmission electron microscopy (STEM images shows that the average diameter of the Cu–Pt nanoclusters is 3.0 ± 1.0 nm. The high angle annular dark field (HAADF-STEM images, intensity profiles, and energy dispersive X-ray spectroscopy (EDX line scans, allowed us to study the distribution of Cu and Pt with atomistic resolution, finding that Pt is embedded randomly in the Cu lattice. A novel simulation method is applied to study the growth mechanism, which shows the formation of alloy structures in good agreement with the experimental evidence. The findings give insight into the formation mechanism of the nanosized Cu–Pt bimetallic catalysts.

  10. Catalytic Activity of Mono- and Bi-Metallic Nanoparticles Synthesized via Microemulsions

    Directory of Open Access Journals (Sweden)

    Ramona Y.G. König

    2014-07-01

    Full Text Available Water-in-oil (w/o microemulsions were used as a template for the synthesis of mono- and bi-metallic nanoparticles. For that purpose, w/o-microemulsions containing H2PtCl6, H2PtCl6 + Pb(NO32 and H2PtCl6 + Bi(NO3, respectively, were mixed with a w/o-microemulsion containing the reducing agent, NaBH4. The results revealed that it is possible to synthesize Pt, PtPb and PtBi nanoparticles of ~3–8 nm in diameter at temperatures of about 30°C. The catalytic properties of the bimetallic PtBi and PtPb nanoparticles were studied and compared with monometallic platinum nanoparticles. Firstly, the electrochemical oxidation of formic acid to carbon monoxide was investigated, and it was found that the resistance of the PtBi and PtPb nanoparticles against the catalyst-poisoning carbon monoxide was significantly higher compared to the Pt nanoparticles. Secondly, investigating the reduction of 4-nitrophenol to 4-aminophenol,we found that the bimetallic NPs are most active at 23 °C, while the order of the activity changes at higher temperatures, i.e., that the Pt nanoparticles are the most active ones at 36 and 49 °C. Furthermore, we observed a strong influence of the support, which was either a polymer or Al2O3. Thirdly, for the hydrogenation of allylbenzene to propylbenzene, the monometallic Pt NPs turned out to be the most active catalysts, followed by the PtPb and PtBi NPs. Comparing the two bimetallic nanoparticles, one sees that the PtPb NPs are significantly more active than the respective PtBi NPs.

  11. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  12. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  13. Cross-flow, filter-sorbent-catalyst for particulate, SO{sub 2} and NO{sub x} control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, K. [Little (Arthur D.), Inc., Cambridge, MA (United States); Flytzani-Stephanopoulos, M. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1994-05-01

    This report describes work performed on a new concept for integrated pollutant control: An active filter comprised of layered, gas permeable membranes that act as a particle filter, an SO{sub 2} sorbent, and a NO{sub x}, reduction catalyst. The focus of the research program documented in this final report is the development of the sorbent/catalyst materials that are the basis of such an emission control system. The device investigated in this program will simultaneously remove particulates, SO{sub 2} and NO{sub x}, from combustion exhaust gases. Sulfur dioxide capture and nitrogen oxide reduction are achieved with a reg le, mixed-metal oxide sorbent-catalyst. The device is a filter with layered walls: A small-pore layer is a barrier to particles, and a macroporus active layer is a SO{sub 2} sorbent and a catalyst for the selective catalytic reduction of NO{sub x}. The small-pore layer could be an inert ceramic that provides structural strength to the unit and protects the active (sorbent-catalyst) material from abrasion or contamination from fly ash particles. We have found that 95--100% removal efficiency of SO{sub 2} and 60--90% removal of NO{sub x}, is achievable with the use of mixed-metal oxide sorbent-catalysts in the device. The ceramic filters are barriers to particles and typically have removal efficiencies of 99.9%.

  14. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  15. Magneto-optical response in bimetallic metamaterials

    CERN Document Server

    Atmatzakis, Evangelos; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I

    2016-01-01

    We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows to optimize the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Although Ni sections correspond to as little as ~6% of the total surface of the metamaterial, the resulting magneto-optically induced polarization rotation is equal to that of a continuous film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components and integrated photonic circuits.

  16. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  17. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre-formed Ir metal particles. These solids possess promising properties, in terms of selectivity, as catalysts for propane dehydrogenation to propene. Detailed CO-adsorption DRIFTS, XANES and EXAFS characterization studies have been performed on these systems in order to compare the structural and electronic evolution of systems in relation to the nature of the Ir-Sn bonds present in the precursor compounds and to propose a structural model of the Ir-Sn species present at the silica surface of the final catalyst. © 2013 The Royal Society of Chemistry.

  18. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    Science.gov (United States)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  19. Temperature-programmed oxidation of coked noble metal catalysts after autothermal reforming of n-hexadecane

    Energy Technology Data Exchange (ETDEWEB)

    Kauppi, E.I.; Linnekoski, J.A.; Krause, A.O.I.; Veringa Niemelae, M.K. [Aalto University, School of Science and Technology, Department of Biotechnology and Chemical Technology, Research Group Industrial Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kaila, R.K. [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1001, FI-02044 VTT (Finland)

    2010-08-15

    Autothermal reforming (ATR) of n-hexadecane was carried out on zirconia-supported mono- and bimetallic noble metal (Rh, Pt) catalysts at 600, 700, and 800 C. After ATR, the reactivity of coke deposits (2.8-9.9 wt%) on the catalysts was investigated by temperature-programmed oxidation (TPO). Analysis of the results obtained from ATR and TPO experiments at various temperatures and on the different catalysts gave information on the reaction conditions where the detrimental coke can be minimized and allows estimating the nature of carbon deposits. H{sub 2} production increased with temperature on the tested Rh-containing catalysts and the ZrO{sub 2} support, but decreased as a function of temperature on the Pt catalyst. The formation of coke was least at 800 C, evidently due to the intensifying reaction of carbon and steam with increasing temperature, as well as to the better activity of the catalysts. The amount of coke formed was highest at 700 C. Comparison of the TPO profiles obtained for the monometallic Rh and Pt catalysts with the bimetallic RhPt revealed differences in the nature of carbon deposits on their surface. At 600 C, the coke formed on the monometallic Rh and Pt catalysts was located mostly on the support, whereas on the bimetallic RhPt catalyst the formation of this type of coke was suppressed. The bimetallic RhPt catalyst also exhibited better tolerance toward coking at 700 C. Therefore, although the selectivity toward hydrogen was not related to the amount of coke formed, the deactivation patterns differed on the mono- and bimetallic catalysts. (author)

  20. Core-shell Rh-Pt nanocubes: A model for studying compressive strain effects in bimetallic nanocatalysts

    Science.gov (United States)

    Harak, Ethan William

    Shape-controlled bimetallic nanocatalysts often have increased activities and stabilities over their monometallic counterparts due to surface strain effects and electron transfer between the two metals. Here, we demonstrate that the degree of surface strain can be manipulated in shape-controlled nanocrystals through a bimetallic core shell architecture. This ability is achieved in a model core shell Rh Pt nanocube system through control of shell thickness. An increase in the Pt shell thickness leads to more compressive strain, which can increase the Pt 4f7/2 binding energy by as much as 0.13 eV. This change in electronic structure is correlated with a weakening of surface-adsorbate interactions, which we exploit to reduce catalyst poisoning by CO during formic acid electrooxidation. In fact, by precisely controlling the Pt shell thickness, the maximum current density achieved with Rh Pt nanocubes was 3.5 times greater than that achieved with similarly sized Pt nanocubes, with decreased CO generation as well. This system serves as a model for how bimetallic architectures can be used to manipulate the electronic structure of nanoparticle surfaces for efficient catalysis. The strategy employed here should enable the performance of bimetallic nanomaterials comprised of more cost-effective metals to be enhanced as well.

  1. Platinum-ruthenium bimetallic clusters on graphite: a comparison of vapor deposition and electroless deposition methods.

    Science.gov (United States)

    Galhenage, Randima P; Xie, Kangmin; Diao, Weijian; Tengco, John Meynard M; Seuser, Grant S; Monnier, John R; Chen, Donna A

    2015-11-14

    Bimetallic Pt-Ru clusters have been grown on highly ordered pyrolytic graphite (HOPG) surfaces by vapor deposition and by electroless deposition. These studies help to bridge the material gap between well-characterized vapor deposited clusters and electrolessly deposited clusters, which are better suited for industrial catalyst preparation. In the vapor deposition experiments, bimetallic clusters were formed by the sequential deposition of Pt on Ru or Ru on Pt. Seed clusters of the first metal were grown on HOPG surfaces that were sputtered with Ar(+) to introduce defects, which act as nucleation sites for Pt or Ru. On the unmodified HOPG surface, both Pt and Ru clusters preferentially nucleated at the step edges, whereas on the sputtered surface, clusters with relatively uniform sizes and spatial distributions were formed. Low energy ion scattering experiments showed that the surface compositions of the bimetallic clusters are Pt-rich, regardless of the order of deposition, indicating that the interdiffusion of metals within the clusters is facile at room temperature. Bimetallic clusters on sputtered HOPG were prepared by the electroless deposition of Pt on Ru seed clusters from a Pt(+2) solution using dimethylamine borane as the reducing agent at pH 11 and 40 °C. After exposure to the electroless deposition bath, Pt was selectively deposited on Ru, as demonstrated by the detection of Pt on the surface by XPS, and the increase in the average cluster height without an increase in the number of clusters, indicating that Pt atoms are incorporated into the Ru seed clusters. Electroless deposition of Ru on Pt seed clusters was also achieved, but it should be noted that this deposition method is extremely sensitive to the presence of other metal ions in solution that have a higher reduction potential than the metal ion targeted for deposition. PMID:26018140

  2. Gas-Phase Synthesis of Bimetallic Oxide Nanoparticles with Designed Elemental Compositions for Controlling the Explosive Reactivity of Nanoenergetic Materials

    Directory of Open Access Journals (Sweden)

    Ji Young Ahn

    2011-01-01

    Full Text Available We demonstrate a simple and viable method for controlling the energy release rate and pressurization rate of nanoenergetic materials by controlling the relative elemental compositions of oxidizers. First, bimetallic oxide nanoparticles (NPs with a homogeneous distribution of two different oxidizer components (CuO and Fe2O3 were generated by a conventional spray pyrolysis method. Next, the Al NPs employed as a fuel were mixed with CuO-Fe2O3 bimetallic oxide NPs by an ultrasonication process in ethanol solution. Finally, after the removal of ethanol by a drying process, the NPs were converted into energetic materials (EMs. The effects of the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs on the explosive reactivity of the resulting EMs were examined by using a differential scanning calorimeter and pressure cell tester (PCT systems. The results clearly indicate that the energy release rate and pressurization rate of EMs increased linearly as the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs increased. This suggests that the precise control of the stoichiometric proportions of the strong oxidizer (CuO and mild oxidizer (Fe2O3 components in the bimetallic oxide NPs is a key factor in tuning the explosive reactivity of EMs.

  3. Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study

    International Nuclear Information System (INIS)

    In the present work, we investigated the influence of silver on the glycerol electro-oxidation over carbon-supported AuAg catalysts by cyclic voltammetry and in situ FTIR spectroscopy. We observed that the presence of Ag in the bimetallic materials provided a more efficient catalyst in terms of the ability to electro-oxidize glycerol at relatively low potentials. On the other hand, the bimetallic catalysts were found to be less promising than the Au/C catalyst with respect to the reaction rate. Ag addition influenced the mechanism of glycerol electro-oxidation, favoring the C-C-C bond breaking, as evidenced by the selective formation of formic acid on the bimetallic catalysts. The impact of Ag on the glycerol electro-oxidation over AuAg/C may be driven by electronic modifications and Ag segregation on the catalysts surface

  4. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  5. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R.G.; Akgerman, A.

    1994-05-06

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

  6. SYNTHESIS OF POLYMER-STABILIZED PLATINUM/RUTHENIUM BIMETALLIC COLLOIDS AND THEIR CATALYTIC PROPERTIES FOR SELECTIVE HYDROGENATION OF CROTONALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Han-fan Liu

    2005-01-01

    Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.

  7. Tetranuclear Zn/4f coordination clusters as highly efficient catalysts for Friedel-Crafts alkylation.

    Science.gov (United States)

    Griffiths, Kieran; Kumar, Prashant; Akien, Geoffrey R; Chilton, Nicholas F; Abdul-Sada, Alaa; Tizzard, Graham J; Coles, Simon J; Kostakis, George E

    2016-06-14

    A series of custom-designed, high yield, isoskeletal tetranuclear Zn/4f coordination clusters showing high efficiency as catalysts with low catalytic loadings in Friedel-Crafts alkylation are described for the first time. The possibility of altering the 4f centers in these catalysts without altering the core topology allows us to further confirm their stability via EPR and NMR, as well to gain insights into the plausible reaction mechanism, showcasing the usefulness of these bimetallic systems as catalysts. PMID:27248829

  8. Assessment of research needs for advanced heterogeneous catalysts for energy applications. Final report: Volume 2, Topic reports

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.

    1994-04-01

    This report assesses the direction, technical content, and priority of research needs judged to provide the best chance of yielding new and improved heterogeneous catalysts for energy-related applications over the period of 5-20 years. It addresses issues of energy conservation, alternate fuels and feedstocks, and the economics and applications that could alleviate pollution from energy processes. Recommended goals are defined in 3 research thrusts: catalytic science, environmental protection by catalysis, and industrial catalytic applications. This study was conducted by an 11-member panel of experts from industry and academia, including one each from Japan and Europe. This volume first presents an in-depth overview of the role of catalysis in future energy technology in chapter 1; then current catalytic research is critically reviewed and research recommended in 8 topic chapters: catalyst preparation (design and synthesis), catalyst characterization (structure/function), catalyst performance testing, reaction kinetics/reactor design, catalysis for industrial chemicals, catalysis for electrical applications (clean fuels, pollution remediation), catalysis for control of exhaust emissions, and catalysts for liquid transportation fuels from petroleum, coal, residual oil, and biomass.

  9. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., (United States)

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  10. Effect of titania on the characteristics of a Tin-Platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Gil, P., E-mail: moralesp@imp.mx; Nava, N. [Instituto Mexicano del Petróleo (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas (Brazil)

    2015-06-15

    Pt-Sn bimetallic catalysts dispersed on alumina are commonly used for reforming and dehydrogenation reactions. In this research work, Pt and Sn were supported on titania. The resulting interactions between the components in the prepared samples, before and after treatment with hydrogen, were studied by Mössbauer spectroscopy, X-ray diffraction and Rietveld refinement. The results show the presence of Pt and SnO{sub 2} after calcinations. After the reduction process, metallic Pt, PtSn, and Pt{sub 3}Sn alloys were identified. The Rietveld refinement analysis shows that some Ti{sup 4+} atoms were replaced by Sn{sup 4+} atoms in the titania structure. Finally, the Mössbauer spectroscopy and X-ray diffraction results indicate that metallic platinum and SnO{sub 2} are encapsulated by a TiOx layer.

  11. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    Science.gov (United States)

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  12. Study of Catalysts and Electrocatalysts for NO{sub x} Removal in Combustion Gases ELECTRONOX Project Final Report; Estudio de Catalizadores y Electrocatalizadores para la Eliminacion de NO{sub x} en Gases de Combustion. Informe Final Proyecto ELECTRONOX

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Martinez, E.; Marono Bujan, M.; Sanchez-Hervas, J. M.

    2009-12-11

    The final aim of the ELECTRONOX project was to develop new methodologies and technologies for NO{sub x} removal. To fulfil this objective, studies of selective catalytic reduction of NO{sub x} with hydrocarbons, both conventional and with electrochemical promotion, have been undertaken at pilot plant level, using appropriate catalyst/electrocatalysts configurations and in conditions similar to those required in their possible practical application. None of the catalysts/electrocatalysts studied is active and stable enough, under realistic conditions, to consider its possible industrial application, because the value of NO{sub x} conversion achieved by selective catalytic reduction with hydrocarbons, both conventional and with electrochemical promotion, decreases in presence of the different inhibitors and poisons present in the combustion gas, while the promotional effect on the catalytic activity and selectivity is more pronounced. In addition, the catalysts/electrocatalysts suffer from different deactivation processes, such as: sulphur poisoning, carbon deposition and sintering. However, the developed electrochemical catalyst looks promising for NO{sub x} removal in combustion gases, because it can be promoted under realistic operating conditions. (Author) 23 refs.

  13. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those

  14. Analysis of Manufacturing Bimetallic Tubes by the Cold Drawing Process

    Directory of Open Access Journals (Sweden)

    Halaczek D.

    2016-03-01

    Full Text Available Drawing processes apply to obtain the bimetallic tubes from the different metals and alloys, combined in the solid state, which significantly affects the specificity of this process. The manufacturing of bimetallic tubes by drawing process depends on many factors which include: preparation of the surface of materials joined in the solid state, the geometric parameters of the working tool, technological parameters of the drawing process (drawing speed, type of lubricant, the use of back pull etc.. Generally, the cold drawing process of producing the bimetallic tubes refers to metals which have high ductility (copper, aluminum, etc.. The tube sinking (tube drawing without a mandrel of bimetallic tubes together with joining them at the interface of the two metal in the solid-state is applied for tubes of the diameter range between 6 to 20 mm and based on of the reducing the diameter of the tube. However, a slight increase of wall thickness ca. 0.05 ÷ 0.10 mm can appear, which is not dangerous phenomenon in case of producing the bimetallic tubes by joining in the solid-state. The aim of the research was to investigate the technology of tubes drawing process from non-ferrous metal, drawing process of bimetallic tubes and the production of bimetallic tubes in layers composition: cooper Cu-ETP - brass CuZn37 and CuZn37 brass - copper Cu-ETP in the tube sinking process. The research program included: production of bimetallic tubes with a different composition (Cu- ETP-CuZn37 and CuZn37-Cu-ETP and a different percentage of the cross-section components; analysis of changes of tube wall thickness and the layer composition of the bimetallic tube, based on measurements on the workshop microscope; analysis of the material flow in the process of the bimetallic tubes production based on the measurements results of a profilograph CP-200.

  15. Etat actuel des recherches fondamentales sur les catalyseurs bimétalliques à base de platine, sur support alumine, comparables à ceux utilisés dans l'industrie pétrolière. Current State of Fundamental Research on Platinum-Base Bimetallic Catalysts on an Alumina Support, Comparable to the Ones Used in the Petroleum Industry

    Directory of Open Access Journals (Sweden)

    Charcosset H.

    2006-11-01

    és promoteurs diminuant l'hydrogénolyse ou (et inhibiteurs par encrassement ; 6 le fait que dans les 158 références de l'article la moitié date de 1976 et après, souligne l'intérêt croissant porté aux recherches fondamentales dans ce domaine. This article mainly concerns the pairs (Pt, Re, (Pt, Ir and (Pt,Ru dealt with in the following order - catalyst preparation (impregnation of the support, reduction by hydrogen ; - characterization of reduced catalysts ; - catalytic activities ; - scale-up tests ta industriel catalysts , - conclusions. Special emphasis is placed on I the difficulty of obtaining data on the degree of reduction which are meaningful concerning the state of the catalyst under normal working conditions, hence the need ta combine several techniques such as DTA, TGA, volumetry, catharometry, ESCA, in-frared spectroscopy, HL thermodesorption and the measuring of catalytic activities ; 21 the dference between the phase diagrams of divided and massed systems ; 3 the usefulness of the hydrogen titration of the unsorbed oxygen ta give evidence for the presence of small pure Mell particles in (Pt, Mell/AI20a catalysts; 4 the dependence of the final state of the catalyst on the activation mode. The pair (Pt, Re con be stabilized in a state of alloy particles having similar superficial and mean composition or in a state of particle mixture of (Pt, Re with an Re content of less than the rated composition and of pure and well dispersed Re. The pairs (Pt, Ir and especially (Pt, Ru are characterized by the difficulty in obtaining on alloy state with a constant composition from one metal particle to another ; 5 variations in catalytic activity due ta the addition of Mell to Pt, reflecting one or several of the following effects a increase in the dispersion of Pt with (or without a change in its intrinsic properties by weak-valence ions of W, Mo, Cr, etc. ; b formation of Mell in a metallic state, eventually producing an alloy with Pt ; c the rote of promoter carbon

  16. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Boakye, E.; Vittal, M. [and others

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  17. Catalysts and process developments for two-stage liquefaction. Final technical report, October 1, 1989--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.

    1992-12-31

    Research in this project centered upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The major results are summarized here and they are described in more detail under each Task. In tasks for coal pretreatment and beneficiation, it was shown for coal handling that drying of both lignite or subbituminous coals using warm air, vacuum oven or exposing to air for long time was detrimental to subsequent liquefaction. Both laboratory and bench-scale beneficiations indicated that in order to achieve increased liquefaction yield for Illinois No. 6 bituminous coal, size separation with in sink-float technique should be used. For subbituminous coal, the best beneficiation was aqueous SO{sub 2} treatment, which reduced mineral matter. In the case of lignite, the fines should be rejected prior to aqueous SO{sub 2} treatment and sink-float gravity separation. In liquefying coals with supported catalysts in both first and second stages, coal conversion was highest (93%) with Illinois No. 6 coal, which also had the highest total liquid yield of 80%, however, the product contained unacceptably high level of resid (30%). Both low rank coals gave lower conversion (85--87%) and liquid yields (57--59%), but lighter products (no resid). The analysis of spent first stage catalysts indicated significant sodium and calcium deposits causing severe deactivation. The second stage catalysts were in better condition showing high surface areas and low coke and metal deposits. The use of dispersed catalyst in the first stage would combat the severe deactivation.

  18. Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu; Luo, Xiangyi; Kropf, A. Jeremy; Wen, Jianguo; Wang, Xiaoping; Lee, Sungsik; Myers, Deborah J.; Miller, Dean; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2016-01-01

    The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt–Cu core–shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li–O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (<0.2 V). The superior performance is explained by the robust Cu(I) surface sites stabilized by the Pt core in the nanostructure. The insights into the catalytic mechanism of the unique Pt–Cu core–shell nanostructure gained in this work are expected to serve as a guide for future design of other nanostructured bimetallic OER catalysts.

  19. Synthesis and characterization of Fe-Co catalyst prepared via reverse microemulsion method

    Science.gov (United States)

    Mohd Zabidi, Noor Asmawati; Abdul Aziz, Muhammad Nur Azizi; Ali, Sardar; Taha, Mohd Faisal

    2012-09-01

    This paper reports the characterization of bimetallic catalyst systems comprising cobalt and iron on CNTs support prepared via reverse microemulsion method. The properties of the bimetallic catalyst were characterized using TEM, FESEM and N2 adsorption. Based on TEM analyses, the calculated average particle sizes ranged from 4.6 nm to 5.2 nm for the various catalyst compositions. The performance of the Co-based catalyst in a Fischer-Tropsch reaction was evaluated in a fixed-bed reactor at 220°C, 1 atm and H2/CO v/v ratio of 2:1 v/v and space velocity of 12 L/g.h. Amongst the catalysts tested, the 90Co10Fe/CNTs resulted in the highest CO conversion of 14.1% whereas the 100Co/CNTs resulted in the highest C5+ hydrocarbon selectivity.

  20. Metal-containing polymers as fuel-cell catalysts. Final report, 27 September 1982-26 June 1986

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.L.

    1987-06-30

    Several aspects of the fuel-cell problem were addressed in this investigation. The objective was the development of a fuel-cell electrode-catalyst for use in a carbon monoxide fuel cell, which would utilize polymer-bound metal complexes as the catalytic species. Several commercially available polymers were examined to be used as backbones in the development of an electrode-catalyst. Polystyrene was chosen for more extensive study. The polymer was activated by complete or partial monochloromethylation of the pendant phenyls. Several schemes for binding cyclic tetradentate and bidentate ligands to the activated polymers were not obtained. The transition metals cobalt and nickel were incorporated into the polymers, and these new materials were examined. In addition, the electrochemical behavior of several metal complexes that hold potential as catalytic species was examined.

  1. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    Science.gov (United States)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  2. Configurational diffusion of asphaltenes in fresh and aged catalyst extrudates. Final technical report, September 20, 1991--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Guin, J.A.

    1998-12-31

    The overall objective of this project was to investigate the diffusion of coal and petroleum asphaltenes in the pores of a supported catalyst. Experimental measurements together with mathematical modeling was conducted to determine how the diffusion rate of asphaltenes, as well as some model compounds, depended on molecule sizes and shapes. The process of diffusion in the pores of a porous medium may occur by several mechanisms. Hindered diffusion occurs when the sizes of the diffusion molecules are comparable to those of the porous pores through which they are diffusing. Hindered diffusion phenomena have been widely observed in catalytic hydrotreatment of asphaltenes, heavy oils, coal derived liquids, etc. Pore diffusion limitations can be greater in spent catalysts due to the deposition of coke and metals in the pores. In this work, a general mathematical model was developed for the hindered diffusion-adsorption of solute in a solvent onto porous materials, e. g. catalysts, from a surrounding bath. This diffusion model incorporated the nonuniformities of pore structures in the porous media. A numerical method called the Method of Lines was used to solve the nonlinear partial differential equations resulting from the mathematical model. The accuracy of the numerical solution was verified by both a mass balance in the diffusion system and satisfactory agreement with known solutions in several special cases.

  3. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 1–2.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  4. BIMETALLIC LITHIUM BOROHYDRIDES TOWARD REVERSIBLE HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Au, M.

    2010-10-21

    Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.

  5. Salt flux synthesis of single and bimetallic carbide nanowires

    Science.gov (United States)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  6. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  7. Catalytically Active Bimetallic Nanoparticles Supported on Porous Carbon Capsules Derived From Metal-Organic Framework Composites.

    Science.gov (United States)

    Yang, Hui; Bradley, Siobhan J; Chan, Andrew; Waterhouse, Geoffrey I N; Nann, Thomas; Kruger, Paul E; Telfer, Shane G

    2016-09-14

    We report a new methodology for producing monometallic or bimetallic nanoparticles confined within hollow nitrogen-doped porous carbon capsules. The capsules are derived from metal-organic framework (MOF) crystals that are coated with a shell of a secondary material comprising either a metal-tannic acid coordination polymer or a resorcinol-formaldehyde polymer. Platinum nanoparticles are optionally sandwiched between the MOF core and the shell. Pyrolysis of the MOF-shell composites produces hollow capsules of porous nitrogen-doped carbon that bear either monometallic (Pt, Co, and Ni) or alloyed (PtCo and PtNi) metal nanoparticles. The Co and Ni components of the bimetallic nanoparticles are derived from the shell surrounding the MOF crystals. The hollow capsules prevent sintering and detachment of the nanoparticles, and their porous walls allow for efficient mass transport. Alloyed PtCo nanoparticles embedded in the capsule walls are highly active, selective, and recyclable catalysts for the hydrogenation of nitroarenes to anilines. PMID:27575666

  8. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and X-ra

  9. Development of Cu and Ni catalysts supported on ZrO{sub 2} for the generation of H{sub 2} by means of the reaction of reformed methanol in atmosphere oxidizer; Desarrollo de catalizadores de Cu y Ni soportados en ZrO{sub 2} para la generacion de H{sub 2} mediante la reaccion de reformado de metanol en atmosfera oxidante

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, P.

    2012-07-01

    ZrO{sub 2} was prepared by the sol-gel method and calcined at 450 C. The prepared zirconia was impregnated with an aqueous solution of Cu(CH{sub 3}CO{sub 2}){sub 2}{center_dot}H{sub 2}O or NiNO{sub 3}{center_dot}6H{sub 2}O at an appropriate concentration to yield 3 wt % of copper or nickel, respectively, in the mono metallic catalysts. Three bimetallic samples were prepared at 80% Cu and 20% Ni respectively to obtain 3 wt % of total metallic phase. Surface area of the Cu-Ni base catalysts supported on ZrO{sub 2} oxide showed differences as a function of the metal addition. Between them, the Cu/ZrO{sub 2} catalyst had the lowest surface area than other catalysts. X-ray diffraction patterns of the bimetallic catalysts did not show diffraction peaks of the Cu, Ni or bimetallic Cu-Ni alloys. In addition, TPR profiles of the bimetallic catalysts had the lowest reduction temperature compared with the mono metallic samples. The reactivity of the catalysts in the range of 250-350 C showed that the samples prepared by successive impregnation had the highest catalytic activity than the other catalysts studied. Also the selectivity for H{sub 2} production was higher for these catalysts. This finding was associated to the presence of the bimetallic Cu-Ni nanoparticles, as was evidenced by Tem-EDX analysis. (Author)

  10. Assessment of research needs for advanced heterogeneous catalysts for energy applications. Final report: Volume 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.

    1994-04-01

    This report assesses the direction, technical content, and priority of research needs judged to provide the best chance of yielding new and improved heterogeneous catalysts for energy-related applications over a period of 5--20 years. It addresses issues of energy conservation, alternate fuels and feedstocks, and the economics and applications that could alleviate pollution from energy processes. Recommended goals are defined in 3 major, closely linked research thrusts: catalytic science, environmental protection by catalysis, and industrial catalytic applications. This volume provides a comprehensive executive summary, including research recommendations.

  11. Modeling the melting temperature of nanoscaled bimetallic alloys.

    Science.gov (United States)

    Li, Ming; Zhu, Tian-Shu

    2016-06-22

    The effect of size, composition and dimension on the melting temperature of nanoscaled bimetallic alloys was investigated by considering the interatomic interaction. The established thermodynamics model without any arbitrarily adjustable parameters can be used to predict the melting temperature of nanoscaled bimetallic alloys. It is found that, the melting temperature and interatomic interaction of nanoscaled bimetallic alloys decrease with the decrease in size and the increasing composition of the lower surface energy metal. Moreover, for the nanoscaled bimetallic alloys with the same size and composition, the dependence of the melting temperature on the dimension can be sequenced as follows: nanoparticles > nanowires > thin films. The accuracy of the developed model is verified by the recent experimental and computer simulation results.

  12. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  13. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  14. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.

    Science.gov (United States)

    Durham, Jessica L; Poyraz, Altug S; Takeuchi, Esther S; Marschilok, Amy C; Takeuchi, Kenneth J

    2016-09-20

    Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and mass of the final system. Material multifunctionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cations can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multimechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM'O) or phosphorus oxides (MM'PO) where M = Ag and M' = V or Fe. One discharge process can be described as reduction-displacement where Ag(+) is reduced to Ag(0) and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the

  15. Synchrotron radiation applied to the study of heterogeneous model catalyst surfaces

    International Nuclear Information System (INIS)

    The application of synchrotron radiation-based experimental techniques for the characterization of model catalyst surfaces is reviewed. The planar model systems considered are distinguished by their heterogeneous surface character. Prototypical examples are discussed to illustrate various aspects of model catalyst surfaces and they include oxide thin films on metal single crystal substrates, metal nanoparticles deposited on ordered oxide films, thin layers of oxides on oxide substrates, heterogeneous bimetallic surfaces and metal single crystal surfaces decorated by oxide nanoparticles. (author)

  16. Theoretical and experimental aspects of the bimetallic reinforcement bars steel - steel resistant to corrosion rolling process

    Directory of Open Access Journals (Sweden)

    S. Sawicki

    2010-11-01

    Full Text Available Purpose: Bimetallic bars which possess higher corrosion resistance and mechanical properties, it is the new kind of bimetallic bars, which are better than standard bars. The bimetallic bars are more often applied in concrete construction.Design/methodology/approach: The simulations of the bar rolling were carried out using the Forge2007® commercial program.Findings: The use of non-corrosive steel on plating layer assures receipt on a high durability and esthetics bimetallic bars.Practical implications: Bimetallic bars are chiefly used in the building industry at production of concrete constructions, and as working elements in bridge building in aggressive environment.Originality/value: Production of bimetallic bars is very difficult. One from many problems during production bimetallic bars is assurance good strength of bimetallic layer bond.

  17. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction.

    Science.gov (United States)

    Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon; Roh, Chi-Woo; Kwon, Yongwoo; Kim, Yong-Tae; Lee, Hyunjoo

    2016-04-25

    Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles. PMID:27034092

  18. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    Science.gov (United States)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  19. Ammonia Decomposition over Bimetallic Nitrides Supported on γ-Al2O3

    Institute of Scientific and Technical Information of China (English)

    Chun Shan LU; Xiao Nian LI; Yi Feng ZHU; Hua Zhang LIU; Chun Hui ZHOU

    2004-01-01

    A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.

  20. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Veser, Goetz

    2009-08-31

    Nanomaterials have gained much attention as catalysts since the discovery of exceptional CO oxidation activity of nanoscale gold by Haruta. However, many studies avoid testing nanomaterials at the high-temperatures relevant to reactions of interest for the production of clean energy (T > 700°C). The generally poor thermal stability of catalytically active noble metals has thus far prevented significant progress in this area. We have recently overcome the poor thermal stability of nanoparticles by synthesizing a platinum barium-hexaaluminate (Pt-BHA) nanocomposite which combines the high activity of noble metal nanoparticles with the thermal stability of hexaaluminates. This Pt-BHA nanocomposite demonstrates excellent activity, selectivity, and long-term stability in CPOM. Pt-BHA is anchored onto a variety of support structures in order to improve the accessibility, safety, and reactivity of the nanocatalyst. Silica felts prove to be particularly amenable to this supporting procedure, with the resulting supported nanocatalyst proving to be as active and stable for CPOM as its unsupported counterpart. Various pre-treatment conditions are evaluated to determine their effectiveness in removing residual surfactant from the active nanoscale platinum particles. The size of these particles is measured across a wide temperature range, and the resulting “plateau” of stability from 600-900°C can be linked to a particle caging effect due to the structure of the supporting ceramic framework. The nanocomposites are used to catalyze the combustion of a dilute methane stream, and the results indicate enhanced activity for both Pt-BHA as well as ceria-doped BHA, as well as an absence of internal mass transfer limitations at the conditions tested. In water-gas shift reaction, nanocomposite Pt-BHA shows stability during prolonged WGS reaction and no signs of deactivation during start-up/shut-down of the reactor. The chemical and thermal stability, low molecular weight, and

  1. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  2. Supported Cobalt Molybdenum Bimetallic Nitrides for Ammonia Decomposition%负载型钴铜双金属氮化物催化氨分解研究

    Institute of Scientific and Technical Information of China (English)

    项益智; 李小年

    2005-01-01

    Co and Mo bimetallic nitrides supported on Mg(Al)O, MgO and γ-Al2O3 were prepared in temperatureprogrammed reactions with NH3. The surface morphology, chemical composition and catalytic activity for NH3 decomposition on the supported Co and Mo bimetallic nitrides were studied by X-ray diffractometer (XRD), NH3 temperature-programmed desorption and mass spectrometer (NH3-TPD-MS), temperature-programmed desorption and mass spectrometer (TPD-MS), H2 temperature-programmed surface reaction (H2-TPSR) and activity test.The phases of Co3MosN and MoN could be formed on Mg(Al)O, MgO and Al2O3 during the nitridation, and they might be more uniformly dispersed on Mg(Al)O and MgO than on γ-Al2O3. Transition metallic nitrides are generally considered as potential catalysts for hydrogen-involving reactions due to the entrance of hydrogen atoms into subsurface and the lattice of metallic nitrides. The diffusion of nitrogen in the bulk and the structure transformation of Co and Mo nitride compounds occur during NH3-TPD, but the supported Co and Mo bimetallic nitrides are not easily reduced at H2 atmosphere. Co3Mo3N/Mg(Al)O catalyst exhibits the highest activity, while Co3Mo3N/Al2O3 exhibits the lowest activity for NH3 decomposition. Furthermore, the catalytic activity of Co and Mo bimetallic nitrides is not only much higher than that of supported single metallic nitride, but also highly dependent upon the surface acidity and BET surface area of support.

  3. Trees Containing Built-In Pulping Catalysts - Final Report - 08/18/1997 - 08/18/2000

    Energy Technology Data Exchange (ETDEWEB)

    Pullman, G.; Dimmel, D.; Peter, G.

    2000-08-18

    Several hardwood and softwood trees were analyzed for the presence of anthraquinone-type molecules. Low levels of anthraquinone (AQ) and anthrone components were detected using gas chromatography-mass spectroscopy and sensitive selected-ion monitoring techniques. Ten out of seventeen hardwood samples examined contained AQ-type components; however, the levels were typically below {approximately}6 ppm. No AQs were observed in the few softwood samples that were examined. The AQs were more concentrated in the heartwood of teak than in the sapwood. The delignification of pine was enhanced by the addition of teak chips ({approximately}0.7% AQ-equivalence content) to the cook, suggesting that endogenous AQs can be released from wood during pulping and can catalyze delignification reactions. Eastern cottonwood contained AQ, methyl AQ, and dimethyl AQ, all useful for wood pulping. This is the first time unsubstituted AQ has been observed in wood extracts. Due to the presence of these pulping catalysts, rapid growth rates in plantation settings, and the ease of genetic transformation, eastern cottonwood is a suitable candidate for genetic engineering studies to enhance AQ content. To achieve effective catalytic pulping activity, poplar and cottonwood, respectively, require {approximately}100 and 1000 times more for pulping catalysts. A strategy to increase AQ concentration in natural wood was developed and is currently being tested. This strategy involves ''turning up'' isochorismate synthase (ICS) through genetic engineering. Isochorismate synthase is the first enzyme in the AQ pathway branching from the shikimic acid pathway. In general, the level of enzyme activity at the first branch point or committed step controls the flux through a biosynthetic pathway. To test if the level of ICS regulates AQ biosynthesis in plant tissues, we proposed to over-express this synthase in plant cells. A partial cDNA encoding a putative ICS was available from the random

  4. Bimetallic layered castings alloy steel – carbon cast steel

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2011-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast processso-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic carbon cast steel, whereas working part (layer is plate of austenitic alloy steel sort X10CrNi 18-8. The ratio of thickness between bearing and working part is 8:1. The quality of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  5. Examples of material solutions in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    S. Tenerowicz

    2011-07-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. pearlitic grey cast iron, whereas working part (layer is depending on accepted variant plates of alloy steels sort X6Cr13, X12Cr13, X10CrNi18-8 and X2CrNiMoN22-5-3. The ratio of thickness between bearing and working part is 8:1. The verification of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  6. Spin waves in antiferromagnetically coupled bimetallic oxalates.

    Science.gov (United States)

    Reis, Peter L; Fishman, Randy S

    2009-01-01

    Bimetallic oxalates are molecule-based magnets with transition-metal ions M(II) and M(')(III) arranged on an open honeycomb lattice. Performing a Holstein-Primakoff expansion, we obtain the spin-wave spectrum of antiferromagnetically coupled bimetallic oxalates as a function of the crystal-field angular momentum L(2) and L(3) on the M(II) and M(')(III) sites. Our results are applied to the Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III) bimetallic oxalates, where the spin-wave gap varies from 0 meV for quenched angular momentum to as high as 15 meV. The presence or absence of magnetic compensation appears to have no effect on the spin-wave gap. PMID:21817242

  7. Characterization measurements of Ti-SS bimetallic transition joint samples

    International Nuclear Information System (INIS)

    A small set of bimetallic tubes has been investigated for the purpose to determine characteristics of samples at different conditions of tests for more statistics. Nine bimetallic samples have been manufactured at the Russian Federal Nuclear Center - VNIIEF (Sarov, Russia) using explosion technology for welding titanium and stainless steel tubes. During the tests eight samples have shown an excellent behaviour. This result is very good and we believe that these samples can be used for the construction of the cavity vessels. A preliminary measurement on the residual magnetic moment around junction line between the two materials has been carried out

  8. Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Homs, Narcis; Llorca, Jordi; De la Piscina, Pilar Ramirez [Departament de Quimica Inorganica, Universitat de Barcelona, C/Marti i Franques 1-11, 08028 Barcelona (Spain)

    2006-08-15

    ZnO-supported Ni and Cu as well as bimetallic Co-Ni and Co-Cu catalysts containing ca. 0.7wt% sodium promoter and prepared by the co-precipitation method were tested in the ethanol steam-reforming reaction at low temperature (523-723K), using a bioethanol-like mixture diluted in Ar. Monometallic ZnO-supported Cu or Ni samples do not exhibit good catalytic performance in the steam-reforming of ethanol for hydrogen production. Copper catalyst mainly dehydrogenates ethanol to acetaldehyde, whereas nickel catalyst favours ethanol decomposition. However, the addition of Ni to ZnO-supported cobalt has a positive effect both on the production of hydrogen at low temperature (<573K), and on catalyst stability. Evidence for alloy formation as well as mixed oxides at the microstructural level was found in the bimetallic systems after running the ethanol steam-reforming reaction by HRTEM-EELS. (author)

  9. Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wu, Tao; Xu, Xiaoyang; Xia, Fengling; Na, Heya [School of Science, Tianjin University, Tianjin 300072 (China); Liu, Yu, E-mail: liuyuls@163.com [School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China); Wang, Wei [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Gao, Jianping, E-mail: jianpinggao2012@126.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-15

    Highlights: • Ni and Ag nanoparticles loaded on RGO (Ni–Ag@RGO) were fabricated in a one-pot reaction. • The Ni–Ag@RGO were excellent catalysts for the reduction of 4-nitrophenol. • The Ni–Ag@RGO showed superior catalytic activity for photodegradation of methyl orange. • The Ni–Ag@RGO exhibit good reusability in a magnetic field. - Abstract: A facile method for preparing Ni–Ag bimetallic nanoparticles supported on reduced graphene oxide (Ni–Ag@RGO hybrid) has been established. Hydrazine hydrate was used as the reducing agent to reduce the graphene oxide, Ni{sup 2+} and Ag{sup +} to form Ni–Ag@RGO hybrid. The prepared hybrid was further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Interestingly, the prepared material shown good magnetic properties, which were determined by vibrating sample magnetometer. In addition, the Ni–Ag@RGO hybrid exhibited excellent catalytic activity for the reduction of 4-nitrophenol and the photodegradation of methyl orange. The catalytic process was monitored by determining the change in the concentration of the reactants with time using ultraviolet–visible absorption spectroscopy. After completion of the reaction, the catalyst can be separated from the reaction system simply under a magnet field and shows good recyclability.

  10. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  11. Synthesis of Pt-Pd bimetallic nanoparticles anchored on graphene for highly active methanol electro-oxidation

    Science.gov (United States)

    Zhang, Yuting; Chang, Gang; Shu, Honghui; Oyama, Munetaka; Liu, Xiong; He, Yunbin

    2014-09-01

    A simple, one-step reduction route was employed to synthesize bimetallic Pt-Pd nanoparticles (Pt-PdNPs) supported on graphene (G) sheets, in which the reduction of graphite oxide and metal precursor was carried out simultaneously using ascorbic acid as a soft reductant. The morphology and structure of Pt-PdNPs/G composites were characterized using X-ray diffraction, Transmission Electron Microscopy, Field Emission Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy analysis. The results show that Pt-Pd bimetallic nanoparticles were successfully synthesized and evenly anchored on the graphene sheets. Electrochemical experiments, including cyclic voltammetry and chronoamperometric measurements, were performed to investigate the electrochemical and electrocatalytic properties of the Pt-PdNPs/G composites. It was found that Pt-PdNPs/G composites show better electrocatalytic activity and stability towards the electro-oxidation of methanol than its counterparts such as composites composed of graphene-supported monometallic nanoparticles (PtNPs/G, PdNPs/G) and free-standing (Pt-PdNPs) and Vulcan-supported bimetallic Pt-Pd nanoparticles (Pt-PdNPs/V). The results could be attributed to the synergetic effects of the Pt-Pd nanoparticles and the enhanced electron transfer of graphene. The electrocatalytic activity of Pt-PdNPs/G changed with the Pd content in the Pt-Pd alloy, and the best performance was achieved with a Pt-Pd ratio of 1/3 in an alkaline environment. Our study indicates the potential use of Pt-PdNPs/G as new anode catalyst materials for direct methanol fuel cells.

  12. Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction

    DEFF Research Database (Denmark)

    He, Maoshuai; Liu, Bilu; Chernov, Alexander I.;

    2012-01-01

    Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type...... by impregnation, showing similar catalytic performance as the atomic layer deposition-prepared catalyst, yielding single-walled carbon nanotubes with a similar narrow chirality distribution....

  13. {gamma}-Al{sub 2}O{sub 3}-supported Pt catalysts with extremely high dispersions resulting from Pt-W interactions

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, O.S.; Graham, G.W.; Shelef, M.; Gates, B.C.

    2000-02-15

    Supported bimetallic catalysts are used in large-scale applications, illustrated by naphtha reforming and simultaneous removal of CO, hydrocarbons, and NO from automobile exhaust. Conventional preparation methods give materials with relatively large metal particles and low concentrations of bimetallic structures, which are difficult to characterize structurally because of their nonuniformity. Organometallic compounds with preformed metal-metal bonds, in contrast, offer good opportunities for preparation of catalysts with maximized bimetallic interactions and well-defined, highly dispersed structures. The goal of the work described here was to investigate how supports other than MgO stabilize such highly dispersed bimetallic structures and how the nuclearity and composition of the bimetallic cluster precursor influence the catalyst structure and properties, including the Pt-W interactions. The authors report the preparation, characterization, and catalytic properties of {gamma}-Al{sub 2}O{sub 3} supported samples prepared from {l{underscore}brace}Pt[W(CO){sub 3}(C{sub 5}H{sub 5})]{sub 2}(PhCN){sub 2}{r{underscore}brace} and from {l{underscore}brace}Pt{sub 2}W{sub 2}(CO){sub 6}(C{sub 5}H{sub 5}){sub 2}(PPh{sub 3}){sub 2}{r{underscore}brace}.

  14. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...

  15. New bimetallic EMF cell shows promise in direct energy conversion

    Science.gov (United States)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  16. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  17. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnO{sub x}) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lomocso, Thegy L. [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2011-10-01

    Highlights: > Oxidation of NH{sub 3} is investigated on carbon-supported Pt and PtM (M = Pd, Ir, SnO{sub x}) nanoparticles. > Carbon supported PtPd and PtIr nanoparticles show higher catalytic activity if compared to Pt nanocatalyst. > Pt{sub 7}Ir{sub 3} nanoparticles combine good catalytic activity and enhanced stability for NH{sub 3} oxidation. > Electronic effect between two metals in PtIr is responsible for increase in the catalytic activity. - Abstract: Ammonia electro-oxidation was studied in alkaline solution on carbon-supported Pt and bimetallic Pt{sub y}M{sub 1-y} (M = Pd, Ir, SnO{sub x} and y = 70, 50 at.%) nanoparticles. Catalysts were synthesized using the modified polyol method and deposited on carbon, resulting in 20 wt.% of metal loading. Particle size, structure and surface composition of the particles were investigated using TEM, XRD and XPS. Mean size of PtM bi-metallic nanoparticles varied between 2.0 and 4.7 nm, depending on the second metal (M). XRD revealed the structure of all bi-metallic particles to be face-centered cubic and confirmed alloy formation for Pt{sub y}Pd{sub 1-y} (y = 70, 50 at.%) and Pt{sub 7}Ir{sub 3}nanoparticles, as well as partial alloying between Pt and SnO{sub x}. Electrochemical behaviour of ammonia on Pt and PtM nanoparticles is comparable to that expected for bulk Pt and PtM alloys. Addition of Pd to Pt at the nanoscale decreased the onset potential of ammonia oxidation if compared to pure platinum nanoparticles; however stability of the catalyst was poor. For Pt{sub 7}(SnO{sub x}){sub 3}, current densities were similar to Pt, whereas catalyst stability against deactivation was improved. It is found that carbon supported Pt{sub 7}Ir{sub 3} nanoparticles combine good catalytic activity with enhanced stability for ammonia electro-oxidation. Electronic effect generated between two metals in the bimetallic nanoparticles might be responsible for increase in the catalytic activity of Pd- and Ir-containing catalysts, causing

  18. Physicochemical and isomerization property of Pt/SAPO-11 catalysts promoted by rare earths

    Institute of Scientific and Technical Information of China (English)

    刘维桥; 尚通明; 周全发; 任杰; 孙予罕

    2009-01-01

    Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffraction(XRD),nitrogen adsorption,temperature-programmed desorption of ammonia(NH3-TPD),and Fourier transform infrared spectroscopy(FT-IR) techniques.The results showed that with the addition of rare earths the BET surface areas,pore volume,the amount of Bronsted acid and the total acidity of catalys...

  19. Three-Dimensional Graphene Supported Bimetallic Nanocomposites with DNA Regulated-Flexibly Switchable Peroxidase-Like Activity.

    Science.gov (United States)

    Yuan, Fang; Zhao, Huimin; Zang, Hongmei; Ye, Fei; Quan, Xie

    2016-04-20

    A synergistic bimetallic enzyme mimetic catalyst, three-dimensional (3D) graphene/Fe3O4-AuNPs, was successfully fabricated which exhibited flexibly switchable peroxidase-like activity. Compared to the traditional 2D graphene-based monometallic composite, the introduced 3D structure, which was induced by the addition of glutamic acid, and bimetallic anchoring approach dramatically improved the catalytic activity, as well as the catalysis velocity and its affinity for substrate. Herein, Fe3O4NPs acted as supporters for AuNPs, which contributed to enhance the efficiency of electron transfer. On the basis of the measurement of Mott-Schottky plots of graphene and metal anchored hybrids, the catalysis mechanism was elucidated by the decrease of Fermi level resulted from the chemical doping behavior. Notably, the catalytic activity was able to be regulated by the adsorption and desorption of single-stranded DNA molecules, which laid a basis for its utilization in the construction of single-stranded DNA-based colorimetric biosensors. This strategy not only simplified the operation process including labeling, modification, and imprinting, but also protected the intrinsic affinity between the target and biological probe. Accordingly, based on the peroxidase-like activity and its controllability, our prepared nanohybrids was successfully adopted in the visualized and label-free sensing detections of glucose, sequence-specific DNA, mismatched nucleotides, and oxytetracycline. PMID:27018504

  20. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ particle generation by rapid expansion of supercritical fluid solutions. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The research conducted by Textron Defense Systems (TDS) represents a potential new and innovative concept for dispersed coal liquefaction. The technical approach is generation of ultra-fine catalyst particles from supercritical solutions by rapid expansion of either catalyst only, or mixtures of catalyst and coal material in supersaturated solvents. The process of rapid expansion of supercritical fluid solutions was developed at Battelle`s Pacific Northwest Laboratories for the intended purpose of providing a new analytical technique for characterizing supercritical fluids. The concept forming the basis of this research is that ultra-fine particles can be generated from supercritical solutions by rapid expansion of either catalyst or catalyst/coal-material mixtures in supersaturated solvents, such as carbon dioxide or water. The focal point of this technique is the rapid transfer of low vapor pressure solute (i.e., catalyst), dissolved in the supercritical fluid solvent, to the gas phase as the solution is expanded through an orifice. The expansion process is characterized by highly nonequilibrium conditions which cause the solute to undergo extremely rapid supersaturation with respect to the solvent, leading to nucleation and particle growth resulting in nanometer size catalyst particles. A supercritical expansion system was designed and built by TDS at their Haverhill facility.

  1. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  2. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  3. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  4. Effects of Cu over Pd based catalysts supported on silica or niobia

    Directory of Open Access Journals (Sweden)

    Roma M.N.S.C.

    2000-01-01

    Full Text Available Palladium and palladium-copper catalysts supported on silica and niobia were characterized by H2 chemisorption and H2-O2 titration. Systems over silica were also analyzed by transmission electron microscopy and EXAFS. The metallic dispersion decreased from 20% to 7% when the content of Pd was increased from 0.5wt.-% to 3wt.-% in monometallic catalysts. The addition of 3 wt.-% Cu to obtain Pd-Cu catalysts caused a remarkable capacity loss of hydrogen chemisorption. TPR analysis suggested an interaction between the two metals and EXAFS characterization of the catalyst supported on silica confirmed the formation of Pd-Cu alloy. Pd/Nb2O5 catalysts showed turnover numbers higher than those obtained with the Pd/SiO2 systems in the cyclohexane dehydrogenation. However, the bimetallic catalysts showed very low turnover numbers.

  5. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    OpenAIRE

    Zhen Yin; Yining Zhang; Kai Chen; Jing Li; Wenjing Li; Pei Tang; Huabo Zhao; Qingjun Zhu; Xinhe Bao; Ding Ma

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the s...

  6. Dual Wavelength Laser Writing and Measurement Methodology for High Resolution Bimetallic Grayscale Photomasks

    Science.gov (United States)

    Qarehbaghi, Reza

    Grayscale bimetallic photomasks consist of bi-layer thermal resists (Bismuth-on-Indium or Tin-on-Indium) which become controllably transparent when exposed to a focused laser beam as a function of the absorbed power changing from ~3OD (unexposed) to writing. This thesis investigates using two wavelength beams for mask writing (514.5nm) and OD measurement (457.9nm) separated from a multi-line Argon ion laser source: a Dual Wavelength Writing and Measurement System. The writing laser profile was modified to a top-hat using a beam shaper. Several mask patterns tested the creation of high resolution grayscale masks. Finally, for creation of 3D structures in photoresist, the mask transparency to resist thickness requirements was formulated and linear slope patterns were successfully created.

  7. Dehalogenation of Aryl Halides Catalyzed by MontK10 Immobilized PVP-Pd-Sn Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of PVP-Pd-Sn/MontK10 catalysts were prepared by immobilization of PVP[poly(N-vinyl-2-pyrrolidone)] supported bimetallic catalyst using MontK10 as carrier. This catalyst has good catalytic activity for hydrogen transfer dehalogenation of aryl halides. The catalytic reaction was carried out in aqueous system in the presence of phase transfer catalyst and sodium formate as hydrogen source. The catalyst with loading Pd 0.19wt% and molar ratio of Pd/Sn 8:1 gives the highest activity and good stability. This catalyst is more reducible with NaBH4. It is also found that the catalyst is easily separated from the reaction system.

  8. Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle

    International Nuclear Information System (INIS)

    Bimetallic Gold–silver core–shell nanoparticles (Au@Ag NPs) were synthesized at room temperature, where gold nanoparticles (AuNPs) served as seeds for continuous deposition of silver atoms on its surface. The core–shell structure was examined by UV–vis spectroscopy, transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis. The catalytic activity of these nanoparticles toward biodiesel production from Sunflower oil through transesterification was studied. The confirmation for biofuel synthesis was performed using Fourier Transform Infra-Red (FTIR) spectroscopy. Fuel properties are determined by standard ASTM (American society for Testing and Materials) protocols. Our observations show that at certain catalyst concentration, temperature and reaction time, highest yield of biodiesel (86.9%) is attained. The fuel properties of the synthesized biofuel are at par with standard biofuel. Further, the catalyst showed sustained activity for 3 cycles of transesterification. - Highlights: • Gold–silver core–shell NPs were used for biofuel synthesis from sunflower oil. • At the optimized condition, biodiesel yield of 86.9% was achieved. • Fuel properties of the biofuel synthesized are at par with standard biofuel. • The catalyst showed sustained activity for 3 cycles of transesterification

  9. In/Co-ferrierite. A highly active catalyst for the CH4-SCR NO process under presence of steam

    International Nuclear Information System (INIS)

    A series of monometallic (In, Co) and bimetallic (In/Co and Co/In) catalysts supported on ferrierite type zeolite were tested in the selective catalytic reduction of nitric oxide, in the presence of methane and excess of oxygen. All the catalysts were prepared by contact-induced ion exchange. A strong synergistic effect was observed for the catalysts containing both indium and cobalt, in comparison with the monometallic samples. For these bimetallic catalysts, a very high selectivity to nitrogen and rather efficient fuel economy were observed under the standard reaction conditions (NO=1000ppm, CH4=2000ppm, O2=4%, H2O=2500ppm). Moreover, the In/Co-ferrierite catalyst displays significant stability under a prolonged test (≅200h) in the presence of 2.5% of steam: the activity dropped rather moderately but was completely restored if steam supply was cut off, while the selectivity of the reaction was not affected in the whole temperature range scanned (300-500oC). The study suggests that a redox-type promotional effect of Co species on NO oxidation may be responsible of the strong synergistic effect detected in bimetallic In-Co formulations. (author)

  10. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  11. Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation

    OpenAIRE

    Di Vece, M; Bals, S.; Verbeeck, J.; Lievens, P.; van Tendeloo, G.

    2009-01-01

    Changes in the size distribution and composition of bimetallic Pd-Au nanoclusters have been observed after hydrogen exposure. This effect is caused by hydrogen-induced Ostwald ripening whereby the hydrogen reduces the binding energy of the cluster atoms leading to their detachment from the cluster. The composition changes due to a difference in mobility of the detached palladium and gold atoms on the surface. Fast palladium atoms contribute to the formation of larger nanoclusters, while the s...

  12. Thermoelastic stability of bimetallic shallow shells of revolution

    OpenAIRE

    Batista, Milan; Kosel, Franc

    2015-01-01

    This article considers the thermoelastic stability of bimetallic shallow shells of revolution. Basic equations are derived from Reissner's non-linear theory of shells by assuming that deformations and rotations are small and that materials are linear elastic. The equations are further specialized for the case of a closed spherical cup. For this case the perturbated initial state is considered and it is shown that only in the cases when the cup edge is free or simply supported buckling under h...

  13. In situ XAFS characterization of bimetallic nanoparticle catalysts PtCo/C structure changes in the working conditions%原位XAFS表征双金属纳米催化剂PtCo/C在工作状态下的结构变化

    Institute of Scientific and Technical Information of China (English)

    尚明丰; 赵天天; 鲍洪亮; 段佩权; 林瑞; 黄宇营; 王建强

    2016-01-01

    用两步还原法制备的PtCo/C (10 wt% Pt)纳米催化剂具有与商业催化剂Pt/C (20 wt% Pt)接近的催化反应活性,使贵金属Pt的用量减少了50%。利用上海光源BL14W1线站的质子交换膜燃料电池(Proton exchange membrane fuel cell, PEMFC)原位X射线吸收精细结构谱(X-ray absorption fine structure, XAFS)实验装置,在以该PtCo/C作为燃料电池的阴极催化剂,以Pd/C作为阳极催化剂的条件下,原位表征PtCo/C在工作状态下的结构变化,PtCo/C 的非原位 XAFS 数据没有观察到 Pt−Co 合金成分,发现存在显著的 Co−O 键和 Co−O−Co键贡献,且与Pt/C相比,Pt的氧化程度更高且具有更短的Pt−Pt金属键长,说明PtCo/C中的Co主要以氧化物种形式存在,且Co的存在影响着活性成分Pt的结构。原位XAFS数据表明随着电压的逐渐降低,PtCo/C中Pt和Co的氧化程度降低,揭示了在催化反应过程中Pt的d电子向过渡金属Co的转移过程。%AbstractBackground:The proton exchange membrane fuel cell (PEMFC) is considered as one of the most promising clean energy sources in the future, because of its high energy density and simple construction. However, the large scale commercial application of fuel cell is limited by the factors such as cost, durability and reliability. Purpose: For the purpose of reducing the cost and improving the performance of the PEMFC, transition metal elements alloy Pt nanoparticles (PtFe/C, PtCo/C, PtNi/C) catalysts have been studied in recent years.Methods:In situ X-ray absorption fine structure (XAFS) experimental testing device for PEMFC on beamline (BL14W1) of XAFS spectroscopy at the Shanghai Synchrotron Radiation Facility (SSRF) is conducted to explore the nanostructure changes of PtCo/C during the fuel cell operation. Results:In situ XAFS spectra indicts that Pt, and Co are gradually being reduced as the voltage of fuel cell decreases.Ex-situ XAFS spectra show Pt and Co did not form Pt

  14. Mg-AI Mixed Oxides Supported Bimetallic Au-Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol

    Institute of Scientific and Technical Information of China (English)

    王亮; 张伟; 曾尚景; 苏党生; 孟祥举; 肖丰收

    2012-01-01

    Nano-sized Au and Pd catalysts are favorable for oxidations with molecular oxygen, and the preparation of this kind of nanoparticles with high catalytic activities is strongly desirable. We report a successful synthesis of bimetal- lic Au-Pd nanoparticles with rich edge and comer sites on unique support of Mg-AI mixed oxides (Au-Pd/MAO), which are favorable for producing metal nanoparticles with high degree of coordinative unsaturation of metal atoms The systematic microscopic characterizations confirm the bimetallic Au-Pd nanoparticles are present as Au-Pd alloy The irregular shape of the bimetallic nanoparticles are directly observed in HRTEM images. As we expected, Au-Pd/MAO gives very excellent catalytic performances in the aerobic oxidation of benzyl alcohol and glycerol. For example, Au-Pd/MAO shows very high TOF of 91000 h i at 433 K with molecular oxygen at air pressure in solvent-free oxidation of benzyl alcohol; this catalyst also shows relatively high selectivity for tartronic acid (TA- RAC, 36.6%) at high conversion (98.5%) in aerobic oxidation of glycerol. The superior catalytic properties of Au-Pd/MAO would be potentially important tbr production of fine chemicals.

  15. Base-Catalyzed Depolymerization of Lignin with Heterogeneous Catalysts: Cooperative Research and Development Final Report, CRADA Number CRD-13-513

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-04

    We will synthesize and screen solid catalysts for the depolymerization of lignin to monomeric and oligomeric oxygenated species, which could be fractionated and integrated into refinery intermediate streams for selective upgrading, or catalytically upgraded to fuels and chemicals. This work will primarily focus on the synthesis and application of layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for depolymerization of lignin model compounds and softwood lignin. LDHs have been shown in our group to offer good supports and catalysts to promote base-catalyzed depolymerization of lignin model compounds and in preliminary experiments for the depolymerization of lignin from an Organosolv process. We will also include additional catalyst supports such as silica, alumina, and carbon as identified in ongoing and past efforts at NREL. This work will consist of two tasks. Overall, this work will be synergistic with ongoing efforts at NREL, funded by the DOE Biomass Program, on the development of catalysts for lignin depolymerization in the context of biochemical and thermochemical conversion of corn stover and other biomass feedstocks to advanced fuels and chemicals.

  16. Synthesis by Microwaves of Bimetallic Nano-Rhodium-Palladium

    Directory of Open Access Journals (Sweden)

    M. Ugalde

    2013-01-01

    Full Text Available An improved acrylamide sol-gel technique using a microwave oven in order to synthesize bimetallic Rh-Pd particles is reported and discussed. The synthesis of Pd and Rh nanoparticles was carried out separately. The polymerization to form the gel of both Rh and Pd was carried out at 80°C under constant agitations. The method chosen to prepare the Rh and Pd xerogels involved the decomposition of both gels. The process begins by steadily increasing the temperature of the gel inside a microwave oven (from 80°C to 170°C. In order to eliminate the by-products generated during the sol-gel reaction, a heat treatment at a temperature of 1000°C for 2 h in inert atmosphere was carried out. After the heat treatment, the particle size increased from 50 nm to 200 nm, producing the bimetallic Rh-Pd clusters. It can be concluded that the reported microwave-assisted, sol-gel method was able to obtain nano-bimetallic Rh-Pd particles with an average size of 75 nm.

  17. The Simple, Effective Synthesis of Highly Dispersed Pd/C and CoPd/C Heterogeneous Catalysts via Charge-Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    Lawrence D’Souza

    2016-05-01

    Full Text Available Pd/C and CoPd/C heterogeneous catalysts have been synthesized by adopting Charge Enhanced Dry Impregnation (CEDI. The particles size distribution, their high metal surface-to-bulk ratios, and synthesis feasibility are unmatchable to any known noble metal bimetallic heterogeneous catalyst preparation techniques. Next generation Fuel Cells and Fischer-Tropsch catalytic processes economy will be benefited from the proposed methodology.

  18. Structural, electronic and magnetic properties of pure metallic and bimetallic nanoclusters: Empirical and density functional studies

    Science.gov (United States)

    Hijazi, Iyad Ahmed

    initio results. For larger copper clusters, we identified the trend that the lowest-energy structures by DFT calculations can be obtained from the initial configuration of the lowest-energy structure predicted by EAM calculations. Finally, structural, electronic and magnetic properties of 22, 35, and 55-atom of pure and bimetallic Cu-Au nanoclusters were investigated. Among these clusters pure metallic, bimetallic core-shell, and three-shell onion-like structures were found to exhibit desirable ferromagnetic and electronic properties.

  19. Sulfide Catalysts Supported on Porous Aromatic Frameworks for Naphthalene Hydroprocessing

    Directory of Open Access Journals (Sweden)

    Eduard Karakhanov

    2016-08-01

    Full Text Available This paper describes the first example of using porous aromatic frameworks as supports for sulfide catalysts for the hydrogenation of aromatic hydrocarbons. The synthesis of bimetallic Ni-W and Ni-Mo sulfides was performed by in situ decomposition of [(n-Bu4N]2[Ni(MeS42] (Me = W, Mo complexes, supported on mesoporous aromatic framework with a diamond-like structure. It is shown that the highest naphthalene conversions were achieved in the case of additional sulfidation with sulfur. After the reaction, catalysts were characterized by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. The activity of synthesized catalysts has been studied using naphthalene as a model substrate. The materials used in this study were substantially active in hydrogenation and slightly in hydrocracking of naphthalene.

  20. Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2013-01-01

    Full Text Available In this paper, a chlorination method is proposed for simultaneous purification and functionalization of carbon nanotubes, thus increasing their ability to use. Carbon nanotubes were obtained by CVD method through ethylene decomposition on the nanocrystalline iron or cobalt or bimetallic iron-cobalt catalysts. The effects of temperature (50, 250, and 450°C in the case of carbon nanotubes obtained on the Fe-Co catalyst and type of catalyst (Fe, Co, Fe/Co on the effectiveness of the treatment and functionalization were tested. The phase composition of the samples was determined using the X-ray diffraction method. The quantitative analysis of metal impurity content was validated by means of the thermogravimetric analysis. Using X-ray Photoelectron Spectroscopy (XPS, Energy Dispersive Spectroscopy (EDS analysis, and also Mohr titration method, the presence of chlorine species on the surface of chlorinated samples was confirmed.

  1. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  2. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael;

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  3. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.

    2015-05-12

    The characteristics of bimetallic nanomaterials are dictated by their size, shape and elemental distribution. Solution synthesis is widely utilized to form nanomaterials, such as nanoparticles, with controlled size and shape. However, the effects of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape-controlled synthesis on the final shape of the nanomaterials and the elemental distribution within the alloy. We demonstrate that this strategy can tune the size of monodisperse PtM (M=Ni or Cu) alloy nanocrystals ranging from 3 to 16 nm with an octahedral shape using acetylacetonate or halide precursors of Pt(II), Pt(IV) and Ni or Cu (II). The nanoparticles formed from halide precursors showed an enrichment of platinum on their surfaces, and the bromides could oxidatively etch the nanoparticles during synthesis with the O2/Br- pair. The two nanocrystal precursors can be uti-lized independently and can control the size with a trend of Pt(acac)2

  4. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  5. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  6. Facile growth of Ag@Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine

    Indian Academy of Sciences (India)

    Jeena S E; Selvaraju T

    2016-03-01

    An efficient transducer was constructed by the direct growth of bimetallic Ag@Pt nanorods (NRDs) on L−tryptophan functionalized electrochemically reduced graphene oxide (L−ERGO) modified electrode using galvanic displacement method for the electrooxidation of hydrazine.Initially, one dimensionalbimetallic Ag@Cu core−shell NRDs were grown on L−ERGO modified electrode by simple seed mediated growth method. Then, the Cu shells at bimetallic NRDs were exchanged by Pt through galvanic displacement method. Accordingly, the synergetic effect produced by the combination of Ag and Pt as NRDs at L−ERGO surface enabled an enhancement in the electrocatalytic efficiency for hydrazine oxidation. L−ERGO supported bimetallic Ag@Pt NRDs were characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and cyclic voltammetric techniques. Finally, the modified electrode was successfully used for the electrooxidation of hydrazine in PB (pH 7.4)with a detection limit of 6*10−7M(SdivN=3). Importantly, the presence of Pt on Ag surface plays a vital role in the electrooxidation of [N2H4] at−0.2 V with an onset potential at−0.5 V where its overpotential has decreased. On the other hand, L−ERGO nanosheets tend to facilitate an effective immobilization of low density Ag seeds (Agseeds) on its surface. Chronoamperometric studies were used to study the linear correlation of [N2H4] between 1 mM and 10 mM. The modified electrode shows a high sensitivity and selectivity for a trace amount of N2H4 in the presence of different interfering cations and anions

  7. Copper Based Bi-metallic Core Pin Using DMD: Industrial Evaluation

    Directory of Open Access Journals (Sweden)

    M. Khalid Imran

    2012-01-01

    Full Text Available Bi-metallic core pins were prepared and the performance was evaluated in a specially designed die that had the provision to investigate core pins under semi-industrial HPDC conditions. A comparison between bi-metallic core pin with that of tool steel revealed that bi-metallic core pin performed better in terms of soldering under HPDC environment. Due to slow cooling, die holding time needed to be increased in tool steel core pin to allow sufficient solidification of the casting part. The bi-metallic core pins also operated without any catastrophic failure in the clad which particularly substantiated the applicability of DMD deposited tool steel clad on copper alloy substrate to manufacture bi-metallic tooling.

  8. Formation of bimetallic nanoalloys by Au coating of size-selected Cu clusters

    International Nuclear Information System (INIS)

    Bimetallic clusters display new characteristics that could not be obtained by varying either the size of pure metallic systems or the composition of bulk bimetals alone. Coating of pre-deposited clusters by vapour deposition is a typical synthesis process of bimetallic clusters. Here, we have demonstrated that hierarchical, gold cluster-decorated copper clusters as well as both heterogeneous and homogeneous Cu–Au bimetallic clusters (4.6 to 10.7 nm) can be prepared by coating pre-deposited, size-selected Cu5000 (4.6 ± 0.2 nm) with Au evaporation at various temperatures. These bimetallic clusters were analyzed by aberration-corrected scanning transmission electron microscopy and associated electron energy loss spectroscopy. The results indicate that the growth of bimetallic clusters is controlled by a competition between nucleation and diffusion of the coating Au atoms.

  9. Cleave and capture chemistry illustrated through bimetallic-induced fragmentation of tetrahydrofuran

    Science.gov (United States)

    Mulvey, Robert E.; Blair, Victoria L.; Clegg, William; Kennedy, Alan R.; Klett, Jan; Russo, Luca

    2010-07-01

    The cleavage of ethers is commonly encountered in organometallic chemistry, although rarely studied in the context of new, emerging bimetallic reagents. Recently, it was reported that a bimetallic sodium-zinc base can deprotonate cyclic tetrahydrofuran under mild conditions without opening its heterocyclic (OC4) ring. In marked contrast to this synergic sedation, herein we show that switching to the more reactive sodium-magnesium or sodium-manganese bases promotes cleavage of at least six bonds in tetrahydrofuran, but uniquely the ring fragments are captured in separate crystalline complexes. Oxide fragments occupy guest positions in bimetallic, inverse crown ethers and C4 fragments ultimately appear in bimetallated butadiene molecules. These results demonstrate the special synergic reactivity that can be executed by bimetallic reagents, which include the ability to capture and control, and thereby study, reactive fragments from sensitive substrates.

  10. Preparation and Reactivity of Niobium-Containing Hydrotreating Catalysts

    OpenAIRE

    Schwartz, Viviane

    2000-01-01

    A series of niobium-containing nitride and carbides were prepared by a temperature-programmed synthesis method. The catalysts synthesized comprised a monometallic niobium oxynitride and a new bimetallic oxycarbide supported system, Nb-Mo-O-C/Al2O3 (Mo/Nb = 1.2; 1.6; 2.0).In the case of the niobium oxynitride, the progress of formation was analyzed by interrupting the synthesis at various stages. The effect of the heating rate on product properties was also investigated. The solid intermedi...

  11. Alumina supported model Pd Ag catalysts: A combined STM, XPS, TPD and IRAS study

    Science.gov (United States)

    Khan, N. A.; Uhl, A.; Shaikhutdinov, S.; Freund, H.-J.

    2006-05-01

    The bimetallic Pd-Ag model catalysts were prepared by physical vapor deposition on thin alumina films. The morphology and structure of the Pd-Ag particles were studied by STM, XPS, and by TPD and IRAS of CO. The results showed the formation of true alloy particles with Ag segregated at the surface. The addition of Ag first suppresses the most strongly bonded CO on threefold hollow sites of Pd. With further increasing Ag coverage, only isolated Pd atoms surrounded by Ag atoms are likely present on the surface. The results on CO adsorption suggest that the model Pd-Ag system mimics the structure of the real Pd-Ag catalysts.

  12. Pt5Gd as a Highly Active and Stable Catalyst for Oxygen Electroreduction

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Verdaguer-Casadevall, Arnau; Verdaguer Casadevall, Arnau;

    2012-01-01

    -fold increase in ORR activity, relative to pure Pt at 0.9 V, approaching the most active in the literature for catalysts prepared in this way. AR-XPS profiles after electrochemical measurements in 0.1 M HClO4 show the formation of a thick Pt overlayer on the bulk Pt5Gd, and the enhanced ORR activity...... can be explained by means of compressive strain effects. Furthermore, these novel bimetallic electrocatalysts are highly stable, which, in combination with their enhanced activity, makes them very promising for the development of new cathode catalysts for fuel cells....

  13. Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane

    Institute of Scientific and Technical Information of China (English)

    Huali; Long; Yan; Xu; Xiaoqing; Zhang; Shijing; Hu; Shuyong; Shang; Yongxiang; Yin; Xiaoyan; Dai

    2013-01-01

    Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was investigated with dry reforming of methane.Experimental results showed that the hydrotalcite-like precursors could be completely decomposed and partly reduced by cold plasma jet,and the Nicontained catalysts exhibited much higher activity than the catalyst without Ni.Especially,the catalyst with Ni/Co ratio of 8/2 achieved not only the highest conversions of 80.3%and 69.3%for CH4 and CO2,respectively,but also the best stability in 100 h testing.The catalysts were characterized by XRD,XPS,TEM and N2 adsorption techniques,and the results showed that the better performance of the 8Ni2Co bimetallic catalyst was attributed to its higher metal dispersion,smaller metal particle size,as well as the interaction effect between Ni and Co,which were brought by the special catalyst preparation method.

  14. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  15. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  16. CATALYTIC BEHAVIOR OF SILICA-SUPPORTED POLY-γ-AMINOPROPYL-SILOXANE-Co-Ru BIMETALLIC COMPLEX FOR THE HYDROFORMYLATION OF CYCLOHEXENE

    Institute of Scientific and Technical Information of China (English)

    GUAN Shiyou; HUANG Meiyu; JIANG Yingyan

    1993-01-01

    The cobalt and ruthenium bimetallic complex of poly-γ-amino-propylsiloxane(abbr.as Si-CH2-Co-Ru) was prepared,and it was found that it can catalyze the hydroformylation of cyclohexene effectively with the conversion amounting to over 90%.Cyclohexanecarboxaldehyde was first formed in the hydrofor mylation,and then further hydrogenated to form cylcohexanemethanol.The coversion was affected obviously by the Co/Ru ratio.When Co/Ru molar ratio was 100-150,i.e.in the very low content of noble metal Ru,the catalytic activity of Si-NH2-Co-Ru was also very high.The product composition was affected by CO/H2 ratio in the reaction gas.Aldehyde can be got high selectively by controlling CO/H2 ratio.Compared with other catalyst system,the Si-NH2-Co-Ru catalyst has higher catalytic activity and efficiency with very low Ru/Co ratio.The total turnover number was more than 28,800(based on the amount of ruthenium used).

  17. Enhanced plasmonic behavior of bimetallic (Ag-Au multilayered spheres

    Directory of Open Access Journals (Sweden)

    Pal Umapada

    2011-01-01

    Full Text Available Abstract In this article we study the plasmonic behavior of some stable, highly biocompatible bimetallic metal-dielectric-metal (MDM and double concentric nanoshell (DCN structures. By simply switching the material of the inner structure from Au to Ag, the intensity of their surface plasmon resonance could be increased in the optical transparency region of the human tissues up to 20 and 60 percent for the MDM and DCN, respectively, while the biocompatibility is retained. The obtained results indicate that these novel structures could be highly suitable for surface enhanced Raman scattering and photothermal cancer therapy.

  18. 1D antiferromagnetism in spin‐alternating bimetallic chains

    OpenAIRE

    Coronado Miralles, Eugenio; Sapiña Navarro, Fernando; Drillon, M.; De Jongh, L.J.

    1990-01-01

    The magnetic and thermal properties of the ordered bimetallic chain CoNi(EDTA)⋅6H2O in the very low‐temperature range are reported. The magnetic behavior does not exhibit the characteristic features of 1D ferrimagnets, but a continuous decrease of χmT towards zero at absolute zero. This 1D antiferromagnetic behavior results from an accidental compensation between the moments located at the two sublattices. This behavior, as well as the specific‐heat results, are modeled on the basis of an Isi...

  19. Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Fang; Yuan Liu; Wei Deng; Junhai Liu

    2014-01-01

    Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La2O2CO3 under H2 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified Co2 C species.

  20. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  1. Catalyst composition

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, T.; Sakai, T.; Sumitani, K.; Yamasaki, Y.

    1984-11-27

    A catalyst composition comprising a crystalline aluminosilicate selected from the group consisting of zeolite ZSM-5, zeolite ZSM-11, zeolite ZSM-12, zeolite ZSM-35 and zeolite ZSM-38 and having a silica/alumina mole ratio of 20 to 1,000; and at least two metals which are platinum and at least one other metal selected from the group consisting of titanium, chromium, zinc, gallium, germanium, strontium, yttrium, zirconium, molybdenum, palladium, tin, barium, cerium, tungsten, osmium, lead, cadmium, mercury, indium, lanthanum and beryllium. This catalyst composition is useful particularly for the isomerization of aromatic hydrocarbons and reforming of naphtha.

  2. Preparation and Characterization of Polymer-Stabilized Ruthenium-Platinum and Ruthenium-Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene.

    Science.gov (United States)

    Liu; Yu; Liu; Zheng

    1999-06-15

    Colloidal dispersions of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloids were prepared by NaBH4 reduction of the corresponding mixed-metal salts at room temperature and characterized by TEM, XPS, and XRD. The resulting bimetallic colloids were used as catalysts for the selective hydrogenation of o-chloronitrobenzene (o-CNB) in methanol at 303 K under 0.1 MPa of hydrogen. It was observed that the catalytic performance of PVP-stabilized ruthenium-platinum colloids (PVP-Ru/Pt) and ruthenium-palladium colloids (PVP-Ru/Pd) was dependent on their compositions and could be remarkably affected by some added metal cations. In the presence of cobalt ion, nearly 100% selectivity to o-chloroaniline (o-CAN) was achieved over PVP-Ru/Pt colloids at 100% conversion of o-CNB, with an activity two orders of magnitude higher than that of monometallic PVP-Ru colloid. Copyright 1999 Academic Press. PMID:10339363

  3. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  4. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    Science.gov (United States)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m‑3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  5. Copper Modified Magnetic Bimetallic Nano-catalysts Ligand Regulated Catalytic Activity

    Science.gov (United States)

    Postsynthetic modification of magnetic nano ferrites (Fe3O4) has been accomplished by anchoring glutathione and dopamine on the surface. The Cu nano particles immobilized over these surfaces were investigated for the coupling and cyclo addition reactions. The Fe3O4-DOPA-Cu (na...

  6. Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts

    DEFF Research Database (Denmark)

    Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel J.;

    2012-01-01

    We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L3 edge reveals characteristi...

  7. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes

    Indian Academy of Sciences (India)

    B Rajesh; K Ravindranathan Thampi; J -M Bonard; B Viswanathan

    2000-10-01

    The template carbonization of polyphenyl acetylene yields hollow, uniform cylindrical carbon nanotubes with outer diameter almost equal to pore diameter of the template used. High resolution transmission electron microscopic investigation reveals that Pt–Ru nanoparticles are highly dispersed inside the tube with an average particle size of 1.7 nm.

  8. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    NARCIS (Netherlands)

    Westsson, E.E.; Koper, G.J.M.

    2014-01-01

    Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop sy

  9. Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt–Ru nanoparticles for oxygen reduction reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, M.G., E-mail: mg-hosseini@tabrizu.ac.ir; Zardari, P.

    2015-08-01

    Highlights: • Binary catalyst Pt.Ru/C is evaluated towards ORR. • Pt.Ru/C nanoparticles revealed best ORR catalytical activity. • The 120 mV/dec Tafel slope indicated that the first electron transfer is the rds. • The active number sites of Pt.Ru/C catalyst were 3 times higher than Pt/C. - Abstract: Carbon supported Pt, Ru and bimetallic Pt–Ru nanoparticles (Pt/C, Ru/C and Pt.Ru/C) have been prepared by the chemical reduction method. Particle morphology, composition and structure of nanoparticles have been investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. SEM results showed a uniform dispersion of nanoparticles with rough and porous structure into carbon supports with the average particle size of 30–64 nm. EDX analysis demonstrated the presence of both Pt and Ru nanoparticles in each gas diffusion electrode. The Pt/C, Ru/C and Pt.Ru/C composites were used as electrocatalyst for oxygen reduction reaction (ORR) in alkaline media. The ORR activities of cathodes were characterized using cyclic voltammetry (CV), polarization technique, AC impedance spectroscopy (EIS) and chronoamperometry. CV and polarization curves showed significantly higher activity on Pt.Ru/C electrocatalyst than observed on Pt/C and Ru/C catalysts, which can be related to synergistic effect, which is playing a critical role in ORR activity. The Tafel slope values of 120 mV/dec showed that the first electron transfer is the rate determining step. The EIS results of cathodes under different polarization potentials indicated two different behaviours which depend on the applied dc potentials and reveal different electrochemical processes occurring on the electrodes.

  10. Characterization of platinum–iron catalysts supported on MCM-41 synthesized with rice husk silica and their performance for phenol hydroxylation

    OpenAIRE

    Jitlada Chumee, Nurak Grisdanurak, Arthit Neramittagapong and Jatuporn Wittayakun

    2009-01-01

    Mesoporous material RH-MCM-41 was synthesized with rice husk silica by a hydrothermal method. It was used as a support for bimetallic platinum−iron catalysts Pt–Fe/RH-MCM-41 for phenol hydroxylation. The catalysts were prepared by co-impregnation with Pt and Fe at amounts of 0.5 and 5.0 wt.%, respectively. The RH-MCM-41 structure in the catalysts was studied with x-ray diffraction, and their surface areas were determined by nitrogen adsorption. The oxidation number of Fe supported on RH-MCM-4...

  11. Surface organometallic chemistry on metals. III. Formation of a bimetallic Ni-Sn phase generated by reaction of a Sn(n-C sub 4 H sub 9 ) sub 4 and silica-supported nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Agnelli, M.; Candy, J.P.; Basset, J.M. (l' Universite Claude Bernard, Villeurbanne (France)); Bournonville, J.P.; Ferretti, O.A. (Institut Francais du Petrole, Rueil-Malmaison (France))

    1990-02-01

    Reaction of Sn(n-C{sub 4}H{sub 9}){sub 4} with NiO/SiO{sub 2} occurs above 423 K according to the apparent following stoichiometry: NiO + xSn(n-C{sub 4}H{sub 9}){sub 4} {yields} NiSn{sub x} + (2x + 1)C{sub 4}H{sub 8} + (2x {minus} 1)C{sub 4}H{sub 10} + H{sub 2}O. Various compositions of the bimetallic phase can be achieved by changing the initial Sn/Ni ratio. The obtained catalysts were very active and selective in the hydrogenation of ethyl acetate to ethanol. Characterization of the bimetallic phase has shown that the particles are bimetallic (STEM). As a result of chemisorption IR, and magnetic measurements, it appears that the presence of tin has four effects: (i) it decreases significantly the amount of CO and H{sub 2} adsorbed; (ii) it isolates nickel atoms from their neighbors; (iii) it increases electron density on nickel; and (IV) it suppresses the magnetic properties of nickel. Redox behavior of Ni-Sn/SiO{sub 2} toward surface OH indicates that surface hydroxyls can oxidize Sn{sup (0)}, probably to Sn{sup (II)} with evolution of H{sub 2}, the process being reversible with H{sub 2}. It is suggested that during this oxidation process, tin migrates to the periphery of the bimetallic particle with formation of (chemical bond Si-O){sub 2}Sn{sup (II)} surface species.

  12. Analysis of Al-Cu Bimetallic Bars Properties After Explosive Welding and Rolling in Modified Passes

    Directory of Open Access Journals (Sweden)

    Mróz S.

    2015-04-01

    Full Text Available The paper presents the results of the experimental tests of Al-Cu bimetallic bars rolling process in multi-radial modified passes. The bimetallic bars consist of aluminium core, grade 1050A and copper outer layer, grade M1E. The stocks were round bars with diameter 22 mm with a copper layer share of 15 and 30%. As a result of rolling in four passes, bars of a diameter of about 16.0 mm were obtained. A bimetallic stock was manufactured using an explosive welding method. The use of the designed arrangement of multi-radial modified stretching passes resulted in obtaining Al-Cu bimetallic bars with the required lateral dimensions, an uniform distribution of the cladding layer over the bar perimeter and high quality of shear strength between individual layers.

  13. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    DEFF Research Database (Denmark)

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena;

    2012-01-01

    Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio-supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols. In ...

  14. Nonchromophoric halide ligand variation in polyazine-bridged Ru(II),Rh(III) bimetallic supramolecules offering new insight into photocatalytic hydrogen production from water.

    Science.gov (United States)

    Rogers, Hannah Mallalieu; White, Travis A; Stone, Brittany N; Arachchige, Shamindri M; Brewer, Karen J

    2015-04-01

    The new bimetallic complex [(Ph2phen)2Ru(dpp)RhBr2(Ph2phen)](PF6)3 (1) (Ph2phen = 4,7-diphenyl-1,10-phenanthroline; dpp = 2,3-bis(2-pyridyl)pyrazine) was synthesized and characterized to compare with the Cl(-) analogue [(Ph2phen)2Ru(dpp)RhCl2(Ph2phen)](PF6)3 (2) in an effort to better understand the role of halide coordination at the Rh metal center in solar H2 production schemes. Electrochemical properties of complex 1 display a reversible Ru(II/III) oxidation, and cathodic scans indicate multiple electrochemical mechanisms exist to reduce Rh(III) by two electrons to Rh(I) followed by a quasi-reversible dpp(0/-) ligand reduction. The weaker σ-donating ability of Br(-) vs Cl(-) impacts the cathodic electrochemistry and provides insight into photocatalytic function by these bimetallic supramolecules. Complexes 1 and 2 exhibit identical light-absorbing properties with UV absorption dominated by intraligand (IL) π → π* transitions and visible absorption by metal-to-ligand charge transfer (MLCT) transitions to include a lowest energy Ru(dπ) → dpp(π*) (1)MLCT transition (λ(abs) = 514 nm; ε = 16 000 M(-1) cm(-1)). The relatively short-lived, weakly emissive Ru(dπ) → dpp(π*) (3)MLCT excited state (τ = 46 ns) for both bimetallic complexes is attributed to intramolecular electron transfer from the (3)MLCT excited state to populate a low-energy Ru(dπ) → Rh(dσ*) triplet metal-to-metal charge transfer ((3)MMCT) excited state that allows photoinitiated electron collection. Complex 1 outperforms the related Cl(-) bimetallic analogue 2 as a H2 photocatalyst despite identical light-absorbing and excited-state properties. Additional H2 experiments with added halide suggest ion pairing plays a role in catalyst deactivation and provides new insight into observed differences in H2 production upon halide variation in Ru(II),Rh(III) supramolecular architectures. PMID:25782053

  15. Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles

    Science.gov (United States)

    Tan, Rachel Lee Siew; Song, Xiaohui; Chen, Bo; Chong, Wen Han; Fang, Yin; Zhang, Hua; Wei, Jun; Chen, Hongyu

    2016-02-01

    Depending on the synthetic methods, bimetallic nanoparticles can have either core-shell, phase segregated, alloy, or partially coalesced structures, presenting different degrees of atomic mixing on their surface. Along with the variations of size and morphology, the structural differences make it difficult to compare the catalytic activity of bimetallic nanoparticles. In this article, we developed a facile screening method that can focus on the synergistic effects rather than structural differences. Prefabricated nanoparticles are mixed together to form linear aggregates and coalesced to form bimetallic junctions. Their hollow silica shells allow materials transport but prevent further aggregation. With a level playing field, this screening platform can identify the best bimetallic combination for a catalytic reaction, before optimizing the synthesis. This approach is more advantageous than the conventional approaches where structural difference may have dominant effects on the catalytic performance.Depending on the synthetic methods, bimetallic nanoparticles can have either core-shell, phase segregated, alloy, or partially coalesced structures, presenting different degrees of atomic mixing on their surface. Along with the variations of size and morphology, the structural differences make it difficult to compare the catalytic activity of bimetallic nanoparticles. In this article, we developed a facile screening method that can focus on the synergistic effects rather than structural differences. Prefabricated nanoparticles are mixed together to form linear aggregates and coalesced to form bimetallic junctions. Their hollow silica shells allow materials transport but prevent further aggregation. With a level playing field, this screening platform can identify the best bimetallic combination for a catalytic reaction, before optimizing the synthesis. This approach is more advantageous than the conventional approaches where structural difference may have dominant

  16. Gas-Phase Growth of Heterostructures of Carbon Nanotubes and Bimetallic Nanowires

    Directory of Open Access Journals (Sweden)

    Whi Dong Kim

    2011-01-01

    Full Text Available A simple, inexpensive, and viable method for growing multiple heterostructured carbon nanotubes (CNTs over the entire surface of Ni-Al bimetallic nanowires (NWs in the gas phase was developed. Polymer-templated bimetallic nitrate NWs were produced by electrospinning in the first step, and subsequent calcination resulted in the formation of bimetallic oxide NWs by thermal decomposition. In the second step, free-floating bimetallic NWs were produced by spray pyrolysis in an environment containing hydrogen gas as a reducing gas. These NWs were continuously introduced into a thermal CVD reactor in order to grow CNTs in the gas phase. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and Raman spectrometry analyses revealed that the catalytic Ni sites exposed in the non-catalytic Al matrix over the entire surface of the bimetallic NWs were seeded to radially grow highly graphitized CNTs, which resembled “foxtail” structures. The grown CNTs were found to have a relatively uniform diameter of approximately 10±2 nm and 10 to 15 walls with a hollow core. The average length of the gas-phase-grown CNTs can be controlled between 100 and 1000 nm by adjusting the residence time of the free-floating bimetallic NWs in the thermal CVD reactor.

  17. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  18. Session 4: Low-temperature CO oxidation on Ni-Pt/SiO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Arenas-Alatorre, J.; Gomez-Cortes, A.; Diaz, G. [Instituto de Fisica UNAM, Mexico, D.F. (Mexico); Avalos Borja, M [Centro de Cciencias de la Materia Condensada, Ensenada, B.C. (Mexico)

    2004-07-01

    In the present study a set of Ni-Pt catalysts supported on silica have been examined as catalysts for the CO oxidation in the presence of hydrogen. The obtained results show that bimetallic Ni{sub 25}Pt{sub 75} catalyst is very active; total conversion of CO is achieved at 70 C and no significant diminution is observed at higher temperatures. Hydrogen concentration in the gas phase did not changed significantly indicating a very good selectivity towards CO oxidation. Bimetallic Ni{sub 50}Pt{sub 50} and Ni{sub 75}Pt{sub 25} catalysts showed also a good activity but the selectivity for CO oxidation decreases in favor of hydrogen oxidation at higher temperatures. It is interesting to note the performance of mono-metallic Ni/SiO{sub 2} since nickel is known to be not very active for oxidation reactions; at 120 C more than 80% of the CO is converted. On the other hand, Pt/SiO{sub 2} performance is not so good in comparison. (authors)

  19. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  20. Towards the Rational Design of Nanoparticle Catalysts

    Science.gov (United States)

    Dash, Priyabrat

    This research is focused on development of routes towards the rational design of nanoparticle catalysts. Primarily, it is focused on two main projects; (1) the use of imidazolium-based ionic liquids (ILs) as greener media for the design of quasi-homogeneous nanoparticle catalysts and (2) the rational design of heterogeneous-supported nanoparticle catalysts from structured nanoparticle precursors. Each project has different studies associated with the main objective of the design of nanoparticle catalysts. In the first project, imidazolium-based ionic liquids have been used for the synthesis of nanoparticle catalysts. In particular, studies on recyclability, reuse, mode-of-stability, and long-term stability of these ionic-liquid supported nanoparticle catalysts have been done; all of which are important factors in determining the overall "greenness" of such synthetic routes. Three papers have been published/submitted for this project. In the first publication, highly stable polymer-stabilized Au, Pd and bimetallic Au-Pd nanoparticle catalysts have been synthesized in imidazolium-based 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid (Journal of Molecular Catalysis A: Chemical, 2008, 286, 114). The resulting nanoparticles were found to be effective and selective quasi-homogeneous catalysts towards a wide-range of hydrogenation reactions and the catalyst solution was reused for further catalytic reactions with minimal loss in activity. The synthesis of very pure and clean ILs has allowed a platform to study the effects of impurities in the imidazolium ILs on nanoparticle stability. In a later study, a new mode of stabilization was postulated where the presence of low amounts of 1-methylimidazole has substantial effects on the resulting stability of Au and Pd-Au nanoparticles in these ILs (Chemical Communications, 2009, 812). In further continuation of this study, a comparative study involving four stabilization protocols for nanoparticle

  1. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

    Science.gov (United States)

    Darabdhara, Gitashree; Boruah, Purna K.; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R.; Ahamad, Tansir; Alshehri, Saad M.; Malgras, Victor; Wu, Kevin C.-W.; Yamauchi, Yusuke

    2016-04-01

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst

  2. Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood.

    Science.gov (United States)

    Sivanesan, Arumugam; Witkowska, Evelin; Adamkiewicz, Witold; Dziewit, Łukasz; Kamińska, Agnieszka; Waluk, Jacek

    2014-03-01

    Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver-gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples. PMID:24419003

  3. The role of Pt and Pd in enhancing the conversion of sorbitol to hydrogen over supported Ni-Pt and Ni-Pd catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tanksale, A.; Lu, G.Q. [Queensland Univ., Brisbane (Australia); Beltramini, J.N. [Queensland Univ., Brisbane (Australia). ARC Centre of Excellence for Functional Nanomaterials

    2009-07-01

    This study investigated the enhanced activity of bimetallic nickel-platinum (Ni-Pt) and nickel-palladium (Ni-Pd) catalysts for the production of hydrogen from reformed biomass-based products. The catalysts were prepared on an aluminum oxide (Al203) nanofibre. Mesoporous zirconia and composite silica-zirconia-ceria were used to determine the role of noble metals and supports. Desorption, oxidation, and temperature programmed reduction studies were conducted to investigate metal-metal and metal-support interactions. The study showed that Pt and Pd additions increased the reducibility of Ni catalysts. The bimetallic catalysts exhibited rates of hydrogen production 6 times higher than rates observed in pure metal catalysts. Sorbitol conversion increased from 35 per cent for the Ni catalyst to 62 per cent for the Ni-Pt catalyst. It was concluded that the alloying effect of the Ni-Pt and Ni-Pd systems lowered the carbon monoxide (CO) adsorption heat, and facilitated removal of the adsorbed CO by the water gas shift reaction.

  4. Catalyst Architecture

    DEFF Research Database (Denmark)

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    How can architecture promote the enriching experiences of the tolerant, the democratic, and the learning city - a city worth living in, worth supporting and worth investing in? Catalyst Architecture comprises architectural projects, which, by virtue of their location, context and their combinatio...... meaningful for everyone. The exhibited works are designed by SANAA, Diller Scofidio + Renfro, James Corner Field Operation, JBMC Arquitetura e Urbanismo, Atelier Bow-Wow, Ateliers Jean Nouvel, COBE, Transform, BIG, Topotek1, Superflex, and by visual artist Jane Maria Petersen....

  5. EFFECT OF CONCENTRATION METAL PRECURSOR Co AND Mo ON CHARACTER OF CoMo / USY CATALYST

    Directory of Open Access Journals (Sweden)

    Khoirina Dwi Nugrahaningtyas

    2016-08-01

    Full Text Available The preparation and characterization of bimetallic catalysts using impregnation method with a variation of concentration of precursor sequence Co and Mo metal obtained catalyst K 1 [Co (0.018 M - Mo (0.037 M/USY]. K 2 [Co (0.026 M - Mo (0.055 M/USY], K 3 [Co (0.035 M - Mo (0.074 M/USY], K 4 [Co (0.05 M - Mo (0.11 M /USY] and K 5 [Co (0.107 M - Mo (0.22 M/USY]. Character of the catalyst in terms of crystallinity was analyzed by XRD. The result shows that there is no cristalinity damage of USY after impregnation but the amorphous cristalin structure was obtained. Amount of metal content was analyzed by XRF and the catalyst morphology by SEM-EDS. The result shows that the higher the concentration of Co and Mo so that find the higher content of metal in catalyst of the prepared catalyst increase. K 4 shows the best characteristic of catalysts prepared in this research. Analysis of K 4 is proving that Co and Mo are presented in catalyst.

  6. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  7. Study of Pd-Sn/Al{sub 2}O{sub 3} catalysts prepared by an oxide colloidal route; Etude de catalyseurs Pd-Sn/Al{sub 2}O{sub 3} prepares par voie colloidale oxyde

    Energy Technology Data Exchange (ETDEWEB)

    Verdier, St.

    2001-09-01

    The oxide colloidal route, developed in the laboratory for mono-metallic catalysts, consists in preparing a metallic oxide hydro-sol which leads to the supported catalyst after deposition onto a support and an activation stage. In this work, this method has been adapted to the preparation of alumina supported bimetallic Pd-Sn catalysts to determine its interest for the control of the properties of the bimetallic phase (size, composition and structure). In the preliminary study concerning tin oxide sols, SnO{sub 2} (size=2,3 nm) and Sn{sub 6}O{sub 4}(OH){sub 4} (size = 25 nm) nano-particles were synthesized by neutralization respectively for tin(IV) and tin(H). The control through the pH of the aggregation of the PdO and SnO{sub 2} particles revealed that increasing oxide solubility promotes integral re-dispersion of the oxide particles. To synthesize oxide bimetallic sols, three strategies were defined. Copolymerization (formation of a mixed oxide nano-sol by cross condensation of both metals) does not lead to a mixed oxide Pd-Sn phase. Surface precipitation (neutralization of the second metal in the presence of the first oxide sol) yields nano-particles of both oxides in close interaction. Adsorption (adsorption of the second metal onto the first oxide sol) significantly occurs when contacting tin with a basic PdO sol (hydrolytic adsorption). The characterization and the assessment of the catalytic properties (selective hydrogenation of buta-1,3-diene) of the catalysts prepared by deposition of oxide bimetallic sols showed that the oxide colloidal route allows the control of the properties of the supported bimetallic phase. Moreover, our results display that both Pd-Sn alloy formation and,aggregation of the metallic particles contribute to increase the selectivity for this reaction. (author)

  8. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis

    Science.gov (United States)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2016-06-01

    Catalyst synthesis with precise control over the structure of catalytic active sites at the atomic level is of essential importance for the scientific understanding of reaction mechanisms and for rational design of advanced catalysts with high performance. Such precise control is achievable using atomic layer deposition (ALD). ALD is similar to chemical vapor deposition (CVD), except that the deposition is split into a sequence of two self-limiting surface reactions between gaseous precursor molecules and a substrate. The unique self-limiting feature of ALD allows conformal deposition of catalytic materials on a high surface area catalyst support at the atomic level. The deposited catalytic materials can be precisely constructed on the support by varying the number and type of ALD cycles. As an alternative to the wet-chemistry based conventional methods, ALD provides a cycle-by-cycle "bottom-up" approach for nanostructuring supported catalysts with near atomic precision. In this review, we summarize recent attempts to synthesize supported catalysts with ALD. Nucleation and growth of metals by ALD on oxides and carbon materials for precise synthesis of supported monometallic catalyst are reviewed. The capability of achieving precise control over the particle size of monometallic nanoparticles by ALD is emphasized. The resulting metal catalysts with high dispersions and uniformity often show comparable or remarkably higher activity than those prepared by conventional methods. For supported bimetallic catalyst synthesis, we summarize the strategies for controlling the deposition of the secondary metal selectively on the primary metal nanoparticle but not on the support to exclude monometallic formation. As a review of the surface chemistry and growth behavior of metal ALD on metal surfaces, we demonstrate the ways to precisely tune size, composition and structure of bimetallic metal nanoparticles. The cycle-by-cycle "bottom up" construction of bimetallic (or multiple

  9. Synthesis and characterization of bimetallic nanocatalysts and their application in selective hydrogenation of citral to unsaturated alcohols

    Indian Academy of Sciences (India)

    S A Ananthan; R Suresh; K Giribabu; V Narayanan

    2013-11-01

    TiO2-supported bimetallic nanocatalysts were prepared and reduced at two different temperatures, 375°C and 575°C for selective hydrogenation of citral to corresponding unsaturated alcohols (geraniol (GOL) and nerol (NOL)). The nanocatalysts were characterized by difference techniques of Fourier transform infrared spectroscopy (FT-IR), Brunauer, Emmett and Teller (BET) surface area measurement, scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The prepared nanocatalysts are uniformly dispersed with an average particle size of 50-100 nm and zero valence metallic state. Catalysts reduced at higher temperature lead to an increase in selectivity toward unsaturated alcohols (GOL and NOL). The Pt-Ru/TiO2 shows higher activity compared to Pt-Pd/TiO2 and Pt-Au/TiO2 nanocatalysts. In addition, a second metal (Ru) also leads to an increase in GOL and NOL selectivity during citral hydrogenation. Partially generated oxidized second metal species due to the difference in electronegativity, strongly binds the C=O group and also paves the way for selective activation of C=O bond.

  10. Synthesis and Characterization of Platinum-Ruthenium-Tin Catalysts

    Science.gov (United States)

    Uffalussy, Karen

    Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral and crotonaldehyde. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu5(μ-SnPh 2)(C)(CO)15 cluster used following impregnation onto the MgO support. Under H2 reduction conditions, partial and full ligand removal are both observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDX measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. XPS was used to determine how the variation in method of Sn addition to bimetallic Pt-Ru affects the electronic state for the trimetallic Pt-Ru-Sn/MgO system prepared by impregnation using multimetallic clusters, metal-salts, and the combination of both precursor types. Results show that the PtRu5Sn/MgO material has a significantly higher percentage of Sn0 in comparison to Pt-Ru-Sn/MgO and PtRu5-Sn/MgO, and a corresponding shift in both Pt and Ru peaks can be correlated to this relative change in Sn oxidation state. The formation of smaller metal particles and electronic modification of Pt and Ru by Sn in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity to the unsaturated alcohols for the hydrogenation of both citral and crotonaldehyde.

  11. Catalytic Performance and Characterization of Pt-Co/Al2O3Catalysts for CO2 Reforming of CH4 to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    HUANG, Chuan-Jing; ZHENG, Xiao-Ming; MO, Liu-Ye; FEI, Jin-Hua

    2001-01-01

    Pt-Co/Al2O3 catalyst has been studied for CO2 reforming of CH4 to synthesis gas. It was found that the catalytic performance of the catalyst was sensitive to calcination temperature.When Co/Al2O3 was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al2O3 and Pt/Al2O3 catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt-Co/Al2O3 > Pt/Al2O3 》 Co/Al2O3. With 9% Co, the Co/Al2O3calcined at 923 K was also active for CO2 reforming of CH4,however, its carbon formation was much more fast than that of the Pt-Co/Al2O3 catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl2O4, formed during calcining of Co/Al2O3 at high temperature before Pt addition. Promoted by Pt, CoAl2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre-re-duction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity of the Pt-Co/Al2O3 catalyst, and the remain CoAl2O4 is beneficial to suppression of carbon deposition over the catalyst.

  12. Quantitative study of catalytic activity and catalytic deactivation of Fe–Co/Al2O3 catalysts for multi-walled carbon nanotube synthesis by the CCVD process

    OpenAIRE

    Pirard, Sophie; Heyen, Georges; Pirard, Jean-Paul

    2010-01-01

    The catalytic deactivation during multi-walled carbon nanotube (MWNT) synthesis by the CCVD process and the influence of hydrogen on it were quantified. Initial specific reaction rate, relative specific productivity and catalytic deactivation were studied. Carbon source was ethylene, and a bimetallic iron–cobalt catalyst supported on alumina was used. The catalytic deactivation was modeled by a decreasing hyperbolic law, reflecting the progressive accumulation of amorphous carbon on active si...

  13. Characterization of Bimetallic Fe-Ru Oxide Nanoparticles Prepared by Liquid-Phase Plasma Method.

    Science.gov (United States)

    Lee, Sung-Jin; Lee, Heon; Jeon, Ki-Joon; Park, Hyunwoong; Park, Young-Kwon; Jung, Sang-Chul

    2016-12-01

    The bimetallic Fe-Ru oxide nanoparticles were synthesized in the liquid-phase plasma (LPP) method which employed iron chloride and ruthenium chloride as precursors. The active species (OH·, Hα, Hβ, and O(I)) and the iron and ruthenium ions were observed in the plasma field created by the LPP process. The spherical-shaped bimetallic Fe-Ru oxide nanoparticles were synthesized by the LPP reaction, and the size of the particles was growing along with the progression of the LPP reaction. The synthesized bimetallic Fe-Ru oxide nanoparticles were comprised of Fe2O3, Fe3O4, RuO, and RuO2. Ruthenium had a higher reduction potential than iron and resulted in higher ruthenium composition in the synthesized bimetallic nanoparticles. The control of the molar ratio of the precursors in the reactant solution was found to be employed as a means to control the composition of the elements in bimetallic nanoparticles. PMID:27456502

  14. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    International Nuclear Information System (INIS)

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm-2 iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm-2. The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  15. Thermal diffusivity of nanofluids containing Au/Pd bimetallic nanoparticles of different compositions.

    Science.gov (United States)

    Sánchez-Ramírez, J F; Jiménez Pérez, J L; Cruz Orea, A; Gutierrez Fuentes, R; Bautista-Hernández, A; Pal, U

    2006-03-01

    Colloidal suspensions of bimetallic Au/Pd nanoparticles were prepared by simultaneous reduction of the metal ions from their corresponding chloride salts with polymer (PVP) stabilizer. Thermal properties of water containing bimetallic nanoparticles with different nominal compositions (Au/Pd = 12/1, 5/1, 1/1, 1/5) were measured using the mode mismatched dual-beam thermal lens technique to determine the effect of particle composition on the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was estimated by fitting the experimental data to the theoretical expression for transient thermal lens. The thermal diffusivity of the nanofluids (water, containing Au/Pd bimetallic nanoparticles) is seen to be strongly dependent on the composition of the particles. The maximum diffusivity was achieved for the nanoparticles with highest Au/Pd molar ratio. A possible mechanism for such high thermal diffusivity of the nanofluids with bimetallic particles is given. UV-Vis spectroscopy, TEM and high-resolution electron microscopy (HREM) techniques were used to characterize the Au/Pd bimetallic nanoparticles. PMID:16573121

  16. Bimetallic electrocatalysts on titanium dioxide-based supports for methanol oxidation and oxygen evolution

    Science.gov (United States)

    Fuentes, Roderick Eliel

    Electrocatalysts are essential for the development of active and durable fuel cells and hydrogen production technologies. Generally, electrochemical processes of energy conversion and hydrogen generation in a Proton Exchange Membrane (PEM) utilize precious metals, such as platinum, iridium and ruthenium, as electrocatalysts. For the methanol oxidation and oxygen evolution reaction, a bimetallic structure can be used to enhance kinetics and increase stability. It is desired to support electrocatalysts to disperse nanoparticles on the surface and promote better catalyst utilization. Traditionally, carbon has been used as an electrochemical support because it has a high surface area and high electrical conductivity. The problem with carbon is that it is not a very stable material and can corrode at voltages more than 0.9 V, affecting performance of the electrochemical reaction. Therefore, it would be useful to support electrocatalysts in a stable material with suitable conductivity. Using titanium dioxide as a support can be advantageous due to its corrosion-resistant capability. TiO2 exhibit different crystalline structures, such as anatase and rutile, which can have an effect on catalytic activity. Unfortunately, it is not conductive; hence, it is not used in electrochemical applications. However, it can be doped with niobium to increase electronic conductivity; but, it usually come at the expense of surface area. In this work, TiO 2 and Nb-TiO2 were studied as platinum/ruthenium and iridium/ruthenium nanoparticles supports for the electrochemical oxidation of methanol and oxygen evolution, respectively. Even though the conductivity of our supports was very low, adding a considerable loading of nanoparticles increased conductivity of the composite material (support + catalyst) to acceptable levels. Using cyclic voltammetry (CV) and direct methanol fuel cell tests creating a membrane electrode assembly (MEA), Pt-Ru supported on Nb-TiO2 and TiO 2 showed superior

  17. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  18. The kinetics of CO poisoning in simulated reformate and effect of Ru island morphology on PtRu fuel cell catalysts as determined by operando XANES

    Energy Technology Data Exchange (ETDEWEB)

    Scott, F.; Roth, C; Ramaker, D

    2007-01-01

    In situ X-ray absorption spectroscopy (XAS) measurements, including both X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS), were carried out on commercially produced Pt and PtRu bimetallic electrocatalysts as well as on a mechanically mixed PtRu bimetallic electrocatalyst in an operating fuel cell in H{sub 2} doped with 150 ppm CO. By use of the novel {Delta}XANES technique, the coverages of CO and ontop and n-fold H (overpotential deposited and underpotential deposited hydrogen) are obtained and compared for the three catalysts, and the results are correlated with PtRu cluster morphology. The mechanical mixing process used to create the bimetallic PtRu catalyst is found to maximize CO tolerance, although the PtRu commercial electrocatalyst exhibits an increased electronic effect, most probably due to the presence of Ru(O){sub x} islands at the catalyst surface. The mobility of the CO on both Ru and Pt is found to be sharply dependent on the CO coverage, decreasing dramatically beyond 0.4 fractional coverage.

  19. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds

    Directory of Open Access Journals (Sweden)

    Huishan Shang

    2016-06-01

    Full Text Available To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni and nickel-platinum (NiPt nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD, high-resolution transmission electron microscopy (HRTEM, energy dispersive X-ray spectroscopy (EDS mapping, and X-ray photoelectron spectroscopy (XPS techniques. The Ni2+ was reduced to metallic Ni0 via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka of 18.82 × 10−3 s−1, 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes.

  20. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  1. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  2. Development of MCM-41 based catalysts for the photo-Fenton's degradation of dye pollutants

    Science.gov (United States)

    Lam, Leung Yuk Frank

    The continuous advancement in most industries has resulted in serious water pollution problems. The industrial effluents contain a variety of highly toxic organics such as dye pollutants. Numerous processes have been demonstrated for treating such pollutants. Among them, photo-Fenton's reaction is effective for organic mineralization by hydroxyl radicals generated from the Fenton's reagents (Fe2+ and H2O2). However, there is a drawback in that it requires a separation system to recover the homogeneous ferrous ion in the treated wastewater. In this research, new heterogeneous Fenton's catalysts are developed to solve such a problem and to achieve an efficient mineralization of dye pollutants. Two methods for catalyst preparation, including sol-gel hydrothermal (SG) and metal-organic chemical vapor deposition (MOCVD) techniques, were studied in this work. For SG-prepared catalysts, the iron element was successfully doped into the MCM-41 structure. These catalysts demonstrated a good catalytic efficiency but leaching of metal ions from the developed catalyst was found. In the MOCVD technique, a rotated tubular reactor system was developed to synthesize Fe/MCM-41 catalyst with uniform metal dispersion. It was found that using oxygen as a carrier gas during metal deposition was able to increase the stability of the deposited metal. In degradation of a model dye pollutant, Orange II, a total of 85% TOC mineralization was achieved at pH 3. A disadvantage of using Fe/MCM-41 was the reduced efficiency at higher pH. Cu/MCM-41 was thus developed and showed better catalytic activities than Fe/MCM-41 at neutral pH. Having the specific catalytic properties of Fe/MCM-41 and Cu/MCM-41, bimetallic (Fe+Cu) catalysts supported on MCM-41 were developed which show better activities in the Orange II mineralization than those monometallic (Fe or Cu) catalysts. The preparation conditions of the catalysts were experimentally optimized. The effects of catalyst dosage, metal loading

  3. Synthesis and characterization of Ni-Mo bimetallic nitride from the mixture of nitrogen and hydrogen

    International Nuclear Information System (INIS)

    A new method for the synthesis of Ni-Mo bimetallic nitrides was reported in the present paper. The bimetallic nitrides were successfully prepared by a temperature-programmed reaction between bimetallic oxide precursors and the mixed gases of N2 and H2 instead of NH3. By adjusting pH values of the solution in the process of co-precipitation, pure NiMoO4 or NiMoO4 with excess MoO3 was obtained, and then pure Ni3Mo3N or Ni3Mo3N with γ-Mo2N was synthesized by nitriding the precursors. The structural properties of the precursors and their corresponding nitrides were investigated by means of X-ray diffraction (XRD), ultraviolet laser Raman spectroscopy, thermogravimetric (TG) analysis and chemical analysis of total nitrogen content

  4. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    Science.gov (United States)

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-07-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications.

  5. Plasmonic emission enhancement of colloidal quantum dots in the presence of bimetallic nanoparticles

    International Nuclear Information System (INIS)

    We studied plasmonic features of bimetallic nanostructures consisting of gold nanoisland cores semi-coated with a chromium layer and explored how they influence emission of CdSe/ZnS quantum dots. We showed that, compared with chromium-covered glass substrates without the gold cores, the bimetallic nanostructures could significantly enhance the emission of the quantum dots. We studied the impact of the excitation intensity and thickness of the chromium layer on this process and utilized numerical means to identify the mechanisms behind it. Our results suggest that when the chromium layer is thin, the enhancement process is the result of the bimetallic plasmonic features of the nanostructures. As the chromium layer becomes thick, the impact of the gold cores is screened and the enhancement mostly happens mostly via the field enhancement of chromium nanoparticles in the absence of significant energy transfer from the quantum dots to these nanoparticles

  6. Melting Behaviour of Core-Shell Structured Ag-Rh Bimetallic Clusters

    Institute of Scientific and Technical Information of China (English)

    PAN Yang; CHENG Dao-Jian; HUANG Shi-Ping; WANG Wen-Chuan

    2007-01-01

    The me/ting behaviour of four typical core-shell structured 309-atom Ag-Rh bimetallic clusters, with decahedral and icosahedral geometric configurations, is investigated by using molecular dynamics simulation, based on the Sutton-Chen potential. The initial atomic configurations are obtained from semi-grand canonical ensemble Monte Carlo simulations. It is found that the melting point temperature Tm increases with the mole fraction of Rh in the bimetallic clusters, and Tm of Ag-Rh icosahedral clusters is higher than those of Ag-Rh decahedral clusters with the same Rh mole fraction. It is also found that the Ag atoms lie on the surface of Ag-Rh bimetallic clusters even after melting.

  7. Description of the performances of a thermo-mechanical energy harvester using bimetallic beams

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2016-06-01

    Many recent researches have been focused on the development of thermal energy harvesters using thermo-mechanical or thermo-electrical coupling phenomena associated to a first-order thermodynamic transition. In the case of the bimetallic strip heat engine, the exploitation of the thermo-mechanical instability of bimetallic membranes placed in a thermal gradient enables to convert heat into kinetic energy. This paper is a contribution to the modeling and the comprehension of these heat engines. By restraining the study to the simply-supported bimetallic beams and using a Ritz approximation of the beam shape, this paper aims to give an analytical solution to the first mode of the composite beams and then to evaluate the efficiency of the harvesters exploiting these kinds of instability.

  8. The quality of the joint between alloy steel and unalloyed cast steel in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2012-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.

  9. Ni-based heterogeneous catalyst from a designed molecular precursor for the efficient electrochemical water oxidation.

    Science.gov (United States)

    Kuznetsov, Denis A; Konev, Dmitry V; Komarova, Natal'ya S; Ionov, Andrey M; Mozhchil, Rais N; Fedyanin, Ivan V

    2016-07-28

    Bimetallic Ni-Mo alkoxide was synthesized and exploited as the single-source precursor for the solution-processed deposition of the mixed-oxide layers on different conducting surfaces. Upon potential cycling in 1 M NaOH, these composites convert, in situ, into highly porous NiOx/NiOOH catalysts characterized by the high electrocatalytic activity for water oxidation under both basic (pH 13.6) and near neutral (pH 9.2) conditions. PMID:27354324

  10. Preparation of promoted platinum catalysts of designed geometry and the role of promoters in the liquid-phase oxidation of 1-methoxy-2-propanol

    Energy Technology Data Exchange (ETDEWEB)

    Mallat, T.; Bodnar, Z.; Baiker, A. (Swiss Federal Institute of Technology, Zuerich (Switzerland)); Greis, O.; Struebig, H. (Technical Univ., Hamburg (Germany)); Reller, A. (Univ. of Hamburg (Germany))

    1993-07-01

    Alumina-supported or unsupported M/Pt-type catalysts were prepared by consecutive reduction of Bi, Pb, Sn, Ru, Au, or Ag modifiers (M) onto Pt particles. Structural and chemical properties of the bimetallics were studied by electron microscopy combined with energy dispersive X-ray analysis and an electrochemical (cyclic voltammetric) polarization method. Preferential deposition of promoter metal submonolayers on Pt was observed at moderate surface coverages ([theta][sub M]<0.5-0.8). Some bulk metal crystallite formation as [open quotes]bridges[close quotes] between small Pt particles covered partially with promoter was also observed on alumina-supported Bi/Pt and Pb/Pt catalysts. Measurement of the electrochemical potential of the catalyst slurry during the oxidation of 1-methoxy-2-propanol to methoxyacetone and the cyclic voltammetric polarization of the bimetallic catalysts revealed that the catalysts are in an oxidized state during reaction. The following order of promoting influence was observed: Bi > Pb [approximately] Sn > Au [approximately] Ru. Two major effects of promoters are suggested: (i) they suppress the initial irreversible adsorption of the reactant alcohol on Pt which results in self-poisoning, and (ii) they form new active centers that adsorb the oxidizing species (OH) better than Pt. A formal rate equation is suggested (r = f [center dot] [theta][sub org] [center dot] [theta][sub OH]) which explains the optimum in promoter/platinum ratio. The different influences of the promoters are explained by their hydrogen and oxygen sorption characteristics and by the surface geometry of the bimetallic catalysts. 51 refs., 12 figs., 1 tab.

  11. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    Science.gov (United States)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  12. Resonance parameters based analysis for metallic thickness optimization of a bimetallic plasmonic structure

    Science.gov (United States)

    Bera, Mahua; Banerjee, Jayeta; Ray, Mina

    2014-02-01

    Metallic film thickness optimization in mono- and bimetallic plasmonic structures has been carried out in order to determine the correct device parameters. Different resonance parameters, such as reflectivity, phase, field enhancement, and the complex amplitude reflectance Argand diagram (CARAD), have been investigated for the proposed optimization procedure. Comparison of mono- and bimetallic plasmonic structures has been carried out in the context of these resonance parameters with simultaneous angular and spectral interrogation. Differential phase analysis has also been performed and its application to sensing has been discussed along with a proposed interferometric set-up.

  13. Polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets

    CERN Document Server

    Clément, R; Gruselle, M; Train, C

    2003-01-01

    We report major results concerning polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets. As a consequence of their specific organization they are composed of an anionic sub-lattice and a cationic counter-part. These bimetallic polymers can accommodate various counter-cations possessing specific physical properties in addition to the magnetic ones resulting from the interactions between the metallic ions in the anionic sub-lattice. Thus, molecular magnets possessing paramagnetic, conductive and optical properties are presented in this review. Refs. 60 (author)

  14. Electrochemical catalyst recovery method

    Science.gov (United States)

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  15. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  16. Development of structural characterisation tools for catalysts; Developpement d'outils de caracterisation structurale de catalyseurs

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, J.

    1999-10-01

    Because of the diversity of their compositions and structures, and the treatments needed to render them active, heterogeneous catalysts present a major challenge in structural characterisation. Electron microscopy provides textural and structural information at the scale of the individual particle. We have been able to analyse epitaxial relationships between nanometer size particles and their support and to determine which crystal faces are most exposed. Chemical analysis can be carried out on individual particles in a bimetallic catalyst. Limitations of this technique are shown for characterisation of catalysts at the atomic scale or in reactive conditions. Here, global analysis methods based on X-ray absorption and diffraction provide more information. W-ray absorption fine structure analysis has been applied to sub-nanometer size particles in platinum based catalysts to explore interactions between the metal and reactive gases such as hydrocarbons and H{sub 2}S. Differences observed between mono-metallic and bimetallic solids lead to structural models to explain differences in catalyst reactivity. X-ray diffraction, combined with electron microscopy, shows the presence of different forms of extra-framework aluminium is steamed zeolites. Quantification of some these forms has been possible and a study of their reactivity towards different de-aluminating agents has been achieved. Work in progress shows the advantages of a combination of X-ray diffraction and absorption to study decomposition of hydrotalcites to form mixed oxides as well as possibilities in infra-red spectroscopy of adsorbed CO to determine surface sites in Fischer Tropsch catalysts. Use of in-situ analysis cells enables a detailed description of catalyst structure in reactive atmospheres and opens the possibility of correlating structure with catalytic activity. (author)

  17. Fabrication of Cu/Pd bimetallic nanostructures with high gas sorption ability towards development of LPG sensor

    International Nuclear Information System (INIS)

    A one-step synthesis of bimetallic Cu/Pd nanorods with rod's diameter ∼3 nm and their length in the range 10–15 nm is presented. The average size, size distribution, surface morphology and structure of the bimetallic Cu/Pd have been determined by transmission electron microscope (TEM), acoustic particle sizer (APS), scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. Further, thin films of bimetallic Cu/Pd nanostructures have been fabricated via spin-coating method. Fabricated films are, then, investigated for humidity and liquefied petroleum gas (LPG) sensors for the first time. The sensitivity and sensor response of the films towards the LPG are found better in comparison to the humidity. The investigated sensing parameters demonstrate that the fabricated LPG sensor using Cu/Pd bimetallic nanostructures is challenging for the detection of LPG at room temperature. - Highlights: • Fabrication of Cu/Pd meso-porous bimetallic thin film. • Cu/Pd nanostructures were characterized by SEM, TEM, APS and XRD. • Bimetallic nanostructures with smaller sizes and narrower size distributions. • First report on Cu/Pd bimetallic nanostructures as sensors. • Sensitivity of the sensor was simply enhanced by Cu-incorporation

  18. Electronic characterization and reactivity of bimetallic clusters of the Ti(Mg){sub n} type for hydrogen storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wilber [Institute of Chemistry, University of Antioquia, A.A. 1226, Medellin (Colombia); Truong, Thanh N. [Henry Eyring, Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, UT 84112 (United States); Mondragon, Fanor, E-mail: fmondra@udea.edu.co [Institute of Chemistry, University of Antioquia, A.A. 1226, Medellin (Colombia)

    2011-08-25

    Highlights: > Magnesium-titanium clusters were modeled employing DFT and MP2. > Bimetallic systems have larger stability than monometallic magnesium clusters. > Reactivity of the bimetallic cluster is centered in the transition metal. > Bimetallic clusters are more reactive towards hydrogen to produce more stable hydrides. > Magnesium titanium systems are better for hydrogen storage than pure magnesium systems. - Abstract: This paper describes the variations in the properties, characteristics and hydrogenation energy barriers of magnesium clusters induced by titanium. DFT approach was used to determine the most stable structures at this theory level and then MP2 was used to refine the energy calculations with the basis set 6-311g(d) for magnesium and hydrogen, and pseudopotential lanl2dz for titanium. Bimetallic clusters showed higher stability and reactivity than the corresponding magnesium ones. Titanium induces a change in the magnesium atoms in their electronic configuration reflected in an increase of the population of their orbitals. At the same time titanium electronic populations is modified. These changes cause variations in some reactivity parameters such as the Fukui indexes which modify the hydrogenation of the magnesium clusters and bimetallic clusters. For example, there is a reduction in the energy barrier for dissociation of the H{sub 2} molecule in the bimetallic clusters. In the hydrogenated cluster the hydrogen atoms form bridges between all of the magnesium or magnesium-titanium atoms. These results indicate that, energetically, bimetallic systems can be more promising systems for hydrogen storage.

  19. Exploring the decomposition pathways of iron asymmetric transfer hydrogenation catalysts.

    Science.gov (United States)

    Lagaditis, Paraskevi O; Sues, Peter E; Lough, Alan J; Morris, Robert H

    2015-07-21

    Our group has developed a series of iron-based asymmetric transfer hydrogenation (ATH) catalysts for the reduction of polar double bonds. The activation of the precatalysts as well as the catalytic mechanism have been thoroughly investigated, but the decomposition pathways of these systems are poorly understood. Herein, we report a study of the deactivation pathways for an iron ATH catalyst under catalytically relevant conditions. The decomposition pathways were examined using experimental techniques and density functional theory (DFT) calculations. The major decomposition products that formed, Fe(CO)((Et)2PCH2CH2CHCHNCH2CH2P(Et)2) (3a) and Fe(CO)((Et)2PCH2CH2C(Ph)C(Ph)NCH2CH2P(Et)2) (3b), had two amido donors as well as a C=C bond on the diamine backbone of the tetradentate ligand. These species were identified by NMR studies and one was isolated as a bimetallic complex with Ru(II)Cp*. Two minor iron hydride species also formed concurrently with 3a, as determined by NMR studies, one of which was isolated and contained a fully saturated ligand as well as a hydride ligand. None of the compounds that were isolated were found to be active ATH catalysts. PMID:25373607

  20. Synthesis of bimetallic gold-silver alloy nanoclusters by simple mortar grinding.

    Science.gov (United States)

    Murugadoss, Arumugam; Kai, Noriko; Sakurai, Hidehiro

    2012-02-21

    A macroscale quantity of bimetallic Au-Ag alloy nanoclusters was achieved through sequential reduction by simple mortar grinding. The chitosan biopolymer was used as both a stabilizing and reducing agent. These nanoclusters exhibit excellent catalytic activity toward the reduction of 4-nitrophenol.

  1. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

    Science.gov (United States)

    Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E

    2016-04-26

    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality. PMID:26991933

  2. Foundation Flash Catalyst

    CERN Document Server

    Goralski, Greg

    2010-01-01

    This book offers an introduction to Flash Catalyst for designers with intermediate to advanced skills. It discusses where Catalyst sits within the production process and how it communicates with other programs. It covers all of the features of the Flash Catalyst workspace, teaching you how to create designs from scratch, how to build application designs and add functionality, and how to master the Catalyst/Flex workflow. * Introduces Flash Catalyst * Focuses on production process * Covers the interrelation between Flash Catalyst and Photoshop/Illustrator/Flex/Flash What you'll learn Starting f

  3. Cobalt-Lead-Manganese oxides combined cathode catalyst for air electrode in Zinc –air battery

    International Nuclear Information System (INIS)

    Highlights: • Bi and trimetallic oxides based on Mn, Pb and Co were prepared and characterized. • Introduction of Pb and Co in MnOx catalyst promote four electron ORR. • Zinc air battery with Mn2Pb2CoOx catalyst displays much smaller charge transfer resistance in contrast to the pure MnOx. • Mn2Pb2CoOx catalyst has lower loss of performance after 500C-D cycles than the rest of the catalysts. • Zinc air battery containing Mn2Pb2CoOx has promising current and power density and also discharge capacity. - Abstract: Bi and tri metalic oxides based on Mn, Pb and Co composite catalysts were prepared by oxidation of metal acetates with KMnO4. The structure of the catalysts was characterized by X-ray diffraction (XRD). It is found that the Mn2Pb2CoOx catalyst has amorphous structure and contains various oxides of Mn, Pb and Co. Electrocatalytic activity of catalysts in 6 M KOH was studied using Cyclic Voltammetry (CV) and polarization. Cyclic Voltammetry plot of Mn2Pb2CoOx catalyst showed higher electrocatalytic activity towards the Oxygen Reduction Reaction (ORR) compared to other tri and bimetallic composite catalysts. The kinetics of ORR on the catalysts was investigated using the rotating disk electrode technique in 6 M KOH solution. From the slope of Koutecky–Levich plots, it is evident that the ORR on Mn2Pb2CoOx is a 4-electron transfer process. With these inherent features, the zinc–air battery was fabricated using various catalysts and their performance was examined for practical applications

  4. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  5. Structure sensitive adsorption of hydrogen on ruthenium and ruthenium-silver catalysts supported on silica

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.

    1999-02-12

    Supported metal catalysts typically consist of particles with sizes less than 10 nm, and because of the small crystallite size, low coordination number sites (edges and corners) represent a significant fraction of all surface sites. Furthermore, it has been demonstrated that adsorption rates can be much greater at these low coordination sites than on basal plane sites. What has not been generally appreciated, however, is that preferential adsorption at edge and corner sites may explain the mechanism by which a promoter, or the addition of a second metal to form a bimetallic, can alter the selectivity and rate of reaction. For example, the measurements of hydrogen adsorption onto supported Ru-Ag catalysts show marked decreases in the amount of hydrogen adsorbed relative to the amount adsorbed on Ru catalysts. Although it is known that Ag does not dissociatively adsorb hydrogen, this decrease cannot be explained by a simple one-to-one site blocking mechanism unless Ag preferentially populates edges and corners, thereby reducing the number of Ru edge sites. Indeed, Monte Carlo simulations of Ru-Group IB metal catalysts predict that Group IB metal atoms preferentially populate corner and edge sites of ruthenium crystals. This evidence, taken together, suggests that adsorption occurs preferentially at Ru corner and edge sites, which act as portals onto basal planes. A model based on this portal theory for hydrogen adsorption onto supported ruthenium bimetallic catalysts has been developed using a rate equation approach. Specifically, the model accounts for the following features: (1) preferential adsorption through portals, (2) basal plane site-energy multiplicity, and (3) hydrogen spillover onto the support. A comparison of model predictions with experiment is presented for different concentration of Ag in Ru-Ag catalysts. The portal model of hydrogen adsorption can explain the observed decreased in the amount of hydrogen adsorbed on Ru-Ag catalysts. The model can be

  6. Carbon supported Cu-Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells

    International Nuclear Information System (INIS)

    Carbon supported Cu-Pd bimetallic nanoparticles were prepared by a successive reduction method in aqueous solution and used as anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronopotentiometry (CP), linear sweep voltammetry (LSV) and fuel cell test. The results show that the size of the crystallite is around 12.5 nm, the Cu1Pd1/C catalyst presents the highest catalytic activity among all the resultant catalysts, and the DBHFC using Cu1Pd1/C as anode catalyst and Pt mesh (1 cm × 1 cm) as cathode electrode obtains the maximum power density as high as 39.8 mW cm-2 at a discharge current density of 80.1 mA cm-2 at 20 °C

  7. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents

    Science.gov (United States)

    Singh, Richa; Nawale, Laxman; Arkile, Manisha; Wadhwani, Sweety; Shedbalkar, Utkarsha; Chopade, Snehal; Sarkar, Dhiman; Chopade, Balu Ananda

    2016-01-01

    Purpose Multi- and extensively drug-resistant tuberculosis (TB) is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics. In view of this, the current study aims to determine the efficacy of phytogenic metal nanoparticles to inhibit mycobacteria. Methods Silver (AgNPs), gold (AuNPs), and gold–silver bimetallic (Au–AgNPs) nanoparticles synthesized from medicinal plants, such as Barleria prionitis, Plumbago zeylanica, and Syzygium cumini, were tested against Mycobacterium tuberculosis and M. bovis BCG. In vitro and ex vivo macrophage infection model assays were designed to determine minimum inhibitory concentration (MIC) and half maximal inhibitory concentration of nanoparticles. Microscopic analyses were carried out to demonstrate intracellular uptake of nanoparticles in macrophages. Besides this, biocompatibility, specificity, and selectivity of nanoparticles were also established with respect to human cell lines. Results Au–AgNPs exhibited highest antitubercular activity, with MIC of <2.56 μg/mL, followed by AgNPs. AuNPs did not show such activity at concentrations of up to 100 μg/mL. In vitro and ex vivo macrophage infection model assays revealed the inhibition of both active and dormant stage mycobacteria on exposure to Au–AgNPs. These nanoparticles were capable of entering macrophage cells and exhibited up to 45% cytotoxicity at 30 μg/mL (ten times MIC concentration) after 48 hours. Among these, Au–AgNPs synthesized from S. cumini were found to be more specific toward mycobacteria, with their selectivity index in the range of 94–108. Conclusion This is the first study to report the antimycobacterial activity of AuNPs, AgNPs, and Au–AgNPs synthesized from medicinal plants. Among these, Au–AgNPs from S. cumini showed profound efficiency, specificity, and

  8. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents

    Directory of Open Access Journals (Sweden)

    Singh R

    2016-05-01

    Full Text Available Richa Singh,1 Laxman Nawale,2 Manisha Arkile,2 Sweety Wadhwani,1 Utkarsha Shedbalkar,1 Snehal Chopade,1 Dhiman Sarkar,2 Balu Ananda Chopade1,3 1Department of Microbiology, Savitribai Phule Pune University, 2Combichem-Bioresource Center, Organic Chemistry Division, National Chemical Laboratory, Pune, 3Dr Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India Purpose: Multi- and extensively drug-resistant tuberculosis (TB is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics. In view of this, the current study aims to determine the efficacy of phytogenic metal nanoparticles to inhibit mycobacteria. Methods: Silver (AgNPs, gold (AuNPs, and gold–silver bimetallic (Au–AgNPs nanoparticles synthesized from medicinal plants, such as Barleria prionitis, Plumbago zeylanica, and Syzygium cumini, were tested against Mycobacterium tuberculosis and M. bovis BCG. In vitro and ex vivo macrophage infection model assays were designed to determine minimum inhibitory concentration (MIC and half maximal inhibitory concentration of nanoparticles. Microscopic analyses were carried out to demonstrate intracellular uptake of nanoparticles in macrophages. Besides this, biocompatibility, specificity, and selectivity of nanoparticles were also established with respect to human cell lines. Results: Au–AgNPs exhibited highest antitubercular activity, with MIC of <2.56 µg/mL, followed by AgNPs. AuNPs did not show such activity at concentrations of up to 100 µg/mL. In vitro and ex vivo macrophage infection model assays revealed the inhibition of both active and dormant stage mycobacteria on exposure to Au–AgNPs. These nanoparticles were capable of entering macrophage cells and exhibited up to 45% cytotoxicity at 30 µg/mL (ten times MIC concentration after 48 hours

  9. A Highly Efficient Bifunctional Catalyst for Alkaline Air-Electrodes Based on a Ag and Co3O4 Hybrid: RRDE and Online DEMS Insights

    International Nuclear Information System (INIS)

    Enhanced catalytic activity towards oxygen reduction (ORR) and evolution (OER) reactions has been achieved by combination of spinel Co3O4 nanoparticles with Ag particles. Quasi-stationary polarization curves showed that the mixed catalyst, Ag + Co3O4 (10 wt%), outperformed its components. Rotating ring-disc electrode (RRDE) measurements revealed a negligible peroxide species formation and a 4-electron pathway for ORR. A tafel slope of ca. 75 mV dec−1 has been observed. The overpotential for ORR at 10% Co3O4 catalyst is ca. 70 mV lower than that of Ag and only ca. 80 mV higher than that of the commercial Pt catalyst. DEMS technique provided a direct evidence for oxygen evolution at these bimetallic catalysts. This hybrid is therefore one of the (or even the) most active, carbon-free, durable, non-precious ORR and OER electrocatalysts reported to date

  10. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  11. Renovation and Reuse of Reactive Dyeing Effluent by a Novel Heterogeneous Fenton System Based on Metal Modified PTFE Fibrous Catalyst/H2O2

    Directory of Open Access Journals (Sweden)

    Bing Li

    2013-01-01

    Full Text Available Cu-Fe bimetallic grafted polytetrafluoroethylene (PTFE fiber complexes were prepared and optimized as the novel heterogeneous Fenton catalysts for the degradation of reactive dyes under UV irradiation. Cotton fabrics were dyed with three reactive dyes, namely, Reactive Red 195, Reactive Yellow 145, and Reactive Blue 222, in tap fresh water using exhaustion process. The spent dyeing effluents were then collected and degraded with the optimized Cu-Fe bimetallic grafted PTFE fiber complex/H2O2 system. The treated dyeing effluents were characterized and reused for the dyeing of cotton fabrics through the same process. The effect of reuse process number on quality of the dyed cotton fabrics was examined. The results indicated that the Cu-Fe bimetallic modified PTFE fiber complex with a Cu/Fe molar ratio of 2.87 was found to be the most effective fibrous catalyst, which enhanced complete decolorization of the treated dyeing effluents with H2O2 in 4 h. However, the TOC removal for the treated dyeing effluents was below 80%. The dyeing quality was not affected for three successive cycles. The increase in residual TOC value influences fourth dyeing cycle. Further TOC reduction of the treated effluents is needed for its repeated reuse in more than three dyeing cycles.

  12. Thermo-mechanical efficiency of the bimetallic strip heat engine at the macro-scale and micro-scale

    International Nuclear Information System (INIS)

    Bimetallic strip heat engines are energy harvesters that exploit the thermo-mechanical properties of bistable bimetallic membranes to convert heat into mechanical energy. They thus represent a solution to transform low-grade heat into electrical energy if the bimetallic membrane is coupled with an electro-mechanical transducer. The simplicity of these devices allows us to consider their miniaturization using MEMS fabrication techniques. In order to design and optimize these devices at the macro-scale and micro-scale, this article proposes an explanation of the origin of the thermal snap-through by giving the expressions of the constitutive equations of composite beams. This allows us to evaluate the capability of bimetallic strips to convert heat into mechanical energy whatever their size is, and to give the theoretical thermo-mechanical efficiencies which can be obtained with these harvesters. (paper)

  13. Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst.

    Science.gov (United States)

    Paßens, M; Caciuc, V; Atodiresei, N; Moors, M; Blügel, S; Waser, R; Karthäuser, S

    2016-07-21

    Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the preparation conditions. PMID:26865393

  14. Gold/Iron Carbonyl Clusters for Tailored Au/FeOx Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Stefania Albonetti

    2011-12-01

    Full Text Available A novel preparation method was developed for the preparation of gold/iron oxide supported catalysts using the bimetallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO16] and [NEt4][AuFe4(CO16] as precursors of highly dispersed nanoparticles over different supports. A series of catalysts with different metal loadings were prepared and tested in the complete oxidation of dichlorobenzene, toluene, methanol and in the preferential oxidation of CO in the presence of H2 (PROX as model reactions. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS point out the way the nature of the precursors and the thermal treatment conditions affected the dispersion of the active phase and their catalytic activity in the studied reactions.

  15. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Korzeniewski, Carol

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  16. Pd Close Coupled Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhong Hua SHI; Mao Chu GONG; Yao Qiang CHEN

    2006-01-01

    A catalyst comprised novel high surface area alumina support was prepared to control emission of automobiles. The results showed that prepared catalyst could satisfy the requirements of a high performance close coupled catalyst for its good catalytic activity at low temperature and good stability at high temperature.

  17. An improved method of preparation of nanoparticular metal oxide catalysts

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns an improved method of preparation of nanoparticular vanadium oxide/anatase titania catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular vanadium oxide/anatase titania catalyst precursors comprising...... combustible crystallization seeds upon which the catalyst metal oxide is coprecipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step....

  18. Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst

    Science.gov (United States)

    Paßens, M.; Caciuc, V.; Atodiresei, N.; Moors, M.; Blügel, S.; Waser, R.; Karthäuser, S.

    2016-07-01

    Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the preparation conditions.Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the

  19. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; WANG Xiangyu; CHANG Ying; LIU Huiling

    2008-01-01

    Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained α-Fe0. Detected Pd to Fe ratio by weight (PFRW) was close to theoretical PFRW. Spherical granules with diameter of 47±11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. Factors, such as species of reductants, PFRW, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid (MCAA) by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% PFRW > nanoscale Fe > reductive Fe. When PFRW was lower than 0.083%, increasing PFRW would increase dechlorination efficiency (DE) of MCAA. But when the PFRW was higher than 0.083%, increasing PFRW caused decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.

  20. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip

    Science.gov (United States)

    Kim, Hyung Jin; Sohn, Young-Soo; Kim, Chang-duk; Jang, Dae-ho

    2016-09-01

    A surface plasmon resonance (SPR) sensor system with a bimetallic chip has been utilized to sense the very low concentration of amyloid-beta (A β)(1-42) by measurement of the reflectance variation. The bimetallic chip was comprised of Au (10 nm) and Ag (40 nm) on Cr (2 nm)-coated BK-7 glass substrate. Protein A was used to efficiently immobilize the antibody of A β(1-42) on the surface of the bimetallic chip. The reflectance curve of the bimetallic chip represented a narrower linewidth compared to that of the conventional gold (Au) chip. The SPR sensor using the bimetallic chip in the intensity interrogation mode acquired the response of A β(1-42) at concentrations of 250, 500, 750 and 1,000 pg/ml. The calibration plot showed a linear relationship between the mean reflectance variation and the A β(1-42) concentration. The results proved that the SPR sensor system with the bimetallic chip in the intensity interrogation mode can successfully detect various concentrations of A β(1-42), including critical concentration, to help diagnose Alzheimer's disease.

  1. Pt-Re-Sn/Al{sub 2}O{sub 3} trimetallic catalysts for naphtha reforming processes without presulfiding step

    Energy Technology Data Exchange (ETDEWEB)

    Mazzieri, V.A.; Grau, J.M.; Vera, C.R.; Yori, J.C.; Parera, J.M.; Pieck, C.L. [Instituto de Investigaciones en Catalisis y Petroquimica, INCAPE, FIQ-UNL, CONICET, Santiago del Estero 2654, 3000 Santa Fe (Argentina)

    2005-12-12

    The n-heptane reforming and the cyclopentane hydrogenolysis reactions over noble metal monometallic catalysts (0.3% Pt), bimetallic catalysts (0.3% Pt, x% Re, x=0.1, 0.3, 0.9 and 2.0, sulfided) and trimetallic catalysts (0.3% Pt, 0.3% Re, y% Sn, y=0.1, 0.3, 0.6 and 0.9, unsulfided) were studied. The metal function was supported over a chlorided {gamma}-alumina that provided the acid function. The reforming of n-heptane was performed at 450{sup o}C, molar ratio H{sub 2}/n-C{sub 7}=4 and WHSV=7.3 while the hydrogenolysis of cyclopentane was performed at 350{sup o}C, H{sub 2}/CP=20 and WHSV=2.4. The sulfided 0.3Pt-0.3Re catalyst (with 0.06% S) was found to be the best performing bimetallic one. It had a great stability, typical of this kind of catalysts, and also produced a reformate with a high iso-heptanes/toluene ratio. This is advantageous for fulfilling the current environmental regulations that limit the amount of aromatic hydrocarbons in reformulated gasolines. The best trimetallic catalyst was 0.3Pt-0.3Re-0.6Sn which had a similar activity and selectivity as sulfided 0.3Pt-0.3Re, though it displayed a higher stability and a lower hydrogenolysis activity, without the need of presulfidation. Tin affected the metal and acid functions of the catalyst simultaneously and inhibited them to such different degrees that a very convenient metal/acid activity ratio was obtained, resulting in an improvement of the activity, selectivity and stability of the catalysts. It can be concluded that it is possible to prepare trimetallic naphtha reforming catalysts of the Pt-Re-Sn kind with a better performance than conventional sulfided Pt-Re catalysts and with the additional advantage that they do not need complicated sulfiding pretreatments. This simplifies the commercial operation of the reformer unit and enables the application of this catalyst to continuously operated processes.

  2. Fabrication of non-enzymatic biosensor based on metallic catalyst-TiO2 hollow sphere nanocomposite for determining biomolecules.

    Science.gov (United States)

    Kwen, Hai-Doo; Yang, Hee-Soo; Lee, In-Ho; Choi, Seong-Ho

    2012-07-01

    A PtRu@TiO2-hollow nanocomposite for the detection of biomolecules was synthesized by chemical reduction. First, poly(styrene-co-vinylphenylboronic acid), PSB, was prepared as a template (approximately 250 nm) by surfactant-free emulsion polymerization. Second, PSB/TiO2 core-shell spheres were prepared by sol-gel reaction. Finally, TiO2 hollow spheres (TiO2-H) were then formed after removing the PSB template by calcination at 450 degrees C under air atmosphere. To prepare the electrocatalyst, PtRu nanoparticles (NPs) were deposited onto the TiO2-H surface by chemical reduction. The prepared PtRu@TiO2-H nanocomposite was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis. A non-enzymatic sensor was fabricated by depositing the as-prepared PtRu@TiO2-H nanocomposite on the surface of a glassy carbon electrode (GCE), which was prepared by a hand casting method with Nafion solution as a binder. The sensor was tested as a biomolecule sensor, especially for the detection of glucose and dopamine. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the PtRu@TiO2-H nanocomposite showed better catalytic function toward the oxidation of dopamine. The sensing range of the non-enzymatic sensor for glucose was 5.0-100 mM in a phosphate buffer. The results demonstrated the potential usefulness of this bimetallic@TiO2-H bifunctional catalyst for biosensor applications. PMID:22966548

  3. Synthesis and Crystal Structure of a Cyano-bridged Bimetallic Complex K3(TMS)2(H2O)2Cr(CN)6 [TMS = Tetramethylene Sulfone

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; CHE Yun-Xia; ZHENG Ji-Min

    2005-01-01

    The cyano-bridged bimetallic complex K3(TMS)2(H2O)2Cr(CN)6 with three- dimensional microporous structure was synthesized and characterized. The title complex (C14H20CrK3N, Mr = 601.78) crystallizes in monoclinic, space group C2/c with a = 14.357(4), b = 9.331(3), c = 19.180(6)(A), β = 96.754(5)o, V = 2551.6(13) (A)3, Z = 4, Dc = 1.567 g/m3, μ(MoKα) = 1.141 mm-1, F(000) = 1228, the final R = 0.0440 and wR = 0.0990 for 1760 observed reflections (I > 2σ(I)). In the crystal, two [Cr(CN) 6]3- units, four K+ ions and two oxygen atoms of two TMS molecules are linked to form a sixteen-membered ring and an extended three-dimensional structure.

  4. Study of Carbon Nanotube Supported Co-Mo Selective Hydrodesulphurization Catalysts for Fluid Catalytic Cracking Gasoline

    Institute of Scientific and Technical Information of China (English)

    Wenkui Yin; Mei Li; Hongyan Shang; Chenguang Liu; Fei Wei

    2005-01-01

    In this paper,carbon nanotube supported Co-Mo catalysts for selective hydrodesulphurization (HDS) of fluid catalytic cracking (FCC) gasoline were studied,using di-isobutylene,cyclohexene,1-octene and thiophene as model compounds to simulate FCC gasoline. The results show that the Co-Mo/CNT has very high HDS activity and HDS/hydrogenation selectivity comparing with the Co-Mo/γ-Al2O3 and Co-Mo/AC catalyst systems. The saturation ratio of cyclohexene was lower than 50%,and the saturation ratio of 1,3-di-isobutylene lower than 60% for the Co-Mo/CNT catalysts. Co/Mo atomic ratio was found to be one of the most important key factors in influencing the hydrogenation selectivity and HDS activity,and the most suitable Co/Mo atomic ratio was 0.4. Co/CNT and Mo/CNT mono-metallic catalysts showed lower HDS activity and selectivity than the Co-Mo/CNT bi-metallic catalysts.

  5. Mechanistic studies related to the metal catalyzed reduction of carbon monoxide to hydrocarbons. Final report, April 1, 1977-June 30, 1985

    International Nuclear Information System (INIS)

    Studies of compounds related to proposed intermediates in the hydrogenation of carbon monoxide over homogeneous and heterogeneous catalysts have been carried out. The synthesis, structure, and reactions of metal formyl compounds have been investigated. The synthesis and desproportionation reactions of hydroxymethyl metal compounds have been explored. Reactions involving interconversion of n5- and n'-C5H5 organometallic compounds have been discovered. New synthetic routes to bimetallic compounds with bridging hydrocarbon ligands have been developed. The first bimetallic compound with a budging CH ligand has been prepared. The hydrocarbation reaction in which the CH bond of a bridging methylidyne complex adds across a carbon-carbon double bond has been discovered. New heterobimetallic compounds linked by a heterodifunctional ligand and heterobimetallic compounds with directly bonded early and late transition metals have been synthesized in a search for new CO hydrogenation catalysts. 36 refs

  6. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  7. A Phenomenological Study on the Synergistic Role of Precious Metals in the Steam Reforming of Logistic Fuels on Bimetal-Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2011-01-01

    Full Text Available Fuel processors are required to convert sulfur-laden logistic fuels into hydrogen-rich reformate and deliver to the fuel cell stack with little or no sulfur. Since sulfur poisons and deactivates the reforming catalyst, robust sulfur-tolerant catalysts ought to be developed. In this paper, the development, characterization and evaluation of a series of reforming catalysts containing two noble metals (with total metal loading not exceeding 1 weight percent supported on nanoscale ceria for the steam-reforming of kerosene is reported. Due to inherent synergy, a bimetallic catalyst is superior to its monometallic analog, for the same level of loading. The choice of noble metal combination in the bimetallic formulations plays a vital and meaningful role in their performance. Presence of ruthenium and/or rhodium in formulations containing palladium showed improved sulfur tolerance and significant enhancement in their catalytic activity and stability. Rhodium was responsible for higher hydrogen yields in the logistic fuel reformate. Duration of steady hydrogen production was higher in the case of RhPd (75 h than for RuPd (68 h; hydrogen generation was stable over the longest period (88 h with RuRh containing no Pd. A mechanistic correlation between the characteristic role of precious metals in the presence of each other is discussed.

  8. Abatement of hazardous organic emissions by sorption/catalysis. Part project 4: Manufacturing of stable catalysts. Final report. Minderung organischer Luftschadstoffe durch Sorption/Katalyse. Teilvorhaben 4: Herstellung stabiler Katalysatoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Deutz, W.; Grimm, B.; Schroeder, P.; Schroeder, K.J.; Labonte, B.

    1994-12-30

    Project target was the development of the process engineering and catalysts for the catalytic abatement of volatile organic emissions with emphasis on halogenated hydro carbons. Catalysts could be manufactured as pellets on basis of porous glasses, as well as zeolites and alumina oxide. Honeycombs could be wash-coated with the materials. Ordinary Cordierite honeycombs can be used as substrate. Based on theoretical approaches and project results mathematical models for the lay out of plant process parameters running on a PC were developed. For the process improvement the addition of steam to the gas stream is of advantage. The equilibrium of the reaction products HCl and Cl[sub 2] is shifted to HCl (Deacon-Equilibrium) leading to a more careful process with respect to catalysts and plant. Measurements showed the practicly complete oxidation of organic halogenated emissions without the formation of undesired by-products. The development is a cost effective alternative to sorptive or themic processes. (orig.)

  9. Ethylbenzene dehydrogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−yNiyAl0.5 catalysts

    KAUST Repository

    Atanda, Luqman A.

    2011-04-01

    A series of Mg3Fe0.5-xCoxAl0.5 (x = 0-0.5) catalysts were prepared from hydrotalcite precursors and their activities in the dehydrogenation of ethylbenzene were compared with those of a series of Mg3Fe0.5-yNiyAl0.5 (y = 0-0.5) catalysts also derived from hydrotalcite. The hydrotalcites prepared by co-precipitation were calcined at 550 °C to the mixed oxides with a high surface area of 150-240m2gcat-1; they were composed of Mg(Fe,Me,Al)O periclase and Mg(Me)(Fe,Al)2O4 spinel (Me = Co or Ni). Bimetallic Fe3+-Co2+ system showed a synergy, i.e., an increase in the activity, whereas Fe3+-Ni2+ bimetallic system showed no synergy. The high styrene yield was obtained on Mg 3Fe0.1Co0.4Al0.5; however, a large substitution of Fe3+ with Co2+ caused a decrease in styrene selectivity along with coking on the catalysts, due to an isolation of CoOx on the catalyst surface. The highest yield as well as the highest selectivity for styrene production was obtained at x = 0.25 at time on stream of 30 min. The coprecipitation at pH = 10.0 and the composition of Mg3Fe0.25Co0.25Al0.5 were the best for preparing the active catalyst. This is partly due to the formation of a good hydrotalcite structure. On this catalyst, the active Fe3+ species was reduced at a low temperature by the Fe3+-Co2+ bimetal formation, leading to a high activity. Simultaneously, the amount of reducible Fe3+ was the smallest, resulting in a high stability of the active Fe3+ species. It is likely that the dehydrogenation was catalyzed by the reduction-oxidation between Fe3+ and Fe2+ and that Co2+ assisted the reduction-oxidation by forming Fe 3+-Co2+ (1/1) bimetallic active species. © 2011 Elsevier B.V. All rights reserved.

  10. Uncovering the Stabilization Mechanism in Bimetallic Ruthenium-Iridium Anodes for Proton Exchange Membrane Electrolyzers.

    Science.gov (United States)

    Saveleva, Viktoriia A; Wang, Li; Luo, Wen; Zafeiratos, Spyridon; Ulhaq-Bouillet, Corinne; Gago, Aldo S; Friedrich, K Andreas; Savinova, Elena R

    2016-08-18

    Proton exchange membrane (PEM) electrolyzers are attracting an increasing attention as a promising technology for the renewable electricity storage. In this work, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is applied for in situ monitoring of the surface state of membrane electrode assemblies with RuO2 and bimetallic Ir0.7Ru0.3O2 anodes during water splitting. We demonstrate that Ir protects Ru from the formation of an unstable hydrous Ru(IV) oxide thereby rendering bimetallic Ru-Ir oxide electrodes with higher corrosion resistance. We further show that the water splitting occurs through a surface Ru(VIII) intermediate, and, contrary to common opinion, the presence of Ir does not hinder its formation. PMID:27477824

  11. Kinetic Study on the Formation of Bimetallic Core-Shell Nanoparticles via Microemulsions

    Directory of Open Access Journals (Sweden)

    Concha Tojo

    2014-11-01

    Full Text Available Computer calculations were carried out to determine the reaction rates and the mean structure of bimetallic nanoparticles prepared via a microemulsion route. The rates of reaction of each metal were calculated for a particular microemulsion composition (fixed intermicellar exchange rate and varying reduction rate ratios between both metal and metal salt concentration inside the micelles. Model predictions show that, even in the case of a very small difference in reduction potential of both metals, the formation of an external shell in a bimetallic nanoparticle is possible if a large reactant concentration is used. The modification of metal arrangement with concentration was analyzed from a mechanistic point of view, and proved to be due to the different impact of confinement on each metal: the reaction rate of the faster metal is only controlled by the intermicellar exchange rate but the slower metal is also affected by a cage-like effect.

  12. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  13. Stability of the Shallow Axisymmetric Parabolic-Conic Bimetallic Shell by Nonlinear Theory

    OpenAIRE

    M. Jakomin; F. Kosel

    2011-01-01

    In this contribution, we discuss the stress, deformation, and snap-through conditions of thin, axi-symmetric, shallow bimetallic shells of so-called parabolic-conic and plate-parabolic type shells loaded by thermal loading. According to the theory of the third order that takes into account the balance of forces on a deformed body, we present a model with a mathematical description of the system geometry, displacements, stress, and thermoelastic deformations. The equations are based on the lar...

  14. Ultrasonic double-wall shadow control of laminations in bimetallic tubes

    International Nuclear Information System (INIS)

    Nondestructive method of control of laminations in 10, 12KhN3A and 0Kh18N10T steel tube plated with copper, bronze or nickel has been developed. The method is based on the excitation and reception of longitudinal ultrasonic oscillations passing through two walls of the bimetallic tube filled with water. The method sensitivity depends on the damping in the tube wall, difference in wall thickness, ovality and surface roughness

  15. Tuning the porosity of bimetallic nanostructures by a soft templating approach

    OpenAIRE

    Lehoux, Anaïs; Ramos, Laurence; Beaunier, Patricia; Uribe, Daniel Bahena; Dieudonné, Philippe; Audonnet, Fabrice; Etcheberry, Arnaud; José-Yacaman, Miguel; Remita, Hynd

    2012-01-01

    We use hexagonal mesophases made of oil-swollen surfactant-stabilized tubes arranged on a triangular lattice in water and doped with metallic salts as templates for the radiolytic synthesis of nanostructures. The nanostructures formed in this type of soft matrix are bimetallic palladium-platinum porous nanoballs composed of 3D-connected nanowires, of typical thickness 2.5 nm, forming hexagonal cells. We demonstrate using electron microscopy and small-angle X-ray scattering that the pore size ...

  16. Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Li, Da; Liu, Jingquan; Wang, Hongbin; Barrow, Colin J; Yang, Wenrong

    2016-09-21

    Here, we for the first time synthesized bimetallic Cu/Ag dendrites on graphene paper (Cu/Ag@G) using a facile electrodeposition method to achieve efficient SERS enhancement. Cu/Ag@G combined the electromagnetic enhancement of Cu/Ag dendrites and the chemical enhancement of graphene. SERS was ascribed to the rough metal surface, the synergistic effect of copper and silver nanostructures and the charge transfer between graphene and the molecules. PMID:27522964

  17. NANOPARTICLES OF TUNGSTEN AS LOW-COST MONOMETALLIC CATALYST FOR SELECTIVE HYDROGENATION OF 3-HEXYNE

    Directory of Open Access Journals (Sweden)

    María Juliana Maccarrone

    2016-01-01

    (5 wt% Pd. The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.

  18. Developments of modeling tools for the ultrasonic propagation in bimetallic welds

    International Nuclear Information System (INIS)

    This study fits into the field of ultrasonic non-destructive evaluation. It consists in the development of a dynamic ray tracing model to simulate the ultrasonic propagation in bimetallic welds. The approach has been organised in three steps. First of all, an image processing technique has been developed and applied on the macro-graphs of the weld in order to obtain a smooth cartography of the crystallographic orientation. These images are used as input data for a dynamic ray tracing model adapted to the study of anisotropic and inhomogeneous media such as bimetallic welds. Based on a kinematic and a dynamic ray tracing model, usually used in geophysics, it allows the evaluation of ray trajectories between a source point and an observation point, and the computation of the ultrasonic amplitude through the geometrical spreading of an elementary ray tube. This model has been validated in 2D by comparison of the results with a hybrid semi-analytical/finite elements code, then in 3D thanks to experimental results made on the mock-ups of the studied bimetallic welds. (author)

  19. Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures.

    Science.gov (United States)

    Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2016-12-01

    Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures. PMID:27094823

  20. Microstructure and mechanical properties of carbon steel A210-superalloy Sanicro 28 bimetallic tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, X.; Echeberria, J

    2003-05-15

    The viability by hot co-extrusion of a new bimetallic tube: carbon steel A-210-G deg. A1/iron based superalloy Sanicro 28 (UNS N08028) both by hot torsion tests and by diffusion bonding experiments using hipping has been verified. An excellent metallurgical bond was obtained after the industrial hot co-extrusion process. Both the interdiffusion of the elements across the interface, and the microstructure have been analysed by optical microscopy, SEM, TEM and EBSD (electron backscattered diffraction). On the Sanicro 28 side a profuse precipitation of Cr/Mo carbides was found in the region close to the interface. In the hipped specimens and in the heat-treated bimetallic tubes, as result of the nickel and chromium diffusion from the superalloy to the carbon steel, austenite and martensite sub-bands were observed parallel to the interface on the steel side. The optimum heat treatment performed on the bimetallic tubes consisted of an austenitising-solution treatment at 1100 deg. C, and a stabilisation annealing at 900 deg. C, followed by air cooling.

  1. Characterization of Bimetallic Castings with an Austenitic Working Surface Layer and an Unalloyed Cast Steel Base

    Science.gov (United States)

    Wróbel, Tomasz

    2014-05-01

    The paper presents the technology of bimetallic castings based on the founding method of layer coating directly in the cast process of the so-called method of mold cavity preparation. The prepared castings consist of two fundamental parts, i.e., the base and the working surface layer. The base part of the bimetallic casting is typical foundry material, i.e., unalloyed cast steel, whereas the working layer is a plate of austenitic alloy steel sort X2CrNi 18-9. The quality of the joint between the base part and the working layer was evaluated on the basis of ultrasonic non-destructive testing and structure examinations containing metallographic macro- and microscopic studies with the use of a light microscope (LOM) with microhardness measurements and a scanning electron microscope (SEM) with microanalysis of the chemical composition (energy dispersive spectroscopy—EDS). On the basis of the obtained results it was confirmed that the decisive phenomena needed to create a permanent joint between the two components of the bimetallic casting are carbon and heat transport in the direction from the high-carbon and hot base material which was poured into the mold in the form of liquid metal to the low-carbon and cold material of the working layer which was placed in the mold cavity in the form of a monolithic insert.

  2. Ferrocenyl-cymantrenyl hetero-bimetallic chalcones: Synthesis, structure and biological properties

    Science.gov (United States)

    Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav

    2015-04-01

    Two new ferrocenyl-cymantrenyl bimetallic chalcones, [(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)Fe(η5-C5H5)] (1) and [{(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)}2Fe] (2) have been synthesized. Their reactivity study with triphenylphosphine and bis-(diphenylphosphino)ferrocene led to the isolation of phosphine substituted bimetallic chalcones (3-6). Single crystal X-ray structural characterization for 1 and its phosphine analogue (3) reveals their different conformational identity with anti-conformation for 1, while syn-conformation for 3. Investigation of antimalarial and antibacterial activities was carried out for compounds 1 and 2 against two strains of Plasmodium falciparum (3D7, K1) and four bacterial strains. TD-DFT calculation was performed for compound 1 and electrochemical properties were studied for bimetallic chalcone compounds by cyclic voltammetric technique.

  3. Preparation of onion-like Pt-terminated Pt-Cu bimetallic nano-sized electrocatalysts for oxygen reduction reaction in fuel cells

    Science.gov (United States)

    Lim, Taeho; Kim, Ok-Hee; Sung, Yung-Eun; Kim, Hyun-Jong; Lee, Ho-Nyun; Cho, Yong-Hun; Kwon, Oh Joong

    2016-06-01

    Onion-like Pt-terminated Pt-Cu bimetallic nano-sized electrocatalysts (Pt/Cu/Pt/C) were synthesized by using an electroless deposition method. The synthesized Pt/Cu/Pt/C consisted of a Pt-enriched shell, a sandwiched Pt-Cu alloy layer, and a Pt core. The Pt/Cu/Pt/C showed higher electrocatalytic activity toward oxygen reduction reaction in half-cell test than that of commercial Pt/C due to an electronic structure change in the Pt-enriched shell, resulting from the sandwiched Pt-Cu alloy layer underneath. The stability of the Pt/Cu/Pt/C was examined by using both half-cell and single-cell degradation tests. In both tests, the Pt/Cu/Pt/C exhibited stronger resistance to catalyst degradation than that of the commercial Pt/C. It is notable that cell performance with the Pt/Cu/Pt/C was fully recovered by N2 purging after single-cell degradation testing, indicating there was no permanent damage to the electrocatalyst during the test. It is suggested that thermodynamically-stable structure of the Pt/Cu/Pt/C contributed to the improved stability.

  4. Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au

    Directory of Open Access Journals (Sweden)

    Lu-Cun Wang

    2013-02-01

    Full Text Available The catalytic properties of nanostructured Au and their physical origin were investigated by using the low-temperature CO oxidation as a test reaction. In order to distinguish between structural effects (structure–activity correlations and bimetallic/bifunctional effects, unsupported nanoporous gold (NPG samples prepared from different Au alloys (AuAg, AuCu by selective leaching of a less noble metal (Ag, Cu were employed, whose structure (surface area, ligament size as well as their residual amount of the second metal were systematically varied by applying different potentials for dealloying. The structural and chemical properties before and after 1000 min reaction were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS. The catalytic behavior was evaluated by kinetic measurements in a conventional microreactor and by dynamic measurements in a temporal analysis of products (TAP reactor. The data reveal a clear influence of the surface contents of residual Ag and Cu species on both O2 activation and catalytic activity, while correlations between activity and structural parameters such as surface area or ligament/crystallite size are less evident. Consequences for the mechanistic understanding and the role of the nanostructure in these NPG catalysts are discussed.

  5. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  6. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  7. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  8. Investigation of the Yara 58-Y1 nitrous oxide decomposition catalyst

    OpenAIRE

    Åbø, Karl Magnus

    2014-01-01

    The YARA 58-Y1 catalyst is a catalyst developed by YARA for the abatement of nitrous oxide created during nitric acid production. It uses cobalt aluminate (Co2AlO4) as its active phase supported on cerium oxide. The active material itself makes up around 2% of the final catalyst. The catalyst is effective and gives a high conversion with little deactivation over time, though the cerium oxide grade used appear to have a major impact on final catalyst performance. There would appear to be littl...

  9. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  10. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co–W/MgO catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah

    2015-09-01

    Full Text Available Bimetallic catalysts containing a series of Co/W at 40/10, 30/20, 20/30 and 10/40 wt% supported on MgO with a total metal content of 50 wt% were prepared and used for the catalytic decomposition of methane to COx-free hydrogen and multi-walled carbon nanotubes (MWCNTs. The solid fresh and exhausted catalysts were characterized structurally and chemically through XRD, TPR, BET, TGA, TEM and Raman spectroscopy. The 40%Co–10%W/MgO catalyst exhibited the highest activity for the production of both hydrogen and MWCNTs. The formation of a large amount of non-interacted Co3O4 species is considered as the main reason for the catalyst superiority in its activity. On the contrary, catalysts formulations of 20%Co–30%W and 10%Co–40%W demonstrated the formation of a large amount of hardly reducible CoWO4 and MgWO4 particles causing lower activity of these catalysts toward methane decomposition as evidenced through the XRD and TPR results.

  11. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH3 ONa) and potassium carbonate supported on alumina (K2 CO3 /Al2O3) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na2SO4 /Al2O3 has the most active sites.

  12. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T. (UCB); (ORNL)

    2011-10-28

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

  13. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli (Finland); Heikkilae, Mikko; Leskelae, Markku, E-mail: weiliuzk@yahoo.cn, E-mail: mika.sillanpaa@uef.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki (Finland)

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), {xi}-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH{sub 2}OH{center_dot}HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H{sub 2}PtCl{sub 6} to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  14. Effect of heat treatment on the physical properties of bimetallic doped catalyst, Cu-Ni/TiO2

    International Nuclear Information System (INIS)

    Post heat treatment is critical for the doped semiconductor oxide in order to improve its photocatalytic performance. Thus work had been carried out to understand the effect of different calcination temperature (400, 450 and 500°C) on the physical properties of nanosized Cu-Ni/TiO2Cu-Ni doped TiO2 nanoparticles prepared using a combined method of sol-gel and hydrothermal. The treated samples were characterized using Raman spectroscopy, Brunauer–Emmett–teller (BET) measurement, high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), and diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis). Raman analysis showed that all samples displayed anatase (101) phase of TiO2, which is in good agreement with the TEM results. BET data showed that all prepared Cu-Ni/TiO2 with different calcination temperature are mesoporous. SEM images displayed spherical particles with typical size of about 15 to 20 nm. UV-Vis spectra illustrated that the absorbance edge of all prepared Cu-Ni/TiO2 have extended to the visible region with bandgap energies (2-2.1 eV) less than the pure anatase TiO2 (3.2 eV). Calcination temperature of 450°C is considered to be the optimum as it converts the synthesized Cu-Ni/TiO2 sample to have smaller average particle size with higher surface area that lead to more absorbance in the visible region and lower bandgap energy

  15. Effect of heat treatment on the physical properties of bimetallic doped catalyst, Cu-Ni/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bashiri, Robabeh, E-mail: noranimuti-mohamed@petronas.com.my; Sufian, Suriati [Chemical Engineering Dept. Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my [Fundamental and Applied Sciences Dept., Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Post heat treatment is critical for the doped semiconductor oxide in order to improve its photocatalytic performance. Thus work had been carried out to understand the effect of different calcination temperature (400, 450 and 500°C) on the physical properties of nanosized Cu-Ni/TiO{sub 2}Cu-Ni doped TiO{sub 2} nanoparticles prepared using a combined method of sol-gel and hydrothermal. The treated samples were characterized using Raman spectroscopy, Brunauer–Emmett–teller (BET) measurement, high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), and diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis). Raman analysis showed that all samples displayed anatase (101) phase of TiO{sub 2}, which is in good agreement with the TEM results. BET data showed that all prepared Cu-Ni/TiO{sub 2} with different calcination temperature are mesoporous. SEM images displayed spherical particles with typical size of about 15 to 20 nm. UV-Vis spectra illustrated that the absorbance edge of all prepared Cu-Ni/TiO{sub 2} have extended to the visible region with bandgap energies (2-2.1 eV) less than the pure anatase TiO{sub 2} (3.2 eV). Calcination temperature of 450°C is considered to be the optimum as it converts the synthesized Cu-Ni/TiO{sub 2} sample to have smaller average particle size with higher surface area that lead to more absorbance in the visible region and lower bandgap energy.

  16. Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Gutierrez, A.; Honkela, M. L.; Krause, A. O. I.; Heeres, H. J.

    2011-01-01

    Fast pyrolysis oil (PO), the liquid product of fast pyrolysis of lignocellulosic biomass, requires upgrading to extent its application range and for instance to allow for co-feeding in an existing oil-refinery. Catalytic hydrotreatment reactions (350 degrees C, 20 MPa total pressure, and 4h reaction

  17. Autothermal reforming of simulated and commercial fuels on zirconia-supported mono- and bimetallic noble metal catalysts

    OpenAIRE

    Kaila, Reetta

    2008-01-01

    New energy sources are needed if energy supply and demand are to remain in balance. At the same time, the level of emissions needs to be reduced to minimise their contribution to the greenhouse effect. Renewable energy sources, and hydrogen (H2), have been attracting much attention, and more efficient technologies for energy recovery have been developed. Among these are fuel cells. H2 is not a source of energy but an energy carrier, which needs to be produced from a primary fuel (hydroca...

  18. Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: An in Situ XAS and DFT Study

    Energy Technology Data Exchange (ETDEWEB)

    Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel James; Anniyev, Toyli; Ogasawara, Hirohito; Larsen, Ask Hjorth; O' Grady, Christopher P.; Norskov, Jens K.; Nilsson, Anders

    2012-05-31

    We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L(3) edge reveals characteristic changes of the shape and intensity of the 'white-line' due to chemisorption of atomic hydrogen (H(ad)) at low potentials and oxygen-containing species (O/OH(ad)) at high potentials. On a uniform, two-dimensional Pt monolayer grown by Pt evaporation in ultrahigh vacuum, we observe a significant destabilization of both H(ad) and O/OH(ad) due to strain and ligand effects induced by the underlying Rh(111) substrate. When Pt is deposited via a wet-chemical route, by contrast, three-dimensional Pt islands are formed. In this case, strain and Rh ligand effects are balanced with higher local thickness of the Pt islands as well as higher defect density, shifting H and OH adsorption energies back toward pure Pt. Using density functional theory, we calculate O adsorption energies and corresponding local ORR activities for fcc 3-fold hollow sites with various local geometries that are present in the three-dimensional Pt islands.

  19. Homogeneity and elemental distribution in self-assembled bimetallic Pd-Pt aerogels prepared by a spontaneous one-step gelation process.

    Science.gov (United States)

    Oezaslan, M; Liu, W; Nachtegaal, M; Frenkel, A I; Rutkowski, B; Werheid, M; Herrmann, A-K; Laugier-Bonnaud, C; Yilmaz, H-C; Gaponik, N; Czyrska-Filemonowicz, A; Eychmüller, A; Schmidt, T J

    2016-07-27

    a commercially available unsupported Pt black catalyst. We show that the Pd-Pt aerogels possess a high utilization of catalytically active centers for electrocatalytic applications based on the nanostructured bimetallic framework. Knowledge about the homogeneity and chemical distribution of the bimetallic aerogels can help to further optimize their preparation by the spontaneous one-step gelation process and to tune their electrocatalytic reactivity. PMID:27411594

  20. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    2001-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the particles.

  1. Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation

    Science.gov (United States)

    Grabow, Lars C.; Yuan, Qiuyi; Doan, Hieu A.; Brankovic, Stanko R.

    2015-10-01

    A single layer, bi-metallic RuPt catalyst on Au(111) is synthesized using surface limited red-ox replacement of underpotentially deposited Cu and Pb monolayers though a two-step process. The resulting 2D RuPt monolayer nanoclusters have a unique core-edge structure with a Ru core and Pt at the edge along the perimeter. The activity of this catalyst is evaluated using CO monolayer oxidation as the probe reaction. Cyclic voltammetry demonstrates that the 2D RuPt core-edge catalyst morphology is significantly more active than either Pt or Ru monolayer catalysts. Density functional theory calculations in combination with infra-red spectroscopy data point towards oscillating variations (ripples) in the adsorption energy landscape along the radial direction of the Ru core as the origin of the observed behavior. Both, CO and OH experience a thermodynamic driving force for surface migration towards the Ru-Pt interface, where they adsorb most strongly and react rapidly. We propose that the complex interplay between epitaxial strain, ligand and finite size effects is responsible for the formation of the rippled RuPt monolayer cluster, which provides optimal conditions for a quasi-ideal bi-functional mechanism for CO oxidation, in which CO is adsorbed mainly on Pt, and Ru provides OH to the active Pt-Ru interface.

  2. Heterogeneous hydrogenation catalysts

    International Nuclear Information System (INIS)

    The main types of heterogeneous catalysts used for hydrogenation, the methods for their preparation, and the structure and chemistry of their surfaces are considered, as well as the catalytic activity and the mechanism of action in the hydrogenation of unsaturated and aromatic compounds, of CO, and of carbonyl compounds and in the hydrorefining of fuels. Chief attention is paid to supported Ni catalysts, to the methods for their preparation and physicochemical studies, and to the development of novel catalytic systems through modification. A novel type of catalyst for hydrogenation, viz. metal carbides, is described. Some aspects of the mechanochemical treatment of hydrogenation catalysts, including in situ methods, are discussed. Sulfide catalysts for hydrotreating are also discussed in detail. The bibliography includes 340 references.

  3. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    . Previously it has been shown that calcination of cobalt catalyst in a NO/He mixture resulted in improved catalytic activity compared to standard air calcined samples, since more homogenous cobalt particles with a narrow particle size distribution were formed. Unfortunately the C5+ selectivity decreased....... Since Mn is known to improve C5+ selectivity the addition of this promoter, combined with NO calcination, was studied. The influence of parameters such as Co:Mn ratio, drying conditions, and reduction temperatures on the catalytic performance were investigated. The promotion strategy turned out to work...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  4. 1: Redox chemistry of bimetallic fulvalene complexes; 2: Oligocyclopentadienyl complexes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. S. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.

    1993-11-01

    The electrochemistry of the heterobimetallic complexes (fulvalene)WFe(CO){sub 5} (30) and (fulvalene)WRu(CO){sub 5} (31) has been investigated. Compound 30 is reduced in two one-electron processes, and this behavior was exploited synthetically to prepare a tetranuclear dimer by selective metal reduction. Complex 31 displayed a distinction between the metals upon reoxidation of the dianion, allowing the formation of a dimer by selective metal anion oxidation. The redox behavior of 30 led to an investigation of the use of electrocatalysis to effect metal-specific ligand substitution. It was found that reduction of 30 with a catalytic amount of CpFe(C{sub 6}Me{sub 6}) (97) in the presence of excess P(OMe){sub 3} or PMe{sub 3} led to the formation of the zwitterions (fulvalene)[W(CO){sub 3}{sup {minus}}][Fe(CO)PR{sub 3}{sup +}] (107, R = P(OMe){sub 3}; 108, R = PMe{sub 3}). Compound 31 also displayed unique behavior with different reducing agents, as the monosubstituted zwitterion (fulvalene)[W(CO){sub 3}{sup {minus}}][Ru(CO){sub 2}(PMe{sub 3}){sup +}] was obtained when 97 was used while the disubstituted complex (fulvalene) [W(CO){sub 3}{sup {minus}}] [Ru(CO)(PMe{sub 3}){sub 2}{sup +}] was produced when Cp*Fe(C{sub 6}Me{sub 6}) was the catalyst. Potential synthetic routes to quatercyclopentadienyl complexes were also explored. Various attempts to couple heterobimetallic fulvalene compounds proved to be unsuccessful. 138 refs.

  5. Degradation of Bimetallic Model Electrocatalysts ___ an in situ XAS Study

    Energy Technology Data Exchange (ETDEWEB)

    Friebel, Daniel

    2011-06-22

    One of the major challenges in the development of clean energy fuel cells is the performance degradation of the electrocatalyst, which, apart from poisoning effects, can suffer from corrosion due to its exposure to a harsh environment under high potentials. In this communication, we demonstrate how interactions of Pt with a transition metal support affect not only, as commonly intended, the catalytic activity, but also the reactivity of Pt towards oxide formation or dissolution. We use two well-defined single-crystal model systems, Pt/Rh(111) and Pt/Au(111) and a unique x-ray spectroscopy technique with enhanced energy resolution to monitor the potential-dependent oxidation state of Pt, and find two markedly different oxidation mechanisms on the two different substrates. This information can be of great significance for future design of more active and more stable catalysts. We have studied the potential-induced degradation of Pt monolayer model electrocatalysts on Rh(111) and Au(111) single-crystal substrates. The anodic formation of Pt oxides was monitored using in situ high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD XAS). Although Pt was deposited on both substrates in a three-dimensional island growth mode, we observed remarkable differences during oxide formation that can only be understood in terms of strong Pt-substrate interactions throughout the Pt islands. Anodic polarization of Pt/Rh(111) up to +1.6 V vs. RHE (reversible hydrogen electrode) leads to formation an incompletely oxidized passive layer, whereas formation of PtO2 and partial Pt dissolution is observed for Pt/Au(111).

  6. Synthesis of Ag-Au bimetallic film at liquid-liquid interface and its application in vapor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Pasricha, Renu, E-mail: pasrichar@mail.nplindia.ernet.i [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India); Gupta, Shweta [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India); Sastry, M. [Tata Chemical Innovation Center, Anmol Pride, Baner Road, Pune-45 (India); Singh, Nahar; Gupta, Prabhat [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India)

    2010-11-30

    We demonstrate a novel process for preparing densely packed film of silver nanoparticles at the liquid-liquid interface followed by a transmetallation reaction with gold ion to yield a film of bimetallic nanoparticles. Films of assembled silver as well as Ag-Au bimetallic were characterized by UV-vis-spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. I-V measurement shows linear behavior for both the films with ca. five orders of magnitude drop in resistance for the Ag-Au bimetallic film. Temperature dependent I-V measurement revealed a semiconductor to metal transition after transmetallation reaction. The films where checked for their potential application in chemical vapor sensing to ammonia vapors.

  7. Characterization of platinum-iron catalysts supported on MCM-41 synthesized with rice husk silica and their performance for phenol hydroxylation

    International Nuclear Information System (INIS)

    Mesoporous material RH-MCM-41 was synthesized with rice husk silica by a hydrothermal method. It was used as a support for bimetallic platinum-iron catalysts Pt-Fe/RH-MCM-41 for phenol hydroxylation. The catalysts were prepared by co-impregnation with Pt and Fe at amounts of 0.5 and 5.0 wt.%, respectively. The RH-MCM-41 structure in the catalysts was studied with x-ray diffraction, and their surface areas were determined by nitrogen adsorption. The oxidation number of Fe supported on RH-MCM-41 was + 3, as determined by x-ray absorption near edge structure (XANES) analysis. Transmission electron microscopy (TEM) images of all the catalysts displayed well-ordered structures, and metal nanoparticles were observed in some catalysts. All the catalysts were active for phenol hydroxylation using H2O2 as the oxidant at phenol : H2O2 mole ratios of 2 : 1, 2 : 2, 2 : 3 and 2 : 4. The first three ratios produced only catechol and hydroquinone, whereas the 2 : 4 ratio also produced benzoquinone. The 2 : 3 ratio gave the highest phenol conversion of 47% at 70 deg. C. The catalyst prepared by co-impregnation with Pt and Fe was more active than that prepared using a physical mixture of Pt/RH-MCM-41 and Fe/RH-MCM-41.

  8. Characterization of platinum–iron catalysts supported on MCM-41 synthesized with rice husk silica and their performance for phenol hydroxylation

    Directory of Open Access Journals (Sweden)

    Jitlada Chumee, Nurak Grisdanurak, Arthit Neramittagapong and Jatuporn Wittayakun

    2009-01-01

    Full Text Available Mesoporous material RH-MCM-41 was synthesized with rice husk silica by a hydrothermal method. It was used as a support for bimetallic platinum−iron catalysts Pt–Fe/RH-MCM-41 for phenol hydroxylation. The catalysts were prepared by co-impregnation with Pt and Fe at amounts of 0.5 and 5.0 wt.%, respectively. The RH-MCM-41 structure in the catalysts was studied with x-ray diffraction, and their surface areas were determined by nitrogen adsorption. The oxidation number of Fe supported on RH-MCM-41 was + 3, as determined by x-ray absorption near edge structure (XANES analysis. Transmission electron microscopy (TEM images of all the catalysts displayed well-ordered structures, and metal nanoparticles were observed in some catalysts. All the catalysts were active for phenol hydroxylation using H2O2 as the oxidant at phenol : H2O2 mole ratios of 2 : 1, 2 : 2, 2 : 3 and 2 : 4. The first three ratios produced only catechol and hydroquinone, whereas the 2 : 4 ratio also produced benzoquinone. The 2 : 3 ratio gave the highest phenol conversion of 47% at 70 °C. The catalyst prepared by co-impregnation with Pt and Fe was more active than that prepared using a physical mixture of Pt/RH-MCM-41 and Fe/RH-MCM-41.

  9. Cr-free Co-Cu/SBA-15 catalysts for hydrogenation of biomass-derivedα-,β-unsaturated aldehyde to alcohol

    Institute of Scientific and Technical Information of China (English)

    Sanjay Srivastava; Pravakar Mohanty; Jigisha K. Parikh; Ajay K. Dalai; S. S. Amritphale; Anup K. Khare

    2015-01-01

    Cr-free bi-metallic SBA-15-supported Co–Cu catalysts were examined in the conversion of bio-mass-derived α-, β-unsaturated aldehyde (furfural) to value-added chemical furfuryl alcohol (FOL). Co–Cu/SBA-15 catalysts with a fixed Cu loading of 10 wt% and varying Co loadings (2.5, 5, and 10 wt%) were prepared by the impregnation method. The catalysts were characterized by X-ray dif-fraction, N2 sorption, H2 temperature-programmed reduction, scanning electron microscopy, ener-gy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, CO chemi-sorption, and inductively coupled plasma mass spectrometry. The influence of different reaction parameters such as temperature, pressure, catalyst dosage, and furfural concentration on the cata-lyst performance was evaluated. Relative to catalysts supported on amorphous silica, the current SBA-15-supported Co–Cu catalysts displayed higher performance, attaining a furfural conversion of 99% and furfuryl alcohol selectivity of 80%. The catalytic reactions were conducted in a 100-mL autoclave at 170 °C and 2 MPa H2 pressure for 4 h.

  10. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  11. Hydroprocessing SRC. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, J.C.; Garg, D.; Harris, C.F.; Znaimer, S.

    1983-09-01

    Catalyst activity and aging rate were studied in ICRC's process development unit (PDU) and at the Wilsonville Advanced Coal Liquefaction Facility under SRC-I Demonstration Plant hydroprocessing conditions. Similar studies using both high- and low-conversion modes were conducted by The Lummus Company. The studies determined variations in SRC conversion, hydrocarbon gas production, hydrogen consumption, and heteroatom removal. Samples of spent catalyst were analyzed to ascertain the reasons for catalyst deactivation. Finally, the ICRC PDU hydroprocessing results were compared with those generated at Lummus and Wilsonville pilot plants.

  12. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  13. RESOURCE-SAVING TECHNOLOGY FOR HIGH-SPEED HOT EXTRUSION OF BIMETALLIC ROD PARTS

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2016-01-01

    Full Text Available Processes of high-speed shaping changes and especially high-speed hot extrusion create efficient conditions for treatment of weakly plastic and poorly deformable materials which are widely used in tool making facilities. Due to the fact that high-speed stamping provides accurate billets with increased mechanical properties, it can be used as a technological process for manufacturing rod parts of die tooling operating under conditions of increased loads and wear. The purpose of the given paper is to carry out experimental investigations on the possibility to obtain a bimetallic rod tool where structural steel is considered as a basis of the tool and a working cavity is made of high-alloyed tool steel with its saving up to 90 %. A scheme of loading and geometry of conjugated surfaces of the composite billet have been developed in the paper. Technology for obtaining bimetallic rod parts of die tooling with deformation at speed of vд = 70–80 m/s and composite billet temperature of Т = (1150±20 ºС has been experimentally tested with formation of a compound due to plastic flow of two billet parts on contact surface with removal of surface oxide films. Microstructures of the bimetallic compounds obtained with the help of high-speed hot extrusion method for compositions of structural and high-alloy steels have been investigated and their high quality has been proved during the investigations. Dependences of micro-hardness distribution have been established outbound two steel contact plane in the zone of connection that are characterized by a minimum micro-hardness value in the connection joint. Availability of more plastic zone in the contact plane contributes to reduction of residual stresses due to their relaxation in this zone and higher joint strength.

  14. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  15. Preparation of Ag{sub core}/Au{sub shell} bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); Toshima, Naoki; Takasaki, Kanako [Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884 (Japan); Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2014-02-15

    Graphical abstract: The synthesis, characterization and catalytic activities for glucose oxidation of AgAu bimetallic nanoparticles (BNPs) with size of less than 2 nm are reported. The catalytic activity of Ag{sub 10}Au{sub 90} BNPs was about two times higher than that of Au NPs, even the BNPs have a larger particle size than that of Au NPs. -- Highlights: • Ag{sub core}/Au{sub shell} BNPs with size of less than 2.0 nm were prepared. • No any reducing reagents and lights were used for the preparation of the BNPs. • The catalytic activity of the BNPs is about two times higher than that of Au NPs. -- Abstract: AgAu bimetallic nanoparticles (BNPs), one of the most extensively studied bimetallic systems in the literatures, could have various structures and compositions depending on their preparation conditions. In the present work, catalytically highly active PVP-protected Ag{sub core}/Au{sub shell} BNPs of about 2.5 nm in diameter were fabricated from physical mixtures of aqueous dispersions of Au nanoparticles and Ag{sup +} ions under dark conditions without using any reducing agents. The prepared Ag{sub core}/Au{sub shell} BNP colloidal catalysts, which possessed a high activity for aerobic glucose oxidation, were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), Inductive coupled plasma emission spectrometer (ICP), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Energy disperse spectroscopy (EDS) in High-resolution scanning transmission electron microscopy (HR-STEM). The highest activity (11,360 mol-glucose h{sup −1} mol-metal{sup −1}) was observed for the BNPs with the Ag/Au atomic ratio of 1/9, the TOF value of which is about two times higher than that of Au nanoparticles with the particle size of 1.3 nm. The enhanced catalytic activity of the prepared Ag{sub core}/Au{sub shell} BNPs compared to Au NPs can be ascribed to the presence of negatively charged Au atoms resulted from electron donations

  16. Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water

    Institute of Scientific and Technical Information of China (English)

    TONG Shao-ping; WEI Hong; MA Chun-an; LIU Wei-ping

    2005-01-01

    Detoxification of chlorinated organic compounds via reaction with nickel/iron powder was implemented in aqueous solution. Compared to iron, nickel/iron bimetallic powder had higher hydrodechlorination activities for both atrazine (ATR) and p-chlorophenol (pCP); nickel/iron (2.96%, w/w) was shown to have the largest specific surface area and the optimum proportion for the dechlorination of both ATR and pCP. Electrochemical measurements showed that the adsorbed hydrogen atom on the nickel must have been the dominant reductive agent for the dechlorination of both ATR andpCP in this system.

  17. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  18. TEM and EELS studies of microwave-irradiation synthesis of bimetallic platinum nanocatalysts

    International Nuclear Information System (INIS)

    Microwave-irradiation (MW) synthesis of nanostructured materials provides for the synthesis of metal nanoparticles, using fast and uniform heating rates. This procedure affords better control of the shape and size of the nanoparticles when compared to conventional methods. In this work, microwave-irradiation was used to produce platinum-cobalt (Pt-Co) and platinum-nickel (Pt-Ni) nanoparticles for use as electrocatalysts in the methanol oxidation reaction. High resolution TEM imaging and EELS studies revealed that these bimetallic nanoparticles form islands or hetero-structures

  19. Bimetallic PtxCoy nanoparticles with curved faces for highly efficient hydrogenation of cinnamaldehyde

    Science.gov (United States)

    Gu, Yan; Zhao, Yonghui; Wu, Panpan; Yang, Bo; Yang, Nating; Zhu, Yan

    2016-05-01

    The control of the curved structure of bimetallic nanocrystals is a challenge, due to the rate differential for atom deposition and surface diffusion of alien atomic species on specific crystallographic planes of seeds. Herein, we report how to tune the degree of concavity of bimetallic PtxCoy concave nanoparticles using carboxylic acids as surfactants with an oleylamine system, leading to the specific crystallographic planes being exposed. The terminal carboxylic acids with a bridge ring or a benzene ring serving as structure regulators could direct the formation of curved faces with exposed high-index facets, and long-chain saturated fatty acids favored the production of curved faces with exposed low-index facets, while long-chain olefin acids alone benefited the formation of a flat surface with exposed low-index planes. Furthermore, these PtxCoy particles with curved faces displayed superior catalytic behaviour to cinnamaldehyde hydrogenation when compared with PtxCoy with flat faces. PtxCoy nanoparticles with curved faces exhibited over 6-fold increase in catalytic activity compared to PtxNiy nanoparticles with curved faces, and near 40-fold activity increase was observed in comparison with PtxFey nanoparticles with curved faces.The control of the curved structure of bimetallic nanocrystals is a challenge, due to the rate differential for atom deposition and surface diffusion of alien atomic species on specific crystallographic planes of seeds. Herein, we report how to tune the degree of concavity of bimetallic PtxCoy concave nanoparticles using carboxylic acids as surfactants with an oleylamine system, leading to the specific crystallographic planes being exposed. The terminal carboxylic acids with a bridge ring or a benzene ring serving as structure regulators could direct the formation of curved faces with exposed high-index facets, and long-chain saturated fatty acids favored the production of curved faces with exposed low-index facets, while long

  20. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Lili Huang; Schobert, H.H.; Chunshan Song

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  1. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Final technical progress report, September 1, 1988--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.

  2. Catalyst for microelectromechanical systems microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  3. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  4. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  5. STUDIES ON HYDROISOMERIZATION CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    C5/C6 alkane hydroisomerization is one of the most economical technologies for octane enhancement and has potential application in China in the next decade. The work about choice of hydroisomerization catalyst systems and scale-up in catalyst preparation was presented. Performance and regeneration behaviors tested in different laboratory reactors and a 1000 t/a pilot plant were discussed, which offers the information for commercial use of this process. Mechanism for coke formation was also proposed.

  6. New Catalysts for ROMP

    Institute of Scientific and Technical Information of China (English)

    H. Berke; C. Frech; A. Lhamazares; O. Blacque; H.W. Schmalle; C. Adlhart; P. Chen

    2005-01-01

    @@ 1Introduction Ring Opening Metathesis Polymerization (ROMP) is based on the olefin metathesis reaction, which requires transition metal catalysts. Mainly molybdenum, tungsten and ruthenium based catalysts have up to now been used. The "in-between" metal rhenium was only rarely applied in olefin metathesis reactions, and not at all in ROMP processes.We have found that cationic phosphine substituted dinitrosyl rhenium complexes[1]1a and 1b effectively catalyze ROMP of norbonene, dicyclopentadiene and of cyclooctene. See Fig. 1.

  7. A comparative study on the influence of the platinum catalyst in poly(dimethylsiloxane) based networks synthesis

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Poulsen, Julie Øblom; Skov, Anne Ladegaard;

    2009-01-01

    The aim of the project is to find the best of three Pt catalysts and their appropriate quantity in order to obtain soft networks in one hour at room temperature. How the choice of catalyst influences the final elastomeric properties is also evaluated. The differences between the catalysts are the...

  8. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  9. Methanol-driven structuring of Au-Pt bimetallic nanoclusters on a thin film of Al2O3/NiAl(100)

    Science.gov (United States)

    Ho, Chiun-Yu; Patil, Rahul B.; Wang, Chao-Chuan; Chao, Chen-Sheng; Li, Yu-Da; Hsu, Hsing-Chung; Luo, Meng-Fan; Lin, Yin-Chang; Lai, Yu-Lin; Hsu, Yao-Jane

    2012-08-01

    The adsorption of methanol altered structures of Au-Pt bimetallic nanoclusters on a thin film of Al2O3/NiAl(100). Methanol adsorbed on the Au-Pt intermixed bimetallic clusters, of which the surfaces consist of both Au and Pt, induced a segregation of Au from Pt. This segregation state was unstable, as the clusters returned to the initial Au-Pt intermixed state upon desorption or decomposition of adsorbed methanol. Ethanol and cyclohexene were adsorbed on Au-Pt bimetallic clusters for comparisons, indicating that the interaction of the hydroxyl group of methanol with the clusters accounts for the structural modifications.

  10. Properties of two-dimensional insulators: A DFT study of bimetallic oxide CrW2O9 clusters adsorption on MgO ultrathin films

    Science.gov (United States)

    Zhu, Jia; Zhang, Hui; Zhao, Ling; Xiong, Wei; Huang, Xin; Wang, Bin; Zhang, Yongfan

    2016-08-01

    Periodic density functional theory calculations have been performed to study the electronic properties of bimetallic oxide CrW2O9 clusters adsorbed on MgO/Ag(001) ultrathin films (activities with respect to that of pure W3O9 clusters. As a consequence, present results reveal that the adsorption of bimetallic oxide CrW2O9 clusters on the MgO/Ag(001) ultrathin films provide a new perspective to tune and modify the properties and chemical reactivity of bimetallic oxide adsorbates as a function of the thickness of the oxide films.

  11. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tun-Dong; Fan, Tian-E [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Shao, Gui-Fang, E-mail: gfshao@xmu.edu.cn [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Zheng, Ji-Wen [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Wen, Yu-Hua [Institute of Theoretical Physics and Astrophysics, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2014-08-14

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs.

  12. Bimetallic oxamato complexes synthesized into mesoporous matrix as precursor to tunable nanosized oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kalinke, Lucas H.G. [Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, GO 74001-970 (Brazil); Instituto Federal de Goiás—IFG, Anápolis, GO (Brazil); Stumpf, Humberto O. [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais—UFMG, Belo Horizonte, MG (Brazil); Mazali, Italo O. [Instituto de Química, Universidade Estadual de Campinas—UNICAMP, Campinas, SP (Brazil); Cangussu, Danielle, E-mail: danielle_cangussu@ufg.br [Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, GO 74001-970 (Brazil)

    2015-10-15

    Highlights: • The bimetallic oxamato complexes as single-source precursor. • We prepared into a porous silica glass tunable nanosized oxide powders. • X-ray diffraction shows the formation of CeO{sub 2}/CuO and spinel cobaltite. • The different number of IDC allows control of the nanoparticle size. - Abstract: The bimetallic complexes were employed to prepare into a porous silica glass tunable nanosized oxide powders through the single source precursor (SSP) method. These materials were prepared by first anchoring of [Cu(opba)]{sup 2−} [opba = ortho-phenylenebis(oxamato)], second by reaction in situ with second metal [Co(II) or Ce(III)] and followed by a thermal treatment. The different number of impregnation–decomposition cycles (IDC) allows control of the nanoparticle size. X-ray diffraction shows the formation of mixture CeO{sub 2}–CuO and spinel copper cobaltite. Raman spectroscopy confirmed the formation of such phases. Transmission electron microscopy images revealed that spinel cobaltite particles (8 IDC) present a mean size of about 9 nm, whereas for the CeO{sub 2}–CuO phase the particle diameters are 4 nm (2 IDC) and 8 nm (6 IDC). For CeO{sub 2}–CuO the diffuse reflectance spectroscopy indicates a consistent red shift in band gap from 3.41 to 2.87 eV with increasing of particle size due to quantum confinement effect.

  13. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs

  14. A bimetallic nanocomposite electrode for direct and rapid biosensing of p53 DNA plasmid

    Indian Academy of Sciences (India)

    Ezat Hamidi-Asl; Jahan-Bakhsh Raoof; Nahid Naghizadeh; Simin Sharifi; Mohammad Saeid Hejazi

    2015-09-01

    A new label-free electrochemical DNA biosensor is presented based on carbon paste electrode (CPE) modified with gold (Au) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode. The proposed sensor was made by immobilization of 15-mer single stranded oligonucleotide probe related to p53 gene for detection of DNA plasmid samples. The hybridization detection relied on the alternation in the guanine oxidation signal following hybridization of the probe with complementary genomic DNA.The technique of differential pulse voltammetry (DPV) was used for monitoring guanine oxidation. To optimize the performance of the modified CPE, different electrodes were prepared in various percentages of Au and Pt nanoparticles. The modified electrode containing 15% Au/Pt bimetallic nanoparticles (15% Au/Pt-MCPE) was selected as the best working electrode. The selectivity of the sensor was investigated using plasmid samples containing non-complementary oligonucleotides. The detection limit of the biosensor was studied and calculated to be 53.10 pg L−1.

  15. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    Science.gov (United States)

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). PMID:22071516

  16. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    -particles dispersed in water which also contains the catalyst precursor nitrate salt. This support-catalyst precursor fluid must have a sufficiently low viscosity but high elastic modulus (high extensional viscosity to form films and bubbles when exposed to processing energy sources such as microwave, thermal, ultra-sound or UV-radiation or their combination. The micro-to-nano structures of the catalyst system are essentially formed at an early stage of energy input. It is shown that the primary particles of silica are transformed to a proto-silica particle state and form lamellar structures with the catalyst precursor. While the nano-structure is forming, water is evaporated leaving a highly porous solid support-catalyst precursor which then undergoes decomposition to form a silica-catalyst oxide system. The final catalyst system is obtained after catalyst oxide reduction. Although the XRD-based catalyst size changes slightly during the subsequent heat treatments, the nano-structure of the catalyst system remains substantially unaltered as evaluated through TEM images. However, if the catalyst preparation is carried out without film formation, the XRD-based catalyst size increases substantially by a factor of 2–8, with no significant alteration in surface area.

  17. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi;

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir...

  18. XRD (X-Ray Diffraction) and nitrogen adsorption characterization of Ni-Pt/mordenite catalysts; Caracterizacao por EDX (Espectrometria de Raios-X), DRX (Difracao de Raios-X) e adsorcao de nitrogenio de catalisadores Ni/Pt/mordenita visando sua aplicacao na isomerizacao de n-hexano

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Geovana do Socorro V.; Sousa, Bianca V.; Rodrigues, Meiry Glaucia F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    The search for molecules of high octane arose great interest in the isomerization processes. Catalysts to the zeolite base have been wide developed for the n-paraffins isomerization. In this work, bimetallic bifunctional catalysts supported on Mordenite zeolite were prepared samples containing 60Pt40Ni (wt.%) metal (Pt). The catalysts were obtained by competitive ion exchange using aqueous solutions of [Pt(NH{sub 3}){sub 4}]Cl{sub 2} and Ni(NH{sub 3}){sub 6}]Cl{sub 2} complexes. The EDS characterization analyses showed incorporation of the nickel and platinum mordenite zeolite. The diffractograms showed competitive ion exchange and calcination processes did not provoke appreciable changes in the zeolitic support framework. The peaks attributed to nickel and platinum oxides was possible to observe in the bimetallic catalysts 60Ni40Pt/MOR. The results of the N{sub 2} physical adsorption of the 60Ni40Pt/MOR showed that it did not have modification in the superficial area of the catalysts. (author)

  19. Hydrogen purification for fuel cells using gold catalysts promoted with copper; Purificacao de hidrogenio para celulas a combustivel utilizando catalisadores de ouro promovidos com cobre

    Energy Technology Data Exchange (ETDEWEB)

    Mozer, Thiago Simonato; Passos, Fabio Barboza [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Quimica e de Petroleo. Lab. de Reatores, Cinetica e Catalise (RECAT)]. E-mail: mozer@vm.uff.br

    2008-07-01

    The selective CO oxidation in the presence of H2 was investigated on Au catalysts promoted with different amounts of Cu. Au catalysts were prepared by the deposition-precipitation method and exhibited a satisfactory activity at 50 deg C with adequate selectivity. The addition of Cu to Au/Al{sub 2}O{sub 3} catalysts caused an increase in the selectivity to CO oxidation due to an interaction between Au and Cu on the surface of the catalysts. However, this beneficial effect was limited to an optimal content of Cu. Through the temperature programmed reduction (TPR) and ultraviolet visible diffuse reflectance spectroscopy (UV-vis DRS) techniques, the formation of small bimetallic Au-Cu particles was verified. The best result was obtained with 2.5% Au-0.5% Cu/Al{sub 2}O{sub 3} catalyst, the CO conversion was higher than 95% and the selectivity was around 70% at 50 deg C. The catalysts showed stable catalytic activity during 24 hours time -on-stream. In the presence of H{sub 2}O and CO{sub 2}, a small decrease in the CO conversion was observed in the stability test, probably due to the deactivation caused by the CO{sub 2} presence. (author)

  20. Mesoporous synthetic clays : synthesis, characterization, and use as HDS catalyst supports.

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, C. A. A.; Carrado, K. A.; Marshall, C. L.; Seifert, S.; Wei, D.; Xu, L.

    1999-08-10

    Mesoporous synthetic clays (MSCs) are obtained when polymer-containing silicate gels are hydrothermally crystallized to form layered magnesium silicate hectorite clays containing polymers that are incorporated in situ. Polyvinylpyrrolidone of several average molecular weights ranging from 10K to 1.3M, in gel loadings varying from 5-30 wt%, were used. The organic polymer template molecules were removed from synthetic polymer-clay complexes via calcination. Pore radii, surface areas, and pore volumes of the resulting porous inorganic networks were then measured. For the most part there is a direct correlation between both PVP molecular weight and polymer loading on the diameter of the average pore. In addition to conventional techniques, the polymer-clay materials were also characterized by small angle x-ray scattering to ascertain the disposition of the polymeric matrix. The MSC materials after calcination were examined as potential supports for hydrodesulfurization (HDS). They were loaded with a bimetallic Co/Mo catalyst system for comparison with a commercial Co/Mo alumina catalyst. Dibenzothiophene (DBT) diluted with hexadecane (0.75 wt% S) was utilized as a liquid feed for the HDS tests. This feed was chosen as a deep HDS test of a heavy model oil. The pore diameters of the MSC catalysts were found to have a strong effect on both the HDS activity and selectivity.

  1. Preparation and characterization of silica-supported Ni/Pt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Raab, C.; Lercher, J.A. (Universitaet Wien, Vienna (Austria)); Goodwin, J.G. Jr. (Univ. of Pittsburgh, PA (USA)); Shyu, J.Z. (Amoco Research Center, Naperville, IL (USA))

    1990-04-01

    The formation of a series of Ni/Pt catalysts was investigated by means of temperature programmed reduction (TPR) of the chloride precursor, hydrogen chemisorption, x-ray diffraction, scanning electron microscopy, XPS, and magnetic measurements. An alloy between Pt and Ni was formed. The minority constituent of the series of bimetallic catalysts was always found to be quantitatively alloyed or in close contact with the more abundant metal. For several samples, the stoichiometric NiPt compound was observed. With Ni-rich samples a nonstoichiometric alloy (rich in Ni) was concluded to exist. At all concentration levels the presence of Pt facilitated the reduction of Ni{sup 2+} significantly. Temperature-programmed reduction of the Ni/Pt catalyst with 50 mol% and higher concentrations of Pt did not differ from that of pure Pt. Based on XPS and magnetic measurements it is concluded that a constant fraction (approximately 10-15%) of Ni was highly dispersed and interacted strongly with the support. 30 refs.

  2. Nanostructured Ni2 P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane.

    Science.gov (United States)

    Peng, Cheng-Yun; Kang, Lei; Cao, Shuang; Chen, Yong; Lin, Zhe-Shuai; Fu, Wen-Fu

    2015-12-21

    Ammonia-borane (AB) is a promising chemical hydrogen-storage material. However, the development of real-time, efficient, controllable, and safe methods for hydrogen release under mild conditions is a challenge in the large-scale use of hydrogen as a long-term solution for future energy security. A new class of low-cost catalytic system is presented that uses nanostructured Ni2 P as catalyst, which exhibits excellent catalytic activity and high sustainability toward hydrolysis of ammonia-borane with the initial turnover frequency of 40.4 mol(H2)  mol(Ni2P) (-1)  min(-1) under air atmosphere and at ambient temperature. This value is higher than those reported for noble-metal-free catalysts, and the obtained Arrhenius activation energy (Ea =44.6 kJ mol(-1) ) for the hydrolysis reaction is comparable to Ru-based bimetallic catalysts. A clearly mechanistic analysis of the hydrolytic reaction of AB based on experimental results and a density functional theory calculation is presented. PMID:26545954

  3. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir, E-mail: sudhirk@barc.gov.in

    2012-10-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: Black-Right-Pointing-Pointer First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. Black-Right-Pointing-Pointer Red cabbage extract has better reducing properties than green cabbage extract. Black-Right-Pointing-Pointer Red cabbage extract can reduce metal ions at any pH. Black-Right-Pointing-Pointer Reduction of metal ions can have important consequences in the study of soil chemistry.

  4. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    International Nuclear Information System (INIS)

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: ► First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. ► Red cabbage extract has better reducing properties than green cabbage extract. ► Red cabbage extract can reduce metal ions at any pH. ► Reduction of metal ions can have important consequences in the study of soil chemistry.

  5. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Konsolakis, Michalis, E-mail: mkonsol@science.tuc.gr [School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Crete (Greece); Ioakeimidis, Zisis [Department of Mechanical Engineering, University of Western Macedonia, Bakola and Sialvera, GR-50100 Kozani (Greece)

    2014-11-30

    Highlights: • The surface chemistry of Cu-based catalysts is adjusted by metal-support or metal–metal interactions. • Three series of catalysts, i.e., Cu/REOs, Cu/Ce{sub 1−x}Sm{sub x}O{sub δ} and Cu–Co/CeO{sub 2} were prepared. • The local structure of Cu sites is remarkably affected by support or active phase modification. • Useful insights toward the fundamental understanding of Cu-catalyzed reactions are provided. - Abstract: Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal–metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO{sub 2}, La{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}), or (ii) ceria-based mixed oxides (Ce{sub 1−x}Sm{sub x}O{sub δ}) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu–Co/CeO{sub 2}). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal–metal interactions are provided, paving the way for real-life industrial applications.

  6. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    Directory of Open Access Journals (Sweden)

    Irene Lock Sow Mei

    2016-08-01

    Full Text Available Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd as a promoter onto Ni supported on alumina catalyst has been investigated by using co-precipitation technique. The introduction of Pd promotes better catalytic activity, operational lifetime and thermal stability of the catalyst. As expected, highest methane conversion was achieved at reaction temperature of 800 °C while the bimetallic catalyst (1 wt.% Ni -1wt.% Pd/Al2O3 gave the highest methane conversion of 70% over 15 min of time-on-stream (TOS. Interestingly, the introduction of Pd as promoter onto Ni-based catalyst also has a positive effect on the operational lifetime and thermal stability of the catalyst as the methane conversion has improved significantly over 240 min of TOS. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 6th February 2016; Accepted: 6th March 2016 How to Cite: Mei, I.L.S., Lock, S.S.M., Vo, D.V.N., Abdullah, B. (2016. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 191-199 (doi:10.9767/bcrec.11.2.550.191-199 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.550.191-199

  7. Supported organoiridium catalysts for alkane dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  8. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    OpenAIRE

    Jensen, Anker Degn; Castellino, Francesco; Rams, Per Donskov; Pedersen, Jannik Blaabjerg; Putluru, Siva Sankar Reddy

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treat...

  9. Knowledge Based Catalyst Design by High Throughput Screening of Model Reactions and Statistical Modelling Conception de catalyseur par criblage à haut débit de réactions modèles et modélisation statistique

    Directory of Open Access Journals (Sweden)

    Morra G.

    2013-08-01

    Full Text Available Material design and synthesis are key steps in the development of catalysts. They are usually based on an empiric and/or theoretical approach. The recently developed high-throughput experimentation can accelerate optimisation of new catalytic formulations by systematic screening in a predefined study domain. This work aims at developing a QSAR (Quantitative Structure Activity Relationship method based on kinetic and mechanistic descriptors for metal and acid catalysis. Physico-chemicalfeatures of approximately sixty bimetallic catalysts have been measured according to their performance in two model reactions: xylene hydrogenation for catalysis on metallic sites and isomerisation of 3,3-dimethyl-l-butene for catalysis on acid sites. These descriptors were finally used to model the performances of around twenty catalysts for a more complex reaction: n-decane dehydrogenation. La définition et la préparation de matériaux sont des étapes clés dans le développement de catalyseurs. Celles-ci peuvent être effectuées de façon empirique et/ou à partir de bases théoriques. Par ailleurs, l’expérimentation à haut débit, technologie récente, permet d’accélérer l’optimisation de formulations catalytiques par exemple par criblage systématique d’un espace d’étude prédéfini. Cet article a pour objet de développer une méthode QSAR (Quantitative Structure Activity Relationship basée sur la recherche de descripteurs cinétiques et mécanistiques, dans le domaine de la catalyse acide et métallique supportée. Des caractéristiques physico-chimiques (descripteurs d’une soixantaine de catalyseurs bimétalliques ont été mesurées suivant leur performance dans deux réactions modèles : l’hydrogénation de ro-xylène pour rendre compte de la catalyse par le métal et l’isomérisation du diméthyl-3,3butène-1 pour la catalyse par les sites acides. Ces descripteurs ont été ensuite mis à profit pour modéliser les performances

  10. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Science.gov (United States)

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  11. Development of New Generation Catalysts for Selective Hydrodesulfurization of FCC Naphtha

    Institute of Scientific and Technical Information of China (English)

    Chu Yang; Li Mingfeng; Li Huifeng; Qu Jinhua; Nie Hong; Li Dadong

    2009-01-01

    The influence of active metal components of catalyst, additives and catalyst preparation method on the reactiv-ity of catalyst for selective hydrodesulfurization (HDS) of FCC naphtha was investigated, and the RSDS-21 catalyst with high HDS performance and the RSDS-22 catalyst with high selectivity were developed by RIPP. The composite loading of a new series of catalysts for selective HDS of FCC gasoline has demonstrated excellent desulfurization activity and selectivity and can under conventional hydrotreating conditions manufacture clean gasoline product meeting the national Ⅳ emission standard and the Euro Ⅴ emission standard with less loss in antiknock index. The finalized new series of FCC catalysts upon being adopted for selective HDS of FCC naphtha have good adaptability to different feedstocks along with good stability.

  12. Challenges for new electro catalysts development for the ORR in acid medium for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Laboratory of New Materials for Electrochemistry and Energy

    2010-07-01

    The low kinetic rate at the oxygen reduction reaction (ORR) of platinum (Pt) electrocatalysts in acid mediums is one of the most limiting factors for the industrial mass production of proton exchange membrane fuel cells (PEMFCs). New electrocatalyst materials are currently being investigated by researchers as a replacement for Pt include lignited ruthenium-based chalcogenides; pyrolized iron (Fe) porphyrins; metal carbides; and molybdenum (Mo), iridium (Ir) and cobalt (Co) based catalysts. Co-polypyrrole is also being considered as a non-noble catalyst. This presentation discussed the main parameters that limit the ORR of non-noble catalysts in PEMFC applications. Palladium (Pa) based bi-metallic alloys were investigated. The study showed that Pd-alloy catalysts exhibit excellent activity for the ORR in acidic media. The highest electrocatalytic activity was demonstrated in an alloy composition of 60 per cent Pd. The cost of Pd was compared to the cost of Pt. The intrinsic metal surface properties of Pd-alloys were also discussed, and the onset potential of the ORR was compared for various alloys. 31 refs., 1 tab.

  13. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts.

    Science.gov (United States)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-21

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. PMID:26690843

  14. The role of adsorbed hydrogen species in the dehydrogenation and hydrocracking of saturated hydrocarbons on supported metal catalysts

    Science.gov (United States)

    Babenkova, L. V.; Naidina, I. N.

    1994-07-01

    The role of certain hydrogen absorption complexes in the dehydrogenation and hydrocracking of hydrocarbons on low-percentage one-component, (Pt, Pd/Al2O3) and bimetallic (Pd-Co, Pd-Ce, Pt-Co, Pt-Sn/Al2O3) catalysts is discussed. It is shown that the combination of metals in reduced forms and forms oxidised to different extents on the catalyst surfaces is responsible for their high capacity for the chemisorption of hydrogen, the wide range of its energetic inhomogeneity, and the high activity of the catalysts in the conversion of saturated hydrocarbons. Catalysts containing on the surface mainly sites for the type Hδ- chemisorption are the most active in the dehydrogenation of hydrocarbons, whereas specimens chemisorbing hydrogen mainly in the Hδ+ form are the most active in the hydrockracking of hydrocarbons. It is concluded that the strongly bound atomic hydrogen Hδ+ plays a dual role, since it not only participates directly in the dehydrogenation reaction but also promotes the reduction of the electron-deficient surface centres, which optimises the number of centres for the activation of C-H bonds. The bibliography includes 75 references.

  15. Olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S.G.; Banks, R.L.

    1986-05-20

    A process is described for preparing a disproportionation catalyst comprising admixing a catalytically effective amount of a calcined and activated catalyst consisting essentially of at least one metal oxide selected from molybdenum oxide and tungsten oxide and a support containing a major proportion of silica or alumina with a promoting amount of a methylating agent selected from the group consisting of dimethyl sulfate, dimethylsulfoxide, trimethyloxonium tetrafluorborate, methyl iodide, and methyl bromide, and subjecting same to inert atmospheric conditions for the methylating agent to promote the activity of the calcined molybdenum and tungsten oxides for the disproportionation of olefins.

  16. Aerogel derived catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  17. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...... and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...

  18. Optimization of pyrochlore catalysts for the dry reforming of methane

    Science.gov (United States)

    Polo Garzon, Felipe

    . Computational analysis of one of the RDSs (the CHO dehydrogenation step) suggested Pd as an effective co-dopant to reduce the activation barrier of this step. This bimetallic Rh-Pd-substituted lanthanum zirconate pyrochlore (Rh-Pd-LZ) was synthesized, characterized and tested. The Rh-Pd-LZ catalyst successfully increased conversions at high temperatures while providing H 2 to CO ratios close to unity; thus fostering DRM and inhibiting the competing reaction, the reverse water gas shift reaction (RWGS, CO2 + H2 [special character omitted] CO + H2O). The Rh-Pd-LZ catalyst outperformed the initial catalyst, the LRhZ, at high temperatures.

  19. Determination of platinum in Adam's catalyst

    Directory of Open Access Journals (Sweden)

    Anđelić Brankica Č.

    2003-01-01

    Full Text Available Adams's catalyst PtO2 x H2O has an important application in the chemical industry. The method for determination of platinum in Adam's catalyst has been elaborated. It includes the combination of cupellation and gravimetry methods. Considering that platinum oxide is practically insolvent in mineral acids, the sample is alloyed with lead by cupellation method and the separated balls solution procedure has been tested. The ball, platinum and lead alloy, is soluble in mineral acid. The platinum was settled by amonium chloride from solution, and obtained deposit treated by amonium acetate with addition of ethanol for lead removing. The retained platinum was determined by atomic absorption spctrophotometry method in the filtrate (after the platinum separation and the final result of platinum content corrected. It was shown how the combined gravimetric and AAS-Pt determination methods might be used for solving determination of Pt content in practically unsoluble sample of catalyst. Applied procedure enables testing the catalyst quality and proving its characteristics required for chemical industry.

  20. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  1. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  2. Design of Embedded Metal Catalysts via Reverser Micro-Emulsion System: a Way to Suppress Catalyst Deactivation by Metal Sintering

    KAUST Repository

    AlMana, Noor

    2016-06-19

    The development of highly selective and active, long-lasting, robust, low-cost and environmentally benign catalytic materials is the greatest challenge in the area of catalysis study. In this context, core-shell structures where the active sites are embedded inside the protecting shell have attracted a lot of researchers working in the field of catalysis owing to their enhanced physical and chemical properties suppress catalyst deactivation. Also, a new active site generated at the interface between the core and shell may increases the activity and efficiency of the catalyst in catalytic reactions especially for oxide shells that exhibit redox properties such as TiO2 and CeO2. Moreover, coating oxide layer over metal nanoparticles (NPs) can be designed to provide porosity (micropore/mesopore) that gives selectivity of the various reactants by the different gas diffusion rates. In this thesis, we will discuss the concept of catalyst stabilization against metal sintering by a core-shell system. In particular we will study the mechanistic of forming core-shell particles and the key parameters that can influence the properties and morphology of the Pt metal particle core and SiO2 shell (Pt@SiO2) using the reverse micro-emulsion method. The Pt@SiO2 core-shell catalysts were investigated for low-temperature CO oxidation reaction. The study was further extended to other catalytic applications by varying the composition of the core as well as the chemical nature of the shell material. The Pt NPs were embedded within another oxide matrix such as ZrO2 and TiO2 for CO oxidation reaction. These materials were studied in details to identify the factors governing the coating of the oxide around the metal NPs. Next, a more challenging system, namely, bimetallic Ni9Pt NPs embedded in TiO2 and ZrO2 matrix were investigated for dry reforming of methane reaction at high temperatures. The challenges of designing Ni9Pt@oxide core-shell structure with TiO2 and ZrO2 and their tolerance

  3. New epoxide polymers generated by metal organic catalysts (chelates) and their application in composite structures. Pt. 2. Final report; Neue Epoxidpolymere durch Metallorgano-Katalysatoren und ihr Einsatz in Faserverbundstrukturen. T. 2. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Merz, T.; Raeckers, B.

    1999-08-01

    Epoxy resins cured by catalysts based on chelate compound can offer an additional potential concerning storage and heat stability, toughness and curing characteristic. To prove these advantages and to prepare a serial application was target of the project, by which physico-chemical investigations, determination of mechanical properties and component tests were used. Besides an improvement of storage time and a minimized curing cycle a satisfactory processing behaviour and mechanical properties approaching currently used aircraft materials became evident. Serial production of fibre reinforced components for automotive industry is basically possible, because all requirements concerning costs, performance and station time were met. The results can also be used for new applications in other technical fields like apparatus construction or sporting goods industry. (orig.) [German] Mittels Metallorganokatalysatoren gehaertete Epoxidharze versprechen gegenueber herkoemmlichen Systemen zusaetzliche Potentiale hinsichtlich Lager- und Waermestabilitaet sowie Zaehigkeit und Haertungscharakteristik. Diese nachzuweisen und eine zukuenftige Serienanwendung vorzubereiten war Ziel des Projektes, wozu physico-chemische Untersuchungen, mechanische Kennwertermittlungen und Bauteilversuche dienten. Neben verbesserter Lagerstabilitaet und minimierten Haertungszyklen konnten gute Verarbeitungseingeschaften und ein Leistungsprofil nachgewiesen werden, das nahe an das heutiger Luftfahrtwerkstoffe heranreicht. Die Serienherstellung von Faserverbundbauteilen im Automobilbau ist prinzipiell moeglich, da durch die entwickelten Katalysatoren alle Vorgaben hinsichtlich Kosten, Leistungsfaehigkeit und Taktzeiten erreicht werden konnten. Hierdurch koennen sich auch fuer andere Bereiche (z.B. Geraetebau, Sportartikelindustrie) neue Anwendungsmoeglichkeiten eroeffnen. (orig.)

  4. New epoxide polymers generated by metal organic catalysts (chelates) and their application in composite structures. Pt. 1. Final report; Neue Epoxidpolymere durch Metallorgano-Katalysatoren und ihr Einsatz in Faserverbundstrukturen. T. 1. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Merz, T.; Raeckers, B.; Boettcher, A.; Haessler, R.; Renner, M.; Schmidtke, K.

    1999-08-01

    Epoxy resins cured by catalysts based on chelate compound can offer an additional potential concerning storage and heat stability, toughness and curing characteristic. To prove these advantages and to prepare a serial application was target of the project, by which physico-chemical investigations, determination of mechanical properties and component tests were used. Besides an improvement of storage time and a minimized curing cycle a satisfactory processing behaviour and mechanical properties approaching currently used aircraft materials became evident. Serial production of fibre reinforced components for automotive industry is basically possible, because all requirements concerning costs, performance and station time were met. The results can also be used for new applications in other technical fields like apparatus construction or sporting goods industry. (orig.) [German] Mittels Metallorganokatalysatoren gehaertete Epoxidharze versprechen gegenueber herkoemmlichen Systemen zusaetzliche Potentiale hinsichtlich Lager- und Waermestabilitaet sowie Zaehigkeit und Haertungscharakteristik. Diese nachzuweisen und eine zukuenftige Serienanwendung vorzubereiten war Ziel des Projektes, wozu physico-chemische Untersuchungen, mechanische Kennwertermittlungen und Bauteilversuche dienten. Neben verbesserter Lagerstabilitaet und minimierten Haertungszyklen konnten gute Verarbeitungseingeschaften und ein Leistungsprofil nachgewiesen werden, das nahe an das heutiger Luftfahrtwerkstoffe heranreicht. Die Serienherstellung von Faserverbundbauteilen im Automobilbau ist prinzipiell moeglich, da durch die entwickelten Katalysatoren alle Vorgaben hinsichtlich Kosten, Leistungsfaehigkeit und Taktzeiten erreicht werden konnten. Hierdurch koennen sich auch fuer andere Bereiche (z.B. Geraetebau, Sportartikelindustrie) neue Anwendungsmoeglichkeiten eroeffnen. (orig.)

  5. Structural, spectral and mechanical studies of bimetallic crystal: cadmium manganese thiocyanate single crystals

    Science.gov (United States)

    Manikandan, M.; Vijaya Prasath, G.; Bhagavannarayan, G.; Vijayan, N.; Mahalingam, T.; Ravi, G.

    2012-09-01

    A nonlinear optical bimetallic thiocyanate complex crystal, cadmium manganese thiocyanate (CMTC) has been successfully synthesized. The growth of single crystals of cadmium manganese thiocyanate has been accomplished from aqueous solution using slow evaporation method. The presence of manganese and cadmium in the synthesized material was confirmed through energy dispersive spectrum (EDS) analysis. Structural analysis was carried out using powder X-ray diffractometer (PXRD) and crystalline perfection of the grown crystals was ascertained by high-resolution X-ray diffraction (HRXRD) analysis. Fourier transform infrared (FTIR) spectrum was taken to confirm the functional groups. The transmittance spectrum of the crystal in the UV-visible region has been recorded and the cutoff wavelength has been determined. The dielectric measurements for the crystals were performed for various frequencies and temperatures. The mechanical properties were evaluated by Vickers microhardness testing, which reveals hardness and stiffness constant of the crystals.

  6. Structural, spectral and mechanical studies of bimetallic crystal: cadmium manganese thiocyanate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, M.; Vijaya Prasath, G.; Mahalingam, T.; Ravi, G. [Alagappa University, Department of Physics, Karaikudi (India); Bhagavannarayan, G.; Vijayan, N. [National Physical Laboratory, Materials Characterization Division, New Delhi (India)

    2012-09-15

    A nonlinear optical bimetallic thiocyanate complex crystal, cadmium manganese thiocyanate (CMTC) has been successfully synthesized. The growth of single crystals of cadmium manganese thiocyanate has been accomplished from aqueous solution using slow evaporation method. The presence of manganese and cadmium in the synthesized material was confirmed through energy dispersive spectrum (EDS) analysis. Structural analysis was carried out using powder X-ray diffractometer (PXRD) and crystalline perfection of the grown crystals was ascertained by high-resolution X-ray diffraction (HRXRD) analysis. Fourier transform infrared (FTIR) spectrum was taken to confirm the functional groups. The transmittance spectrum of the crystal in the UV-visible region has been recorded and the cutoff wavelength has been determined. The dielectric measurements for the crystals were performed for various frequencies and temperatures. The mechanical properties were evaluated by Vickers microhardness testing, which reveals hardness and stiffness constant of the crystals. (orig.)

  7. Bi-Metallic Composite Structures With Designed Internal Residual Stress Field

    Science.gov (United States)

    Brice, Craig A.

    2014-01-01

    Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.

  8. Stability of the Shallow Axisymmetric Parabolic-Conic Bimetallic Shell by Nonlinear Theory

    Directory of Open Access Journals (Sweden)

    M. Jakomin

    2011-01-01

    Full Text Available In this contribution, we discuss the stress, deformation, and snap-through conditions of thin, axi-symmetric, shallow bimetallic shells of so-called parabolic-conic and plate-parabolic type shells loaded by thermal loading. According to the theory of the third order that takes into account the balance of forces on a deformed body, we present a model with a mathematical description of the system geometry, displacements, stress, and thermoelastic deformations. The equations are based on the large displacements theory. We numerically calculate the deformation curve and the snap-through temperature using the fourth-order Runge-Kutta method and a nonlinear shooting method. We show how the temperature of both snap-through depends on the point where one type of the rotational curve transforms into another.

  9. Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell Structure Nanowires

    Directory of Open Access Journals (Sweden)

    Zhu Jian

    2009-01-01

    Full Text Available Abstract Transverse surface plasmon resonances (SPR in Au–Ag and Ag–Au core–shell structure nanowires have been investigated by means of quasi-static theory. There are two kinds of SPR bands resulting from the outer surface of wall metal and the interface between core and wall metals, respectively. The SPR corresponding to the interface, which is similar to that of alloy particle, decreases and shifts obviously with increasing the wall thickness. However, the SPR corresponding to the outer surface, which is similar to that of pure metal particle, increases and shifts slightly with increasing the wall thickness. A mechanism based on oscillatory surface electrons under coulombic attraction is developed to illuminate the shift fashion of SPR from bimetallic core–shell interface. The net charges and extra coulombic force in metallic wall affect the SPR energy and the shift fashion.

  10. Neutron strain scanning in bimetallic materials. Experimental and Monte Carlo simulation results

    International Nuclear Information System (INIS)

    Complete text of publication follows. Neutron diffraction measurements have been carried out on the REST diffractometer on curved components fabricated by cold working bimetallic tubes. The tubes consist of two layers (an outer one of austenitic steel and an inner one of ferritic steel) with a total wall thickness of 6 mm. Both austenitic and ferritic components have been scanned at different positions, throughout the material thickness and for three orientations of the component axes with respect to the neutron momentum transfer vector. Due to the complicated geometry of the problem, Bragg peak data have been corrected for non-uniform illumination of gauge volume, neutron absorption and instrumental effects by means of a Monte Carlo simulation code which incorporates details of the diffractometer and a realistic model of the specimen. We shall report on estimations of the stress tensor components and on the combined micro-stress and coherence volume effects on the Bragg peak linewidths. (author)

  11. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    Science.gov (United States)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-05-01

    Pulse or impact welding traditionally has been referred to as "solid-state" welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  12. Effects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from Thermosynechococcus elongatus

    Directory of Open Access Journals (Sweden)

    Imran Ashraf

    2015-07-01

    Full Text Available The fluorescence of photosystem I (PSI trimers in proximity to bimetallic plasmonic nanostructures have been explored by single-molecule spectroscopy (SMS at cryogenic temperature (1.6 K. PSI serves as a model for biological multichromophore-coupled systems with high potential for biotechnological applications. Plasmonic nanostructures are fabricated by thermal annealing of thin metallic films. The fluorescence of PSI has been intensified due to the coupling with plasmonic nanostructures. Enhancement factors up to 22.9 and 5.1 are observed for individual PSI complexes coupled to Au/Au and Ag/Au samples, respectively. Additionally, a wavelength dependence of fluorescence enhancement is observed, which can be explained by the multichromophoric composition of PSI.

  13. FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-05-20

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.

  14. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    Science.gov (United States)

    Gutierrez Fuentes, R.; Pescador Rojas, J. A.; Jiménez-Pérez, J. L.; Sanchez Ramirez, J. F.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.

    2008-11-01

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  15. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Fuentes, R.; Pescador Rojas, J.A. [CICATA-IPN, Legaria 694, Mexico 11500, D.F. (Mexico); Jimenez-Perez, J.L. [CICATA-IPN, Legaria 694, Mexico 11500, D.F. (Mexico)], E-mail: jimenezp@fis.cinvestav.mx; Sanchez Ramirez, J.F. [CICATA-IPN, Legaria 694, Mexico 11500, D.F. (Mexico); Departamento de Fisica, CINVESTAV-IPN, A.P. 14-740, Mexico 07360, D.F. (Mexico); Cruz-Orea, A.; Mendoza-Alvarez, J.G. [Departamento de Fisica, CINVESTAV-IPN, A.P. 14-740, Mexico 07360, D.F. (Mexico)

    2008-11-30

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  16. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  17. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-05-14

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory oxide support containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one methylating agent under conditions suitable for the methylating agent compounds to promote the activity of tungsten and molybdenum oxides for the disproportionation reaction.

  18. Tight bifunctional hierarchical catalyst.

    Science.gov (United States)

    Højholt, Karen T; Vennestrøm, Peter N R; Tiruvalam, Ramchandra; Beato, Pablo

    2011-12-28

    A new concept to prepare tight bifunctional catalysts has been developed, by anchoring CoMo(6) clusters on hierarchical ZSM-5 zeolites for simultaneous use in HDS and hydrocracking catalysis. The prepared material displays a significant improved activity in HDS catalysis compared to the impregnated counterpart. PMID:22048337

  19. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  20. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures.

    Science.gov (United States)

    Li, Hua; Guo, Chun-Yan; Xu, Cai-Ling

    2015-01-15

    Bimetallic Cu-Ag superstructures were successfully fabricated for the first time by using the natural leaves as reducing agent through a facile one-step hydrothermal process. Morphology, structure and composition of the Cu-Ag superstructures were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. The results reveal that the Cu-Ag superstructure is bimetallic nanocomposite constructed by nanoparticles with low Ag content and shows a rough surface and porous flexural algae-like microstructure. By using a three-dimensional nickel foam as the scaffold, a novel non-enzymatic glucose sensor based on Cu-Ag nanocomposites has been fabricated and applied to non-enzymatic glucose detection. The as-prepared Cu-Ag nanocomposites based glucose sensor displays distinctly enhanced electrocatalytic activity compared to those obtained with pure Cu nanomaterials prepared with a similar procedure, revealing a synergistic effect of the matrix Cu and the doped Ag. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy indicate that the Cu-Ag superstructures based glucose sensor displays a fascinating sensitivity up to 7745.7 μA mM(-1) cm(-2), outstanding detection limit of 0.08 μM and fast amperometric response (glucose detection. Furthermore, the sensor also exhibits significant selectivity, excellent stability and reproducibility, as well as attractive feasibility for real sample analysis. Because of its excellent electrochemical performance, low cost and easy preparation, this novel electrode material is a promising candidate in the development of non-enzymatic glucose sensor. PMID:25113052